THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Adaptive and Resource-Efficient Systems
for the Internet of Things

Protocols, Systems, and Evaluation Infrastructures

LAURA HARMS

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden, 2024

Adaptive and Resource-Efficient Systems for the Internet
of Things

Protocols, Systems, and Evaluation Infrastructures

LAURA HARMS

Copyright (©) 2024 Laura Harms
All rights reserved.

ISBN 978-91-8103-027-3

Doktorsavhandlingar vid Chalmers Tekniska Hogskola
Ny serie nr 5485

ISSN 0346-718X

Department of Computer Science & Engineering
Division of Computer and Network Systems
Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Phone: 446 (0)31 772 1000

This thesis has been prepared using IXTEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2024.

ii

In loving memory of my sister Julia.
Thank you for all the time we had together.

iv

Adaptive and Resource-Efficient Systems for the Internet
of Things

Protocols, Systems, and Evaluation Infrastructures

LAURA HARMS

Department of Computer Science & Engineering
Chalmers University of Technology

Abstract

With the growing number of Internet of Things (IoT) devices and the emergence
of the Industrial Internet of Things (IToT), there is a growing demand for
adaptive and resource-efficient wireless communication protocols and systems.
Industrial networks play a crucial role in monitoring pipelines and facilitating
communication among collaborating devices, such as robots in a smart factory.
These applications are safety-critical and necessitate long-term reliable and
low-latency communication. However, the rising number of IoT communicating
devices and deployments increasingly congests the wireless medium, which
leads to interference and makes the latency and reliability requirements more
challenging to accomplish. Current solutions and protocols are incapable
of addressing these evolving demands. Therefore, there is a need for novel
communication protocols and systems capable of dynamically adapting to
unforeseen interference and changes in the wireless medium.

In this thesis, we design, implement, and evaluate protocols, systems, and
evaluation infrastructures tailored for modern IoT solutions. To facilitate
long-term stable communication within centrally scheduled IEEE 802.15.4
Time-Slotted Channel Hopping (TSCH) networks, we propose a centralized
scheduler and a flow-based retransmission strategy. This strategy allocates
retransmissions to be utilized at any node within a communication flow, thereby
enhancing resilience against unforeseen interference. We then introduce Au-
TOBAHN, a communication protocol that integrates opportunistic routing and
synchronous transmissions with TSCH to mitigate local wideband interfer-
ence while keeping latency to a minimum. With TBLE, we bring TSCH to
Bluetooth Low Energy (BLE), further reducing latency without compromising
reliability. To provide comprehensive insights into distributed wireless commu-
nication protocols on testbeds, we propose Grace, a low-cost time-synchronized
General-Purpose Input/Output (GPIO) tracing system for existing testbeds.
Finally, we demonstrate with BlueSeer that a device can recognize its environ-
ment—such as home, office, restaurant, or street—solely from received ambient
BLE signals using an embedded machine learning model. BlueSeer enables
small ToT devices like wireless headphones to adapt their behaviors to the
surrounding environment.

Keywords

Internet of Things, IoT, Industrial Internet of Things, IIoT, Time-Slotted
Channel Hopping, TSCH, Centralized Scheduling, Routing, Opportunistic
Routing, Synchronous Transmissions, Time-Synchronization, Bluetooth Low
Energy, BLE, IEEE 802.15.4, TinyML

Acknowledgment

After 6.5 years, my journey towards obtaining a PhD is drawing to a close.
Throughout this time, I have had the privilege of meeting many remarkable peo-
ple, and I wish to express my heartfelt gratitude to each of you for transforming
this journey into an enriching experience.

Foremost, I extend my deepest thanks to my supervisor, Olaf Landsiedel,
for embarking on this journey with me and providing unwavering support
throughout these years. Your mentoring has been invaluable in helping me
grow as a researcher. I really appreciate how you have always been there to
answer my questions and give me feedback, even when you had plenty of other
things going on. I'm also grateful to my co-supervisor, Magnus Almgren, for
keeping the link to Chalmers alive, even after my relocation to Kiel.

I am grateful to my colleagues and fellow PhD students at Chalmers for
providing a pleasant work environment and for the wonderful fika breaks we
had. To Dimitris, Christos, Georgia, Beshr, Babis, Bastian, Thomas, Karl,
Hannah, Carlo, Francisco, Aljoscha, Fazeleh, and Romaric, I extend my sincere
appreciation. Additionally, I express gratitude to Tomas, Monica, Rebecca,
Clara, and Marianne, without whom working and doing a PhD at Chalmers
would not have been possible. Furthermore, I extend thanks to my examiner,
Gerardo Schneider, for his support in facilitating my PhD continuation at
Chalmers while residing in Germany.

In Kiel, I extend my gratitude to Valentin, my companion from the outset
of my PhD journey at Chalmers, who, alongside me, followed Olaf to Kiel.
Thank you for the countless discussions we had when sharing an office, for
the collaboration, as well as our joint travels around the globe. I extend my
thanks to Patrick and Janek for being excellent office mates, Christian for our
collaboration and technical discussions, and Steffi, Gerd, and Brigitte, along
with my fellow PhD students Birkan, Naina, Tayyaba, Marc, Momin, Kainat,
Julia, and Ali, for their contributions to a great and friendly work environment.

I am grateful to Ambuj for igniting my passion for research during my
master’s thesis, as without your inspiration, the prospect of pursuing a PhD
may never have crossed my mind.

Lastly, I offer a heartfelt thank you to my parents, Agnes and Rainer, my
sisters Melanie and Julia, and my best friend Marcel, for always being there
for me, no matter how far apart we are. Danke!

Laura Harms
Kiel, March 2024

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] L. Harms, O. Landsiedel

“MASTER: Long-Term Stable Routing and Scheduling in Low-Power Wire-
less Networks”

Proceedings of the 16th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), pp. 86-94, 2020.

L. Harms, O. Landsiedel

“Opportunistic Routing and Synchronous Transmissions Meet TSCH”
Proceedings of the 46th IEEE Conference on Local Computer Networks
(LCN), pp. 107-114, 2021.

V. Poirot, L. Harms, H. Martens, O. Landsiedel

“BlueSeer: Al-Driven Environment Detection via BLE Scans”
Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pp. 871-876, 2022.

This paper was nominated as a candidate for the best paper award.

L. Harms, C. Richter, O. Landsiedel

“Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds”
FElsevier Computer Networks, vol. 228, p. 109746, 2023.

The above is an extended version of the work that previously appeared
in:

L. Harms, C. Richter, O. Landsiedel

“Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds”
Proceedings of the 18th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), pp. 9-16, 2022.

This paper won the best paper award.

L. Harms, O. Landsiedel

“TSCH meets BLE: Routed Mesh Communication over BLE”
Proceedings of the 19th International Conference on Distributed Com-
puting in Smart Systems and the Internet of Things (DCOSS-I0T), pp.
187-195, 2023.

ix

Other publications

The

following publications were published during my PhD studies, or are

currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] A. Varshney, L. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans, T.

[f]

Voigt

“LoRea: A Backscatter Architecture That Achieves a Long Communication
Range”

Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems (SenSys), pp. 1-14, 2017.

L. Harms

“C-TSCH: A Centralized Scheduler for TSCH”

Proceedings of the International Conference on Embedded Wireless Sys-
tems and Networks (EWSN), pp. 314-815, 2019.

Poster Abstract

L. Harms, O. Landsiedel

“Competition: Centrally Scheduled Low-Power Wireless Networking for
Dependable Data Collection”

Proceedings of the International Conference on Embedded Wireless Sys-
tems and Networks (EWSN), pp. 300-301, 2019.

Poster Abstract

L. Harms, O. Landsiedel

“(POSTER) OVERTAKE: Opportunistic Routing and Concurrent Trans-
missions for TSCH”

Proceedings of the 16th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), pp. 141-143, 2020.

L. Harms
“BLE-Based and Al-Driven Environment Detection”
KuVS - AI in Networking Summer School, 2 pages, 2022.

L. Harms, O. Landsiedel

“TBLE: Time-Synchronized Routed Mesh Communication for BLE”
Proceedings of the 20th GI/ITG KuVS Fachgesprdch Sensornetze (FGSN
2023), pp. 5-6, 2024.

Contents

[Abstractl v
|Acknowledgement)| vii
G F Publications ix
[I'hesis Overview| 1
I Introductionl. L 1
2 Motivation and Goald L. 2

13 Background| oo 6
3.1 Low-Power Wireless Communicationl 6

B.2 [EEE 802.15.41 8

3.3 Bluetooth Low Energy (BLE)[. 10

3.4 Time-Slotted Channel Hopping (TSCH)[. 13

3.5 Concurrent Transmissions 17

[3.6 Time Synchronization| 18

B.7 Evaluation of Low-Power Wireless Networksl. 20

[3.8 Embedded Intelligence and Tiny Machine Learning] 21

4 Related Worklo oo 22
4.1 Scheduling TSCH| 23

4.2~ Overcoming Interference in TOCH| 26

43 TSCHand BLEl 28

[4.4 Time-Synchronized Testing and Evaluation| 29

[4.5 Wireless Localization & Sensingl. 30

[Research Questions|. 33

6 [hesis Contributions v v v v v 34
6.1 Chapter A — MASTER: Long-Term Stable Routing and |

| Scheduling in Low-Power Wireless Networks|. 34
(6.2 Chapter B — Opportunistic Routing and Synchronous |

[Transmissions Meet TSCHI 38
6.3 Chapter C — BlueSeer: Al-Driven Environment Detection |

[via BLE Scansl00 o000 41
(6.4 Chapter D — Grace: Low-Cost Time-Synchronized GPIO |

| Tracing for IoT Testbeds| 43
(6.5 Chapter £ — TSCH meets BLE: Routed Mesh Communi- |

[cation over BLElo o000 0oL 46
|7 Conclusion and Emerging Directions| 48

xi

xii CONTENTS

|IA° Master: Long-Term Stable Routing and Scheduling in Low- |

L__Power Wireless Networks| 51
[Introductionl. 52
12 Background| o 53

2.1 Time-Slotted Channel Hopping| 53
[2.2 Link quality metric|. 54
2.3 Schedulingl 0. 54
24 Retransmissions] 55
3 Design| 55
(3.1 Centralized Routing and Scheduling with MASTER| . . . 55
(3.2 MASTER’s Flow-based transmission strategy]. 57
[3.3 Time Synchronization| 59
[3.4 System Design| oL, 59
A TEvaluation]. . . - o v v vovoe 61
[4.1 Evaluation Setup|o 0oL 63
[42 Baselined 64
[4.3 Performance of MASTER’s transmission strategies|. . . . 64
4.4 MASTER vs. Orchestral 66
[4.5 Long-term stability of MASTER] 66
51 Related Worklo 67
6 Conclusion| Lo 68

IB Opportunistic Routing and Synchronous Transmissions Meet |

[TSCH 69
[Tntroductionl. 70
12 Background & Related Work| 71

[2.1 Time-Slotted Channel Hopping (TSCH)| 71
[2.2 Opportunistic Routing| 72
2.3 Synchronous Transmissions| 72
3 Design| 74
3.1 AUTOBAHN: General Ideal 74
(3.2 Routing Set| oL 74
[3.3 Anycast forwarding in AUTOBAHN| 75
B.4 Active slots in AUTOBAHN. 76
[3.5 System Integration|o 76
[3.6 Integration in MASTER’s routing layer| 77
B TEvaluafionl. o oo v 7
[4.1 Evaluation Setup| 0oL 7
[4.2 Baselined 79
[4.3 Possibility of Synchronous Transmissions in TSCH| . . . 79
4.4 Performance without Interferencel. 80
4.5 Performance under Interferencel 81
[4.6 AUTOBAHN vs, Orchestral 83
[4.7 Recovery from interference] 83
[4.8 Long-term stability of AUTOBAHN| 83

CONTENTS xiii
IC BlueSeer: Al-Driven Environment Detection via BLE Scansl 85
I Introductionl. oL 86
12 Background: Bluetooth LEf 87
13 Design: BlueSeer|o oo 88
(3.1 OVEIVIEW] . « v v v v v e e e e e e e e e 89

3.2 Feature Bxtractionl 90
3.3 Embedded Neural Networkl 91

[3.4 Implementation|. 0oL 92

A TEvaluation]. . . - o v v ovov e 92
4.1 Neural Architecturel 92

[4.2 Feature Analysis| 93

4.3 Overall Performancel 94

B Related Workl 95
6 Conclusion| oL 96
Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT |
[Testbeds| 97
I Introductionl. 98
12 Background| oo 100
2.1 Time Synchronization| 100

[2.2 Global Positioning System (GPS)[. 101

2.3 Network Time Protocol (NTP)| 101

[2.4 Reference Broadcasting System (RBS)[. 101

[2.5 Logic Analyzer| 102

B RelatedWorkl 102
A Design| 103
[4.1 Design Overview| 103

(4.2 Low-intrusive time stamping| 105

[4.3 Synchronization Node| 105
44 Testbedmodd 108

[4.5 GPIO Tracing] 109

[4.6 Trace Data Processing| 109

4.7 Post-processing|o oL 112

[4.8 Implementation|. 112

4.9 Discussionl.o 114

B Tvaluation]. . . . - v v oo 114
(5.1 Evaluation Setup| oo Lo 115

[0.2 Output intrusiveness| 116

[5.3 Logic Analyzer Frequency Stability|. 117

(5.4 Frequency Stability Of Synchronization Node| 117

[5.5 Receiver Stability|. 0000 119

BE6 — Clock Correction] oo 119

[5.7 Multiple Time Sources| 120

(5.8 DUMMArY|o e 121

6 Conclusion| oL 122

xiv CONTENTS
[E_TSCH meets BLE: Routed Mesh Communication over BLE 123
[Introductionl. 124

12 Background|o oo 125
2.1 IEEE 8021541 125

2.2 Time-Slotted Channel Hopping (TSCH)| 125

2.3 Bluetooth Low Energy (BLE)|. 126

13 ssecting TSCH| o . o000 127
[3.1 TSCH Timeslot Timing| 127

[3.2 TSCH packet duration| 128

3.3 time synchronization| 128

(3.4 Hopping sequences| 129

4 Design| 129
4.1 OVEIVIEW] . . . v v v v o e e e e e e e 129

4.2 Derived Timing|. 129

4.3 acket durafionl. e 131

[4.4 Time Synchronization| 131

[4.5 Hopping Sequences| 132

[4.6 Standard-compliance Discussion| 132

B Evaluafionl. ot 132
[6.1 Reachability|.o 0 0L 133

onf 136

6 Related Workl 138

[T Conclusionl 139
Bib D 141

List of Figures

[Structure of the thesisl 5
12 2.4 GHz channel mapping|, 7
B TEEE 802.15.4 Packet Formatl 9
4 BLE Packet Formatl, 11
5] BLE Advertisement Scanning| oL 12
16 PDU structure of an advertising packet| 12
|7 Simplified TSCH timeslot timing] 14
18 Example of a TSCH schedule] 14
19 Overview of MASTER| 36
[10 Sample schedules for MASTER’s flow-based retransmission strategy| 37
|11~ Comparison of AUTOBAHN and established centralized TSCH |
scheduling approaches|, 39

112 BlueSeer: System architecture|. 41
[13 Design overview of Grace| 43
IA.1_Overview of MASTERl 52
IA.2 Sample TSCH schedule| 54
IA.3 Sample schedules for difterent retransmission strategies|. 55
|A.4 Example of 2 flows sharing a common link| 60
[A.5 Evaluation of MASTERI. 62
IA.6 Long-term evaluation of Sliding Windows| 66
IB.1 Comparison of AUTOBAHN and established centralized TSCH |
scheduling approaches| 73

[B.2 Local testbed of 500m=. 79
[B.3 AUTOBAHN and MASTER without interferencel. 80
B.4 AUTOBAHN and MASTER under interferencel 81
IB.5 Comparison of AUTOBAHN and Orchestral 82
IB.6 Long-term stability evaluation of AUTOBAHN| 84
IC.1 BLE Advertisementsl o L. 88
IC.2 BlueSeer: System architecture|. 89
[C3 Evaluation of BlueSeer] 93
|C.4 Feature importance analysis| 94
.1 Design Overview of Grace| 104
D.2 Local testbed of 500m? 115

XV

xvi LIST OF FIGURES

ID.3 Comparison of the duration ot different logging outputs] 116
ID.4 Stability of a deployed logic analyzer over time| 117
ID.5 Stability of the microcontroller output, the synchronization |

| node’s radio output, and the testbed node’s radio input| 118
[D.6_Distribution of offsets between two radio receivers] 119
ID.7 Distribution of offsets between multiple nodes using the full |

| time-error correction system|.o oL 120
ID.8 Time offsets ot different components of Grace| 121
IE.1 BLE PHY packet formats| 126

.2 Simplified TSCH timeslot timingl 128

E.3 Local testbed of 500m?l, 133
|[E.4 Evaluation of the nodes’ reachability] 134
[E5 Evaluation of the nodes’ reachability showing the average BIX |

| to a node’s neighbors|. o000 135

|E.6 Evaluation of the performance of Orchestra for all PHY layers|. 137

List of Tables

11 Research questions and the corresponding thesis chapters| . . . 35
IA.1 Maximum latency for each flow in Figure|A.bc] 65
IC.1 On-device requirements for BlueSeer| 95
ID.1 Cost of components for Grace| 114
[E.1 IEEE 802.15.4¢ TSCH timeslot timings| 127
[E.2 TSCH/TBLE timeslot timings and effective data rates| 131

xvii

xviii LIST OF TABLES

Thesis Overview

1 Introduction

Over the past century, our world transformed from a world without computers
to a connected one. Nowadays, we are surrounded by computers and everyday
devices with built-in computing capabilities. They aid our lives and always
keep us connected with others through the Internet, a situation that was a
mere utopia decades or even years ago. Nowadays, we are so used to always
being online that we feel nervous when we are not [1]. Moreover, we are living
in smart homes that react to our presence and make our lives more convenient.
Many of us live in smart cities that are increasingly connected, providing us
with live information and adapt to our demands, e.g., helping us to get around
more easily.

The Internet of Things (IoT) is a main driver for this development of a
connected world. The Internet of Things forms a network of physical everyday
objects and enables them to communicate with each other. These objects,
also referred to as smart objects, contain sensors or actuators that interface
with the physical world, a communication interface, and embedded computing
capabilities for data processing. IoT devices come in various forms, spanning
from smart home devices like thermostats, spill detection sensors, and light bulbs
to security cameras, smart electricity meters, fitness trackers, and many others.
With the IoT, we connect smart devices, usually using wireless communication,
to form local networks or even become part of the global internet. Many IoT
devices are mobile or cannot be connected to mains power and thus have to
run for years on batteries or be solar-powered instead. Therefore, they have
tight energy budgets, supporting only limited computing and communication
capabilities.

While we experience a drastic change in our daily lives with IoT devices
all around us, this trend of smart and connected devices and automation is
also present in industry. Over the past decades, process automation as part of
Industry 3.0 [23] was a leading motive. However, for the past decade, Industry
4.0 [2H4] and the Industrial Internet of Things (IIoT) enhances automation by
interconnecting industrial systems and creating collaborative ones, e.g., smart
factories [4}5]. Connected industrial systems form sensor-actuator networks,
which allow sensors and smart machines to autonomously exchange information
to trigger actions or provide insights for machines or humans alike. Similar to
the 10T, industrial IoT devices also use wireless communication as moving parts

2 THESIS OVERVIEW

or existing infrastructure are a hindrance for wired communication. Moreover,
to retrofit IToT solutions to existing infrastructure, battery operation is also
common in industrial IoT.

The increasing number of connected and connectable devices both in the
realm of consumer devices (IoT), and in infrastructure and industrial settings
(IToT) leads to new applications. These applications include public infras-
tructure in smart cities that can steer intelligent electricity consumption in
households, observe and react to their inhabitants’ needs, or smartly coordinate
traffic flow. Moreover, highly or fully automated factories are an applica-
tion unthinkable without networked communication between manufacturing
steps. This increasing presence of IoT devices all around us not only leads
to new communication-based applications. It also enables applications to ex-
ploit surrounding signals for localizing a device or intelligently reacting to the
environment.

As the wireless spectrum is shared, deploying additional devices increases
the complexity of communication for both existing and future deployments.
With the wireless medium being inherently dynamic, the introduction of
each new device amplifies the likelihood of interfering communications and
exacerbates the unreliability of wireless transmissions. Consequently, future-
proof communication protocols must possess the capability to dynamically
adapt to changes in the wireless environment, ensuring stable communication
and reliable operation. Furthermore, individual IoT devices must efficiently
manage their energy and computational resources to facilitate adaptation within
both the network stack and the application layer.

2 Motivation and Goals

Low-power wireless devices and the Internet of Things (IoT) have enabled
novel applications, such as personal devices like wireless headphones or fitness
trackers, connected smart cities, and sensor networks overseeing safety-critical
manufacturing processes. Despite being battery-powered, these devices must
uphold reliable communication and adhere to strict deadlines while operating
within tight energy constraints. Moreover, they must contend with an inher-
ently unreliable wireless medium, susceptible to environmental factors and
interference from potentially stronger communication signals.

Over recent decades, numerous communication technologies (such as IEEE
802.15.4 6] and Bluetooth Low Energy [7]) and protocols (e.g., [8H14]) have
been introduced by both academia and industry to ensure reliable commu-
nication in wireless single-hop and multi-hop networks. IEEE 802.15.4 |6]
finds primary application in industrial and smart home scenarios, while Blue-
tooth Low Energy (BLE) [7] stands as the current standard for consumer
electronics. Some communication protocols, like Thread [13] and Matter [14],
are now widely employed within the context of smart homes. Others, such
as WirelessHART [12] and Orchestra [8], focus more on applications for the
Industrial Internet of Things (IToT) and achieve over 99.99% end-to-end de-
livery rates in multi-hop networks. However, many of these protocols are
either best effort, emphasizing high reliability with less consideration for la-
tency [8], or focus on maximum throughput while meeting deadlines but are

2. MOTIVATION AND GOALS 3

unable to maintain reliable communication in the face of unforeseen external
interference |10}/11}15L|16].

Challenges

To use wireless communication as an alternative to wired communication in an
industrial setting, wireless communication has to be reliable and guarantee to
meet deadlines and an application’s latency requirements. Today’s protocols
achieve this by making strong assumptions regarding the level of interference,
and thus only meet these requirements for known levels of interference. In the
real-world, these assumptions do not hold. The wireless medium is inherently
unreliable, and we can no longer guarantee an application to have sole access
to a part of the wireless spectrum. Instead, protocols have to account for
interference from other communication infrastructure and especially unforesee-
able interference levels and changes in the wireless medium. Achieving reliable
communication under these circumstances while giving latency guarantees and
accounting for interference is challenging. Systems giving deadline and latency
guarantees commonly use static communication schedules with static routes
and static numbers of retransmissions that cannot react to local interference
variations alongside a communication path. Therefore, the first challenge we
address in this thesis is to devise protocols for the low-power IIoT that enable
end-to-end communication flows to dynamically adapt to variations in the wire-
less environment to ensure stable and reliable communication with low latency.
We envision a novel retransmission scheme for centrally scheduled networks
that dynamically uses retransmissions wherever needed along a communication
path. Moreover, we design a routing scheme that does not rely on a single path
but can concurrently use multiple paths to circumvent interference sources
without impacting latency.

