
Thesis for The Degree of Doctor of Philosophy

Adaptive and Resource-Efficient Systems
for the Internet of Things

Protocols, Systems, and Evaluation Infrastructures

Laura Harms

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2024

Adaptive and Resource-Efficient Systems for the Internet
of Things
Protocols, Systems, and Evaluation Infrastructures

Laura Harms

Copyright © 2024 Laura Harms
All rights reserved.

ISBN 978-91-8103-027-3
Doktorsavhandlingar vid Chalmers Tekniska Högskola
Ny serie nr 5485
ISSN 0346-718X

Department of Computer Science & Engineering
Division of Computer and Network Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Phone: +46 (0)31 772 1000

This thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2024.

ii

In loving memory of my sister Julia.
Thank you for all the time we had together.

iv

Adaptive and Resource-Efficient Systems for the Internet
of Things
Protocols, Systems, and Evaluation Infrastructures

Laura Harms

Department of Computer Science & Engineering
Chalmers University of Technology

Abstract

With the growing number of Internet of Things (IoT) devices and the emergence
of the Industrial Internet of Things (IIoT), there is a growing demand for
adaptive and resource-efficient wireless communication protocols and systems.
Industrial networks play a crucial role in monitoring pipelines and facilitating
communication among collaborating devices, such as robots in a smart factory.
These applications are safety-critical and necessitate long-term reliable and
low-latency communication. However, the rising number of IoT communicating
devices and deployments increasingly congests the wireless medium, which
leads to interference and makes the latency and reliability requirements more
challenging to accomplish. Current solutions and protocols are incapable
of addressing these evolving demands. Therefore, there is a need for novel
communication protocols and systems capable of dynamically adapting to
unforeseen interference and changes in the wireless medium.

In this thesis, we design, implement, and evaluate protocols, systems, and
evaluation infrastructures tailored for modern IoT solutions. To facilitate
long-term stable communication within centrally scheduled IEEE 802.15.4
Time-Slotted Channel Hopping (TSCH) networks, we propose a centralized
scheduler and a flow-based retransmission strategy. This strategy allocates
retransmissions to be utilized at any node within a communication flow, thereby
enhancing resilience against unforeseen interference. We then introduce Au-
tobahn, a communication protocol that integrates opportunistic routing and
synchronous transmissions with TSCH to mitigate local wideband interfer-
ence while keeping latency to a minimum. With TBLE, we bring TSCH to
Bluetooth Low Energy (BLE), further reducing latency without compromising
reliability. To provide comprehensive insights into distributed wireless commu-
nication protocols on testbeds, we propose Grace, a low-cost time-synchronized
General-Purpose Input/Output (GPIO) tracing system for existing testbeds.
Finally, we demonstrate with BlueSeer that a device can recognize its environ-
ment—such as home, office, restaurant, or street—solely from received ambient
BLE signals using an embedded machine learning model. BlueSeer enables
small IoT devices like wireless headphones to adapt their behaviors to the
surrounding environment.

Keywords

Internet of Things, IoT, Industrial Internet of Things, IIoT, Time-Slotted
Channel Hopping, TSCH, Centralized Scheduling, Routing, Opportunistic
Routing, Synchronous Transmissions, Time-Synchronization, Bluetooth Low
Energy, BLE, IEEE 802.15.4, TinyML

Acknowledgment

After 6.5 years, my journey towards obtaining a PhD is drawing to a close.
Throughout this time, I have had the privilege of meeting many remarkable peo-
ple, and I wish to express my heartfelt gratitude to each of you for transforming
this journey into an enriching experience.

Foremost, I extend my deepest thanks to my supervisor, Olaf Landsiedel,
for embarking on this journey with me and providing unwavering support
throughout these years. Your mentoring has been invaluable in helping me
grow as a researcher. I really appreciate how you have always been there to
answer my questions and give me feedback, even when you had plenty of other
things going on. I’m also grateful to my co-supervisor, Magnus Almgren, for
keeping the link to Chalmers alive, even after my relocation to Kiel.

I am grateful to my colleagues and fellow PhD students at Chalmers for
providing a pleasant work environment and for the wonderful fika breaks we
had. To Dimitris, Christos, Georgia, Beshr, Babis, Bastian, Thomas, Karl,
Hannah, Carlo, Francisco, Aljoscha, Fazeleh, and Romaric, I extend my sincere
appreciation. Additionally, I express gratitude to Tomas, Monica, Rebecca,
Clara, and Marianne, without whom working and doing a PhD at Chalmers
would not have been possible. Furthermore, I extend thanks to my examiner,
Gerardo Schneider, for his support in facilitating my PhD continuation at
Chalmers while residing in Germany.

In Kiel, I extend my gratitude to Valentin, my companion from the outset
of my PhD journey at Chalmers, who, alongside me, followed Olaf to Kiel.
Thank you for the countless discussions we had when sharing an office, for
the collaboration, as well as our joint travels around the globe. I extend my
thanks to Patrick and Janek for being excellent office mates, Christian for our
collaboration and technical discussions, and Steffi, Gerd, and Brigitte, along
with my fellow PhD students Birkan, Naina, Tayyaba, Marc, Momin, Kainat,
Julia, and Ali, for their contributions to a great and friendly work environment.

I am grateful to Ambuj for igniting my passion for research during my
master’s thesis, as without your inspiration, the prospect of pursuing a PhD
may never have crossed my mind.

Lastly, I offer a heartfelt thank you to my parents, Agnes and Rainer, my
sisters Melanie and Julia, and my best friend Marcel, for always being there
for me, no matter how far apart we are. Danke!

Laura Harms
Kiel, March 2024

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] L. Harms, O. Landsiedel
“Master: Long-Term Stable Routing and Scheduling in Low-Power Wire-
less Networks”
Proceedings of the 16th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), pp. 86-94, 2020.

[B] L. Harms, O. Landsiedel
“Opportunistic Routing and Synchronous Transmissions Meet TSCH”
Proceedings of the 46th IEEE Conference on Local Computer Networks
(LCN), pp. 107–114, 2021.

[C] V. Poirot, L. Harms, H. Martens, O. Landsiedel
“BlueSeer: AI-Driven Environment Detection via BLE Scans”
Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pp. 871–876, 2022.
This paper was nominated as a candidate for the best paper award.

[D] L. Harms, C. Richter, O. Landsiedel
“Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds”
Elsevier Computer Networks, vol. 228, p. 109746, 2023.
The above is an extended version of the work that previously appeared
in:
L. Harms, C. Richter, O. Landsiedel
“Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds”
Proceedings of the 18th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), pp. 9–16, 2022.
This paper won the best paper award.

[E] L. Harms, O. Landsiedel
“TSCH meets BLE: Routed Mesh Communication over BLE”
Proceedings of the 19th International Conference on Distributed Com-
puting in Smart Systems and the Internet of Things (DCOSS-IoT), pp.
187–195, 2023.

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] A. Varshney, L. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans, T.
Voigt
“LoRea: A Backscatter Architecture That Achieves a Long Communication
Range”
Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems (SenSys), pp. 1–14, 2017.

[b] L. Harms
“C-TSCH: A Centralized Scheduler for TSCH”
Proceedings of the International Conference on Embedded Wireless Sys-
tems and Networks (EWSN), pp. 314–315, 2019.
Poster Abstract

[c] L. Harms, O. Landsiedel
“Competition: Centrally Scheduled Low-Power Wireless Networking for
Dependable Data Collection”
Proceedings of the International Conference on Embedded Wireless Sys-
tems and Networks (EWSN), pp. 300–301, 2019.
Poster Abstract

[d] L. Harms, O. Landsiedel
“(POSTER) Overtake: Opportunistic Routing and Concurrent Trans-
missions for TSCH”
Proceedings of the 16th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), pp. 141–143, 2020.

[e] L. Harms
“BLE-Based and AI-Driven Environment Detection”
KuVS - AI in Networking Summer School, 2 pages, 2022.

[f] L. Harms, O. Landsiedel
“TBLE: Time-Synchronized Routed Mesh Communication for BLE”
Proceedings of the 20th GI/ITG KuVS Fachgespräch Sensornetze (FGSN
2023), pp. 5–6, 2024.

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Thesis Overview 1
1 Introduction . 1
2 Motivation and Goals . 2
3 Background . 6

3.1 Low-Power Wireless Communication 6
3.2 IEEE 802.15.4 . 8
3.3 Bluetooth Low Energy (BLE) 10
3.4 Time-Slotted Channel Hopping (TSCH) 13
3.5 Concurrent Transmissions 17
3.6 Time Synchronization 18
3.7 Evaluation of Low-Power Wireless Networks 20
3.8 Embedded Intelligence and Tiny Machine Learning . . . 21

4 Related Work . 22
4.1 Scheduling TSCH . 23
4.2 Overcoming Interference in TSCH 26
4.3 TSCH and BLE . 28
4.4 Time-Synchronized Testing and Evaluation 29
4.5 Wireless Localization & Sensing 30

5 Research Questions . 33
6 Thesis Contributions . 34

6.1 Chapter A – Master: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks 34

6.2 Chapter B – Opportunistic Routing and Synchronous
Transmissions Meet TSCH 38

6.3 Chapter C – BlueSeer: AI-Driven Environment Detection
via BLE Scans . 41

6.4 Chapter D – Grace: Low-Cost Time-Synchronized GPIO
Tracing for IoT Testbeds 43

6.5 Chapter E – TSCH meets BLE: Routed Mesh Communi-
cation over BLE . 46

7 Conclusion and Emerging Directions 48

xi

xii CONTENTS

A Master: Long-Term Stable Routing and Scheduling in Low-
Power Wireless Networks 51

1 Introduction . 52

2 Background . 53

2.1 Time-Slotted Channel Hopping 53

2.2 Link quality metric . 54

2.3 Scheduling . 54

2.4 Retransmissions . 55

3 Design . 55

3.1 Centralized Routing and Scheduling with Master . . . 55

3.2 Master’s Flow-based transmission strategy 57

3.3 Time Synchronization 59

3.4 System Design . 59

4 Evaluation . 61

4.1 Evaluation Setup . 63

4.2 Baselines . 64

4.3 Performance of Master’s transmission strategies 64

4.4 Master vs. Orchestra 66

4.5 Long-term stability of Master 66

5 Related Work . 67

6 Conclusion . 68

B Opportunistic Routing and Synchronous Transmissions Meet
TSCH 69

1 Introduction . 70

2 Background & Related Work 71

2.1 Time-Slotted Channel Hopping (TSCH) 71

2.2 Opportunistic Routing 72

2.3 Synchronous Transmissions 72

3 Design . 74

3.1 Autobahn: General Idea 74

3.2 Routing Set . 74

3.3 Anycast forwarding in Autobahn 75

3.4 Active slots in Autobahn 76

3.5 System Integration . 76

3.6 Integration in Master’s routing layer 77

4 Evaluation . 77

4.1 Evaluation Setup . 77

4.2 Baselines . 79

4.3 Possibility of Synchronous Transmissions in TSCH . . . 79

4.4 Performance without Interference 80

4.5 Performance under Interference 81

4.6 Autobahn vs. Orchestra 83

4.7 Recovery from interference 83

4.8 Long-term stability of Autobahn 83

5 Conclusion . 84

CONTENTS xiii

C BlueSeer: AI-Driven Environment Detection via BLE Scans 85

1 Introduction . 86

2 Background: Bluetooth LE . 87

3 Design: BlueSeer . 88

3.1 Overview . 89

3.2 Feature Extraction . 90

3.3 Embedded Neural Network 91

3.4 Implementation . 92

4 Evaluation . 92

4.1 Neural Architecture . 92

4.2 Feature Analysis . 93

4.3 Overall Performance . 94

5 Related Work . 95

6 Conclusion . 96

D Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT
Testbeds 97

1 Introduction . 98

2 Background . 100

2.1 Time Synchronization 100

2.2 Global Positioning System (GPS) 101

2.3 Network Time Protocol (NTP) 101

2.4 Reference Broadcasting System (RBS) 101

2.5 Logic Analyzer . 102

3 Related Work . 102

4 Design . 103

4.1 Design Overview . 103

4.2 Low-intrusive time stamping 105

4.3 Synchronization Node 105

4.4 Testbed node . 108

4.5 GPIO Tracing . 109

4.6 Trace Data Processing 109

4.7 Post-processing . 112

4.8 Implementation . 112

4.9 Discussion . 114

5 Evaluation . 114

5.1 Evaluation Setup . 115

5.2 Output intrusiveness . 116

5.3 Logic Analyzer Frequency Stability 117

5.4 Frequency Stability Of Synchronization Node 117

5.5 Receiver Stability . 119

5.6 Clock Correction . 119

5.7 Multiple Time Sources 120

5.8 Summary . 121

6 Conclusion . 122

xiv CONTENTS

E TSCH meets BLE: Routed Mesh Communication over BLE 123
1 Introduction . 124
2 Background . 125

2.1 IEEE 802.15.4 . 125
2.2 Time-Slotted Channel Hopping (TSCH) 125
2.3 Bluetooth Low Energy (BLE) 126

3 Dissecting TSCH . 127
3.1 TSCH Timeslot Timing 127
3.2 TSCH packet duration 128
3.3 TSCH time synchronization 128
3.4 Hopping sequences . 129

4 Design . 129
4.1 Overview . 129
4.2 Derived Timing . 129
4.3 Packet duration . 131
4.4 Time Synchronization 131
4.5 Hopping Sequences . 132
4.6 Standard-compliance Discussion 132

5 Evaluation . 132
5.1 Reachability . 133
5.2 Performance Evaluation 136

6 Related Work . 138
7 Conclusion . 139

Bibliography 141

List of Figures

1 Structure of the thesis . 5
2 2.4 GHz channel mapping . 7
3 IEEE 802.15.4 Packet Format 9
4 BLE Packet Format . 11
5 BLE Advertisement Scanning 12
6 PDU structure of an advertising packet 12
7 Simplified TSCH timeslot timing 14
8 Example of a TSCH schedule 14
9 Overview of Master . 36
10 Sample schedules for Master’s flow-based retransmission strategy 37
11 Comparison of Autobahn and established centralized TSCH

scheduling approaches . 39
12 BlueSeer: System architecture 41
13 Design overview of Grace . 43

A.1 Overview of Master . 52
A.2 Sample TSCH schedule . 54
A.3 Sample schedules for different retransmission strategies 55
A.4 Example of 2 flows sharing a common link 60
A.5 Evaluation of Master . 62
A.6 Long-term evaluation of Sliding Windows 66

B.1 Comparison of Autobahn and established centralized TSCH
scheduling approaches . 73

B.2 Local testbed of 500m2 . 79
B.3 Autobahn and Master without interference 80
B.4 Autobahn and Master under interference 81
B.5 Comparison of Autobahn and Orchestra 82
B.6 Long-term stability evaluation of Autobahn 84

C.1 BLE Advertisements . 88
C.2 BlueSeer: System architecture 89
C.3 Evaluation of BlueSeer . 93
C.4 Feature importance analysis . 94

D.1 Design Overview of Grace . 104
D.2 Local testbed of 500 m2 . 115

xv

xvi LIST OF FIGURES

D.3 Comparison of the duration of different logging outputs 116
D.4 Stability of a deployed logic analyzer over time 117
D.5 Stability of the microcontroller output, the synchronization

node’s radio output, and the testbed node’s radio input 118
D.6 Distribution of offsets between two radio receivers 119
D.7 Distribution of offsets between multiple nodes using the full

time-error correction system . 120
D.8 Time offsets of different components of Grace 121

E.1 BLE PHY packet formats . 126
E.2 Simplified TSCH timeslot timing 128
E.3 Local testbed of 500 m2 . 133
E.4 Evaluation of the nodes’ reachability 134
E.5 Evaluation of the nodes’ reachability showing the average ETX

to a node’s neighbors . 135
E.6 Evaluation of the performance of Orchestra for all PHY layers . 137

List of Tables

1 Research questions and the corresponding thesis chapters . . . 35

A.1 Maximum latency for each flow in Figure A.5c 65

C.1 On-device requirements for BlueSeer 95

D.1 Cost of components for Grace 114

E.1 IEEE 802.15.4e TSCH timeslot timings 127
E.2 TSCH/TBLE timeslot timings and effective data rates 131

xvii

xviii LIST OF TABLES

Thesis Overview

1 Introduction

Over the past century, our world transformed from a world without computers
to a connected one. Nowadays, we are surrounded by computers and everyday
devices with built-in computing capabilities. They aid our lives and always
keep us connected with others through the Internet, a situation that was a
mere utopia decades or even years ago. Nowadays, we are so used to always
being online that we feel nervous when we are not [1]. Moreover, we are living
in smart homes that react to our presence and make our lives more convenient.
Many of us live in smart cities that are increasingly connected, providing us
with live information and adapt to our demands, e.g., helping us to get around
more easily.

The Internet of Things (IoT) is a main driver for this development of a
connected world. The Internet of Things forms a network of physical everyday
objects and enables them to communicate with each other. These objects,
also referred to as smart objects, contain sensors or actuators that interface
with the physical world, a communication interface, and embedded computing
capabilities for data processing. IoT devices come in various forms, spanning
from smart home devices like thermostats, spill detection sensors, and light bulbs
to security cameras, smart electricity meters, fitness trackers, and many others.
With the IoT, we connect smart devices, usually using wireless communication,
to form local networks or even become part of the global internet. Many IoT
devices are mobile or cannot be connected to mains power and thus have to
run for years on batteries or be solar-powered instead. Therefore, they have
tight energy budgets, supporting only limited computing and communication
capabilities.

While we experience a drastic change in our daily lives with IoT devices
all around us, this trend of smart and connected devices and automation is
also present in industry. Over the past decades, process automation as part of
Industry 3.0 [2,3] was a leading motive. However, for the past decade, Industry
4.0 [2–4] and the Industrial Internet of Things (IIoT) enhances automation by
interconnecting industrial systems and creating collaborative ones, e.g., smart
factories [4, 5]. Connected industrial systems form sensor-actuator networks,
which allow sensors and smart machines to autonomously exchange information
to trigger actions or provide insights for machines or humans alike. Similar to
the IoT, industrial IoT devices also use wireless communication as moving parts

1

2 THESIS OVERVIEW

or existing infrastructure are a hindrance for wired communication. Moreover,
to retrofit IIoT solutions to existing infrastructure, battery operation is also
common in industrial IoT.

The increasing number of connected and connectable devices both in the
realm of consumer devices (IoT), and in infrastructure and industrial settings
(IIoT) leads to new applications. These applications include public infras-
tructure in smart cities that can steer intelligent electricity consumption in
households, observe and react to their inhabitants’ needs, or smartly coordinate
traffic flow. Moreover, highly or fully automated factories are an applica-
tion unthinkable without networked communication between manufacturing
steps. This increasing presence of IoT devices all around us not only leads
to new communication-based applications. It also enables applications to ex-
ploit surrounding signals for localizing a device or intelligently reacting to the
environment.

As the wireless spectrum is shared, deploying additional devices increases
the complexity of communication for both existing and future deployments.
With the wireless medium being inherently dynamic, the introduction of
each new device amplifies the likelihood of interfering communications and
exacerbates the unreliability of wireless transmissions. Consequently, future-
proof communication protocols must possess the capability to dynamically
adapt to changes in the wireless environment, ensuring stable communication
and reliable operation. Furthermore, individual IoT devices must efficiently
manage their energy and computational resources to facilitate adaptation within
both the network stack and the application layer.

2 Motivation and Goals

Low-power wireless devices and the Internet of Things (IoT) have enabled
novel applications, such as personal devices like wireless headphones or fitness
trackers, connected smart cities, and sensor networks overseeing safety-critical
manufacturing processes. Despite being battery-powered, these devices must
uphold reliable communication and adhere to strict deadlines while operating
within tight energy constraints. Moreover, they must contend with an inher-
ently unreliable wireless medium, susceptible to environmental factors and
interference from potentially stronger communication signals.

Over recent decades, numerous communication technologies (such as IEEE
802.15.4 [6] and Bluetooth Low Energy [7]) and protocols (e.g., [8–14]) have
been introduced by both academia and industry to ensure reliable commu-
nication in wireless single-hop and multi-hop networks. IEEE 802.15.4 [6]
finds primary application in industrial and smart home scenarios, while Blue-
tooth Low Energy (BLE) [7] stands as the current standard for consumer
electronics. Some communication protocols, like Thread [13] and Matter [14],
are now widely employed within the context of smart homes. Others, such
as WirelessHART [12] and Orchestra [8], focus more on applications for the
Industrial Internet of Things (IIoT) and achieve over 99.99% end-to-end de-
livery rates in multi-hop networks. However, many of these protocols are
either best effort, emphasizing high reliability with less consideration for la-
tency [8], or focus on maximum throughput while meeting deadlines but are

2. MOTIVATION AND GOALS 3

unable to maintain reliable communication in the face of unforeseen external
interference [10,11,15,16].

Challenges

To use wireless communication as an alternative to wired communication in an
industrial setting, wireless communication has to be reliable and guarantee to
meet deadlines and an application’s latency requirements. Today’s protocols
achieve this by making strong assumptions regarding the level of interference,
and thus only meet these requirements for known levels of interference. In the
real-world, these assumptions do not hold. The wireless medium is inherently
unreliable, and we can no longer guarantee an application to have sole access
to a part of the wireless spectrum. Instead, protocols have to account for
interference from other communication infrastructure and especially unforesee-
able interference levels and changes in the wireless medium. Achieving reliable
communication under these circumstances while giving latency guarantees and
accounting for interference is challenging. Systems giving deadline and latency
guarantees commonly use static communication schedules with static routes
and static numbers of retransmissions that cannot react to local interference
variations alongside a communication path. Therefore, the first challenge we
address in this thesis is to devise protocols for the low-power IIoT that enable
end-to-end communication flows to dynamically adapt to variations in the wire-
less environment to ensure stable and reliable communication with low latency.
We envision a novel retransmission scheme for centrally scheduled networks
that dynamically uses retransmissions wherever needed along a communication
path. Moreover, we design a routing scheme that does not rely on a single path
but can concurrently use multiple paths to circumvent interference sources
without impacting latency.

For low-power communication in the license-free 2.4 GHz band, we see two
protocols in use today: IEEE 802.15.4 and Bluetooth Low Energy (BLE). We
see IEEE 802.15.4 in IIoT and smart home applications, while BLE is prevalent
in smartphone-centric consumer applications but also in cheaper smart home
devices. The latest iPhone 15 Pro supports Thread [17] and thus IEEE 802.15.4
in addition to BLE, but BLE radios are still cheaper and more widely available.
Therefore, our next challenge is bringing reliable low-latency mesh networking
to BLE, making it ready for applications in the Industrial Internet of Things.
We solve this challenge by combining the IEEE 802.15.4 TSCH network stack
with BLE replacing the IEEE 802.15.4 physical layer.

Next to challenges requiring new and better adjusted communication proto-
cols, there is also the challenge of testing and evaluating these protocols. It is
especially challenging to test and evaluate the inner workings of communication
protocols. To gain fine-grained insight into concurrent executions on differ-
ent devices in a distributed network, like an IoT network, it is essential that
the evaluation infrastructure offers precise timestamping capabilities. While
state-of-the art solutions require specific hardware, we address this challenge by
building a low-cost time-synchronization system that is retrofittable to existing
infrastructure, extending it by GPIO timestamping capabilities.

The last challenge we address in this thesis concerns IoT devices that
move around, like smartphones, smartwatches, wireless headphones, and other

4 THESIS OVERVIEW

wearables. The environment these devices are in changes constantly, and the
devices should adjust their behavior to the environment they are in. For
example, headphones should lower their noise-cancellation levels near roads
to ensure the safety of their users, and smartphones and smartwatches should
keep silent while in a theater. To tackle this challenge, we envision and develop
an adaptive IoT system capable of recognizing the current environment and
communicating relevant information to the device’s application. This enables
the device to dynamically adjust to changes in its surroundings. We solve the
challenge for devices that cannot rely on external sensors and thus have to
recognize the environment solely with the help of a wireless radio, or more
specifically a BLE radio.

Goals

From these challenges, we can derive the following goals:

1. We aim to create adaptive and resource-efficient low-power IoT systems.
We tackle this problem in two ways, (1) at the level of communication
protocols and (2) at the application level. Firstly, we must add dynamic
retransmission and routing approaches to IIoT communication protocols,
allowing them to react to changes in the wireless environment and thus
enabling long-term stable reliable communication. Secondly, we must
enable IoT devices to detect their environment to make adjustments to
the device’s functionality.

2. We want to reduce communication latency in low-power wireless mesh
networks. Therefore, we must borrow aspects from different low-power
wireless communication approaches and combine them into novel com-
munication protocols. We address this by (1) combining communication
approaches to dynamically route traffic around interference sources, and
(2) replacing the IEEE 802.15.4 physical layer with the BLE physical
layer.

3. We aim to cost-efficiently debug and evaluate timing-critical low-power
communication protocols. Therefore, we must provide a retrofittable
solution for existing testbeds that can timestamp concurrent events on
multiple IoT devices.

Contributions

We address these goals with the following contributions:

A. We build Master1, a centralized scheduler for TSCH networks. Master
includes a novel and flexible flow-based retransmission strategy that dy-
namically uses retransmissions wherever necessary across links. Master
addresses the first part of our first goal.

1We are aware of the discussion and stigma around the word master and discuss the name
choice for the protocol in Section 6.1.

2. MOTIVATION AND GOALS 5

Chapter A Master: Long-Term Stable Routing and Scheduling flow-based retransmissions

Thesis IntroductionIntroduction

Chapter B

Chapter C

Chapter D

Chapter E

Opportunistic Routing and Synchronous Transmissions meet TSCH (Autobahn)

BlueSeer: AI-Driven Environment Detection via BLE Scans

Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds

TSCH meets BLE: Routed Mesh Communication over BLE (TBLE)

opportunistic routing with
concurrent forwarding

BLE-only environment detection

affordable time-synchronized
testbed evaluation

time-synchronized MESH
for BLE

Figure 1: Structure of the thesis. It includes 6 chapters, one for the
introduction and five for the appended publications in chronological
order of publishing. For each chapter, we highlight the main contri-
bution in the green box.

B. We design Autobahn, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference. Auto-
bahn combines opportunistic routing, synchronous transmissions, and
Time-Slotted Channel Hopping (TSCH) into a single protocol achieving
low-latency and long-term stable communication addressing parts of the
first two goals.

C. We build BlueSeer, an Environment detection system able to classify
environments solely using received BLE packets. BlueSeer addresses
the second part of our first goal and enables devices to adapt their
functionality to their surrounding environment.

D. We introduce Grace, a low-cost time-synchronized GPIO tracing system
for IoT testbeds. Grace accomplishes the third goal by using low-cost
off-the-shelf components and is able to synchronize both building-wide
and campus-wide testbeds.

E. We present TBLE, a protocol achieving routed mesh-communication in
BLE. TBLE combines TSCH with BLE which reduces communication
latency and addresses the second part of our second goal.

Approach

In this thesis, we employ experimental computer science methods. We design,
implement, and experimentally evaluate IoT protocols and systems which enable
stable and reliable low-latency communication and adaptive IoT systems. We
make our designs, protocols, and implementations available to enable their use
within the scientific community and beyond.

Outline

This thesis contains an introduction to the scope of this thesis and five articles
published over the recent years. We organize the thesis into six chapters,

6 THESIS OVERVIEW

consisting of a thesis overview and the five articles. The thesis overview starts
with an introduction to the topic of this thesis, and a motivation of the targeted
problems. Afterward, we introduce the required background this thesis builds
on and survey the current state-of-the-art of related research. We conclude
this chapter with the research statement, an overview and discussion of the
following articles, and an outlook towards future directions. The following
chapters each include one of the five articles in chronological order of publishing.
Figure 1 provides a visual overview of the structure of this thesis and each
article’s main contribution.

3 Background

In this section, we introduce the core concepts this thesis builds on and
the necessary technical background we use in this thesis. We provide an
overview of low-power wireless communication (Section 3.1), with a focus on
short-range 2.4 GHz communication protocols, mainly IEEE 802.15.4 (Section
3.2) and Bluetooth Low Energy (Section 3.3). We overview medium access
methods in IEEE 802.15.4, focusing on TSCH (Section 3.4) and synchronous
transmissions (Section 3.5). Moreover, we present routing approaches in short-
range communication systems. Afterward, we discuss time-synchronization
(Section 3.6) and evaluation methods (Section 3.7) for wireless networks. Lastly,
we provide an introduction into embedded intelligence and tiny machine learning
(Section 3.8).

3.1 Low-Power Wireless Communication

Wireless communication in the field of the (Industrial) Internet of Things has
to be highly reliable, meet deadlines, and adhere to tight energy budgets. It has
to be energy efficient and low-power to allow its use on battery for long periods
of time—sometimes decades. To achieve this, multiple wireless communication
technologies have been proposed over the years that have to make a tradeoff
between range and data rate. Wireless personal area networks (WPAN) offer
data rates of hundreds of kbit/s up to a few Mbit/s achieving communication
ranges of a few tens of meters [18]. This category of networks is most suitable for
smart homes, smart factories, and devices we carry with us like wearables. For
covering longer communication ranges and to boost communication reliability,
they use multi-hop communication. The most prominent standards for short-
range low-energy communication are IEEE 802.15.4 [6] and Bluetooth Low
Energy (BLE) [7]. Both are narrowband communication standards operating
in the license-free 2.4 GHz ISM band. IEEE 802.15.4 also supports subGHz
frequencies [19], as well as higher frequencies above 3 GHz for ultra-wideband
communication [19]. In contrast, low-power wide-area networks (LPWAN) like
LoRa [20] and Sigfox [21] achieve high communication ranges of above 10 km
with data rates of 100 bit/s up to tens of kbit/s [22], while cellular LPWANs
like NB-IoT, and LTE-M [23] achieve higher data rates of hundreds of kbit/s
with slightly shorter communication ranges. These communication ranges,
make LPWANs perfectly suitable for citywide IoT networks or larger low-power
networks outside of cities without requiring multi-hop communication. Thus,
they are a perfect fit for applications such as smart cities and smart agriculture.

3. BACKGROUND 7

37 0 10 1138 3936

1 6 11

11 15 20 25 26

24
02

24
00

BL
E

80
2.
15

.4

Frequency [MHz]

24
05

24
12

24
25

24
37

24
62

24
50

24
75

24
80

24
83

80
2.
11

Figure 2: Channel mapping of BLE, IEEE 802.15.4, and IEEE 802.11
(WiFi) sharing the 2.4 GHz frequency band. BLE and IEEE 802.15.4
channels are 2 MHz wide with 2 MHz and 5 MHz spacing between
center frequencies of adjacent channels, respectively. WiFi channels
are 22 MHz wide. Blue: primary BLE advertising channels. Red:
common, non-overlapping WiFi channels. Orange: commonly used
4-channel hopping sequence in IEEE 802.15.4 TSCH.

However, all of these LPWAN technologies require infrastructure like cell towers
or base stations for their operation.

Within this thesis, we mainly focus on the former category of low-power
wireless communication, more precisely, communication with IEEE 802.15.4
and Bluetooth Low Energy (BLE), operating in the 2.4 GHz ISM band.

3.1.1 Communication Challenges in the 2.4 GHz ISM Band

The 2.4 GHz ISM band is a shared wireless medium with several technologies
including IEEE 802.15.4, BLE, and WiFi that have to coexist. Especially for
low-power communication standards like IEEE 802.15.4 and BLE communica-
tion is more challenging in comparison to WiFi which transmits several orders
of magnitude more powerful signals (≤1 mW vs. 100 mW). However, not only
the presence of WiFi is a challenge, but also the presence of multiple BLE
or IEEE 802.15.4 networks and the coexistence of BLE and IEEE 802.15.4 is
challenging as their signals are likely to collide and thus interfere with each
other. Networks employing IEEE 802.15.4 or BLE do not uniformly adopt
identical channel selection mechanisms or communication protocols, thereby
increasing the probability of collisions. Additionally, as the number of devices
increases, these challenges intensify further. To ensure reliable communication
amidst interference, WPANs employ a range of medium access and network-
ing strategies. These encompass multi-hop communication, retransmissions,
channel hopping, and multi-path communication.

8 THESIS OVERVIEW

3.1.2 Medium Access Methods

To avoid interference within a single network and thus achieve reliable com-
munication, multiple strategies to access the wireless medium exist. These
strategies either set on avoiding collisions by probing the wireless medium to
detect whether it is clear to send (e.g., Carrier Sense Multiple Access with
Collision Avoidance: CSMA/CA), or split the medium to give exclusive access
to a portion for a specific communication. We can split the wireless medium
along the time-axis for exclusive access of the medium in specific timeslots,
or along the frequency-axis, allowing concurrent communication on different
frequency channels. We can increase the distance between concurrent transmis-
sions, or we can use orthogonal codings to restore the signal from overlapping
concurrent signals [24]. We can use each of these approaches individually or in
combination.

3.1.3 Long-Distance Communication

While both IEEE 802.15.4 and BLE only have limited communication range,
they often have to communicate over longer distances nonetheless to, e.g.,
transmit sensor data to an actuator that is not in the sensor’s immediate
communication range. While base stations like in LPWAN or WiFi networks
would be a possibility, they require fixed infrastructure. Another approach is
multi-hop communication, which is the fundamental method for mesh networks.
In mesh networks, nodes between the data source and the destination act as a
relay and receive data and forward it towards the destination. Mesh networks
do not require fixed infrastructure. Instead, they only require a sufficiently
dense mesh to transmit data from any potential sender to any potential receiver,
and thus can form ad-hoc networks. Both IEEE 802.15.4 and BLE offer mesh
networking solutions [6, 9, 25,26].

3.2 IEEE 802.15.4

IEEE 802.15.4 is a widespread standard for low-rate wireless networks intro-
duced in 2003 [27]. It builds the foundation for communication protocols
such as Zigbee [28], WirelessHART [12] and Thread [13]. While it defines
multiple frequency ranges and modulation schemes, the most prominent one
is its 2.4 GHz physical layer using the O-QPSK modulation scheme [29] with
direct-sequence spread spectrum (DSSS) [30]. This physical layer (from now
on denoted as IEEE 802.15.4) with its robust modulation scheme offers a data
rate of 250 kbit/s. Its direct-sequence spread spectrum modulation scheme
uses a wider spectrum than necessary for the data rate, and thus is less affected
by interference than other modulation schemes [30]. IEEE 802.15.4 splits the
2.4 GHz ISM band into 16 channels (11–26) that are 2 MHz wide and 5 MHz
apart (cf. Figure 2). The IEEE 802.15.4 standard defines both the physical
layer and several medium access control (MAC) layers.

3.2.1 IEEE 802.15.4 PHY

A physical layer IEEE 802.15.4 packet consists of a 5-byte synchronization
header, a 1 byte packet length, and up to 127 bytes of payload (cf. Figure 3).

3. BACKGROUND 9

Preamble SFD

Synchronization Header PHR up to 127 bytes

PayloadLenght

Figure 3: Packet format of an IEEE 802.15.4 packet. At a data rate
of 250 kbit/s the transmission of each byte takes 32 µs.

The synchronization header contains 4 preamble bytes, all set to 0x00, and a
1 byte start of frame delimiter (SFD) set to 0xA7.

3.2.2 IEEE 802.15.4 MAC

The initial IEEE 802.15.4 standard [27] defines the IEEE 802.15.4 MAC, a
single-channel MAC layer. This MAC layer defines two modes: beacon-enabled
and non-beacon enabled [31]. The non-beacon enabled mode forms a non-
time-synchronized, asynchronous network, and communication between nodes
uses the unslotted CSMA/CA algorithm to determine whether the channel
is free to send. In the beacon-enabled network, a Personal Area Network
coordinator (PAN coordinator) employs a superframe structure with periodic
beacons for time synchronization. Between two beacons, there is an active
period for communication and an optional inactive (sleep) period. Within the
active period, communication can take place in one of 16 equal length time
slots, contention-based using CSMA/CA or contention-free in one of up to 7
guaranteed timeslots (GTS). Due to several limitations like the use of a single
channel, inflexible numbers of guaranteed timeslots, unbounded latency, and
low reliability [32,33], this protocol is unsuitable for applications with strict
quality of service (QoS) requirements. However, if the whole network uses a
single channel, it allows the coexistence of several IEEE 802.15.4 networks in
the same space.

The 2015 amendment of the IEEE 802.15.4 standard (IEEE 802.15.4e) [6]
defines five new MAC modes, namely, Blink Radio Frequency Identification
(Blink RFID), Asynchronous Multi-Channel Adaptation (AMCA), Low-Latency
Deterministic Networks (LLDN), Deterministic and Synchronous Multi-Channel
Extension (DSME), and Time-Slotted Channel Hopping (TSCH). Both Blink
RFID and AMCA are non-real-time MAC modes. The former is intended
for applications identifying, locating, and tracking objects or personnel. It
is widely used in contactless credit card transactions. The latter targets
large deployments such as smart utility networks, infrastructure monitoring
networks, and process control networks with a variance of channel quality
and link asymmetry. It uses multiple channels and performs active scans,
testing the link quality on all available channels to select the channel with the
highest link quality for communication. AMCA is used in non-beacon-enabled,
asynchronous networks [33]. The other three MAC modes are able to provide
deterministic latency guarantees for time-critical applications. LLDN targets
dense single-channel networks for factory automation requiring very low latency.
In this mode, all nodes in the network must be directly associated with the
PAN coordinator, forming a star topology. DSME and TSCH both target
time-synchronized, beacon-enabled multi-hop multichannel mesh networks and

10 THESIS OVERVIEW

are able to form medium to large networks. DSME’s main focuses are scalable,
time-critical applications that require high reliability and low deterministic
latencies, such as health monitoring, factory automation, smart metering, home
automation, and smart buildings. DSME extends the initial beacon-enabled
MAC mode. It defines a multi-superframe structure consisting of one or more
IEEE 802.15.4 superframes. DSME accommodates a higher number of GTS
slots and allows the use of multiple channels in the contention-free period.
Moreover, the coordinator can limit the number of contention-based slots to
the first superframe. When using multiple channels, DSME can either use the
link quality indicator (LQI) to switch channels, or a network-wide hopping
sequence [34]. TSCH targets application domains such as industrial automation
and process control with time-critical applications that require high reliability.
These applications include oil/refinery industries, water treatment, and process
monitoring of food/chemical/pharmaceutical product, many applications which
concern human and environmental safety. Moreover, TSCH is suitable for
networks prone to interference from other wireless networks [34]. TSCH
performs all communication in slots but does not follow a strict superframe
structure as other modes. Within each slot, communication can either be
contention-based using CSMA/CA, or contention-free using dedicated timeslots.
As this thesis builds heavily on TSCH, we discuss TSCH in detail in Section 3.4.

3.3 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) [7] is a short-range and low-power communication
protocol in the 2.4 GHz ISM band, mainly targeting single-hop communication
between two devices. BLE was introduced as part of the Bluetooth 4.0 standard
in 2010. While it shares a name with Bluetooth, it is a separate low-power
communication protocol. BLE uses 40 2-MHz wide frequency channels (cf.
Figure 2), and the Gaussian Frequency Shift Keying (GFSK) [35] modulation
scheme. This modulation scheme is much simpler than the O-QPSK [29]
modulation scheme IEEE 802.15.4 uses [27]. GFSK encodes only a single bit per
symbol, compared to O-QPSK encoding two bits per symbol. Moreover, GFSK
does not need to detect phase changes but rather only needs to differentiate
two frequencies, one for encoding a one, and the other one for encoding a zero.
Three of the 40 BLE channels are reserved for (primary) advertisements and
broadcasts (see channels marked in blue in Figure 2), while the other 37 are
reserved for connected communication and secondary advertisements. The
initial BLE standard defines a physical layer (PHY) with a data rate of 1 Mbps
(standard data rate) and a maximum transmittable advertisement payload of
37 bytes [36]. Bluetooth 5.0, introduces a 2 Mbps PHY, and two long-range
coded PHYs with data rates of 125 kbps and 500 kbps. Further, Bluetooth 5.0
increases the maximum payload of BLE advertisement to 255 bytes [37].

3.3.1 PHY Packet Format

The physical layer packet format of BLE differs between the uncoded PHY
(1 Mbps and 2 Mbps) and the coded PHY (125 kbps and 500 kbps) (cf. Figure 4).
An uncoded PHY packet starts with a 1 or 2 byte preamble of alternating ones
and zeros, for a data rate of 1 Mbps and 2 Mbps, respectively. It is followed
by the 4-byte access address, identifying packets belonging to a connection.

3. BACKGROUND 11

Preamble
(1 or 2 bytes)

Access Address
(4 bytes)

PDU
(2-258 bytes)

CRC
(3 bytes)Uncoded PHY:

Preamble
(80 µs)

Access Address
(256 µs)

PDU (N bytes)
(N*S*8 µs)

CRC
(24*S µs)Coded PHY: CI

(16 µs)
Term 1
(24 µs)

FEC block 1

Term 2
(24 µs)

FEC block 2

Figure 4: Packet format of a BLE packet for both the uncoded PHYs
(1 Mbps and 2 Mbps) and the coded PHYs (125 kbps and 500 kbps).

For packets not belonging to a connection and instead advertising services,
so-called advertisement packets, the access address is fixed to 0x8E89BED6 (cf.
Section 3.3.2). Afterward, the packet contains between 2 and 258 bytes payload
(PDU) and a 3-byte cyclic redundancy check (CRC) code for error detection.
A coded PHY packet generally contains the same components, however, with
additional fields for forward error correction (see Figure 4). The preamble is
uncoded, consisting of 10 repetitions of 0x3C transmitted with a data rate of
1 Mbps. The two following forward error correction (FEC) blocks also use a
symbol rate of 1 Mbps but with a coding rate of 1/8 for the first block and 1/2
or 1/8 for the second block. The first forward error correction (FEC) block
thus is always transmitted with an effective data rate of 125 kbps containing
the access address and the coding indicator (CI). The CI indicates the coding
of the second FEC block, denoting whether it uses an effective data rate of
125 kbps or 500 kbps. The PDU and the CRC are then transmitted with the
indicated coding afterward.

3.3.2 BLE Medium Access

BLE has two modes of operation: connected and non-connected. Both modes
have independent roles and independent ways of coordinating the access to the
wireless medium. In non-connected mode, each device accesses the medium
without coordinating with any other device but tries to limit collisions by
adding a random delay between transmissions. In connected mode, a central
device determines a communication interval and channel hopping sequence
which the peripheral devices follow for their communication. A device can
communicate using both the connected and non-connected mode, which usually
do not interfere due to using different channels (cf. blue and white channels in
the BLE spectrum in Figure 2).

Advertising. In the non-connected mode, BLE devices disclose their
presence and advertise their services to nearby devices. These services include,
i.e., media control services, weather information (e.g., temperature data), or
connectability (e.g., wireless headphones announcing their presence and that
they are ready to connect).

The advertiser, often a low-power device like a wearable or an IoT sensing
device (e.g., a smart thermometer), broadcasts an advertisement subsequently
on all advertisement channels (37, 38, and 39) and repeats it pseudo-periodically
at a fixed interval plus a random delay to avoid collisions. The receiver, such
as a smartphone, scans for potential advertisements by listening to a specific
channel during a scan window and changes the channels it listens to after the

12 THESIS OVERVIEW

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

Ch. 37 Ch. 38

Scan Window

Scan Interval

Advertisement Interval

Sc
an

ne
r

A
dv

er
tis

er

Figure 5: BLE Advertisements. The advertiser pseudo-periodically
sends advertisement packets on all three advertising channels. The
scanner periodically listens for advertisements.

Header
(16 bits)

PDU type
(4 bits)

Payload
(1-255 bytes)

RFU
(1 bit)

ChSel
(1 bit)

TXAdd
(1 bit)

RxAdd
(1 bit)

Length
(8 bits)

Figure 6: PDU structure of an advertising packet. The first byte
of the header contains a 4-bit PDU type, 1 bit reserved for future
use, a 1-bit flag whether the advertiser supports the BLE channel
selection algorithm, two 1-bit flags whether the advertiser’s and the
target device’s addresses are random or public, respectively. The
second header byte contains the length of the subsequent advertising
payload.

end of a scan interval (cf. Figure 5). By responding to an advertisement, a
BLE device can initiate a connection.

Advertisement data. In non-connected mode, an advertiser sends data
in the form of a so-called Protocol Data Unit (PDU). The PDU contains a list
of Advertising Data (AD) structures. The advertising data can define, i.e., the
device’s name, a list of offered services (e.g., heart rate sensor or computer
mouse), the device’s address, the radio’s transmit power, and manufacturer-
specific data. Each AD has a Universally Unique Identifier (UUID), defined in
the BLE standard [7]. For example, manufacturer-specific data has the UUID
0xFF and the COVID-19 Exposure Notification AD has the UUID 0xFD6F [38].

On the packet level, the BLE advertisement PDU consists of a 2-byte header,
followed by one or multiple advertising data (AD) structures (cf. Figure 6).
An AD structure consists of a 1-byte length identifier, the AD type (e.g., an
identifier that a list of service UUIDs follows) and the AD data (e.g., the list
of service UUIDs).

Connected mode. In connected mode, BLE devices exchange data related
to the services announced in advertisements. For example, a keyboard can send
key presses to a computer or a smartphone can turn on a BLE-enabled light
bulb. The data exchange follows the schedule given by the central device [7].