For low-power communication in the license-free 2.4 GHz band, we see two
protocols in use today: IEEE 802.15.4 and Bluetooth Low Energy (BLE). We
see IEEE 802.15.4 in IToT and smart home applications, while BLE is prevalent
in smartphone-centric consumer applications but also in cheaper smart home
devices. The latest iPhone 15 Pro supports Thread [17] and thus IEEE 802.15.4
in addition to BLE, but BLE radios are still cheaper and more widely available.
Therefore, our next challenge is bringing reliable low-latency mesh networking
to BLE, making it ready for applications in the Industrial Internet of Things.
We solve this challenge by combining the IEEE 802.15.4 TSCH network stack
with BLE replacing the IEEE 802.15.4 physical layer.

Next to challenges requiring new and better adjusted communication proto-
cols, there is also the challenge of testing and evaluating these protocols. It is
especially challenging to test and evaluate the inner workings of communication
protocols. To gain fine-grained insight into concurrent executions on differ-
ent devices in a distributed network, like an IoT network, it is essential that
the evaluation infrastructure offers precise timestamping capabilities. While
state-of-the art solutions require specific hardware, we address this challenge by
building a low-cost time-synchronization system that is retrofittable to existing
infrastructure, extending it by GPIO timestamping capabilities.

The last challenge we address in this thesis concerns IoT devices that
move around, like smartphones, smartwatches, wireless headphones, and other

4 THESIS OVERVIEW

wearables. The environment these devices are in changes constantly, and the
devices should adjust their behavior to the environment they are in. For
example, headphones should lower their noise-cancellation levels near roads
to ensure the safety of their users, and smartphones and smartwatches should
keep silent while in a theater. To tackle this challenge, we envision and develop
an adaptive IoT system capable of recognizing the current environment and
communicating relevant information to the device’s application. This enables
the device to dynamically adjust to changes in its surroundings. We solve the
challenge for devices that cannot rely on external sensors and thus have to
recognize the environment solely with the help of a wireless radio, or more
specifically a BLE radio.

Goals

From these challenges, we can derive the following goals:

1. We aim to create adaptive and resource-efficient low-power IoT systems.
We tackle this problem in two ways, (1) at the level of communication
protocols and (2) at the application level. Firstly, we must add dynamic
retransmission and routing approaches to IIoT communication protocols,
allowing them to react to changes in the wireless environment and thus
enabling long-term stable reliable communication. Secondly, we must
enable IoT devices to detect their environment to make adjustments to
the device’s functionality.

2. We want to reduce communication latency in low-power wireless mesh
networks. Therefore, we must borrow aspects from different low-power
wireless communication approaches and combine them into novel com-
munication protocols. We address this by (1) combining communication
approaches to dynamically route traffic around interference sources, and
(2) replacing the IEEE 802.15.4 physical layer with the BLE physical
layer.

3. We aim to cost-efficiently debug and evaluate timing-critical low-power
communication protocols. Therefore, we must provide a retrofittable
solution for existing testbeds that can timestamp concurrent events on
multiple ToT devices.

Contributions

We address these goals with the following contributions:

A. We build MASTEREI, a centralized scheduler for TSCH networks. MASTER
includes a novel and flexible flow-based retransmission strategy that dy-
namically uses retransmissions wherever necessary across links. MASTER
addresses the first part of our first goal.

1We are aware of the discussion and stigma around the word master and discuss the name
choice for the protocol in Section @

2. MOTIVATION AND GOALS 5

Introduction [Thesis Introduction

Chapter A [Master: Long-Term Stable Routing and Scheduling] flow-based retransmissions

Chapter B Opportunistic Routing and Synchronous Transmissions meet TSCH (Autobahn) CEThLLIED routlng.wnh
concurrent forwarding

Chapter C [BlueSeer: Al-Driven Environment Detection via BLE Scans] BLE-only environment detection

Chapter D Grace: Low-Cost Time-Synchronized GPIO Tracing for loT Testbeds el tlme-synchronlzed

testbed evaluation
Chapter E [TSCH meets BLE: Routed Mesh Communication over BLE (TBLE)] tlme—syn(;Z:an'l;ed LESH

Figure 1: Structure of the thesis. It includes 6 chapters, one for the
introduction and five for the appended publications in chronological
order of publishing. For each chapter, we highlight the main contri-
bution in the green box.

B. We design AUTOBAHN, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference. AUTO-
BAHN combines opportunistic routing, synchronous transmissions, and
Time-Slotted Channel Hopping (TSCH) into a single protocol achieving
low-latency and long-term stable communication addressing parts of the
first two goals.

C. We build BlueSeer, an Environment detection system able to classify
environments solely using received BLE packets. BlueSeer addresses
the second part of our first goal and enables devices to adapt their
functionality to their surrounding environment.

D. We introduce Grace, a low-cost time-synchronized GPIO tracing system
for IoT testbeds. Grace accomplishes the third goal by using low-cost
off-the-shelf components and is able to synchronize both building-wide
and campus-wide testbeds.

E. We present TBLE, a protocol achieving routed mesh-communication in
BLE. TBLE combines TSCH with BLE which reduces communication
latency and addresses the second part of our second goal.

Approach

In this thesis, we employ experimental computer science methods. We design,
implement, and experimentally evaluate IoT protocols and systems which enable
stable and reliable low-latency communication and adaptive IoT systems. We
make our designs, protocols, and implementations available to enable their use
within the scientific community and beyond.

Outline

This thesis contains an introduction to the scope of this thesis and five articles
published over the recent years. We organize the thesis into six chapters,

6 THESIS OVERVIEW

consisting of a thesis overview and the five articles. The thesis overview starts
with an introduction to the topic of this thesis, and a motivation of the targeted
problems. Afterward, we introduce the required background this thesis builds
on and survey the current state-of-the-art of related research. We conclude
this chapter with the research statement, an overview and discussion of the
following articles, and an outlook towards future directions. The following
chapters each include one of the five articles in chronological order of publishing.
Figure [I] provides a visual overview of the structure of this thesis and each
article’s main contribution.

3 Background

In this section, we introduce the core concepts this thesis builds on and
the necessary technical background we use in this thesis. We provide an
overview of low-power wireless communication (Section , with a focus on
short-range 2.4 GHz communication protocols, mainly IEEE 802.15.4 (Section
and Bluetooth Low Energy (Section . We overview medium access
methods in IEEE 802.15.4, focusing on TSCH (Section and synchronous
transmissions (Section . Moreover, we present routing approaches in short-
range communication systems. Afterward, we discuss time-synchronization
(Section and evaluation methods (Section for wireless networks. Lastly,
we provide an introduction into embedded intelligence and tiny machine learning

(Section [3.8)).

3.1 Low-Power Wireless Communication

Wireless communication in the field of the (Industrial) Internet of Things has
to be highly reliable, meet deadlines, and adhere to tight energy budgets. It has
to be energy efficient and low-power to allow its use on battery for long periods
of time—sometimes decades. To achieve this, multiple wireless communication
technologies have been proposed over the years that have to make a tradeoff
between range and data rate. Wireless personal area networks (WPAN) offer
data rates of hundreds of kbit/s up to a few Mbit/s achieving communication
ranges of a few tens of meters [18]. This category of networks is most suitable for
smart homes, smart factories, and devices we carry with us like wearables. For
covering longer communication ranges and to boost communication reliability,
they use multi-hop communication. The most prominent standards for short-
range low-energy communication are IEEE 802.15.4 [6] and Bluetooth Low
Energy (BLE) [7]. Both are narrowband communication standards operating
in the license-free 2.4 GHz ISM band. IEEE 802.15.4 also supports subGHz
frequencies [19], as well as higher frequencies above 3 GHz for ultra-wideband
communication [19]. In contrast, low-power wide-area networks (LPWAN) like
LoRa [20] and Sigfox [21] achieve high communication ranges of above 10 km
with data rates of 100 bit/s up to tens of kbit/s [22], while cellular LPWANSs
like NB-IoT, and LTE-M [23] achieve higher data rates of hundreds of kbit/s
with slightly shorter communication ranges. These communication ranges,
make LPWANS perfectly suitable for citywide IoT networks or larger low-power
networks outside of cities without requiring multi-hop communication. Thus,
they are a perfect fit for applications such as smart cities and smart agriculture.

3. BACKGROUND 7

802.15.4

1038 11 36 39

BLE .

Lo

24624
24754
24804
2483

T T T
el ~ o
Y) re)
< < <
N 3 N

24001
2402
24054
24124

Frequency [MHZ]

Figure 2: Channel mapping of BLE, IEEE 802.15.4, and IEEE 802.11
(WiFi) sharing the 2.4 GHz frequency band. BLE and IEEE 802.15.4
channels are 2 MHz wide with 2 MHz and 5 MHz spacing between
center frequencies of adjacent channels, respectively. WiFi channels
are 22 MHz wide. Blue: primary BLE advertising channels. Red:
common, non-overlapping WiFi channels. Orange: commonly used
4-channel hopping sequence in IEEE 802.15.4 TSCH.

However, all of these LPWAN technologies require infrastructure like cell towers
or base stations for their operation.

Within this thesis, we mainly focus on the former category of low-power
wireless communication, more precisely, communication with IEEE 802.15.4
and Bluetooth Low Energy (BLE), operating in the 2.4 GHz ISM band.

3.1.1 Communication Challenges in the 2.4 GHz ISM Band

The 2.4 GHz ISM band is a shared wireless medium with several technologies
including TEEE 802.15.4, BLE, and WiFi that have to coexist. Especially for
low-power communication standards like IEEE 802.15.4 and BLE communica-
tion is more challenging in comparison to WiFi which transmits several orders
of magnitude more powerful signals (<1 mW vs. 100 mW). However, not only
the presence of WiFi is a challenge, but also the presence of multiple BLE
or IEEE 802.15.4 networks and the coexistence of BLE and IEEE 802.15.4 is
challenging as their signals are likely to collide and thus interfere with each
other. Networks employing IEEE 802.15.4 or BLE do not uniformly adopt
identical channel selection mechanisms or communication protocols, thereby
increasing the probability of collisions. Additionally, as the number of devices
increases, these challenges intensify further. To ensure reliable communication
amidst interference, WPANSs employ a range of medium access and network-
ing strategies. These encompass multi-hop communication, retransmissions,
channel hopping, and multi-path communication.

8 THESIS OVERVIEW

3.1.2 Medium Access Methods

To avoid interference within a single network and thus achieve reliable com-
munication, multiple strategies to access the wireless medium exist. These
strategies either set on avoiding collisions by probing the wireless medium to
detect whether it is clear to send (e.g., Carrier Sense Multiple Access with
Collision Avoidance: CSMA/CA), or split the medium to give exclusive access
to a portion for a specific communication. We can split the wireless medium
along the time-axis for exclusive access of the medium in specific timeslots,
or along the frequency-axis, allowing concurrent communication on different
frequency channels. We can increase the distance between concurrent transmis-
sions, or we can use orthogonal codings to restore the signal from overlapping
concurrent signals [24]. We can use each of these approaches individually or in
combination.

3.1.3 Long-Distance Communication

While both IEEE 802.15.4 and BLE only have limited communication range,
they often have to communicate over longer distances nonetheless to, e.g.,
transmit sensor data to an actuator that is not in the sensor’s immediate
communication range. While base stations like in LPWAN or WiFi networks
would be a possibility, they require fixed infrastructure. Another approach is
multi-hop communication, which is the fundamental method for mesh networks.
In mesh networks, nodes between the data source and the destination act as a
relay and receive data and forward it towards the destination. Mesh networks
do not require fixed infrastructure. Instead, they only require a sufficiently
dense mesh to transmit data from any potential sender to any potential receiver,
and thus can form ad-hoc networks. Both IEEE 802.15.4 and BLE offer mesh
networking solutions [6}9}25}26].

3.2 1IEEE 802.15.4

IEEE 802.15.4 is a widespread standard for low-rate wireless networks intro-
duced in 2003 [27]. It builds the foundation for communication protocols
such as Zigbee [28], WirelessHART [12] and Thread [13|. While it defines
multiple frequency ranges and modulation schemes, the most prominent one
is its 2.4 GHz physical layer using the O-QPSK modulation scheme [29] with
direct-sequence spread spectrum (DSSS) [30]. This physical layer (from now
on denoted as IEEE 802.15.4) with its robust modulation scheme offers a data
rate of 250 kbit/s. Its direct-sequence spread spectrum modulation scheme
uses a wider spectrum than necessary for the data rate, and thus is less affected
by interference than other modulation schemes [30]. IEEE 802.15.4 splits the
2.4 GHz ISM band into 16 channels (11-26) that are 2 MHz wide and 5 MHz
apart (cf. Figure . The IEEE 802.15.4 standard defines both the physical
layer and several medium access control (MAC) layers.

3.2.1 IEEE 802.15.4 PHY

A physical layer IEEE 802.15.4 packet consists of a 5-byte synchronization
header, a 1 byte packet length, and up to 127 bytes of payload (cf. Figure [3).

3. BACKGROUND 9

Preamble I SFD |Lenght Payload

Synchronization Header PHR up to 127 bytes

Figure 3: Packet format of an IEEE 802.15.4 packet. At a data rate
of 250 kbit/s the transmission of each byte takes 32 ps.

The synchronization header contains 4 preamble bytes, all set to 0x00, and a
1 byte start of frame delimiter (SFD) set to 0xA7.

3.2.2 IEEE 802.15.4 MAC

The initial IEEE 802.15.4 standard [27] defines the IEEE 802.15.4 MAC, a
single-channel MAC layer. This MAC layer defines two modes: beacon-enabled
and non-beacon enabled [31]. The non-beacon enabled mode forms a non-
time-synchronized, asynchronous network, and communication between nodes
uses the unslotted CSMA/CA algorithm to determine whether the channel
is free to send. In the beacon-enabled network, a Personal Area Network
coordinator (PAN coordinator) employs a superframe structure with periodic
beacons for time synchronization. Between two beacons, there is an active
period for communication and an optional inactive (sleep) period. Within the
active period, communication can take place in one of 16 equal length time
slots, contention-based using CSMA /CA or contention-free in one of up to 7
guaranteed timeslots (GTS). Due to several limitations like the use of a single
channel, inflexible numbers of guaranteed timeslots, unbounded latency, and
low reliability [32,33], this protocol is unsuitable for applications with strict
quality of service (QoS) requirements. However, if the whole network uses a
single channel, it allows the coexistence of several IEEE 802.15.4 networks in
the same space.

The 2015 amendment of the IEEE 802.15.4 standard (IEEE 802.15.4¢) [6]
defines five new MAC modes, namely, Blink Radio Frequency Identification
(Blink RFID), Asynchronous Multi-Channel Adaptation (AMCA), Low-Latency
Deterministic Networks (LLDN), Deterministic and Synchronous Multi-Channel
Extension (DSME), and Time-Slotted Channel Hopping (TSCH). Both Blink
RFID and AMCA are non-real-time MAC modes. The former is intended
for applications identifying, locating, and tracking objects or personnel. It
is widely used in contactless credit card transactions. The latter targets
large deployments such as smart utility networks, infrastructure monitoring
networks, and process control networks with a variance of channel quality
and link asymmetry. It uses multiple channels and performs active scans,
testing the link quality on all available channels to select the channel with the
highest link quality for communication. AMCA is used in non-beacon-enabled,
asynchronous networks [33]. The other three MAC modes are able to provide
deterministic latency guarantees for time-critical applications. LLDN targets
dense single-channel networks for factory automation requiring very low latency.
In this mode, all nodes in the network must be directly associated with the
PAN coordinator, forming a star topology. DSME and TSCH both target
time-synchronized, beacon-enabled multi-hop multichannel mesh networks and

10 THESIS OVERVIEW

are able to form medium to large networks. DSME’s main focuses are scalable,
time-critical applications that require high reliability and low deterministic
latencies, such as health monitoring, factory automation, smart metering, home
automation, and smart buildings. DSME extends the initial beacon-enabled
MAC mode. It defines a multi-superframe structure consisting of one or more
IEEE 802.15.4 superframes. DSME accommodates a higher number of GTS
slots and allows the use of multiple channels in the contention-free period.
Moreover, the coordinator can limit the number of contention-based slots to
the first superframe. When using multiple channels, DSME can either use the
link quality indicator (LQI) to switch channels, or a network-wide hopping
sequence [34]. TSCH targets application domains such as industrial automation
and process control with time-critical applications that require high reliability.
These applications include oil/refinery industries, water treatment, and process
monitoring of food/chemical/pharmaceutical product, many applications which
concern human and environmental safety. Moreover, TSCH is suitable for
networks prone to interference from other wireless networks [34]. TSCH
performs all communication in slots but does not follow a strict superframe
structure as other modes. Within each slot, communication can either be
contention-based using CSMA /CA, or contention-free using dedicated timeslots.
As this thesis builds heavily on TSCH, we discuss TSCH in detail in Section [3.4]

3.3 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) [7] is a short-range and low-power communication
protocol in the 2.4 GHz ISM band, mainly targeting single-hop communication
between two devices. BLE was introduced as part of the Bluetooth 4.0 standard
in 2010. While it shares a name with Bluetooth, it is a separate low-power
communication protocol. BLE uses 40 2-MHz wide frequency channels (cf.
Figure[2), and the Gaussian Frequency Shift Keying (GFSK) [35] modulation
scheme. This modulation scheme is much simpler than the O-QPSK |29
modulation scheme IEEE 802.15.4 uses [27]. GFSK encodes only a single bit per
symbol, compared to O-QPSK encoding two bits per symbol. Moreover, GFSK
does not need to detect phase changes but rather only needs to differentiate
two frequencies, one for encoding a one, and the other one for encoding a zero.
Three of the 40 BLE channels are reserved for (primary) advertisements and
broadcasts (see channels marked in blue in Figure , while the other 37 are
reserved for connected communication and secondary advertisements. The
initial BLE standard defines a physical layer (PHY) with a data rate of 1 Mbps
(standard data rate) and a maximum transmittable advertisement payload of
37 bytes [36]. Bluetooth 5.0, introduces a 2 Mbps PHY, and two long-range
coded PHYs with data rates of 125 kbps and 500 kbps. Further, Bluetooth 5.0
increases the maximum payload of BLE advertisement to 255 bytes [37].

3.3.1 PHY Packet Format

The physical layer packet format of BLE differs between the uncoded PHY
(1 Mbps and 2 Mbps) and the coded PHY (125 kbps and 500 kbps) (cf. Figure).
An uncoded PHY packet starts with a 1 or 2 byte preamble of alternating ones
and zeros, for a data rate of 1 Mbps and 2 Mbps, respectively. It is followed
by the 4-byte access address, identifying packets belonging to a connection.

3. BACKGROUND 11

Preamble Access Address PDU CRC

Uncoded PHY: (1 or 2 bytes) (4 bytes) (2-258 bytes) | (3 bytes)

Preamble | Access Address | ClI [Term 1| PDU (N bytes) CRC |Term2

Coded PHY: | g0 is) (256 ps) |(16us)| @4 ps)| (N*S*8ps) | (24*S ps) | (24 ps)

FEC block 1 FEC block 2

Figure 4: Packet format of a BLE packet for both the uncoded PHY's
(1 Mbps and 2 Mbps) and the coded PHYs (125 kbps and 500 kbps).

For packets not belonging to a connection and instead advertising services,
so-called advertisement packets, the access address is fixed to 0x8E89BED6 (cf.
Section. Afterward, the packet contains between 2 and 258 bytes payload
(PDU) and a 3-byte cyclic redundancy check (CRC) code for error detection.
A coded PHY packet generally contains the same components, however, with
additional fields for forward error correction (see Figure . The preamble is
uncoded, consisting of 10 repetitions of 0x3C transmitted with a data rate of
1 Mbps. The two following forward error correction (FEC) blocks also use a
symbol rate of 1 Mbps but with a coding rate of 1/8 for the first block and 1/2
or 1/8 for the second block. The first forward error correction (FEC) block
thus is always transmitted with an effective data rate of 125 kbps containing
the access address and the coding indicator (CI). The CI indicates the coding
of the second FEC block, denoting whether it uses an effective data rate of
125 kbps or 500 kbps. The PDU and the CRC are then transmitted with the
indicated coding afterward.

3.3.2 BLE Medium Access

BLE has two modes of operation: connected and non-connected. Both modes
have independent roles and independent ways of coordinating the access to the
wireless medium. In non-connected mode, each device accesses the medium
without coordinating with any other device but tries to limit collisions by
adding a random delay between transmissions. In connected mode, a central
device determines a communication interval and channel hopping sequence
which the peripheral devices follow for their communication. A device can
communicate using both the connected and non-connected mode, which usually
do not interfere due to using different channels (cf. blue and white channels in
the BLE spectrum in Figure [2)).

Advertising. In the non-connected mode, BLE devices disclose their
presence and advertise their services to nearby devices. These services include,
i.e., media control services, weather information (e.g., temperature data), or
connectability (e.g., wireless headphones announcing their presence and that
they are ready to connect).

The advertiser, often a low-power device like a wearable or an IoT sensing
device (e.g., a smart thermometer), broadcasts an advertisement subsequently
on all advertisement channels (37, 38, and 39) and repeats it pseudo-periodically
at a fixed interval plus a random delay to avoid collisions. The receiver, such
as a smartphone, scans for potential advertisements by listening to a specific
channel during a scan window and changes the channels it listens to after the

12 THESIS OVERVIEW

i

Advertisement Interval

Advertiser
Ch. 37
Ch. 38
Ch. 39
Ch. 37
Ch. 38
Ch. 39
Ch. 37
Ch. 38
Ch. 39

Ch. 37 Ch. 38

Scanner

Scan Window

Scan Interval

Figure 5: BLE Advertisements. The advertiser pseudo-periodically
sends advertisement packets on all three advertising channels. The
scanner periodically listens for advertisements.

Header Payload
(16 bits) (1-255 bytes)
PDU type RFU ChSel TXAdd RxAdd Length

(4 bits) (1 bit) (1 bit) (1 bit) (1 bit) (8 bits)

Figure 6: PDU structure of an advertising packet. The first byte
of the header contains a 4-bit PDU type, 1 bit reserved for future
use, a 1-bit flag whether the advertiser supports the BLE channel
selection algorithm, two 1-bit flags whether the advertiser’s and the
target device’s addresses are random or public, respectively. The
second header byte contains the length of the subsequent advertising
payload.

end of a scan interval (cf. Figure . By responding to an advertisement, a
BLE device can initiate a connection.

Advertisement data. In non-connected mode, an advertiser sends data
in the form of a so-called Protocol Data Unit (PDU). The PDU contains a list
of Advertising Data (AD) structures. The advertising data can define, i.e., the
device’s name, a list of offered services (e.g., heart rate sensor or computer
mouse), the device’s address, the radio’s transmit power, and manufacturer-
specific data. Each AD has a Universally Unique Identifier (UUID), defined in
the BLE standard |7]. For example, manufacturer-specific data has the UUID
0xFF and the COVID-19 Exposure Notification AD has the UUID 0xFD6F [38§].

On the packet level, the BLE advertisement PDU consists of a 2-byte header,
followed by one or multiple advertising data (AD) structures (cf. Figure [6)).
An AD structure consists of a 1-byte length identifier, the AD type (e.g., an
identifier that a list of service UUIDs follows) and the AD data (e.g., the list
of service UUIDs).

Connected mode. In connected mode, BLE devices exchange data related
to the services announced in advertisements. For example, a keyboard can send
key presses to a computer or a smartphone can turn on a BLE-enabled light
bulb. The data exchange follows the schedule given by the central device [7].