3. BACKGROUND 13

3.3.3 BLE Mesh Networking

For communicating over more than a single hop, BLE offers a mesh network-
ing extension called Bluetooth Mesh [25, 26]. Bluetooth Mesh uses modified
advertisements and shorter intervals between advertisements compared to the
non-connected mode to communicate data. When transmitting data, a sending
node waits for a random backoff time before advertising the data on one of
the three advertisement channels. Relay nodes continuously scan for data and
switch between channels, keeping the radio on at all times. Upon receiving a
packet, a relay node processes it if it’s the packet’s destination or advertises
the data itself after a random backoff interval [39]. For packets destined for a
low-power node not participating in relaying, a designated neighboring relay
node can forward the packet to the intended recipient. Bluetooth Mesh em-
ploys managed flooding, a routing-free approach involving all relay nodes in
the network. It encompasses various roles for different nodes in a network and
an entire network stack [40].

Several studies have examined the performance of Bluetooth Mesh, high-
lighting its strengths and limitations [41, 42]. With a payload limit of 16 bytes,
Bluetooth Mesh can achieve 99% reliability within a round-trip time of 200 ms.

3.4 Time-Slotted Channel Hopping (TSCH)

Time-Slotted Channel Hopping (TSCH) [6] is a MAC layer protocol for IEEE
802.15.4 targeting reliable communication in industrial low-power wireless
networks. Its design builds on the Time-Synchronized Mesh Protocol (TSMP),
which is part of the industry standards ISA100.11a [43] and WirelessHART [12].
It combines the medium access methods of Time-Division Multiple Access
(TDMA) and Frequency-Division Multiple Access (FDMA) and adds a pseudo-
random channel hopping mechanism to overcome narrowband interference.
Communication in TSCH uses distinct time slots in one of the up to 16
frequency channels (see Figure 2), allowing up to 16 parallel communications
in close vicinity to each other.

TSCH forms a time-synchronized mesh network with all participants in the
network. For network formation, nodes listen for beacons (cf. Section 3.4.1)
from nodes that are already part of the network. A PAN coordinator starts
the process of sending these beacons. When receiving a beacon, a node joins
the network and takes part in broadcasting beacons to further reach nodes
that might want to join the network. For keeping the network synchronized,
TSCH builds a time-source tree from the PAN coordinator to each node in the
network. For communication in a TSCH network, a scheduler assigns slots and
specific roles to each node. We discuss this in Section 3.4.3.

3.4.1 TSCH Slots

TSCH uses time slots that have a standardized length of 10 ms. Each time
slot has a specific role. It is either dedicated, shared, or empty. In certain
implementations, like the one in the Contiki-NG [44] operating system, a fourth
role, beaconing (only), is available. In the case of a beaconing slot, nodes
can send Enhanced Beacons (EB) containing control information for network-
and time-synchronization. These beacons are essential for joining the network

14 THESIS OVERVIEW

Frame Tx Rx Ack
DelayTx Offset Ack Wait + Rx

Rx Offset Ack TxRx Wait + Frame Rx Tx Ack Delay

Figure 7: Simplified TSCH timeslot timing. We omit the optional
CCAOffset and the CCA, which happen during TxOffset, if enabled.
Please note: the illustrated timing is not to scale.

D

C

E

B

A

(a) Sample network.

E → D A→ B
EB C→ B D→ C B→ D D→ E EBch

an
ne
lo
ffs
et

timeslot

0
1

0 2 3 41 5

2

15

(b) Sample TSCH schedule.

Figure 8: Example of a TSCH schedule. The schedule contains
three flows (A→E, E→C, and C→B) that use dedicated slots for
communication and one shared beacon slot. The schedule has a
slotframe length of 5 slots, therefore, slot 5 is a repetition of slot 0.

and maintaining the network’s connections and time synchronization. In a
dedicated slot, a node either receives or transmits data. The transmitting node
can either communicate with a specific node (unicast) or with all nodes in range
(broadcast). In the case of unicast transmissions, the receiver acknowledges
the reception within the same slot (cf. Figure 7). A shared slot allows any
communication of the above, beaconing, unicast, and broadcast messages. As
all possible senders share the same slot, these slots use the CSMA/CA back-off
algorithm to limit collisions. Nodes that do not have anything to transmit in
this shared slot listen for incoming packets. If a slot has none of the above
roles, it is empty. In empty slots, the node’s radio remains off to save energy.

TSCH groups slots in slotframes. A slotframe has a defined length and
contains at least one active slot. After passing all slots in the slotframe, it
repeats. Contrary to the legacy IEEE 802.15.4 MAC and DSME, TSCH
supports multiple slotframes with different lengths simultaneously. Each of
these slotframes has a priority. If two or more slotframes have an active slot
scheduled for the same time, TSCH executes the slot belonging to the slotframe
with the highest priority. For example, slotframes with beaconing slots are
usually given the highest priority, as they are necessary for maintaining the
network. All other communication is distributed across the other slotframes.
As slotframes can have different sizes, not always the same slots overlap. All
slotframes together form a TSCH schedule. Figure 8 shows an example of a
TSCH schedule with a single slotframe.

3. BACKGROUND 15

3.4.2 Channel Hopping

Next to the availability of up to 16 frequency slots (FDMA) that allow commu-
nication in up to 16 TSCH slots in parallel, TSCH uses the concept of channel
hopping to counteract narrowband interference. In channel hopping, all active
channels cycle through a pseudo-random hopping sequence. Through this hop-
ping sequence, every channel uses a different physical frequency at subsequent
time slots. The hopping sequence has to include at least as many frequencies
as parallelly active channels, with a maximum of 16 frequencies. Thus, for
every nth slot (n = number of frequencies), a channel uses the same physical
frequency for transmission. For example, in a common hopping sequence of
four channels, TSCH cycles through the channels 15, 25, 26, and 20. These
channels use frequencies that do not overlap with frequencies of the three most
common non-overlapping WiFi channels (1, 6, and 11) (see Figure 2).

3.4.3 TSCH Scheduling

The IEEE 802.15.4 standard defines the TSCH MAC layer and the structure
of a schedule. However, it does not define how such a schedule is to be created.
Therefore, many bodies of work (cf. [45–47]) study this problem, creating differ-
ent ways of scheduling TSCH networks. Scheduling communication efficiently
is essential to ensure reliable communication that is capable of meeting dead-
lines and saving energy. The scheduling problem of allocating time slots and
channels for communication partners meeting an application’s requirements is
an NP-hard problem, as Saifullah et al. [10] show. Below, we discuss the core
concepts of scheduling traffic in TSCH. In Section 4.1 we take a more in-depth
look at scheduling solutions related to our research.

In TSCH, schedulers are commonly grouped into three classes: centralized,
decentralized (collaborative), and autonomous. Centralized schedulers use
global knowledge to schedule communication, and commonly combine schedul-
ing and routing. They usually target static topologies and often perform the
scheduling separated from the wireless network at the edge, or in the cloud.
Decentralized and autonomous schedulers have no global knowledge of the
network topology to perform their slot allocation. Decentralized schedulers
collaborate with their neighbors to agree on a schedule and autonomous sched-
ulers schedule communication independent of any knowledge, even independent
of the nodes’ neighborhood. We briefly discuss each class of schedulers in the
following paragraphs.

Centralized Scheduling. The first and oldest category of TSCH sched-
ulers are centralized ones, targeting static deployments, often in industrial
settings. Centralized schedulers combine the routing of traffic in a mesh network
with the actual scheduling of communication slots. We define a route as the
order of transmissions (hops) that are necessary for end-to-end communication
between a specific sensor-actuator pair. We discuss routing in mesh networks
in more detail in Section 3.4.4.

Centralized schedulers operate on global knowledge. Therefore, they use
information about the network, especially about the quality of the wireless
links. We commonly measure the quality of a link using the link’s packet
reception rate, or its inverse, the expected transmission count (ETX) [48]. The
latter is the average number of transmissions necessary to successfully transmit

16 THESIS OVERVIEW

a packet over the specific link. With this global knowledge of the network
topology, the centralized scheduler can combine routing and scheduling to
form a schedule accommodating the communication requirements of each node.
Modern centralized schedulers commonly add retransmission slots for lossy links
with an expected number of transmissions larger than one (ETX > 1). After
computing the schedule, a central node disseminates it through the network to
all nodes.

Distributed Scheduling. Distributed or collaborative schedulers operate
on local knowledge. These schedulers negotiate communication slots between
neighboring nodes during runtime. Moreover, they perform only the scheduling
between neighbors and usually separate scheduling the medium access from
routing.

Autonomous Scheduling. The last class of TSCH scheduling algorithms
are autonomous schedulers. While the other two scheduler classes either use
global knowledge or local knowledge to make a scheduling decision, autonomous
scheduling algorithms commonly operate without knowing the network topology
at all. Autonomous schedulers neither centrally plan communications or allocate
resources, nor do they negotiate resources between neighbors in a distributed
fashion. Instead, they use a higher layer metric like the routing distance to the
network root or a hash function to schedule slots. Thus, they do not specifically
schedule links in the network, but provide a framework for nodes to select the
intended slots for the situation the nodes are in during operation. Similar to
distributed schedulers, autonomous ones usually leave routing to a higher layer
in the network stack.

3.4.4 TSCH Network Stack

While TSCH commonly concerns the medium access in IEEE 802.15.4 networks,
multiple network stacks on top of TSCH exist. These network stacks define
the routing in TSCH networks, as well as higher layer protocols.

Routing in TSCH. Routing is the selection of a path that data takes from
a sender to a receiver. Routing determines the order of links over which data
travels through the network, whereas scheduling concerns the allocation of
the individual links that are available for routing. The two major approaches
to routing in TSCH are tree-based routing and shortest-path routing. In
tree-based routing, packets travel a tree upwards to a common ancestor of
sender and receiver and then downwards the tree to the receiver. Distributed
and autonomous TSCH schedulers commonly use this routing approach. The
other approach is shortest-path routing, which requires global knowledge
of the network topology and uses algorithms like Dijkstra’s shortest path
algorithm [49] or the A∗ algorithm [50]. Shortest-path algorithms are a good
choice for centralized routing, and thus commonly used in combination with
centralized schedulers. However, shortest-path routing is not the only approach
used in centrally scheduled TSCH networks. Other approaches perform, i.a.,
an asymmetric routing approach [51], applying specific routing strategies for
different communications in a network, or a conflict-aware real-time routing
approach [52] that takes path conflicts originating from scheduling decisions
into account when making routing decisions.

3. BACKGROUND 17

In the case of tree-routing, the Routing Protocol for Low-Power and Lossy
Networks (RPL) [53] is widely used in low-power wireless networks and in
TSCH. RPL is a best-effort routing protocol for low-power wireless networks
susceptible to packet loss. For generating the routing path, RPL uses a directed
acyclic graph (DAG). Packets are forwarded (upwards routed) hop-by-hop from
parent to parent until reaching the root of the graph. From there, the packets
are routed downwards hop-wise until they reach their destination. That means
all routing in RPL is a combination of upwards-routing to the tree’s root and
downwards routing to the packet’s destination. A variation to this approach
is the storing mode in which each node saves information about its children.
This variation routes traffic only upwards until meeting a common ancestor of
the packet’s source and destination. The path RPL uses for routing is based
on the shortest distance to the tree’s root using a metric like ETX.

6TiSCH stack. A common network stack for TSCH networks, especially
those using RPL for routing, is 6TiSCH, a standardized set of protocols to enable
IP-addressable low-power wireless devices [54,55]. The Internet Engineering
Task Force’s (IETF) 6TiSCH bridges TSCH networks with 6LoWPAN networks.
The network stack consists of IETF standards including UDP, IPv6, RPL, and
6LowPAN and a 6TiSCH operation sublayer (6top) [55] connecting the network
protocols with TSCH. The 6top protocol defines how to exchange scheduling
requests and statistics between the layers. 6TiSCH is implemented in several
embedded operating systems such as Contiki-NG [44] and OpenWSN [56], and
is the standard network layer for most distributed and autonomous TSCH
schedulers.

3.5 Concurrent Transmissions

Two or more devices transmitting signals at the same time on the same frequency
lead to interference. This interference commonly destructs the signals and
makes it either impossible to receive any data or makes the received data
unintelligible. However, there are circumstances in which interference is not a
hindrance or potentially even a benefit for successful communication.

In Concurrent Transmissions (CT), or Synchronous Transmissions, multiple
nodes transmit data simultaneously and synchronously. In two cases, a receiver
can receive data transmitted synchronously. The receiver can either, with a
high probability, extract the strongest of the received signals due to the Capture
Effect [57], or receive the data due to non-destructive interference [9]. In both
cases, the transmissions have to be tightly synchronized to allow the decoding
of concurrent transmissions. Within the past decade, multiple solutions have
shown the feasibility of network-wide flooding with Concurrent Transmissions
for both IEEE 802.15.4 O-QPSK with DSSS [9,58,59] and BLE [60]. Many CT
protocols build upon Glossy [9], which created the foundation for synchronous
transmissions in low-power wireless IEEE 802.15.4 networks and offers network-
wide flooding and high-accuracy synchronization.

18 THESIS OVERVIEW

3.5.1 Capture Effect

The Capture Effect, which was initially observed for FM receivers [57] states
that a receiver can extract one signal from many colliding ones if its signal
strength is significantly higher (power capture) than the combined signal
strength of all other signals. For example, to utilize the Capture Effect in IEEE
802.15.4 O-QPSK with DSSS, the signal has to have at least twice the power
(+3 decibel (dB)) as the combined other signals [58]. Moreover, the stronger
signal must not arrive later than 160 µs after the first signal [59], the duration
of the synchronization header in IEEE 802.15.4 (cf. Figure 3).

Two well-known examples of protocols using the Capture Effect are Chaos
[59] and Crystal [61]. Chaos is a protocol for all-to-all data sharing in low-power
wireless networks. Nodes transmit (potentially different) data concurrently and
thus speed up network-wide data sharing. Crystal builds a network stack for
sporadic data collection, with many nodes generating data at the same time.

3.5.2 Non-Destructive Concurrent Transmissions

In the other case of non-destructive Concurrent Transmissions, multiple nodes
transmit the same data. For this case, nodes have to be even more tightly
synchronized than for the Capture Effect. If the time offset between all
transmissions stays below 0.5 µs, no signal strength delta is necessary to
successfully receive the data. Ferrari et al. [9] were the first to study the use
of these non-destructive concurrent transmissions in IEEE 802.15.4. Later
works [62–64] study it further to better understand why the overlapping signals
are indeed non-destructive.

Within the past 13 years, many bodies of work designed protocols utiliz-
ing tightly synchronized non-destructive Concurrent Transmissions in IEEE
802.15.4 networks to efficiently and reliably share data. In 2011, Glossy [9] cre-
ated the foundation for synchronous transmissions in low-power wireless IEEE
802.15.4 networks and uses synchronized flooding to disseminate data from one
node to all others in a network. LWB [65] builds on Glossy floods by adding
the capability of scheduling individual network floods for data collection. While
LWB is not a real-time protocol, Blink [66] performs deadline-based real-time
communication, achieving high reliability on top of it. The protocols above
perform network-wide flooding and thus involve the whole network for com-
municating data. Works like WSNShape/Sparkle [67] and CXFS [68] deviate
from that approach and limit the number of forwarders performing directional
flooding or essentially routing. CXFS, for example, introduces a forwarder
selection strategy in networks using concurrent transmissions. LaneFlood [69]
builds upon this forwarder selection and extends it to even allow the flooding
of IPv6 traffic along a routed lane.

3.6 Time Synchronization

Up to this section, we discussed networking in low-power wireless networks. As
this thesis also targets orthogonal applications like time-synchronized evaluation
of low-power wireless networks and new directions like wireless environment
detection, we discuss the relevant background for these in the following sections.

3. BACKGROUND 19

For a precise evaluation of distributed protocols, we require timestamping
across multiple devices. To facilitate the evaluation of locally timestamped
events, and set them into perspective to events on other devices, the time-
stamping system should have a common timescale. Moreover, when devices
communicate with each other, they often require a timed operation. For
example, in low-power wireless communication, devices need to be synchronized
when turning on their radios to be awake when data is scheduled to be sent [6].
Other wireless applications like ranging and positioning also require a high
degree of time synchronization [70]. If, for example, a device needs to compute
its distance from another device using a signal’s time-of-flight, the clocks on
both devices need to timestamp signals and thus need to be synchronized [70].
Therefore, to ensure efficient (wireless) communication and evaluation systems,
we require time synchronization.

For keeping time, computers commonly use crystal oscillators to drive their
local clocks [71]. However, due to material imperfections and environmental
circumstances, such as temperature, humidity, and air pressure, oscillators are
not perfect and their frequency varies within a single oscillator and between
different oscillators and devices [71, 72]. Thus, in a distributed setting with
more than one device, systems to time-synchronize the local clocks of devices
are necessary. Depending on the use case, it might be sufficient to synchronize
all clocks of a distributed system to each other (internal synchronization), e.g.,
a local (wireless) network. In other cases, it is necessary to synchronize all
clocks with a global timescale (Universal Coordinated Time (UTC)) (external
synchronization), e.g., networks distributed over multiple locations or position-
ing systems. An internal synchronization system has the goal to keep clocks
precise, which means that it is sufficient to keep the deviation between the
clocks of any two devices within a specified bound [71]. In contrast, an external
synchronization system aims to have accurate clocks that do not deviate more
than a specific amount from UTC time [71].

3.6.1 Accuracy-Based Time-Synchronization

Accuracy-based time-synchronization uses an external time source to synchro-
nize to a global timescale. A common approach is using the time signal of a
highly accurate atomic clock. To use the signal directly, one can use Global Nav-
igation Satellite Systems (GNSS), like the Global Positioning System (GPS) [73].
GNSS satellites carry each an atomic clock, and thus a GNSS receiver can
generate an accurate time signal (error <50 ns [71]) for a connected system.
While systems outdoor or close to a window can be equipped with GNSS
receivers, GNSS is an impractical solution for most devices, as the receiver
requires a direct line of sight to the GNSS satellites. For these scenarios, a
common approach is the use of timeservers. The most notable example is the
Network Time Protocol (NTP) [74]. One or more servers are equipped with
a reference clock, such as a GNSS receiver or an atomic clock. Other servers
can contact these servers to update their clock and be themselves timeservers
for other servers, building a hierarchical structure. This system is the one
synchronizing the internet with an accuracy of ≤50 ms [71,75].

20 THESIS OVERVIEW

3.6.2 Precision-Based Time-Synchronization

In networks, where contacting a timeserver is not practicable or networks that do
not require global time-synchronization, precision-based clock synchronization
systems are available. Especially wireless networks, like IoT networks, with
resource-constrained devices require more precise clock synchronization systems
than NTP. A notable approach is the Reference Broadcasting System (RBS) [71,
76], a system for time-synchronizing nodes in a single-hop wireless network. In
RBS, one device (node) broadcasts a time signal to all nodes in its vicinity. Due
to the signal propagation speed, all nodes receive the signal at approximately
the same time, or with a negligible offset, and can synchronize their clocks. As
all devices listen to the same time source, the processing time before sending
the time stamp is not critical as the clocks are not synchronized to a global
timescale, thus the critical path in RBS solely consists of the time on air and
the precise timestamping of the reception at the receivers. Neighboring nodes
can exchange their recorded delivery times and use linear regression to convert
each other’s local offsets, making it unnecessary to update their local clocks.

For multi-hop wireless networks, RBS is not a sufficient solution, as no
single node exists that can reach all other nodes of the network. In time-
slotted networks, like TSCH networks, with predefined communication times
within a single slot, nodes can synchronize their clocks by observing the time
offset between the expected reception of a signal and the actual reception of
the signal. Networks can build a time-synchronization tree to keep all nodes
synchronized and connected (cf. Section 3.4). As clock drift is to be expected,
the synchronization in TSCH is possible on any message a node receives from
its time source [6].

3.7 Evaluation of Low-Power Wireless Networks

Research on low-power wireless networks is not limited to the definition of
protocols, but a crucial aspect is also to test, evaluate, and demonstrate the pro-
tocols’ performance. For testing and evaluating protocols, target deployments,
e.g., deployed IIoT devices in a factory, are rarely accessible. Therefore, simu-
lators or dedicated testbeds are the common solutions for evaluating low-power
wireless protocols and networks.

3.7.1 Simulators

Simulators simulate or even emulate different aspects of low-power devices or
low-power communication. The network simulator ns-3 [77] and the INET
Framework [78] for OMNeT++ [79] simulate the network stack to test and
evaluate various network protocols. They support several physical and medium
access layers, including low-power wireless technologies such as IEEE 802.15.4.
OpenSim [56], Cooja [80], and Renode [81] take a different approach. Instead of
focusing solely on the network, they emulate specific IoT devices and offer prop-
agation models for simulating wireless communication. Renode simulates both
IEEE 802.15.4 and BLE PHYs, whereas Cooja only supports the IEEE 802.15.4
PHY but offers more sophisticated wireless propagation models. Instead of
emulating entire devices or simulating the full network stack, the 6TiSCH
simulator [82] and TSCH-Sim [83] are discrete event simulators implementing

3. BACKGROUND 21

TSCH and 6TiSCH. These simulators work on a higher abstraction layer and
allow the prototyping of TSCH schedulers. TSCH-Sim also has the goal to
simulate large TSCH networks.

3.7.2 Testbeds

While simulation allows certain insights into the execution of protocols, they
cannot accurately replicate all aspects of real hardware and real wireless
environments [84,85]. Therefore, the research community proposed and operates
several testbeds [84–98] to evaluate and benchmark low-power wireless protocols
and IoT systems. Testbeds colocate IoT devices with observer infrastructure
to program IoT devices and gain insights into the execution locally on a device,
and into the interaction with other devices in the case of testing or evaluating
a network protocol. Most testbeds offer insights through recording serial
messages, while others can additionally record traces of GPIO pins [84–86,93]
or through the JTAG interface [85, 86, 94–96]. Within the past two decades,
the research community proposed and built several testbeds, starting with
MoteLab [99]. The community currently operates several testbeds for testing,
debugging, evaluating, and benchmarking low-power IoT protocols, with some
of them being openly accessible [87, 98]. A long-time used testbed in offices
of a university building was Flocklab [84], and its update Flocklab 2 [85,86].
Publicly accessible testbeds include FIT IoTLab [98] and D-Cube [87]. FIT
IoTLab offers several testbeds with a wide range of IoT platforms, with both
deployments at fixed locations and moving robots. D-Cube is a testbed with a
different focus. Instead of offering a testbed for testing and evaluation, D-Cube
is intended for benchmarking IoT protocols in a wireless environment with
controllable degrees of interference.

3.8 Embedded Intelligence and Tiny Machine Learning

So far, we introduced protocols and approaches concerning networking and
closely related aspects. One chapter of this thesis combines networking aspects
with Artificial Intelligence (AI). Therefore, this section introduces background
information on Machine Learning and Embedded AI.

Within the past decades, Artificial Intelligence (AI) and its subfield Machine
Learning (ML) experienced major development, making intelligent components
an essential part of many modern software systems. By the end of the last
century, AI systems like the chess computer Deep Blue [100] have shown
that intelligent machines can outperform humans in specific domains. How-
ever, the major breakthrough of AI, or more specifically ML, followed in the
past decade with major advances in deep learning. Beginning with image
recognition in Computer Vision [101,102], followed by beating humans at the
board game Go [103] and major advances in Natural Language Processing
(NLP) [104–106], deep learning showed its potential and capability of outper-
forming traditional methods. For training ML models, various approaches exist,
including supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning.

Deep Learning, a subfield of Machine Learning, is a method that uses
neural networks with multiple consecutive layers. Modern neural networks
can have over a hundred layers with hundreds of billions of parameters (e.g.,

22 THESIS OVERVIEW

weights), with the currently largest model (GPT-4) estimated to have 1.8 trillion
parameters across 120 layers [107]. While GPT-4 is an extreme case, other
widely used NLP models like BERT [105] and ChatGPT (gpt-3.5-turbo) [108]
have up to 330 million and 20 billion parameters, respectively. In computer
vision, the numbers of parameters are lower, with, for example, ResNet101
containing 44.7 million parameters [102,109].

Deep Learning models require all their parameters during inference, and
thus, only powerful servers are capable of executing large models. These servers
have to load hundreds of megabytes to terabytes of weights, commonly stored
as 32-bit floating-point numbers, and perform up to trillions of operations for
a single classification or prediction of the network.

3.8.1 Tiny Machine Learning

This development of increasingly larger models stands in stark contrast to the
growing amount and need for intelligent, resource-constrained devices. For
example, detecting sleep patterns on a smartwatch, tracking activities with a
fitness tracker, performing face identification on smartphones, or waking up
speech assistants with a wake word require machine learning capabilities on
end devices with computing resources several magnitudes smaller than servers
or data centers. While it is thinkable to upload data and perform the machine
learning tasks in the cloud, this is only possible for devices with a steady internet
connection. Moreover, it adds latency, requires significant amounts of energy
for communication, and cannot guarantee to preserve privacy. For example,
sensitive data like one’s conversations or health data should remain local on
the end device. While standard deep learning models are too large and too
compute-heavy to fit and be executed on end devices, several approaches reduce
their footprint and enable their execution on resource-constrained devices. For
example, MobileNets [110] and FOMO [111] enable fast and reliable image
classification and object detection on smartphones or even embedded devices
like certain Arduinos [112]. One method for shrinking model sizes and increasing
execution speed is quantization [113]. Quantization transforms the network’s
parameters from a floating-point representation to an integer representation,
often using 8 bits per parameter. Such a model takes less space and does not
require floating-point operations during inference. Instead, it can stick to much
faster integer operations, saving time and energy [113]. Other approaches use
binary neural networks [114], sparse-matrix multiplications [115], or splitting
the network to offload heavy computation to edge devices or the cloud [116,117].

4 Related Work

In this section, we present a selection of work representing the current state
of research in the field of this thesis. We consider literature in the areas of
(a) TSCH scheduling and routing, (b) mesh networking in BLE, (c) infrastruc-
ture for in-depth testing and evaluating low-power wireless networks, and (d)
methods for wireless fingerprinting and environment detection.

4. RELATED WORK 23

4.1 Scheduling TSCH

Scheduling in TSCH is a vast field with over a hundred different scheduling
solutions. With this vast number of papers, we limit our discussion of TSCH
schedulers to a selection of notable papers. For a more complete picture, [46]
and [47] review TSCH schedulers with a focus on IIoT and traffic awareness,
respectively. As in the background on TSCH (cf. Section 3.4), we split our
discussion of schedulers along the categories of centralized, distributed, and
autonomous schedulers, followed by the related topic of network softwarization.
Contrary to the background in which we introduce the core concepts, here we
discuss related ideas and similar directions to our work.

4.1.1 Centralized Scheduling

Many bodies of work propose centralized schedulers for TSCH [46, 47] and
WirelessHART [10,16]. Scheduling algorithms in this category target different
aspects, such as energy efficiency [118], throughput maximization [15, 16],
schedulability [10], and lossy links [119–122].

One of the first schedulers for TSCH is TASA [11], a traffic-aware protocol.
It creates a schedule based on the network topology and the traffic load;
however, it makes the same assumption as many TSCH and WirelessHART [12]
schedulers to operate on interference-free channels and thus does not include
retransmissions in its schedule. In a subsequent work to TASA, Palattella
et al. [123] propose a mathematical analysis and method of computing the
minimum number of active slots within a network. Ojo et al. [15] propose a
graph theoretical approach to maximize throughput in a centrally scheduled
TSCH network. These works on TSCH and WirelessHART, including the
C-LLF [10] scheduling algorithm, focus on the highest possible schedulability
for large amounts of deadline-aware communications. Gunatilaka et al. [16]
study the use of a channel for multiple simultaneous communications in the
same timeslot if the communication partners are physically far enough apart
to increase schedulability even further. Similarly, Ojo et al. [118] propose EES,
an energy-efficient scheduling model avoiding interference between concurrent
communications.

Darbandi et al. [124] propose a path collision-aware least-laxity first (PC-
LLF) scheduling algorithm, which Rugamba et al. [125] implement as part of a
centralized scheduler. Moreover, they describe a method of distributing such
a schedule to nodes in a centrally scheduled network. Instead of optimizing
throughput and focusing on networks with joined routing and scheduling,
CLS [126] and QSS [127] are centralized schedulers for networks using RPL for
routing and focus on reducing control message overhead when scheduling and
rescheduling links. T2AS [128] is a traffic-aware and topology-aware scheduler
that sequentially creates a schedule prioritizing longer flows in a data collection
application to reduce latency. Portaluri et al. [129] build a scheduler that
adds fairness in resource allocation, rebalancing the requested communication
resources of end devices. Gaitán et al. [130] propose a scheduler for networks
with multiple gateways that uses unsupervised learning methods to reduce the
number of overlaps of flows.

The above schedulers are capable of creating effective schedules with high
communication throughput. However, many of them can only do so because

24 THESIS OVERVIEW

they assume interference-free channels and perfect links, and thus do not include
retransmissions. A protocol deviating from this assumption is SchedEx [121], a
scheduler extension that calculates and adds a necessary number of retransmis-
sions for each link of the network. AMUS [119] also adds retransmission slots
to allow the use of lossy links. AMUS adds backup retransmission slots for
vulnerable links in otherwise empty slots of the schedule. Khorov et al. [122]
create a slotframe structure including retry segments and shared segments and
study how to identify the optimal number of shared cells. Gaillard et al. [120]
propose another method of retransmissions—slot-based retransmissions—as an
extension to TASA. Slot-based retransmissions repeat the same slot multiple
times to increase reliability. Such a schedule is also applicable for end-to-end
communication flows in non-collection-based networks. Schedules with retrans-
missions shift the focus from pure schedulability towards reliability, making
them capable of withstanding local narrowband interference and usable in
networks susceptible to interference.

While slot-based retransmissions add resilience towards interference and
allow the use of lossy links, they increase end-to-end latency and cannot react
to strongly fluctuating interference levels. To overcome these limitations,
we can deviate from focusing on individual links and focus on end-to-end
communication flows instead, and allocate resources for the entire flow. The
first two protocols taking this approach are the flow-centric policy (FCP) [131]
for WirelessHART and our first paper’s flow-based retransmission scheme (cf.
Section 6.1) for TSCH. Both activate nodes and allocate retransmission slots in
a way that retransmissions are available wherever needed along the path. This
deviation from link-based to flow-based communication allocates resources for
flows and not for individual links. Thus, we can achieve stable and reliable
communication even in the presence of unforeseen interference.

4.1.2 Distributed Scheduling

Tinka et al. [132] present two distributed scheduling algorithms for networks
constantly changing due to mobility. They present an algorithm for continu-
ously announcing a node’s presence and another one distributing scheduling
information for quickly forming a network-wide schedule. Since the introduc-
tion of 6TiSCH [54], the design of distributed schedulers has been heavily
influenced by it and its minimal scheduling algorithm [133]. This scheduler
uses a single cell shared over all nodes. More sophisticated scheduling func-
tions include the Minimum Scheduling Function (MSF) [134], the Low-Latency
Scheduling Function (LLSF) [135], and the Low-latency Distributed Scheduling
Function (LDSF) [136]. MSF has shared cells, autonomous cells and negotiated
cells to schedule different kinds of traffic. LLSF schedules cells for multi-hop
communication closer together to allow forwarding traffic immediately after
reception. LDSF achieves lower latency than other scheduling functions by
splitting slotframes into shorter blocks and introducing retransmission options
in consecutive blocks, focusing on improving latency in distributed TSCH.
The field of distributed TSCH scheduling also covers a range of traffic-aware
scheduling solutions. DeTAS [137], a distributed version of TASA [11] adds
traffic-aware scheduling to build collision-free schedules along a routing tree.
Domingo-Prieto et al. [138] propose a PID-based scheduling solution that adds

4. RELATED WORK 25

or removes cells from a schedule dependent on traffic demand and network
state to counteract network changes and allow non-periodic and bursty traffic.
Palattella et al. [139] propose an algorithm matching the number of cells be-
tween nodes to the actual demand. Similarly, OST [140], allocates slots for each
directional link and adapts its period according to the amount of traffic. Many
of these schedulers focus on low-latency and reliable communication instead
of schedulability as many centralized TSCH schedulers do. Jung et al. [141]
take a different approach and propose a solution balancing latency, degree of
activity of each node, and collision avoidance to achieve a long network lifetime
and high quality of service.

Lately, distributed TSCH schedulers started using machine learning, es-
pecially reinforcement learning. RL-TSCH [142] and RL-SF [143] use rein-
forcement learning for building optimized traffic-aware schedules with a focus
on reliability and energy efficiency or bandwidth optimization, respectively.
Another recent approach is the use of game theory [144] to build optimal
schedules utilizing selfish node behavior.

4.1.3 Autonomous Scheduling

A prominent example of an autonomous scheduler is Orchestra [8]. Orchestra
is a best-effort autonomous scheduler that uses sender-based or receiver-based
communication slots reserved for certain groups of nodes. Orchestra requires
a hash function to determine which nodes can send in which slot. To enable
the efficient use of TSCH in scenarios with high-rate unpredictable traffic,
Elsts et al. [145] propose a hybrid approach with shared and dedicated slots
and reappropriates slots to different nodes depending on the traffic demands.
DiGS [146] adds autonomous scheduling to otherwise central WirelessHART
networks, adding robustness through path diversity introduced by devices
selecting their own routing path. Oh et al. [147] propose Escalator, focusing
on minimizing transmission delays in convergecast scenarios by allocating
consecutive time slots along a packet’s path. Moreover, contrary to Orchestra,
Escalator uses multiple channels. Alice [148] deviates from the node-based slot
allocation of Orchestra and uses link-based slots instead. Moreover, Alice uses
multiple channels with link-based channel offsets instead of a single channel,
and changes cell allocation of all unicast slots at every slotframe. The initial
autonomous schedulers can achieve high reliability but are unaware of traffic
flows and do not achieve the low latency of other scheduling approaches.
However, TESLA [149] proposes a traffic-aware cell scheduling method to
add adaptability to different traffic loads. TESLA adds and removes slots
dependent on the traffic load of neighboring nodes. Jung et al. [150] propose
a parameterized slot scheduler that adapts to the traffic load of nodes. The
scheduler tries to find a trade-off between energy efficiency, reliability, and
latency by using shared slots for nodes transmitting to a joint receiver if
collisions are unlikely. Rekik et al. [151] present e-TSCH-Orch, an enhancement
to Orchestra avoiding congestion by adaptively adding transmission slots for a
node depending on the number of packets in the node’s queue. ATRIA [152,153],
another traffic-aware scheduling method, allocates slots according to the traffic
demand of each link. To improve network performance, ATRIA includes a
method for selecting the optimal slotframe length and uses subslotframes to

26 THESIS OVERVIEW

avoid slot conflicts. OSCAR [154] optimizes Orchestra for convergecast traffic
by assigning different amounts of cells to nodes depending on the distance of
the node to the network root. Kim et al. [155] propose A3, a traffic load based
and adaptive slot allocation algorithm for autonomous schedulers targeting
scenarios with dynamic traffic or heavy traffic load. A3 dynamically adjusts
the number of slots per slotframe.

Layered [156] introduces flow-based scheduling to autonomous TSCH sched-
ulers. It allocates end-to-end slots to a flow to reduce latency and apply spatial
channel reuse for a more efficient use of the wireless spectrum. In a subsequent
work, Urke et al. [157] extend Layered to support end-to-end communication
flows for sensor-actuator traffic, deviating from the convergecast scenario of
the initial version and many other autonomous schedulers.

4.1.4 Network Softwarization

Many centralized schedulers for WirelessHART and TSCH discussed above
perform centralized routing and scheduling at the edge, separating the control
plane from the data plane, and thus achieve one part of network softwariza-
tion. However, to upload a schedule or monitor the network and perform
rescheduling, additional solutions bridging these two are necessary. In this
context of centrally scheduled 6TiSCH networks, Thubert et al. [158] discuss the
challenges of Software Defined Networking (SDN). Exarchakos et al. propose
plexi [159], a framework and a web interface for the task of reconfiguring and
rescheduling TSCH communication. In the general field of software defined
Wireless Sensor Networks, Galluccio et al. [160] and Baddeley et al. [161]
present Software Defined Networking solutions for network monitoring and
reconfiguration. Galluccio et al. [160] propose SDN-WISE, a stateful solution
aiming to reduce communication overhead with the SDN network controller
and make sensor nodes programmable as finite state machines. Baddeley et
al. [161] introduce µSDN, a lightweight solution to gain global knowledge,
network (re)configurability, and virtualization in IEEE 802.15.4 networks.

4.2 Overcoming Interference in TSCH

TSCH uses channel hopping to overcome narrowband interference. However,
in the presence of local wideband interference or local interference on multiple
channels, TSCH reaches its limits. To nonetheless overcome these kinds of
interference, channel blacklisting, multi-path routing, and opportunistic routing
are possible ways. Channel blacklisting has the goal to eliminate channels with
high amounts of interference to increase the packet reception rate and require
fewer transmissions. Adaptive TSCH (A-TSCH) [162], and Enhanced TSCH
(ETSCH) [163] propose modifications of TSCH to estimate the channel quality
and distribute blacklist information as part of Enhanced Beacons (EB) to build
a global blacklist. MABO-TSCH [164] performs local blacklist negotiation for
the communication of individual links. Elsts et al. [165] study adaptive channel
selection methods for TSCH to reduce the number of retransmissions. Instead of
limiting the number of channels, multi-path routing and opportunistic routing
aim to avoid interference through routing decisions. In the literature, multi-path
routing mainly appears for RPL-based distributed TSCH schedulers.

4. RELATED WORK 27

Instead of using the standard single-path tree-routing of RPL, multi-path
routing uses triangular-based redundancy patterns [166], overhearing in RPL
networks [167], scheduling a second path at each node [168], or packet replication
algorithms [169]. Gaillard et al. [170] propose Kausa, which does not use
redundancy patterns, but instead builds a schedule with different paths to
balance the traffic load in the entire network.

4.2.1 Opportunistic Routing

Contrary to multi-path routing, opportunistic routing does not use or maintain
multiple independent paths for routing. Instead, it addresses more than one
potential forwarder for a packet [171–173] to use the best suitable path for the
current state of the network. Opportunistic routing is not TSCH-specific, and
generally has the goal of improving the throughput and reliability of multi-hop
wireless networks. For example, in ExOR [171] each packet is addressed to
a set of potential forwarding nodes, prioritized by routing progress. Based
on their priority, each node in the forwarder set is assigned a time slot for
acknowledging the packet. It only utilizes this time slot if it did not overhear
the acknowledgement of the packet in a previous time slot. Thus, only one
node acknowledges the reception of the packet and forwards it. Later works
such as ORW [174] select the forwarder set based on the expected wait time.
The first receiver of the forwarding set that successfully receives the packet
and provides routing progress acknowledges and forwards the packet. ORW
introduces opportunistic routing to duty-cycled, low-power wireless networking.
ORPL [175] combines the ideas of ORW and ExOR. ORR [176] follows the same
approach as ORW, but chooses the set of forwarders based on their residual
energy, wait times and the amount of redundant packets. Hawbani et al. [177]
introduce a candidate zone to limit the number of potential forwarders and
selects the forwarder based on local distance distributions to reduce waiting
times when forwarding. FLORA [178] takes both location characteristics
regarding the destination and energy levels of nodes into account to select the
best forwarder. SDORP [179] proposes an SDN-based opportunistic routing
approach improving on ORW and ORR by selecting the forwarder set based
on residual energy, transmission distance, and number of hops to the network’s
sink.

The protocols above build their protocols for asynchronous MAC layers,
however, TSCH is a synchronous MAC layer protocol and thus the protocols are
not one-to-one applicable for TSCH networks. Huynh et al. [180], Hermeto et
al. [181], and Hosni et al. [182] combine opportunistic routing with TSCH. They
study the use of opportunistic routing or anycasts in TSCH and propose changes
to TSCH to allow non-colliding acknowledgments from multiple receivers.
BOOST [183] assigns different sending delays to the potential forwarders and
lets the forwarders use carrier sense to ensure a single forwarder. Our second
paper (cf. Section 6.2) takes a different approach by combining opportunistic
routing with concurrent transmissions (cf. Section 3.5) in TSCH to eliminate
the need of choosing a single forwarder.

28 THESIS OVERVIEW

4.3 TSCH and BLE

TSCH was designed as a MAC layer protocol for the 2.4 GHz mode of IEEE
802.15.4. However, to allow successful communication, it has to be able to
coexist with other 2.4 GHz low-power technologies like BLE. Moreover, the
performance of TSCH makes it interesting to use it with other physical layers
bringing efficient mesh communication to them.

4.3.1 TSCH on Other PHYs

While TSCH is a MAC layer protocol for 2.4 GHz IEEE 802.15.4, multiple
research efforts were taken to bring it to other PHYs. Brachmann et al. [184]
study the use of TSCH for long-range low data rate communication using the
subGHz PHYs of IEEE 802.15.4 [19]. The authors demonstrate the feasibility
of using TSCH when adapting the TSCH timeslot timings, and they show the
possibility of combining multiple PHYs in a common TSCH schedule. Van
Leemput et al. [185] extend the multi-PHY approach by adaptively selecting
a PHY based on the current link. They choose a common timeslot length
sufficiently large for the lowest supported data rate. Rady et al. [186] build
g6TiSCH, another work combining multiple PHYs in a single TSCH network.
They perform modifications along the 6TiSCH stack to generalize 6TiSCH,
allowing it to intelligently choose which PHY to use in a TSCH slot. Haubro et
al. [187] explore the combination of TSCH with LoRa, a different subGHz PHY.
With TSCH, they bring multi-hop communication and higher layer protocols
like Orchestra [8] to long-range communication with LoRa which could be an
infrastructure-free alternative to LoRaWAN [20]. King et al. [188] and Charlier
et al. [189] explore the feasibility of using TSCH for Ultra-Wideband (UWB)
communication.

4.3.2 Coexistence of TSCH and BLE

As both IEEE 802.15.4 and BLE use the same frequency range with chan-
nels that highly overlap (cf. Figure 2) and have similar signal strength, the
coexistence between them is essential. Especially for TSCH networks tuned
for reliable communication, coordinating the coexistence could be beneficial.
Carhacioglu et al. [190] study this coexistence and propose a system with a
common TSCH and BLE orchestrator to overcome cross-technology interfer-
ence. While Carhacioglu et al. try to avoid interference by coordinating the
communication of the two technologies, Hajizadeh et al. [191] build a simulation
framework analyzing the coexistence and the number of expectable collisions
for coexisting TSCH and BLE networks.

4.3.3 Combination of TSCH and BLE

Instead of improving the coexistence of IEEE 802.15.4 TSCH and BLE there
exists the possibility to combine IEEE 802.15.4 and BLE within a TSCH sched-
ule. Many new radios for the 2.4 GHz band, like the Nordic nRF52840 [192],
support multiple PHYs such as both BLE and IEEE 802.15.4. Therefore, the
combination of IEEE 802.15.4, TSCH, and BLE in a single network is thinkable.
While the solution by Carhacioglu et al. [190] using a common orchestrator

4. RELATED WORK 29

for TSCH and BLE is one approach to create a common schedule, Baddeley et
al. [193] take an entirely different approach. They propose 6TiSCH++ which
uses the standard TSCH slots over IEEE 802.15.4 for data communication,
but replaces the beaconing slots with concurrent transmissions over BLE. In
6TiSCH++, multiple subsequent concurrent BLE transmissions fit into one
TSCH slot and allow for a faster transmission of control information in a TSCH
network.

4.3.4 Mesh Networking in BLE

In BLE, the standard solution for mesh networking is Bluetooth Mesh (see
Section 3.3.3). However, alternative BLE-based mesh protocols have been
explored. Patti et al. [194] devise a connection-oriented protocol for real-time
mesh communication atop BLE that uses subnetworks. These subnetworks,
forming a star topology and operating in connected mode, interlink nodes
across multiple subnetworks to form a mesh network. Subsequently, Leonardi et
al. [195] extend and implement this approach. While the previous two form mesh
networks using the connected mode of BLE, RESEMBLE [196] is a protocol
designed for Bluetooth Mesh that enables TDMA-based communication with
time slots and clock synchronization, thus enabling real-time communication
within Bluetooth Mesh networks. Petersen et al. [197] extend BLE to support
efficient multi-hop IPv6 over BLE using subnetworks, while Lee et al. [198]
introduce the RPL routing protocol to BLE.

4.3.5 TSCH on BLE

In contrast to the approaches of merging IEEE 802.15.4 with BLE or construct-
ing a BLE mesh solution utilizing the standard BLE network stack, our fifth
paper TBLE (cf. Section 6.5) and BlueTiSCH [199] examine the integration
of TSCH and BLE, eliminating the necessity for IEEE 802.15.4 in TSCH
networks. While BlueTiSCH utilizes a simulation-based approach employing
TSCH-Sim [83], we implement our solution in Contiki-NG [44] and conduct
a testbed-driven evaluation in a real-world setting. This approach introduces
new use-cases for BLE devices, including static networks currently relying on
IEEE 802.15.4.

4.4 Time-Synchronized Testing and Evaluation

To gain meaningful insights when testing and evaluating low-power wireless
protocols on testbeds, we need to be able to low-intrusively trace executions
simultaneously on multiple nodes that are physically apart. Moreover, we
need time-synchronization capabilities to combine and evaluate the individual
traces. Several testbeds offer tracing and time-synchronization capabilities.
Flocklab [84] can trace up to 5 GPIO pins at a sampling rate of 10 kHz
and uses NTP for time synchronization with a time stamping error below
40 µs. Tracelab [93] extends Flocklab with a more capable GPIO acquisition
system based on an FPGA, achieving a short-term sampling frequency of up to
100 MHz and a continuous sampling frequency of 285 kHz. It uses Glossy [9]
on 868 MHz with an FPGA-based clock correction control loop, achieving
a time-synchronization error as low as 1.5 µs. Flocklab 2 [85, 86] uses the

30 THESIS OVERVIEW

programmable real-time unit (PRU) of a Beaglebone Green [200] for GPIO
tracing. For time-synchronization, it uses GNSS with an accuracy of approx.
50 ns where available, and the Precision Time Protocol (PTP) with an accuracy
of approx. 1 µs at all other locations. It also supports Serial Wire Debug (SWD)
tracing through a J-Link debug probe.

Aveksha [94], Minerva [95], and HATBED [96] use different J-Link tracing
methods instead of GPIO tracing, and can trace the program counter, or
perform watchpoint tracing non-intrusively. Aveksha allows a polling period of
30 µs but does not perform synchronized timestamping. Minerva adds time-
synchronized tracing, and synchronous stopping of the execution. It uses NTP
for time synchronization and timestamping, reaching a millisecond accuracy.
HATBED [96] uses on-chip debugging capabilities of ARM Cortex-M3/M4
processors. It supports watchpoint-logging and logging of print statements and
uses a logic analyzer to trace the output.

Our fourth paper, Grace (cf. Section 6.4) also performs time-synchronized
GPIO tracing. However, instead of using specialized hardware like an FPGA
or a specific observer board, we use low-cost off-the-shelf logic analyzers and
an RBS-like (cf. Section 3.6.2) time-synchronization system with 433 MHz
radios. We perform the time-synchronization in software to achieve a low-cost
retrofittable time-synchronized testing and evaluation solution for existing
testbeds.

4.5 Wireless Localization & Sensing

The common focus of wireless signals is the exchange of information. However,
we can also use these signals for other use-cases, like positioning and localizing
a device, detecting and locating people in a room or tracking peoples movement.
Each of these solutions exploits different characteristics of wireless signals and
thus uses application specific wireless fingerprints.

4.5.1 Wireless Positioning

Wireless signals travel with the speed of light and thus, in a line-of-sight
setting, devices can use the time-of-flight (ToF) to determine their distance
to the signal’s source. In combination with tracking the time-of-arrival (ToA),
devices can use trilateration/true-range multilateration [70] to compute their
position without a synchronized clock on the measuring device. GNSS systems
like GPS use this approach for positioning [70, 73]. Another system using a
similar approach combining ToF and Time Difference of Arrival (TDoA) is
Ultra-wideband (UWB), a precise indoor positioning system (IPS) [70]. Other
characteristics that are available for some radios are the angle of arrival (AoA)
as well as the received signal strength (RSS) [70].

While a system like GPS works well outdoors and UWB works well within
a single room, both require a (direct) line-of-sight connection for the wireless
signals [70, 201]. However, many environments are more complex with walls
or objects causing reflections of wireless signals, multi-path fading, shadowing,
and signal attenuation [201]. Therefore, it is not easy to model indoor signal
propagation and even additional parameters like the received signal strength
(RSS) are unstable in changing environments, including changes as small as

4. RELATED WORK 31

moving around or opening a door, as well as environmental changes like a
change in humidity [201].

Yet, while these parameters are unstable, they are still used for localization.
For a successful use of the received signal strength, data is collected at several
reference points. RADAR [202] uses WiFi signals to locate and track users inside
buildings. With a k-nearest neighbor pattern matching system, RADAR can use
the RSS of three IEEE 802.11 access points to determine a user’s location with
2–3 meter resolution. Several subsequent works use Bayesian-based filtering
methods, e.g., Kalman filters or particle filters, to increase the robustness of the
positioning system [203–206]. Other methods use Support Vector Machines [207]
for positioning or transfer learning [208] to share localization models over time,
across space and to other devices. Chow et al. [209] perform a more coarse-
grained locality classification, deciding whether a device is within a specific area.
Zhang et al. [210] showcase the usability of deep learning for RF localization.
They propose an indoor positioning system using a deep neural network (DNN)
in combination with a Hidden Markov Model (HMM). The four-layer DNN
outputs a coarse position estimate based on pre-processed RSS from WiFi
access points. The HMM then further refines the coarse estimates, resulting
in a positioning accuracy of ~0.4 meters. Other works investigate the use of
BLE for localization [211–215] with recent solutions [216] using deep learning
approaches. Faragher et al. [213] and Zhuang et al. [214] both achieve <3 m
localization accuracy using BLE advertisements. Koutris et al. [216] use a CNN
to process received signals of multi-antenna anchors to locate a BLE sender
with an accuracy of 70 cm.

4.5.2 Device Detection

Next to localization, we can also use wireless signals to find hidden electronic
devices [217], or use RF fingerprinting to identify specific devices based on their
radio signatures [218–220]. For the latter, one can identify the inaccuracies in
the signal, a specific device transmits and use this for classifying the respective
device. PARADIS [218] distinguishes 130 identical devices with an accuracy
of 99% by analyzing the devices’ differences in the modulation domain using
support vector machines and k-nearest neighbors. ORACLE [219] uses a CNN
to distinguish devices based on I/Q sample variations between the devices,
with an accuracy of 99%. However, Al Shawabka et al. [221] show that the
wireless channel significantly impacts the performance of CNN solutions.

4.5.3 Detecting and Locating Humans

Instead of locating electronic devices, wireless signals can also be used to
locate non-electronic devices or humans within an environment [222–227]. This
method is referred to as device-free localization. Zhang et al. [222] show how
one can estimate the position of a human within a grid deployment using
the received signal strength (RSS). SCPL [223] uses an algorithmic approach
using RSS values to count and locate multiple moving humans down to 1.3
meters. Wi-CaL [226] uses machine learning and deep learning methods, which
utilize channel state information (CSI) for counting and localizing humans with
above 90% accuracy. Rapid [224] combines the CSI information with acoustic
measurements to identify an individual person within a group of people. Lastly,

32 THESIS OVERVIEW

Wang et al. [227] use machine learning approaches to detect occupancy of rooms
with both stationary and moving humans. Instead of using WiFi, BLECS [225]
uses BLE and reinforcement learning to detect whether there are humans in a
room.

4.5.4 Activity Detection

We can not only use wireless signal to detect the occupation of rooms or the
movement of humans. Several works show that we can even use RF signals for
activity detection – the estimation of the current activity of a human. Sigg et
al. [228] can detect the presence of humans and that they are active, as well as
human gestures from changes in the received signal strength of WiFi signals at
a phone. Wang et al. [229] are able to classify in-place activities using WiFi
channel state information. Chen et al. [230] use a ceiling mounted UWB radio
to recognize a set of human activities within a room. Other works [231–233] use
RF signals to detect multiple people behind walls and visualize and detect their
activities. Zhao et al. [231] use RF signals to estimate 2D poses of humans. Li
et al. [232] continue on this work and build a spatio-temporal attention feature
learning model which allows skeleton-based activity recognition of humans.
Geng et al. [233] use WiFi for 3D pose estimation using a transfer learning
approach from image-based systems to WiFi signal-based ones.

Instead of using wireless signals, other signal-free human activity recognition
methods use mobile sensors like accelerometers, gyroscopes, magnetometers, or
barometers to track a user’s movement or their activities – sensors that are
commonly available on smartphones or wearables [234].

4.5.5 Environment detection

While the localization problem focuses on detecting the specific location of
a device and the detection methods discussed above focus on detecting a
specific device or person, environment detection aims at classifying the general
surrounding environment, such as home, office, street, or shop. Several works
use audio-based systems to accurately detect the environment [235–237]. Ma
et al. [235] use a Hidden Markov Model classifier to distinguish between 12
environments—such as bus, office, street, or supermarket—with an average
accuracy of 92% using 3-second long recordings. Qamhan et al. [236] combine
Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM)
to classify the environment and microphone features from voiced and unvoiced
segments of a recording. They distinguish between three environments (office,
cafeteria, and sound-proof room) with an accuracy of 98%. Heittola et al. [237]
create audio fingerprints for different environments as histograms and compare
recordings using a k-nearest neighbors algorithm to match these histograms.
They can distinguish 12 environments with a maximum accuracy of 92.4%
using >120 second recordings. All three do not address privacy concerns
in using audio recordings for environment classification. Choi et al. [238]
combine an acoustic and a visual system to detect the context—such as car,
bag, office, or subway—a user’s device is located in. Liang and Wang [239] use
a convolutional neural network to detect a user’s mode of transport—such as
car, bicycle, or train—from a smartphone’s accelerometer data. The system
achieves an accuracy of 94.48% for distinguishing 8 modes of transportation.

5. RESEARCH QUESTIONS 33

In our third paper of this thesis (cf. Section 6.3) we argue that received
Bluetooth Low Energy advertisements are sufficient to classify the surrounding
environment and are less privacy-invasive than audio-based systems.

5 Research Questions

Protocols for the (Industrial) Internet of Things stand out for reliable commu-
nication using an unreliable wireless medium. With an increasingly congested
wireless medium and the growing number of deployments, modern IoT solutions
have to achieve reliable communication or operation in even harsher environ-
ments. We expect IIoT networks to remain fully functional, reliable and still
meet communication deadlines even in the presence of unforeseen interference
and degrading communication links. We expect IoT devices accompanying us,
like wireless headphones, to smartly adjust their settings to the surrounding
environment.

As we discuss in Sections 2–4, state-of-the-art protocols are not ready for
these challenges. Therefore, we design and evaluate protocols, that combine
strategies from different low-power wireless communication approaches to
automatically and resource-efficiently adapt to the changes in the wireless
environment without neglecting application-specific requirements. Moreover,
we realize new applications for wireless IoT solutions to enable devices to adapt
their functionality to the surrounding environment. This thesis specifically
identifies and answers the following five Research Questions (RQs).

RQ1: How can we ensure highly stable communication in centrally scheduled
low-power wireless networks which are susceptible to dynamic changes in
the wireless environment?

RQ2: How can we reduce latency in low-power wireless mesh networks without
negatively impacting reliability?

RQ3: Can resource-constrained low-power wireless communication devices
accurately recognize their environment without additional sensors?

RQ4: How can we build a cost-efficient debugging and evaluation system for
low-power wireless protocols?

RQ5: How can we use low-power communication protocols to create adaptive
and efficient systems for modern IoT solutions?

RQ1 stems from the observation, that communication for the Industrial
Internet of Things usually uses centrally scheduled networks. However, these
networks follow strict schedules that do not allow for flexibility within end-to-
end communication flows and are not able to adapt to interference changes in
the wireless medium. In Chapters A and B, we answer this question. Chapter
A introduces flow-based retransmissions, adaptively utilizing retransmissions
wherever interference makes them necessary along an end-to-end communication
flow. Chapter B introduces opportunistic routing with concurrent forwarding
in TSCH to dynamically route traffic around interference sources along the
main communication path.

34 THESIS OVERVIEW

RQ2 approaches the challenge of communication systems with the lowest
feasible latency without compromising reliability. We answer this question in
Chapters A, B, and E. Both solutions in Chapters A and B achieve a best-
case latency equivalent to a system without retransmissions, using a single
path for routing. These solutions circumvent the necessity to await unneeded
communication slots or forwarder coordination. Chapter E takes a different
approach to tackle this question by replacing the IEEE 802.15.4 physical layer
with BLE physical layers while retaining the TSCH network stack.

RQ3 looks at novel use-cases of wireless communication signals. Instead of
using wireless signals for communication, we ask whether we can use wireless
signals to detect the environment and adapt the functionality of smart devices
like wireless headphones. Chapter C answers this question by building a
solution that can infer a device’s environment solely from the fingerprint of
ambient Bluetooth Low Energy advertisement signals.

RQ4 approaches a problem orthogonal to the previous research questions,
yet important for fully exploring and understanding low-power wireless mesh
protocols. For evaluating these protocols, the research community commonly
uses testbeds, however, evaluating timing-specific aspects in a distributed setting
requires the ability to timestamp instructions or events in these distributed
testbeds. In Chapter D, we present an affordable time-synchronized testbed
evaluation system that provides us with in-depth insights into the protocols we
develop to answer RQ1 and RQ2, and that is retrofittable to existing testbeds.

RQ5 reflects the general idea of this thesis as it relates to the general
problem of modern IoT solutions that must be able to resource-efficiently
adapt to changes in the environment when using wireless communication.
All five papers we present in Chapters A – E include aspects answering this
question. Chapters A and B add dynamicity to centrally, and often statically
scheduled IEEE 802.15.4 networks. Chapter C builds a system capable of
adapting applications based on the environment. Chapter D uses subGHz
low-power wireless communication to efficiently time-synchronize evaluation
infrastructure, and Chapter E demonstrates the use of the 6TiSCH stack on
top of BLE opening the field for future IoT and IIoT solutions.

6 Thesis Contributions

This section summarizes the papers that constitute the main contribution of
this thesis. Table 1 outlines the chapters of this thesis, along with the name of
the protocol or system we discuss in each chapter, and the research questions
it addresses.

6.1 Chapter A – Master: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks

Context and Challenge. The Industrial Internet of Things (IIoT) requires
efficient ways of scheduling communication in low-power wireless networks.
Such schedules have to ensure energy-efficient and reliable communication while
keeping latency low to enable systems to quickly react to changes in industrial
processes.

6. THESIS CONTRIBUTIONS 35

Table 1: Research questions and the corresponding thesis chapters
addressing them, together with the name of the protocol or system
discussed in each chapter.

Chapter A Chapter B Chapter C Chapter D Chapter E

Master Autobahn BlueSeer Grace TBLE

RQ1

RQ2

RQ3

RQ4

RQ5

As we discuss in Section 4.1.1, centralized TSCH schedulers until this
work were unable to react to unforeseen interference. Many solutions focus
on schedulability of communication assuming interference-free channels with
perfect links [10, 11], or schedule backup slots for retransmission along specific
links, but usually only one backup slot per link [16,119]. However, in networks
without exclusive access to certain channels and other wireless traffic such
as WiFi, a scheduler has to account for dynamic wireless environments with
changing levels of interference on each link.

Approach. Master is a centralized scheduler for TSCH networks, that
addresses the challenge of handling unforeseen changes in the wireless medium.
Master separates the control plane from the data plane, and thus consists
of two parts: a central server component and a networking component (cf.
Figure 9). Its central server component runs on the edge of a sensor network
or even in the cloud and performs the routing and scheduling. Its networking
component runs on each sensor node on top of TSCH and performs the schedule
installation and the forwarding according to the central component’s routing.
This twofold design splits the compute-heavy scheduling task from the network
operation of the usually resource-constraint devices in an IoT or sensor network.

Master’s design, is flexible to dynamically handle unexpected interference
levels at any link along a multi-hop communication flow and does not limit
retransmissions to specific links. We can dynamically react to local interference
by using a novel flow-based retransmission scheme, in the paper denoted as
Sliding Windows. This scheme allocates retransmissions for a flow instead
of a specific link, allowing any link of the flow to use between no and all
retransmission slots (cf. Figure 10). If no link needs retransmissions, we do
not have to wait for retransmission slots to pass. Instead, we can immediately
continue with the next hop in a subsequent slot to keep latency at a minimum.
This dynamic approach allows us to use retransmissions for different links at
different iterations of the schedule, wherever we need them due to the currently
prevalent interference pattern. Thus, Master achieves robust and long-term
stable schedules while keeping latency at a minimum.

Results. We evaluate Master and its flow-based retransmission strategy
in experimental testbed evaluations and show that it achieves a delivery ratio of
above 99%. We experimentally compare its performance to the well-established

36 THESIS OVERVIEW

M

Radio

TSCH

MASTER

Application

Ro
ut
in
g

M
A
C

PH
Y

Figure 9: Master consists of an external centralized scheduler (M)
and a routing layer. The external scheduler performs the global
routing and scheduling and pushes the computed schedule onto
the network. In each node, Master’s routing layer implements the
schedule in TSCH and performs the routing during runtime.

autonomous TSCH scheduler Orchestra [8] showing that Master with its
flow-based retransmission scheme has 85–90% lower latency than Orchestra
while maintaining the high reliability Orchestra is known for. This clearly
shows Master’s advantage when communication partners are known upfront.
Lastly, we perform a long-term evaluation over 24 hours showing its long-term
stability for highly reliable (>99.6%), low-latency (<4.5 slots) communications.

Contributions. In summary, this chapter makes the following contribu-
tions:

• We present Master, an open-source, centralized router and scheduler
for TSCH-based networks designed with easy extendability in mind.

• We design Sliding Windows, a transmission strategy for Master to
increase the flexibility, stability, and reliability of centrally scheduled
communications.

• We propose flow-based queues as an extension to TSCH to enable the
use of central scheduling algorithms.

• We implement Master as part of Contiki-NG and evaluate it in environ-
ments susceptible to interference.

• We show the long-term stability of schedules computed by Master in
experiments of 24 hours.

Statement of Personal Contribution. I am the lead designer and
implementer of Master and its flow-based retransmission scheme. Additionally,
I designed and conducted the experimental evaluation. I am also the lead
author of the paper.

The chapter was published as a paper in the Proceedings of the 16th Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS),
2020 [240], and its source code is available on GitHub2.

2Available at https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler

6. THESIS CONTRIBUTIONS 37

D

C

FB

E

A

(a) Sample Topology
with two intersecting
flows.

1 2 3 4 5 6 7 8 9

A TX TX TX TX

B RX RXTX RXTX RXTX TX

C TX TX TX

D RX RXTX RXTX TX RX RXTX RXTX RXTX TX

E RX RX RX

F RX RX RX RX

(b) Flow-based retransmission schedule, with
one transmission slot per hop and two (or-
ange flow) or three (green flow) retransmis-
sion slots to be shared among the nodes of a
flow.

Figure 10: Sample schedules for Master’s flow-based retransmission
strategy. One flow originates at node A to end at node F while the
second one originates at node C and ends at node E.

Naming choice. When selecting a name for our centralized scheduler, we
sought a term that accurately portrays its function within a network. The
scheduler both masters the skill of computing an efficient schedule and is the
expert in a system of wireless sensor nodes. Consequently, we chose the name
Master.

We are cognizant of the connotations associated with the words “master” and
“slave” in the United States due to the country’s historical context. However,
the term “master” itself holds a broader meaning and application beyond its
combination with “slave,” and particularly outside the US, it may not carry
the same negative connotation. Although our protocol does not involve any
components referred to as “slaves,” in hindsight, we would likely opt for a
different name to avoid unintentional associations in English-speaking regions.
Potentially, we might choose a word from a different language to sidestep any
inadvertent connotations.

Discussion and possible extensions. With Master we create a central-
ized scheduler that can adapt to changes in the wireless environment by using
flow-based retransmissions and eliminating the need for regular rescheduling.
Master adds dynamic aspects to otherwise static schedules and reduces la-
tency to a minimum without compromising reliability. For Master we use a
Reverse Longest Path First (R-LPF) scheduling algorithm that reduces waiting
times and thus reduces latency within end-to-end flows. However, many appli-
cations in the IIoT are deadline-driven, and therefore, Master would be more
applicable for real-world applications if it supported deadline-based schedul-
ing algorithms. A bachelor’s thesis [241] supervised by me implements three
deadline-driven scheduling algorithms to close this gap. Moreover, Master
has no built-in method for neighbor data collection and schedule dissemination
connecting the control and data planes. A master’s thesis [242] supervised by
me builds a system for an initial collection of neighbor data and disseminating
a first schedule, to increase the usability of Master in unknown deployments.

In this paper, we present a method for computing the required number of
retransmission slots for both link-based and flow-based retransmissions. Our
approach utilizes the ETX metric [48]. While effective for routing decisions,

38 THESIS OVERVIEW

this metric may not be optimal for determining the number of retransmission
slots. Instead, employing a Markov chain, such as the approach introduced in
the paper proposing a flow-centric policy in WirelessHART [131], offers a more
sensible solution for selecting the number of retransmissions. Incorporating
this method into Master would be beneficial.

is a more sensible solution for selecting the number of retransmissions, and
it is worth adding it to Master.

Especially with the introduction of TSCH on BLE (cf. Section 6.5) Master
would also be a viable candidate to build centrally scheduled networks featuring
heterogeneous physical layers. With a global view of the network, it becomes
feasible to schedule more efficient communication by employing a specific
physical layer for each flow or link within the network.

6.2 Chapter B – Opportunistic Routing and Synchronous
Transmissions Meet TSCH

Context and Challenge. As the number of mobile and IoT devices commu-
nicating increases, the wireless medium becomes increasingly congested, posing
a greater challenge for successful communication. This results in a significantly
higher spectrum occupation and heightened complexity for successful communi-
cation. Scheduled communication in networks utilizing Time-Slotted Channel
Hopping brings measures to reliably communicate in such a harsh environment,
including retransmissions and channel hopping. Retransmissions across differ-
ent physical frequencies increase the likelihood of successful communication in
the presence of narrowband interference [8, 131,240].

However, with an increasingly occupied spectrum, wideband interference
emerges as a new challenge. Schedules designed for long-term stability must
be immune to wideband interference, as interference can lead to link failures or
render nodes unreachable, significantly impacting routed communication. While
our solution of flexible retransmissions (discussed in Section 6.1) effectively
mitigates narrowband interference, it shares a common limitation with other
TSCH schedulers when facing wideband interference. Communication in TSCH
networks typically follows a single path, and if there’s a wideband interference
source along that path, it cannot be handled, resulting in communication failure
(cf. Figure 11a).

Approach. In this chapter, we show that we can tackle the problem of
local wideband interference by combining three established technologies in
low-power wireless networks: Time-Slotted Channel Hopping (TSCH) [6,8,131,
240], Opportunistic Routing [171, 174, 175], and Synchronous Transmissions
[9,59,65]. We design and evaluate Autobahn, a hybrid routing scheme that
combines these three technologies. Autobahn establishes long-term stable
schedules in the presence of local wideband interference by routing traffic from
a sender to a receiver along a broader path and enabling neighboring nodes
to concurrently transmit the same data in the same timeslot using the same
frequency channel. The routing approach follows the concept of opportunistic
routing (cf. Section 4.2.1), where the specific path a packet takes to reach its
destination is inconsequential.

In Autobahn, a node forwards a packet opportunistically to multiple neigh-
boring nodes, which subsequently, in their next scheduled slot, simultaneously

6. THESIS CONTRIBUTIONS 39

A B D

C E

1 2 3 4
A TX TX
B RX TXRX TX
C
D
E RX RX

(a) Established central scheduling approaches employ a single routing path.
Their schedule will fail if one of the links fails, such as the link between
nodes A and B in this example.

A B D

C E

1 2 3 4
A TX TX
B RX TXRX TX
C RX TXRX TX
D RX RXTX TX
E RX RX RX

(b) Autobahn utilizes opportunistic routing and thereby provides redun-
dant options in case routes fail. In this example, packets can travel via
node C to destination E.

Figure 11: Autobahn compared to established centralized TSCH
scheduling approaches. In this example, we assume a topology of five
nodes, with node A as source and node E as destination. We show
both the scheduled paths and the TSCH schedule, using RX, RXTX,
and TX slots as typical for flow-based retransmission schemes (with a
retransmission window of two). Grayed-out slots present slots where
reception and transmission are not possible due to previously failed
interfered receptions.

forward it opportunistically to their neighbors. In scenarios where a node
cannot participate in forwarding the packet due to interference, this poses
no issue as other nodes can step in to forward the packet instead. Figure 11
illustrates an example scenario and schedule for Autobahn in comparison
with a flow-based single-path scenario created by schedulers like Master (cf.
Section 6.1).

The combination of TSCH, opportunistic routing, and synchronous trans-
missions addresses the main challenge of each of these three individual concepts.
TSCH provides the time-synchronization required for synchronous transmis-
sions. Synchronous transmissions eliminate the challenge of selecting a single
forwarder of a packet in opportunistic routing by enabling multiple concurrent
forwarders. And opportunistic routing resolves the issue of stability loss in the
presence of a wideband interference source along a single path.

Results. With Autobahn, we demonstrate the feasibility of synchronous
transmissions in TSCH networks. TSCH networks are well-enough synchronized
to allow the reception of synchronously transmitted packets due to the capture
effect (cf. Section 3.5.1). Through the combination of opportunistic routing,
synchronous transmissions, and TSCH, we keep complexity low and do not

40 THESIS OVERVIEW

increase the minimum latency compared to a single path schedule. Moreover,
this combination even allows a lower average latency in the case of local
narrowband interference. Our evaluation shows that Autobahn is capable of
outperforming single-path retransmission strategies including Master’s flow-
based retransmission strategy and other single-path retransmission strategies
both in the presence of and without interference. Moreover, Autobahn offers
long-term stability with over 95% reliability over several days without the need
for rescheduling.

Contributions. In summary, this chapter makes the following contribu-
tions:

• We are the first to combine the concepts of opportunistic routing, syn-
chronous transmissions, and Time-Slotted Channel Hopping (TSCH) into
a single protocol, achieving long-term stable routed communication.

• We design Autobahn, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference.

• We implement Autobahn for Contiki-NG [44] and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules using Autobahn over 12 days and under various interfer-
ence levels for 25 hours. These experiments achieve reliability under
interference of 96.8% and latency of 4.2 slots, outperforming both the
central scheduler Master [240] and the autonomous TSCH scheduler
Orchestra [8].

Statement of Personal Contribution. I am the lead designer and
implementer of Autobahn. Additionally, I am the main designer of the
evaluation and the main author of the paper. The chapter was published as
a paper in the Proceedings of the 46th IEEE Conference on Local Computer
Networks (LCN), 2021 [243], and its source code is available on GitHub3.

Discussion and possible extensions. In this work, we demonstrate
the feasibility of synchronous transmissions within TSCH, showcasing their
potential to reduce the coordination overhead associated with forwarder selec-
tion in opportunistic routing. While time synchronization in TSCH enables
successful utilization of the Capture Effect, it remains necessary for a single
node’s radio signal to be significantly stronger than the combined strength
of all other signals. Autobahn shows that successful forwarder selection
is achievable; however, there exists room for enhancement, particularly by
considering the expected received signal strength. If signals from multiple
senders exhibit comparable signal strengths, Autobahn might inadvertently
decrease communication reliability. Consequently, by incorporating received
signal strength into the forwarder selection process, a more robust version of
Autobahn could be developed.

So far, Autobahn demonstrates the possibility of synchronous transmis-
sions in TSCH using the IEEE 802.15.4 physical layer. However, with TSCH
now available on additional physical layers (cf. [184, 187–189] and Section 6.5),
the question arises whether a solution like Autobahn could be applicable to
these alternative physical layers. While the general feasibility of synchronous

3Available at https://github.com/ds-kiel/autobahn

https://github.com/ds-kiel/autobahn

6. THESIS CONTRIBUTIONS 41

BLE Radio

BLE Scanning &
Feature Extraction

Embedded Neural Network
& Environment Inference

B
lueSeerBLE Advertisements

…

5% 10% 1%80%

Figure 12: BlueSeer: System architecture. BlueSeer scans the
wireless medium for BLE packets and extract features from them.
An embedded neural network classifies the environment between 7
categories.

transmissions on BLE has been demonstrated in [60] and [64], it necessitates a
greater power difference to use the capture effect. Nonetheless, when combined
with meticulous forwarder selection during scheduling, this approach may of-
fer a compelling strategy, particularly for ensuring reliable communication in
networks employing multiple physical layers.

6.3 Chapter C – BlueSeer: AI-Driven Environment De-
tection via BLE Scans

Context and Challenge. Bluetooth Low Energy (BLE) devices are all
around us, such as wireless keyboards, wireless headphones, smartphones,
smart speakers, smart sensors, and many others. These devices constantly
announce their presence and their provided service for other devices, like a
smartphone or a computer, to be able to interact with them. During the
COVID-19 pandemic, we saw another strength of BLE: due to its low signal
range, it is possible to trace devices and thus people who have been in a user’s
vicinity to thus trace the spread of infections [38].

This behavior of BLE announcing its services and sending advertisements
all the time makes its use also thinkable for other applications. One such
application could be detecting the environment using ambient BLE signals
instead of sensors like microphones [235–237], cameras [238], or accelerometers
[239]. Detecting the environment from ambient BLE signals would enable
low-power wireless devices without additional sensors to adapt their behavior
to the environment. For example, wireless headphones could lower their noise-
cancellation levels in traffic to ensure the safety of their users, and wearables
could keep silent while in a theater.

Approach. In this work, we present BlueSeer, a smart environment-
detection system capable of inferring environments when running on resource-
constraint IoT devices, like wearables or microcontrollers. BlueSeer only
requires a BLE radio scanning for BLE advertisements of nearby devices. We
perform feature extraction from the collected data and use an embedded neural

42 THESIS OVERVIEW

network to accurately predict the current environment (cf. Figure 12). BlueSeer
distinguishes between 7 environments (home, office, shopping, transport, nature,
street, and restaurant) based on 23 different features extracted from the BLE
data. A feed-forward neural network with a single 500-neuron hidden layer and
a 7-neuron output layer performs the classification of the current environment.
This network is sufficient for successfully classifying the environment and easily
fits the memory footprint of modern microcontrollers.

Results. With BlueSeer, we demonstrate that it is feasible to infer an
environment solely from advertisement packets received with a BLE radio on
resource-constrained hardware. A small neural network that fits the memory
footprint of a modern microcontroller is sufficient to achieve an overall clas-
sification accuracy of 84%. Different classes of environments pose different
challenges, with environments with low dynamics such as home, restaurant,
or office being better detectable with an accuracy of around 98%. BlueSeer
is able to perform the inference within 13 ms on a Cortex-M4 microcontroller
clocked at 64 MHz [192].

Contributions. In summary, this chapter makes the following contribu-
tions:

• We show that it is possible to categorize environments exclusively from
received BLE advertisements.

• We present BlueSeer, an Environment Detection system able to classify
environments solely using received BLE packets. BlueSeer distinguishes
between 7 categories: home, office, shopping, transport, nature, street,
and restaurant.

• We carry out extensive feature engineering and identify 7 features from
BLE advertisements, ranging from number of devices in proximity and
RSS measurements, to the diversity of offered services.

• We devise a neural network and show that its quantized, embedded
version classifies its environment with up to 84% accuracy on a low-power
platform with a 64 MHz MCU, and uses 65 KB of memory.

Statement of Personal Contribution. I am the second author and
a co-designer of BlueSeer. Additionally, I designed and conducted the data
collection and on-device evaluation. We attribute 60% of the workload to the
first author and 40% to me, the second author.

The chapter was published as a paper in the Proceedings of the ACM/IEEE
Design Automation Conference (DAC), 2022 [244], and was nominated as
candidate for the best paper award at the conference. Its source code is available
on GitHub4.

Discussion and possible extensions. With BlueSeer, we show that
BLE is the sole requirement to identify an environment. We show that a
system like this is feasible on a microcontroller, however, the limited computing
capabilities and the current state of supported AI/ML features in TensorFlow
Lite for Microcontrollers [245] limit the exploration space significantly. To
further explore the field and the capabilities of using ambient BLE signals, a

4Available at https://github.com/ds-kiel/blueseer

https://github.com/ds-kiel/blueseer

6. THESIS CONTRIBUTIONS 43

USB

USB

G
PI
O

GPIO
GPIO

Testbed Node Sync Node

Radio

Observer

(Raspberry Pi)

IoT Node

Logic
Analyzer

GPIO

MCU

Radio

GPS

GPIO PPS

Figure 13: Design Overview of Grace. The testbed node consists
of an observer platform and one or more IoT nodes. We add a
logic analyzer and a radio for time-synchronized GPIO tracing. The
synchronization node consists of a microcontroller and a radio gen-
erating the time signal. In case of larger deployments, we can use
multiple synchronization nodes and add an otherwise optional GPS
receiver.

smartphone would be a better fit. A smartphone is still a movable device carried
around by its user and allows us to try larger neural networks and different
approaches like unsupervised learning for environment detection on a mobile
end-device. Two master’s theses [246,247] supervised by me demonstrate that a
BLE-based classification system cannot only distinguish between environments,
but can also more granularly distinguish between multiple instances of the same
environment, i.e., we can identify specific homes or offices. More elaborate
models could be able to identify not only known locations, but also the places a
user regularly visits. Such a system could identify changes in a user’s behavior
when they visit unknown places or remain longer at certain known ones.

6.4 Chapter D – Grace: Low-Cost Time-Synchronized
GPIO Tracing for IoT Testbeds

Context and Challenge. Designing wireless communication protocols re-
quires infrastructure to test and evaluate the protocols’ performance. While
simulations [80,81] allow high-level insights into protocols and algorithms, they
cannot accurately replicate all details of real hardware like CPU-specific timing
and environmental factors, nor are they capable of simulating the specifics of
the wireless environment and random interference patterns the protocol has to
handle [84,85]. Therefore, research on wireless communication protocols and
systems commonly uses testbeds—deployments of IoT devices co-located with
observer infrastructure for instrumentation, logging, and deployment control.

We can use testbeds to evaluate protocols and their performance under
real-world conditions with interference sources not under our control or with
artificially generated interference [248, 249]. However, for testing the inner
workings of protocols, or evaluating the concurrent execution of instructions,
like the participation of nodes in concurrently forwarding data (cf. Section
6.2), we need distributed logging or tracing capabilities. Most testbeds provide

44 THESIS OVERVIEW

serial logging capabilities, however, printing messages takes several hundreds of
microseconds leading to side effects on program execution and limits accurate
timestamping, especially if we need to trace microsecond offsets between IoT
nodes. A less intrusive and more time accurate method is tracing state changes
of General-Purpose Input/Output (GPIO) pins of a processor or microcontroller,
which are usually accessible on any IoT development hardware. However,
tracing these signals requires specialized hardware or specific observer platforms.
Moreover, in a distributed system, we require precise time-synchronization to
trace microsecond offsets between IoT nodes.

Approach. In this chapter, we present Grace, a time-synchronized GPIO
tracing solution for IoT testbeds (cf. Figure 13). While Grace is not the first
solution of its kind [84,85,93], it does, in contrast to the other approaches, not
require any specific observer platform. Instead, it is retrofittable to existing
testbeds and uses low-cost off-the-shelf hardware, making it a cost-efficient and
affordable solution. Grace uses a unidirectional RBS-like time-synchronization
system (cf. Section 3.6.2) to synchronize the testbed observers. A synchroniza-
tion node broadcasts a time signal once a second and the testbed nodes receive
the time signal at roughly the same time with a negligible time difference. We
use wireless 433 MHz transceivers to send and receive the timestamps, and logic
analyzers for GPIO tracing and logging events. The logic analyzers also trace
the reception of the time signal for precisely synchronizing the GPIO tracing
system. Grace can use either a single synchronization node for building-wide
testbeds, or multiple synchronization nodes for campus-wide testbeds. In the
design with multiple synchronization nodes, we use the 1-PPS signal of GPS
receivers to simultaneously send a time signal from all synchronization nodes.
To not interfere with the signals from other nodes, physically close ones use
different frequency channels for their transmission.

Results. We experimentally evaluate Grace in our testbed showing that
it is capable of continuously logging sparse amounts of data as commonly
produced when debugging IoT systems, such as wireless protocols, at a rate of
8 MHz. Grace is able to achieve a time-synchronization offset between multiple
testbed nodes of on average 1.53 µs using a single synchronization node, which
is sufficient for most applications. When using multiple synchronization nodes,
Grace achieves a time-synchronization offset of on average 15.3 µs between
nodes using a different time source. Nodes using the same time source remain
at the lower offset as in the system with a single synchronization node.

Contributions. In summary, this chapter makes the following contribu-
tions:

• We present Grace, a low-cost time-synchronized GPIO tracing system for
IoT testbeds.

• We implement Grace using off-the-shelf hardware to enable easy adoption
in other testbeds and make both the software and the hardware setup
openly available.

• We introduce multiple types of synchronization nodes, enabling time-
synchronization for both building-wide and campus-wide testbeds.

• We discuss and evaluate the intrusiveness of GPIO tracing on IoT plat-
forms.

6. THESIS CONTRIBUTIONS 45

• We show Grace’s low cost of less than €20 per node.

• We evaluate Grace, showing its degree of time-synchronization between
nodes of a single synchronization node of on average 1.53 µs, while not
exceeding a worst-case synchronization offset of 3.75 µs.

• We evaluate the time-synchronization performance of Grace when using
multiple time sources and show that its degree of time-synchronization is
on average around 15.3 µs between nodes using different time sources.

Statement of Personal Contribution. I am the main designer of Grace.
Additionally, I designed and conducted the experimental evaluation. I am
also the lead author of the paper. Grace was co-designed and implemented
by Christian Richter as part of his bachelor’s thesis [250] and as a student
assistant under my supervision.

The initial version of Grace was published as a paper in the Proceedings
of the 18th International Conference on Distributed Computing in Sensor
Systems (DCOSS), 2022 [251]. This paper received the best paper award at
the conference. The version presented in this chapter is an extension of the
initial version and was published as a paper in the Elsevier Computer Networks
journal, volume 228, 2023 [252]. Grace’s source code is available on GitHub5.

Discussion and possible extensions. With Grace, we bring distributed,
time-synchronized GPIO tracing to testbeds without the need for specialized
observer platforms. Grace is retrofittable to existing testbeds and requires
only readily available off-the-shelf components. However, the current system
also has its limitations. While transmitting the time signal with standard
433 MHz radios works and leads to a sufficient synchronization, there is still
room for improvement, especially regarding the long-term stability of receiving
the signal. The 433 MHz receivers are very susceptible to interference. While
skipping the reception of an occasional time signal is not that problematic,
sometimes the communication fails entirely. An idea to continue using the
433 MHz band while improving the stability of the communication would be to
use 433 MHz LoRa [253] to achieve stable communication through the use of a
less interference-prone modulation scheme.

Another weakness lies in the logic analyzer and the USB protocol. Some
low-cost logic analyzers utilized in Grace encounter occasional failures in
communication with the host platform via USB, occurring randomly. In
instances of failure, the host may intermittently fail to recognize the logic
analyzer until a reboot is performed. While similar issues may arise when
using the logic analyzer locally on a single computer, the impact is exacerbated
in a distributed tracing system. If tracing fails on a critical node, the entire
experiment may necessitate rerunning. Therefore, to increase the stability
of low-cost GPIO tracing, debugging the USB communication or exploring
alternative tracing solutions could prove valuable.

5Available at https://github.com/ds-kiel/grace

https://github.com/ds-kiel/grace

46 THESIS OVERVIEW

6.5 Chapter E – TSCH meets BLE: Routed Mesh Com-
munication over BLE

Context and Challenge. While IEEE 802.15.4 and Bluetooth Low Energy
(BLE) operate within the same wireless spectrum, BLE has emerged as the
dominant standard for communication in low-power wireless networks. Smart-
phones utilize BLE to interact with wearables, wireless speakers, household
items, and various low-cost smart-home devices. However, in applications
requiring coordinated mesh networking, such as the Industrial Internet of
Things (IIoT) and advanced smart home setups, IEEE 802.15.4 is the preferred
choice [12–14]. IEEE 802.15.4, when coupled with the Time-Slotted Channel
Hopping (TSCH) MAC layer and the 6TiSCH stack, serves as the founda-
tion for numerous industrial applications with stringent latency and reliability
requirements.

Although BLE offers a mesh networking solution known as Bluetooth Mesh
(cf. Section 3.3.3), its widespread adoption has been limited. One plausible
explanation is that BLE devices, unlike other IoT devices, are frequently mobile
rather than stationary for extended durations or do not belong to the same
network. Additionally, current use cases for BLE devices typically do not
necessitate mesh communication. Moreover, Bluetooth Mesh employs flooding,
which involves significant portions of the network in transmitting a single
message. Furthermore, it lacks time synchronization, thereby inheriting the
same limitations as BLE advertisements for packet transfer from hop to hop.
While Bluetooth Mesh is suitable for handling low data volumes [41,42], its lack
of a coordinated network structure restricts its usability in (static) industrial
networks with strict requirements.

Approach. In this chapter, we introduce TBLE, a novel solution that
brings Time-Slotted Channel Hopping (TSCH) to Bluetooth Low Energy (BLE)
for efficient time-synchronized mesh networking in BLE. TBLE seamlessly
integrates the BLE physical layer with the TSCH MAC layer, enabling the
utilization of well-established protocols, including real-time communication
protocols, atop BLE. With TBLE, we establish a time-synchronized BLE
network capable of sending and receiving BLE advertisements in a timely
manner. To ensure compatibility with other BLE applications, we embed
standard TSCH packets within valid BLE advertisements. Consequently,
devices not running TBLE can easily discard these advertisements, while
devices running TBLE can join the network as in TSCH on IEEE 802.15.4.
We develop versions of TBLE for each of the four BLE data rates and evaluate
their performance in comparison with TSCH on IEEE 802.15.4. Our evaluation
includes assessing whether BLE can effectively replace IEEE 802.15.4 in the
context of reliable low-latency mesh communication.

Results. We evaluate TBLE in experiments on our testbed showing its
performance in direct comparison with IEEE 802.15.4. We evaluate both the
general feasibility of TBLE and its performance using the autonomous TSCH
scheduler Orchestra [8]. While BLE is capable of data rates as low as 125 kbps
and high data rates of up to 2 Mbps, the medium data rates of 500 kbps and
1 Mbps are those achieving the best performance. TBLE is capable of forming
a network using any of these data rates. Further, at the two medium data
rates, TBLE matches the reliability performance of TSCH on IEEE 802.15.4

6. THESIS CONTRIBUTIONS 47

while reducing its latency by up to 20%.
With a higher spectral efficiency than in IEEE 802.15.4 (40 vs. 16 channels),

on-par reliability and lower latency, TBLE enables routed mesh communication
over BLE, effectively replacing the need for IEEE 802.15.4.

Contributions. In summary, this chapter makes the following contribu-
tions:

• We present TBLE, a protocol closing the gap of routed mesh-communication
in BLE. TBLE extends the established TSCH standard.

• We design and implement a BLE driver for the Nordic nRF52840 DK for
Contiki-NG and adjust it to be compatible with the Contiki-NG IEEE
802.15.4 TSCH and 6TiSCH stack.

• We are the first to run TSCH over BLE, demonstrating TBLE as a
practical routed mesh-protocol for BLE.

• We experimentally evaluate TBLE and compare its performance to IEEE
802.15.4 TSCH, showing its feasibility and a performance increase over
TSCH without modifying any upper-layer protocols.

Statement of Personal Contribution. I am the sole designer and
implementer of TBLE. Additionally, I designed and conducted the experimental
evaluation. I am also the lead author of the paper.

The chapter was published as a paper in the Proceedings of the 19th
International Conference on Distributed Computing in Smart Systems and the
Internet of Things (DCOSS-IoT), 2023 [254], and its source code is available
on GitHub6.

Discussion and possible extensions. With TBLE, we demonstrate
that coordinated mesh communication in the 2.4 GHz band can be achieved
using a simpler modulation scheme, and thus cheaper radios. This chapter
serves as an initial step and proof of concept, paving the way for further
exploration of TSCH on BLE. Thus far, our evaluation has focused on using a
single PHY at a time and payloads not exceeding the 127 bytes limit of IEEE
802.15.4. However, BLE supports larger payloads, and with the availability
of multiple PHYs, a combination of them might be feasible. Novel scheduling
approaches could allocate certain communications using one of the BLE data
rates and concurrent communications using another data rate to maximize
spectrum utilization and minimize latency while maintaining high reliability.
Furthermore, the combination of IEEE 802.15.4 TSCH and BLE is possible as
many modern radios support both protocols. Consequently, a scheduler could
construct a network comprising devices supporting either or both of these PHY
technologies, effectively combining IEEE 802.15.4 and BLE within a single
network.

Around the same time we developed TBLE, another paper (BlueTiSCH
[199]) explored the combination of TSCH and BLE. They arrive at slightly
different conclusions regarding the performance of the different PHYs. Both
works concur that the coded PHY with a data rate of 500 kbps is one of the
two best-performing options. However, while our experiments suggest that the

6Available at https://github.com/ds-kiel/TBLE

https://github.com/ds-kiel/TBLE

48 THESIS OVERVIEW

uncoded 1 Mbps PHY has similar performance to IEEE 802.15.4, their results
differ and indicate that the coded 125 kbps PHY is the second viable option.
The most notable distinction between the two papers is our use of a real-world
testbed for evaluation, whereas their work relies on simulation. By employing
a testbed, we assess performance under realistic conditions, accounting for
the physical characteristics of BLE and its performance in environments with
interfering communication beyond our control. These divergent results leave
room to further investigate the differences in performance between these two
bodies of work.

7 Conclusion and Emerging Directions

In this thesis, we argue that future low-power IoT devices will face increasing
challenges due to unforeseen interference from other devices and networks.
Therefore, future communication protocols must dynamically adjust retrans-
missions and routing decisions to withstand interference and ensure long-term
stable and reliable communication. Additionally, to reduce latency in multi-hop
low-power wireless communication systems, we must integrate aspects from
different communication approaches into novel protocols. Furthermore, future
IoT devices will be able to adapt their functionality based on their surrounding
environment. Hence, we require methods to recognize and adapt to changes in
the device’s environment.

This thesis introduces five protocols, systems, and evaluation infrastructures
for modern IoT solutions. We demonstrate that flow-based retransmissions
(Master) and opportunistic routing with concurrent forwarding (Autobahn)
add dynamics to overcome unforeseen interference in otherwise static and
centrally scheduled TSCH networks. These solutions enable long-term stable
communication without frequent adjustments to routing and scheduling. Both
effectively reduce latency to a minimum. To further reduce latency, we introduce
TBLE, which combines TSCH with Bluetooth Low Energy (BLE) PHYs,
replacing the IEEE 802.15.4 PHY. To ensure the intended functionality of
these protocols and gain insights during evaluation, we develop a retrofittable
time-synchronized GPIO tracing solution for testbeds (Grace). Lastly, we
introduce BlueSeer, which uses embedded machine learning to demonstrate
that ambient BLE signals are sufficient to recognize the current environment.