3. BACKGROUND 13

3.3.3 BLE Mesh Networking

For communicating over more than a single hop, BLE offers a mesh network-
ing extension called Bluetooth Mesh [25/26]. Bluetooth Mesh uses modified
advertisements and shorter intervals between advertisements compared to the
non-connected mode to communicate data. When transmitting data, a sending
node waits for a random backoff time before advertising the data on one of
the three advertisement channels. Relay nodes continuously scan for data and
switch between channels, keeping the radio on at all times. Upon receiving a
packet, a relay node processes it if it’s the packet’s destination or advertises
the data itself after a random backoff interval [39]. For packets destined for a
low-power node not participating in relaying, a designated neighboring relay
node can forward the packet to the intended recipient. Bluetooth Mesh em-
ploys managed flooding, a routing-free approach involving all relay nodes in
the network. It encompasses various roles for different nodes in a network and
an entire network stack [40].

Several studies have examined the performance of Bluetooth Mesh, high-
lighting its strengths and limitations [41,42]. With a payload limit of 16 bytes,
Bluetooth Mesh can achieve 99% reliability within a round-trip time of 200 ms.

3.4 Time-Slotted Channel Hopping (TSCH)

Time-Slotted Channel Hopping (TSCH) [6] is a MAC layer protocol for IEEE
802.15.4 targeting reliable communication in industrial low-power wireless
networks. Its design builds on the Time-Synchronized Mesh Protocol (TSMP),
which is part of the industry standards ISA100.11a [43] and WirelessHART [12].
It combines the medium access methods of Time-Division Multiple Access
(TDMA) and Frequency-Division Multiple Access (FDMA) and adds a pseudo-
random channel hopping mechanism to overcome narrowband interference.
Communication in TSCH uses distinct time slots in one of the up to 16
frequency channels (see Figure , allowing up to 16 parallel communications
in close vicinity to each other.

TSCH forms a time-synchronized mesh network with all participants in the
network. For network formation, nodes listen for beacons (cf. Section
from nodes that are already part of the network. A PAN coordinator starts
the process of sending these beacons. When receiving a beacon, a node joins
the network and takes part in broadcasting beacons to further reach nodes
that might want to join the network. For keeping the network synchronized,
TSCH builds a time-source tree from the PAN coordinator to each node in the
network. For communication in a TSCH network, a scheduler assigns slots and
specific roles to each node. We discuss this in Section [3.4.3

3.4.1 TSCH Slots

TSCH uses time slots that have a standardized length of 10 ms. Each time
slot has a specific role. It is either dedicated, shared, or empty. In certain
implementations, like the one in the Contiki-NG [44] operating system, a fourth
role, beaconing (only), is available. In the case of a beaconing slot, nodes
can send Enhanced Beacons (EB) containing control information for network-
and time-synchronization. These beacons are essential for joining the network

14 THESIS OVERVIEW

|
Dela
Tx Ack Delay I

Figure 7: Simplified TSCH timeslot timing. We omit the optional
CCAOffset and the CCA, which happen during Tx0ffset, if enabled.
Please note: the illustrated timing is not to scale.

Tx Offset

Rx Offset

O
AN Z
O 00
o

o

0 1 2. 3 r 5
timeslot
(a) Sample network. (b) Sample TSCH schedule.

Figure 8: Example of a TSCH schedule. The schedule contains
three flows (A—E, E—»C, and C—B) that use dedicated slots for
communication and one shared beacon slot. The schedule has a
slotframe length of 5 slots, therefore, slot 5 is a repetition of slot 0.

and maintaining the network’s connections and time synchronization. In a
dedicated slot, a node either receives or transmits data. The transmitting node
can either communicate with a specific node (unicast) or with all nodes in range
(broadcast). In the case of unicast transmissions, the receiver acknowledges
the reception within the same slot (cf. Figure E[) A shared slot allows any
communication of the above, beaconing, unicast, and broadcast messages. As
all possible senders share the same slot, these slots use the CSMA /CA back-off
algorithm to limit collisions. Nodes that do not have anything to transmit in
this shared slot listen for incoming packets. If a slot has none of the above
roles, it is empty. In empty slots, the node’s radio remains off to save energy.

TSCH groups slots in slotframes. A slotframe has a defined length and
contains at least one active slot. After passing all slots in the slotframe, it
repeats. Contrary to the legacy IEEE 802.15.4 MAC and DSME, TSCH
supports multiple slotframes with different lengths simultaneously. Each of
these slotframes has a priority. If two or more slotframes have an active slot
scheduled for the same time, TSCH executes the slot belonging to the slotframe
with the highest priority. For example, slotframes with beaconing slots are
usually given the highest priority, as they are necessary for maintaining the
network. All other communication is distributed across the other slotframes.
As slotframes can have different sizes, not always the same slots overlap. All
slotframes together form a TSCH schedule. Figure |8 shows an example of a
TSCH schedule with a single slotframe.

3. BACKGROUND 15

3.4.2 Channel Hopping

Next to the availability of up to 16 frequency slots (FDMA) that allow commu-
nication in up to 16 TSCH slots in parallel, TSCH uses the concept of channel
hopping to counteract narrowband interference. In channel hopping, all active
channels cycle through a pseudo-random hopping sequence. Through this hop-
ping sequence, every channel uses a different physical frequency at subsequent
time slots. The hopping sequence has to include at least as many frequencies
as parallelly active channels, with a maximum of 16 frequencies. Thus, for
every nth slot (n = number of frequencies), a channel uses the same physical
frequency for transmission. For example, in a common hopping sequence of
four channels, TSCH cycles through the channels 15, 25, 26, and 20. These
channels use frequencies that do not overlap with frequencies of the three most
common non-overlapping WiFi channels (1, 6, and 11) (see Figure .

3.4.3 TSCH Scheduling

The IEEE 802.15.4 standard defines the TSCH MAC layer and the structure
of a schedule. However, it does not define how such a schedule is to be created.
Therefore, many bodies of work (cf. [45-47]) study this problem, creating differ-
ent ways of scheduling TSCH networks. Scheduling communication efficiently
is essential to ensure reliable communication that is capable of meeting dead-
lines and saving energy. The scheduling problem of allocating time slots and
channels for communication partners meeting an application’s requirements is
an NP-hard problem, as Saifullah et al. [10] show. Below, we discuss the core
concepts of scheduling traffic in TSCH. In Section [£.1] we take a more in-depth
look at scheduling solutions related to our research.

In TSCH, schedulers are commonly grouped into three classes: centralized,
decentralized (collaborative), and autonomous. Centralized schedulers use
global knowledge to schedule communication, and commonly combine schedul-
ing and routing. They usually target static topologies and often perform the
scheduling separated from the wireless network at the edge, or in the cloud.
Decentralized and autonomous schedulers have no global knowledge of the
network topology to perform their slot allocation. Decentralized schedulers
collaborate with their neighbors to agree on a schedule and autonomous sched-
ulers schedule communication independent of any knowledge, even independent
of the nodes’ neighborhood. We briefly discuss each class of schedulers in the
following paragraphs.

Centralized Scheduling. The first and oldest category of TSCH sched-
ulers are centralized ones, targeting static deployments, often in industrial
settings. Centralized schedulers combine the routing of traffic in a mesh network
with the actual scheduling of communication slots. We define a route as the
order of transmissions (hops) that are necessary for end-to-end communication
between a specific sensor-actuator pair. We discuss routing in mesh networks
in more detail in Section .44

Centralized schedulers operate on global knowledge. Therefore, they use
information about the network, especially about the quality of the wireless
links. We commonly measure the quality of a link using the link’s packet
reception rate, or its inverse, the expected transmission count (E7TX) [48]. The
latter is the average number of transmissions necessary to successfully transmit

16 THESIS OVERVIEW

a packet over the specific link. With this global knowledge of the network
topology, the centralized scheduler can combine routing and scheduling to
form a schedule accommodating the communication requirements of each node.
Modern centralized schedulers commonly add retransmission slots for lossy links
with an expected number of transmissions larger than one (ETX > 1). After
computing the schedule, a central node disseminates it through the network to
all nodes.

Distributed Scheduling. Distributed or collaborative schedulers operate
on local knowledge. These schedulers negotiate communication slots between
neighboring nodes during runtime. Moreover, they perform only the scheduling
between neighbors and usually separate scheduling the medium access from
routing.

Autonomous Scheduling. The last class of TSCH scheduling algorithms
are autonomous schedulers. While the other two scheduler classes either use
global knowledge or local knowledge to make a scheduling decision, autonomous
scheduling algorithms commonly operate without knowing the network topology
at all. Autonomous schedulers neither centrally plan communications or allocate
resources, nor do they negotiate resources between neighbors in a distributed
fashion. Instead, they use a higher layer metric like the routing distance to the
network root or a hash function to schedule slots. Thus, they do not specifically
schedule links in the network, but provide a framework for nodes to select the
intended slots for the situation the nodes are in during operation. Similar to
distributed schedulers, autonomous ones usually leave routing to a higher layer
in the network stack.

3.4.4 TSCH Network Stack

While TSCH commonly concerns the medium access in IEEE 802.15.4 networks,
multiple network stacks on top of TSCH exist. These network stacks define
the routing in TSCH networks, as well as higher layer protocols.

Routing in TSCH. Routing is the selection of a path that data takes from
a sender to a receiver. Routing determines the order of links over which data
travels through the network, whereas scheduling concerns the allocation of
the individual links that are available for routing. The two major approaches
to routing in TSCH are tree-based routing and shortest-path routing. In
tree-based routing, packets travel a tree upwards to a common ancestor of
sender and receiver and then downwards the tree to the receiver. Distributed
and autonomous TSCH schedulers commonly use this routing approach. The
other approach is shortest-path routing, which requires global knowledge
of the network topology and uses algorithms like Dijkstra’s shortest path
algorithm [49] or the A* algorithm [50]. Shortest-path algorithms are a good
choice for centralized routing, and thus commonly used in combination with
centralized schedulers. However, shortest-path routing is not the only approach
used in centrally scheduled TSCH networks. Other approaches perform, i.a.,
an asymmetric routing approach [51], applying specific routing strategies for
different communications in a network, or a conflict-aware real-time routing
approach [52] that takes path conflicts originating from scheduling decisions
into account when making routing decisions.

3. BACKGROUND 17

In the case of tree-routing, the Routing Protocol for Low-Power and Lossy
Networks (RPL) [53] is widely used in low-power wireless networks and in
TSCH. RPL is a best-effort routing protocol for low-power wireless networks
susceptible to packet loss. For generating the routing path, RPL uses a directed
acyclic graph (DAG). Packets are forwarded (upwards routed) hop-by-hop from
parent to parent until reaching the root of the graph. From there, the packets
are routed downwards hop-wise until they reach their destination. That means
all routing in RPL is a combination of upwards-routing to the tree’s root and
downwards routing to the packet’s destination. A variation to this approach
is the storing mode in which each node saves information about its children.
This variation routes traffic only upwards until meeting a common ancestor of
the packet’s source and destination. The path RPL uses for routing is based
on the shortest distance to the tree’s root using a metric like ETX.

6TiSCH stack. A common network stack for TSCH networks, especially
those using RPL for routing, is 6TiSCH, a standardized set of protocols to enable
IP-addressable low-power wireless devices [541[55]. The Internet Engineering
Task Force’s (IETF) 6TiSCH bridges TSCH networks with 6LoWPAN networks.
The network stack consists of IETF standards including UDP, IPv6, RPL, and
6LowPAN and a 6TiSCH operation sublayer (6top) |55] connecting the network
protocols with TSCH. The 6top protocol defines how to exchange scheduling
requests and statistics between the layers. 6TiSCH is implemented in several
embedded operating systems such as Contiki-NG [44] and OpenWSN [56], and
is the standard network layer for most distributed and autonomous TSCH
schedulers.

3.5 Concurrent Transmissions

Two or more devices transmitting signals at the same time on the same frequency
lead to interference. This interference commonly destructs the signals and
makes it either impossible to receive any data or makes the received data
unintelligible. However, there are circumstances in which interference is not a
hindrance or potentially even a benefit for successful communication.

In Concurrent Transmissions (CT), or Synchronous Transmissions, multiple
nodes transmit data simultaneously and synchronously. In two cases, a receiver
can receive data transmitted synchronously. The receiver can either, with a
high probability, extract the strongest of the received signals due to the Capture
Effect [57], or receive the data due to non-destructive interference [9]. In both
cases, the transmissions have to be tightly synchronized to allow the decoding
of concurrent transmissions. Within the past decade, multiple solutions have
shown the feasibility of network-wide flooding with Concurrent Transmissions
for both IEEE 802.15.4 O-QPSK with DSSS [9,/58.59] and BLE [60]. Many CT
protocols build upon Glossy [9], which created the foundation for synchronous
transmissions in low-power wireless IEEE 802.15.4 networks and offers network-
wide flooding and high-accuracy synchronization.

18 THESIS OVERVIEW

3.5.1 Capture Effect

The Capture Effect, which was initially observed for FM receivers [57] states
that a receiver can extract one signal from many colliding ones if its signal
strength is significantly higher (power capture) than the combined signal
strength of all other signals. For example, to utilize the Capture Effect in IEEE
802.15.4 O-QPSK with DSSS, the signal has to have at least twice the power
(43 decibel (dB)) as the combined other signals [58]. Moreover, the stronger
signal must not arrive later than 160 pus after the first signal [59], the duration
of the synchronization header in IEEE 802.15.4 (cf. Figure [3)).

Two well-known examples of protocols using the Capture Effect are Chaos
[59] and Crystal [61]. Chaos is a protocol for all-to-all data sharing in low-power
wireless networks. Nodes transmit (potentially different) data concurrently and
thus speed up network-wide data sharing. Crystal builds a network stack for
sporadic data collection, with many nodes generating data at the same time.

3.5.2 Non-Destructive Concurrent Transmissions

In the other case of non-destructive Concurrent Transmissions, multiple nodes
transmit the same data. For this case, nodes have to be even more tightly
synchronized than for the Capture Effect. If the time offset between all
transmissions stays below 0.5 ps, no signal strength delta is necessary to
successfully receive the data. Ferrari et al. [9] were the first to study the use
of these non-destructive concurrent transmissions in IEEE 802.15.4. Later
works [62H64] study it further to better understand why the overlapping signals
are indeed non-destructive.

Within the past 13 years, many bodies of work designed protocols utiliz-
ing tightly synchronized non-destructive Concurrent Transmissions in IEEE
802.15.4 networks to efficiently and reliably share data. In 2011, Glossy [9] cre-
ated the foundation for synchronous transmissions in low-power wireless IEEE
802.15.4 networks and uses synchronized flooding to disseminate data from one
node to all others in a network. LWB [65] builds on Glossy floods by adding
the capability of scheduling individual network floods for data collection. While
LWB is not a real-time protocol, Blink [66] performs deadline-based real-time
communication, achieving high reliability on top of it. The protocols above
perform network-wide flooding and thus involve the whole network for com-
municating data. Works like WSNShape/Sparkle [67] and CXFS [68] deviate
from that approach and limit the number of forwarders performing directional
flooding or essentially routing. CXFS, for example, introduces a forwarder
selection strategy in networks using concurrent transmissions. LaneFlood [69)
builds upon this forwarder selection and extends it to even allow the flooding
of IPv6 traffic along a routed lane.

3.6 Time Synchronization

Up to this section, we discussed networking in low-power wireless networks. As
this thesis also targets orthogonal applications like time-synchronized evaluation
of low-power wireless networks and new directions like wireless environment
detection, we discuss the relevant background for these in the following sections.

3. BACKGROUND 19

For a precise evaluation of distributed protocols, we require timestamping
across multiple devices. To facilitate the evaluation of locally timestamped
events, and set them into perspective to events on other devices, the time-
stamping system should have a common timescale. Moreover, when devices
communicate with each other, they often require a timed operation. For
example, in low-power wireless communication, devices need to be synchronized
when turning on their radios to be awake when data is scheduled to be sent [6].
Other wireless applications like ranging and positioning also require a high
degree of time synchronization [70|. If, for example, a device needs to compute
its distance from another device using a signal’s time-of-flight, the clocks on
both devices need to timestamp signals and thus need to be synchronized [70].
Therefore, to ensure efficient (wireless) communication and evaluation systems,
we require time synchronization.

For keeping time, computers commonly use crystal oscillators to drive their
local clocks |71]. However, due to material imperfections and environmental
circumstances, such as temperature, humidity, and air pressure, oscillators are
not perfect and their frequency varies within a single oscillator and between
different oscillators and devices [71}/72]. Thus, in a distributed setting with
more than one device, systems to time-synchronize the local clocks of devices
are necessary. Depending on the use case, it might be sufficient to synchronize
all clocks of a distributed system to each other (internal synchronization), e.g.,
a local (wireless) network. In other cases, it is necessary to synchronize all
clocks with a global timescale (Universal Coordinated Time (UTC)) (external
synchronization), e.g., networks distributed over multiple locations or position-
ing systems. An internal synchronization system has the goal to keep clocks
precise, which means that it is sufficient to keep the deviation between the
clocks of any two devices within a specified bound [71]. In contrast, an external
synchronization system aims to have accurate clocks that do not deviate more
than a specific amount from UTC time [71].

3.6.1 Accuracy-Based Time-Synchronization

Accuracy-based time-synchronization uses an external time source to synchro-
nize to a global timescale. A common approach is using the time signal of a
highly accurate atomic clock. To use the signal directly, one can use Global Nav-
igation Satellite Systems (GNSS), like the Global Positioning System (GPS) [73].
GNSS satellites carry each an atomic clock, and thus a GNSS receiver can
generate an accurate time signal (error <50 ns [71]) for a connected system.
While systems outdoor or close to a window can be equipped with GNSS
receivers, GNSS is an impractical solution for most devices, as the receiver
requires a direct line of sight to the GNSS satellites. For these scenarios, a
common approach is the use of timeservers. The most notable example is the
Network Time Protocol (NTP) [74]. One or more servers are equipped with
a reference clock, such as a GNSS receiver or an atomic clock. Other servers
can contact these servers to update their clock and be themselves timeservers
for other servers, building a hierarchical structure. This system is the one
synchronizing the internet with an accuracy of <50 ms [71}75].

20 THESIS OVERVIEW

3.6.2 Precision-Based Time-Synchronization

In networks, where contacting a timeserver is not practicable or networks that do
not require global time-synchronization, precision-based clock synchronization
systems are available. Especially wireless networks, like IoT networks, with
resource-constrained devices require more precise clock synchronization systems
than NTP. A notable approach is the Reference Broadcasting System (RBS) |71}
76, a system for time-synchronizing nodes in a single-hop wireless network. In
RBS, one device (node) broadcasts a time signal to all nodes in its vicinity. Due
to the signal propagation speed, all nodes receive the signal at approximately
the same time, or with a negligible offset, and can synchronize their clocks. As
all devices listen to the same time source, the processing time before sending
the time stamp is not critical as the clocks are not synchronized to a global
timescale, thus the critical path in RBS solely consists of the time on air and
the precise timestamping of the reception at the receivers. Neighboring nodes
can exchange their recorded delivery times and use linear regression to convert
each other’s local offsets, making it unnecessary to update their local clocks.

For multi-hop wireless networks, RBS is not a sufficient solution, as no
single node exists that can reach all other nodes of the network. In time-
slotted networks, like TSCH networks, with predefined communication times
within a single slot, nodes can synchronize their clocks by observing the time
offset between the expected reception of a signal and the actual reception of
the signal. Networks can build a time-synchronization tree to keep all nodes
synchronized and connected (cf. Section . As clock drift is to be expected,
the synchronization in TSCH is possible on any message a node receives from
its time source [6].

3.7 Evaluation of Low-Power Wireless Networks

Research on low-power wireless networks is not limited to the definition of
protocols, but a crucial aspect is also to test, evaluate, and demonstrate the pro-
tocols’ performance. For testing and evaluating protocols, target deployments,
e.g., deployed IIoT devices in a factory, are rarely accessible. Therefore, simu-
lators or dedicated testbeds are the common solutions for evaluating low-power
wireless protocols and networks.

3.7.1 Simulators

Simulators simulate or even emulate different aspects of low-power devices or
low-power communication. The network simulator ns-3 [77] and the INET
Framework [78] for OMNeT++ [79] simulate the network stack to test and
evaluate various network protocols. They support several physical and medium
access layers, including low-power wireless technologies such as IEEE 802.15.4.
OpenSim [56], Cooja [80], and Renode [81] take a different approach. Instead of
focusing solely on the network, they emulate specific IoT devices and offer prop-
agation models for simulating wireless communication. Renode simulates both
IEEE 802.15.4 and BLE PHYSs, whereas Cooja only supports the IEEE 802.15.4
PHY but offers more sophisticated wireless propagation models. Instead of
emulating entire devices or simulating the full network stack, the 6TiSCH
simulator [82] and TSCH-Sim [83] are discrete event simulators implementing

3. BACKGROUND 21

TSCH and 6TiSCH. These simulators work on a higher abstraction layer and
allow the prototyping of TSCH schedulers. TSCH-Sim also has the goal to
simulate large TSCH networks.

3.7.2 Testbeds

While simulation allows certain insights into the execution of protocols, they
cannot accurately replicate all aspects of real hardware and real wireless
environments [84/85]. Therefore, the research community proposed and operates
several testbeds [84198] to evaluate and benchmark low-power wireless protocols
and IoT systems. Testbeds colocate IoT devices with observer infrastructure
to program IoT devices and gain insights into the execution locally on a device,
and into the interaction with other devices in the case of testing or evaluating
a network protocol. Most testbeds offer insights through recording serial
messages, while others can additionally record traces of GPIO pins [84-86493]
or through the JTAG interface [85,86L[94H96]. Within the past two decades,
the research community proposed and built several testbeds, starting with
MoteLab [99]. The community currently operates several testbeds for testing,
debugging, evaluating, and benchmarking low-power IoT protocols, with some
of them being openly accessible [87,(98]. A long-time used testbed in offices
of a university building was Flocklab [84], and its update Flocklab 2 |85,[86].
Publicly accessible testbeds include FIT IoTLab [98] and D-Cube [87]. FIT
ToTLab offers several testbeds with a wide range of IoT platforms, with both
deployments at fixed locations and moving robots. D-Cube is a testbed with a
different focus. Instead of offering a testbed for testing and evaluation, D-Cube
is intended for benchmarking IoT protocols in a wireless environment with
controllable degrees of interference.

3.8 Embedded Intelligence and Tiny Machine Learning

So far, we introduced protocols and approaches concerning networking and
closely related aspects. One chapter of this thesis combines networking aspects
with Artificial Intelligence (AI). Therefore, this section introduces background
information on Machine Learning and Embedded Al.

Within the past decades, Artificial Intelligence (AI) and its subfield Machine
Learning (ML) experienced major development, making intelligent components
an essential part of many modern software systems. By the end of the last
century, Al systems like the chess computer Deep Blue [100] have shown
that intelligent machines can outperform humans in specific domains. How-
ever, the major breakthrough of AI, or more specifically ML, followed in the
past decade with major advances in deep learning. Beginning with image
recognition in Computer Vision [101,[102], followed by beating humans at the
board game Go [103] and major advances in Natural Language Processing
(NLP) [1044106], deep learning showed its potential and capability of outper-
forming traditional methods. For training ML models, various approaches exist,
including supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning.

Deep Learning, a subfield of Machine Learning, is a method that uses
neural networks with multiple consecutive layers. Modern neural networks
can have over a hundred layers with hundreds of billions of parameters (e.g.,

22 THESIS OVERVIEW

weights), with the currently largest model (GPT-4) estimated to have 1.8 trillion
parameters across 120 layers [107]. While GPT-4 is an extreme case, other
widely used NLP models like BERT [105] and ChatGPT (gpt-3.5-turbo) |108]
have up to 330 million and 20 billion parameters, respectively. In computer
vision, the numbers of parameters are lower, with, for example, ResNet101
containing 44.7 million parameters [102,/109].