Based on our work, we identify several directions for future research.
Firstly, with TBLE, we enable TSCH to operate successfully on five 2.4 GHz
PHYs—IEEE 802.15.4 and the four BLE PHYs. As modern radios support all
of these, scheduling multi-PHY TSCH networks in the 2.4 GHz band suggests
promising prospects to route and schedule communication even more efficiently
in a congested wireless medium. Secondly, efficient routing and retransmission
schemes for reliable multi-hop communication as demonstrated in Master
and Autobahn could potentially be extended to other wireless communica-
tion technologies. While LPWAN technologies like LoRa and NB-IoT already
cover larger areas and longer distances, time-slotted multi-hop extensions could
enhance coverage in currently underserved areas, albeit with significant time-
synchronization overhead. Additionally, there is growing potential in further
exploring the combination of IoT and AI. With BlueSeer, we take a first step

7. CONCLUSION AND EMERGING DIRECTIONS 49

into the direction of using machine learning in combination with IoT devices.
With the general trend in machine learning and continuously advancing ma-
chine learning approaches, several directions open up for research projects
or potential future theses. We see the potential to revisit multi-hop wireless
communication and use machine learning to develop better scheduling and rout-
ing algorithms, also considering multi-PHY approaches with more degrees of
freedom than in single-PHY networks. Yet, we see the bigger research potential
in improving on-device and resource-constrained machine learning frameworks.
These could enable devices to evolve with application or environment changes
without external training or major firmware updates, while developing and
tuning new neural networks for resource-constrained devices could enhance
smart features in IoT devices.

50 THESIS OVERVIEW

A

Master: Long-Term Stable Routing and Scheduling in
Low-Power Wireless Networks

Laura Harms, Olaf Landsiedel

Proceedings of the 16th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2020, pp. 86–94.

51

Abstract

Wireless Sensor-Actuator Networks (WSANs) are an important driver for the
Industrial Internet of Things (IIoT) as they easily retrofit existing industrial
infrastructure. Industrial applications require these networks to provide stable
communication with high reliability and guaranteed low latency. A common
way is using a central scheduler to plan transmissions and routes so that
all packets are delivered before a deadline. However, existing centralized
schedulers are only able to achieve high reliability in the absence of interference.
This limitation lowers the feasibility of using centralized schedulers in most
environments susceptible to interference.

This paper addresses the challenge of stable, centrally scheduled communi-
cation in low-power wireless networks susceptible to interference. We introduce
Master, a centralized scheduler and router, for IEEE 802.15.4 TSCH (Time-
Slotted Channel Hopping). Master uses Sliding Windows, a novel transmission
strategy, which builds on flow-based retransmissions instead of link-based ones.
We show in our experimental evaluation that Master with Sliding Windows
achieves routing and scheduling stability for over 24 hours with end-to-end reli-
ability of over 99.6%. Moreover, we show that Master outperforms Orchestra,
a state-of-the-art autonomous scheduler, in terms of latency by a factor of 8
while achieving similar reliability under a slight duty-cycle increase.

52 CHAPTER A. MASTER

M

Radio

TSCH

MASTER

Application

Ro
ut
in
g

M
A
C

PH
Y

Figure A.1: Master consists of an external centralized scheduler (M)
and a routing layer. The external scheduler performs the global
routing and scheduling and pushes the computed schedule onto
the network. In each node, Master’s routing layer implements the
schedule in TSCH and performs the routing during runtime.

1 Introduction

For many applications in the Industrial Internet of Things (IIoT), it is essential
that network traffic meets deadlines. To achieve this goal, commonly, a
centralized scheduler collects information about the network topology and
the wireless links. With this global knowledge, representing a major advantage
over distributed solutions, the scheduler is able to compute optimal routes
and transmission schedules of end-to-end communication (traffic flows). In
IEEE 802.15.4, the scheduler assigns communication slots in the time and
frequency domain to nodes, i.e., it employs Time-Slotted Channel Hopping
(TSCH) [6]. However, due to wireless link dynamics, centralized schedulers
have to account for the risk of packet losses and, therefore, usually include
multiple retransmission slots for each link. These retransmission slots increase
latency and reduce the available bandwidth, thus, causing an increased radio
on-time.

Many recent centralized scheduling algorithms assume the availability
of interference-free channels or at least a static amount of interference [10,
16]. These assumptions do not hold in many of today’s environments where
IEEE 802.15.4 IIoT networks co-exist with an increasingly large number of
WiFi and Bluetooth networks. This coexistence results in large amounts of
interference and thereby limits the stability and reliability of those centralized
solutions.

In this paper, we introduce Master, a centralized scheduler designed for
TSCH. It combines the traditional steps of central scheduling and routing with
a novel transmission strategy which we call Sliding Windows. Our Sliding
Windows algorithm introduces the flexibility needed to accomplish long-term
schedule stability and communication reliability while meeting the latency
requirements of industrial applications. As a result, Master enables long-term
stable schedules and thereby eliminates the need for frequent rescheduling, a
key drawback of today’s central schedulers. Furthermore, we design Master

2. BACKGROUND 53

as an open1 and easily extendable platform to foster rapid experimentation
with central scheduling policies.

Our evaluation shows that Master with Sliding Windows outperforms
slot-based retransmission strategies of centralized schedulers. Moreover, it
outperforms the low-power autonomous scheduler Orchestra [8] in terms of
latency while achieving similar reliability and consuming not significantly more
energy, making it particularly suitable for low-power systems. Overall, this
paper makes the following contributions:

• We present Master, an open-source, centralized router and scheduler
for TSCH-based networks designed with easy extendability in mind.

• We design Sliding Windows, a transmission strategy for Master to
increase the flexibility, stability, and reliability of centrally scheduled
communications.

• We propose flow-based queues as an extension to TSCH to enable the
use of central scheduling algorithms.

• We implement Master as part of Contiki-NG and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules computed by Master in experiments of 24 hours. These
experiments result in highly reliable (>99.6%), low-latency (<4.5 slots)
communications.

The remainder of this paper is organized as follows. Section 2 gives the
necessary background information on TSCH as well as TSCH schedulers.
Section 3 introduces the design of Master, and Section 4 presents our testbed
evaluation. Section 5 reviews related work, followed by the conclusion in
Section 6.

2 Background

This section gives an overview of relevant concepts on (A) Time-Slotted Channel
Hopping (TSCH), (B) the ETX metric, (C) scheduling, and (D) retransmis-
sions.

2.1 Time-Slotted Channel Hopping

Time-Slotted Channel Hopping (TSCH) is one of the MAC-layer protocols
defined in the IEEE 802.15.4e standard [6]. TSCH uses dedicated time- and
frequency-slots (TDMA and FDMA) for accessing the wireless medium. These
slots are standardized to a length of 10 ms, and each slot uses one out of
maximally 16 channels. TSCH continuously cycles through a hopping sequence
of all active channels. Thus, it is changing the channel every slot. Assigning
different frequencies to slots allows TSCH to increase the network’s resilience to
interference. Slots dedicated to control-information, so-called Enhanced Beacon
(EB) slots, provide broadcasts which support both network formation and time

1Available as open-source at: https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler

54 CHAPTER A. MASTER

A→ B
EB E → C C→ F B→ C C→ Dch

an
ne
lo
ffs
et

timeslot

0
1

0 2 3 41 5

2

15

Figure A.2: Sample TSCH schedule. Slot 0 is a shared slot for
sending and receiving Enhanced Beacons (EB) while slots 1-4 are
unicast slots with one transmission per channel at a time. This simple
schedule contains two multi-hop communication flows, highlighted
in green and orange. The channel offset is added on top of the usual
hopping sequence.

synchronization, both essential for maintaining a schedule of synchronized
transmissions as in TSCH.

Multiple TSCH slots are grouped into slotframes, and multiple slotframes
form a TSCH schedule, see Figure A.2. Each node has a custom TSCH schedule
determining its behavior in each slot. Slots are either dedicated, shared, or
empty: In a dedicated slot, a node either transmits or receives. In shared
slots, nodes may broadcast or receive control information, such as Enhanced
Beacons. Such slots are not assigned to individual nodes and have multiple
nodes contending for transmissions. To limit collisions, these slots employ the
CSMA-CA back-off algorithm. If a slot is neither dedicated nor shared, it is
empty, and the radio remains off to save energy.

2.2 Link quality metric

Link quality metrics, such as the expected transmission count, ETX [48], repre-
sent the quality of a wireless link. ETX specifies the number of transmissions
expected to transmit a packet successfully over a wireless link. The ETX value
is the inverse of the packet reception rate (PRR) of a link (ETX = 1/PRR).

2.3 Scheduling

In the context of wireless communications, scheduling is the process of allocating
resources for communications to meet all requirements such as release-time
and deadline. Scheduling is an NP-hard problem, meaning, it is not optimally
solvable in polynomial time (cf. [10]). Therefore, different heuristics and
algorithms were developed to solve scheduling problems sufficiently well for
specific scenarios.

TSCH scheduling: TSCH does not specify how communications are sched-
uled. Therefore, scheduling TSCH communications can be performed in a
centralized, distributed, or autonomous manner. In the distributed case, sub-
sets of the network perform cooperative scheduling (cf. 6TiSCH MSF [134]).
The autonomous case, used by the well-known TSCH scheduler Orchestra [8],
performs an autonomous mapping of links to resources. The centralized schedul-

3. DESIGN 55

D

C

FB

E

A

(a) Sample Topology
with two intersecting
flows.

1 2 3 4

A TX

B RX TX

C TX

D RX TX RX TX

E RX

F RX

(b) Baseline
schedule without
retransmissions.

1 2 3 4 5 6 7 8

A TX TX

B RX RX TX TX

C TX TX

D RX RX TX TX RX RX TX TX

E RX RX

F RX RX

(c) A slot-based schedule with
one transmission and one re-
transmission slot per hop.

1 2 3 4 5 6 7 8 9

A TX TX TX TX

B RX RXTX RXTX RXTX TX

C TX TX TX

D RX RXTX RXTX TX RX RXTX RXTX RXTX TX

E RX RX RX

F RX RX RX RX

(d) Sliding Windows schedule with one transmission slot per hop and
two (orange flow) or three (green flow) retransmission slots to be shared
among the nodes of a flow.

Figure A.3: Example: One flow originates at node A to end at node
F while the second one originates at node C and ends at node E.

ing approach provides us with global topology knowledge, and we can allocate
resources using established algorithms such as Dijkstra’s Shortest Path First
algorithm [49].

2.4 Retransmissions

As wireless communication links are unreliable, transmissions are never guar-
anteed to be received. To increase the reliability, schedulers commonly include
retransmission slots to retry a failed transmission. A common way of adding
retransmissions is the duplication of single slots. This slot-based approach
increases the reliability, by including multiple tries per hop. In this paper, we
introduce a new, flow-based transmission strategy to increase both performance
and flexibility, see Section 3.2.

3 Design

In this section, we present the design of Master, our transmission strategy
Sliding Windows, and the system architecture of Master.

3.1 Centralized Routing and Scheduling with Master

A fundamental building block of Master is its centralized scheduler. Its
design is a three-step process to build a long-term stable, low-latency, reliable

56 CHAPTER A. MASTER

communication schedule. This process is a sequential top-down approach of (1)
centralized routing, (2) applying a transmission strategy, and (3) scheduling.
The input to the process is (a) a set of traffic flows specified by source, des-
tination, periodicity, and deadline, as well as (b) the network topology with
long-term link reliability statistics. The application commonly provides the set
of flows, and we derive the network topology from long-term link measurements,
see Section 3.4.5.

3.1.1 Centralized Routing

Routing is the first step in Master and uses the previously specified flows and
network link-reliability as input. To perform the routing, Master constructs
a directed weighted graph using an ETX-based metric (ETXn, n ∈ N, usually
n = 2), corresponding to the link reliability statistics. A higher ETX-power
favors a higher number of highly reliable links over a lower number of links
with lower reliability. Using this graph, we compute the shortest end-to-end
routes. As shortest path routing finds the optimal path for each flow, the flow
latency selected by the routing process stays minimal. The result of our routing
is an extended set of flows that consists of a source, a destination, and the
intermediate hops. In Master, we use Dijkstra’s algorithm for shortest-path
routing, but our modular design allows us to plug-in any routing algorithm
and metric.

3.1.2 Transmission Strategies

After computing the route for each flow, we employ a transmission strategy
to ensure reliable communication over unreliable wireless links. Thus, the
transmission strategy adds retransmission slots to each flow to handle failed
transmissions due to link dynamics and interference. The transmission strategy
extends each flow by a specific number of slots. In the case of highly reliable
links in an interference-free environment, we can employ a simple transmission
strategy of assigning only one slot per hop. In practice, however, we add
retransmission slots according to the expected link reliability of each hop. We
employ either a slot-based transmission strategy (see Section 2.4) or our new
approach of a flow-based transmission strategy (see Section 3.2 below).

3.1.3 Scheduling

After applying one of the transmission strategies, we pass the modified flows
to the scheduler. The scheduler builds a communication schedule for all flows
considering their periodicity.

For our application scenarios and to be comparable to Orchestra, we employ
a non-deadline-based scheduling algorithm. It is especially suitable for best-
effort, periodic, deadline-free systems. The algorithm is Reverse Longest Path
First (R-LPF), our own flavor of the Shortest Path First (SPF) scheduling
algorithm. SPF is based on the process scheduling algorithm Shortest Job First
(SJF) [255]. Contrary to starting with the shortest flow, our scheduler performs
backward scheduling, starting with the end of the longest flow. This modifica-
tion of the scheduling algorithm results, in our experience, in a lower number

3. DESIGN 57

of unused slots within a flow. A lower number of unused slots corresponds with
lower latency.

Figure A.3 shows a schedule for two flows generated using no retransmissions,
a slot-based retransmission strategy, as well as the transmission strategy of
Sliding Windows with a transmission number based on Equation (A.3) and a
scaling factor of 1. To generate the schedule of Figure A.3d, we assume the
ETX-value of each link to be between 1 and 2 (ETXlink ∈]1, 2[).

Any scheduling algorithm, including deadline-based ones, can easily be
implemented in Master. For the remainder of this paper, we use R-LPF.

3.2 Master’s Flow-based transmission strategy

Our flow-based transmission strategy assigns a specific number of retransmis-
sions to a flow instead of using a per-hop basis, as done traditionally, see
Section 2.4. The flow-based retransmission slots allow the nodes of a flow to
share these slots and use them as needed along the path, see Figure A.3d. As
a result, we can increase the communication reliability while potentially using
minimally more slots in the final schedule (see Node D in Figure A.3c and
Figure A.3d).

With this, we divert from the traditional scheme of two active nodes to
one with multiple active nodes: Traditionally, at a single time-slot, frequency,
and within a localized area, only one node transmits and another one receives.
Instead, we now have more than two nodes awake that either transmit or
receive. Our transmission strategy has the advantage of being adaptable to
network changes, e.g., due to interference. Thus, during the journey of a
packet, we can use the shared transmission slots in whichever part of the flow
interference impacts communication. This adaptability is traditionally possible
within distributed schedulers that can locally adapt to link changes. With
Sliding Windows, we now enable such flexibility in centralized ones.

3.2.1 Window Size

The maximal number of transmission slots (TXmax, later denoted as
#transmissions) in a flow and the hop-count of the flow determine the window
size which is calculated by

window size = 2 + TXmax − hops (A.1)

This window size is the number of nodes maximally active in a slot of a
flow. Moreover, it matches the maximum number of active slots of a node for
a given flow. According to this relation, the window size is equal to the shared
number of slots of a node for transmission or reception (TXmax − hops) plus
its first and last slot allocated for reception and transmission, respectively.

In Master, we have two flow-based transmission policies: (1) fixed window
size and (2) metric-based window size. For the first policy, we use the same
window size for all flows independent of their length or link quality. For
the second one, our scheduler determines the window size and number of
transmissions depending on the flow’s or link’s ETX-values. The metric-based
window size allows us to account for both the number of hops and the reliability
of the individual links.

58 CHAPTER A. MASTER

Using the link’s ETX values, we can calculate the total number of trans-
missions of the flow with either

#transmissions = n ∗ ⌈
∑

ETXlink⌉, n ∈ N (A.2)

or
#transmissions = n ∗

∑
⌈ETXlink⌉, n ∈ N, (A.3)

including a scaling factor n. This scaling factor regulates the conservativeness
of the scheduler. If we choose a scaling factor of 1 for Equation (A.3), the
number of transmissions is equal to the one using an ETX-based, slot-based
retransmission strategy (cf. Section 2.4). Equation (A.2) uses the end-to-end
ETX-value of the flow, while Equation (A.3) uses the ETX-values of the
individual links.

Throughout the remainder of this paper, we use the following naming
scheme to refer back to these equations:

SW− < Equation number > [− < scaling factor n >]

SW denotes it as a Sliding Windows transmission strategy. The naming scheme
includes the scaling factor only if referring to a specific representation of the
strategy. When referring to the general strategy, it is not included.

Please note that for long flows, i.e., with many hops such a strategy could
lead to a large window, and thereby too many nodes being awake at the
same point in time. Too many active nodes lead to inefficiencies, and we
counterbalance it by splitting a flow into sub-flows once it exceeds a limit
N . The flow-based strategy is then applied to each sub-flow individually. In
Master, we use a threshold of N = 10. Thus, for example, a flow of length 11
is split into two overlapping sub-flows of length 6.

3.2.2 Algorithm

In Algorithm A.1, we present the algorithm for applying a flow-based
transmission strategy. The algorithm takes as input a flow consisting of
multiple nodes, the network’s ETX graph, the strategy (SW-2 or SW-3), and
the scaling factor. The algorithm starts calculating the flow’s total ETX cost,
as well as the flow’s number of transmissions according to the given strategy
(SW-2 or SW-3) and the window size according to Equation (A.1). From line
17 onward, the algorithm computes the active slots for each node of the flow
and inserts the nodes into the respective slots of the new flow. For example,
slot 6 of Figure A.3d would be represented in the new flow as a list containing
the elements A, B, D, F in this order.

3.2.3 Flow-based transmissions vs. Flow Centric Policy (FCP)

Recently, a paper by Brummet et al. [131] introduced a similar idea of moving
from link-based to flow-based transmissions.

The main difference between Brummet’s proposed Flow Centric Policy
(FCP) and our Sliding Windows strategy are the rules for determining the
optimal number of flow transmissions. FCP only defines fixed numbers of
retransmissions with a maximum of up to 4 retransmissions for a flow. Sliding

3. DESIGN 59

Algorithm A.1 Sliding Windows transmission strategy

Input: flow, graphETX , strategy, scaling factor n
Output: flownew (modified version of flow)
1: costtotal = 0
2: for i = 0 to lengthflow − 1 do
3: senderhop ← flow[i]
4: receiverhop ← flow[i + 1]
5: if strategy = ”SW − 2” then
6: costtotal = costtotal + graphETX [senderhop][receiverhop]
7: else if strategy = ”SW − 3” then
8: costtotal = costtotal + ⌈graphETX [senderhop][receiverhop]⌉
9: end if
10: end for
11: if strategy = ”SW − 2” then
12: costtotal = ⌈costtotal⌉
13: end if
14: #transmissions← n ∗ costtotal

15: window size← 2 + #transmissions− lengthflow

16: flownew ← list of #transmissions lists
17: for i = 0 to lengthflow − 1 do
18: if i = 0 then
19: slots← list [0 .. window size− 1]
20: else if i = (lengthflow − 1) then
21: slots← list [i− 1 .. i + window size− 2]
22: else
23: slots← list [i− 1 .. window size− 1]
24: end if
25: for slot in slots do
26: extend flownew[slot] by flow[i]
27: end for
28: end for
29: return flownew

Windows, on the other hand, allows choosing the number of transmissions based
on a metric, in our case, the ETX metric. Moreover, Sliding Windows allows
a different number of transmissions for each flow in the same network due to
its use of the ETX metric. Because Sliding Windows is based on link qualities,
we argue that it offers better adaptability to a network’s link characteristics
during the scheduling process.

3.3 Time Synchronization

Stable time synchronization is essential for TSCH networks. It ensures that
clocks do not drift apart, and nodes wake-up for transmissions and reception
within the guard times specified by TSCH. Master achieves this by building
a clock synchronization tree from the root as part of the scheduling process.
Similar to the routing of the flows, a minimal spanning tree with ETX as
metric and with the coordinator of the TSCH network as root is computed
using Dijkstra’s algorithm. This tree assigns each node a parent node for clock
synchronization.

3.4 System Design

Next, we detail on the system architecture of Master. It consists of both the
external scheduler and the routing layer on each node (see Figure A.1). Here
we put a particular focus on the integration with TSCH and Contiki-NG [256].

60 CHAPTER A. MASTER

A

B

C D
E

F1

2 2
2

1
1

Figure A.4: Example of 2 flows sharing a common link between
nodes C and D.

3.4.1 Central Logic of Master

The central logic of Master consists of a centralized router and scheduler with
all the functionality described above. We implement Master in Python to en-
able easy extendability and rapid experimentation of new routing, transmission,
and scheduling strategies.

3.4.2 Schedule Distribution

For schedule distribution, Master can work together with most schedule
distributors (e.g., plexi [159]), as scheduling and distributing the schedule are
orthogonal. Moreover, it can also directly upload schedules via the serial port
for rapid experimentation.

3.4.3 Per node routing layer

The routing layer of Master has multiple functions: it performs neighbor
discovery (Section 3.4.5), implements the schedule, and adds a routing header
to the communication payload to be compliant with the lower layers as well
as relaying the packet to the next hop (Section 3.4.6). We place it in the
Contiki-NG network stack above TSCH, see Figure A.1, and implement it in C.

3.4.4 Contiki-NG/TSCH Extensions

To match the requirements of Master and its scheduling algorithm, we extend
the elements of TSCH and its implementation in Contiki-NG: (1) the packet
buffer implementation and (2) the TSCH queues.

In the packet buffer, we add fields to store the flow identifier and the time
to live of a transmission. With these two fields, the TSCH stack and Master
can map incoming packets to flows and thereby follow the global schedule
on each node. We extend the TSCH queue to enable a transmission order
differing from the reception order at a node, e.g., the forwarding of a packet to
a specific neighbor before forwarding an earlier received packet to the same
neighbor. To allow this behavior, we add flow-based queues, in addition to the
neighbor-based queues of TSCH. We realize the flow-based queues through the
use of virtual neighbors.

Figure A.4 illustrates why neighbor-based queues as used by Contiki-NG
cannot be practicably used by Master. If packet 2 is received by node C first,
but packet 1 has an earlier deadline, packet 1 will be stuck behind packet 2
until the first is transmitted to node D. With flow-based queues, packets 1 and

4. EVALUATION 61

2 will be added to different queues at C. Therefore, they are independent of
each other and packet 1 can be forwarded first.

This new queue design increases the schedulability of the presented scheduler,
which is crucial for deadline-dependent systems. It also decreases the latency
in networks that are not deadline-critical by reducing congestion at bottlenecks
of the network. Moreover, it allows us to use scheduling algorithms initially
developed for process scheduling, a domain without these congestion problems.

3.4.5 Neighbor Discovery and Bootstrapping

Before Master can build any schedule, it requires information about all links
between the nodes in the network. Thus, to bootstrap and collect topology
information with Master, we deploy a custom, topology agnostic schedule
only designed for neighbor discovery. In this schedule, we use one independent
transmission slot per node present in the network. This neighbor discovery
schedule is similar to the sender-based operation mode of the autonomous
scheduler Orchestra [8]. Each node sends a numbered broadcast in its active
slot and listens in all other slots for broadcasts of other nodes in its surroundings.

Please note that this schedule only serves for bootstrapping. After deploy-
ment of the actual transmission schedule, the task of probing neighbors becomes
part of the normal TSCH beaconing process. Nodes collect this information
for any potential later update of the schedule.

3.4.6 Header format

Master routes packets based on flows, and as a result, we add a custom
routing header. The routing layer of Master adds a 7-byte routing header to
each packet. This header contains a flow identifier (1 byte), a sequence number
(2 bytes), the time-to-live (TTL) (2 bytes), and the earliest TSCH transmission
slot (2 bytes). The header is necessary for nodes to know whether they are the
receiver of the packet or a forwarder. Moreover, the header specifies, where to
forward the packet to, and whether there is still time left for forwarding. In
practice, our header replaces the IPv6 header which we could use instead in a
system using the full IPv6 stack.

4 Evaluation

In this section, we evaluate the performance of Master and compare it
to the state-of-the-art. We begin by evaluating our newly proposed flow-
based scheduling policy and compare it to state-of-the-art scheduling policies,
including a baseline strategy without retransmissions (cf. TASA [11]) and a
slot-based transmission strategy (cf. AMUS [119]). Next, we compare Master
to Orchestra, the default autonomous scheduler in Contiki-NG, which also
builds on TSCH. Finally, we evaluate Master’s ability to compose long-term
stable schedules.

62 CHAPTER A. MASTER

(a) 500 m2 testbed of 20 nodes at
Kiel University. Source nodes: or-
ange hexagons; Sink nodes: green
squares; Relay-only nodes: blue cir-
cles; Numbers: corresponding flow

1 2 3 4 5 6 avg
Flow

0

20

40

60

80

100

PD
R

[%
]

(b) Reliability of Master’s transmis-
sion strategies: baseline, slot-based,
SW-2-1 and SW-3-1.

1 2 3 4 5 6 avg
Flow

0

2

4

6

8

10

La
te

nc
y

[s
lo

ts
]

(c) Latency of Master’s transmis-
sion strategies: baseline, slot-based,
SW-2-1 and SW-3-1.

0 2 4 6 8 10 12 14
Latency [slots]

0

20

40

60

80

100
PD

R
[%

]

(d) Combined latency and reliabil-
ity CDF of Master’s transmission
strategies.

0 25 50 75 100 125 150
Latency [slots]

0

20

40

60

80

100

PD
R

[%
]

(e) Combined latency and reliabil-
ity CDF of Master’s transmission
strategy SW-3-3 and Orchestra at
nighttime and daytime.

0

2

4

6

8

10

Du
ty

 C
yc

le
 [%

]

baseline
slot-based
SW-2-1
SW-2-2
SW-3-1
SW-3-2
SW-3-3
SW-3-3-D
Orchestra
Orchestra-D

(f) Duty cycle of Master and Or-
chestra.

Figure A.5: Evaluation of Master’s transmission strategies and
comparison to Orchestra. SW-3 outperforms all other strategies
reliability-wise and outperforms Orchestra latency-wise. We display
the legend of figures A.5b - A.5f in Figure A.5f.

4. EVALUATION 63

4.1 Evaluation Setup

4.1.1 Testbed

We run on a 20 node testbed deployed in offices and student lab rooms, see
Figure A.5a. It is located on the top most floor of a university building with
spanning an area of 500 m2. The testbed shares the wireless spectrum with
WiFi and Bluetooth communications outside of our control. Due to this, the
testbed is exposed to high levels of interference, especially during work hours.

4.1.2 Metrics, Comparison, and Duration

We evaluate our scheduler in terms of end-to-end reliability, end-to-end latency,
as well as network energy consumption. We measure these metrics for different
centralized scheduling approaches with and without retransmissions. Moreover,
we compare our scheduler with the autonomous scheduler Orchestra [8]. These
comparisons are based on 2-hour experiments for each strategy, except for the
long-term stability evaluation in Section 4.5, which has a duration of 24-hours
per experiment.

4.1.3 Implementation

We implement Master for Contiki-NG [256]. We target the Zoul Firefly
platform, featuring a 32 MHz 32-bit CC2538 Cortex-M3 CPU, 32 KB of RAM,
512 KB of flash, with an IEEE 802.15.4 compatible radio.

4.1.4 Channels

Due to the high levels of interference, we use only the four channels (15, 20,
25, and 26), defined in the standard four-channel TSCH hopping sequence.
Furthermore, Orchestra uses by default only these four channels as well.

4.1.5 Application Payload and Overhead

For all experiments, we include a 64-byte randomly generated data payload,
a medium packet size supported by TSCH. In addition to this data payload,
Master adds its 7-byte routing header independent of the specific scheduling
policy. Orchestra, on the other hand, uses the IPv6 headers and requires
additional network layer control traffic.

4.1.6 Notations

Throughout the evaluation, we use the following naming scheme: The baseline
strategy without retransmissions we call baseline, and the slot-based retrans-
mission strategy (as used by many state-of-art schedulers) with ⌈ETXlink⌉
transmissions per link we label slot-based. The Sliding Windows strategies use
the naming scheme we present in Section 3.2.1. Experiments performed during
daytime are extended by the marker -D.

64 CHAPTER A. MASTER

4.2 Baselines

We compare Master’s Sliding Windows policies to three other scheduling poli-
cies. These are Master’s baseline strategy without retransmissions, Master’s
slot-based retransmission strategy, and the autonomous scheduler Orchestra [8].
The design of the baseline strategy is based on the transmission policy used
in, e.g., TASA [11], and uses one distinct slot per hop. The slot-based strat-
egy is inspired by policies presented in several recent publications, including
AMUS [119]. Contrary to most of these, our design performs all possible
retransmissions of a hop before proceeding to the next hop, which favors high
reliability over low latency contrary to AMUS’s approach. Moreover, to be
in line with our Sliding Windows strategies, Master’s slot-based strategy
uses an ETX-based number of retransmissions per link (⌈ETXlink⌉). Lastly,
we use Orchestra to compare our centralized routing and scheduling solution
to distributedly routed and autonomously scheduled solutions to verify the
adaptability of Master to dynamic environments predestined for distributed
policies.

4.3 Performance of Master’s transmission strategies

We first evaluate the performance of different transmission strategies supported
by our scheduler. We compare the Sliding Windows transmission strategy
with a baseline strategy without retransmissions and with the traditional slot-
based retransmission strategy mentioned above. We run experiments with
six scheduled flows, a number of flows used at a recent EWSN dependability
competition [257]. The flows have a length of 2 to 4 hops each. Each flow has a
sole source and destination node. Each source node generates a packet roughly
every second with a configured time to live of one second. The length of the
communication slotframes of 1 second corresponds roughly with 101 slots.

Figure A.5b shows the reliability of transmission approaches scheduled with
Master. The transmission approaches include the baseline and slot-based
strategy, as well as Sliding Windows transmission strategies SW-2-1 and SW-
3-1; see Section 3.2.1 for notations. The latter of the two Sliding Windows
strategies has the same number of transmissions per flow as the slot-based
strategy.

All strategies with retransmissions clearly outperform the baseline without
retransmissions, which shows the presence of interference in the used channels.
The slot-based strategy reaches an average reliability of 92.7% whereas the
Sliding Windows strategies reach average reliabilities of 89.3% and 98.9%,
respectively. The SW-2-1 strategy has for all flows lower reliability than the
slot-based strategy, but the number of scheduled slots per flow is only by one
larger than the baseline number of slots, see Table A.1. The SW-3-1 strategy
outperforms all other strategies while using no more slots per flow than the
slot-based strategy. Its least reliable flow achieves a packet delivery rate (PDR)
of 98.1% while the slot-based strategy drops as low as 82.2%.

We can model this superiority of SW-3-1 over SW-2-1 and over the other
strategies mathematically using the probability mass function of the binomial
distribution [258]:

P (X = k) =

(
n

k

)
pk(1− p)n−k (A.4)

4. EVALUATION 65

Table A.1: Summary of the results plotted in Figure A.5c: Maximum
latency (slots) for each flow and for flow 4 maximum number slots
active in parentheses.

Flow Baseline Slot-Based SW-2-1 SW-3-1
1 2 4 3 4
2 3 6 4 6
3 3 6 4 6
4 5 (3) 10 (6) 7 (4) 12 (6)
5 4 8 5 8
6 4 8 5 8

This probabilistic model also explains the lower reliability of SW-2-1 compared
to the slot-based strategy.

As an example, we consider a flow of three hops (n = 3), e.g., the green flow
in Figure A.3a, with the same ETX value for each link of 1.2 (p = 5

6). Thus, the
number of transmissions for SW-2-1 and SW-3-1 are 4 and 6 slots, respectively.
The expected PDRs for SW-2-1 and SW-3-1 are P (X = 3)+P (X = 4) ≈ 0.868
and P (X = 3) + P (X = 4) + P (X = 5) + P (X = 6) ≈ 0.991, respectively.
Likewise, the expected PDR for the baseline, is P (X = 3) ≈ 0.579. The
slot-based strategy can be seen as 3 independent, subsequent chains of two
binomial trials each (n = 2, k ≥ 1). This results in an expected PDR of
(P (X = 1) + P (X = 2))3 = 0.919. These mathematical results confirm the
trend we see in Figure A.5b.

Latency-wise, both Sliding Windows strategies perform much better than
the slot-based strategy. Moreover, their latency is minimally higher than the
latency of a strategy without retransmissions (see Figure A.5c), which, in turn,
has a high packet loss rate. It appears that SW-3-1 has a lower latency for
flow 4 than the baseline. Contrary to all other flows, flow 4’s schedule contains
more slots than active slots throughout all strategies. Due to the flow-based
approach of SW-3-1 and a large enough number of continuous active slots at
the beginning of the schedule, most packets were received within a few slots,
leading to a latency lower than the baseline’s one. Table A.1 shows that the
maximal number of active slots is still smaller for the baseline strategy.

Figure A.5d visualizes the latency and reliability of a wider range of trans-
mission strategies. Solid lines represent the baseline, the slot-based, the SW-2-2,
and the SW-3-3 strategies. For the Sliding Windows strategies SW-2-1 and
SW-3-1, the figure uses dashed lines, and for the SW-3-2 strategy, it uses
a dotted line. The figure shows that the slot-based strategy is the worst
latency-wise. The SW-3 Sliding Windows strategies are superior to the other
Sliding Windows strategies (SW-2). The superior strategies with a scaling
factor of 2 and 3, both perform well. The strategy with the higher scaling
factor reaches the maximal possible reliability. Therefore, we use the Sliding
Windows strategy SW-3-3 for the following comparison to Orchestra.

The duty-cycle evaluation in Figure A.5f shows a higher radio on-time for a
higher number of scheduled slots. SW-3-3 has a radio on-time of up to 11.95%
for a node with a lot of traffic.

66 CHAPTER A. MASTER

70

80

90

100

PD
R

[%
]

23 2 5 8 11 14 17 20
Time of day [hours]

0

1

2

3

4

5

La
te

nc
y

[s
lo

ts
]

SW-3-1 SW-3-2 SW-3-3

Figure A.6: Reliability and latency evaluation of Sliding Windows
according to Equation (A.3) for all 3 scaling factors. Each value
corresponds with the hour, that started at the given time. Note,
that the y-axis of the PDR plot does not begin at zero.

4.4 Master vs. Orchestra

We now evaluate the performance of Master in comparison to Orchestra, the
default, autonomous scheduler of TSCH in Contiki-NG. We use Orchestra as
is, with a receiver-based schedule of length 7 in non-storing mode. We schedule
the same six flows used before. As transmission strategy for Master, we
use the one with the highest reliability of those presented above (SW-3-3).
To provide detailed information on the performance, we present runs of both
Master and Orchestra during nighttime as well as during office hours in the
daytime. Figure A.5e shows the latency and reliability of the four experiments.
Master’s latency is drastically shorter than the latency of Orchestra with
a mean latency of 3.9 and 4.2 slots compared to 25.9 and 40.9 slots during
nighttime and daytime, respectively, while reaching similar reliability. The
four rightmost columns in Figure A.5f show the duty cycle for the experiments
included in this section of the evaluation. Orchestra has on average a two
percentage points lower duty cycle than Master (3.52% vs. 5.55%) and the
maximum duty cycle of a node of four percentage points lower (7.73% vs.
11.95%). As each node in Orchestra is only able to use every seventh slot, the
possible duty cycle is automatically lower than the one for Master. However,
this lower duty cycle results in much higher latency, as presented above.

4.5 Long-term stability of Master

In the last part of our evaluation, we investigate Master’s long-term stability.
In Figure A.6, we present the reliability and latency of the SW-3 Sliding
Windows strategies for 24 hours (Day 1, 21:00 - Day 2, 21:00) during workdays.
During the night and the early morning, both SW-3-2 and SW-3-3 reach a
PDR of above 99.99% and an average latency of around 3.5 slots. Between
14:00 and 15:00, the reliability drops for all strategies to 95%, 93.2%, and
80.3%, respectively, under a slight latency increase. During this time, a group
of students entered the lab, leading to a drastic increase in WiFi and BLE

5. RELATED WORK 67

traffic and thereby an interference level increase. Another reliability drop,
mainly for SW-3-1, is visible at the end of the working day. Over the whole
period of 24 hours, the average reliability of SW-3-1, SW-3-2, and SW-3-3 is
99.6%, 99.2%, and 92.5%, respectively. The high average reliability, as well
as the reliability recovery after times of high interference, validates Master’s
long-term stability.

5 Related Work

We first discuss centralized schedulers and algorithms, followed by a discussion
of autonomous scheduling solutions.

After the introduction of TSCH, TASA [11] was one of the first central
scheduling algorithms proposed. It is traffic aware, yet like other papers fo-
cusing on scheduling algorithms like C-LLF [10], it assumes the availability
of interference-free channels and, therefore, does not include retransmissions.
Saifullah et al. [10] and Gunatilaka et al. [16] focus in their work on the highest
possible schedulability for a large amount of communications meeting deadlines
but not much on the network reliability. AMUS [119] is one of the protocols
for TSCH that includes slot-based retransmissions. It schedules additional
resources for vulnerable links and allocates backup slots in empty cells of the
scheduler. Rugamba et al. [125] build another centralized scheduler based
on a path collision-aware least-laxity first scheduling algorithm by Darbandi
et al. [124]. Moreover, Rugamba et al. describe a method of distributing a
centrally computed schedule. The first approach of moving from slot-based
retransmissions to flow-based ones is the flow-centric policy (FCP) [131]. The
authors present a dynamic approach of retransmissions not fixed to specific
links. This approach is similar to the transmission strategy of Sliding Win-
dows presented in this paper. We discuss the differences between the two in
Section 3.2.3.

Besides the advances regarding scheduling, Wu et al. [52] present advances
in the field of centralized routing in combination with central scheduling. The
authors present a conflict aware real-time routing approach, that is aware of
scheduling decisions and the possible conflicts of routed paths. Li et al. [51]
take a different, asymmetric approach in routing by applying different routing
strategies for different communications in one network.

Related to these central scheduling and routing approaches, are systems
focusing on network softwarization. plexi [159] is a framework exposing TSCH
network resources through a web interface and allowing the rescheduling of
communications. Similarly, Baddeley et al. [161] and Galluccio et al. [160]
present SDN solutions for Wireless Sensor Networks for network monitoring
and reconfiguration. These SDN solutions are conceptually in line with central
schedulers calculating schedules externally. Moreover, a combination of our
work with SDN solutions is imaginable.

Next to the centralized approaches, a significant focus of recent work is
on autonomous scheduling, a concept introduced by Orchestra [8]. Orchestra,
as well as Alice [148] and DiGS [259] are autonomous solutions for TSCH,
as they do not require neither any central infrastructure nor the exchange of
data to build a schedule and achieve high reliabilities of 99.999%. However,

68 CHAPTER A. MASTER

autonomous schedulers are not able to achieve this reliability with latency
guarantees necessary for many industrial applications as they have no knowledge
on the underlying topology.

6 Conclusion

This paper introduces Master, a central scheduling solution for TSCH net-
works. Master introduces a novel Sliding Windows transmission strategy
and achieves high reliability independent of knowing the optimal amount of
retransmissions per link. Instead, it schedules a number of retransmissions
for a flow that can be used at all links of a flow where necessary. The key
idea is enabling centralized schedulers to adapt to interference changes without
the need for rescheduling while keeping the lowest possible latency. Thus,
eliminating a significant overhead of traditional central schedulers.

We implement Master in Contiki-NG and evaluate it extensively on
a testbed in an environment susceptible to interference. We demonstrate
Master’s practicality and ability to keep stability for over 24 hours and achieve
latencies much smaller than Orchestra while achieving similar reliability.

As part of future work, we plan to investigate the challenges of neighbor
data collection and schedule distribution to provide a comprehensive central
scheduling solution. Moreover, we are planning to evaluate the use of centralized
schedulers in harsh wireless environments, such as the ones used in the EWSN
dependability competitions [257].

B

Opportunistic Routing and Synchronous Transmissions
Meet TSCH

Laura Harms, Olaf Landsiedel

Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN),
2021, pp. 107–114.

69

Abstract

Low-power wireless networking commonly uses either Time-Slotted Channel
Hopping (TSCH), synchronous transmissions, or opportunistic routing. All
three of these different, orthogonal approaches strive for efficient and reliable
communication but follow different trajectories. With this paper, we combine
these concepts into one protocol: Autobahn.

Autobahn merges TSCH scheduling with opportunistically routed, syn-
chronous transmissions. This opens the possibility to create long-term stable
schedules overcoming local interference. We prove the stability of schedules over
several days in our experimental evaluation. Moreover, Autobahn outperforms
the autonomous scheduler Orchestra under interference in terms of reliability
by 13.9 percentage points and in terms of latency by a factor of 9 under a
minor duty cycle increase of 2.1 percentage points.

70 CHAPTER B. AUTOBAHN

1 Introduction

Within the past 20 years, research on low-power wireless networking resulted in
a multitude of different protocols. They fall into three prominent fields: Time-
Slotted Channel Hopping (TSCH), opportunistic routing, and synchronous
transmissions. So far, all three of these fields have little to no overlap, while
all strive for a common goal of stable, reliable communication in low-power
wireless networks.

In the first field of protocols, the IEEE 802.15.4 Time-Slotted Channel
Hopping (TSCH) [6] MAC layer protocol forms the basis for many routed
communication protocols. This protocol is standardized and dominates the
industry. One category of TSCH protocols uses centralized schedulers, sepa-
rating the network communication from the routing and scheduling. In recent
works [131,240], centralized schedulers show high reliability and stability. An-
other category are autonomous schedulers with Orchestra [8] as a prominent
example.

TSCH protocols offer stability regarding narrow-band interference. However,
long-term stable schedules that are immune to wide-band interference are an
open challenge. Wide-band interference likely leads to link failures or even
node failures heavily affecting routed communication.

The other two fields can overcome these challenges. Opportunistic routing
[171,174,175] utilizes anycasts instead of unicasts to add forwarding flexibility
by addressing a packet to multiple potential forwarders. It increases the
possibility of successful reception in the presence of wireless link dynamics.
Protocols building upon synchronous transmissions [9, 59, 65] allow multiple
nodes to transmit packets concurrently, commonly by network-wide flooding.

Synchronous transmissions achieve high reliability even in the presence
of wide-band interference. However, they have an impact on all nodes in a
network. If, for example, in a 1000 node network, two nodes two-hops apart
want to communicate, the whole network is involved. In a routed network, only
a fraction of these nodes needs to communicate.

In this paper, we ask the following question: Can we combine the benefits
of opportunistic routing, synchronous transmissions and centralized TSCH
scheduling? For this, we introduce Autobahn: a hybrid routing scheme that
combines the best of these worlds: centrally scheduled flows and one-to-one
routing of packets as in traditional networking combined with the reliability
and robustness of opportunistic routing and synchronous transmissions.

The basic concept of Autobahn is as follows: Its central scheduler schedules
a flow along a wider path and allows neighboring nodes to transmit concurrently
the same data at the same timeslot and frequency. Thus, a node forwards a
packet opportunistically to multiple neighboring nodes, which in turn, in the
next slot, concurrently forward opportunistically to their neighbors. In our
evaluation, we show that by combining these three approaches, Autobahn
efficiently provides reliable, low-latency packet delivery even when links fail, and
its schedules are stable for days even in the presence of dynamic interference.

Overall, this paper makes the following contributions:

• We are the first to combine the concepts of opportunistic routing, syn-
chronous transmissions, Time-Slotted Channel Hopping (TSCH) into a

2. BACKGROUND & RELATED WORK 71

single protocol to achieve long-term stable routed communication.

• We design Autobahn, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference.

• We implement Autobahn for Contiki-NG [256] and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules using Autobahn over 12 days and under various interfer-
ence levels for 25 hours. These experiments achieve reliability under
interference of 96.8% and latency of 4.2 slots outperforming both the
central scheduler Master [240] and the autonomous TSCH scheduler
Orchestra [8].

The remainder of this paper is organized as follows. Section 2 gives the
necessary background information and reviews related work on TSCH as well as
the concepts combined in Autobahn. In Section 3, we introduce the design of
Autobahn. In Section 4 we evaluate Autobahn’s performance experimentally,
followed by the conclusion in Section 5.

2 Background & Related Work

In this section, we introduce the necessary background on TSCH, opportunistic
routing, and concurrent transmissions and discuss the relevant related work.

2.1 Time-Slotted Channel Hopping (TSCH)

The MAC protocol Time-Slotted Channel Hopping (TSCH) [6] is a combined
TDMA and FDMA MAC protocol. It uses 10 ms long time slots with up to
16 frequency channels at each time slot. All active channels follow a pseudo-
random hopping sequence that is cycled through, using a different channel at
each timeslot to counteract narrow-band interference.

TSCH groups communication slots in continuously repeated slot-frames. All
slot-frames together form the TSCH schedule. A TSCH schedule is generated
by a centralized, autonomous, or distributed scheduler.

Centralized Scheduling: Central schedulers use global knowledge about
the network topology (esp. wireless link quality) to build a schedule and
disseminate the schedule into the network. Many early ones, such as TASA [11]
and others [10,16], assume interference-free wireless channels without lossy links
and, therefore, do not include retransmissions in their schedules. Later work
focuses on increasing reliability in the presence of fading channels while ensuring
end-to-end latency requirements of each flow. They achieve this by adding
retransmissions, i.e., slot-based retransmissions, as used by AMUS [119], to the
schedule. As interference can rarely be linked to a specific location beforehand,
some recent works by Brummet et al. [131], and Master [240] introduce a new
approach to retransmissions in TSCH scheduling: they introduce flow-based
retransmissions achieving lower latency and a higher degree of adaptability to
local interference level.

Autonomous/Distributed Scheduling: Next to these centralized TSCH
protocols, a significant amount of work concentrates on autonomous schedul-
ing, a concept introduced by Orchestra [8] and extended by others [148,259].

72 CHAPTER B. AUTOBAHN

Distributed scheduling on the other hand builds on 6TiSCH with its default
scheduling function MSF [134], as well as, LLSF [135] and LDSF [136], focusing
on improving latency in distributed TSCH.

Multipath TSCH: For multi-path communication in TSCH, several al-
gorithms [166, 168] were studied for distributed and centralized scheduling
scenarios. To some extent, these works propose similar ideas as Autobahn,
yet they clearly stay within the specifications of TSCH and do not apply
opportunistic routing or synchronous transmissions. Moreover, their evaluation
results are solely based on simulation.

2.2 Opportunistic Routing

Opportunistic routing is a routing approach to improve network throughput,
communication reliability and efficiency in wireless multi-hop mesh networks.
Instead of performing unicast communication as established TSCH schedulers
do, opportunistic routing builds upon anycasts. By this, opportunistic routing
sends each packet to a set of receivers. If any of them receives the packet,
the transmission is successful. As multiple receivers might receive the packet,
opportunistic routing has to overcome the challenge of selecting a unique
forwarder. This forwarder selection has to wait until after the transmission
[171–173].

While initial works do not use duty-cycled, low-power wireless networking,
later works such as as ORW [174] and ORPL [175] bring opportunistic routing to
these. Nonetheless, these protocols are not built for TSCH. Huynh et al. [180],
Hermeto et al. [181], and Hosni et al. [182] study the use of opportunistic
routing or anycasts in TSCH and propose changes to TSCH to allow non-
colliding acknowledgments from multiple receivers. BOOST [183] introduces
forwarder selection through sending delays with carrier sense in TSCH. In
contrast to these approaches, Autobahn does not use any preferred forwarder
selection method. Instead, we overcome this challenge by using synchronous
transmissions.

2.3 Synchronous Transmissions

Synchronous transmission protocols allow multiple nodes to transmit packets
simultaneously. With precise timing, these packets do not collide destructively,
allowing protocols to achieve high communication reliability [9,65]. As a result,
protocols employing synchronous transmissions do not maintain routes by
selecting parent nodes, announcing routing metrics, discovering neighbors, and
maintaining routing tables as traditional routing protocols.

For receiving such a packet, the senders must not significantly differ in
timing. One common option of receiving synchronous transmissions is the
so-called Capture Effect [57]. According to the capture effect in IEEE 802.15.4,
a stronger signal must not arrive later than 160µs after the first signal [59].
When sending the same data, non-destructive interference is achievable if the
time offset between multiple senders is within a bound of 0.5µs [9].

Synchronous transmissions are well studied. Glossy [9] laid the foundation
for synchronous transmissions in wireless sensor networks. Since Glossy’s
introduction, many protocols including Chaos [59] and LWB [65] followed.

2. BACKGROUND & RELATED WORK 73

A B D

C E

1 2 3 4
A TX TX
B RX TXRX TX
C
D
E RX RX

(a) Established central scheduling approaches employ a single routing path.
Their schedule will fail if one of the links fails, such as the link between
nodes A and B in this example.

A B D

C E

1 2 3 4
A TX TX
B RX TXRX TX
C RX TXRX TX
D RX RXTX TX
E RX RX RX

(b) Autobahn utilizes multi-path routing and thereby provides redundant
options in case routes fail. In this example, packets can travel via node C
to destination E.

Figure B.1: Autobahn compared to established centralized TSCH
scheduling approaches. In this example, we assume a topology of five
nodes, with node A as source and node E as destination. We show
both the scheduled paths and the TSCH schedule, using RX, RXTX,
and TX slots as typical for flow-based retransmission schemes (with a
retransmission window of two). Grayed-out slots present slots where
reception and transmission are not possible due to previously failed
interfered receptions.

They all are protocols that use network-wide flooding without a concept of
routing. Protocols like WSNShape/Sparkle [67], CXFS [68] and LaneFlood [69]
divert from network-wide flooding and use flooding with some notion of routing
along a path of forwarders.

All of these protocols operate without a routing layer, whereas Autobahn
follows the principle of combining synchronous transmissions and TSCH as
envisioned by Chang et al. [260]. Gomes et al. [261] study an initial approach
of flooding-based routing in TSCH. This approach relies fully on broadcasts
(no acknowledgements) and uses shorter TSCH slots. Baddeley et al. [193]
present a hybrid between TSCH and synchronous transmissions by replacing
some TSCH slots with synchronously transmitted BLE packets for exchanging
control information.

While some protocols explore the field of combining TSCH and synchronous
transmissions, Autobahn explores it further by combining synchronous trans-
missions with TSCH, including both synchronous transmissions as well as
synchronous acknowledgments in combination with opportunistic routing.

74 CHAPTER B. AUTOBAHN

3 Design

We continue with the design of Autobahn. We begin with a simple example
to present the basic idea of Autobahn. Then, we introduce (1) general node
selection requirements, (2) the forwarder selection through node ranks, and (3)
the active nodes in each slot. After discussing these main points of the design,
we present the system design, including the Contiki/TSCH extensions to allow
anycast communication, and Autobahn’s routing layer adaptations.

3.1 Autobahn: General Idea

As an example, we assume the network of five nodes in Figure B.1 where Node
A communicates with node E. Further, let us assume that the link between
nodes A and B fails due to interference.

To illustrate the benefits of Autobahn, we first discuss how established
centralized scheduling approaches suffer from link failures. Established ap-
proaches commonly employ a single routing path. Their schedule will fail if
one of the links fails, such as the link between nodes A and B in this example,
see Figure B.1a. Retransmissions, as scheduled in the example, usually happen
on a different channel and thereby protect the protocol against narrow-band
interference. Wide-band interference, however, can break links and result in
packet loss. Eventually, the scheduler has to deploy an updated schedule. If
this is done frequently, this adds significant overhead to the communication
scheme.

The general idea behind Autobahn is to add redundancy to the routing
path, see Figure B.1b. In the example of Autobahn, node A sends a packet that
will be received by nodes B and C. These two forward the packet synchronously
to nodes D and E, which receive one of the two transmissions due to the capture
effect. Lastly, node D sends the packet to node E as well. In case of interference,
node B is not reachable. That means that only node C receives the packet
from node A. Node C then forwards the message to node E. Redundant routing
paths in Autobahn add non-neglectable overhead to the duty cycle of the
network. In our evaluation, we, however, show that this overhead is justifiable
in the interference-free case, and in the case of interference, it is essential for
reliable communication.

3.2 Routing Set

Centralized schedulers have global knowledge over the network topology through
long-term link quality metrics. They commonly route traffic along a single path,
using single forwarders. In contrast to that, Autobahn addresses packets to
multiple forwarders (anycast). To achieve this, we employ a routing set with
redundancy instead of a single path.

We define a routing set to consist of all nodes we use for end-to-end
communication. A routing set {rs} is a set of nodes n1, ..., nk ∈ {rs} responsible
for routing a data packet from the source node n1 to the sink node nk. This
routing set contains the nodes forming the shortest path from source to sink as
well as additional nodes used for opportunistic, anycast routing in Autobahn,
which adds path redundancy.

3. DESIGN 75

To build a routing set, we start with the shortest path from source to
destination employing the ETX-metric [48] and Dijkstra’s shortest-path algo-
rithm [49]. Next, we add routing redundancies by including neighboring nodes
along the path. For this, we introduce three schemes: (i) neighbor-based, (ii)
hop-based, and (iii) cost-based selection of routing sets. Especially in dense
networks, the number of these neighboring nodes for each of the three schemes
is likely to be high and leads to the inclusion of massive parts of the network.
Therefore, we specify a node overhead factor (scaling the number of additional
nodes) and a cost overhead factor (scaling the max. allowed ETX cost of nodes
of an end-to-end path).

Neighbor-based participant selection starts with determining all nodes
neighboring at least one node of the shortest path. From these nodes, we
continue with three different subsets: (a) all selected nodes that do not exceed
the cost overhead, (b) a subset of (a) forming a second shortest path, and (c)
a subset of (a) forming a shortest path from each node of the original path to
the destination node.

After selecting the respective nodes, we check whether the node overhead is
too large. If so, we refine our selection only to include the allowed number of
nodes with the lowest cost.

The hop-based selection possibility includes additional nodes with a similar
combined distance to the shortest path’s source and destination while not
exceeding the cost overhead. Equation B.1 shows the general idea of this
selection strategy, that the combined hop distances from source to forwarder
(dsf) and forwarder to destination (ddf) must not exceed the direct distance
dsd plus a slack value s. The slack value has to be a natural number. If the
node overhead is too large, nodes with the lowest hop count are preferred.

dsf + ddf ≤ dsd + s (B.1)

The cost-based selection possibility follows the same equation. However,
instead of hop-based distances, we use ETX-based distances and an ETX-based
slack (s), which can be a positive real number. However, the maximum slack
value for this strategy equals the maximum cost overhead allowed according
to the cost overhead factor. If, after node selection, the node overhead is too
large, we rank the nodes regarding their cost and take those with the lowest
cost. In addition, we exclude all other nodes that have the same cost as one of
the already excluded nodes.

3.3 Anycast forwarding in Autobahn

In anycast routing, we address a packet to a set of neighboring nodes, i.e.,
the ones making sufficient progress towards the destination. Thus, for each
transmission in Autobahn, this set of possible recipients listens for the packet.
Practically, we introduce node ranks: Each node has a rank according to its
distance to the destination of a flow from source to destination. The sender
of a packet has rank 0, and the rank increases towards the receiver, with the
receiver having the highest rank.

If a node receives a packet, it compares its rank to the sender’s rank, which
we include in the packet header. If the own rank is higher, it acknowledges
the packet and forwards it. Otherwise, it stays silent and acknowledges for

76 CHAPTER B. AUTOBAHN

itself that the packet has passed. The sender of a packet performs a similar
action. If it receives an acknowledgment from a node with a higher rank, it
concludes that the opportunistic anycast succeeded and stops forwarding this
packet. This way, we ensure that only nodes closer to the packet’s destination
acknowledge the reception of the packet and forward the packet; thus, we avoid
loops and packets stuck mid-flow.

In traditional opportunistic routing, packet duplicates are often a challenge
[171,174,175]: There is always a risk that multiple forwarders receive a packet,
and each individually forwards the packet, adding additional load on the
network. In Autobahn, all packets – including duplicates – are forwarded
synchronously, and their spatial diversity is the basis for the reliability of our
design in the presence of interference. Thus, duplicates are (i) inherently part
of the design and (ii) do not add the overhead as in traditional designs.

3.4 Active slots in Autobahn

Autobahn uses flow-based retransmission schemes such as Sliding Windows
introduced by Master [240], with multiple nodes possibly active in one slot.
Autobahn extends this by activating all nodes in a slot that are reachable by
any previously active node.

In the first slot of a flow, the sender of a packet and all receivers in range
are active. For each of the following slots, we include all additional nodes
reachable by any previously active node. From this, we derive the first active
slot of a node, i.e., the first point in time a packet in a flow can reach a node
along one of the different paths employed by Autobahn. We determine a
node’s last active slot based on the node’s hop distance to the flow’s receiver
and the flow’s number of total transmissions.

Due to the opportunistic nature of Autobahn, a high network duty-cycle
is expectable. Nevertheless, to still keep the energy consumption as low as
possible, each node stays only active until we no longer need it for forwarding
the packet. As we explain above, a node determines whether it is still needed
through the received rank of other participants.

The schedules in Figure B.1 illustrate the difference between the active slots
of a flow-based central scheduler (Figure B.1a) without opportunistic routing
and Autobahn (Figure B.1b).

3.5 System Integration

For the design of Autobahn, we devise a TSCH implementation with sup-
port for opportunistic anycasts and a good enough time synchronization for
synchronous transmissions. In our evaluation, we show that the TSCH imple-
mentation of Contiki-NG is sufficient for synchronous transmissions. However,
as it does not support anycasts, we have to realize these ourselves. Autobahn
itself can be implemented on top of any centralized scheduler. We choose
Master, a centralized scheduler implemented for Contiki-NG as our basis. We
implement Autobahn to replace Master’s central routing and retransmission
logic while keeping its scheduling module. Below, we discuss the integration
into Master’s Contiki routing layer and the extension of Contiki-NG/TSCH
to allow opportunistic anycasts.

4. EVALUATION 77

3.6 Integration in Master’s routing layer

We extend Master’s routing layer to have access to a node’s rank and relay a
packet back to the correct flow address instead of a neighbor address.

The routing layer is also responsible for the routing-specific header. In addi-
tion to the existing 7-byte routing header, Autobahn requires one additional
byte. The existing 7 bytes are a flow identifier (1 byte), a sequence number (2
bytes), the time-to-live (TTL) (2 bytes), and the earliest transmission slot (2
bytes) of a packet. Autobahn adds the node’s rank to the packet to allow the
receiver to make its forwarding decision according to our description above.

3.6.1 Contiki-NG/TSCH extensions

The TSCH implementation of Contiki-NG does not support anycast communi-
cation. To add support for anycasts, we extend it with (1) the capability of
accepting packets from any neighbor of a flow, as well as (2) using this flow as
a sender and receiver simultaneously. Moreover, we (3) define a flow-specific
sequence number to accept acknowledgments successfully.

With our modification, TSCH accepts packets from a flow address if the
receiving node is a member of the respective flow. As we no longer need the
sender’s and receiver’s addresses, we replace them with the flow address.

Besides accepting packets from any flow participant, TSCH needs the
capability to accept acknowledgments from any possible forwarder of the flow.
Therefore, we include the receiver’s rank in the acknowledgment. If a node
receives an acknowledgment acknowledging a different synchronous sender, it
still needs to be accepted. Therefore, our routing layer replaces the TSCH
sequence number with a flow and packet-specific end-to-end sequence number.

4 Evaluation

In this section, we evaluate Autobahn’s performance and compare it to the
state-of-the-art. We start by showing the feasibility of synchronous transmis-
sions in the context of TSCH. After that, we evaluate Autobahn’s different
routing set selection choices and compare those to Master in scenarios with
and without interference. Afterward, we compare Autobahn’s best routing
selection algorithm against Orchestra, the default autonomous scheduler in
Contiki-NG. We conclude our evaluation with long-term stability analysis of
schedules in Autobahn.

4.1 Evaluation Setup

4.1.1 Testbed and Platform

We run our experiments on a 20-node testbed at our local university. This
testbed (Figure B.2) covers the top floor of a university building with offices
and student lab rooms and thus shares the wireless spectrum with WiFi and
Bluetooth communication outside of our control.

78 CHAPTER B. AUTOBAHN

4.1.2 Metrics, Comparison, and Duration

We evaluate Autobahn in terms of end-to-end reliability, end-to-end latency,
and network energy consumption (network duty cycle). We measure these
metrics for different routing and retransmission approaches for Master and
Autobahn under different interference levels. Moreover, we compare Auto-
bahn with Orchestra according to these metrics. We include six flows we give
in Figure B.2. The duration of each experiment in sections 4.5, and 4.4 is
75 minutes, with each flow sending 100 packets per minute. In section 4.6
we run 75-minute experiments with 60 packets per minute and flow. For the
long-term evaluations from Section 4.8 onward, we specify the duration as part
of the specific experiment.

4.1.3 Implementation

We implement Autobahn for Contiki-NG [256] and target the Zolertia Firefly
Platform. This platform features a CC2538 Cortex-M3 CPU (32-bit, 32 MHz)
with 32 KB of RAM, 512 KB flash storage, and an IEEE 802.15.4 compatible
radio.

4.1.4 Channels and Interference

We perform most of our experiments under interference. To ensure comparable
levels of interference for all tested protocols, we generate these ourselves in
a repeatable manner using JamLab [248]. If not stated otherwise, we use an
interference level of 10% channel occupancy. We use five interference sources
depicted in Figure B.2. Two of the interference sources are in a central position
surrounded by several nodes, while the other three are each in close vicinity to
a forwarding node in the network. As our testbed only provides the capability
of generating interference on one channel at a time, we use only a single
channel (channel 26) for all experiments. As we target networks susceptible to
wide-band interference, evaluating on only one channel is not a problem. Wide-
band interference, such as WiFi, would cover multiple IEEE 802.15.4 channels,
eliminating channel hopping advantages. Therefore, it is more realistic to use
one channel with interference than multiple channels with interference on only
one of them. Moreover, using only one channel lets us compare the worst-case
performance of the discussed protocols.

4.1.5 Application Payload and Overhead

We send packets with a 64-byte randomly generated payload for all experiments,
a medium packet size for TSCH. Additionally to this data payload, we include
7-byte and 8-byte routing headers for Master and Autobahn, respectively.
Orchestra uses IPv6 headers instead and requires additional network layer
control traffic.

4.1.6 Routing Sets

We include three Autobahn routing sets marked as neighbor-based, hop-based,
and cost-based. The neighbor-based one is option (c) of the neighbor-based
routing sets in Section 3.2, the one with an alternative path from each node

4. EVALUATION 79

4 2

5

6

1

34

2

5

6

1

3

Figure B.2: Local testbed of 500m2. Source nodes: orange hexagons;
Sink nodes: green squares; Relay-only nodes: blue circles; Red
octagons: interferer; Numbers: corresponding flow

through all neighbors. For the hop-based routing set, we use a slack value of
2. For the cost-based routing set, we use the maximum possible slack value,
equaling the maximum cost overhead. This slack value is potentially different
for each flow. This value ensures that we include all nodes, with an end-to-end
ETX value not exceeding the cost overhead factor. We use overhead factors of
2 and 2.5 as node-overhead factor and cost overhead factor, respectively.

4.2 Baselines

We compare Autobahn’s routing-set algorithms to three other TSCH schedul-
ing policies. Two of these are Master’s slot-based retransmission strategy and
Master’s flow-based transmission strategy called Sliding Windows. Master’s
slot-based retransmission strategy follows the traditional concept of replicating
slots of single hops, done in several recent publications, including AMUS [119].
We use Master, as it provides us an implementation for Contiki-NG. As the
last baseline we use Orchestra, to set Autobahn into relation to a well-known
protocol. Orchestra [8] is an autonomous scheduler for TSCH included in
Contiki-NG [256]. It autonomously maps links to resources, e.g., determines a
node’s send or receive slot based on a hash function.

4.3 Possibility of Synchronous Transmissions in TSCH

Before starting our main evaluation, we investigate the quality of synchroniza-
tion in TSCH for synchronous transmissions. With a desk setup of 4 nodes,
we can identify the feasibility of synchronous transmissions. Our data shows
an average offset between two synchronously transmitting nodes of 16.4µs
with a standard deviation of 16.8µs and a maximum offset of 65.7µs. This

80 CHAPTER B. AUTOBAHN

Master (slot-based) Master (Sliding Windows) Autobahn (neighbor-based) Autobahn (hop-based) Autobahn (cost-based)

1 2 3 4 5 6 avg
Flow

0

25

50

75

100
PD

R
[%

]

(a) Reliability comparison.

1 2 3 4 5 6 avg
Flow

0.0

2.5

5.0

7.5

10.0

La
te

nc
y

[s
lo

ts
]

(b) Latency comparison.

0 2 4 6 8 10 12
Latency [slots]

0

25

50

75

100

PD
R

[%
]

(c) CDF: latency and reliability.

0
5

10
15
20
25

Du
ty

 C
yc

le
 [%

]

(d) Duty cycle comparison.

Figure B.3: Autobahn and Master without interference. Autobahn’s
neighbor-based strategy outperforms Master while increasing the
duty cycle by 4.3 percentage points.

offset clearly shows that the degree of synchronization in Contiki’s TSCH
implementation is by far not good enough for constructive interference (offset
bound of 0.5µs [9]). However, the offset stays below the maximum offset for
capture effect of 160µs [59]. TSCH generally does not require synchronization
as strict as Glossy and therefore does not include additional physical layer time
synchronization measures. Nonetheless, our results show that synchronous
transmissions are possible due to the capture effect.

4.4 Performance without Interference

We begin our evaluation by comparing the performance of Autobahn’s different
routing sets with the performance of Master’s retransmission strategies. For
this evaluation, we do not generate any interference. When comparing the
reliability of the different routing sets (see Figure B.3a), we see a generally
better performance of the neighbor-based routing set in comparison with the
hop-based or cost-based ones. Especially the difference between the neighbor-
based and hop-based routing sets is visible for flows 1 and 6. The hop-based
routing set has too many simultaneously active nodes at similar distances to a
forwarder or receiver. With this number of active nodes, no signal is strong
enough for reception through the capture effect. For flow 1, we even see a
destruction of the signal. The cost-based strategy has better reliability but

4. EVALUATION 81

Master (slot-based) Master (Sliding Windows) Autobahn (neighbor-based) Autobahn (hop-based) Autobahn (cost-based)

1 2 3 4 5 6 avg
Flow

0

25

50

75

100
PD

R
[%

]

(a) Reliability comparison.

1 2 3 4 5 6 avg
Flow

0.0

2.5

5.0

7.5

10.0

La
te

nc
y

[s
lo

ts
]

(b) Latency comparison.

0 2 4 6 8 10 12
Latency [slots]

0

25

50

75

100

PD
R

[%
]

(c) CDF: latency and reliability.

0
5

10
15
20
25

Du
ty

 C
yc

le
 [%

]

(d) Duty cycle comparison.

Figure B.4: Autobahn and Master under interference. Autobahn has
a much better performance than Master with the best performance
using the neighbor-based routing set.

generally does not achieve the high reliability of the neighbor-based routing
set. The baseline strategies are not exposed to in-flow interference and achieve
almost the reliability of neighbor-based Autobahn, with a slight advantage for
Sliding Windows over the slot-based retransmission strategy. However, if the
network’s link qualities are not perfect for a flow (flows 2 and 5), Master is
more strongly affected. Latency-wise (see Figure B.3b, B.3c), Autobahn has a
small advantage over Master, while both Autobahn and Sliding Windows are
better than the slot-based retransmission strategy. The reliability improvement
comes at a cost of a higher network duty cycle (see Figure B.3d). With more
active nodes, the duty cycle increases significantly. Nevertheless, the best
performing routing set of Autobahn leads to the least increase in duty cycle
by, on average 4.3 percentage points.

4.5 Performance under Interference

Next, we compare the same strategies as before under induced interference.
From Figure B.4a it is visible that the neighbor-based routing set once again
performs best. The other routing sets still offer average reliability of around
80%. However, for some flows, these routing sets achieve very low reliability
(e.g., flow 1). This low reliability indicates that too many nodes are active
simultaneously plus the additional interference heavily impacting a successful

82 CHAPTER B. AUTOBAHN

0 50 100 150 200
Latency [slots]

0

20

40

60

80

100

PD
R

[%
]

Autobahn 0%
Autobahn 10%
Orchestra 0%
Orchestra 10%

(a) Latency and reliability compar-
ison between Orchestra and Auto-
bahn with and without interference.

0

5

10

15

20

Du
ty

 C
yc

le
 [%

]

Autobahn 0%
Autobahn 10%
Orchestra 0%
Orchestra 10%

(b) Network duty cycle of Orches-
tra and Autobahn with and without
interference.

25

50

75

100

PD
R

[%
]

40 80 120 160 200 240
Time [minutes]

0
25
50
75

100

La
te

nc
y

[s
lo

ts
] Master

Orchestra
Autobahn

(c) Performance under and recovery from interference over time. (Inter-
ference levels from left to right: 5%, 10%, 15%, and 25%)

Figure B.5: Comparison of Autobahn and Orchestra with and with-
out interference. Figure B.5c includes the recovery performance of
Master’s Sliding Windows strategy as an additional baseline.

capture effect. Comparing Autobahn to Master shows that all routing sets
of Autobahn have higher average reliability than Master’s strategies. This
is due to Master being heavily impacted by interference in certain flows (flows
3, 5, and 6). In these flows, the shortest path passes closely to an interference
source. Thus, we see that additional nodes offered by Autobahn are necessary
to route traffic around interference sources opportunistically. The latency
differences (see Figure B.4b) follow the same trend as without interference, just
slightly higher. As the latency comparison only includes received packets, we
also show the combination of latency and reliability in Figure B.4c. Autobahn
requires a latency of 4 slots to reach a 50% reliability, while Master cannot
reach this network-wide reliability at all. The higher overall reliability comes at
the cost of a higher network duty cycle (see Figure B.4d). The cost is similarly
high as for the interference-free case. However, especially in the presence of
interference, an increase of network duty cycle of 2.89 percentage points for
the best routing set should be acceptable if reliability has high priority.

4. EVALUATION 83

4.6 Autobahn vs. Orchestra

Next, we compare Autobahn’s best-performing routing set (neighbor-based)
with another baseline, the autonomous scheduler Orchestra. As Orchestra
is a best-effort protocol and is therefore not limited to a deadline, i.e., a
certain number of slots to successfully transmit a packet, we, therefore, relax
these limitations for Autobahn as well. However, as we send a new packet
every second, Autobahn’s schedule should not exceed this value. We achieve
this by using a higher scaling factor of three instead of two to determine
the number of transmission slots. That means that we use for each flow
50% more transmissions than in the previous experiments. The results of
this comparison (see Figure B.5a-B.5b) show that Orchestra achieves slightly
higher reliability than Autobahn without the presence of interference (99.96%
vs. 99.51%). However, in the presence of interference, Autobahn clearly
outperforms Orchestra with a 13.89 percentage points higher packet delivery
rate (PDR). Latency-wise, Autobahn clearly outperforms Orchestra. In case
of interference, by a factor 9. However, we need to attribute some of that
to the fact that all flows communicate actively simultaneously in Orchestra,
while in Autobahn’s schedule, the flows communicate one after another.
Energy-wise, we can see a similar trend as with the comparison of Autobahn
and Master (Figure B.3d and Figure B.4d). Autobahn uses more active
nodes and therefore has a higher duty cycle. In contrast both Master and
Orchestra follow a single path, with Master’s duty cycle being the lowest,
while Orchestra occupies the middle ground.

4.7 Recovery from interference

Next, we compare how well Master, Autobahn, and Orchestra perform under
interference over time and how good they are at recovering from interference.
Figure B.5c shows that all three algorithms are influenced by interference but
are successful at recovering independently of the interference level. Master and
Autobahn have similar latency responses, while Orchestra has a less uniform
curve as the rerouting in case of interference takes some time. Reliability-wise,
Orchestra keeps high reliability for quite a long time but has to drop packets
towards the end of an interference block. Master is generally hit the hardest
by interference, while Autobahn clearly performs best under interference.

4.8 Long-term stability of Autobahn

After comparing Autobahn to various baselines under different interference
levels, we evaluate Autobahn’s long-term stability. As before, we use Au-
tobahn’s neighbor-based routing set. For this section, we use a schedule
generated with a neighbor discovery on day one and run this schedule almost
daily over 12 days. Moreover, after 12 days, we run a final 25 hour experiment
with three-hour blocks of 5%, 10%, 15%, and 25% interference, respectively.
While the performance varies within the days, reliability always stays above
96% (see Figure B.6a). Latency fluctuates slightly, yet it remains around the
level of the first days, whereas the duty cycle shows an upwards trend in the
beginning (see Figure B.6b-B.6c). The performance analysis over 25 hours (see

84 CHAPTER B. AUTOBAHN

1 2 3 4 5 8 9 11 12
Day

80

85

90

95

100

PD
R

[%
]

(a) Reliability over the
course of 12 days.

1 2 3 4 5 8 9 11 12
Day

0

1

2

3

4

5

6

La
te

nc
y

[s
lo

ts
]

(b) Latency over the
course of 12 days.

1 2 3 4 5 8 9 11 12
Day

0

5

10

15

20

Du
ty

 C
yc

le
 [%

]

(c) Energy consump-
tion (duty cycle) over
the course of 12 days.

50

100

PD
R

[%
]

0
4
8

La
te

nc
y

[s
lo

ts
]

300 600 900 1200 1500
Time [minutes]

5

10

DC
 [%

]

(d) Performance over 25 hours with 3 hour long interference blocks
(interference levels from left to right: 5%, 10%, 15%, 25%).

Figure B.6: Long-term stability evaluation of Autobahn. Fig-
ures B.6a - B.6c present (almost) daily runs of Autobahn with
the same schedule over the course of 12 days. Figure B.6d shows
the performance of the same 12-day old schedule under different
interference levels and its recovery from interference.

Figure B.6d) shows that even an almost two-week-old Autobahn schedule is
still able to perform under interference and quickly recover from it.

5 Conclusion

Centrally scheduled networks are sensitive to wireless link dynamics, esp. wide-
band interference. Autobahn addresses this by adding spatial redundancies
via combining TSCH with synchronous transmissions and opportunistic routing.

We show that Autobahn offers reliability of 95% and more under interfer-
ence while mildly increasing the duty cycle by 4.3 percentage points. Moreover,
experiments over 12 days show the long-term stability of Autobahn’s schedules
with 98.6% reliability.

C

BlueSeer: AI-Driven Environment Detection via BLE
Scans

Valentin Poirot, Laura Harms, Hendric Mertens, Olaf Landsiedel

Proceedings of the ACM/IEEE Design Automation Conference (DAC), 2022,
pp. 871–876.

85

Abstract

IoT devices rely on environment detection to trigger specific actions, e.g., for
headphones to adapt noise cancellation to the surroundings. While phones
feature many sensors, from GNSS to cameras, small wearables must rely
on the few energy-efficient components they already incorporate. In this
paper, we demonstrate that a Bluetooth radio is the only component required
to accurately classify environments and present BlueSeer, an environment-
detection system that solely relies on received BLE packets and an embedded
neural network. BlueSeer achieves an accuracy of up to 84% differentiating
between 7 environments on resource-constrained devices, and requires only
~12 ms for inference on a 64 MHz microcontroller-unit.

86 CHAPTER C. BLUESEER

1 Introduction

Smartphones, wireless peripherals, and small wearables constantly accompany
us in our daily life: at home, in transit, while shopping, or even at work.
The ability to detect our surrounding environments, known as Environment
Detection or Classification [235], is a desirable trait in mobile systems: a
smartphone can automatically enter into silent mode when it detects that we
enter a theater or airplane mode once we board a plane; wireless headphones
can adapt their degree of noise cancellation to match the current environment:
total cancellation in offices, but limited cancellation in streets to ensure that
the user can still hear oncoming traffic and emergency vehicles; fitness trackers
can distinguish between indoor and outdoor activities by checking the user’s
surroundings; and smart speakers can control their initial volume if they detect
they are in public spaces. Environment detection also enables informed decisions
for co-located systems: the performance of distance estimation and localization
algorithms relying on radio signal propagation can suffer from multi-path fading
indoors [262,263], environment detection allows such algorithms to select the
best propagation model based on the current environment. While environment
detection can aid localization systems [264], it does not aim at pinpointing
a device position within a given area; instead, it classifies the surrounding
environment into general categories such as shopping center, office, home, or
street.

Modern smartphone systems feature many sensors that we can use to infer
surroundings, such as Global Navigation Satellite Systems (GNSS, e.g., GPS),
cameras, microphones, or ultra-wideband radios. In contrast, small wearables
such as fitness trackers or in-ear earphones often lack this luxury. While GNSS
chips offer precise localization and, with access to maps, provide environment
detection with high accuracy, they remain the most energy-hungry on-device
sensors [265], and would drain an unacceptable share of the energy budget
of a small IoT platform. Microphones are a more energy-friendly alternative
to perform environment detection [235], but the presence of microphones on
fitness trackers for the sake of environment detection raises concerns on privacy.

Yet, most embedded wearables incorporate one common component: a
Bluetooth radio. With 4 billion new devices shipped in 2020 alone [266], Blue-
tooth and Bluetooth Low Energy (BLE) are the go-to solutions for wireless
communication on the most modest IoT wearables. Although it seems incon-
gruous at first that we can use a BLE radio to infer its surroundings, this
paper demonstrates that we can classify environments with high accuracy solely
from received BLE packets. Specifically, we show that the density, diversity,
and dynamics of mobile devices, which we can infer from listening to their
periodic packet broadcasts, form a wireless fingerprint that can be relied on
to categorize surroundings. With this insight, we are able to provide a new
approach to accurate and energy-efficient environment detection; any device,
from the smallest BLE-enabled sensors up to smartphones, can accurately
infers the environment by simply turning on its BLE radio periodically. If
a device already scans for BLE transmissions, no additional radio-on time is
required; the received packets are used as the basis for the classification.

Challenges. By default, many BLE devices announce their services and
thereby their presence so that other devices can connect to them via packets

2. BACKGROUND: BLUETOOTH LE 87

called advertisements. BLE Advertisements contain the different services
offered by each equipment, for example volume control for smart speakers or
temperature for thermometers. The presence of specific services influences the
classification: for example, more keyboards are found in offices than restaurants,
more smart assistants are located in homes than in transport. The number of
devices in proximity also discriminates between environments: we receive many
more BLE signals in a busy street than deep in a forest. However, this wireless
fingerprint highly evolves with the time of day: crowded transport at rush-hour
shares more similarities with a concert venue than riding an empty bus. As the
number of advertisements and the number of services within packets highly
vary with time and place, feature engineering is required. We need to extract
meaningful features over all received advertisements to be able to pass it as
input to, e.g., a neural network classifier.

Approach. We present BlueSeer, an environment-detection system specifi-
cally tailored for resource-constrained IoT platforms. To work, BlueSeer only
requires a BLE radio on the device: periodically, BlueSeer scans for BLE adver-
tisements from nearby devices, performs feature extraction from the raw data,
and employs an embedded neural network to predict the current surrounding
environment. We show that the knowledge extracted from BLE packets is
sufficient to infer the environment accurately.

Contributions. This paper makes the following contributions:

(1) We show that it is possible to categorize environments exclusively from
received BLE advertisements;

(2) We present BlueSeer, an Environment Detection system able to classify
environments solely using received BLE packets. BlueSeer distinguishes
between 7 categories: home, office, shopping, transport, nature, street,
and restaurant;

(3) We carry out extensive feature engineering and identify 23 features from
BLE advertisements, ranging from number of devices in proximity and
RSS measurements, to the diversity of offered services;

(4) We devise a neural network and show that its quantized, embedded
version classifies its environment with up to 84% accuracy on a low-power
platform with a 64 MHz MCU, and uses 65 KB of memory. We make
BlueSeer’s implementation and its dataset open-source1.

Outline. The paper is structured as follows: §2 provides background on
Bluetooth Low Energy advertisements, §3 dives into the design of BlueSeer, §4
provides an in-depth evaluation of BlueSeer and its embedded neural network,
§5 summarizes the related literature and §6 concludes this paper.

2 Background: Bluetooth LE

BLE. Introduced as part of Bluetooth 4.0 in 2010 [7], Bluetooth Low Energy
(BLE) is a short-range wireless technology in the 2.4 GHz ISM band. BLE
targets direct, one-hop communication and provides datarates of up to 2 Mbit/s

1Available at: github.com/ds-kiel/blueseer

https://github.com/ds-kiel/blueseer

88 CHAPTER C. BLUESEER

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

Ch. 37 Ch. 38

Scan Window

Scan Interval

Advertisement Interval

Sc
an

ne
r

A
dv

er
tis

er

Figure C.1: BLE Advertisements. The advertiser pseudo-periodically
sends advertisement packets on all three advertising channels. The
scanner periodically listens for advertisements.

within 10-50 meters, typically. It uses 40 2-MHz wide frequency channels, 37
reserved for connection exchanges, and 3 for advertisements and broadcasts.

Advertising. BLE has two operation modes: connected and non-connected
mode. The non-connected mode is used to disclose the presence of connectable
devices (for example after turning on headphones) or broadcast data to nearby
devices (such as COVID contact tracing keys). The advertiser, such as a small
wearable, operates by broadcasting an advertisement packet on all advertising
channels (cf. Fig. C.1) and repeats the packet pseudo-periodically at a fixed
interval, plus a random delay to avoid collisions. On the receiving end, a scanner,
such as a smartphone, scans the medium for advertisements by listening to a
specific channel during a scan window. The scanner iterates over all advertising
channels by switching channels after a period called scan interval. A device
initiates a connection by responding to an advertisement: data exchange then
proceed on the remaining 37 channels.

Advertising data. The payload of BLE advertisements consists of a
list of optional fields called Advertising Data (AD). Advertisers include AD
to define, e.g., their device name, address, the list of offered services (such
as sound or heart rate sensor), or data related to its specific manufacturer.
Each AD is identified by its universally unique identifier (UUID), defined in
the standard [7]. For example, the COVID Exposure Notification AD has
the UUID 0xFD6F [38]. The presence of specific AD fields (e.g., announcing
keyboard capabilities), the variety of advertised services, as well as the variety
of advertisements received within one scan form a wireless fingerprint that we
use to infer the current environment.

3 Design: BlueSeer

With BlueSeer, we demonstrate that a BLE radio is the only component required
for a device to detect its environment. All BLE advertisements received by
a device compose a wireless fingerprint of the surroundings. This fingerprint
builds the basis for inferring the environment’s category. We present the system
architecture of BlueSeer in §3.1, dive deep into the data collection and feature
extraction processes in §3.2, describe the embedded neural network used by
BlueSeer in §3.3, and precise implementation-specific details in §3.4.

3. DESIGN: BLUESEER 89

BLE Radio

BLE Scanning &
Feature Extraction

Embedded Neural Network
& Environment Inference

B
lueSeerBLE Advertisements

…

5% 10% 1%80%

Figure C.2: BlueSeer: System architecture. BlueSeer scans the
wireless medium for BLE packets and extract features from them.
An embedded neural network classifies the environment between 7
categories.

3.1 Overview

Wireless Fingerprints. Different environments often exhibit different char-
acteristics: multiple wireless keyboards are often found nearby in offices, smart
home assistants at home; buses driving around town pass by many people and
devices for a short duration; and the occasional wireless speaker can be found
in city parks when the weather allows. We show in this paper that the devices
found within an environment, their density, variety, the motion of those devices
as well as the mobility of the receiver, all form a unique composition specific
to each environment. Further, since many of these devices voluntarily disclose
their proximity and services via BLE advertisements, each environment has its
own wireless fingerprint that we exploit for classifying the environment. Thus,
the sole presence of a BLE radio is the only requirement for IoT platforms to
classify their surroundings.

BlueSeer. BlueSeer consists of two main components: (1) the scanning
and feature extraction block, which produces data for a classifier, and (2)
the classification process that relies on an embedded neural network, as we
depict in Fig. C.2. Periodically, BlueSeer scans the wireless medium for BLE
advertisements. From the raw packets’ data, BlueSeer extracts features related
to the device density, variety, as well as the dynamics of the environment (see
§3.2). We then feed these features into an embedded neural network, whose
weights are quantized to fit in the memory of small, constrained IoT platforms
(see §3.3). Since many wearables do not feature constant internet connectivity,
we cannot rely on a complex classifier on the cloud or nearby edge-device to
infer the category and must rely on a memory-efficient model. With its neural
network, BlueSeer discriminates between 7 different environments:

• Home (house, apartment)

• Office

• Shopping (such as supermarkets, malls)

• Transport (e.g., car, bus, train)

90 CHAPTER C. BLUESEER

• Nature (city parks, forests, countryside)

• Street (both walking and standing)

• Restaurant

3.2 Feature Extraction

Raw data. Rather than pass the raw data to a classifier, we perform feature
extraction on the received packets to produce 23 informative features that we
pass onto the embedded neural network. As BLE scans return anything from a
few results up to a hundred packets in crowded spaces such as restaurants, and
the packet length evolves with the number of services advertised, raw packets
are bad candidates as input features. In the following, we present a selection
of the most notable features produced by BlueSeer.

Dynamic environments. Since the device’s density and dynamics are
markers of an environment, we extract the number of unique devices we
encounter within a scan as our first feature. The number of devices that left our
vicinity since the previous scan, which we call lost devices, and the number of
new devices that we hear for the first time serve as our second and third features.
These metrics represent both the density and dynamics of the environment.

During a single scan, a receiver might receive more than one packet from
the same source since every advertiser chooses its own advertisement interval
(see §2). This fact gives two kinds of information about our surroundings: (1)
the type of devices in proximity, as low-power platforms tend to select long
intervals to save energy; and (2) how long devices stay nearby: we should
receive many packets from devices with short intervals unless they quickly
leave our vicinity. Therefore, we measure the average interval between two
transmissions from the same source, and how long devices stay in our vicinity
on average, and use both as additional features.

Signal strength. Whenever the BLE radio receives a new advertisement,
it records the Received Signal Strength (RSS). We use the RSS as a rough
approximation of the distance between a sender and receiver [267]. Successive
measures also produce a simple estimation of a device’s motion. When combined,
the RSS datapoints represent the estimated device density of the current
environment. We collect the following statistics from raw RSS values and use
them as features: the highest and lowest RSS measures received as well as the
average RSS over all devices.

Device diversity. Along with the device density and environment dy-
namics, the device variety is an important factor in distinguishing between
environments. While BLE lacks the device class categories used by Bluetooth
Classic, we deduce approximate categories from the list of services advertised.
For example, the TX Power AD exposes the transmit power used by the
sender; larger devices such as laptops tend to transmit at high power, while
battery-powered sensors rely on low levels to operate longer. We collect the
following metrics as features: the lowest, highest, average, and count of TX
Powers advertised by nearby devices to infer information on their types.

We can further take advantage of the diversity of AD options advertised
by BLE packets. By counting how many unique services are offered, we can
infer the diversity of devices. By counting the total number of services, we can

3. DESIGN: BLUESEER 91

infer the homogeneity. The presence of manufacturer data is also a marker of
specific environments; devices from different manufacturers send specific AD,
and different devices by the same manufacturer also send unique data. We
extract the average manufacturer data length to use it as an additional marker
for environment detection.

3.3 Embedded Neural Network

The feature extraction process produces a total of 23 unique features that
encompass the device density, variety, the radio conditions, as well as the
dynamics of the environment. As each scan generates the same number of
features, we directly feed them as input to an embedded neural network.

Sliding-window. Yet, using the features from a single scan may lead
to inaccuracies, especially in highly dynamic environments. For example, a
car driving along a shopping street sees many advertisements, but receives
almost no packets a few seconds later as it enters a residential district. We keep
track of the last scans within a sliding-window and concatenate the result of
several BLE scans together. We feed the resulting vector as input to BlueSeer’s
embedded neural network. Because we use several consecutive scans, the
neural network’s decisions are less subject to fluctuations in highly dynamic
environments. Importantly, BlueSeer performs inference after each individual
scan: BlueSeer does not require to refill the window with fresh scans between
two inferences entirely; instead, earlier scans remain part of the sliding window
for a number of scans equal to its capacity. We set the sliding-window’s capacity
to the last 5 scans, see §4.2.

Neural architecture. With BlueSeer, we target constrained devices, such
as fitness trackers or in-ear earphones that feature a <100 MHz MCU and
~200 KB memory. Thus, we devise a two-layer dense neural network: the
input features are fed into (1) a 500-neuron dense layer with Rectified Linear
Unit (ReLU); that feeds (2) the dense output layer with softmax function
and 7 output classes (see §4.1). To ensure that the model’s weights do not
monopolize all memory, we employ quantization, fixing weights to integer
representations [268]. Our neural network takes 65 KB of memory and requires
~12 ms to infer the environment on a 64 MHz MCU.

Collection and training. We collect 70 600 datapoints from 7 envi-
ronments, using 62 000 for training and 8 600 for the test dataset for the
final evaluation. For each environment, we collect data from different physi-
cal locations at different time, within the same city and in nearby locations.
For example, for Home, the training set contains samples from 6 locations:
three individual houses and three apartments. For Shopping, we feature 5
environments: three different grocery stores, one clothing store, and a shopping
mall. The test dataset consists of physically different recordings: we do not
separate one supermarket recording into training and test data, but collect
two recordings each at a different time, one for training, one for testing. We
train the network for 20 epochs, with an exponentially decreasing learning
rate initially set to 0.01. Once the network is trained, we quantize its weights
and retrain it for 10 additional epochs to mitigate the accuracy drop due to
quantization.

92 CHAPTER C. BLUESEER

3.4 Implementation

We implement BlueSeer for the Zephyr RTOS and use its open-source BLE stack
implementation [269]. We use Tensorflow for training and employ quantization-
aware retraining for the second training step to ensure that the quantized
model is on-par with the original performance. We rely on Tensorflow Lite for
Microcontrollers for on-device inference [268].

BlueSeer is platform-independent; we use the nRF52840 SoC (nRF52) to
collect data and evaluate the performance of the embedded neural network.
The nRF52 features a 64 MHz Cortex-M4 CPU with FPU, 256 KB of RAM,
and a Bluetooth 5.2 radio supporting BLE. The nRF52 is a well-representative
platform and depicts a performance comparable to commercial fitness trackers.