Deep Learning models require all their parameters during inference, and
thus, only powerful servers are capable of executing large models. These servers
have to load hundreds of megabytes to terabytes of weights, commonly stored
as 32-bit floating-point numbers, and perform up to trillions of operations for
a single classification or prediction of the network.

3.8.1 Tiny Machine Learning

This development of increasingly larger models stands in stark contrast to the
growing amount and need for intelligent, resource-constrained devices. For
example, detecting sleep patterns on a smartwatch, tracking activities with a
fitness tracker, performing face identification on smartphones, or waking up
speech assistants with a wake word require machine learning capabilities on
end devices with computing resources several magnitudes smaller than servers
or data centers. While it is thinkable to upload data and perform the machine
learning tasks in the cloud, this is only possible for devices with a steady internet
connection. Moreover, it adds latency, requires significant amounts of energy
for communication, and cannot guarantee to preserve privacy. For example,
sensitive data like one’s conversations or health data should remain local on
the end device. While standard deep learning models are too large and too
compute-heavy to fit and be executed on end devices, several approaches reduce
their footprint and enable their execution on resource-constrained devices. For
example, MobileNets [110] and FOMO [111] enable fast and reliable image
classification and object detection on smartphones or even embedded devices
like certain Arduinos [112]. One method for shrinking model sizes and increasing
execution speed is quantization [113|. Quantization transforms the network’s
parameters from a floating-point representation to an integer representation,
often using 8 bits per parameter. Such a model takes less space and does not
require floating-point operations during inference. Instead, it can stick to much
faster integer operations, saving time and energy [113|. Other approaches use
binary neural networks |114], sparse-matrix multiplications |115], or splitting
the network to offload heavy computation to edge devices or the cloud [116,117].

4 Related Work

In this section, we present a selection of work representing the current state
of research in the field of this thesis. We consider literature in the areas of
(a) TSCH scheduling and routing, (b) mesh networking in BLE, (c) infrastruc-
ture for in-depth testing and evaluating low-power wireless networks, and (d)
methods for wireless fingerprinting and environment detection.

4. RELATED WORK 23

4.1 Scheduling TSCH

Scheduling in TSCH is a vast field with over a hundred different scheduling
solutions. With this vast number of papers, we limit our discussion of TSCH
schedulers to a selection of notable papers. For a more complete picture, [46]
and [47] review TSCH schedulers with a focus on IIoT and traffic awareness,
respectively. As in the background on TSCH (cf. Section , we split our
discussion of schedulers along the categories of centralized, distributed, and
autonomous schedulers, followed by the related topic of network softwarization.
Contrary to the background in which we introduce the core concepts, here we
discuss related ideas and similar directions to our work.

4.1.1 Centralized Scheduling

Many bodies of work propose centralized schedulers for TSCH [46},/47] and
WirelessHART [10L,|16]. Scheduling algorithms in this category target different
aspects, such as energy efficiency [11§|, throughput maximization [15}16],
schedulability |10], and lossy links [119+122].

One of the first schedulers for TSCH is TASA [11], a traffic-aware protocol.
It creates a schedule based on the network topology and the traffic load;
however, it makes the same assumption as many TSCH and WirelessHART [12]
schedulers to operate on interference-free channels and thus does not include
retransmissions in its schedule. In a subsequent work to TASA, Palattella
et al. [123] propose a mathematical analysis and method of computing the
minimum number of active slots within a network. Ojo et al. |[15] propose a
graph theoretical approach to maximize throughput in a centrally scheduled
TSCH network. These works on TSCH and WirelessHART, including the
C-LLF [10] scheduling algorithm, focus on the highest possible schedulability
for large amounts of deadline-aware communications. Gunatilaka et al. |16]
study the use of a channel for multiple simultaneous communications in the
same timeslot if the communication partners are physically far enough apart
to increase schedulability even further. Similarly, Ojo et al. [118] propose EES,
an energy-efficient scheduling model avoiding interference between concurrent
communications.

Darbandi et al. [124] propose a path collision-aware least-laxity first (PC-
LLF) scheduling algorithm, which Rugamba et al. [125] implement as part of a
centralized scheduler. Moreover, they describe a method of distributing such
a schedule to nodes in a centrally scheduled network. Instead of optimizing
throughput and focusing on networks with joined routing and scheduling,
CLS [126] and QSS [127] are centralized schedulers for networks using RPL for
routing and focus on reducing control message overhead when scheduling and
rescheduling links. T2AS [128] is a traffic-aware and topology-aware scheduler
that sequentially creates a schedule prioritizing longer flows in a data collection
application to reduce latency. Portaluri et al. [129] build a scheduler that
adds fairness in resource allocation, rebalancing the requested communication
resources of end devices. Gaitdn et al. |[130] propose a scheduler for networks
with multiple gateways that uses unsupervised learning methods to reduce the
number of overlaps of flows.

The above schedulers are capable of creating effective schedules with high
communication throughput. However, many of them can only do so because

24 THESIS OVERVIEW

they assume interference-free channels and perfect links, and thus do not include
retransmissions. A protocol deviating from this assumption is SchedEx [121], a
scheduler extension that calculates and adds a necessary number of retransmis-
sions for each link of the network. AMUS [119] also adds retransmission slots
to allow the use of lossy links. AMUS adds backup retransmission slots for
vulnerable links in otherwise empty slots of the schedule. Khorov et al. [122]
create a slotframe structure including retry segments and shared segments and
study how to identify the optimal number of shared cells. Gaillard et al. [120]
propose another method of retransmissions—slot-based retransmissions—as an
extension to TASA. Slot-based retransmissions repeat the same slot multiple
times to increase reliability. Such a schedule is also applicable for end-to-end
communication flows in non-collection-based networks. Schedules with retrans-
missions shift the focus from pure schedulability towards reliability, making
them capable of withstanding local narrowband interference and usable in
networks susceptible to interference.

While slot-based retransmissions add resilience towards interference and
allow the use of lossy links, they increase end-to-end latency and cannot react
to strongly fluctuating interference levels. To overcome these limitations,
we can deviate from focusing on individual links and focus on end-to-end
communication flows instead, and allocate resources for the entire flow. The
first two protocols taking this approach are the flow-centric policy (FCP) [131]
for WirelessHART and our first paper’s flow-based retransmission scheme (cf.
Section for TSCH. Both activate nodes and allocate retransmission slots in
a way that retransmissions are available wherever needed along the path. This
deviation from link-based to flow-based communication allocates resources for
flows and not for individual links. Thus, we can achieve stable and reliable
communication even in the presence of unforeseen interference.

4.1.2 Distributed Scheduling

Tinka et al. [132] present two distributed scheduling algorithms for networks
constantly changing due to mobility. They present an algorithm for continu-
ously announcing a node’s presence and another one distributing scheduling
information for quickly forming a network-wide schedule. Since the introduc-
tion of 6TiSCH [54], the design of distributed schedulers has been heavily
influenced by it and its minimal scheduling algorithm [133]. This scheduler
uses a single cell shared over all nodes. More sophisticated scheduling func-
tions include the Minimum Scheduling Function (MSF) [134], the Low-Latency
Scheduling Function (LLSF) [135], and the Low-latency Distributed Scheduling
Function (LDSF) [136]. MSF has shared cells, autonomous cells and negotiated
cells to schedule different kinds of traffic. LLSF schedules cells for multi-hop
communication closer together to allow forwarding traffic immediately after
reception. LDSF achieves lower latency than other scheduling functions by
splitting slotframes into shorter blocks and introducing retransmission options
in consecutive blocks, focusing on improving latency in distributed TSCH.
The field of distributed TSCH scheduling also covers a range of traffic-aware
scheduling solutions. DeTAS [137], a distributed version of TASA |11] adds
traffic-aware scheduling to build collision-free schedules along a routing tree.
Domingo-Prieto et al. [138] propose a PID-based scheduling solution that adds

4. RELATED WORK 25

or removes cells from a schedule dependent on traffic demand and network
state to counteract network changes and allow non-periodic and bursty traffic.
Palattella et al. [139] propose an algorithm matching the number of cells be-
tween nodes to the actual demand. Similarly, OST [140|, allocates slots for each
directional link and adapts its period according to the amount of traffic. Many
of these schedulers focus on low-latency and reliable communication instead
of schedulability as many centralized TSCH schedulers do. Jung et al. [141]
take a different approach and propose a solution balancing latency, degree of
activity of each node, and collision avoidance to achieve a long network lifetime
and high quality of service.

Lately, distributed TSCH schedulers started using machine learning, es-
pecially reinforcement learning. RL-TSCH [142] and RL-SF [143] use rein-
forcement learning for building optimized traffic-aware schedules with a focus
on reliability and energy efficiency or bandwidth optimization, respectively.
Another recent approach is the use of game theory [144] to build optimal
schedules utilizing selfish node behavior.

4.1.3 Autonomous Scheduling

A prominent example of an autonomous scheduler is Orchestra [§]. Orchestra
is a best-effort autonomous scheduler that uses sender-based or receiver-based
communication slots reserved for certain groups of nodes. Orchestra requires
a hash function to determine which nodes can send in which slot. To enable
the efficient use of TSCH in scenarios with high-rate unpredictable traffic,
Elsts et al. [145] propose a hybrid approach with shared and dedicated slots
and reappropriates slots to different nodes depending on the traffic demands.
DiGS [146] adds autonomous scheduling to otherwise central WirelessHART
networks, adding robustness through path diversity introduced by devices
selecting their own routing path. Oh et al. [147] propose Escalator, focusing
on minimizing transmission delays in convergecast scenarios by allocating
consecutive time slots along a packet’s path. Moreover, contrary to Orchestra,
Escalator uses multiple channels. Alice [148] deviates from the node-based slot
allocation of Orchestra and uses link-based slots instead. Moreover, Alice uses
multiple channels with link-based channel offsets instead of a single channel,
and changes cell allocation of all unicast slots at every slotframe. The initial
autonomous schedulers can achieve high reliability but are unaware of traffic
flows and do not achieve the low latency of other scheduling approaches.
However, TESLA [149] proposes a traffic-aware cell scheduling method to
add adaptability to different traffic loads. TESLA adds and removes slots
dependent on the traffic load of neighboring nodes. Jung et al. |[150] propose
a parameterized slot scheduler that adapts to the traffic load of nodes. The
scheduler tries to find a trade-off between energy efficiency, reliability, and
latency by using shared slots for nodes transmitting to a joint receiver if
collisions are unlikely. Rekik et al. [151] present e-TSCH-Orch, an enhancement
to Orchestra avoiding congestion by adaptively adding transmission slots for a
node depending on the number of packets in the node’s queue. ATRIA [152/{153],
another traffic-aware scheduling method, allocates slots according to the traffic
demand of each link. To improve network performance, ATRIA includes a
method for selecting the optimal slotframe length and uses subslotframes to

26 THESIS OVERVIEW

avoid slot conflicts. OSCAR [154] optimizes Orchestra for convergecast traffic
by assigning different amounts of cells to nodes depending on the distance of
the node to the network root. Kim et al. [155] propose A3, a traffic load based
and adaptive slot allocation algorithm for autonomous schedulers targeting
scenarios with dynamic traffic or heavy traffic load. A3 dynamically adjusts
the number of slots per slotframe.

Layered [156] introduces flow-based scheduling to autonomous TSCH sched-
ulers. It allocates end-to-end slots to a flow to reduce latency and apply spatial
channel reuse for a more efficient use of the wireless spectrum. In a subsequent
work, Urke et al. |157] extend Layered to support end-to-end communication
flows for sensor-actuator traffic, deviating from the convergecast scenario of
the initial version and many other autonomous schedulers.

4.1.4 Network Softwarization

Many centralized schedulers for WirelessHART and TSCH discussed above
perform centralized routing and scheduling at the edge, separating the control
plane from the data plane, and thus achieve one part of network softwariza-
tion. However, to upload a schedule or monitor the network and perform
rescheduling, additional solutions bridging these two are necessary. In this
context of centrally scheduled 6TiSCH networks, Thubert et al. [158] discuss the
challenges of Software Defined Networking (SDN). Exarchakos et al. propose
plexi [159], a framework and a web interface for the task of reconfiguring and
rescheduling TSCH communication. In the general field of software defined
Wireless Sensor Networks, Galluccio et al. [160] and Baddeley et al. [161]
present Software Defined Networking solutions for network monitoring and
reconfiguration. Galluccio et al. [160] propose SDN-WISE, a stateful solution
aiming to reduce communication overhead with the SDN network controller
and make sensor nodes programmable as finite state machines. Baddeley et
al. [161] introduce pSDN, a lightweight solution to gain global knowledge,
network (re)configurability, and virtualization in IEEE 802.15.4 networks.

4.2 Overcoming Interference in TSCH

TSCH uses channel hopping to overcome narrowband interference. However,
in the presence of local wideband interference or local interference on multiple
channels, TSCH reaches its limits. To nonetheless overcome these kinds of
interference, channel blacklisting, multi-path routing, and opportunistic routing
are possible ways. Channel blacklisting has the goal to eliminate channels with
high amounts of interference to increase the packet reception rate and require
fewer transmissions. Adaptive TSCH (A-TSCH) |162], and Enhanced TSCH
(ETSCH) |163| propose modifications of TSCH to estimate the channel quality
and distribute blacklist information as part of Enhanced Beacons (EB) to build
a global blacklist. MABO-TSCH [164] performs local blacklist negotiation for
the communication of individual links. Elsts et al. [165] study adaptive channel
selection methods for TSCH to reduce the number of retransmissions. Instead of
limiting the number of channels, multi-path routing and opportunistic routing
aim to avoid interference through routing decisions. In the literature, multi-path
routing mainly appears for RPL-based distributed TSCH schedulers.

4. RELATED WORK 27

Instead of using the standard single-path tree-routing of RPL, multi-path
routing uses triangular-based redundancy patterns [166], overhearing in RPL
networks [167], scheduling a second path at each node [168|, or packet replication
algorithms [169]. Gaillard et al. [170] propose Kausa, which does not use
redundancy patterns, but instead builds a schedule with different paths to
balance the traffic load in the entire network.

4.2.1 Opportunistic Routing

Contrary to multi-path routing, opportunistic routing does not use or maintain
multiple independent paths for routing. Instead, it addresses more than one
potential forwarder for a packet |171H173] to use the best suitable path for the
current state of the network. Opportunistic routing is not TSCH-specific, and
generally has the goal of improving the throughput and reliability of multi-hop
wireless networks. For example, in ExOR [171] each packet is addressed to
a set of potential forwarding nodes, prioritized by routing progress. Based
on their priority, each node in the forwarder set is assigned a time slot for
acknowledging the packet. It only utilizes this time slot if it did not overhear
the acknowledgement of the packet in a previous time slot. Thus, only one
node acknowledges the reception of the packet and forwards it. Later works
such as ORW [174] select the forwarder set based on the expected wait time.
The first receiver of the forwarding set that successfully receives the packet
and provides routing progress acknowledges and forwards the packet. ORW
introduces opportunistic routing to duty-cycled, low-power wireless networking.
ORPL [175] combines the ideas of ORW and ExOR. ORR [176| follows the same
approach as ORW, but chooses the set of forwarders based on their residual
energy, wait times and the amount of redundant packets. Hawbani et al. |177]
introduce a candidate zone to limit the number of potential forwarders and
selects the forwarder based on local distance distributions to reduce waiting
times when forwarding. FLORA [178] takes both location characteristics
regarding the destination and energy levels of nodes into account to select the
best forwarder. SDORP [179] proposes an SDN-based opportunistic routing
approach improving on ORW and ORR by selecting the forwarder set based
on residual energy, transmission distance, and number of hops to the network’s
sink.

The protocols above build their protocols for asynchronous MAC layers,
however, TSCH is a synchronous MAC layer protocol and thus the protocols are
not one-to-one applicable for TSCH networks. Huynh et al. [180], Hermeto et
al. [181], and Hosni et al. [182] combine opportunistic routing with TSCH. They
study the use of opportunistic routing or anycasts in TSCH and propose changes
to TSCH to allow non-colliding acknowledgments from multiple receivers.
BOOST [183] assigns different sending delays to the potential forwarders and
lets the forwarders use carrier sense to ensure a single forwarder. Our second
paper (cf. Section takes a different approach by combining opportunistic
routing with concurrent transmissions (cf. Section in TSCH to eliminate
the need of choosing a single forwarder.

28 THESIS OVERVIEW

4.3 TSCH and BLE

TSCH was designed as a MAC layer protocol for the 2.4 GHz mode of IEEE
802.15.4. However, to allow successful communication, it has to be able to
coexist with other 2.4 GHz low-power technologies like BLE. Moreover, the
performance of TSCH makes it interesting to use it with other physical layers
bringing efficient mesh communication to them.

4.3.1 TSCH on Other PHYs

While TSCH is a MAC layer protocol for 2.4 GHz IEEE 802.15.4, multiple
research efforts were taken to bring it to other PHYs. Brachmann et al. [184]
study the use of TSCH for long-range low data rate communication using the
subGHz PHYs of IEEE 802.15.4 |19]. The authors demonstrate the feasibility
of using TSCH when adapting the TSCH timeslot timings, and they show the
possibility of combining multiple PHYs in a common TSCH schedule. Van
Leemput et al. [185] extend the multi-PHY approach by adaptively selecting
a PHY based on the current link. They choose a common timeslot length
sufficiently large for the lowest supported data rate. Rady et al. [186] build
g6TiSCH, another work combining multiple PHYs in a single TSCH network.
They perform modifications along the 6TiSCH stack to generalize 6TiSCH,
allowing it to intelligently choose which PHY to use in a TSCH slot. Haubro et
al. [187] explore the combination of TSCH with LoRa, a different subGHz PHY.
With TSCH, they bring multi-hop communication and higher layer protocols
like Orchestra [§] to long-range communication with LoRa which could be an
infrastructure-free alternative to LoRaWAN [20]. King et al. [188] and Charlier
et al. [189] explore the feasibility of using TSCH for Ultra-Wideband (UWB)
communication.

4.3.2 Coexistence of TSCH and BLE

As both IEEE 802.15.4 and BLE use the same frequency range with chan-
nels that highly overlap (cf. Figure [2) and have similar signal strength, the
coexistence between them is essential. Especially for TSCH networks tuned
for reliable communication, coordinating the coexistence could be beneficial.
Carhacioglu et al. [190] study this coexistence and propose a system with a
common TSCH and BLE orchestrator to overcome cross-technology interfer-
ence. While Carhacioglu et al. try to avoid interference by coordinating the
communication of the two technologies, Hajizadeh et al. [191] build a simulation
framework analyzing the coexistence and the number of expectable collisions
for coexisting TSCH and BLE networks.

4.3.3 Combination of TSCH and BLE

Instead of improving the coexistence of IEEE 802.15.4 TSCH and BLE there
exists the possibility to combine IEEE 802.15.4 and BLE within a TSCH sched-
ule. Many new radios for the 2.4 GHz band, like the Nordic nRF52840 [192],
support multiple PHYs such as both BLE and IEEE 802.15.4. Therefore, the
combination of IEEE 802.15.4, TSCH, and BLE in a single network is thinkable.
While the solution by Carhacioglu et al. [190] using a common orchestrator

4. RELATED WORK 29

for TSCH and BLE is one approach to create a common schedule, Baddeley et
al. [193] take an entirely different approach. They propose 6TiSCH++ which
uses the standard TSCH slots over IEEE 802.15.4 for data communication,
but replaces the beaconing slots with concurrent transmissions over BLE. In
6TiSCH++, multiple subsequent concurrent BLE transmissions fit into one
TSCH slot and allow for a faster transmission of control information in a TSCH
network.

4.3.4 Mesh Networking in BLE

In BLE, the standard solution for mesh networking is Bluetooth Mesh (see
Section [3.3.3). However, alternative BLE-based mesh protocols have been
explored. Patti et al. [194] devise a connection-oriented protocol for real-time
mesh communication atop BLE that uses subnetworks. These subnetworks,
forming a star topology and operating in connected mode, interlink nodes
across multiple subnetworks to form a mesh network. Subsequently, Leonardi et
al. [195] extend and implement this approach. While the previous two form mesh
networks using the connected mode of BLE, RESEMBLE [196] is a protocol
designed for Bluetooth Mesh that enables TDMA-based communication with
time slots and clock synchronization, thus enabling real-time communication
within Bluetooth Mesh networks. Petersen et al. [197] extend BLE to support
efficient multi-hop IPv6 over BLE using subnetworks, while Lee et al. [19§]
introduce the RPL routing protocol to BLE.

4.3.5 TSCH on BLE

In contrast to the approaches of merging IEEE 802.15.4 with BLE or construct-
ing a BLE mesh solution utilizing the standard BLE network stack, our fifth
paper TBLE (cf. Section and BlueTiSCH [199] examine the integration
of TSCH and BLE, eliminating the necessity for IEEE 802.15.4 in TSCH
networks. While BlueTiSCH utilizes a simulation-based approach employing
TSCH-Sim [83], we implement our solution in Contiki-NG [44] and conduct
a testbed-driven evaluation in a real-world setting. This approach introduces
new use-cases for BLE devices, including static networks currently relying on
IEEE 802.15.4.

4.4 Time-Synchronized Testing and Evaluation

To gain meaningful insights when testing and evaluating low-power wireless
protocols on testbeds, we need to be able to low-intrusively trace executions
simultaneously on multiple nodes that are physically apart. Moreover, we
need time-synchronization capabilities to combine and evaluate the individual
traces. Several testbeds offer tracing and time-synchronization capabilities.
Flocklab [84] can trace up to 5 GPIO pins at a sampling rate of 10 kHz
and uses NTP for time synchronization with a time stamping error below
40 ps. Tracelab [93] extends Flocklab with a more capable GPIO acquisition
system based on an FPGA, achieving a short-term sampling frequency of up to
100 MHz and a continuous sampling frequency of 285 kHz. It uses Glossy [9)
on 868 MHz with an FPGA-based clock correction control loop, achieving
a time-synchronization error as low as 1.5 ps. Flocklab 2 [85,86] uses the

30 THESIS OVERVIEW

programmable real-time unit (PRU) of a Beaglebone Green [200] for GPIO
tracing. For time-synchronization, it uses GNSS with an accuracy of approx.
50 ns where available, and the Precision Time Protocol (PTP) with an accuracy
of approx. 1 ps at all other locations. It also supports Serial Wire Debug (SWD)
tracing through a J-Link debug probe.

Aveksha [|94], Minerva [95], and HATBED [96] use different J-Link tracing
methods instead of GPIO tracing, and can trace the program counter, or
perform watchpoint tracing non-intrusively. Aveksha allows a polling period of
30 ps but does not perform synchronized timestamping. Minerva adds time-
synchronized tracing, and synchronous stopping of the execution. It uses NTP
for time synchronization and timestamping, reaching a millisecond accuracy.
HATBED [96] uses on-chip debugging capabilities of ARM Cortex-M3/M4
processors. It supports watchpoint-logging and logging of print statements and
uses a logic analyzer to trace the output.

Our fourth paper, Grace (cf. Section also performs time-synchronized
GPIO tracing. However, instead of using specialized hardware like an FPGA
or a specific observer board, we use low-cost off-the-shelf logic analyzers and
an RBS-like (cf. Section time-synchronization system with 433 MHz
radios. We perform the time-synchronization in software to achieve a low-cost
retrofittable time-synchronized testing and evaluation solution for existing
testbeds.

4.5 Wireless Localization & Sensing

The common focus of wireless signals is the exchange of information. However,
we can also use these signals for other use-cases, like positioning and localizing
a device, detecting and locating people in a room or tracking peoples movement.
Each of these solutions exploits different characteristics of wireless signals and
thus uses application specific wireless fingerprints.