4 Evaluation

In this section, we experimentally demonstrate the effectiveness of BlueSeer.
We first evaluate the impact of the neural network architecture in terms of
accuracy and memory usage. Then, we assess the importance of the features
produced by the feature extraction process, as well as the impact of the number
of scans used as input. Finally, we evaluate the overall performance of BlueSeer
on unseen data and its on-device computation, memory, and energy footprint.

Metrics. We evaluate the following set of metrics: (1) Accuracy: Top-1
accuracy obtained from the quantized neural network; (2) Memory: Memory
usage to store all weights and temporary computations, both in RAM and
ROM (flash); (3) Energy: Energy consumption of running BlueSeer, on the
embedded device, including neural network computation and BLE scanning;
and (4) Compute-time: Execution time of the neural network on the resource-
constrained device.

4.1 Neural Architecture

Scenario. We investigate the impact of the number of layers and neurons
on the accuracy of the system and the memory consumed by the model. We
evaluate different neural network architectures and compare them to decision
trees (DT), a memory and compute-efficient machine learning alternative, as
well as against random forests, that are known to improve accuracy compared
to DTs while remaining compute-efficient. We limit the DT to a maximum
depth of 40 and the random forest to contain a maximum of 10 concurrent
DTs. We average results over 10 models using k-fold cross-validation.

Results. Fig. C.3a depicts the accuracy and memory usage of different
neural network models after quantization, as well as the performance of decisions
trees and random forests. The baseline decision tree achieves 72.2% accuracy
and consumes 15 KB of memory, while the random forest composed of ten
DTs achieves 79.4% accuracy with 161 KB memory usage, roughly 10× the
size of a single DT. An embedded neural network with a single hidden layer
achieves 82%, 82.8%, and 83.2% for 100, 250, and 500 neurons, respectively.
Memory-wise, these models consume 20 KB, 39 KB, and 70 KB, respectively,
where 5 KB are assumed for intermediary results storage. Adding more layers
does not improve accuracy further but induces a significant memory overhead:

4. EVALUATION 93

70
75
80
85
90

Ac
cu

ra
cy

 [%
]

Decision Tree
Random Forest

BlueSeer

Tree
Forest[100]

[250]
[500]

2×[250]
2×[500]

3×[250]

Network Architecture

0

100

200

300

M
em

or
y

 u
sa

ge
 [K

B]

(a) Accuracy and mem-
ory costs of different
models.

70

75

80

85

Ac
cu

ra
cy

 [%
]

Dynamic env. All env.

1 2 3 4 5
BLE Scans in Input

0

50

M
em

or
y

us
ag

e
[K

B]

(b) Number of BLE
scans as input.

Tr
an

sp
or
t

Of
fic
e

Sh
op

pi
ng

St
re
et

Ho
m
e

Re
st
au

ra
nt

Na
tu
re

Predicted Class

Transport

Office

Shopping

Street

Home

Restaurant

Nature

Tr
ue

 C
la

ss

65.8 0.2 4.6 4.5 0.7 20.3 4.0

1.4 97.8 0.0 0.0 0.8 0.0 0.0

1.1 0.0 70.9 12.7 2.0 1.8 11.5

1.5 0.0 2.8 91.2 1.0 0.5 2.9

0.4 0.2 0.6 0.1 98.6 0.0 0.2

0.0 0.0 1.3 0.0 0.0 98.7 0.0

5.4 0.0 5.2 9.1 3.5 1.1 75.7

(c) Confusion matrix.

Figure C.3: Evaluating BlueSeer. (a) A single hidden layer with 500
neurons is sufficient to classify environments accurately and easily fits
into memory-constrained devices. (b) By including multiple scans as
input to the neural network, BlueSeer reduces the risks of fluctuation
in highly-dynamic environments. (c) BlueSeer is able to accurately
classify restaurant, home and office samples, but environments with
high-mobility are harder to classify. The best out of 10 models
achieves 85.5% accuracy.

82.4% accuracy and 103 KB of memory when using two layers of 250 neurons,
83.2% and 318 KB with 2 layers of 500 neurons, and 82.5% and 167 KB for
three layers of 250 neurons. We select a neural network comprising one hidden
layer of 500 neurons for BlueSeer. For the most memory-constrained hardware,
the model with 100 neurons is the best trade-off between accuracy and memory.

4.2 Feature Analysis

Scenario: Features importance. The feature extraction process produces 23
distinct features representing device density, variety, and environment dynamics.
We evaluate the importance of the produced features and how they affect the
performance of BlueSeer. We withhold a subset of features from the training
dataset and compare the achieved accuracy with the model using all features.
For all models, we use a single BLE scan as input. We average results over 10
models using k-fold cross-validation.

Results. With all features present and one BLE scan, the baseline model
achieves 81.5% accuracy. Removing features related to the environment’s
variety, such as the number of services, decreases the accuracy down to 77.6%,
while removing RSS-related features drops the accuracy to 77.1%, and removing
the TX Power information drops to 79.2%. Some redundancy is present in
the feature set: removing the number of devices only decreases the accuracy
to 80.7%, while removing the number of advertisements received achieves
80.8% accuracy. Device variety, represented by the available services and TX
Power, as well as the environment dynamics, with the RSS measures, are
important factors to distinguish between environments. The combination of all
features provided by the feature extraction process enables the high accuracy

94 CHAPTER C. BLUESEER

All fe
atures

w/o Nb. Devices

w/o Nb. Services

w/o TX Power

w/o Nb. Adv.

w/o RSS
70

75

80

85

90

Ac
cu

ra
cy

 [%
]

Figure C.4: Feature analysis. The number of services and RSS
measures play an important role in distinguishing environments.
Some features provide redundancy in the input. The dotted line
represents the accuracy when all features are present.

of BlueSeer.
Scenario: Number of scans. We investigate how the number of BLE

scans used as input to the model affects the overall accuracy, see §3.3. More
scans should avoid fluctuations due to highly dynamic environments, but induce
a larger input and slightly larger memory footprint. We average results over 10
models using k-fold cross-validation.

Results. Fig. C.3b depicts the classification accuracy based on the number
of BLE scans used as input. The model achieves 82%, 80.7%, 81.2%, 82.5%,
and 83.2% accuracy for the input ranging from 1 up to 5 scans, respectively. As
the number of scans increases, the model more accurately distinguishes between
environments with high dynamics such as transport. Interestingly, the street
and shopping categories perform slightly better with one scan than with two
scans (street drops from 86% with one scan to 82% with two) before increasing
again with three or more scans. Other environments (nature, home, restaurant)
always benefit from more scans. Over all environments, it is more beneficial to
include more scans; we therefore always include 5 scans for BlueSeer.

4.3 Overall Performance

Scenario: Per-class accuracy. We dissect the performance of BlueSeer’s
quantized neural network and look at the per-class accuracy on the test dataset.
Each class in the test set comprises 1200 elements. We take the model that pro-
duces the best accuracy out of 10 trained models using k-fold cross-validation.

Results. Fig. C.3c depicts the confusion matrix of the quantized model’s
inference over the test set. BlueSeer is able to accurately classify environments
with low dynamics such as home, restaurant, and office with 98% or more
accuracy. However, BlueSeer is less accurate when it comes to dynamic environ-
ments with devices in motion. Shopping shares many similarities with a busy
street, where many passersby come and go. As transport covers trains, buses
and cars, the class might be too general and could be split into sub-categories.
Similarly, nature contains both city parks, where many people visit on sunny

5. RELATED WORK 95

Table C.1: On-device requirements for BlueSeer.

Feat. Extr. Model Others Total

Flash 1.8 KB 65 KB 46.2 KB (TFLite) 113 KB
RAM 11.9 KB 2 KB 1 KB 15 KB
CPU <1 ms ~12 ms 3 sec (1 scan) 13 ms
Energy 6.4 µJ 111.3 µJ 56.8 mJ (1 scan) 57.9 mJ

days, with forests, where meeting a passerby is less likely. Higher granularity
in the categories could improve accuracy but would require more training data.

Scenario: On-device execution. We now measure BlueSeer’s footprint
on resource-constrained devices. We use the Tensorflow Lite for Microcontrollers
for on-device inference. We measure the ROM and RAM used by the neural
network and the library, the feature extraction and inference time, as well as
the overall energy cost for BlueSeer.

Results. Table C.1 summarizes all resources used up when performing
BlueSeer’s inference on the nRF52 SoC (cf. §3.4). BlueSeer uses 113 KB of
storage: 65 KB to save the weights, 46 KB for Tensorflow Lite’s library. 2 KB
of RAM are reserved for dynamic allocation for the input, temporary results,
and output, 1 KB for the library, and 12 KB for the packet parsing. It takes
less than 1 ms to extract features and ~12 ms to run the inference step on the
64 MHz MCU. Energy-wise, BlueSeer requires 57.9 mJ to perform one scan
and inference. Assuming BlueSeer executes one scan and inference every 10 sec
and uses an AAA battery with a capacity of 800 mAh, we can run over 62 000
BlueSeer inferences. This represents over a week of constant operation on a
single AAA battery.

5 Related Work

Audio-based detection. Several works establish acoustic sensing as an
accurate enabler for environment detection. Ma et al. rely on microphones and
Hidden Markov Model classifiers to distinguish between 12 environments such
as bus, car, street, and office, from 3-second long audio recordings and achieve
up to 93% accuracy [235]. However, the authors do not discuss the problems
of privacy arising from relying on microphones to infer surroundings. Heittola
et al. represent audio fingerprints as histograms and compare new recordings
with previous histograms to distinguish between ten environments [237]. Choi
et al. combine microphone and camera inputs to detect the user position and
activity [238]. Acoustic-based systems are also proven to improve Human
Activity Recognition (HAR) [270].

Sensor-based detection. Accelerometers play a notable role in trans-
portation mode detection, as well as HAR. Liang and Wang introduce a CNN to
parse a smartphone’s accelerometer data and distinguish which transport (such
as bus, car, bike) the user is using [239]. Kern et al. distribute accelerometers
over the body to perform HAR [271]. Sankaran et al. show that a barometer
can also help distinguish between idle, walking, and in-vehicle users [272]. Yang
et al. rely on channel state information to detect building occupancy with only

96 CHAPTER C. BLUESEER

a wifi radio [273]. However, they only detect if people are present in a room
and how many, but do not detect the users’ activities.

Wireless-enabled localization. Several works investigate the use of
Bluetooth and BLE packets as a driver for localization and distance estima-
tion [214,262]. Bertuletti et al. demonstrate that RSS measures are noisy and
lead to a 30% distance estimation error [262]. Zhuang et al. achieve <3m
localization using BLE beacons [214]. Ultra-wideband radios are much more
accurate and typically achieve <10 cm localization error, sometimes down to
the centimeter [274, 275]. BlueSeer does not aim at solving localization but
rather classifies the general environment of the device.

6 Conclusion

Environment detection allows devices to react to their environments: smart-
phones can automatically switch to silent mode when entering a theater, while
headphones can adapt their noise cancellation to their surroundings. Although
modern phones can rely on many sensors to infer their environments, such as
GNSS chips and cameras, small IoT wearables lack this diversity and must rely
on the few, energy-efficient components they already incorporate. This paper
shows that a Bluetooth radio is the unique component required to classify the
current environment with high accuracy: the BLE packets received by a device
form a wireless fingerprint, unique enough to infer the correct environment.
We present BlueSeer, an AI-driven environment-detection system specifically
tailored to resource-constrained wearables: from BLE packets, BlueSeer extract
23 unique features that are fed to a quantized, embedded neural network.
Periodically, BlueSeer scans the wireless medium for BLE advertisements and
executes an embedded neural network to classify between 7 categories: home,
office, shopping, transport, nature, street, and restaurant. We show that
BlueSeer achieves up to 84% accuracy on resource-constrained devices, while
requiring only 65 KB of memory, and takes ~12 ms to execute on a 64 MHz
microcontroller-unit.

D

Grace: Low-Cost Time-Synchronized GPIO Tracing for
IoT Testbeds

Laura Harms, Christian Richter, Olaf Landsiedel

Elsevier Computer Networks, vol. 228, 2023, p. 109746.

97

Abstract

Testbeds have become a vital tool for evaluating and benchmarking applications
and algorithms in the Internet of Things (IoT). IoT testbeds commonly consist
of low-power IoT devices augmented with observer nodes providing control,
debugging, logging, and often also power-profiling capabilities. Today, the
research community operates numerous testbeds, sometimes with hundreds
of IoT nodes, to allow for detailed and large-scale evaluation. Most testbeds,
however, lack opportunities for tracing distributed program execution with
high accuracy in time, for example, via minimally invasive, distributed GPIO
tracing. And the ones that do, like Flocklab, are built from custom hardware,
which is often too complex, inflexible, or expensive to use for other research
groups.

This paper closes this gap and introduces Grace, a low-cost, retrofittable,
distributed, and time-synchronized GPIO tracing system built from off-the-shelf
components, costing less than €20 per node. Grace extends observer nodes in
a testbed with (1) time-synchronization via wireless sub-GHz transceivers and
(2) logic analyzers for GPIO tracing and logging, enabling time-synchronized
GPIO tracing at a frequency of up to 8 MHz. We deploy Grace in a testbed
and our evaluation shows that it achieves an average time synchronization error
between nodes of 1.53 µs using a single time source, and 15.3 µs between nodes
using different time sources, sufficient for most IoT applications.

98 CHAPTER D. GRACE

1 Introduction

With more than 10 billion connected IoT devices deployed today, and an
estimated 30 billion devices by the beginning of the next decade [276], the
Internet of Things enables new applications in our connected and data-driven
society. Their connected and often distributed nature makes extensive testing,
evaluation, and benchmarking a must to ensure proper functionality and
performance of applications, algorithms, and protocols before their actual
deployment.

Simulation [80, 277] allows for high-level insights into protocols and algo-
rithms. It makes it possible to inspect these in a controlled environment and
evaluate their general correctness. However, simulation cannot capture all
details of a real environment, nor is it capable of evaluating the performance of
protocols on real hardware. Yet, such evaluation in real-world environments is
necessary to ensure the correct functionality in nondeterministic environments.
Therefore, the research community commonly uses testbeds: deployments of
(low-power) IoT devices co-located with observer infrastructure, typically an
edge device – like a Raspberry Pi – for instrumentation, logging, and deployment
control.

While testbeds provide real-world insights and are today’s established tool
for evaluating distributed IoT applications, most lack one essential capability:
The capability to non-intrusively – or with minimal intrusiveness – track the
execution of distributed protocols and algorithms. And the ones that do
offer these capabilities use custom hardware that is not easily replicable and
integrable into existing testbeds. For example, for debugging and evaluating
(real-time) protocols, we often need insight into the execution and states within
the hardware. Without this insight, we can only treat the hardware system
as a black box. For non-distributed settings such as traditional software
development, one commonly uses debuggers, with which one can halt program
execution and inspect the system’s state. In distributed settings, we cannot
halt the operation of nodes as both the environment continues to change, and
all other nodes will also continue their operation. Another common way is
printing messages during operation, usually through a serial interface. However,
printing takes several hundreds of microseconds, which leads to side effects on
program executions and limits accurate timestamping. It might even break the
timing in timing-critical sections of a program, leading to missed deadlines. Or
the removal of the print statements after evaluating the system might change
the timing that much that it introduces bugs not previously present.

The third way of gaining insight is through tracing the General-Purpose
Input/Output (GPIO) pins of a processor or microcontroller. Toggling GPIO
pins offers a minimally intrusive way of communicating timing-correct infor-
mation on the operation to the outside world. A logic analyzer can record the
GPIO traces to evaluate these later. While logic analyzers provide us with a
time-accurate trace of the execution of a program, they commonly only provide
insights into one device due to the physical distance between devices. However,
in a distributed communication system, it is essential to know how multiple
devices interact with each other and at what exact point in time, or how much
time passes between the same operation on multiple devices. For example, Time-
Division Multiple Access (TDMA) protocols like Glossy [9] or Time-Slotted

1. INTRODUCTION 99

Channel Hopping (TSCH) [6] are time-critical protocols that synchronize their
communication; and, among others, LWB [65] and Chaos [59] enable multiple
devices to send data concurrently in a time-synchronized fashion. To evaluate
the synchronization of protocols like these and the interaction between multiple
devices, we need an external system that itself is time-synchronized. To achieve
this, we require a GPIO tracing system, which performs a time-synchronized
tracing on all devices.

Many means of time-synchronization exist, including the Network Time
Protocol (NTP) and the Global Positioning System (GPS). However, none of
them offers a low-cost, low complexity solution that is both available at indoor
testbed locations and offers the required accuracy. For example, the accuracy
of GPS would be favorable, however, GPS requires direct line of sight to several
satellites, making it only usable outside or close to a window. NTP on the
other hand is available anywhere where a device has internet access, including
on observer devices in testbeds. However, it only offers accuracy in the order
of milliseconds, which is not sufficient for precisely timestamping events in IoT
protocols.

There are distributed, time-synchronized GPIO logging systems imple-
mented in existing testbeds [84, 86, 93]. However, they use custom hardware
with FPGAs and require a specific testbed observer platform throughout the
testbed. This limits their adoption into other testbeds, especially those that
already exist and use different hardware and observer platforms.

In this paper, we present Grace, a low-cost, retrofittable, distributed, and
time-synchronized GPIO tracing system using off-the-shelf components. Grace
extends observer nodes with (1) time-synchronization via wireless sub-GHz
(433 MHz) transceivers and (2) logic analyzers for GPIO tracing and logging.
Using sub-GHz wireless, Grace enables building-wide time-synchronization
from a single central node performing unidirectional single-hop RBS-like time-
synchronization. Extending Grace and using multiple synchronization nodes
even extends the covered area to larger buildings or offers even campus-wide
time-synchronization while keeping the single-hop nature of our synchronization
system. Further, we devise a software framework to enable extensive tracing
capabilities using this hardware. In our evaluation, we show that Grace
is capable of continuously logging sparse data as commonly produced when
debugging IoT systems, such as wireless protocols, at a rate of 8 MHz. Moreover,
we show that we achieve a time-synchronization of on average 1.53 µs between
nodes using the same time source, which, as we argue, is sufficient for most
applications. Moreover, we extend our initial work on Grace [251] to function in
larger networks by introducing multiple timesources which provide an average
time-synchronization of 15.3 µs between nodes and sub-deployments using
different time sources.

This paper is an extension of [251], which made the following contributions:

• We present Grace, a low-cost time-synchronized GPIO tracing system for
IoT testbeds.

• We implement Grace using off-the-shelf hardware to enable easy adoption
in other building-wide testbeds and make both the software and the
hardware setup openly1 available.

1Available as open-source at: https://github.com/ds-kiel/grace

https://github.com/ds-kiel/grace

100 CHAPTER D. GRACE

• We show Grace’s low cost of less than €20 per node.

• We evaluate Grace, showing its degree of time-synchronization between
nodes of on average 1.53 µs, while not exceeding a worst-case synchro-
nization of 3.75 µs.

Now, this paper adds the following new contributions:

• We significantly extend the discussion of our design, its algorithms, and
deepen the discussion of Grace throughout the paper. We add a discussion
of the necessity of a system like Grace, a more comprehensive explanation
of the design, including additional algorithms, as well as a discussion of
the scalability of Grace.

• We introduce multiple types of synchronization nodes, enabling time-
synchronization for both building-wide and campus-wide testbeds.

• We discuss and evaluate the intrusiveness of GPIO tracing on IoT plat-
forms.

• We evaluate the time synchronization performance of Grace when using
multiple time sources and show that its degree of time-synchronization is
on average around 15.3 µs between nodes using different time sources.

The remainder of this paper is organized as follows. Section 2 gives necessary
background information, followed by a discussion of related testbeds and GPIO
tracing testbed systems in Section 3. Section 4 introduces Grace’s design, and
Section 5 presents our experimental evaluation. We conclude our paper in
Section 6.

2 Background

This section provides the necessary background for the remainder of this paper.
We introduce (1) the concept of time synchronization with a focus on (2) the
Network Time Protocol (NTP) and (3) the Reference Broadcasting System
(RBS). Afterward, we provide general background on (4) Logic Analyzers.

2.1 Time Synchronization

Most electronic computing devices use a crystal oscillator as a basis for their
clock. These oscillators operate at a certain frequency, but usually do not
perfectly hold their nominal frequency. No oscillator is perfect, and physical
variations like temperature or air pressure add to the oscillators’ frequency
variation. While these drifts are commonly negligible in stand-alone single
computer setups, they impose a challenge on distributed computing and com-
munication systems. These systems require a tight synchronization of the
individual clocks. For time-sensitive applications, these clocks have to fulfil
one or both of these metrics: precision and accuracy. The notion of precision
(β) defines the maximum time error between two clocks (p, q) of a system:

∀t,∀p, q : |Cp(t)− Cq(t)| ≤ β (D.1)

2. BACKGROUND 101

The notion of accuracy (α) describes a clock’s difference towards a reference
timescale [71]:

∀t, ∀p : |Cp(t)− t| ≤ α (D.2)

A common reference timescale is UTC, which the Network Time Protocol
(NTP) (see Section 2.3) uses.

Depending on the importance of accuracy or precision, different synchro-
nization approaches like NTP (see Section 2.3) or the Reference Broadcasting
System (RBS) (see Section 2.4) are suitable. Within the next sections, we
describe these two in more detail.

2.2 Global Positioning System (GPS)

The Global Positioning System (GPS) is a global navigation satellite system
(GNSS) that provides positional information on earth. Moreover, it contains
atomic clocks and is thus capable of providing accurate timekeeping function-
alities. Common GPS receiver modules are capable of generating a precise 1
pulse per second (1-PPS) signal from the received data. Moreover, they output
NMEA 0183 [278] sentences containing additional information. NMEA 0183 is
a standard for communication between marine electronics including GPS con-
trolled by the National Marine Electronics Association (NMEA). For example,
the RMC sentence [279] (Recommended minimum specific GPS/Transit data)
includes, i.a., time, location, and date.

2.3 Network Time Protocol (NTP)

The most widely used time synchronization protocol for distributed systems
is the Network Time Protocol (NTP) [71]. It is the default protocol used by
computers and most devices directly connected to the Internet, and builds the
baseline for other protocols. For time synchronization, a device contacts an
NTP server to receive the server’s local time. From the received timestamps
and the device’s local timestamps of sending the request and receiving the
response, the device can compute the round trip latency and thus determine
its offset from the reference clock of the server.

In NTP, clocks are synchronized to UTC. As not each NTP server can be
equipped with a reference clock, e.g., a GPS receiver, NTP builds a hierarchical
structure of servers. This structure uses so-called stratum levels. A stratum-1
server is equipped with a reference clock. Each server is a stratum-(k + 1)
server if the server it contacts to synchronize to is a stratum-k server. NTP is
known to achieve accuracy between 1 and 50 ms.

2.4 Reference Broadcasting System (RBS)

The reference broadcasting system (RBS) [71] differs significantly from methods
like NTP. It does not assume the existence of an accurate clock (e.g., a UTC
clock) within the network. Instead, it merely has the goal of network-internal
clock synchronization. RBS is a wireless, physical layer time synchronization
method. Moreover, contrary to other methods, where a node contacts a
timeserver, in RBS, a time source broadcasts a reference signal to all nodes
within the network. Every node generates a timestamp with its local clock on

102 CHAPTER D. GRACE

reception of the synchronization signal. As RBS only has a single sender that
reaches all receivers, most parts of the critical path are eliminated. In a wireless
network, the transmission time to all receivers is roughly the same, with a
negligible offset. Thus, the critical part is only the reception (and timestamping)
of the broadcast packet at the receivers. To reduce jitter introduced upon
reception, RBS performs multiple broadcast rounds, and nodes exchange each
other’s delivery times to estimate their mutual, relative offset.

2.5 Logic Analyzer

A logic analyzer records the physical state of one or more signals over time.
Logic analyzers commonly trace digital signals. Some logic analyzers can even
record analog waveforms (tracing signals voltage level), like oscilloscopes. Thus,
logic analyzers commonly replace an oscilloscope, especially when working with
digital electronic components. To process the trace of a logic analyzer, several
software solutions working with logic analyzers have built-in features to not
only display the recorded traces, but even decode protocols like the Serial
Peripheral Interface (SPI) communication protocol to use a logic analyzer to
debug communication between electronic components [280].

3 Related Work

In the past 18 years, starting with MoteLab [99], the research community
proposed several testbed architectures and currently operates several testbeds
for testing, debugging, evaluating, and benchmarking low-power IoT proto-
cols, with tens to thousands of nodes. A selection of these are Flocklab [84],
Flocklab 2 [85,86], D-Cube [87], FIT IoTLab [98], Indriya [88], Indriya2 [89],
OpenTestBed [90], WUSTL testbed [91], TWIST [281], Kansei [282], Smart-
Santander [283], VIADUCT [92], Tracelab [93], Aveksha [94], Minerva [95],
HATBED [96], as well as the previous version of our own IoT testbed [97].
While these testbeds and testbed architectures have different goals, they all are
usable for testing and evaluating IoT protocols. For example, OpenTestBed [90]
is a movable testbed which can easily be placed wherever needed by using a
node design that doesn’t require any fixed infrastructure. SmartSantander [283]
proposes a city-scale testbed with up to 20000 devices. VIADUCT [92] bridges
the gap between testing infrastructure and real-world IoT deployments. FIT
IoTLab [98] offers a wide range of different IoT platforms and in addition to
nodes with a fixed location they also offer moving testbed nodes mounted on
robots. D-Cube [87] takes a different approach by building a testbed intended
for benchmarking IoT protocols in a wireless environment with a controllable
amount of interference.

While all of these testbeds offer the logging of serial output, only a subset
has GPIO interfacing capabilities. To our knowledge, the first IoT testbed
offering GPIO tracing capabilities is Flocklab [84]. Flocklab’s GPIO tracing
system directly uses the observer for GPIO tracing and can trace up to 5 GPIO
pins at a sampling rate of up to 10 kHz. For time-synchronization, the system
uses NTP, reaching a precision of 40 µs. Next to GPIO tracing, Flocklab also
allows GPIO actuation as well as power profiling. With Tracelab [93], Lim et

4. DESIGN 103

al. extend Flocklab by a more capable GPIO acquisition system based on an
FPGA. They achieve a short-term sampling frequency of up to 100 MHz, and
a continuous sampling frequency of around 285 kHz. For time synchronization,
they use Glossy on 868 MHz with an FPGA-based clock correction control
loop, achieving a maximum time-synchronization error of 1.5 µs.

Other testbed architectures like Aveksha [94], Minerva [95], and HATBED
[96] use different J-Link tracing methods, including tracing the program counter,
or watchpoint tracing in a non-intrusive way. Aveksha [94] uses an On-Chip
Debug Module (OCDM) to non-intrusively observe the inner workings of
embedded processors. It can trace specific program counter addresses, the
entry, and exit of tasks and interrupt service routines as well as user-defined
events. It uses a method of polling the JTAG interface, allowing a polling period
of 30 µs. While Aveksha can trace internal events of embedded processors, it
is not suitable for distributed debugging, as it does not perform synchronized
timestamping. Minerva [95] is closely related to Aveksha, as it also offers
non-intrusive tracing in testbeds using a JTAG interface. However, Minerva
additionally offers time-synchronized tracing, synchronous stopping of the
execution to collect memory snapshots and network-wide assertions based on
the traced data. Minerva uses NTP for time synchronization and timestamping
reaching a millisecond precision. Thus, it is not suitable for tracing time-
critical applications. HATBED [96] uses the on-chip debugging capabilities
of ARM Cortex-M3/M4 processors. It supports printf logging using the
Instrumentation Trace Macrocell (ITM) and watchpoint-logging using the Data
Watchpoint and Trace Unit–(DWT). HATBED uses a logic analyzer (the same
chipset we use for our work) for tracing the ITM and DWT output.

A more recent work is Flocklab 2 [85, 86], which uses the programmable
real-time unit (PRU) of a Beaglebone Green for GPIO tracing. For time
synchronization, the system uses GNSS with an accuracy of approx. 50 ns
where available, and the Precision Time Protocol (PTP) with an accuracy of
approx. 1 µs at all other locations. Next to GPIO tracing, it also supports
Serial Wire Debug (SWD) tracing through a J-Link debug probe.

Regarding time synchronization, Grace has the highest similarity with
Tracelab. However, instead of performing the time synchronization in hardware
on an FPGA, we enable it at a higher precision in software on off-the-shelf
hardware, a Raspberry Pi, when processing the logic analyzer’s traces. Regard-
ing GPIO tracing, we differ from all these solutions in that we use low-cost
logic analyzers and do not depend on a specific observer platform.

4 Design

Our design of Grace enables a time-synchronized use of GPIO tracing in
building-wide or campus-wide testbeds while only using off-the-shelf compo-
nents. Actuating GPIO pins is minimally intrusive and thus has commonly
negligible influence on a system’s timing.

4.1 Design Overview

The diagram in Figure D.1a illustrates the general idea of Grace. For building-
wide testbeds, a single synchronization node repeatedly sends out a time signal.

104 CHAPTER D. GRACE

USB

USB

G
PI
O

GPIO
GPIO

Testbed Node Sync Node

Radio

Observer

(Raspberry Pi)

IoT Node

Logic
Analyzer

GPIO

MCU

Radio

GPS

GPIO PPS

(a) Grace’s node types. The testbed node
consists of an observer platform and one or
more IoT nodes. We add a logic analyzer and
a radio for time-synchronized GPIO tracing.
The synchronization node consists of a mi-
crocontroller and a radio generating the time
signal. In case of larger deployments, we can
use multiple synchronization nodes and add
an otherwise optional GPS receiver. The GPS
receivers on each synchronization node syn-
chronously generate a signal once a second
(1-PPS) that we use for time-synchronizing
the synchronization nodes.

(b) A testbed node. We
see from left to right a
Zolertia Firefly, a Rasp-
berry Pi with our cus-
tom HAT connecting the
CC1101 radio on top and
the logic analyzer (top
of the box) to the Pi,
a Telosb mote, and a
Nordic nRF52840-DK.

Figure D.1: Design Overview of Grace.

Each testbed node, equipped with a receiver, receives this time signal. Using the
signal, each observer synchronizes its GPIO tracing clock. This synchronization
of the tracing clocks enables the post-processing to match the GPIO traces
of the different devices and build a common trace over all distributed devices.
Once a testbed spans a wider area, such as like multiple buildings or a campus,
a single synchronization node, will not be able to reach all nodes. For such large
testbeds, Grace relies on multiple synchronization nodes, that synchronously
send out the same timestamp.

Grace’s design concerns and extends solely the testbed’s observer infrastruc-
ture, and it does not impact the program execution on our target platforms
(see IoT nodes in Figure D.1a). All we need on the IoT nodes are available
GPIO pins, which almost every hardware has. Through our design, the IoT
nodes gain the option to output information through state changes of their
GPIO pins in addition to their serial logging capabilities over USB.

Within the following sections, we motivate the need of GPIO tracing for low-
intrusive time stamping, and describe the design of the individual components
of Grace in detail. For the synchronization node, we split our design into two
distinct parts; one using a single synchronization node and one using multiple
synchronization nodes following Grace’s extended design. Next, we discuss our
time-error correction algorithm and discuss the system’s integration into an
existing testbed.

4. DESIGN 105

4.2 Low-intrusive time stamping

Before discussing our design in detail, we motivate the necessity of GPIO tracing
to achieve low-intrusive time stamping. For example, if we are developing a
protocol for wireless communication of IoT nodes, we might come to the point
that we want to identify which nodes turn on their radio at what time, e.g., to
evaluate the accuracy of the protocol’s time synchronization algorithm. For this,
we require a system that precisely timestamps the event and does not delay the
processing of received data. A time-synchronized serial logging system using
print-statements could enable us to timestamp such an event. However, the
duration it takes to output anything, even a single byte over a serial interface,
has a significant influence on the program’s timing and on the accuracy of the
timestamp. For example, transmitting a single byte takes 86.8 µs at a baud
rate of 115200 baud/s (8 data bits, 1 start bit, 1 stop bit). Changing a state
on a GPIO pin is much faster and takes only a few clock cycles, resulting in
an overhead of no more than tens or hundreds of nanoseconds. For example,
the nRF52840 [192] takes 140.5 ns for switching the state of a GPIO pin (cf.
Section 5.2).

In Section 5.2, we evaluate the exact timing differences for one of our target
platforms. Moreover, precisely time synchronizing logic analyzers that are fully
under our control, is simpler than precisely time synchronizing general purpose
Linux operating systems. Therefore, a time-synchronized GPIO tracing system,
like the one we present in this paper, can offer precisely time-synchronized, low-
intrusive time stamping for evaluation purposes of IoT systems and protocols.

4.3 Synchronization Node

A synchronization node in Grace is a node (physically) independent of the
testbed and its observers and IoT nodes. It consists of a microcontroller and a
433 MHz radio (see Figure D.1a). In case of multiple synchronization nodes, or
in need of an accurate time source, it also contains a GPS receiver. We use the
433 MHz band, which is an ISM band available in the International Telecom-
munication Union’s (ITU) region 1 (i.a., Europa and Africa) [284]. Creating a
design with 433 MHz radios allows the use of only one synchronization node
for a typical building-scale testbed, due to the extended range of 433 MHz
radios compared to the range of radios using higher frequencies. Moreover, the
433 MHz band is well outside the bands usually used for IoT research: the
2.4 GHz and 868/915 MHz bands. Nonetheless, please note that the design of
Grace is generic and independent of the 433 MHz band. In countries where it
is not available as open ISM band, one can use other frequency ranges. For
larger testbeds beyond building scale, we extend our initial design and use
multiple of our synchronization nodes communicating on different channels.
As the testbed nodes all have to receive a timestamp at the same time, the
synchronization nodes have to send the same synchronization timestamp at the
same time. To synchronize the synchronization nodes, we have to discipline
them with an external clock. We choose to use GPS receivers and their 1-PPS
(1 pulse per second) signal for this purpose.

Single Synchronization Node In case of a single synchronization node,
the node generates and transmits a timestamp at a configurable time interval.

106 CHAPTER D. GRACE

Algorithm D.1 Timestamping and transmission on PPS interrupt

Input: timestamp, skippedpps, stateradio, timer, counttimer

Ensure: timestamp, timer
1: if timestamp = 0 then
2: initialize time signal
3: else
4: stop timer
5: counttimer ← 0
6: if skippedpps = 1 then
7: execute initialize time signal algorithm
8: skippedpps ← 0
9: else

10: timestamp← timestamp+ 1
11: if stateradio = TX MODE then
12: transmit timestamp
13: busy wait for transmission to finish
14: end if
15: start timer //1 second timer
16: end if
17: end if

In our case, we use an interval of one second, inspired by the one pulse per
second signal generated by GPS receivers. The timestamp we send contains a
counter value that represents the time that has passed since turning on the
synchronization node. With only one synchronization node, we do not require
a globally accurate clock, but rather a single time source within the vicinity
of the network. Thus, the synchronization node can use its microcontroller’s
clock to generate the timestamps. Even variations in the time between two
generated timestamps are not a problem as we merely need a common time
reference and not a globally accurate clock.

GPS-disciplined Synchronization Node If we nonetheless require a glob-
ally accurate clock, or in case of multiple synchronization nodes, we require a
different design, extending Grace’s initial design. This node type also transmits
a time signal once a second. However, instead of generating a timestamp
locally, we send the Unix timestamp [285] and each of the synchronization
nodes transmits the timestamp at the same time. We compute this timestamp
from the GPS data we receive and use the one pulse per second signal (1-PPS)
as a trigger to send the timestamp. Algorithm D.1 shows the procedure of
timestamping and transmitting the timestamp. On the first PPS signal, when
the timestamp is 0, we initialize our Unix timestamp. We use the GPS NMEA
RMC string [279], containing both the current date and UTC time, as a basis
for calculating the initial timestamp. We compute the timestamp according
to Algorithm D.2. In case the synchronization nodes misses or skips a 1-PPS
signal due to, e.g., the lack of a GPS fix, we reinitialize the Unix timestamp
according to the same procedure. We detect this skipping of a signal, using a
local 1-second timer. If we did not skip a signal, we increment the timestamp
by 1 and transmit the time signal. Using the GPS time and the 1-PPS signal,

4. DESIGN 107

Algorithm D.2 UTC to Unix timestamp conversion

Input: year, month, day, hour, minute, second
Ensure: timestamp
1: timestampreference ← 1640995200 {2022-01-01T00:00:00+00:00}
2: daysprevious months ← [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]
3: leap years← 0
4: y ← 2022
5: while y < year do
6: if y mod 4 = 0 then
7: leap years← leap years+ 1
8: end if
9: y ← y + 1

10: end while
11: days← (year − 2022) ∗ 365 + leap years

+daysprevious months[month− 1] + day − 1
12: if (month > 2) ∧ (year mod 4 = 0) then
13: days← days+ 1 {current year is a leap year}
14: end if
15: timestamp ← timestampreference + (days ∗ 86400) + (hour ∗ 3600) +

(minute ∗ 60) + second
16: return timestamp

we can ensure that all synchronization nodes generate the same timestamp
at the same time. By only sending the timestamp if we received at least two
consecutive 1-PPS signals, we do not need to read the timestamp from the
GPS module, but can instead increase the timestamp locally and can transmit
this, ensuring a minimal compute time before transmitting the timestamp.
Moreover, performing the same instructions on each synchronization nodes and
not firstly communicating with the GPS module, ensures that the actual time
we transmit the signal does not vary significantly between the synchronization
nodes.

Regardless of the type of synchronization node, the node’s radio broadcasts
the timestamp to all testbed nodes in range. As – in the case of multiple
synchronization nodes – all send out the timestamp at the same time, we
can expect wireless interference at testbed nodes close to more than one
synchronization node. We avoid this interference by using different frequency
channels for different synchronization nodes. Each testbed node is preconfigured
to listen on one of these channels.

The approach of sending a timestamp at a regular interval (e.g., once a
second) to all testbed nodes in a single(-hop) wireless broadcast follows the
approach of the reference broadcasting system (RBS) (see Section 2.4). Through
the single broadcast and the close distance of all nodes to its synchronization
node, we have a low signal propagation delay to all testbed nodes. It is low
enough that all nodes will receive the time signal with a negligible time offset
during the same logic analyzer sampling period or latest with an offset of a
few sampling periods for physically large testbeds. For example, when using a
logic analyzer with a sampling frequency of 8 MHz, and a sampling period of
125 ns, the possible distance between two nodes to receive the timestamp on

108 CHAPTER D. GRACE

Algorithm D.3 Process Bulk Data

Input: data, stateprev (previous GPIO state), maskactive (active channels),
channeltime (time signal channel)

1: for each sample ∈ data do
2: if sample ̸= stateprev then
3: changed← (sample⊕ stateprev) ∧maskactive {bitwise}
4: if changed then
5: for each channel do
6: if changed ∧ (1 << channel) then
7: if channel = channeltime ∧ sample[channel] = 1 then
8: execute reference time signal algorithm (Algorithm D.5)
9: else

10: execute GPIO signal algorithm (Algorithm D.4)
11: end if
12: end if
13: end for
14: end if
15: end if
16: stateprev ← sample
17: execute tick algorithm (Algorithm D.6)
18: end for

the same sample is about 37.5 meters. Any two nodes which have a distance
offset from the time source of less than half that distance (18.7 meters) will
receive the timestamp in the same logic analyzer sample. Note that we do not
intend to synchronize the clocks of testbed observers, but rather synchronize
the timestamps of the logic analyzers.

4.4 Testbed node

A testbed node consists of a controller (e.g., a Raspberry Pi), often also denoted
as observer, and one or more low-power IoT devices as target platforms (see
Figure D.1a). The target platforms expose GPIO pins that are to be traced.
The system we describe here concerns solely the controller and does not pose
any overhead on the IoT platforms. To enable this tracing, we devise a system
consisting of a USB logic analyzer, and a radio that together can be retrofitted
to any testbed by connecting them directly to the controller node. In addition,
we devise a small software library for data acquisition and control of these
devices for deployment on the controller node. We use the logic analyzer for the
GPIO tracing and the radio for receiving the timestamp from a synchronization
node. We reserve one of the logic analyzer’s pins for the radio. All other
GPIO pins are available for tracing the target platforms’ GPIO pins. Once the
radio receives a signal from the synchronization node, it turns on its GPIO
pin connected to the logic analyzer. This notifies the process, running on the
controller node and handling the logic analyzer’s input of a new timestamp.
Moreover, it pinpoints the reception of the time signal to an exact tick of
the logic analyzer. In other words, we can match the reception time of the
synchronization signal to a local timestamp of the GPIO tracing system. This

4. DESIGN 109

allows us to perform error correction on the local time and thus have a notion
of synchronization for combining the recorded traces of different devices in
post-processing.

Algorithm D.4 Handle GPIO signal

Input: TICKS PER NANOSECOND, stateclock, seconds, accumulator,
stategpio−pin, channelevent

Output: trace object (to be written to file)
1: if stateclock = FREQ then
2: timestamp← 109 ∗ seconds+ accumulator

TICKS PER NANOSECOND
3: create trace object containing timestamp, stategpio−pin, and

channelevent
4: return trace object
5: end if

Within the following sections, we describe the different components of the
GPIO tracing and the time synchronization.

4.5 GPIO Tracing

For GPIO tracing, Grace employs a USB-driven logic analyzer. This logic
analyzer has to be able to trace sparse amounts of data on multiple GPIO pins
and write the traces without prior processing to the USB buffer.

4.6 Trace Data Processing

The algorithms at the observer processes the incoming data in bulks. The
starting point for the bulk data processing is Algorithm D.3. We perform
different actions based on the changes present in each data sample. Each data
sample is one recording of the logic analyzer. We compare each sample to
its previous one. If there are changes present, we identify the corresponding
channels of the logic analyzer. Depending on the channel’s role, we perform
further actions. If the state of the channel corresponding to the radio changed
and that pin turned on, we know that we received a new time signal. We
describe the algorithm for processing this time data in the following section
(Section 4.6.1). If we detect a change on one of the traced GPIO pins, we
timestamp the event (if we previously received at least two global timestamps)
according to Equation D.3 and Algorithm D.4 and hand it over for further
processing. Lastly, we perform one clock tick of the logic analyzer updating its
timestamp for the next sample (see Section 4.6.2).

timestamp← 109 ∗ seconds+ accumulator

ticks per ns
(D.3)

For simplicity and without losing generality, we assume a timestamp interval
of one second for the algorithms. The timestamp interval is easily adjustable
to a different timescale.

110 CHAPTER D. GRACE

Algorithm D.5 Handle reference time signal

Input: WEIGHT, TICKS PER SECOND, stateclock, ticksnominal, ticksactual,
seconds, freqnominal, accumulator

Output: stateclock, freqadj , offset, offsetadj , errorremaining, seconds,
secondsprevious, ticksactual

1: secondsref ← read timestamp from radio
2: if stateclock = WAIT then
3: seconds← secondsref
4: stateclock ← OFFSET
5: else
6: factor ← (secondsref−secondsprevious)∗ticksnominal

ticksactual

7: freqadj ← freqnominal ∗ factor
8: if secondsref = seconds+ 1 then
9: errorremaining ← TICKS PER SECOND− accumulator

10: offset← accumulator − TICKS PER SECOND
11: else if secondsref = seconds then
12: errorremaining ← accumulator
13: offset← accumulator
14: end if
15: offsetadj ← offset/ticksnominal

16: ticksactual ← 0
17: end if
18: secondsprevious ← secondsref
19: return

4.6.1 Time Error Correction

Once the observer’s bulk data processing algorithm (Algorithm D.3) detects
the reception of a new time signal, we execute Algorithm D.5. This algorithm
essentially determines the time increment added for each sample recorded by
the logic analyzer. At first, it reads the received data (timestamp) from the
radio and sets the radio back into receive mode, which prepares the radio for
receiving the next timestamp and turns off the radio’s GPIO pin. Now we have
the global timestamp and the exact tick it was received on. The processing of
it differs depending on the state the GPIO tracing clock-correction system is
in. The clock correction has two different states, WAIT, and OFFSET. Initially,
we start in state WAIT until we process our first time signal.

When receiving the first time signal, the algorithm saves the received
timestamp as the current time with respect to the current sample, and as the
previous timestamp for the algorithm’s next iteration. Moreover, it changes
the clock’s state to OFFSET.

When the system is in state OFFSET, we start by calculating a factor after
receiving and reading the reference time (secondsref):

factor ← (secondsref − secondsprevious) ∗ ticksnominal

ticksactual
(D.4)

This factor determines how much faster or slower the logic analyzer clock
ran since receiving the previous timestamp. Please note, that it is not necessary

4. DESIGN 111

Algorithm D.6 Tick

Input: TICKS PER SECOND, stateclock, freqadj , offsetadj , errorremaining,
seconds, ticksactual, accumulator

Output: offsetadj , errorremaining, seconds, ticksactual, accumulator
1: if stateclock = OFFSET then
2: accumulator ← accumulator + freqadj − offsetadj
3: if offsetadj < 0 then
4: errorremaining ← errorremaining + offsetadj
5: else
6: errorremaining ← errorremaining − offsetadj
7: end if
8: if errorremaining ≤ 0 then
9: offsetadj = 0

10: end if
11: if accumulator > TICKS PER SECOND then
12: seconds← seconds+ 1
13: accumulator ← accumulator − TICKS PER SECOND
14: end if
15: ticksactual ← ticksactual + 1
16: return
17: end if

that we receive every timestamp. We just need any timestamp after the
previous one. The factor uses both the current timestamp (secondsref) and
the previously received timestamp (secondsprevious), as well as the nominal
number of ticks (ticksnominal) that should pass within a second (e.g., 8 000 000
at 8 MHz) and the actual number of ticks passed since the previous reception
of a timestamp (ticksactual). If this factor is 1, the clock of the logic analyzer
is running at its nominal frequency. If the factor is <1, the logic analyzer’s
sampling frequency is too high and if the factor is >1, its frequency is too low.
Using this factor, we can adjust the frequency value:

freqadj ← freqnominal ∗ factor (D.5)

Phase offset: Moreover, the algorithm performs an additional phase offset
adjustment. If the logic analyzer’s frequency is not exactly the nominal
frequency and neither a multiple of it, there will remain an offset of ticks
the logic analyzer’s clock is ahead or behind the reference clock. This offset is
a phase offset, which we also need to handle when increasing our clock. To be
able to correct this phase offset, we calculate the error to the closest second
and an adjusted offset to adjust the phase when increasing the tick counter for
each logic analyzer sample. Lastly, we reset the tick counter (ticksactual) to
zero.