4.5.1 Wireless Positioning

Wireless signals travel with the speed of light and thus, in a line-of-sight
setting, devices can use the time-of-flight (ToF) to determine their distance
to the signal’s source. In combination with tracking the time-of-arrival (ToA),
devices can use trilateration/true-range multilateration [70] to compute their
position without a synchronized clock on the measuring device. GNSS systems
like GPS use this approach for positioning [70.|{73]. Another system using a
similar approach combining ToF and Time Difference of Arrival (TDoA) is
Ultra-wideband (UWB), a precise indoor positioning system (IPS) |70]. Other
characteristics that are available for some radios are the angle of arrival (AoA)
as well as the received signal strength (RSS) [70].

While a system like GPS works well outdoors and UWB works well within
a single room, both require a (direct) line-of-sight connection for the wireless
signals [70,201]. However, many environments are more complex with walls
or objects causing reflections of wireless signals, multi-path fading, shadowing,
and signal attenuation [201]. Therefore, it is not easy to model indoor signal
propagation and even additional parameters like the received signal strength
(RSS) are unstable in changing environments, including changes as small as

4. RELATED WORK 31

moving around or opening a door, as well as environmental changes like a
change in humidity [201].

Yet, while these parameters are unstable, they are still used for localization.
For a successful use of the received signal strength, data is collected at several
reference points. RADAR [202] uses WiFi signals to locate and track users inside
buildings. With a k-nearest neighbor pattern matching system, RADAR can use
the RSS of three IEEE 802.11 access points to determine a user’s location with
2-3 meter resolution. Several subsequent works use Bayesian-based filtering
methods, e.g., Kalman filters or particle filters, to increase the robustness of the
positioning system [203H206]. Other methods use Support Vector Machines [207]
for positioning or transfer learning [208] to share localization models over time,
across space and to other devices. Chow et al. [209] perform a more coarse-
grained locality classification, deciding whether a device is within a specific area.
Zhang et al. [210] showcase the usability of deep learning for RF localization.
They propose an indoor positioning system using a deep neural network (DNN)
in combination with a Hidden Markov Model (HMM). The four-layer DNN
outputs a coarse position estimate based on pre-processed RSS from WiFi
access points. The HMM then further refines the coarse estimates, resulting
in a positioning accuracy of ~0.4 meters. Other works investigate the use of
BLE for localization [211H215] with recent solutions [216] using deep learning
approaches. Faragher et al. [213] and Zhuang et al. [214] both achieve <3 m
localization accuracy using BLE advertisements. Koutris et al. [216] use a CNN
to process received signals of multi-antenna anchors to locate a BLE sender
with an accuracy of 70 cm.

4.5.2 Device Detection

Next to localization, we can also use wireless signals to find hidden electronic
devices [217], or use RF fingerprinting to identify specific devices based on their
radio signatures [218-220]. For the latter, one can identify the inaccuracies in
the signal, a specific device transmits and use this for classifying the respective
device. PARADIS [218] distinguishes 130 identical devices with an accuracy
of 99% by analyzing the devices’ differences in the modulation domain using
support vector machines and k-nearest neighbors. ORACLE [219] uses a CNN
to distinguish devices based on I/Q sample variations between the devices,
with an accuracy of 99%. However, Al Shawabka et al. [221] show that the
wireless channel significantly impacts the performance of CNN solutions.

4.5.3 Detecting and Locating Humans

Instead of locating electronic devices, wireless signals can also be used to
locate non-electronic devices or humans within an environment [222-227|. This
method is referred to as device-free localization. Zhang et al. [222] show how
one can estimate the position of a human within a grid deployment using
the received signal strength (RSS). SCPL [223] uses an algorithmic approach
using RSS values to count and locate multiple moving humans down to 1.3
meters. Wi-Cal [226] uses machine learning and deep learning methods, which
utilize channel state information (CSI) for counting and localizing humans with
above 90% accuracy. Rapid [224] combines the CSI information with acoustic
measurements to identify an individual person within a group of people. Lastly,

32 THESIS OVERVIEW

Wang et al. [227] use machine learning approaches to detect occupancy of rooms
with both stationary and moving humans. Instead of using WiFi, BLECS [225]
uses BLE and reinforcement learning to detect whether there are humans in a
room.

4.5.4 Activity Detection

We can not only use wireless signal to detect the occupation of rooms or the
movement of humans. Several works show that we can even use RF signals for
activity detection — the estimation of the current activity of a human. Sigg et
al. [228] can detect the presence of humans and that they are active, as well as
human gestures from changes in the received signal strength of WiF1i signals at
a phone. Wang et al. [229] are able to classify in-place activities using WiFi
channel state information. Chen et al. [230] use a ceiling mounted UWB radio
to recognize a set of human activities within a room. Other works |231233] use
RF signals to detect multiple people behind walls and visualize and detect their
activities. Zhao et al. [231] use RF signals to estimate 2D poses of humans. Li
et al. [232] continue on this work and build a spatio-temporal attention feature
learning model which allows skeleton-based activity recognition of humans.
Geng et al. [233] use WiFi for 3D pose estimation using a transfer learning
approach from image-based systems to WiFi signal-based ones.

Instead of using wireless signals, other signal-free human activity recognition
methods use mobile sensors like accelerometers, gyroscopes, magnetometers, or
barometers to track a user’s movement or their activities — sensors that are
commonly available on smartphones or wearables [234].

4.5.5 Environment detection

While the localization problem focuses on detecting the specific location of
a device and the detection methods discussed above focus on detecting a
specific device or person, environment detection aims at classifying the general
surrounding environment, such as home, office, street, or shop. Several works
use audio-based systems to accurately detect the environment [235H237]. Ma
et al. [235] use a Hidden Markov Model classifier to distinguish between 12
environments—such as bus, office, street, or supermarket—with an average
accuracy of 92% using 3-second long recordings. Qamhan et al. [236] combine
Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM)
to classify the environment and microphone features from voiced and unvoiced
segments of a recording. They distinguish between three environments (office,
cafeteria, and sound-proof room) with an accuracy of 98%. Heittola et al. [237]
create audio fingerprints for different environments as histograms and compare
recordings using a k-nearest neighbors algorithm to match these histograms.
They can distinguish 12 environments with a maximum accuracy of 92.4%
using >120 second recordings. All three do not address privacy concerns
in using audio recordings for environment classification. Choi et al. [23§]
combine an acoustic and a visual system to detect the context—such as car,
bag, office, or subway—a user’s device is located in. Liang and Wang [239] use
a convolutional neural network to detect a user’s mode of transport—such as
car, bicycle, or train—from a smartphone’s accelerometer data. The system
achieves an accuracy of 94.48% for distinguishing 8 modes of transportation.

5. RESEARCH QUESTIONS 33

In our third paper of this thesis (cf. Section [6.3)) we argue that received
Bluetooth Low Energy advertisements are sufficient to classify the surrounding
environment and are less privacy-invasive than audio-based systems.

5 Research Questions

Protocols for the (Industrial) Internet of Things stand out for reliable commu-
nication using an unreliable wireless medium. With an increasingly congested
wireless medium and the growing number of deployments, modern IoT solutions
have to achieve reliable communication or operation in even harsher environ-
ments. We expect IIoT networks to remain fully functional, reliable and still
meet communication deadlines even in the presence of unforeseen interference
and degrading communication links. We expect IoT devices accompanying us,
like wireless headphones, to smartly adjust their settings to the surrounding
environment,.

As we discuss in Sections state-of-the-art protocols are not ready for
these challenges. Therefore, we design and evaluate protocols, that combine
strategies from different low-power wireless communication approaches to
automatically and resource-efficiently adapt to the changes in the wireless
environment without neglecting application-specific requirements. Moreover,
we realize new applications for wireless IoT solutions to enable devices to adapt
their functionality to the surrounding environment. This thesis specifically
identifies and answers the following five Research Questions (RQs).

RQ1: How can we ensure highly stable communication in centrally scheduled
low-power wireless networks which are susceptible to dynamic changes in
the wireless environment?

RQ2: How can we reduce latency in low-power wireless mesh networks without
negatively impacting reliability?

RQ3: Can resource-constrained low-power wireless communication devices
accurately recognize their environment without additional sensors?

RQ4: How can we build a cost-efficient debugging and evaluation system for
low-power wireless protocols?

RQ5: How can we use low-power communication protocols to create adaptive
and efficient systems for modern IoT solutions?

RQ1 stems from the observation, that communication for the Industrial
Internet of Things usually uses centrally scheduled networks. However, these
networks follow strict schedules that do not allow for flexibility within end-to-
end communication flows and are not able to adapt to interference changes in
the wireless medium. In Chapters A and B, we answer this question. Chapter
A introduces flow-based retransmissions, adaptively utilizing retransmissions
wherever interference makes them necessary along an end-to-end communication
flow. Chapter B introduces opportunistic routing with concurrent forwarding
in TSCH to dynamically route traffic around interference sources along the
main communication path.

34 THESIS OVERVIEW

RQ2 approaches the challenge of communication systems with the lowest
feasible latency without compromising reliability. We answer this question in
Chapters A, B, and E. Both solutions in Chapters A and B achieve a best-
case latency equivalent to a system without retransmissions, using a single
path for routing. These solutions circumvent the necessity to await unneeded
communication slots or forwarder coordination. Chapter E takes a different
approach to tackle this question by replacing the IEEE 802.15.4 physical layer
with BLE physical layers while retaining the TSCH network stack.

R@Q3 looks at novel use-cases of wireless communication signals. Instead of
using wireless signals for communication, we ask whether we can use wireless
signals to detect the environment and adapt the functionality of smart devices
like wireless headphones. Chapter C answers this question by building a
solution that can infer a device’s environment solely from the fingerprint of
ambient Bluetooth Low Energy advertisement signals.

RQ4 approaches a problem orthogonal to the previous research questions,
yet important for fully exploring and understanding low-power wireless mesh
protocols. For evaluating these protocols, the research community commonly
uses testbeds, however, evaluating timing-specific aspects in a distributed setting
requires the ability to timestamp instructions or events in these distributed
testbeds. In Chapter D, we present an affordable time-synchronized testbed
evaluation system that provides us with in-depth insights into the protocols we
develop to answer RQ1 and RQ2, and that is retrofittable to existing testbeds.

RQ5 reflects the general idea of this thesis as it relates to the general
problem of modern IoT solutions that must be able to resource-efficiently
adapt to changes in the environment when using wireless communication.
All five papers we present in Chapters A — E include aspects answering this
question. Chapters A and B add dynamicity to centrally, and often statically
scheduled IEEE 802.15.4 networks. Chapter C builds a system capable of
adapting applications based on the environment. Chapter D uses subGHz
low-power wireless communication to efficiently time-synchronize evaluation
infrastructure, and Chapter E demonstrates the use of the 6TiSCH stack on
top of BLE opening the field for future IoT and IIoT solutions.

6 Thesis Contributions

This section summarizes the papers that constitute the main contribution of
this thesis. Table 1] outlines the chapters of this thesis, along with the name of
the protocol or system we discuss in each chapter, and the research questions
it addresses.

6.1 Chapter A — Master: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks

Context and Challenge. The Industrial Internet of Things (IToT) requires
efficient ways of scheduling communication in low-power wireless networks.
Such schedules have to ensure energy-efficient and reliable communication while
keeping latency low to enable systems to quickly react to changes in industrial
processes.

6. THESIS CONTRIBUTIONS 35

Table 1: Research questions and the corresponding thesis chapters
addressing them, together with the name of the protocol or system
discussed in each chapter.

Chapter A Chapter B Chapter C Chapter D Chapter E

Master Autobahn BlueSeer Grace TBLE
RQ1 @ @ O O O
RQ2 @ @ O O @
RQ3 O O @ O O
RQ4 O O O O O
RQ5 ©) O @ @ @

As we discuss in Section [{.1.1] centralized TSCH schedulers until this
work were unable to react to unforeseen interference. Many solutions focus
on schedulability of communication assuming interference-free channels with
perfect links |10}/11], or schedule backup slots for retransmission along specific
links, but usually only one backup slot per link [16|119]. However, in networks
without exclusive access to certain channels and other wireless traffic such
as WiFi, a scheduler has to account for dynamic wireless environments with
changing levels of interference on each link.

Approach. MASTER is a centralized scheduler for TSCH networks, that
addresses the challenge of handling unforeseen changes in the wireless medium.
MASTER separates the control plane from the data plane, and thus consists
of two parts: a central server component and a networking component (cf.
Figure E[) Its central server component runs on the edge of a sensor network
or even in the cloud and performs the routing and scheduling. Its networking
component runs on each sensor node on top of TSCH and performs the schedule
installation and the forwarding according to the central component’s routing.
This twofold design splits the compute-heavy scheduling task from the network
operation of the usually resource-constraint devices in an IoT or sensor network.

MASTER’s design, is flexible to dynamically handle unexpected interference
levels at any link along a multi-hop communication flow and does not limit
retransmissions to specific links. We can dynamically react to local interference
by using a novel flow-based retransmission scheme, in the paper denoted as
Sliding Windows. This scheme allocates retransmissions for a flow instead
of a specific link, allowing any link of the flow to use between no and all
retransmission slots (cf. Figure . If no link needs retransmissions, we do
not have to wait for retransmission slots to pass. Instead, we can immediately
continue with the next hop in a subsequent slot to keep latency at a minimum.
This dynamic approach allows us to use retransmissions for different links at
different iterations of the schedule, wherever we need them due to the currently
prevalent interference pattern. Thus, MASTER achieves robust and long-term
stable schedules while keeping latency at a minimum.

Results. We evaluate MASTER and its flow-based retransmission strategy
in experimental testbed evaluations and show that it achieves a delivery ratio of
above 99%. We experimentally compare its performance to the well-established

36 THESIS OVERVIEW

/1 e
—@ | ‘

N . \\“
@

Figure 9: Master consists of an external centralized scheduler (M)
and a routing layer. The external scheduler performs the global
routing and scheduling and pushes the computed schedule onto
the network. In each node, Master’s routing layer implements the
schedule in TSCH and performs the routing during runtime.

\
\
\

autonomous TSCH scheduler Orchestra showing that MASTER with its
flow-based retransmission scheme has 85-90% lower latency than Orchestra
while maintaining the high reliability Orchestra is known for. This clearly
shows MASTER’s advantage when communication partners are known upfront.
Lastly, we perform a long-term evaluation over 24 hours showing its long-term
stability for highly reliable (>99.6%), low-latency (<4.5 slots) communications.

Contributions. In summary, this chapter makes the following contribu-
tions:

e We present MASTER, an open-source, centralized router and scheduler
for TSCH-based networks designed with easy extendability in mind.

e We design Sliding Windows, a transmission strategy for MASTER to
increase the flexibility, stability, and reliability of centrally scheduled
communications.

e We propose flow-based queues as an extension to TSCH to enable the
use of central scheduling algorithms.

e We implement MASTER as part of Contiki-NG and evaluate it in environ-
ments susceptible to interference.

e We show the long-term stability of schedules computed by MASTER in
experiments of 24 hours.

Statement of Personal Contribution. I am the lead designer and
implementer of MASTER and its flow-based retransmission scheme. Additionally,
I designed and conducted the experimental evaluation. I am also the lead
author of the paper.

The chapter was published as a paper in the Proceedings of the 16th Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS),
2020 [240], and its source code is available on GitHukﬂ

2Available at https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler

6. THESIS CONTRIBUTIONS 37

) Lo f2]sfa]sfel]r]s]ol]

x [x | ™x | x
RX [RXTX|RXTX|RXTX| TX
T | x | 1x ||
RX [RxTx|rxTx] X | RX [RxTX|RXTX|RXTX] TX
RX | RX | RX

RX | RX | RX | RX

(a) Sample Topology (b) Flow-based retransmission schedule, with

with two intersecting one transmission slot per hop and two (or-

flows. ange flow) or three (green flow) retransmis-
sion slots to be shared among the nodes of a
flow.

Figure 10: Sample schedules for Master’s flow-based retransmission
strategy. One flow originates at node A to end at node F while the
second one originates at node C and ends at node E.

Naming choice. When selecting a name for our centralized scheduler, we
sought a term that accurately portrays its function within a network. The
scheduler both masters the skill of computing an efficient schedule and is the
expert in a system of wireless sensor nodes. Consequently, we chose the name
MASTER.

We are cognizant of the connotations associated with the words “master” and
“slave” in the United States due to the country’s historical context. However,
the term “master” itself holds a broader meaning and application beyond its
combination with “slave,” and particularly outside the US, it may not carry
the same negative connotation. Although our protocol does not involve any
components referred to as “slaves,” in hindsight, we would likely opt for a
different name to avoid unintentional associations in English-speaking regions.
Potentially, we might choose a word from a different language to sidestep any
inadvertent connotations.

Discussion and possible extensions. With MASTER we create a central-
ized scheduler that can adapt to changes in the wireless environment by using
flow-based retransmissions and eliminating the need for regular rescheduling.
MASTER adds dynamic aspects to otherwise static schedules and reduces la-
tency to a minimum without compromising reliability. For MASTER we use a
Reverse Longest Path First (R-LPF) scheduling algorithm that reduces waiting
times and thus reduces latency within end-to-end flows. However, many appli-
cations in the IIoT are deadline-driven, and therefore, MASTER would be more
applicable for real-world applications if it supported deadline-based schedul-
ing algorithms. A bachelor’s thesis [241] supervised by me implements three
deadline-driven scheduling algorithms to close this gap. Moreover, M ASTER
has no built-in method for neighbor data collection and schedule dissemination
connecting the control and data planes. A master’s thesis [242] supervised by
me builds a system for an initial collection of neighbor data and disseminating
a first schedule, to increase the usability of MASTER in unknown deployments.

In this paper, we present a method for computing the required number of
retransmission slots for both link-based and flow-based retransmissions. Our
approach utilizes the ETX metric [48]. While effective for routing decisions,

38 THESIS OVERVIEW

this metric may not be optimal for determining the number of retransmission
slots. Instead, employing a Markov chain, such as the approach introduced in
the paper proposing a flow-centric policy in WirelessHART [131], offers a more
sensible solution for selecting the number of retransmissions. Incorporating
this method into MASTER would be beneficial.

is a more sensible solution for selecting the number of retransmissions, and
it is worth adding it to MASTER.

Especially with the introduction of TSCH on BLE (cf. Section MASTER
would also be a viable candidate to build centrally scheduled networks featuring
heterogeneous physical layers. With a global view of the network, it becomes
feasible to schedule more efficient communication by employing a specific
physical layer for each flow or link within the network.

6.2 Chapter B — Opportunistic Routing and Synchronous
Transmissions Meet TSCH

Context and Challenge. As the number of mobile and IoT devices commu-
nicating increases, the wireless medium becomes increasingly congested, posing
a greater challenge for successful communication. This results in a significantly
higher spectrum occupation and heightened complexity for successful communi-
cation. Scheduled communication in networks utilizing Time-Slotted Channel
Hopping brings measures to reliably communicate in such a harsh environment,
including retransmissions and channel hopping. Retransmissions across differ-
ent physical frequencies increase the likelihood of successful communication in
the presence of narrowband interference [8}[1311[240].

However, with an increasingly occupied spectrum, wideband interference
emerges as a new challenge. Schedules designed for long-term stability must
be immune to wideband interference, as interference can lead to link failures or
render nodes unreachable, significantly impacting routed communication. While
our solution of flexible retransmissions (discussed in Section effectively
mitigates narrowband interference, it shares a common limitation with other
TSCH schedulers when facing wideband interference. Communication in TSCH
networks typically follows a single path, and if there’s a wideband interference
source along that path, it cannot be handled, resulting in communication failure
(cf. Figure [[Tal).

Approach. In this chapter, we show that we can tackle the problem of
local wideband interference by combining three established technologies in
low-power wireless networks: Time-Slotted Channel Hopping (TSCH) [6,/8}/131]
240], Opportunistic Routing [171}/174.[175], and Synchronous Transmissions
[9,5965]. We design and evaluate AUTOBAHN, a hybrid routing scheme that
combines these three technologies. AUTOBAHN establishes long-term stable
schedules in the presence of local wideband interference by routing traffic from
a sender to a receiver along a broader path and enabling neighboring nodes
to concurrently transmit the same data in the same timeslot using the same
frequency channel. The routing approach follows the concept of opportunistic
routing (cf. Section , where the specific path a packet takes to reach its
destination is inconsequential.

In AUTOBAHN, a node forwards a packet opportunistically to multiple neigh-
boring nodes, which subsequently, in their next scheduled slot, simultaneously

6. THESIS CONTRIBUTIONS 39

112|314
Q X | TX

(a) Established central scheduling approaches employ a single routing path.
Their schedule will fail if one of the links fails, such as the link between
nodes A and B in this example.

m|O|O|w (>

11234
A | TX | TX
B
C | RX [TXRX TX
D
E RX| RX

(b) Autobahn utilizes opportunistic routing and thereby provides redun-
dant options in case routes fail. In this example, packets can travel via
node C to destination E.

Figure 11: Autobahn compared to established centralized TSCH
scheduling approaches. In this example, we assume a topology of five
nodes, with node A as source and node E as destination. We show
both the scheduled paths and the TSCH schedule, using RX, RXTX,
and TX slots as typical for flow-based retransmission schemes (with a
retransmission window of two). Grayed-out slots present slots where
reception and transmission are not possible due to previously failed
interfered receptions.

forward it opportunistically to their neighbors. In scenarios where a node
cannot participate in forwarding the packet due to interference, this poses
no issue as other nodes can step in to forward the packet instead. Figure
illustrates an example scenario and schedule for AUTOBAHN in comparison
with a flow-based single-path scenario created by schedulers like MASTER (cf.
Section [6.1]).

The combination of TSCH, opportunistic routing, and synchronous trans-
missions addresses the main challenge of each of these three individual concepts.
TSCH provides the time-synchronization required for synchronous transmis-
sions. Synchronous transmissions eliminate the challenge of selecting a single
forwarder of a packet in opportunistic routing by enabling multiple concurrent
forwarders. And opportunistic routing resolves the issue of stability loss in the
presence of a wideband interference source along a single path.

Results. With AUTOBAHN, we demonstrate the feasibility of synchronous
transmissions in TSCH networks. TSCH networks are well-enough synchronized
to allow the reception of synchronously transmitted packets due to the capture
effect (cf. Section . Through the combination of opportunistic routing,
synchronous transmissions, and TSCH, we keep complexity low and do not

40 THESIS OVERVIEW

increase the minimum latency compared to a single path schedule. Moreover,
this combination even allows a lower average latency in the case of local
narrowband interference. Our evaluation shows that AUTOBAHN is capable of
outperforming single-path retransmission strategies including MASTER’s flow-
based retransmission strategy and other single-path retransmission strategies
both in the presence of and without interference. Moreover, AUTOBAHN offers
long-term stability with over 95% reliability over several days without the need
for rescheduling.

Contributions. In summary, this chapter makes the following contribu-
tions:

e We are the first to combine the concepts of opportunistic routing, syn-
chronous transmissions, and Time-Slotted Channel Hopping (TSCH) into
a single protocol, achieving long-term stable routed communication.

e We design AUTOBAHN, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference.

e We implement AUTOBAHN for Contiki-NG [44] and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules using AUTOBAHN over 12 days and under various interfer-
ence levels for 25 hours. These experiments achieve reliability under
interference of 96.8% and latency of 4.2 slots, outperforming both the
central scheduler MASTER [240] and the autonomous TSCH scheduler
Orchestra [§].

Statement of Personal Contribution. I am the lead designer and
implementer of AUTOBAHN. Additionally, I am the main designer of the
evaluation and the main author of the paper. The chapter was published as
a paper in the Proceedings of the 46th IEEE Conference on Local Computer
Networks (LCN), 2021 [243], and its source code is available on GitHubﬂ

Discussion and possible extensions. In this work, we demonstrate
the feasibility of synchronous transmissions within TSCH, showcasing their
potential to reduce the coordination overhead associated with forwarder selec-
tion in opportunistic routing. While time synchronization in TSCH enables
successful utilization of the Capture Effect, it remains necessary for a single
node’s radio signal to be significantly stronger than the combined strength
of all other signals. AUTOBAHN shows that successful forwarder selection
is achievable; however, there exists room for enhancement, particularly by
considering the expected received signal strength. If signals from multiple
senders exhibit comparable signal strengths, AUTOBAHN might inadvertently
decrease communication reliability. Consequently, by incorporating received
signal strength into the forwarder selection process, a more robust version of
AUTOBAHN could be developed.

So far, AUTOBAHN demonstrates the possibility of synchronous transmis-
sions in TSCH using the IEEE 802.15.4 physical layer. However, with TSCH
now available on additional physical layers (cf. [184L187H189] and Section ,
the question arises whether a solution like AUTOBAHN could be applicable to
these alternative physical layers. While the general feasibility of synchronous

3Available at https://github.com/ds-kiel/autobahn

https://github.com/ds-kiel/autobahn

6. THESIS CONTRIBUTIONS 41

o [
P ie® Gies] ... |
= ! =2 o
\ 5% 80% 10% 1%
k i

N \ Embedded Neural Network
N \ & Environment Inference

S \ 1
BLE Scanning &
D J’S’Us«sme Sa Feature Extraction
~Mengg
La i
—e BLE Radio

IQ‘

JsageN|g

Figure 12: BlueSeer: System architecture. BlueSeer scans the
wireless medium for BLE packets and extract features from them.
An embedded neural network classifies the environment between 7
categories.

transmissions on BLE has been demonstrated in [60] and [64], it necessitates a
greater power difference to use the capture effect. Nonetheless, when combined
with meticulous forwarder selection during scheduling, this approach may of-
fer a compelling strategy, particularly for ensuring reliable communication in
networks employing multiple physical layers.

6.3 Chapter C — BlueSeer: AI-Driven Environment De-
tection via BLE Scans

Context and Challenge. Bluetooth Low Energy (BLE) devices are all
around us, such as wireless keyboards, wireless headphones, smartphones,
smart speakers, smart sensors, and many others. These devices constantly
announce their presence and their provided service for other devices, like a
smartphone or a computer, to be able to interact with them. During the
COVID-19 pandemic, we saw another strength of BLE: due to its low signal
range, it is possible to trace devices and thus people who have been in a user’s
vicinity to thus trace the spread of infections [38].

This behavior of BLE announcing its services and sending advertisements
all the time makes its use also thinkable for other applications. One such
application could be detecting the environment using ambient BLE signals
instead of sensors like microphones [235H237|, cameras [238], or accelerometers
[239]. Detecting the environment from ambient BLE signals would enable
low-power wireless devices without additional sensors to adapt their behavior
to the environment. For example, wireless headphones could lower their noise-
cancellation levels in traffic to ensure the safety of their users, and wearables
could keep silent while in a theater.

Approach. In this work, we present BlueSeer, a smart environment-
detection system capable of inferring environments when running on resource-
constraint IoT devices, like wearables or microcontrollers. BlueSeer only
requires a BLE radio scanning for BLE advertisements of nearby devices. We
perform feature extraction from the collected data and use an embedded neural

42 THESIS OVERVIEW

network to accurately predict the current environment (cf. Figure[12). BlueSeer
distinguishes between 7 environments (home, office, shopping, transport, nature,
street, and restaurant) based on 23 different features extracted from the BLE
data. A feed-forward neural network with a single 500-neuron hidden layer and
a 7-neuron output layer performs the classification of the current environment.
This network is sufficient for successfully classifying the environment and easily
fits the memory footprint of modern microcontrollers.

Results. With BlueSeer, we demonstrate that it is feasible to infer an
environment solely from advertisement packets received with a BLE radio on
resource-constrained hardware. A small neural network that fits the memory
footprint of a modern microcontroller is sufficient to achieve an overall clas-
sification accuracy of 84%. Different classes of environments pose different
challenges, with environments with low dynamics such as home, restaurant,
or office being better detectable with an accuracy of around 98%. BlueSeer
is able to perform the inference within 13 ms on a Cortex-M4 microcontroller
clocked at 64 MHz [192].

Contributions. In summary, this chapter makes the following contribu-
tions:

e We show that it is possible to categorize environments exclusively from
received BLE advertisements.

e We present BlueSeer, an Environment Detection system able to classify
environments solely using received BLE packets. BlueSeer distinguishes
between 7 categories: home, office, shopping, transport, nature, street,
and restaurant.

e We carry out extensive feature engineering and identify 7 features from
BLE advertisements, ranging from number of devices in proximity and
RSS measurements, to the diversity of offered services.

e We devise a neural network and show that its quantized, embedded
version classifies its environment with up to 84% accuracy on a low-power
platform with a 64 MHz MCU, and uses 65 KB of memory.

Statement of Personal Contribution. I am the second author and
a co-designer of BlueSeer. Additionally, I designed and conducted the data
collection and on-device evaluation. We attribute 60% of the workload to the
first author and 40% to me, the second author.

The chapter was published as a paper in the Proceedings of the ACM/IEEE
Design Automation Conference (DAC), 2022 [244], and was nominated as
candidate for the best paper award at the conference. Its source code is available
on GitHuhf

Discussion and possible extensions. With BlueSeer, we show that
BLE is the sole requirement to identify an environment. We show that a
system like this is feasible on a microcontroller, however, the limited computing
capabilities and the current state of supported AI/ML features in TensorFlow
Lite for Microcontrollers [245] limit the exploration space significantly. To
further explore the field and the capabilities of using ambient BLE signals, a

4Available at https://github.com/ds-kiel/blueseer

https://github.com/ds-kiel/blueseer

6. THESIS CONTRIBUTIONS 43

) Radio
Observer UsB Logic

Analyzer
(Raspberry Pi) GPIO £ PPS
v i
loT Node _"-.
Testbed Node - Sync Node |-)

Figure 13: Design Overview of Grace. The testbed node consists
of an observer platform and one or more IoT nodes. We add a
logic analyzer and a radio for time-synchronized GPIO tracing. The
synchronization node consists of a microcontroller and a radio gen-
erating the time signal. In case of larger deployments, we can use
multiple synchronization nodes and add an otherwise optional GPS
receiver.

smartphone would be a better fit. A smartphone is still a movable device carried
around by its user and allows us to try larger neural networks and different
approaches like unsupervised learning for environment detection on a mobile
end-device. Two master’s theses supervised by me demonstrate that a
BLE-based classification system cannot only distinguish between environments,
but can also more granularly distinguish between multiple instances of the same
environment, i.e., we can identify specific homes or offices. More elaborate
models could be able to identify not only known locations, but also the places a
user regularly visits. Such a system could identify changes in a user’s behavior
when they visit unknown places or remain longer at certain known ones.

6.4 Chapter D — Grace: Low-Cost Time-Synchronized
GPIO Tracing for IoT Testbeds

Context and Challenge. Designing wireless communication protocols re-
quires infrastructure to test and evaluate the protocols’ performance. While
simulations allow high-level insights into protocols and algorithms, they
cannot accurately replicate all details of real hardware like CPU-specific timing
and environmental factors, nor are they capable of simulating the specifics of
the wireless environment and random interference patterns the protocol has to
handle . Therefore, research on wireless communication protocols and
systems commonly uses testbeds—deployments of IoT devices co-located with
observer infrastructure for instrumentation, logging, and deployment control.

We can use testbeds to evaluate protocols and their performance under
real-world conditions with interference sources not under our control or with
artificially generated interference [248}[249]. However, for testing the inner
workings of protocols, or evaluating the concurrent execution of instructions,
like the participation of nodes in concurrently forwarding data (cf. Section
, we need distributed logging or tracing capabilities. Most testbeds provide

44 THESIS OVERVIEW

serial logging capabilities, however, printing messages takes several hundreds of
microseconds leading to side effects on program execution and limits accurate
timestamping, especially if we need to trace microsecond offsets between IoT
nodes. A less intrusive and more time accurate method is tracing state changes
of General-Purpose Input/Output (GPIO) pins of a processor or microcontroller,
which are usually accessible on any IoT development hardware. However,
tracing these signals requires specialized hardware or specific observer platforms.
Moreover, in a distributed system, we require precise time-synchronization to
trace microsecond offsets between IoT nodes.

Approach. In this chapter, we present Grace, a time-synchronized GPIO
tracing solution for IoT testbeds (cf. Figure . While Grace is not the first
solution of its kind [841/85,/93], it does, in contrast to the other approaches, not
require any specific observer platform. Instead, it is retrofittable to existing
testbeds and uses low-cost off-the-shelf hardware, making it a cost-efficient and
affordable solution. Grace uses a unidirectional RBS-like time-synchronization
system (cf. Section to synchronize the testbed observers. A synchroniza-
tion node broadcasts a time signal once a second and the testbed nodes receive
the time signal at roughly the same time with a negligible time difference. We
use wireless 433 MHz transceivers to send and receive the timestamps, and logic
analyzers for GPIO tracing and logging events. The logic analyzers also trace
the reception of the time signal for precisely synchronizing the GPIO tracing
system. Grace can use either a single synchronization node for building-wide
testbeds, or multiple synchronization nodes for campus-wide testbeds. In the
design with multiple synchronization nodes, we use the 1-PPS signal of GPS
receivers to simultaneously send a time signal from all synchronization nodes.
To not interfere with the signals from other nodes, physically close ones use
different frequency channels for their transmission.

Results. We experimentally evaluate Grace in our testbed showing that
it is capable of continuously logging sparse amounts of data as commonly
produced when debugging IoT systems, such as wireless protocols, at a rate of
8 MHz. Grace is able to achieve a time-synchronization offset between multiple
testbed nodes of on average 1.53 ps using a single synchronization node, which
is sufficient for most applications. When using multiple synchronization nodes,
Grace achieves a time-synchronization offset of on average 15.3 ps between
nodes using a different time source. Nodes using the same time source remain
at the lower offset as in the system with a single synchronization node.

Contributions. In summary, this chapter makes the following contribu-
tions:

o We present Grace, a low-cost time-synchronized GPIO tracing system for
IoT testbeds.

e We implement Grace using off-the-shelf hardware to enable easy adoption
in other testbeds and make both the software and the hardware setup
openly available.

e We introduce multiple types of synchronization nodes, enabling time-
synchronization for both building-wide and campus-wide testbeds.

e We discuss and evaluate the intrusiveness of GPIO tracing on IoT plat-
forms.

6. THESIS CONTRIBUTIONS 45

e We show Grace’s low cost of less than €20 per node.

e We evaluate Grace, showing its degree of time-synchronization between
nodes of a single synchronization node of on average 1.53 ns, while not
exceeding a worst-case synchronization offset of 3.75 ys.

e We evaluate the time-synchronization performance of Grace when using
multiple time sources and show that its degree of time-synchronization is
on average around 15.3 ps between nodes using different time sources.

Statement of Personal Contribution. I am the main designer of Grace.
Additionally, I designed and conducted the experimental evaluation. I am
also the lead author of the paper. Grace was co-designed and implemented
by Christian Richter as part of his bachelor’s thesis [250] and as a student
assistant under my supervision.

The initial version of Grace was published as a paper in the Proceedings
of the 18th International Conference on Distributed Computing in Sensor
Systems (DCOSS), 2022 [251]. This paper received the best paper award at
the conference. The version presented in this chapter is an extension of the
initial version and was published as a paper in the Elsevier Computer Networks
journal, volume 228, 2023 [252]. Grace’s source code is available on GitHuHﬂ

Discussion and possible extensions. With Grace, we bring distributed,
time-synchronized GPIO tracing to testbeds without the need for specialized
observer platforms. Grace is retrofittable to existing testbeds and requires
only readily available off-the-shelf components. However, the current system
also has its limitations. While transmitting the time signal with standard
433 MHz radios works and leads to a sufficient synchronization, there is still
room for improvement, especially regarding the long-term stability of receiving
the signal. The 433 MHz receivers are very susceptible to interference. While
skipping the reception of an occasional time signal is not that problematic,
sometimes the communication fails entirely. An idea to continue using the
433 MHz band while improving the stability of the communication would be to
use 433 MHz LoRa [253] to achieve stable communication through the use of a
less interference-prone modulation scheme.

Another weakness lies in the logic analyzer and the USB protocol. Some
low-cost logic analyzers utilized in Grace encounter occasional failures in
communication with the host platform via USB, occurring randomly. In
instances of failure, the host may intermittently fail to recognize the logic
analyzer until a reboot is performed. While similar issues may arise when
using the logic analyzer locally on a single computer, the impact is exacerbated
in a distributed tracing system. If tracing fails on a critical node, the entire
experiment may necessitate rerunning. Therefore, to increase the stability
of low-cost GPIO tracing, debugging the USB communication or exploring
alternative tracing solutions could prove valuable.

5 Available at https://github.com/ds-kiel/grace

https://github.com/ds-kiel/grace

46 THESIS OVERVIEW

6.5 Chapter E — TSCH meets BLE: Routed Mesh Com-
munication over BLE

Context and Challenge. While IEEE 802.15.4 and Bluetooth Low Energy
(BLE) operate within the same wireless spectrum, BLE has emerged as the
dominant standard for communication in low-power wireless networks. Smart-
phones utilize BLE to interact with wearables, wireless speakers, household
items, and various low-cost smart-home devices. However, in applications
requiring coordinated mesh networking, such as the Industrial Internet of
Things (IToT) and advanced smart home setups, IEEE 802.15.4 is the preferred
choice [12H14]. IEEE 802.15.4, when coupled with the Time-Slotted Channel
Hopping (TSCH) MAC layer and the 6TiSCH stack, serves as the founda-
tion for numerous industrial applications with stringent latency and reliability
requirements.

Although BLE offers a mesh networking solution known as Bluetooth Mesh
(cf. Section , its widespread adoption has been limited. One plausible
explanation is that BLE devices, unlike other IoT devices, are frequently mobile
rather than stationary for extended durations or do not belong to the same
network. Additionally, current use cases for BLE devices typically do not
necessitate mesh communication. Moreover, Bluetooth Mesh employs flooding,
which involves significant portions of the network in transmitting a single
message. Furthermore, it lacks time synchronization, thereby inheriting the
same limitations as BLE advertisements for packet transfer from hop to hop.
While Bluetooth Mesh is suitable for handling low data volumes [41}|42], its lack
of a coordinated network structure restricts its usability in (static) industrial
networks with strict requirements.

Approach. In this chapter, we introduce TBLE, a novel solution that
brings Time-Slotted Channel Hopping (TSCH) to Bluetooth Low Energy (BLE)
for efficient time-synchronized mesh networking in BLE. TBLE seamlessly
integrates the BLE physical layer with the TSCH MAC layer, enabling the
utilization of well-established protocols, including real-time communication
protocols, atop BLE. With TBLE, we establish a time-synchronized BLE
network capable of sending and receiving BLE advertisements in a timely
manner. To ensure compatibility with other BLE applications, we embed
standard TSCH packets within valid BLE advertisements. Consequently,
devices not running TBLE can easily discard these advertisements, while
devices running TBLE can join the network as in TSCH on IEEE 802.15.4.
We develop versions of TBLE for each of the four BLE data rates and evaluate
their performance in comparison with TSCH on IEEE 802.15.4. Our evaluation
includes assessing whether BLE can effectively replace IEEE 802.15.4 in the
context of reliable low-latency mesh communication.

Results. We evaluate TBLE in experiments on our testbed showing its
performance in direct comparison with IEEE 802.15.4. We evaluate both the
general feasibility of TBLE and its performance using the autonomous TSCH
scheduler Orchestra [8]. While BLE is capable of data rates as low as 125 kbps
and high data rates of up to 2 Mbps, the medium data rates of 500 kbps and
1 Mbps are those achieving the best performance. TBLE is capable of forming
a network using any of these data rates. Further, at the two medium data
rates, TBLE matches the reliability performance of TSCH on IEEE 802.15.4

6. THESIS CONTRIBUTIONS 47

while reducing its latency by up to 20%.

With a higher spectral efficiency than in IEEE 802.15.4 (40 vs. 16 channels),
on-par reliability and lower latency, TBLE enables routed mesh communication
over BLE, effectively replacing the need for IEEE 802.15.4.

Contributions. In summary, this chapter makes the following contribu-
tions:

e We present TBLE, a protocol closing the gap of routed mesh-communication
in BLE. TBLE extends the established TSCH standard.

e We design and implement a BLE driver for the Nordic nRF52840 DK for
Contiki-NG and adjust it to be compatible with the Contiki-NG IEEE
802.15.4 TSCH and 6TiSCH stack.

e We are the first to run TSCH over BLE, demonstrating TBLE as a
practical routed mesh-protocol for BLE.

e We experimentally evaluate TBLE and compare its performance to IEEE
802.15.4 TSCH, showing its feasibility and a performance increase over
TSCH without modifying any upper-layer protocols.

Statement of Personal Contribution. I am the sole designer and
implementer of TBLE. Additionally, I designed and conducted the experimental
evaluation. I am also the lead author of the paper.

The chapter was published as a paper in the Proceedings of the 19th
International Conference on Distributed Computing in Smart Systems and the
Internet of Things (DCOSS-10T), 2023 [254], and its source code is available
on GitHuH®l

Discussion and possible extensions. With TBLE, we demonstrate
that coordinated mesh communication in the 2.4 GHz band can be achieved
using a simpler modulation scheme, and thus cheaper radios. This chapter
serves as an initial step and proof of concept, paving the way for further
exploration of TSCH on BLE. Thus far, our evaluation has focused on using a
single PHY at a time and payloads not exceeding the 127 bytes limit of IEEE
802.15.4. However, BLE supports larger payloads, and with the availability
of multiple PHYSs, a combination of them might be feasible. Novel scheduling
approaches could allocate certain communications using one of the BLE data
rates and concurrent communications using another data rate to maximize
spectrum utilization and minimize latency while maintaining high reliability.
Furthermore, the combination of IEEE 802.15.4 TSCH and BLE is possible as
many modern radios support both protocols. Consequently, a scheduler could
construct a network comprising devices supporting either or both of these PHY
technologies, effectively combining IEEE 802.15.4 and BLE within a single
network.

Around the same time we developed TBLE, another paper (BlueTiSCH
[199]) explored the combination of TSCH and BLE. They arrive at slightly
different conclusions regarding the performance of the different PHYs. Both
works concur that the coded PHY with a data rate of 500 kbps is one of the
two best-performing options. However, while our experiments suggest that the

6 Available at https://github.com/ds-kiel/TBLE

https://github.com/ds-kiel/TBLE

48 THESIS OVERVIEW

uncoded 1 Mbps PHY has similar performance to IEEE 802.15.4, their results
differ and indicate that the coded 125 kbps PHY is the second viable option.
The most notable distinction between the two papers is our use of a real-world
testbed for evaluation, whereas their work relies on simulation. By employing
a testbed, we assess performance under realistic conditions, accounting for
the physical characteristics of BLE and its performance in environments with
interfering communication beyond our control. These divergent results leave
room to further investigate the differences in performance between these two
bodies of work.

7 Conclusion and Emerging Directions

In this thesis, we argue that future low-power IoT devices will face increasing
challenges due to unforeseen interference from other devices and networks.
Therefore, future communication protocols must dynamically adjust retrans-
missions and routing decisions to withstand interference and ensure long-term
stable and reliable communication. Additionally, to reduce latency in multi-hop
low-power wireless communication systems, we must integrate aspects from
different communication approaches into novel protocols. Furthermore, future
IoT devices will be able to adapt their functionality based on their surrounding
environment. Hence, we require methods to recognize and adapt to changes in
the device’s environment.

This thesis introduces five protocols, systems, and evaluation infrastructures
for modern IoT solutions. We demonstrate that flow-based retransmissions
(Master) and opportunistic routing with concurrent forwarding (Autobahn)
add dynamics to overcome unforeseen interference in otherwise static and
centrally scheduled TSCH networks. These solutions enable long-term stable
communication without frequent adjustments to routing and scheduling. Both
effectively reduce latency to a minimum. To further reduce latency, we introduce
TBLE, which combines TSCH with Bluetooth Low Energy (BLE) PHYs,
replacing the IEEE 802.15.4 PHY. To ensure the intended functionality of
these protocols and gain insights during evaluation, we develop a retrofittable
time-synchronized GPIO tracing solution for testbeds (Grace). Lastly, we
introduce BlueSeer, which uses embedded machine learning to demonstrate
that ambient BLE signals are sufficient to recognize the current environment.

Based on our work, we identify several directions for future research.
Firstly, with TBLE, we enable TSCH to operate successfully on five 2.4 GHz
PHYs—IEEE 802.15.4 and the four BLE PHYs. As modern radios support all
of these, scheduling multi-PHY TSCH networks in the 2.4 GHz band suggests
promising prospects to route and schedule communication even more efficiently
in a congested wireless medium. Secondly, efficient routing and retransmission
schemes for reliable multi-hop communication as demonstrated in MASTER
and AUTOBAHN could potentially be extended to other wireless communica-
tion technologies. While LPWAN technologies like LoRa and NB-IoT already
cover larger areas and longer distances, time-slotted multi-hop extensions could
enhance coverage in currently underserved areas, albeit with significant time-
synchronization overhead. Additionally, there is growing potential in further
exploring the combination of IoT and AI. With BlueSeer, we take a first step

7. CONCLUSION AND EMERGING DIRECTIONS 49

into the direction of using machine learning in combination with IoT devices.
With the general trend in machine learning and continuously advancing ma-
chine learning approaches, several directions open up for research projects
or potential future theses. We see the potential to revisit multi-hop wireless
communication and use machine learning to develop better scheduling and rout-
ing algorithms, also considering multi-PHY approaches with more degrees of
freedom than in single-PHY networks. Yet, we see the bigger research potential
in improving on-device and resource-constrained machine learning frameworks.
These could enable devices to evolve with application or environment changes
without external training or major firmware updates, while developing and
tuning new neural networks for resource-constrained devices could enhance
smart features in IoT devices.

50

THESIS OVERVIEW

Master: Long-Term Stable Routing and Scheduling in
Low-Power Wireless Networks

Laura Harms, Olaf Landsiedel

Proceedings of the 16th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2020, pp. 86-94.

51

Abstract

Wireless Sensor-Actuator Networks (WSANSs) are an important driver for the
Industrial Internet of Things (IIoT) as they easily retrofit existing industrial
infrastructure. Industrial applications require these networks to provide stable
communication with high reliability and guaranteed low latency. A common
way is using a central scheduler to plan transmissions and routes so that
all packets are delivered before a deadline. However, existing centralized
schedulers are only able to achieve high reliability in the absence of interference.
This limitation lowers the feasibility of using centralized schedulers in most
environments susceptible to interference.

This paper addresses the challenge of stable, centrally scheduled communi-
cation in low-power wireless networks susceptible to interference. We introduce
MASTER, a centralized scheduler and router, for IEEE 802.15.4 TSCH (Time-
Slotted Channel Hopping). MASTER uses Sliding Windows, a novel transmission
strategy, which builds on flow-based retransmissions instead of link-based ones.
We show in our experimental evaluation that MASTER with Sliding Windows
achieves routing and scheduling stability for over 24 hours with end-to-end reli-
ability of over 99.6%. Moreover, we show that MASTER outperforms Orchestra,
a state-of-the-art autonomous scheduler, in terms of latency by a factor of 8
while achieving similar reliability under a slight duty-cycle increase.