Independent of the clock’s state, we save the previous timestamp for the
algorithm’s next iteration.

112 CHAPTER D. GRACE

4.6.2 Clock Tick

Algorithm D.6 performs the frequency and phase adjustments computed in
Algorithm D.5 and discussed above. This algorithm only executes once the
system has received an initial time value and thus is either in state OFFSET. The
algorithm design follows closely the precision system clock design of NTP [75].
On each tick, we increase an accumulator value by a frequency value deduced
by a phase offset value. With this, we increase the logic analyzer timestamp (cf.
Equation D.3) by a value close to its actual frequency while removing the phase
error over time. This method of error correction corrects the error evenly spread
over the course of one second. If we do not have a (remaining) phase error, the
timestamp increases with the logic analyzer’s frequency. Once the accumulator
reaches the value corresponding to a second, we increase the second counter and
reduce the accumulator by the respective value corresponding to one second.
Lastly, we increase the tick counter.

This method of performing a tick at each sample has the advantage that
it allows us to precisely adjust the clock of the logic analyzer. Moreover, the
advantage of doing these adjustments in software is the granularity with which
we can adjust phase and frequency. Instead of performing a correction every
10 ms (cf. NTP [71]) and having to do a rather large adjustment, adding 9 or
11 ms, we can have much smaller changes by adjusting the clock slightly for
every data sample and thus approximately 8× 106 times a second (if the logic
analyzer runs at 8 MHz).

4.7 Post-processing

Each of the testbed’s nodes independently collects traces and timestamps these.
Yet, as the system is intended to run distributed on several devices, we need
to aggregate and process the traces, eventually. We perform this aggregation
centrally on the testbeds central server. Therefore, the observers transmit their
traces and serial logs to the central server using their network connections.
As all timestamps are based on the same global clock, we can just merge all
timestamped traces into a common trace. When using one or multiple GPS-
disciplined synchronization nodes, the timestamps in this common trace follow
a global reference time (UTC). If we want to have the same global duration of
a second, when using the single, non-GPS synchronization node, we can trace a
GPS 1-PPS (1 pulse per second) signal at one of the testbed nodes. With this
signal, we can stretch or unstretch the recorded time between two GPS time
signals for all traces, matching our traces to a more accurate timescale (UTC).
As long as testbed server has enough storage, we can scale this post-processing
and thus our system to infinitely many testbed nodes while linearly increaing
the post-processing time.

4.8 Implementation

After presenting the design of Grace, we discuss its implementation. We also
discuss its integration into our existing testbed [97], to illustrate how Grace
can be retrofitted and integrated into existing testbeds.

Synchronization node: For implementing the synchronization node, we
use an STM32F401 microcontroller with 86 MHz clock speed and a CC1101

4. DESIGN 113

433 MHz radio [286]. In case of the GPS-disciplined synchronization node, we
additionally use the MTK3339 GPS chipset [287] and an external GPS antenna
with a gain of 30±3 dBi. We send a timestamp once a second. Either triggered
by the GPS 1-PPS signal, or by a local timer. The timestamp we send once a
second is a 4 byte value and the sole payload of the packet. This payload size
is sufficient to send Unix timestamps until the beginning of the next century.

CC1101 Packet Format : The total structure of the packet we send after the
preamble consists of 2 bytes sync word, one byte each for packet length and
address, 4 bytes payload (timestamp) and a 2-byte checksum [286]. As we use
an unsigned integer as our payload, it is large enough for any Unix timestamp
in this century.

Testbed node: As an observer, we use a Raspberry Pi 3B+ in our testbed due
to its low price and wide availability at the time of building the testbed. For the
GPIO tracing, we use an eight-channel logic analyzer featuring a Cypress EZ-
USB FX2LP microcontroller [288]. The FX2 consists of an 8051 microcontroller,
a USB interface, and i.a. the General Programmable Interface (GPIF). The
GPIF allows specifying custom communication protocols via a finite state-
machine. It is used to constantly sample data from the Logic Analyzer’s input
pins into the USB buffer. All of these components work independently of each
other, allowing a deterministic tracing operation without being interrupted by
the microcontroller or the USB interface. We build a custom firmware for the
FX2, enabling us to focus on tracing sparsely occurring events continuously for
the full duration of an experiment. The logic analyzer’s state machine samples
the state of its (eight) inputs at a frequency of 8 MHz (one sample every 125 ns).
Internally, it passes these samples to the USB interface and writes them to the
USB buffer. To one pin of the logic analyzer, we connect a radio, the same one
mentioned above (CC1101 433 MHz radio). To notify the logic analyzer of a
successfully received packet, the CC1101 asserts the successful reception of a
reference signal on one of its GPIO pins [286]. We implement the described
trace collection and time error correction functionalities and algorithms as
part of an application running in user space on the observer (Raspberry Pi).
For having a high granularity for the timestamps, we choose a value of (260)
as a value for the constant TICKS PER SECOND in our algorithms. For ease of
wiring the logic analyzer and the radio to the Raspberry Pi, and positioning
the radio, we design a (non-essential) custom PCB HAT for the Raspberry Pi
(see Figure D.1b). This HAT consists of a 2-layer PCB, headers, and a ribbon
cable to connect the logic analyzer.

Post-processing : We implement the post-processing to aggregate the GPIO
traces into a common human-readable CSV file. Moreover, we also convert it
into a VCD file to be able to easily, visually analyze the combined traces with
a software like GTKWave.

Cost : As we argue that Grace is a low-cost GPIO tracing system, we present
in Table D.1 the cost for the different components, at the time of writing. The
table shows, that the hardware for a testbed node stays below €20. The cost
of a synchronization node depends on the presence or absence of a GPS module
and cost either €19 or €56 without or with GPS, respectively. Equipping a
full testbed of 20 nodes with this GPIO tracing system and a single time source
costs less than €450.

114 CHAPTER D. GRACE

Table D.1: Cost of components for Grace.

Component Cost (€)
CC1101 Radio Module 9
STM32F401 Development Board 9
8-Channel Logic Analyzer 8
GPS module 26
GPS Antenna 9
Antenna adapter cable 2
PCB 0.50
PCB headers and cables <2
Jumper Wires <1
Total: Synchronization Node 19
Total: GPS-disciplined synchronization node 56
Total: Testbed Node 18
Total: Testbed node with PCB 19.50

4.9 Discussion

After introducing the design and its implementation, we additionally discuss
the system’s scalability and limitations, as well as its applicability for other
applications.

Generally, we can scale our system to infinitely many testbed nodes. The
only requirement is that every testbed node is in single-hop distance from
one synchronization node. Thus, on the side of the testbed nodes, the limit
is the availability of single-hop time signals, which we can easily extend by
using more synchronization nodes. The only real limitation is the testbed
server that has to handle the post-processing. The more nodes we have in the
testbed, the more storage it needs to store all the traces and the more time the
post-processing takes to merge these traces. Yet, as the server is not constraint
to a specific hardware, this should not be an issue in a deployment. Moreover,
as our system solely concerns the observer of a testbed node, the behavior
of the IoT devices like their uptime and availability is of no concern for this
system. The only thing a platform like the IoT nodes we use has to have is the
capability to toggle traceable GPIO pins. Thus, we can use the system easily
in combination with other hardware.

5 Evaluation

In this section, we experimentally evaluate our time-synchronized GPIO tracing
system Grace. We evaluate the GPIO tracing intrusiveness, Grace’s degree of
time-synchronization, and its stability within an actual testbed deployment.
We set our system into perspective to other time synchronization approaches,
discussing its advantages and disadvantages. We first evaluate our system
when using a single time source. For this, we evaluate the different sub-systems
individually before finally looking at the system as a whole. Afterward, we
look at the extension of using more than one synchronization node and look at
its influence on the system’s degree of time synchronization.

5. EVALUATION 115

Figure D.2: Local testbed of 500 m2. Red circle: synchronization
node; Orange squares: Nodes equipped with our GPIO tracing
system (Grace); Blue hexagons: other nodes; Marker G: nodes
equipped with GPS.

5.1 Evaluation Setup

Before our evaluation, we discuss our evaluation environment, namely our
testbed, with the location of the different node types, the metrics we evaluate,
and the clock references we use for accurately evaluating Grace’s timing.

5.1.1 Testbed

We evaluate Grace on our local testbed of 20 nodes (see Figure D.2), spanning
the top-most floor of a university building with an area of 500 m2. The floor
was mostly unoccupied during the experiments, yet, as we use 433 MHz for
communication, we expect occupation to have minimal impact on the evaluation
results.

In our initial deployment, we equip 16 of the 20 nodes, with a logic analyzer
and a radio (marked with orange squares in Figure D.2). Additionally, we place
the synchronization node in close vicinity of one of the testbed nodes (marked
with a red circle in Figure D.2). In the latest state of testbed, all nodes are
part of our GPIO tracing system Grace.

For our additional evaluation, extending the original version of Grace of
the multiple synchronization nodes scenario, we place three synchronization
nodes next to each other beside the node marked with ’G’ on the right side of
the testbed map. Due to a required close proximity of testbed nodes to the
same logic analyzer for evaluating their time offsets, we place three nodes close
to the location of the synchronization node (red circle) we use for the other
experiments.

116 CHAPTER D. GRACE

Printf 1 byte Printf 2 bytes Toggle GPIO

100

101

102

103

Du
ra

tio
n

[μ
s]

Figure D.3: Comparison of the duration of different logging outputs.
We compare the duration of printing 1 byte/character (avg: 86.2 µs),
or 2 bytes (avg: 172.6 µs) (1 character and a newline character)
through the serial interface, with the duration of the state change of
1 GPIO pin (avg: 140.5 ns). Please note that we use a logarithmic
scale to display the drastic duration differences between the output
through GPIO and through the serial interface.

5.1.2 Metrics

We evaluate Grace in terms of the logic analyzer’s frequency stability, the
synchronization node’s frequency stability, timing offset between testbed nodes,
timing offset between time sources, and system-wide time-synchronization
stability. We measure frequency deviations and time offsets.

5.1.3 Reference Clock

To measure and evaluate the exact timing of events in Grace, we require systems
with a more accurate clock than the system’s clock we evaluate. Therefore,
we either use an external logic analyzer (Saleae Logic Pro 8 [289]) or the
1-PPS signal output of GPS receivers as a reference clock. The error of our
reference clock is up to 50 µs/s (50 ppm) for the Saleae logic analyzer [290]
and up to tens of nanoseconds between two GPS receivers. For the experiments
on synchronization node stability (Section 5.4), receiver stability (Section
5.5), and multiple time sources (Section 5.7) we use the logic analyzer, as we
interface at least two nodes at once. For the remaining experiments, we use
the GPS receivers. The GPS receivers (marked ’G’ in Figure D.2) as well as
the ones we use for the evaluation of multiple time sources (Section 5.7) have
an external antenna mounted on the outside of the building, to keep the 1-PPS
synchronization at the specified accuracy.

5.2 Output intrusiveness

To explain the advantage of GPIO tracing for time stamping, we evaluate the
intrusiveness of it in comparison with the standard output solution of serial
logging using print-statements. We evaluate it using the nRF52840-DK [291],
one of the target platforms present in our testbed, running Contiki-NG [256]. To

5. EVALUATION 117

0 2000 4000 6000
time [s]

154.75

155.00

155.25

155.50

155.75

De
vi

at
io

n
[p

pm
]

0 20 40 60
Occurrence [%]

Figure D.4: Stability of a deployed logic analyzer over time. On the
Y-axis, we display the relative deviation of the logic analyzer from
its nominal frequency of 8 MHz in ppm.

access the GPIO pins of the nRF52840 [192], we use the nRF52840’s hardware
abstraction layer (HAL) included in Contiki-NG. In Figure D.3 we compare
the duration of logging one character with and without inserting a newline
through the serial interface at a baud rate of 115200 baud/s and the duration
of a state change of a GPIO pin.

The average duration for printing one byte, e.g., 1 character, is 86.2 µs,
and for printing two bytes, e.g., 1 character and a newline character for better
readability, is 172.6 µs. The duration for changing the state of a GPIO pin is
significantly smaller at 140.5 ns, equaling 9 clock cycles. Thus, even a pattern
of up to 613 GPIO changes is still faster than printing a single character
through the serial interface. Therefore, we can conclude that GPIO tracing is
a low-intrusive logging method.

5.3 Logic Analyzer Frequency Stability

We continue our evaluation by analyzing the frequency stability of a logic
analyzer. We, therefore, trace the 1-PPS signal of a GPS receiver with a logic
analyzer. In Figure D.4, we show the frequency stability over two hours and
the relative occurrence of the different deviations, exemplary for one logic
analyzer. This logic analyzer had during the tracing of the GPS signal an
average deviation from the nominal frequency of 154.9 ppm. Generally, we
expect the frequency stability of the logic analyzers to be within ±200 ppm [290].
As 200 ppm equals a time difference of 200 µs within a second, and thus, a
maximum time difference of 400 µs between two logic analyzers, this clearly
underlines the need for a system that time-synchronizes logic analyzers.

5.4 Frequency Stability Of Synchronization Node

Next, we investigate the frequency stability of the synchronization node. We
configure the synchronization node to send a packet once a second according
to its internal clock. With an external logic analyzer, we record the exact
sending times over a period of 90 minutes. For that, we record the completion
of creating a timestamp at the microcontroller by tracing the chip select line.

118 CHAPTER D. GRACE

0 1000 2000 3000 4000 5000
time [s]

7

8

9

Δt
 [μ

s]

Sync Node Output
MCU Output

(a) Stability of the synchronization node’s signal over 90 min-
utes. The radio output of the synchronization node follows the
microcontroller with a slight jitter of on average 18.7 ns.

0.0 0.5 1.0 1.5 2.0 2.5
Δt [μs]

0

1

2

3

Oc
cu

rre
nc

e
[%

]

(b) Offset distribution of a radio’s input signal from the radio
output signal of the synchronization node. Avg offset (solid
red line): 1.32 µs, Std (dashed red lines): 637 ns.

Figure D.5: Stability of the microcontroller output, the synchroniza-
tion node’s radio output, and the testbed node’s radio input.

Moreover, we trace the state of the GPIO pin the radio turns off once it is
done sending a packet.

Figure D.5a shows the offset of the microcontroller’s second from the
reference second over the time of the experiment. This offsets starts at 9 µs
and over time reduces to 7 µs. Figure D.5a also shows the resulting offset of the
reference time signal from the reference time. Generally, the transmission times
of the radio precisely follow the microcontroller’s signal generation times/offset
from the reference time with a slight jitter of on average 18.7 ns and a maximum
of 78 ns. While the offset between two timestamps is on average 7.1 µs, it is of
no concern as the offset will be evenly present on all testbed nodes and thus have
at most a minor influence on the distributed time-synchronization. The added
jitter in the nanosecond range is no concern for our system’s requirements.

After investigating the synchronization node’s stability, we next look at the
stability of the testbed nodes. For this, we firstly look at the deviation of the
input signal at one testbed node from the output signal of the synchronization
node. For that, we interface both nodes with our external logic analyzer

5. EVALUATION 119

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Δt [μs]

0

1

2

3

4

Oc
cu

rre
nc

e
[%

]

Figure D.6: Histogram showing the distribution of offsets between
two radio receivers. We show the mean value (0.65 µs) as a solid red
line, and the standard deviation (487 ns) as dashed red lines.

simultaneously. On the synchronization node, we trace the GPIO pin, the radio
turns off once it is done sending a packet, and on the testbed node, we trace the
GPIO pin of the radio that also notifies our time-synchronization system of the
availability of a new timestamp. We initially synchronize these two timestamps,
to analyze the receiver’s variation in offset. Figure D.5b shows an average offset
of 1.32 µs with a standard deviation of 637 ns from the synchronization node’s
time signal.

5.5 Receiver Stability

Next, we look at two nodes in the testbed, close to each other and the signal
received by the radios. We once again use the logic analyzer and trace the
GPIO pin of the radio that also notifies our time-synchronization system of
the availability of a new timestamp. We run several experiments with a total
duration of almost 5 hours. When looking at the reception time differences
between the two radios, we see the distribution shown in Figure D.6. The
difference between the radio’s reception times (without the time correction
system) is on average 654 ns (median: 562 ns) with a standard deviation of
487 ns. The maximal measured offset between the two radios is 3.22 µs. 77.4%
of the measurements have an offset of less than 1 µs. Even the maximum
value of 3.22 µs is sufficient for evaluating the timing of many IoT protocols,
including Time-Slotted Channel Hopping (TSCH) [6].

5.6 Clock Correction

Next, we focus on the full system, including the time error correction. To
evaluate this, we include the nodes that have a GPS receiver, and we use the
1-PPS GPS signal traced by the testbed node’s logic analyzers. We analyze
the time differences of the timestamps associated with the 1-PPS GPS signals.

120 CHAPTER D. GRACE

0 1 2 3
Δt [μs]

0

1

2

3

4

Oc
cu

rre
nc

e
[%

]

(a) Offsets between any two
traced GPS signals. Avg: 1.53 µs,
Std: 644 ns.

2 4 6 8
Δt [μs]

0

1

2

3

4

5

6

Oc
cu

rre
nc

e
[%

]

(b) Offsets between any two GPIO
tracing nodes within our testbed.
Avg: 2.92 µs, Std: 864 ns.

Figure D.7: Histograms showing the distribution of offsets between
multiple nodes using the full time-error correction system. We show
the mean value as a solid red line, and the standard deviation as
dashed red lines.

Figure D.7a shows the distribution of the time stamping error of Grace. On
average, the system has an error of 1.53 µs with a standard deviation of 644 ns,
and a maximum error of 3.75 µs. This clearly shows the advantage of Grace
over NTP with a thousandfold higher precision. Moreover, this synchronization
is sufficient for analyzing timing in many IoT protocols, including time-critical
communication protocols like Time-Slotted Channel Hopping (TSCH) [6] and
Chaos [59].

After comparing the system’s stability with a GPS reference, we can also
compare it to the reference signal our synchronization node sends out. Therefore,
we compare the deviation of the local timestamps based on the synchroniza-
tion signal. Figure D.7b shows similar results to the GPS-based experiment.
However, when tracing the synchronization node’s time signal, all the offsets
between the different receivers get accumulated (cf. Figure D.6). Overall, the
offset, when including all these errors, between any two nodes is on average
2.92 µs with a maximum offset of 7.9 µs.

5.7 Multiple Time Sources

After evaluating our system using a single time source, we will next evaluate the
performance of our extended system using multiple synchronization nodes. This
is necessary when we need to span larger buildings or want to time-synchronize
campus-wide networks. For the synchronization nodes (senders), and the
receivers, we trace the end of sending and the start of the reception with a
logic analyzer, respectively. For the full system, we trace with the internal
system the GPS 1-PPS signal of a GPS receiver, the same one for all involved
testbed nodes.

Figure D.8a shows the offset distributions for synchronization nodes (senders),
radio receivers, and the full time-synchronization system using a single GPS
signal. We feed the same GPS signal from a single GPS receiver to all three
of the senders. After passing the sender, the sent-out signals have on average
an offset of 39 ns to each other with a standard deviation of 19.5 ns. The
receivers have a significantly higher timing error of on average 480 ns (standard

5. EVALUATION 121

Senders Receivers System
0

5

10

15

Δt
 [μ

s]

(a) Three sender-receiver pairs.
Time signal generated using one
GPS receiver.

Senders Receivers System
0

5

10

15

20

Δt
 [μ

s]

(b) Three sender-receiver pairs.
Time signal generated using three
GPS receivers.

Figure D.8: Time offsets of different components of Grace. Time
offsets between the generated time signals at the sender side, between
the received time signals at the receiver side, and between the nodes
of the full system. Red line: average time offset, Red dot: median
time offset

deviation: 352 ns) with some outliers reaching an offset of up to 7.2 µs. As
in the case of one synchronization node, we see that the full system has a
significantly higher timing offset of on average 16.1 µs and with a standard
deviation of 530 ns.

When using multiple time sources at different locations, we need to use
different GPS modules for them. Thus, next, we compare how the use of
three different GPS receivers changes the behavior of our system. Figure D.8b
shows the offset distributions for the same subsystems as above. Here, we
see a similar trend as above with slightly higher timing errors between the
senders and the receivers, while the full system is not affected much, excluding
some outliers. The senders have an average timing offset of 173.5 ns to each
other with a standard deviation of 63.7 ns and the receivers have a timing
offset of 680.5 ns with a standard deviation of 453.5 ns. While these numbers
are slightly higher than above, this is expected, as this setting also includes
the time offset introduced by using multiple GPS receivers. The full systems
achieves a time synchronization error of 15.3 µs with a standard deviation of
855.8 ns.

5.8 Summary

From the results, we present in this evaluation, we can conclude that Grace
achieves a building-wide time-synchronization using a single time source in
the range of a few microseconds. This does not fully reach the degree of
time-synchronization offered by custom solutions which use specific hardware
or FPGA’s for GPIO tracing [86, 93]. However, our system is easily and
cost efficiently retrofittable to existing testbeds and offers a sufficient time
synchronization for tracing in many application fields. For testbeds larger than
a single building, we have to make a trade-off between coverage and accuracy.
With multiple synchronization nodes, our time-synchronization system has
a ten times higher error of 15.3 µs in comparison with the system using a

122 CHAPTER D. GRACE

single synchronization node. While this is significantly worse than the time-
synchronization we achieve when using only a single time source, it still offers
a significantly higher degree of clock synchronization than NTP and is still
good enough for measuring and evaluating the time synchronization in wireless
IoT communication protocols like Time-Slotted Channel Hopping (TSCH) [6].
Moreover, the time-synchronization between the nodes using the same time
source is not affected by this decrease in synchronization. Thus, Grace offers
low microsecond accuracy between nodes using the same time source and tens
of microseconds accuracy between nodes using different time sources.

6 Conclusion

Testbeds are an important tool for developing and evaluating IoT protocols.
While there are many testbeds used by the research community, most of them
lack the capabilities to accurately evaluate the timing of time-critical IoT
systems.

With Grace, we present an easily retrofittable system capable of tracing
the timing of IoT devices by proposing a low-cost GPIO tracing system. Grace
uses only low-cost off-the-shelf components, making it retrofittable to exist-
ing testbeds for less than €20 per node. We show that Grace can cover a
building-wide testbed with a single time source and can synchronize GPIO
events with an average time synchronization error of 1.53 µs, and a worst-
case time synchronization error of 3.75 µs. Moreover, Grace can extend time
synchronization to larger areas like campus-wide testbeds using multiple time
sources. It achieves an average time synchronization error between nodes using
different time sources of 15.3 µs.

E

TSCH meets BLE: Routed Mesh Communication over
BLE

Laura Harms, Olaf Landsiedel

Proceedings of the 19th International Conference on Distributed Computing in
Smart Systems and the Internet of Things (DCOSS-IoT), 2023, pp. 187–195.

123

Abstract

Bluetooth Low Energy (BLE) is the prevalent communication protocol for
the Internet of Things. However, for time-critical applications requiring time-
synchronized multi-hop networks with often multiple node exchanging data
at the same time slot, BLE lacks a solution. Instead, we commonly see IEEE
802.15.4 being used with its Time-Slotted Channel Hopping (TSCH) MAC
layer.

In this work, we build TBLE, which brings the established TSCH protocol
to BLE, enabling BLE to be used for time-synchronized routed mesh communi-
cation. We show that in experimental testbed deployments, TBLE achieves
similar performance to TSCH, with the possibility for lower average latencies
of up to 20%. Moreover, due to the higher spectral efficiency of BLE compared
with IEEE 802.15.4 (40 vs. 16 channels), more parallel routed communications
are possible with TBLE, further reducing latency and increasing throughput.

124 CHAPTER E. TBLE

1 Introduction

With more than 5 billion (5 ∗ 109) BLE devices estimated to be shipped in 2023
alone [266] and a continuing rise in popularity, Bluetooth Low Energy (BLE) is
the prevalent standard for communication in low-power wireless networks. Due
to its wide availability, low-cost and energy efficiency, BLE is supported by
practically all smart devices we interact with today. In contrast, most wireless
industrial devices and many smart home devices use IEEE 802.15.4 instead
of BLE. Of the two protocols, the physical layer of BLE is the less complex
one using a GFSK modulation scheme in contrast to the O-QPSK modulation
scheme of IEEE 802.15.4, allowing for cheaper radios.

Both protocols have limited range and thus rely on, i.e., multi-hop mesh
networking for communicating over longer distances. In the field of IEEE
802.15.4, there are several established protocols, including those for flooding-
based communication [9,65] as well as routing-based communication [6]. For
routing-based communication, an established technique is Time-Slotted Channel
Hopping (TSCH), the standard MAC layer protocol in IEEE 802.15.4. For BLE,
the standard mesh protocol is Bluetooth Mesh [25,26], a protocol using managed
flooding on top of BLE advertisements. While flooding-based protocols usually
use the entire network for sending a message, routing-based protocols allow
multiple parallel communications in the same network at the same point in
time. Yet, to our knowledge, there is no time-synchronized routing-based mesh
communication protocol for BLE.

Several works looked at the combination of IEEE 802.15.4 TSCH and BLE,
either in terms of coexistence [190, 191] or by using a single radio for both
BLE and IEEE 802.15.4 and communicating TSCH control information using
concurrent BLE transmissions [193]. Especially the latter work raises the
question of why there is the need to continue using IEEE 802.15.4 for TSCH
communication while only communicating control information over BLE.

In this paper, we combine the BLE PHY with the MAC layer protocol TSCH
and call this combination TBLE. TBLE sends standard TSCH packets as part of
time-synchronized BLE advertisements, enabling routed mesh communication
over BLE with TSCH and replacing IEEE 802.15.4. TBLE enables the use of
well established protocols including deadline-based real-time communication
protocols on top of BLE. We design TBLE for the use with any BLE radio. We
exemplarily implement a BLE driver for the nRF52840 DK [291] for Contiki-
NG [256] and adapt it to allow the transmission of valid IEEE 802.15.4 TSCH
frames within BLE packets. We study both the coded (125 kbps/500 kbps)
and the uncoded (1 Mbps/2 Mbps) PHYs of BLE and experimentally evaluate
TBLE’s performance on a low-power wireless testbed using the well established
autonomous scheduler Orchestra [8] which is included in Contiki-NG and
compare its performance to TSCH over IEEE 802.15.4.

Our evaluation on a testbed shows, that especially the coded BLE modes
achieve a similar connectivity within a deployment as IEEE 802.15.4. TBLE
achieves similar performance to TSCH, with the possibility for lower average
latencies of up to 20%. Moreover, due to the higher spectral efficiency of BLE
compared with IEEE 802.15.4 (40 vs. 16 channels), more parallel routed com-
munications are possible with TBLE, further reducing latency and increasing
throughput.

2. BACKGROUND 125

Overall, we make the following contributions:

• We present TBLE, a protocol closing the gap of routed mesh-communication
in BLE. TBLE extends the established TSCH standard.

• We design and implement a BLE driver for the Nordic nRF52840 DK for
Contiki-NG and adjust it to be compatible with the Contiki-NG IEEE
802.15.4 TSCH and 6TiSCH stack. We make it publicly available1 as
open source.

• We are the first to run TSCH over BLE, demonstrating TBLE as a
practical routed mesh-protocol for BLE.

• We experimentally evaluate TBLE and compare it to IEEE 802.15.4
TSCH, showing its feasibility and a possible performance increase over
TSCH without modifying any upper-layer protocols.

We structure the remainder of this paper as follows. Section 2 gives the
necessary background information on IEEE 802.15.4, BLE and TSCH, followed
by a detailed dissection of TSCH in Section 3. In Section 4 we introduce the
design of TBLE, followed by our experimental evaluation of TBLE and its
comparison to IEEE 802.15.4 TSCH in Section 5. In Section 6 we discuss a
selection of works related to this topic, and conclude our work in Section 7.

2 Background

In this section, we introduce the required background information on IEEE
802.15.4, Time-Slotted Channel Hopping (TSCH), and Bluetooth Low Energy
(BLE).

2.1 IEEE 802.15.4

IEEE 802.15.4 is a low-power personal area radio protocol introduced in
2003 [27], initially for the 2.4 GHz (2400 – 2483.5 MHz) ISM band. It operates
at a data rate of 250 kbps and uses a robust modulation scheme of O-QPSK
with DSSS (direct-sequence spread spectrum). IEEE 802.15.4 specifies 16
channels that are 2 MHz wide and 5 MHz apart. On the physical layer, an
IEEE 802.15.4 packet consists of 4 preamble bytes, a 1 byte start of frame
delimiter (SFD), a 1 byte packet length, and up to 127 bytes of payload.

Besides the physical layer, the IEEE 802.15.4 standard also defines the
medium access control (MAC) layer. One defined MAC layer is Time-Slotted
Channel Hopping (TSCH).

2.2 Time-Slotted Channel Hopping (TSCH)

Time-Slotted Channel Hopping (TSCH) [6] is a standardized MAC layer proto-
col (IEEE 802.15.4e) for low-power wireless mesh networks. TSCH combines
Time-division multiple access (TDMA) with Frequency-division multiple access
(FDMA) and a pseudo-random channel hopping mechanism. Communication

1Available as open-source at: https://github.com/ds-kiel/TBLE.

https://github.com/ds-kiel/TBLE

126 CHAPTER E. TBLE

Preamble
(1 or 2 bytes)

Access Address
(4 bytes)

PDU
(2-258 bytes)

CRC
(3 bytes)Uncoded PHY:

Preamble
(80 µs)

Access Address
(256 µs)

PDU (N bytes)
(N*S*8 µs)

CRC
(24*S µs)Coded PHY: CI

(16 µs)
Term 1
(24 µs)

FEC block 1

Term 2
(24 µs)

FEC block 2

Figure E.1: BLE PHY packet formats

occurs in distinct time-frequency-slots, with as many concurrent communi-
cations as channels included in the hopping sequence (maximally 16). The
channel hopping allows TSCH to withstand narrowband interference.

Slots in TSCH have a standard length of 10 ms and allow the transmission
of a single IEEE 802.15.4 packet followed by an optional acknowledgement upon
successful reception. Slots can be reserved for sending and receiving Enhanced
Beacons (EB). Beacons are sent regularly containing control information for
nodes to associate to the TSCH network and to keep the network in sync and
alive.

2.3 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) [7] is a short-range and low-power communication
protocol in the 2.4 GHz ISM band targeting single-hop communication between
two devices. BLE uses 40 2-MHz wide frequency channels, which use Gaussian
Frequency Shift Keying (GFSK) as a modulation scheme. Three of these chan-
nels are reserved for (primary) advertisements and broadcasts, while the other
37 are reserved for connected communication and secondary advertisements.
BLE offers an uncoded PHY with data rates of 1 Mbps (standard data rate)
and 2 Mbps, and since Bluetooth 5.0 even a long-range coded PHY with data
rates of 125 kbps and 500 kbps.

PHY packet format. The physical layer packet format of BLE differs
between the uncoded PHY and the coded PHY. The uncoded PHY packet
starts with a 1 or 2 byte preamble of alternating ones and zeros, for a data rate
of 1 Mbps and 2 Mbps, respectively. It is followed by the 4-byte access address,
identifying packets belonging to a connection. For advertisement packets, the
advertisement address is fixed to 0x8E89BED6. Afterward, the packet contains
between 2 and 258 bytes payload (PDU) and a 3-byte cyclic redundancy check
(CRC) code for error correction. The coded PHY packet generally contains
the same components, however, with additional fields for error correction (see
Figure E.1). The preamble is uncoded, consisting of 10 repetitions of 0x3C
transmitted with a data rate of 1 Mbps. The first forward error correction
(FEC) block is always transmitted with a data rate of 125 kbps containing the
access address and the coding indicator (CI). The CI indicates the coding of
the second FEC block, deciding whether it uses a data rate of 125 kbps or
500 kbps. The PDU and the CRC are then transmitted with the indicated
coding afterward.

Advertisements. BLE has two operation modes: connected and non-
connected. In the non-connected mode, BLE devices disclose their presence
and advertise their services to nearby devices. These services include, i.e.,

3. DISSECTING TSCH 127

Table E.1: IEEE 802.15.4e TSCH timeslot timings.

Name Time offset / duration (µs)
CCAOffset 1800
CCA 128
TxOffset 2120
MaxTx 4256
RxOffset 1020
RxWait 2200
RxAckDelay 800
TxAckDelay 1000
AckWait 400
MaxAck 2400
Sum 9776
Timeslot Length 10000

media control services or weather information (e.g., temperature data). For
some of these services, a receiver has to connect to the advertising device and
communicate in connected mode.

Advertisement data. In non-connected mode, an advertiser sends data
(PDU) consisting of a 2-byte header, followed by one or multiple advertising
data (AD) structures. The first byte of the header contains a 4-bit PDU type,
1 bit reserved for future use, a 1-bit flag whether the advertiser supports the
LE channel selection algorithm, two 1-bit flags whether the advertiser’s and
the target device’s addresses are random or public, respectively. The second
header byte contains the length of the subsequent advertising payload. An AD
structure consists of a 1-byte length, n bytes AD type (e.g., an identifier that
a list of service UUIDs follows) and lenght− n bytes AD data (e.g., the list of
service UUIDs).

3 Dissecting TSCH

After a general introduction of Time-Slotted Channel Hopping (TSCH) in the
background, we analyze the inner workings of TSCH. For that, we study the
timings within a TSCH timeslot and the time synchronization mechanism of
TSCH, especially in the context of the implementation of TSCH in Contiki-NG.

3.1 TSCH Timeslot Timing

A TSCH timeslot allows the transmission of one packet with a subsequent
acknowledgement in case the packet was received. We illustrate the timing
within a timeslot for both the sender and receiver in Figure E.2, and provide
the timing offsets and durations in Table E.1.

At the sender’s end, a timeslot starts with the transmission offset (TXOffset).
During this offset, the sender configures its radio, turns it on, and potentially
performs Clear Channel Assessment (CCA). Moreover, the sender prepares
the packet (i.e., adding headers) and starts transmitting. By the end of the
TXOffset, the preamble and the Start of Frame Delimiter (SFD) should be

128 CHAPTER E. TBLE

Frame Tx Rx Ack
DelayTx Offset Ack Wait + Rx

Rx Offset Ack TxRx Wait + Frame Rx Tx Ack Delay

Figure E.2: Simplified TSCH timeslot timing. We omit the optional
CCAOffset and the CCA, which happen during TxOffset, if enabled.
Please note: the illustrated timing is not to scale. For the correct
timing, see Table E.1.

transmitted. Following the SFD, the radio transmits the TSCH frame standard-
ized to a maximum length of 128 bytes including 1 length byte. TSCH reserves
a time of 4256 µs equating to 133 bytes for this. After the transmission, the
sender turns off its radio, and in case of an expected acknowledgement (ACK),
it reconfigures the radio into receive mode and turns it on by the end of the
RxAckDelay. If the sender, which is waiting for the ACK does not receive
anything by the end of AckWait, it turns off its radio. Otherwise, if it detects
an ACK, it receives it and turns off the radio afterward.

The receiver starts with an RxOffset during which it configures the radio
and turns it on to listen for incoming packets. If it does not start receiving
a packet within RxWait it turns off its radio. If the receiver receives a valid
packet that requires acknowledgement, it prepares its radio for transmission
during TxAckDelay and by the end of TxAckDelay it should have transmitted
the packet’s synchronization header. The full acknowledgment of maximally
69 bytes (plus 1 length byte) has to be transmitted within the time given by
MaxAck of 2400 µs (the duration of 75 bytes).

For both the sender and the receiver, we see a mismatch of a time equaling 5
bytes between the reserved transmission times and the maximum packet lengths
that can be transmitted. We assume that the given times include the times
for transmitting the synchronization header, even though the synchronization
header should have been transmitted already during TxOffset or TxAckDelay
for frame and ACK, respectively.

3.2 TSCH packet duration

The TSCH timeslot timing provides us with the maximum time a transmission
might take (MaxTx). However, during operation, we do not wait until the
end of MaxTx before continuing with the next field of the timeslot if we send
packets shorter than the maximum length. Instead, we directly continue
once the transmission is over. Instead of probing the radio for the end of
the transmission, the implementation of TSCH in Contiki-NG computes the
transmission time of the packet. The implementation defines the TSCH packet
duration as durationpacket ← airtimebyte ∗ (len+ overheadPHY), with a PHY
overhead of 3 for the nRF52840.

3.3 TSCH time synchronization

On the physical level, a radio can precisely timestamp certain events related to
the radio packet, which we can use as markers for time synchronization. For

4. DESIGN 129

example, in IEEE 802.15.4 mode, the nRF52840 chipset can timestamp events
including framestart, Address sent or received, Packet payload sent or received,
and Packet sent or received. The TSCH implementation in Contiki-NG uses the
start of frame delimiter (SFD) as the timestamp to synchronize on. While the
radio cannot timestamp the start of the SFD, it can timestamp the framestart,
which is the timestamp right after transmitting or receiving the SFD. Thus,
Contiki-NG can derive the necessary timestamp easily from the framestart
event timestamp. As the SFD is 1 byte long (and takes 32 µs), we can compute
the SFD timestamp by subtracting 32 µs from the recorded timestamp.

3.4 Hopping sequences

For counteracting narrowband interference, TSCH uses channel hopping ac-
cording to a pseudo-random hopping sequence. TSCH defines a 9-bit linear
feedback shift register to determine these hopping sequences. Common hop-
ping sequences include a single-channel hopping sequence (channel 20), a
four-channel hopping sequence (channels 15, 20, 25, and 26), and a 16-channel
hopping (all IEEE 802.15.4 channels).

4 Design

In this section, we discuss our design enabling TSCH on top of BLE adver-
tisements, which closes the gap of routed mesh communication in BLE. We
discuss the TSCH timeslot timings regarding the four different BLE data rates
and show how we achieve time synchronization. Moreover, we discuss our BLE
packet format and the channel hopping sequences for TBLE.

4.1 Overview

The general idea behind TBLE is to replace the IEEE 802.15.4 PHY with a
BLE PHY and send standard TSCH packets as part of BLE advertisements.
For other BLE devices, these appear like standard BLE packets, while devices
running TBLE can recognize them and form a standard TSCH network using a
BLE PHY instead of the IEEE 802.15.4 PHY for communication. For that, we
have to change the TSCH timing to work with different data rates and embed
the TSCH payload into BLE packets. Moreover, BLE offers significantly more
radio channels in the same spectrum (40 instead of 16), due to a lower channel
spacing, and thus, we can use different and longer hopping sequences allowing
both more possibilities to avoid interference and a higher total bandwidth with
more parallel communications. Lastly, a BLE radio does not offer the same
timestamping capabilities as an IEEE 802.15.4 radio; thus we have to identify
a different timestamp for time synchronization.

4.2 Derived Timing

In Section 3.1, we explore the timing of the standard 10 ms TSCH slot (cf.
Figure E.2). The different offsets and wait times in the standard TSCH slot
are partly dependent on the radio’s data rate. The ones dependent on the
radio’s data rate are the maximum frame length (MaxTX), the maximum ACK

130 CHAPTER E. TBLE

length (MaxAck), the TxOffset, and the AckDelay. The former two values
depend on a packet’s maximum time on air, thus on the maximum number
of bytes and the radio’s data rate. The latter two depend only to a minor
extent on the radio as they contain mainly processing and wait times and,
in addition, the transmission time of the PHY synchronization header. The
CCA duration might be dependent on the radio, yet it does not take more
time than standardized on the radio we tested it on, which supports both
IEEE 802.15.4 and BLE. All other times seem to be independent of the radio.
Instead, some of them are dependent on the device’s CPU speed. As we only
change the physical layer (from IEEE 802.15.4 to BLE) and otherwise keep the
same processor capabilities, we only change the times strongly affected by the
physical data rate: MaxTX and MaxAck. As the PHY synchronization header
takes less time for either BLE mode than for IEEE 802.15.4, we keep TxOffset

and AckDelay unchanged, which increases the times for data processing by
152 µs and 80 µs for the uncoded and coded BLE modes, respectively. We
also keep the guard times for correctly receiving the beginning of a data packet
(RxOffset + RxWait) the same as in IEEE 802.15.4. Those guard times do not
have any effect on the total slot length for IEEE 802.15.4 and do not exceed
the derived timeslot lengths for any of the BLE modes.

Contrary to our expectations, our experiments show, that the guard time
for beginning to receive an acknowledgment (AckWait) is too low to successfully
receive an acknowledgment in coded BLE. Thus, we increase AckWait from
400 to 1000 µs for coded BLE.

From our dissection of TSCH (cf. Section 3.1), we know that we need to
reserve the time equivalent to 133 bytes and 75 bytes for MaxTX and MaxAck,
respectively. While BLE would allow for packets with a longer payload, we
stick to the maximum payload size of IEEE 802.15.4, as this does not require
major changes in TSCH. Moreover, packets with a longer time on air are more
susceptible to short bursts of interference.

4.2.1 Packet Format

After setting the basis for the payload length of a packet and of an acknowl-
edgment, we next discuss the BLE packet structure to be able to calculate
the timing. This packet structure differs significantly between the coded and
uncoded modes of BLE. While we want to send valid BLE packets in any case,
we also want to enable a radio of a device that is not running TBLE to discard
the packet as quickly as possible.

For the uncoded modes of BLE (1 Mbps and 2 Mbps), we choose a custom,
application-specific access address and transmit the TSCH packet as is as the
BLE advertisement packet’s PDU. This should enable other BLE devices to
discard the packet, as it is not using the standard advertisement access address.
Moreover, it is very unlikely that a device has a connection with the same
access address, we use for TBLE.

For the coded modes (125 kbps and 250 kbps), we cannot use a custom
access address, as the radio we use is not able to receive coded BLE packets
with an access address besides the standard advertisement access address.
Instead, we have to choose a different way to create a BLE compliant but easily
discardable packet. Thus, we create a standard advertisement packet with a

4. DESIGN 131

Table E.2: TSCH/TBLE timeslot timings and effective data rates.

IEEE BLE BLE BLE BLE
Mode 802.15.4 125k 500k 1M 2M

MaxTX (µs) 4256 9532 2590 1088 548
MaxAck (µs) 2400 5520 1662 624 316
AckWait (µs) 400 1000 1000 400 400
Sum (µs) 9776 7372 18172 4832 3984
Timeslot (µs) 10000 7500 18500 5000 4000
Effective data 101.6 135.5 54.9 203.2 254
rate (kbps)

PDU with one advertisement data (AD) structure containing the TSCH frame.
We set the first byte of the advertisement header to 0x90, using an undefined
PDU type, which might enable other radios to discard the packet right away.
The AD structure we send uses the AD type 0xFF, identifying the subsequent
data as manufacturer specific.

Thus, for both modes, we deviate slightly from sending correct BLE packets
to enable only devices running TBLE to further process the received data.

4.2.2 TBLE Timing

After the considerations regarding the BLE packet structure and the payload
length, we can derive the timing for MaxTX and MaxAck, which we show in
Table E.2. Similarly, to IEEE 802.15.4, we round up the timeslot lengths to
the next multiple of 500 µs. The timeslot lengths vary between 4 and 18.5 ms.
In addition to the timeslot lengths, we also show the effective data rates, which
we calculate for a packet of maximum size (127 data bytes) in kbps with

127∗8
TimeslotLength .

4.3 Packet duration

To enable TSCH to start the RxAckDelay and TxAckDelay at the correct time,
we need to adjust the TSCH packet duration computation (cf. Section 3.2).
Setting the byte air time for the payload is straight-forward and can be directly
derived from the bitrate. However, the radio PHY overhead is only easily
identifiable for the uncoded mode (10 bytes). For the coded modes of BLE,
we identify 4 bytes overhead in the payload plus certain fixed time overheads.
These are 296µs for FEC block 1, and 54µs or 216µs for CRC and Term
2 at the end of FEC block 2 for a BLE data rate of 500 kbps or 125 kbps,
respectively (cf. Figure E.1).

4.4 Time Synchronization

As we discuss in Section 3.3, TSCH uses time stamping functionalities of the
radio, for precise time synchronization, especially the timestamp of the start of
frame delimiter (SFD). As BLE PHY packets do not contain an SFD between
the preamble and the start of the frame, we cannot use the same timestamp
for time synchronization as in the case of IEEE 802.15.4. The time stamping

132 CHAPTER E. TBLE

points the nRF52840’s radio offers in BLE mode are address sent/received,
payload sent/received, and packet sent/received. When comparing the accuracy
of the different time stamps between two devices located next to each other and
connected to a logic analyzer, our results strongly suggest that the timestamp of
the address sent/received event is most suitable for TSCH time synchronization.
Similar to IEEE 802.15.4, we use this timestamp to compute the timestamp of
the end of the preamble. For that, we subtract the transmission time for the
address from the timestamp. Moreover, our experiments show, that contrary
to our assumptions, the radio is not done transmitting its preamble by the
end of TxOffset. Thus, to synchronize to the intended time, we introduce an
additional (negative) timing offset initiating the transmission in TSCH earlier
to ensure the preamble being transmitted exactly at the assumed time.