52 CHAPTER A. MASTER

\
\
=D \
\
\
\
\
\
\
\
\
\
\
\

Figure A.1: Master consists of an external centralized scheduler (M)
and a routing layer. The external scheduler performs the global
routing and scheduling and pushes the computed schedule onto
the network. In each node, Master’s routing layer implements the
schedule in TSCH and performs the routing during runtime.

\
\
\

1 Introduction

For many applications in the Industrial Internet of Things (IIoT), it is essential
that network traffic meets deadlines. To achieve this goal, commonly, a
centralized scheduler collects information about the network topology and
the wireless links. With this global knowledge, representing a major advantage
over distributed solutions, the scheduler is able to compute optimal routes
and transmission schedules of end-to-end communication (traffic flows). In
IEEE 802.15.4, the scheduler assigns communication slots in the time and
frequency domain to nodes, i.e., it employs Time-Slotted Channel Hopping
(TSCH) @ However, due to wireless link dynamics, centralized schedulers
have to account for the risk of packet losses and, therefore, usually include
multiple retransmission slots for each link. These retransmission slots increase
latency and reduce the available bandwidth, thus, causing an increased radio
on-time.

Many recent centralized scheduling algorithms assume the availability
of interference-free channels or at least a static amount of interference
. These assumptions do not hold in many of today’s environments where
TEEE 802.15.4 IToT networks co-exist with an increasingly large number of
WiFi and Bluetooth networks. This coexistence results in large amounts of
interference and thereby limits the stability and reliability of those centralized
solutions.

In this paper, we introduce MASTER, a centralized scheduler designed for
TSCH. It combines the traditional steps of central scheduling and routing with
a novel transmission strategy which we call Sliding Windows. Our Sliding
Windows algorithm introduces the flexibility needed to accomplish long-term
schedule stability and communication reliability while meeting the latency
requirements of industrial applications. As a result, MASTER enables long-term
stable schedules and thereby eliminates the need for frequent rescheduling, a
key drawback of today’s central schedulers. Furthermore, we design MASTER

2. BACKGROUND 53

as an openﬂ and easily extendable platform to foster rapid experimentation
with central scheduling policies.

Our evaluation shows that MASTER with Sliding Windows outperforms
slot-based retransmission strategies of centralized schedulers. Moreover, it
outperforms the low-power autonomous scheduler Orchestra [8] in terms of
latency while achieving similar reliability and consuming not significantly more
energy, making it particularly suitable for low-power systems. Overall, this
paper makes the following contributions:

e We present MASTER, an open-source, centralized router and scheduler
for TSCH-based networks designed with easy extendability in mind.

e We design Sliding Windows, a transmission strategy for MASTER to
increase the flexibility, stability, and reliability of centrally scheduled
communications.

e We propose flow-based queues as an extension to TSCH to enable the
use of central scheduling algorithms.

e We implement MASTER as part of Contiki-NG and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules computed by MASTER in experiments of 24 hours. These
experiments result in highly reliable (>99.6%), low-latency (<4.5 slots)
communications.

The remainder of this paper is organized as follows. Section [2| gives the
necessary background information on TSCH as well as TSCH schedulers.
Section [3] introduces the design of MASTER, and Section [4] presents our testbed
evaluation. Section [f] reviews related work, followed by the conclusion in
Section

2 Background

This section gives an overview of relevant concepts on (A) Time-Slotted Channel
Hopping (TSCH), (B) the ETX metric, (C) scheduling, and (D) retransmis-
sions.

2.1 Time-Slotted Channel Hopping

Time-Slotted Channel Hopping (TSCH) is one of the MAC-layer protocols
defined in the IEEE 802.15.4¢ standard [6]. TSCH uses dedicated time- and
frequency-slots (TDMA and FDMA) for accessing the wireless medium. These
slots are standardized to a length of 10 ms, and each slot uses one out of
maximally 16 channels. TSCH continuously cycles through a hopping sequence
of all active channels. Thus, it is changing the channel every slot. Assigning
different frequencies to slots allows TSCH to increase the network’s resilience to
interference. Slots dedicated to control-information, so-called Enhanced Beacon
(EB) slots, provide broadcasts which support both network formation and time

I Available as open-source at: https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler

54 CHAPTER A. MASTER

—_
W
—

A"

channel offset
[\S)

1 A—B
ol BB E-c[coF[B>c|coD
0 1 2 3 4 5
timeslot

Figure A.2: Sample TSCH schedule. Slot 0 is a shared slot for
sending and receiving Enhanced Beacons (EB) while slots 1-4 are
unicast slots with one transmission per channel at a time. This simple
schedule contains two multi-hop communication flows, highlighted
in green and orange. The channel offset is added on top of the usual
hopping sequence.

synchronization, both essential for maintaining a schedule of synchronized
transmissions as in TSCH.

Multiple TSCH slots are grouped into slotframes, and multiple slotframes
form a TSCH schedule, see Figure Each node has a custom TSCH schedule
determining its behavior in each slot. Slots are either dedicated, shared, or
empty: In a dedicated slot, a node either transmits or receives. In shared
slots, nodes may broadcast or receive control information, such as Enhanced
Beacons. Such slots are not assigned to individual nodes and have multiple
nodes contending for transmissions. To limit collisions, these slots employ the
CSMA-CA back-off algorithm. If a slot is neither dedicated nor shared, it is
empty, and the radio remains off to save energy.

2.2 Link quality metric

Link quality metrics, such as the expected transmission count, ETX [48], repre-
sent the quality of a wireless link. ET X specifies the number of transmissions
expected to transmit a packet successfully over a wireless link. The ET X value
is the inverse of the packet reception rate (PRR) of a link (ETX = 1/PRR).

2.3 Scheduling

In the context of wireless communications, scheduling is the process of allocating
resources for communications to meet all requirements such as release-time
and deadline. Scheduling is an NP-hard problem, meaning, it is not optimally
solvable in polynomial time (cf. |10]). Therefore, different heuristics and
algorithms were developed to solve scheduling problems sufficiently well for
specific scenarios.

TSCH scheduling: TSCH does not specify how communications are sched-
uled. Therefore, scheduling TSCH communications can be performed in a
centralized, distributed, or autonomous manner. In the distributed case, sub-
sets of the network perform cooperative scheduling (cf. 6 TiISCH MSF [134]).
The autonomous case, used by the well-known TSCH scheduler Orchestra (8],
performs an autonomous mapping of links to resources. The centralized schedul-

3. DESIGN 55

(] [f2]s]4] [f2fs]s]s]ef7fs]

X TX | TX
RX| X RX|Rx|TXx|TX
A B D F =
RX [Tx |RX| TX X [X | RX | RX | TX | TX
e RX RX |RX
RX RX |RX
(a) Sample Topology (b) Baseline (c) A slot-based schedule with
with two intersecting schedule without one transmission and one re-
flows. retransmissions. transmission slot per hop.

2] s]afsfefr]s]ol]
x | x | x | 1x
RX |RXTX|RXTX|RXTX| TX

TX | TX
RXTX|RXTX]| TX | RX |RXTX|RXTX|RXTX| TX

(d) Sliding Windows schedule with one transmission slot per hop and
two (orange flow) or three (green flow) retransmission slots to be shared
among the nodes of a flow.

Figure A.3: Example: One flow originates at node A to end at node
F while the second one originates at node C and ends at node E.

ing approach provides us with global topology knowledge, and we can allocate
resources using established algorithms such as Dijkstra’s Shortest Path First
algorithm [49].

2.4 Retransmissions

As wireless communication links are unreliable, transmissions are never guar-
anteed to be received. To increase the reliability, schedulers commonly include
retransmission slots to retry a failed transmission. A common way of adding
retransmissions is the duplication of single slots. This slot-based approach
increases the reliability, by including multiple tries per hop. In this paper, we
introduce a new, flow-based transmission strategy to increase both performance
and flexibility, see Section

3 Design

In this section, we present the design of M ASTER, our transmission strategy
Sliding Windows, and the system architecture of MASTER.

3.1 Centralized Routing and Scheduling with Master

A fundamental building block of MASTER is its centralized scheduler. Its
design is a three-step process to build a long-term stable, low-latency, reliable

56 CHAPTER A. MASTER

communication schedule. This process is a sequential top-down approach of (1)
centralized routing, (2) applying a transmission strategy, and (3) scheduling.
The input to the process is (a) a set of traffic flows specified by source, des-
tination, periodicity, and deadline, as well as (b) the network topology with
long-term link reliability statistics. The application commonly provides the set
of flows, and we derive the network topology from long-term link measurements,

see Section [3.4.5]

3.1.1 Centralized Routing

Routing is the first step in MASTER and uses the previously specified flows and
network link-reliability as input. To perform the routing, MASTER constructs
a directed weighted graph using an ET X-based metric (ETX™, n € N, usually
n = 2), corresponding to the link reliability statistics. A higher ET X-power
favors a higher number of highly reliable links over a lower number of links
with lower reliability. Using this graph, we compute the shortest end-to-end
routes. As shortest path routing finds the optimal path for each flow, the flow
latency selected by the routing process stays minimal. The result of our routing
is an extended set of flows that consists of a source, a destination, and the
intermediate hops. In MASTER, we use Dijkstra’s algorithm for shortest-path
routing, but our modular design allows us to plug-in any routing algorithm
and metric.

3.1.2 Transmission Strategies

After computing the route for each flow, we employ a transmission strategy
to ensure reliable communication over unreliable wireless links. Thus, the
transmission strategy adds retransmission slots to each flow to handle failed
transmissions due to link dynamics and interference. The transmission strategy
extends each flow by a specific number of slots. In the case of highly reliable
links in an interference-free environment, we can employ a simple transmission
strategy of assigning only one slot per hop. In practice, however, we add
retransmission slots according to the expected link reliability of each hop. We
employ either a slot-based transmission strategy (see Section [2.4)) or our new
approach of a flow-based transmission strategy (see Section elow).

3.1.3 Scheduling

After applying one of the transmission strategies, we pass the modified flows
to the scheduler. The scheduler builds a communication schedule for all flows
considering their periodicity.

For our application scenarios and to be comparable to Orchestra, we employ
a non-deadline-based scheduling algorithm. It is especially suitable for best-
effort, periodic, deadline-free systems. The algorithm is Reverse Longest Path
First (R-LPF), our own flavor of the Shortest Path First (SPF) scheduling
algorithm. SPF is based on the process scheduling algorithm Shortest Job First
(SJF) [255). Contrary to starting with the shortest flow, our scheduler performs
backward scheduling, starting with the end of the longest flow. This modifica-
tion of the scheduling algorithm results, in our experience, in a lower number

3. DESIGN 57

of unused slots within a flow. A lower number of unused slots corresponds with
lower latency.

Figure shows a schedule for two flows generated using no retransmissions,
a slot-based retransmission strategy, as well as the transmission strategy of
Sliding Windows with a transmission number based on Equation and a
scaling factor of 1. To generate the schedule of Figure we assume the
ET X-value of each link to be between 1 and 2 (ET Xjini € |1, 2]).

Any scheduling algorithm, including deadline-based ones, can easily be
implemented in MASTER. For the remainder of this paper, we use R-LPF.

3.2 Master’s Flow-based transmission strategy

Our flow-based transmission strategy assigns a specific number of retransmis-
sions to a flow instead of using a per-hop basis, as done traditionally, see
Section 24l The flow-based retransmission slots allow the nodes of a flow to
share these slots and use them as needed along the path, see Figure As
a result, we can increase the communication reliability while potentially using
minimally more slots in the final schedule (see Node D in Figure and
Figure .

With this, we divert from the traditional scheme of two active nodes to
one with multiple active nodes: Traditionally, at a single time-slot, frequency,
and within a localized area, only one node transmits and another one receives.
Instead, we now have more than two nodes awake that either transmit or
receive. Our transmission strategy has the advantage of being adaptable to
network changes, e.g., due to interference. Thus, during the journey of a
packet, we can use the shared transmission slots in whichever part of the flow
interference impacts communication. This adaptability is traditionally possible
within distributed schedulers that can locally adapt to link changes. With
Sliding Windows, we now enable such flexibility in centralized ones.

3.2.1 Window Size

The maximal number of transmission slots (TX,.qz, later denoted as
#transmissions) in a flow and the hop-count of the flow determine the window
size which is calculated by

window_size = 2+ T X,,az — hops (A1)

This window size is the number of nodes maximally active in a slot of a
flow. Moreover, it matches the maximum number of active slots of a node for
a given flow. According to this relation, the window size is equal to the shared
number of slots of a node for transmission or reception (T X4, — hops) plus
its first and last slot allocated for reception and transmission, respectively.

In MASTER, we have two flow-based transmission policies: (1) fixed window
size and (2) metric-based window size. For the first policy, we use the same
window size for all flows independent of their length or link quality. For
the second one, our scheduler determines the window size and number of
transmissions depending on the flow’s or link’s ET X-values. The metric-based
window size allows us to account for both the number of hops and the reliability
of the individual links.

58 CHAPTER A. MASTER

Using the link’s ET X values, we can calculate the total number of trans-
missions of the flow with either

#Htransmissions = n [Z ETXiink], n€N (A.2)

or
#transmissions = n * Z[ETXlink], n €N, (A.3)

including a scaling factor n. This scaling factor regulates the conservativeness
of the scheduler. If we choose a scaling factor of 1 for Equation (A.3), the
number of transmissions is equal to the one using an ET X-based, slot-based
retransmission strategy (cf. Section . Equation uses the end-to-end
ET X-value of the flow, while Equation uses the ET X-values of the
individual links.

Throughout the remainder of this paper, we use the following naming
scheme to refer back to these equations:

SW— < Equation number > [— < scaling factor n >

SW denotes it as a Sliding Windows transmission strategy. The naming scheme
includes the scaling factor only if referring to a specific representation of the
strategy. When referring to the general strategy, it is not included.

Please note that for long flows, i.e., with many hops such a strategy could
lead to a large window, and thereby too many nodes being awake at the
same point in time. Too many active nodes lead to inefficiencies, and we
counterbalance it by splitting a flow into sub-flows once it exceeds a limit
N. The flow-based strategy is then applied to each sub-flow individually. In
MASTER, we use a threshold of NV = 10. Thus, for example, a flow of length 11
is split into two overlapping sub-flows of length 6.

3.2.2 Algorithm

In Algorithm [A71] we present the algorithm for applying a flow-based
transmission strategy. The algorithm takes as input a flow consisting of
multiple nodes, the network’s ETX graph, the strategy (SW-2 or SW-3), and
the scaling factor. The algorithm starts calculating the flow’s total ETX cost,
as well as the flow’s number of transmissions according to the given strategy
(SW-2 or SW-3) and the window size according to Equation (A.1]). From line
17 onward, the algorithm computes the active slots for each node of the flow
and inserts the nodes into the respective slots of the new flow. For example,
slot 6 of Figure would be represented in the new flow as a list containing
the elements A, B, D, F in this order.

3.2.3 Flow-based transmissions vs. Flow Centric Policy (FCP)

Recently, a paper by Brummet et al. [131] introduced a similar idea of moving
from link-based to flow-based transmissions.

The main difference between Brummet’s proposed Flow Centric Policy
(FCP) and our Sliding Windows strategy are the rules for determining the
optimal number of flow transmissions. FCP only defines fixed numbers of
retransmissions with a maximum of up to 4 retransmissions for a flow. Sliding

3. DESIGN 59

Algorithm A.1 Sliding Windows transmission strategy

Input: flow, graphgrx, strategy, scaling factor n

Output: flowpew (modified version of flow)

1: costiotar =0

2: for i = 0 to lengthfiow — 1 do

3 senderyop +— flowl[i]

4 receiveryop < flow(i + 1]

5 if strategy =7 SW — 2” then

6: COStiotal = COStiotal + grapherx [senderpop]receiveryop)
7 else if strategy =7 SW — 3” then

S costiotal = COStiotal + [graphprx[senderyopl(receiveryopl]

end if
10: end for
11: if strategy =" SW — 2” then
12: costiotal = [COStiotall
13: end if

14: #transmissions < n * costiotal

15: window_size <— 2 + #transmissions — lengthfiomw
16: flownew < list of #transmissions lists

17: for i = 0 to lengthfiow — 1 do

18: if ¢ = 0 then

19: slots + list [0 .. window_size — 1]

20: else if ¢ = (lengthyio.,, — 1) then

21: slots < list [i — 1.7 + window_size — 2]
22: else

23: slots + list [i — 1.. window_size — 1]
24: end if

25: for slot in slots do

26: extend flownew[slot] by flow][i]

27: end for

28: end for

29: return flownew

Windows, on the other hand, allows choosing the number of transmissions based
on a metric, in our case, the ET X metric. Moreover, Sliding Windows allows
a different number of transmissions for each flow in the same network due to
its use of the ET' X metric. Because Sliding Windows is based on link qualities,
we argue that it offers better adaptability to a network’s link characteristics
during the scheduling process.

3.3 Time Synchronization

Stable time synchronization is essential for TSCH networks. It ensures that
clocks do not drift apart, and nodes wake-up for transmissions and reception
within the guard times specified by TSCH. MASTER achieves this by building
a clock synchronization tree from the root as part of the scheduling process.
Similar to the routing of the flows, a minimal spanning tree with ETX as
metric and with the coordinator of the TSCH network as root is computed
using Dijkstra’s algorithm. This tree assigns each node a parent node for clock
synchronization.

3.4 System Design

Next, we detail on the system architecture of MASTER. It consists of both the
external scheduler and the routing layer on each node (see Figure|A.1)). Here
we put a particular focus on the integration with TSCH and Contiki-NG [256].

60 CHAPTER A. MASTER

0. 0
1
2

: >0

Figure A.4: Example of 2 flows sharing a common link between
nodes C and D.

3.4.1 Central Logic of Master

The central logic of MASTER consists of a centralized router and scheduler with
all the functionality described above. We implement MASTER in Python to en-
able easy extendability and rapid experimentation of new routing, transmission,
and scheduling strategies.

3.4.2 Schedule Distribution

For schedule distribution, MASTER can work together with most schedule
distributors (e.g., plexi [159]), as scheduling and distributing the schedule are
orthogonal. Moreover, it can also directly upload schedules via the serial port
for rapid experimentation.

3.4.3 Per node routing layer

The routing layer of MASTER has multiple functions: it performs neighbor
discovery (Section , implements the schedule, and adds a routing header
to the communication payload to be compliant with the lower layers as well
as relaying the packet to the next hop (Section . We place it in the
Contiki-NG network stack above TSCH, see Figure and implement it in C.

3.4.4 Contiki-NG/TSCH Extensions

To match the requirements of MASTER and its scheduling algorithm, we extend
the elements of TSCH and its implementation in Contiki-NG: (1) the packet
buffer implementation and (2) the TSCH queues.

In the packet buffer, we add fields to store the flow identifier and the time
to live of a transmission. With these two fields, the TSCH stack and MASTER
can map incoming packets to flows and thereby follow the global schedule
on each node. We extend the TSCH queue to enable a transmission order
differing from the reception order at a node, e.g., the forwarding of a packet to
a specific neighbor before forwarding an earlier received packet to the same
neighbor. To allow this behavior, we add flow-based queues, in addition to the
neighbor-based queues of TSCH. We realize the flow-based queues through the
use of virtual neighbors.

Figure illustrates why neighbor-based queues as used by Contiki-NG
cannot be practicably used by MASTER. If packet 2 is received by node C first,
but packet 1 has an earlier deadline, packet 1 will be stuck behind packet 2
until the first is transmitted to node D. With flow-based queues, packets 1 and

4. EVALUATION 61

2 will be added to different queues at C. Therefore, they are independent of
each other and packet 1 can be forwarded first.

This new queue design increases the schedulability of the presented scheduler,
which is crucial for deadline-dependent systems. It also decreases the latency
in networks that are not deadline-critical by reducing congestion at bottlenecks
of the network. Moreover, it allows us to use scheduling algorithms initially
developed for process scheduling, a domain without these congestion problems.

3.4.5 Neighbor Discovery and Bootstrapping

Before MASTER can build any schedule, it requires information about all links
between the nodes in the network. Thus, to bootstrap and collect topology
information with MASTER, we deploy a custom, topology agnostic schedule
only designed for neighbor discovery. In this schedule, we use one independent
transmission slot per node present in the network. This neighbor discovery
schedule is similar to the sender-based operation mode of the autonomous
scheduler Orchestra [8]. Each node sends a numbered broadcast in its active
slot and listens in all other slots for broadcasts of other nodes in its surroundings.

Please note that this schedule only serves for bootstrapping. After deploy-
ment of the actual transmission schedule, the task of probing neighbors becomes
part of the normal TSCH beaconing process. Nodes collect this information
for any potential later update of the schedule.

3.4.6 Header format

MASTER routes packets based on flows, and as a result, we add a custom
routing header. The routing layer of MASTER adds a 7-byte routing header to
each packet. This header contains a flow identifier (1 byte), a sequence number
(2 bytes), the time-to-live (TTL) (2 bytes), and the earliest TSCH transmission
slot (2 bytes). The header is necessary for nodes to know whether they are the
receiver of the packet or a forwarder. Moreover, the header specifies, where to
forward the packet to, and whether there is still time left for forwarding. In
practice, our header replaces the IPv6 header which we could use instead in a
system using the full IPv6 stack.

4 Evaluation

In this section, we evaluate the performance of MASTER and compare it
to the state-of-the-art. We begin by evaluating our newly proposed flow-
based scheduling policy and compare it to state-of-the-art scheduling policies,
including a baseline strategy without retransmissions (cf. TASA [11]) and a
slot-based transmission strategy (cf. AMUS [119]). Next, we compare MASTER
to Orchestra, the default autonomous scheduler in Contiki-NG, which also
builds on TSCH. Finally, we evaluate MASTER’s ability to compose long-term
stable schedules.

62 CHAPTER A. MASTER

PDR [%]

3 4 5 6 avg
Flow

(a) 500 m? testbed of 20 nodes at (b) Reliability of Master’s transmis-
Kiel University. Source nodes: or- sion strategies: baseline, slot-based,
ange hexagons; Sink nodes: green SW-2-1 and SW-3-1.

squares; Relay-only nodes: blue cir-

cles; Numbers: corresponding flow

10 100
7 8 80 [
° — L
Y 6 X 60
> o _.—J
c 4 o 40 —
g = =]
©
-4 2 20
0 o—
4 5 6 avg 0 2 4 6 8 10 12 14
Flow Latency [slots]

(c) Latency of Master’s transmis- (d) Combined latency and reliabil-
sion strategies: baseline, slot-based, ity CDF of Master’s transmission

SW-2-1 and SW-3-1. strategies.
100 10
B baseline
80 8 mm slot-based
—_ 9 - SW-2-1
s 60 ° 6 - SW-2-2
o v . SW-3-1
2 40 3 SW-3-2
4
> SW-3-3
20 a SW-3-3-D
2 I Orchestra
C() 25 50 75 100 125 150 B Orchestra-D
Latency [slots] 0

(e) Combined latency and reliabil- (f) Duty cycle of Master and Or-
ity CDF of Master’s transmission chestra.

strategy SW-3-3 and Orchestra at

nighttime and daytime.

Figure A.5: Evaluation of Master’s transmission strategies and
comparison to Orchestra. SW-3 outperforms all other strategies
reliability-wise and outperforms Orchestra latency-wise. We display

the legend of figures - in Figure

4. EVALUATION 63

4.1 Evaluation Setup

4.1.1 Testbed

We run on a 20 node testbed deployed in offices and student lab rooms, see
Figure It is located on the top most floor of a university building with
spanning an area of 500 m2. The testbed shares the wireless spectrum with
WiFi and Bluetooth communications outside of our control. Due to this, the
testbed is exposed to high levels of interference, especially during work hours.

4.1.2 Metrics, Comparison, and Duration

We evaluate our scheduler in terms of end-to-end reliability, end-to-end latency,
as well as network energy consumption. We measure these metrics for different
centralized scheduling approaches with and without retransmissions. Moreover,
we compare our scheduler with the autonomous scheduler Orchestra [8]. These
comparisons are based on 2-hour experiments for each strategy, except for the
long-term stability evaluation in Section which has a duration of 24-hours
per experiment.

4.1.3 Implementation

We implement MASTER for Contiki-NG [256]. We target the Zoul Firefly
platform, featuring a 32 MHz 32-bit CC2538 Cortex-M3 CPU, 32 KB of RAM,
512 KB of flash, with an IEEE 802.15.4 compatible radio.

4.1.4 Channels

Due to the high levels of interference, we use only the four channels (15, 20,
25, and 26), defined in the standard four-channel TSCH hopping sequence.
Furthermore, Orchestra uses by default only these four channels as well.

4.1.5 Application Payload and Overhead

For all experiments, we include a 64-byte randomly generated data payload,
a medium packet size supported by TSCH. In addition to this data payload,
MASTER adds its 7-byte routing header independent of the specific scheduling
policy. Orchestra, on the other hand, uses the IPv6 headers and requires
additional network layer control traffic.

4.1.6 Notations

Throughout the evaluation, we use the following naming scheme: The baseline
strategy without retransmissions we call baseline, and the slot-based retrans-
mission strategy (as used by many state-of-art schedulers) with [ET Xk]
transmissions per link we label slot-based. The Sliding Windows strategies use
the naming scheme we present in Section Experiments performed during
daytime are extended by the marker -D.

64 CHAPTER A. MASTER

4.2 Baselines

We compare MASTER’s Sliding Windows policies to three other scheduling poli-
cies. These are MASTER’s baseline strategy without retransmissions, MASTER’s
slot-based retransmission strategy, and the autonomous scheduler Orchestra [§].
The design of the baseline strategy is based on the transmission policy used
in, e.g., TASA [11], and uses one distinct slot per hop. The slot-based strat-
egy is inspired by policies presented in several recent publications, including
AMUS [119]. Contrary to most of these, our design performs all possible
retransmissions of a hop before proceeding to the next hop, which favors high
reliability over low latency contrary to AMUS’s approach. Moreover, to be
in line with our Sliding Windows strategies, MASTER’s slot-based strategy
uses an ET X-based number of retransmissions per link ([ET Xj;,1]). Lastly,
we use Orchestra to compare our centralized routing and scheduling solution
to distributedly routed and autonomously scheduled solutions to verify the
adaptability of MASTER to dynamic environments predestined for distributed
policies.

4.3 Performance of Master’s transmission strategies

We first evaluate the performance of different transmission strategies supported
by our scheduler. We compare the Sliding Windows transmission strategy
with a baseline strategy without retransmissions and with the traditional slot-
based retransmission strategy mentioned above. We run experiments with
six scheduled flows, a number of flows used at a recent EWSN dependability
competition [257]. The flows have a length of 2 to 4 hops each. Each flow has a
sole source and destination node. Each source node generates a packet roughly
every second with a configured time to live of one second. The length of the
communication slotframes of 1 second corresponds roughly with 101 slots.

Figure shows the reliability of transmission approaches scheduled with
MASTER. The transmission approaches include the baseline and slot-based
strategy, as well as Sliding Windows transmission strategies SW-2-1 and SW-
3-1; see Section for notations. The latter of the two Sliding Windows
strategies has the same number of transmissions per flow as the slot-based
strategy.

All strategies with retransmissions clearly outperform the baseline without
retransmissions, which shows the presence of interference in the used channels.
The slot-based strategy reaches an average reliability of 92.7% whereas the
Sliding Windows strategies reach average reliabilities of 89.3% and 98.9%,
respectively. The SW-2-1 strategy has for all flows lower reliability than the
slot-based strategy, but the number of scheduled slots per flow is only by one
larger than the baseline number of slots, see Table The SW-3-1 strategy
outperforms all other strategies while using no more slots per flow than the
slot-based strategy. Its least reliable flow achieves a packet delivery rate (PDR)
of 98.1% while the slot-based strategy drops as low as 82.2%.

We can model this superiority of SW-3-1 over SW-2-1 and over the other
strategies mathematically using the probability mass function of the binomial
distribution [25§]:

PX = k) = (Z)ﬂf(l pk (A1)

4. EVALUATION 65

Table A.1: Summary of the results plotted in Figure Maximum
latency (slots) for each flow and for flow 4 maximum number slots
active in parentheses.

Flow | Baseline | Slot-Based | SW-2-1 | SW-3-1
1 2 4 3 4
2 3 6 4 6
3 3 6 4 6
4 5 (3) 10 (6) 7 (4) 12 (6)
5 4 8 5 8
6 4 8 5 8

This probabilistic model also explains the lower reliability of SW-2-1 compared
to the slot-based strategy.

As an example, we consider a flow of three hops (n = 3), e.g., the green flow
in Figure with the same ETX value for each link of 1.2 (p = %) Thus, the
number of transmissions for SW-2-1 and SW-3-1 are 4 and 6 slots, respectively.
The expected PDRs for SW-2-1 and SW-3-1 are P(X = 3)+ P(X = 4) =~ 0.868
and P(X =3)+ P(X =4)+ P(X =5)+ P(X = 6) = 0.991, respectively.
Likewise, the expected PDR for the baseline, is P(X = 3) ~ 0.579. The
slot-based strategy can be seen as 3 independent, subsequent chains of two
binomial trials each (n = 2,k > 1). This results in an expected PDR of
(P(X =1)+ P(X = 2))3 = 0.919. These mathematical results confirm the
trend we see in Figure

Latency-wise, both Sliding Windows strategies perform much better than
the slot-based strategy. Moreover, their latency is minimally higher than the
latency of a strategy without retransmissions (see Figure , which, in turn,
has a high packet loss rate. It appears that SW-3-1 has a lower latency for
flow 4 than the baseline. Contrary to all other flows, flow 4’s schedule contains
more slots than active slots throughout all strategies. Due to the flow-based
approach of SW-3-1 and a large enough number of continuous active slots at
the beginning of the schedule, most packets were received within a few slots,
leading to a latency lower than the baseline’s one. Table shows that the
maximal number of active slots is still smaller for the baseline strategy.

Figure visualizes the latency and reliability of a wider range of trans-
mission strategies. Solid lines represent the baseline, the slot-based, the SW-2-2,
and the SW-3-3 strategies. For the Sliding Windows strategies SW-2-1 and
SW-3-1, the figure uses dashed lines, and for the SW-3-2 strategy, it uses
a dotted line. The figure shows that the slot-based strategy is the worst
latency-wise. The SW-3 Sliding Windows strategies are superior to the other
Sliding Windows strategies (SW-2). The superior strategies with a scaling
factor of 2 and 3, both perform well. The strategy with the higher scaling
factor reaches the maximal possible reliability. Therefore, we use the Sliding
Windows strategy SW-3-3 for the following comparison to Orchestra.

The duty-cycle evaluation in Figure shows a higher radio on-time for a
higher number of scheduled slots. SW-3-3 has a radio on-time of up to 11.95%
for a node with a lot of traffic.

66 CHAPTER A. MASTER

100

90

PDR [%]
~

o~ N W A~ UO

Latency [slots]

SW-3-1 SW-3-2 SW-3-3

23 2 5 8 11 14 17 20
Time of day [hours]

Figure A.6: Reliability and latency evaluation of Sliding Windows
according to Equation for all 3 scaling factors. Each value
corresponds with the hour, that started at the given time. Note,
that the y-axis of the PDR plot does not begin at zero.

4.4 Master vs. Orchestra

We now evaluate the performance of MASTER in comparison to Orchestra, the
default, autonomous scheduler of TSCH in Contiki-NG. We use Orchestra as
is, with a receiver-based schedule of length 7 in non-storing mode. We schedule
the same six flows used before. As transmission strategy for MASTER, we
use the one with the highest reliability of those presented above (SW-3-3).
To provide detailed information on the performance, we present runs of both
MASTER and Orchestra during nighttime as well as during office hours in the
daytime. Figure shows the latency and reliability of the four experiments.
MASTER’s latency is drastically shorter than the latency of Orchestra with
a mean latency of 3.9 and 4.2 slots compared to 25.9 and 40.9 slots during
nighttime and daytime, respectively, while reaching similar reliability. The
four rightmost columns in Figure show the duty cycle for the experiments
included in this section of the evaluation. Orchestra has on average a two
percentage points lower duty cycle than MASTER (3.52% vs. 5.55%) and the
maximum duty cycle of a node of four percentage points lower (7.73% vs.
11.95%). As each node in Orchestra is only able to use every seventh slot, the
possible duty cycle is automatically lower than the one for MASTER. However,
this lower duty cycle results in much higher latency, as presented above.

4.5 Long-term stability of Master

In the last part of our evaluation, we investigate MASTER’s long-term stability.
In Figure we present the reliability and latency of the SW-3 Sliding
Windows strategies for 24 hours (Day 1, 21:00 - Day 2, 21:00) during workdays.
During the night and the early morning, both SW-3-2 and SW-3-3 reach a
PDR of above 99.99% and an average latency of around 3.5 slots. Between
14:00 and 15:00, the reliability drops for all strategies to 95%, 93.2%, and
80.3%, respectively, under a slight latency increase. During this time, a group
of students entered the lab, leading to a drastic increase in WiFi and BLE

5. RELATED WORK 67

traffic and thereby an interference level increase. Another reliability drop,
mainly for SW-3-1, is visible at the end of the working day. Over the whole
period of 24 hours, the average reliability of SW-3-1, SW-3-2, and SW-3-3 is
99.6%, 99.2%, and 92.5%, respectively. The high average reliability, as well
as the reliability recovery after times of high interference, validates M ASTER’s
long-term stability.

5 Related Work

We first discuss centralized schedulers and algorithms, followed by a discussion
of autonomous scheduling solutions.

After the introduction of TSCH, TASA [11] was one of the first central
scheduling algorithms proposed. It is traffic aware, yet like other papers fo-
cusing on scheduling algorithms like C-LLF [10], it assumes the availability
of interference-free channels and, therefore, does not include retransmissions.
Saifullah et al. [L0] and Gunatilaka et al. [16] focus in their work on the highest
possible schedulability for a large amount of communications meeting deadlines
but not much on the network reliability. AMUS [119] is one of the protocols
for TSCH that includes slot-based retransmissions. It schedules additional
resources for vulnerable links and allocates backup slots in empty cells of the
scheduler. Rugamba et al. [125] build another centralized scheduler based
on a path collision-aware least-laxity first scheduling algorithm by Darbandi
et al. [124]. Moreover, Rugamba et al. describe a method of distributing a
centrally computed schedule. The first approach of moving from slot-based
retransmissions to flow-based ones is the flow-centric policy (FCP) [131]. The
authors present a dynamic approach of retransmissions not fixed to specific
links. This approach is similar to the transmission strategy of Sliding Win-
dows presented in this paper. We discuss the differences between the two in
Section 3.2.3

Besides the advances regarding scheduling, Wu et al. [52] present advances
in the field of centralized routing in combination with central scheduling. The
authors present a conflict aware real-time routing approach, that is aware of
scheduling decisions and the possible conflicts of routed paths. Li et al. [51]
take a different, asymmetric approach in routing by applying different routing
strategies for different communications in one network.

Related to these central scheduling and routing approaches, are systems
focusing on network softwarization. plexi [159] is a framework exposing TSCH
network resources through a web interface and allowing the rescheduling of
communications. Similarly, Baddeley et al. [161] and Galluccio et al. [160]
present SDN solutions for Wireless Sensor Networks for network monitoring
and reconfiguration. These SDN solutions are conceptually in line with central
schedulers calculating schedules externally. Moreover, a combination of our
work with SDN solutions is imaginable.

Next to the centralized approaches, a significant focus of recent work is
on autonomous scheduling, a concept introduced by Orchestra [§]. Orchestra,
as well as Alice [148] and DiGS [259] are autonomous solutions for TSCH,
as they do not require neither any central infrastructure nor the exchange of
data to build a schedule and achieve high reliabilities of 99.999%. However,

68 CHAPTER A. MASTER

autonomous schedulers are not able to achieve this reliability with latency
guarantees necessary for many industrial applications as they have no knowledge
on the underlying topology.

6 Conclusion

This paper introduces MASTER, a central scheduling solution for TSCH net-
works. MASTER introduces a novel Sliding Windows transmission strategy
and achieves high reliability independent of knowing the optimal amount of
retransmissions per link. Instead, it schedules a number of retransmissions
for a flow that can be used at all links of a flow where necessary. The key
idea is enabling centralized schedulers to adapt to interference changes without
the need for rescheduling while keeping the lowest possible latency. Thus,
eliminating a significant overhead of traditional central schedulers.

We implement MASTER in Contiki-NG and evaluate it extensively on
a testbed in an environment susceptible to interference. We demonstrate
MASTER’s practicality and ability to keep stability for over 24 hours and achieve
latencies much smaller than Orchestra while achieving similar reliability.

As part of future work, we plan to investigate the challenges of neighbor
data collection and schedule distribution to provide a comprehensive central
scheduling solution. Moreover, we are planning to evaluate the use of centralized
schedulers in harsh wireless environments, such as the ones used in the EWSN
dependability competitions [257].

Opportunistic Routing and Synchronous Transmissions
Meet TSCH

Laura Harms, Olaf Landsiedel

Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN),
2021, pp. 107-114.

69

Abstract

Low-power wireless networking commonly uses either Time-Slotted Channel
Hopping (TSCH), synchronous transmissions, or opportunistic routing. All
three of these different, orthogonal approaches strive for efficient and reliable
communication but follow different trajectories. With this paper, we combine
these concepts into one protocol: AUTOBAHN.

AUTOBAHN merges TSCH scheduling with opportunistically routed, syn-
chronous transmissions. This opens the possibility to create long-term stable
schedules overcoming local interference. We prove the stability of schedules over
several days in our experimental evaluation. Moreover, AUTOBAHN outperforms
the autonomous scheduler Orchestra under interference in terms of reliability
by 13.9 percentage points and in terms of latency by a factor of 9 under a
minor duty cycle increase of 2.1 percentage points.

70 CHAPTER B. AUTOBAHN

1 Introduction

Within the past 20 years, research on low-power wireless networking resulted in
a multitude of different protocols. They fall into three prominent fields: Time-
Slotted Channel Hopping (TSCH), opportunistic routing, and synchronous
transmissions. So far, all three of these fields have little to no overlap, while
all strive for a common goal of stable, reliable communication in low-power
wireless networks.

In the first field of protocols, the IEEE 802.15.4 Time-Slotted Channel
Hopping (TSCH) [6] MAC layer protocol forms the basis for many routed
communication protocols. This protocol is standardized and dominates the
industry. One category of TSCH protocols uses centralized schedulers, sepa-
rating the network communication from the routing and scheduling. In recent
works [131,/240], centralized schedulers show high reliability and stability. An-
other category are autonomous schedulers with Orchestra [8] as a prominent
example.

TSCH protocols offer stability regarding narrow-band interference. However,
long-term stable schedules that are immune to wide-band interference are an
open challenge. Wide-band interference likely leads to link failures or even
node failures heavily affecting routed communication.

The other two fields can overcome these challenges. Opportunistic routing
[171}/174L[175] utilizes anycasts instead of unicasts to add forwarding flexibility
by addressing a packet to multiple potential forwarders. It increases the
possibility of successful reception in the presence of wireless link dynamics.
Protocols building upon synchronous transmissions [9}/59,/65] allow multiple
nodes to transmit packets concurrently, commonly by network-wide flooding.

Synchronous transmissions achieve high reliability even in the presence
of wide-band interference. However, they have an impact on all nodes in a
network. If, for example, in a 1000 node network, two nodes two-hops apart
want to communicate, the whole network is involved. In a routed network, only
a fraction of these nodes needs to communicate.

In this paper, we ask the following question: Can we combine the benefits
of opportunistic routing, synchronous transmissions and centralized TSCH
scheduling? For this, we introduce AUTOBAHN: a hybrid routing scheme that
combines the best of these worlds: centrally scheduled flows and one-to-one
routing of packets as in traditional networking combined with the reliability
and robustness of opportunistic routing and synchronous transmissions.

The basic concept of AUTOBAHN is as follows: Its central scheduler schedules
a flow along a wider path and allows neighboring nodes to transmit concurrently
the same data at the same timeslot and frequency. Thus, a node forwards a
packet opportunistically to multiple neighboring nodes, which in turn, in the
next slot, concurrently forward opportunistically to their neighbors. In our
evaluation, we show that by combining these three approaches, AUTOBAHN
efficiently provides reliable, low-latency packet delivery even when links fail, and
its schedules are stable for days even in the presence of dynamic interference.

Overall, this paper makes the following contributions:

e We are the first to combine the concepts of opportunistic routing, syn-
chronous transmissions, Time-Slotted Channel Hopping (TSCH) into a

2. BACKGROUND & RELATED WORK 71

single protocol to achieve long-term stable routed communication.

e We design AUTOBAHN, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference.

e We implement AUTOBAHN for Contiki-NG [256] and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules using AUTOBAHN over 12 days and under various interfer-
ence levels for 25 hours. These experiments achieve reliability under
interference of 96.8% and latency of 4.2 slots outperforming both the
central scheduler MASTER [240] and the autonomous TSCH scheduler
Orchestra [g].

The remainder of this paper is organized as follows. Section [2] gives the
necessary background information and reviews related work on TSCH as well as
the concepts combined in AUTOBAHN. In Section [3] we introduce the design of
AuTOBAHN. In Section [we evaluate AUTOBAHN’s performance experimentally,
followed by the conclusion in Section

2 Background & Related Work

In this section, we introduce the necessary background on TSCH, opportunistic
routing, and concurrent transmissions and discuss the relevant related work.

2.1 Time-Slotted Channel Hopping (TSCH)

The MAC protocol Time-Slotted Channel Hopping (TSCH) (6] is a combined
TDMA and FDMA MAC protocol. It uses 10 ms long time slots with up to
16 frequency channels at each time slot. All active channels follow a pseudo-
random hopping sequence that is cycled through, using a different channel at
each timeslot to counteract narrow-band interference.

TSCH groups communication slots in continuously repeated slot-frames. All
slot-frames together form the TSCH schedule. A TSCH schedule is generated
by a centralized, autonomous, or distributed scheduler.

Centralized Scheduling: Central schedulers use global knowledge about
the network topology (esp. wireless link quality) to build a schedule and
disseminate the schedule into the network. Many early ones, such as TASA [11]
and others [10}/16], assume interference-free wireless channels without lossy links
and, therefore, do not include retransmissions in their schedules. Later work
focuses on increasing reliability in the presence of fading channels while ensuring
end-to-end latency requirements of each flow. They achieve this by adding
retransmissions, i.e., slot-based retransmissions, as used by AMUS [119], to the
schedule. As interference can rarely be linked to a specific location beforehand,
some recent works by Brummet et al. [131], and MASTER [240] introduce a new
approach to retransmissions in TSCH scheduling: they introduce flow-based
retransmissions achieving lower latency and a higher degree of adaptability to
local interference level.

Autonomous/Distributed Scheduling: Next to these centralized TSCH
protocols, a significant amount of work concentrates on autonomous schedul-
ing, a concept introduced by Orchestra [8] and extended by others [148][259].

72 CHAPTER B. AUTOBAHN

Distributed scheduling on the other hand builds on 6TiSCH with its default
scheduling function MSF [134], as well as, LLSF [135] and LDSF [136], focusing
on improving latency in distributed TSCH.

Multipath TSCH: For multi-path communication in TSCH, several al-
gorithms [166}/168] were studied for distributed and centralized scheduling
scenarios. To some extent, these works propose similar ideas as AUTOBAHN,
yvet they clearly stay within the specifications of TSCH and do not apply
opportunistic routing or synchronous transmissions. Moreover, their evaluation
results are solely based on simulation.

2.2 Opportunistic Routing

Opportunistic routing is a routing approach to improve network throughput,
communication reliability and efficiency in wireless multi-hop mesh networks.
Instead of performing unicast communication as established TSCH schedulers
do, opportunistic routing builds upon anycasts. By this, opportunistic routing
sends each packet to a set of receivers. If any of them receives the packet,
the transmission is successful. As multiple receivers might receive the packet,
opportunistic routing has to overcome the challenge of selecting a unique
forwarder. This forwarder selection has to wait until after the transmission
[171H173).

While initial works do not use duty-cycled, low-power wireless networking,
later works such as as ORW [174] and ORPL [175] bring opportunistic routing to
these. Nonetheless, these protocols are not built for TSCH. Huynh et al. [180],
Hermeto et al. [181], and Hosni et al. [182] study the use of opportunistic
routing or anycasts in TSCH and propose changes to TSCH to allow non-
colliding acknowledgments from multiple receivers. BOOST [183] introduces
forwarder selection through sending delays with carrier sense in TSCH. In
contrast to these approaches, AUTOBAHN does not use any preferred forwarder
selection method. Instead, we overcome this challenge by using synchronous
transmissions.

2.3 Synchronous Transmissions

Synchronous transmission protocols allow multiple nodes to transmit packets
simultaneously. With precise timing, these packets do not collide destructively,
allowing protocols to achieve high communication reliability [9L[65]. As a result,
protocols employing synchronous transmissions do not maintain routes by
selecting parent nodes, announcing routing metrics, discovering neighbors, and
maintaining routing tables as traditional routing protocols.

For receiving such a packet, the senders must not significantly differ in
timing. One common option of receiving synchronous transmissions is the
so-called Capture Effect [57]. According to the capture effect in IEEE 802.15.4,
a stronger signal must not arrive later than 160us after the first signal [59].
When sending the same data, non-destructive interference is achievable if the
time offset between multiple senders is within a bound of 0.5us [9).

Synchronous transmissions are well studied. Glossy [9] laid the foundation
for synchronous transmissions in wireless sensor networks. Since Glossy’s
introduction, many protocols including Chaos [59] and LWB [65] followed.

2. BACKGROUND & RELATED WORK 73

112|314
Q X | TX

(a) Established central scheduling approaches employ a single routing path.
Their schedule will fail if one of the links fails, such as the link between
nodes A and B in this example.

m|O|O|w (>

11234
A | TX | TX
B
C | RX [TXRX TX
D
E RX| RX

(b) Autobahn utilizes multi-path routing and thereby provides redundant
options in case routes fail. In this example, packets can travel via node C
to destination E.

Figure B.1: Autobahn compared to established centralized TSCH
scheduling approaches. In this example, we assume a topology of five
nodes, with node A as source and node E as destination. We show
both the scheduled paths and the TSCH schedule, using RX, RXTX,
and TX slots as typical for flow-based retransmission schemes (with a
retransmission window of two). Grayed-out slots present slots where
reception and transmission are not possible due to previously failed
interfered receptions.

They all are protocols that use network-wide flooding without a concept of
routing. Protocols like WSNShape/Sparkle [67], CXF'S [68] and LaneFlood [69]
divert from network-wide flooding and use flooding with some notion of