4.5 Hopping Sequences

For TBLE, we need hopping sequences using the BLE channels. For comparison
with IEEE 802.15.4, we replicate the 1, 2, 4, and 16 channel hopping sequences
using the BLE channels that best match the used IEEE 802.15.4 channels.
In addition, we generate a 40 channel hopping sequence containing all BLE
channels and an intermediate one using 32 channels. For the 40 channel hopping
sequence, we use the 9-bit linear feedback shift register defined by the TSCH
standard. For the 32 channel hopping sequence, we take the 40 channel hopping
sequence and remove every fifth channel.

4.6 Standard-compliance Discussion

To end the description of our design, we want to discuss the standard compliance
of TBLE with both TSCH and BLE. To our knowledge, we are fully compliant
with TSCH as long as we use the maximum 40-channel hopping sequence.
None of the timeslot timing numbers exceed 2 bytes and thus fit into the
TSCH Information Elements (IEs) to transmit the timeslot timing as part of
an Enhanced Beacon (EB). Moreover, the longer hopping sequence also doesn’t
exceed the length allowed in IEs of EBs.

For BLE, we deviate somewhat from the standard. The individual packets
use an access address not standard for advertisements or use an undefined
PDU type. Moreover, we use all BLE channels and do not stick to the primary
advertisement channels while sending advertisement packets. Our reasoning
is to enable BLE radios to discard our packets as quickly as possible after
reception, but still enabling BLE radios running TBLE to join the TSCH
network.

5 Evaluation

After discussing the design of TBLE and the necessary adaptions and extensions
towards TSCH, we experimentally evaluate its performance. We split the
evaluation into two parts. Firstly, we study the connectivity of the same
physical network using different PHYs. We compare the four BLE PHY
configuration with the IEEE 802.15.4 PHY as our baseline. Afterward, we
evaluate and compare the performance of TSCH multi-hop communication over

5. EVALUATION 133

Figure E.3: Local testbed of 500 m2. Red hexagon: TSCH PAN
coordinator/Orchestra root node; Blue circles: network participants

BLE and IEEE 802.15.4. For that, we use the well established autonomous
TSCH scheduler Orchestra [8]. Orchestra is integrated into Contiki-NG and is
a standard benchmarking solution for Contiki-NG. Orchestra builds upon the
routing protocol RPL [53] that builds a routing tree on top of TSCH.

Setup. For our evaluation, we use our local testbed of 20 nodes (see
Figure E.3). The testbed spans the top most floor of a university building
(500 m2) with offices and lab rooms and shares the wireless spectrum with other
networks including Wi-Fi. Each node is equipped with, i.a., a nRF52840 DK
board [291] and a Raspberry Pi 3B+ as observer for collecting and processing
our evaluation logs. The nRF52840, which our design targets, is a Cortex-M4
microcontroller with 64 MHz clock speed, 1 MB flash and 256 KB RAM and a
radio supporting, i.a., both IEEE 802.15.4 and BLE 5.

Metrics. Throughout this evaluation, we look at the following metrics.
For the connectivity, we compare the single-hop reachability of nodes and
the Expected Transmission Count (ETX) [48] for a node’s neighbors. The
ETX is the inverse of the Packet Reception Rate (PRR). For our performance
evaluation with Orchestra, we look at reliability (Packet Delivery Rate (PDR)),
latency and radio duty cycle for the different modes.

5.1 Reachability

Scenario. We investigate the reachable number of nodes for each node in
our testbed for the four BLE PHYs and compare it to the IEEE 802.15.4
PHY. We quantify the performance both in terms of neighbors and in terms
of average neighbor ETX. We perform this evaluation for 7 different transmit
powers between −30 dBm and 0 dBm. For each transmit power we run a
15-minute experiment using one of the available hopping sequences (1 channel,
4 channel, and 16 channels for all PHYs, plus 32, and 40 channels for the BLE
PHYs). We use the neighbor discovery mode of the centralized TSCH scheduler
MASTER [240].

134 CHAPTER E. TBLE

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(a) Connectivity CDF for BLE
125 kbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(b) Connectivity CDF for BLE
500 kbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(c) Connectivity CDF for BLE
1 Mbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(d) Connectivity CDF for BLE
2 Mbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(e) Connectivity CDF for IEEE
802.15.4.

Figure E.4: Evaluation of the nodes’ reachability (median reachability
CDF for the different hopping sequences). The bitrate has a clearly
visible influence on the communication range and thus the number
of neighbors.

Results. Figure E.4 and Figure E.5 show the evaluation results for Fig-
ure E.4 shows the median number of nodes reachable for the different transmit
powers. The plots show a CDF for each of the transmit powers. Each line
shows the percentage of nodes in the testbed that has a certain number of
neighbors. For example, the left most visible line in Figure E.4d, shows that
for the 2 Mbps BLE mode at a transmit power of −20 dBm, 7 nodes can reach
a single other node, 6 nodes can reach 2 other nodes, and 2, 3, and 1 nodes
can reach 3, 4, and 5 nodes, respectively.

Both the BLE mode with a bitrate of 125 kbps and the IEEE 802.15.4
mode have nodes at a transmit power of 0 dBm that can reach all other 19
nodes in the testbed. Moreover, these are the only modes that can reach any
neighbors at all, at a transmit power of −30 dBm. This means that only for

5. EVALUATION 135

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(a) Average ETX to neighbors
for BLE 125 kbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(b) Average ETX to neighbors
for BLE 500 kbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(c) Average ETX to neighbors
for BLE 1 Mbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(d) Average ETX to neighbors
for BLE 2 Mbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(e) Average ETX to neighbors
for IEEE 802.15.4 (250 kbps).

Figure E.5: Evaluation of the nodes’ reachability showing the average
ETX to a node’s neighbors. IEEE 802.15.4 has the best connectivity
to its neighbors.

these two modes, a TSCH network forms at −30 dBm. Generally speaking,
the BLE mode with a bitrate of 125 kbps has a similar number of reachable
neighbors as the IEEE 802.15.4 mode. The 500 kbps mode has a slightly lower
number of reachable nodes than the 802.15.4 mode. The 2 Mbps BLE mode
has with 13 possible neighbors a much lower maximum number of reachable
nodes. Moreover, at a transmit power of −20 dBm, TSCH using the 2 Mbps
BLE mode can just barely form a mesh network.

Figure E.5 shows the average ETX and the standard deviation for a node’s
transmission to all of its reachable neighbors for 6 out of the 7 transmit powers.
We exclude the transmit power of −30 dBm as it is hardly usable at all.
Contrary to the number of reachable nodes, the average ETX to the neighbors
is significantly higher for 125 kbps BLE (Figure E.5a) than for IEEE 802.15.4
(Figure E.5e). We suspect this behavior to come from the robustness of the

136 CHAPTER E. TBLE

modulation scheme. While both modes can reach similar numbers of neighbors,
the BLE modulation scheme (GFSK) should be more affected by interference,
leading to the higher expected number of transmissions to successfully reach its
neighbors. The other BLE modes (Figure E.5b – E.5d) reach a lower number
of nodes, but have a better connection to those.

From these results, we derive that −16 dBm (dark orange line) is the lowest
usable transmit power to form a proper mesh network for all PHYs. Moreover,
−8 dBm (dark red line) is the transmit power with a medium number of
neighbors for all PHYs. Therefore, we will use these two transmit powers for
our performance evaluation below.

5.2 Performance Evaluation

Scenario. We evaluate the performance of mesh multi-hop communication of
TBLE in comparison with our baseline TSCH over IEEE 802.15.4 using the
autonomous scheduler Orchestra at transmit powers of −8 and −16 dBm. We
run multiple experiments with a total runtime of 4 hours for each transmit
power and mode. As Orchestra builds upon the Routing Protocol for Low-
Power and Lossy Networks (RPL) [53], we compare different routing networks
with each other. Thus, while using the same physical deployment for our
experiments, RPL builds a routing network outside our control, optimized for
the prevalent situation. Therefore, the results might differ from our intuitive
ideas. Yet, using an autonomous scheduler and a routing protocol like RPL
assures us to use the best routes for each protocol and mode. This allows
us to compare the effective performance of each protocol. Orchestra sends
once a second a packet to a random node of the network, and the node sends
back a reply on reception of the packet. We evaluate round-trip and one-way
performance of this communication using latency and reliability as our metrics.
For the round-trip latency, we use the node’s measured time between sending
and receiving the packet. For the one-way latency we use slot counts, which
we convert to time. We base the latter on the slot count, as the timestamping
of the serial interfaces of our testbed are not time synchronized to the required
degree. Lastly, we also compare the radio duty cycle of the different PHY
modes.

Results. Figure E.6 shows the performance of Orchestra for all modes.
Figure E.6a and E.6b show that the round-trip latency for most BLE modes is
most of the time better than for IEEE 802.15.4 with an average improvement
of 10 to 20%. For 125 kbps BLE (dark red line) this is most visible. While this
mode has the longest slot lengths, it seems that RPL uses fewer hops for the
routing, which benefits the latency in most cases, but also leads to an increased
latency for some packets. We can see a similar routing benefit for 500 kbps
BLE and 1 Mbps BLE in Figure E.6a.

Overall, reliability is comparable for most modes. However, at a transmit
power of −16 dBm, both the 125 kbps BLE mode and the 2 Mbps BLE mode
do not reach maximum reliability. While we can expect that for the former the
routing is not favorable to reach highest reliability, this should not be the case
for the latter. For the latter (2 Mbps), we observe that the network formation
takes already half an hour and therefore, we can expect the network to be
not as stable as in the other modes and thus is unable to achieve maximum

5. EVALUATION 137

0.0 0.5 1.0 1.5 2.0 2.5
Round-trip latency [s]

0

20

40

60

80

100

PD
R

[%
]

(a) Round-trip performance for
a transmit power of −8 dBm.

0.0 0.5 1.0 1.5 2.0 2.5
Round-trip latency [s]

0

20

40

60

80

100

PD
R

[%
]

(b) Round-trip performance for
a transmit power of −16 dBm.

0.0 0.2 0.4 0.6 0.8 1.0
One-way latency [s]

0

20

40

60

80

100

PD
R

[%
]

(c) One-way performance for a
transmit power of −8 dBm.

0.0 0.2 0.4 0.6 0.8 1.0
One-way latency [s]

0

20

40

60

80

100

PD
R

[%
]

(d) One-way performance for a
transmit power of −16 dBm.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Du
ty

 C
yc

le
 [%

]

IEEE 802.15.4
BLE 125k
BLE 500k
BLE 1M
BLE 2M

(e) Duty cycle for a transmit
power of −8 dBm.

0

5

10

15

20

Du
ty

 C
yc

le
 [%

]

IEEE 802.15.4
BLE 125k
BLE 500k
BLE 1M
BLE 2M

(f) Duty cycle for a transmit
power of −16 dBm.

Figure E.6: Evaluation of the performance of Orchestra for all PHY
layers. We show the performance for two transmit powers (−8 dBm
and −16 dBm) and the respective radio duty cycles during operation.
We show the legend for all plots in Figure E.6e and E.6f. The BLE
modes usually achieve better round-trip latency performance with a
slight instability of the highest bitrate (2 Mbps) at a transmit power
of −16 dBm.

reliability.

In Figure E.6e and E.6f we compare the duty cycle of TBLE and TSCH
over IEEE 802.15.4. We can see that the duty cycle increases with the bitrate.
This can be expected, as a higher bitrate allows for a shorter slot duration to
transmit the same amount of data. In Orchestra, a receiver listens in every slot.
If the receiver does not encounter a packet, it keeps its radio on for the RxWait
guard time. Therefore, if we have twice the number of slots (e.g., 1 Mbps
BLE vs. IEEE 802.15.4), we have a doubling in radio-on-time for the majority
of slots, those in which no communication takes place. When we multiply

138 CHAPTER E. TBLE

the duty cycle with the respective slot length, the resulting values are almost
the same. When comparing the radio duty cycle between a network with a
transmit power of −8 dBm (Figure E.6e) and a transmit power of −16 dBm
(Figure E.6f), we see a minor increase for all modes of 0.03 to 0.5 percantage
points. This confirms that the predominant factor for the duty cycle are slots
without communication.

6 Related Work

In recent years, several works looked into extending the use of Time-Slotted
Channel Hopping (TSCH) into the field of other radio PHYs. Brachmann et
al. [184] study the possibility of using TSCH with subGHz PHYs. The authors
show its feasibility when adapting the TSCH timeslot timings. Moreover, they
show the possibility of combining multiple PHYs in the same TSCH schedule.
Rady et al. [186] build with g6TiSCH another work combining multiple PHYs
in a single TSCH network. They perform modifications along the 6TiSCH stack
to allow an intelligent choice which PHY to use in a TSCH slot. Carhacioglu
et al. [190] study the co-existence of TSCH and BLE and propose a system
with a common TSCH and BLE orchestrator to overcome cross-technology
interference. Hajizadeh et al. [191] build a simulation framework analyzing the
coexistence and amount of expectable collisions for coexisting BLE and TSCH
networks.

Baddeley et al. [193] take an approach of combining BLE and TSCH. They
propose 6TiSCH++ which uses the standard TSCH slots over IEEE 802.15.4
for data communication, but replaces the beaconing slots with concurrent
transmissions over BLE. In 6TiSCH++, multiple subsequent concurrent BLE
transmissions fit into one TSCH slot and allow for a faster transmission of
control information for the TSCH network. Concurrent Transmissions (CT) are
a well explored communication paradigm in IEEE 802.15.4 and their feasibility
for multi-hop communication on top of BLE were shown by BlueFlood [60,292].

On the side of pure BLE networking, Patti et al. [194] devise a connection-
oriented protocol for real-time mesh communication on top of BLE that uses
subnetworks, each with a central node and several peripheral nodes. The
networks are linked through peripheral nodes shared between two subnetworks.
Leonardi et al. [195] extend and implement that solution. In contrast, we build
a single mesh network allowing communication between any two nodes. With
Bluetooth Mesh [25,26], the Bluetooth SIG standardized a mesh networking
protocol on top of BLE using managed flooding. Aijaz et al. [41] experimentally
study its performance using the same hardware we use for TBLE. Leonardi
et al. [196] propose RESEMBLE, a protocol for Bluetooth Mesh enabling
TDMA-based communication with time slots and clock synchronization over
Bluetooth Mesh to allow for real-time communication in Bluetooth Mesh
networks. Contrary to that solution, we create a routing-enabled solution
utilizing a well established time-slotted and time-synchronized MAC layer
protocol. Petersen et al. [197] extend BLE to enable efficient multi-hop IPv6
over BLE and Lee et al. [198] bring the RPL routing protocol to BLE.

Our approach to mesh networking on top of BLE is to some extent in line
with these networking approaches, but differs in certain aspects. On the one

7. CONCLUSION 139

hand, we bring TSCH to another PHY and study a mesh networking approach
on BLE. On the other hand, our approach differs from the approaches above in
that we combine an established MAC layer (TSCH) for multi-hop routing with
a widespread radio communication technology (BLE), enabling routed mesh
communication on top of BLE.

7 Conclusion

Bluetooth Low Energy is a widely used communication protocol in the IoT. For
advanced communication systems covering larger areas, mesh communication
is necessary. While BLE offers Bluetooth Mesh, it lacks a routed mesh commu-
nication protocol. With this work, we introduce TBLE, a combination of BLE
and TSCH, and a replacement for IEEE 802.15.4. We show that TSCH and the
6TiSCH network stack are a viable candidate for routed mesh communication
over BLE. Moreover, with the larger amount of available frequency slots in
comparison with IEEE 802.15.4, and the possibility for shorter time slots due
to higher bit rates, BLE and TBLE might even be favorable over IEEE 802.15.4
and TSCH in latency-critical applications. Moreover, BLE supports longer
packets, which could increase the effective bit rate even further and lead to an
even more efficient use of the wireless spectrum.

140 CHAPTER E. TBLE

Bibliography

[1] P. Valdesolo, “Scientists Study Nomophobia—Fear of Being with-
out a Mobile Phone,” Scientific American, Oct. 2015. [Online].
Available: https://www.scientificamerican.com/article/scientists-study-
nomophobia-mdash-fear-of-being-without-a-mobile-phone/

[2] UpKeep Technologies, Inc., “What is the difference between
Industry 3.0 and Industry 4.0?” [Online]. Available: https:
//upkeep.com/learning/industry-3-0-vs-industry-4-0/

[3] A. El-Askalany, “The difference between #Industry 3.0 and #Industry
4.0,” Feb. 2019. [Online]. Available: https://www.linkedin.com/pulse/
difference-between-industry-30-40-ahmed

[4] M. Crnjac, I. Veza, and N. Banduka, “From concept to the
introduction of industry 4.0,” International Journal of Industrial
Engineering and Management, 2017. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:59481432

[5] R. Galin and R. Meshcheryakov, “Automation and robotics in the context
of Industry 4.0: the shift to collaborative robots,” IOP Conference Series:
Materials Science and Engineering, vol. 537, no. 3, p. 032073, May 2019.

[6] “IEEE Standard for Local and metropolitan area networks–Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC sublayer,” Tech. Rep., 2012. [Online]. Available:
http://ieeexplore.ieee.org/document/6185525/

[7] Bluetooth SIG, “Bluetooth Core Specification v5.2,” 2019.

[8] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, ser. SenSys ’15. ACM, Nov. 2015.

[9] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in ACM/IEEE IPSN,
2011.

[10] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for Wire-
lessHART Networks,” in 2010 31st IEEE Real-Time Systems Symposium.
IEEE, Nov. 2010.

141

https://www.scientificamerican.com/article/scientists-study-nomophobia-mdash-fear-of-being-without-a-mobile-phone/
https://www.scientificamerican.com/article/scientists-study-nomophobia-mdash-fear-of-being-without-a-mobile-phone/
https://upkeep.com/learning/industry-3-0-vs-industry-4-0/
https://upkeep.com/learning/industry-3-0-vs-industry-4-0/
https://www.linkedin.com/pulse/difference-between-industry-30-40-ahmed
https://www.linkedin.com/pulse/difference-between-industry-30-40-ahmed
https://api.semanticscholar.org/CorpusID:59481432
https://api.semanticscholar.org/CorpusID:59481432
http://ieeexplore.ieee.org/document/6185525/

142 BIBLIOGRAPHY

[11] M. Palattella, N. Accettura, M. Dohler, L. Grieco, and G. Boggia, “Traffic-
Aware Time-Critical Scheduling in Heavily Duty-Cycled IEEE 802.15.4e
for an Industrial IoT,” in Proceedings of IEEE Sensors 2012, 2012.

[12] HART Communication Foundation, WirelessHART Specification 75:
TDMA Data-Link Layer. HCF SPEC-75. HART Communication Foun-
dation, 2008.

[13] 10.3182/20090520-3-KR-3006.00019, “Thread Network Fundamentals
White Paper,” Thread Group, Tech. Rep., Sep. 2022.

[14] “Matter Specification Version 1.0,” Connectivity Standards
Alliance, Inc., Tech. Rep., Sep. 2022. [Online]. Avail-
able: https://csa-iot.org/wp-content/uploads/2022/11/22-27349-
001 Matter-1.0-Core-Specification.pdf

[15] M. Ojo and S. Giordano, “An efficient centralized scheduling algorithm in
IEEE 802.15.4e TSCH networks,” in 2016 IEEE Conference on Standards
for Communications and Networking (CSCN). IEEE, Oct. 2016.

[16] D. Gunatilaka and C. Lu, “Conservative Channel Reuse in Real-Time
Industrial Wireless Sensor-Actuator Networks,” in 2018 IEEE 38th Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE,
Jul. 2018.

[17] Apple Inc., “iPhone 15 Pro,” 2024, archived at https://archive.is/I56AO.
[Online]. Available: https://www.apple.com/iphone-15-pro/specs/

[18] M. Mallick, Mobile and Wireless Design Essentials. Wiley Publishing,
Inc., Indianapolis, Indiana, 2003, ch. Wireless Networks, pp. 46–52.

[19] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, 2016.

[20] T. M. W. 1.0, “LoRaWAN™ What is it? - A technical overview of
LoRa® and LoRaWAN™,” LoRa Alliance, Tech. Rep., 2015. [Online].
Available: https://lora-alliance.org/wp-content/uploads/2020/11/what-
is-lorawan.pdf

[21] Sigfox, “What is Sigfox 0G Technology,” accessed: 2023-12-09. [Online].
Available: https://www.sigfox.com/what-is-sigfox/

[22] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study
of LPWAN technologies for large-scale IoT deployment,” ICT Express,
vol. 5, no. 1, pp. 1–7, Mar. 2019.

[23] accent systems, “Differences between NB-IOT and LTE-M,” accessed:
2023-12-09. [Online]. Available: https://accent-systems.com/differences-
nb-iot-lte-m/

[24] A. S. Tanenbaum, Computer Networks, 5th ed., D. Wetherall, Ed. Boston:
Prentice Hall, 2011, includes bibliographical references and index. - De-
scription based on print version of record.

https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://archive.is/I56AO
https://www.apple.com/iphone-15-pro/specs/
https://lora-alliance.org/wp-content/uploads/2020/11/what-is-lorawan.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/what-is-lorawan.pdf
https://www.sigfox.com/what-is-sigfox/
https://accent-systems.com/differences-nb-iot-lte-m/
https://accent-systems.com/differences-nb-iot-lte-m/

BIBLIOGRAPHY 143

[25] Bluetooth SIG, “Mesh Profile 1.0,” 2017. [Online]. Available:
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0/

[26] ——, “Mesh Model 1.0,” 2017. [Online]. Available: https://www.
bluetooth.com/specifications/specs/mesh-model-1-0/

[27] “IEEE Standard for Telecommunications and Information Exchange
Between Systems - LAN/MAN Specific Requirements - Part 15: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low Rate Wireless Personal Area Networks (WPAN),” IEEE Std
802.15.4-2003, 2003.

[28] Connectivity Standards Alliance, “zigbee - The Full-Stack Solution for
All Smart Devices,” 2022, accessed: 2023-12-09. [Online]. Available:
https://csa-iot.org/all-solutions/zigbee/

[29] everything RF, “What is OQPSK Modulation?” Nov. 2022. [Online].
Available: https://www.everythingrf.com/community/what-is-oqpsk-
modulation

[30] D. Torrieri, Principles of Spread-Spectrum Communication Systems.
Springer International Publishing, 2015.

[31] M. I. Benakila, L. George, and S. Femmam, “A Beacon-Aware Device For
The Interconnection of Zig Bee Networks,” IFAC Proceedings Volumes,
vol. 42, no. 3, pp. 123–130, 2009.

[32] D. De Guglielmo, S. Brienza, and G. Anastasi, “IEEE 802.15.4e: A
survey,” Computer Communications, vol. 88, pp. 1–24, Aug. 2016.

[33] A. G. Ramonet and T. Noguchi, “IEEE 802.15.4 Now and Then: Evolu-
tion of the LR-WPAN Standard,” in 2020 22nd International Conference
on Advanced Communication Technology (ICACT). IEEE, Feb. 2020.

[34] N. Choudhury, R. Matam, M. Mukherjee, and J. Lloret, “A Performance-
to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes,”
IEEE Access, vol. 8, pp. 41 936–41 950, 2020.

[35] everything RF, “What is GFSK Modulation?” Dec. 2022. [Online].
Available: https://www.everythingrf.com/community/what-is-gfsk-
modulation

[36] I. Microchip Technology, “Bluetooth® Low Energy
(BLE) Link Layer Packet Types,” Nov. 2023. [Online].
Available: https://microchipdeveloper.com/xwiki/bin/view/
applications/ble/introduction/bluetooth-architecture/bluetooth-
controller-layer/bluetooth-link-layer/Packet-Types/

[37] M. Afaneh, “What’s the Maximum Data Size you can send in
a Bluetooth Advertising Packet?” Apr. 2022. [Online]. Available:
https://novelbits.io/maximum-data-bluetooth-advertising-packet-ble/

[38] Google and Apple, “Exposure Notification - Bluetooth Specification v1.2,”
Apr. 2020.

https://www.bluetooth.com/specifications/specs/mesh-profile-1-0/
https://www.bluetooth.com/specifications/specs/mesh-model-1-0/
https://www.bluetooth.com/specifications/specs/mesh-model-1-0/
https://csa-iot.org/all-solutions/zigbee/
https://www.everythingrf.com/community/what-is-oqpsk-modulation
https://www.everythingrf.com/community/what-is-oqpsk-modulation
https://www.everythingrf.com/community/what-is-gfsk-modulation
https://www.everythingrf.com/community/what-is-gfsk-modulation
https://microchipdeveloper.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/Packet-Types/
https://microchipdeveloper.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/Packet-Types/
https://microchipdeveloper.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/Packet-Types/
https://novelbits.io/maximum-data-bluetooth-advertising-packet-ble/

144 BIBLIOGRAPHY

[39] M. Baert, J. Rossey, A. Shahid, and J. Hoebeke, “The Bluetooth Mesh
Standard: An Overview and Experimental Evaluation,” Sensors, vol. 18,
no. 8, p. 2409, Jul. 2018.

[40] M. Woolley, “Bluetooth Mesh Networking - An Introduction for
Developers,” bluetooth.com, Tech. Rep., 2020. [Online]. Avail-
able: https://www.bluetooth.com/wp-content/uploads/2019/03/Mesh-
Technology-Overview.pdf

[41] A. Aijaz, A. Stanoev, D. London, and V. Marot, “Demystifying the Perfor-
mance of Bluetooth Mesh: Experimental Evaluation and Optimization,”
in 2021 Wireless Days (WD). IEEE, Jun. 2021.

[42] Silicon Laboratories, “AN1424: Bluetooth Mesh
1.1 Network Performance,” 2023. [Online]. Avail-
able: https://www.silabs.com/documents/public/application-notes/
an1424-bluetooth-mesh-11-network-performance.pdf

[43] ISA, ISA-100.11a-2011 - Wireless Systems for Industrial Automation:
Process Control and Related Applications. ISA, 2011.

[44] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The Contiki-NG open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, Jun. 2022.

[45] R. Teles Hermeto, A. Gallais, and F. Theoleyre, “Scheduling for
IEEE802.15.4-TSCH and slow channel hopping MAC in low power in-
dustrial wireless networks: A survey,” Computer Communications, vol.
114, pp. 84–105, Dec. 2017.

[46] A. Urke, Ø. Kure, and K. Øvsthus, “A Survey of 802.15.4 TSCH Sched-
ulers for a Standardized Industrial Internet of Things,” Sensors, vol. 22,
no. 1, p. 15, Dec. 2021.

[47] A. Tabouche, B. Djamaa, and M. R. Senouci, “Traffic-Aware Reliable
Scheduling in TSCH Networks for Industry 4.0: A Systematic Mapping
Review,” IEEE Communications Surveys & Tutorials, vol. 25, no. 4, pp.
2834–2861, 2023.

[48] D. S. J. De Couto, “High-Throughput Routing for Multi-Hop Wireless
Networks,” Ph.D. dissertation, Massachusetts Institute of Technology,
2004. [Online]. Available: https://pdos.lcs.mit.edu/papers/grid:decouto-
phd/thesis.pdf

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Section 24.3:
Dijkstra’s algorithm,” in Introduction to Algorithms, 2nd ed. MIT Press
and McGraw-Hill, 2001.

[50] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

https://www.bluetooth.com/wp-content/uploads/2019/03/Mesh-Technology-Overview.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/Mesh-Technology-Overview.pdf
https://www.silabs.com/documents/public/application-notes/an1424-bluetooth-mesh-11-network-performance.pdf
https://www.silabs.com/documents/public/application-notes/an1424-bluetooth-mesh-11-network-performance.pdf
https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf
https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf

BIBLIOGRAPHY 145

[51] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu, “Wireless
Routing and Control: A Cyber-Physical Case Study,” in 2016 ACM/IEEE
7th International Conference on Cyber-Physical Systems (ICCPS). IEEE,
Apr. 2016.

[52] C. Wu, D. Gunatilaka, M. Sha, and C. Lu, “Real-Time Wireless Routing
for Industrial Internet of Things,” in 2018 IEEE/ACM Third Inter-
national Conference on Internet-of-Things Design and Implementation
(IoTDI). IEEE, Apr. 2018.

[53] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert,
P. Levis, R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks,” RFC 6550, Mar. 2012.
[Online]. Available: https://rfc-editor.org/rfc/rfc6550.txt

[54] P. Thubert, “An Architecture for IPv6 over the Time-Slotted Channel
Hopping Mode of IEEE 802.15.4 (6TiSCH),” RFC 9030, May 2021.
[Online]. Available: https://www.rfc-editor.org/info/rfc9030

[55] X. Vilajosana, T. Watteyne, T. Chang, M. Vucinic, S. Duquennoy, and
P. Thubert, “IETF 6TiSCH: A Tutorial,” IEEE Communications Surveys
&Tutorials, vol. 22, no. 1, pp. 595–615, 2020.

[56] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: a standards-based low-power
wireless development environment,” Transactions on Emerging Telecom-
munications Technologies, vol. 23, no. 5, pp. 480–493, Aug. 2012.

[57] K. Leentvaar and J. Flint, “The Capture Effect in FM Receivers,” IEEE
Transactions on Communications, vol. 24, 1976.

[58] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis,
“Design and Evaluation of a Versatile and Efficient Receiver-Initiated Link
Layer for Low-Power Wireless,” in Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys10. ACM, Nov.
2010.

[59] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: versatile and
efficient all-to-all data sharing and in-network processing at scale,” in
Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems, ser. SenSys ’13. ACM, Nov. 2013.

[60] B. A. Nahas, A. Escobar-Molero, J. Klaue, S. Duquennoy, and O. Land-
siedel, “BlueFlood: Concurrent Transmissions for Multi-hop Bluetooth
5—Modeling and Evaluation,” ACM Transactions on Internet of Things,
vol. 2, no. 4, pp. 1–30, Jul. 2021.

[61] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza, “Data Prediction +
Synchronous Transmissions = Ultra-low Power Wireless Sensor Networks,”
in Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems, ser. SenSys ’16. ACM, Nov. 2016.

https://rfc-editor.org/rfc/rfc6550.txt
https://www.rfc-editor.org/info/rfc9030

146 BIBLIOGRAPHY

[62] M. Wilhelm, V. Lenders, and J. B. Schmitt, “On the Reception of Con-
current Transmissions in Wireless Sensor Networks,” IEEE Transactions
on Wireless Communications, vol. 13, no. 12, pp. 6756–6767, Dec. 2014.

[63] C.-H. Liao, Y. Katsumata, M. Suzuki, and H. Morikawa, “Revisiting
the So-Called Constructive Interference in Concurrent Transmission,” in
2016 IEEE 41st Conference on Local Computer Networks (LCN). IEEE,
Nov. 2016.

[64] M. Baddeley, C. A. Boano, A. Escobar-Molero, Y. Liu, X. Ma, V. Marot,
U. Raza, K. Römer, M. Schuss, and A. Stanoev, “Understanding Con-
current Transmissions: The Impact of Carrier Frequency Offset and
RF Interference on Physical Layer Performance,” ACM Transactions on
Sensor Networks, vol. 20, no. 1, pp. 1–39, Oct. 2023.

[65] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power wireless
bus,” in Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, ser. SenSys ’12. ACM, Nov. 2012.

[66] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adap-
tive Real-Time Communication for Wireless Cyber-Physical Systems,”
ACM Transactions on Cyber-Physical Systems, vol. 1, no. 2, pp. 1–29,
Feb. 2017.

[67] D. Yuan, M. Riecker, and M. Hollick, “Making ‘Glossy’ Networks Sparkle:
Exploiting Concurrent Transmissions for Energy Efficient, Reliable, Ultra-
Low Latency Communication in Wireless Control Networks,” in Wireless
Sensor Networks, 2014, vol. 8354.

[68] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali, “Forwarder
Selection in Multi-transmitter Networks,” in 2013 IEEE International
Conference on Distributed Computing in Sensor Systems. IEEE, May
2013.

[69] M. Brachmann, O. Landsiedel, and S. Santini, “Concurrent Transmissions
for Communication Protocols in the Internet of Things,” in 2016 IEEE
41st Conference on Local Computer Networks (LCN). IEEE, Nov. 2016.

[70] S. Frattasi and F. D. Rosa, Eds., Mobile positioning and tracking, 2nd ed.
Hoboken: IEEE Press, Wiley, 2017, includes bibliographical references
and index.

[71] M. van Steen and A. S. Tanenbaum, Distributed Systems, 3rd ed.
distributed-systems.net, 2017.

[72] P. Horowitz and W. Hill, The art of electronics, 2nd ed. Cambridge
[u.a.]: Cambridge Univ. Press, 2008.

[73] E. Kaplan and C. Hegarty, Understanding GPS/GNSS: Principles and
Applications, 3rd ed., 2017.

[74] D. L. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis,” RFC 1305, Mar. 1992. [Online]. Available:
https://www.rfc-editor.org/info/rfc1305

https://www.rfc-editor.org/info/rfc1305

BIBLIOGRAPHY 147

[75] ——, Computer Network Time Synchronization: The Network Time
Protocol. CRC Press, 2006, p. 286.

[76] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 147–163, Dec. 2002.

[77] nsnam, “ns-3 Network Simulator,” 2023. [Online]. Available: https:
//www.nsnam.org/

[78] Z. Bojthe, L. Meszaros, G. Szászkő, R. Hornig, A. Varga, and A. Török,
“INET framework,” 2023. [Online]. Available: https://inet.omnetpp.org/

[79] OpenSim Ltd., “OMNeT++ Discrete Event Simulator,” 2023. [Online].
Available: https://omnetpp.org/

[80] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings. 2006
31st IEEE Conference on Local Computer Networks. IEEE, Nov. 2006.

[81] antmicro, “RENODE.” [Online]. Available: https://renode.io/

[82] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka,
K. Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, “Simulating
6TiSCH networks,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 30, no. 3, Aug. 2018.

[83] A. Elsts, “TSCH-Sim: Scaling Up Simulations of TSCH and 6TiSCH
Networks,” Sensors, vol. 20, no. 19, p. 5663, Oct. 2020.

[84] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“FlockLab: a testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in ACM/IEEE IPSN, ser. IPSN ’13,
Philadelphia, Pennsylvania, USA, 2013, p. 153–166. [Online]. Available:
https://doi.org/10.1145/2461381.2461402

[85] R. Trüb, R. D. Forno, L. Daschinger, A. Biri, J. Beutel, and L. Thiele,
“Non-Intrusive Distributed Tracing of Wireless IoT Devices with the
FlockLab 2 Testbed,” ACM TIOT, vol. 3, no. 1, pp. 1–31, feb 2022.

[86] R. Trüb, R. Da Forno, L. Sigrist, L. Mühlebach, A. Biri, J. Beutel, and
L. Thiele, “FlockLab 2: Multi-Modal Testing and Validation for Wireless
IoT,” in CPS-IoTBench. ETH Zurich, 2020.

[87] M. Schuß, C. A. Boano, M. Weber, and K. Römer, “A Competition to
Push the Dependability of Low-Power Wireless Protocols to the Edge,” in
Proceedings of the 14th International Conference on Embedded Wireless
Systems and Networks (EWSN). Uppsala, Sweden: Junction Publishing,
Feb. 2017, pp. 54–65.

[88] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, “Indriya: A
low-cost, 3D wireless sensor network testbed,” in Testbeds and Research
Infrastructure. Development of Networks and Communities: 7th Inter-
national ICST Conference, TridentCom 2011, Shanghai, China, April
17-19, 2011, Revised Selected Papers 7. Springer, 2012, pp. 302–316.

https://www.nsnam.org/
https://www.nsnam.org/
https://inet.omnetpp.org/
https://omnetpp.org/
https://renode.io/
https://doi.org/10.1145/2461381.2461402

148 BIBLIOGRAPHY

[89] P. Appavoo, E. K. William, M. C. Chan, and M. Mohammad, “Indriya 2:
A heterogeneous wireless sensor network (wsn) testbed,” in Testbeds and
Research Infrastructures for the Development of Networks and Commu-
nities: 13th EAI International Conference, TridentCom 2018, Shanghai,
China, December 1-3, 2018, Proceedings 13. Springer, 2019, pp. 3–19.

[90] J. Munoz, F. Rincon, T. Chang, X. Vilajosana, B. Vermeulen, T. Wal-
carius, W. van de Meerssche, and T. Watteyne, “OpenTestBed: Poor
Man's IoT Testbed,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
apr 2019.

[91] D. Gunatilaka, “The WUSTL Wireless Sensor Network Testbed.”
[Online]. Available: https://cps.cse.wustl.edu/index.php?title=The
WUSTL Wireless Sensor Network Testbed

[92] P. Sommer and F. Sutton, “VIADUCT: Bridging the Gap between
Testbeds and Real-World Cyber-Physical Systems,” in Proceedings of
the 2021 International Conference on Embedded Wireless Systems and
Networks (EWSN), 2021.

[93] R. Lim, B. Maag, B. Dissler, J. Beutel, and L. Thiele, “A testbed for
fine-grained tracing of time sensitive behavior in wireless sensor networks,”
in IEEE LCN Workshops, 2015.

[94] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan, “Aveksha:
a hardware-software approach for non-intrusive tracing and profiling of
wireless embedded systems,” in ACM SenSys, Seattle, Washington, 2011,
p. 288–301.

[95] P. Sommer and B. Kusy, “Minerva: distributed tracing and debugging in
wireless sensor networks,” in ACM SenSys, Roma, Italy, 2013, pp. 1 –14.

[96] Y. Li, J. Ma, and T. Zhang, “HATBED: Hardware Assisted Tracing
Testbed for Embedded Networked Sensor Systems,” in ACM SenSys,
Shenzhen, China, 2018, p. 327–328.

[97] IoT Chalmers, “IoT-Testbed,” 2021. [Online]. Available: https:
//github.com/iot-chalmers/iot-testbed

[98] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne,
“FIT IoT-LAB: A large scale open experimental IoT testbed,” in 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, dec
2015.

[99] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: a wireless
sensor network testbed,” in IPSN 2005. Fourth International Symposium
on Information Processing in Sensor Networks. IEEE, 2005.

[100] M. Campbell, A. Hoane, and F.-h. Hsu, “Deep Blue,” Artificial Intelli-
gence, vol. 134, no. 1–2, pp. 57–83, Jan. 2002.

https://cps.cse.wustl.edu/index.php?title=The_WUSTL_Wireless_Sensor_Network_Testbed
https://cps.cse.wustl.edu/index.php?title=The_WUSTL_Wireless_Sensor_Network_Testbed
https://github.com/iot-chalmers/iot-testbed
https://github.com/iot-chalmers/iot-testbed

BIBLIOGRAPHY 149

[101] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[102] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, Jun. 2016.

[103] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[104] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is All you Need,” in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[105] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” 2018.

[106] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[107] M. Schreiner, “GPT-4 architecture, datasets, costs and more leaked,”
the decoder, Jul. 2023. [Online]. Available: https://the-decoder.com/gpt-
4-architecture-datasets-costs-and-more-leaked/

[108] M. Singh, J. Cambronero, S. Gulwani, V. Le, C. Negreanu, and G. Ver-
bruggen, “CodeFusion: A Pre-trained Diffusion Model for Code Genera-
tion,” 2023.

[109] “Keras Applications.” [Online]. Available: https://keras.io/api/
applications/

[110] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017.

[111] Edge Impulse, “FOMO: Object detection for
constrained devices,” 2023. [Online]. Avail-
able: https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-
blocks/object-detection/fomo-object-detection-for-constrained-devices

[112] Arduino, “Nicla Vision,” 2024. [Online]. Available: https://docs.arduino.
cc/hardware/nicla-vision

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://keras.io/api/applications/
https://keras.io/api/applications/
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://docs.arduino.cc/hardware/nicla-vision
https://docs.arduino.cc/hardware/nicla-vision

150 BIBLIOGRAPHY

[113] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[114] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks,” in Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2016/file/
d8330f857a17c53d217014ee776bfd50-Paper.pdf

[115] S. Bhattacharya and N. D. Lane, “Sparsification and Separation of Deep
Learning Layers for Constrained Resource Inference on Wearables,” in
Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems, ser. SenSys ’16. ACM, Nov. 2016.

[116] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: speeding up neural network inference by
trading edge computation for network latency,” in Proceedings of the
18th Conference on Embedded Networked Sensor Systems, ser. SenSys
’20. ACM, Nov. 2020.

[117] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic Progressive Inference of Neural Networks over Device
and Cloud,” in Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’20. ACM, Sep.
2020.

[118] M. Ojo, S. Giordano, G. Portaluri, D. Adami, and M. Pagano, “An
energy efficient centralized scheduling scheme in TSCH networks,” in
2017 IEEE International Conference on Communications Workshops
(ICC Workshops). IEEE, May 2017.

[119] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized
scheduling algorithm for IEEE 802.15.4e TSCH based industrial low
power wireless networks,” in 2016 IEEE Wireless Communications and
Networking Conference. IEEE, Apr. 2016.

[120] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, “High-reliability
scheduling in deterministic wireless multi-hop networks,” in 2016 IEEE
27th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC). IEEE, Sep. 2016.

[121] F. Dobslaw, T. Zhang, and M. Gidlund, “End-to-End Reliability-Aware
Scheduling for Wireless Sensor Networks,” IEEE Transactions on Indus-
trial Informatics, vol. 12, no. 2, pp. 758–767, Apr. 2016.

[122] E. Khorov, A. Lyakhov, and R. Yusupov, “Scheduling of Dedicated and
Shared Links for Fast and Reliable Data Delivery in IEEE 802.15.4
TSCH Networks,” in 2019 International Conference on Engineering and
Telecommunication (EnT). IEEE, Nov. 2019.

https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf

BIBLIOGRAPHY 151

[123] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, “On Optimal Scheduling in Duty-Cycled Industrial IoT
Applications Using IEEE802.15.4e TSCH,” IEEE Sensors Journal, vol. 13,
no. 10, pp. 3655–3666, Oct. 2013.

[124] A. Darbandi and M. K. Kim, “Path Collision-aware Real-time Link
Scheduling for TSCH Wireless Networks,” KSII Transactions on Internet
& Information Systems, vol. 13, no. 9, 2019.

[125] J. P. G. Rugamba, D. L. Mai, and M. K. Kim, Implementation of a
Centralized Scheduling Algorithm for IEEE 802.15.4e TSCH. Springer
International Publishing, 2019, pp. 118–129.

[126] K.-H. Choi and S.-H. Chung, A New Centralized Link Scheduling for
6TiSCH Wireless Industrial Networks. Springer International Publishing,
2016, pp. 360–371.

[127] K. Choi and S.-H. Chung, “Enhanced time-slotted channel hopping
scheduling with quick setup time for industrial Internet of Things net-
works,” International Journal of Distributed Sensor Networks, vol. 13,
no. 6, p. 155014771771362, Jun. 2017.

[128] E. Mozaffari Ahrar and M. Nassiri, “T2AS: Topology/Traffic Aware
Scheduling to Optimize the End-to-end Delay in IEEE802.154e-TSCH
Networks,” TABRIZ JOURNAL OF ELECTRICAL ENGINEERING,
vol. 51, no. 1, pp. 129–137, 2021. [Online]. Available: https:
//tjee.tabrizu.ac.ir/article 13330.html

[129] G. Portaluri and S. Giordano, “Gambling on fairness: a fair scheduler
for IIoT communications based on the shell game,” in 2020 IEEE 25th
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD). IEEE, Sep. 2020.

[130] M. G. Gaitán, L. Almeida, P. M. D’orey, P. M. Santos, and T. Watteyne,
“Minimal-Overlap Centrality for Multi-Gateway Designation in Real-Time
TSCH Networks,” ACM Transactions on Embedded Computing Systems,
vol. 23, no. 1, pp. 1–17, Jan. 2024.

[131] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A Flexible
Retransmission Policy for Industrial Wireless Sensor Actuator Networks,”
in 2018 IEEE International Conference on Industrial Internet (ICII).
IEEE, Oct. 2018.

[132] A. Tinka, T. Watteyne, and K. Pister, A Decentralized Scheduling Al-
gorithm for Time Synchronized Channel Hopping. Springer Berlin
Heidelberg, 2010, pp. 201–216.

[133] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the
TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration,” RFC 8180,
May 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8180.txt

[134] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and D. R. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” RFC 9033, May 2021.
[Online]. Available: https://rfc-editor.org/rfc/rfc9033.txt

https://tjee.tabrizu.ac.ir/article_13330.html
https://tjee.tabrizu.ac.ir/article_13330.html
https://rfc-editor.org/rfc/rfc8180.txt
https://rfc-editor.org/rfc/rfc9033.txt

152 BIBLIOGRAPHY

[135] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low
Latency Scheduling Function for 6TiSCH Networks,” in 2016 Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, May 2016.

[136] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“LDSF: Low-Latency Distributed Scheduling Function for Industrial In-
ternet of Things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp.
8688–8699, Sep. 2020.

[137] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized Traffic Aware Scheduling for multi-hop Low power Lossy
Networks in the Internet of Things,” in 2013 IEEE 14th International
Symposium on “A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM). IEEE, Jun. 2013.

[138] M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne, “Dis-
tributed PID-Based Scheduling for 6TiSCH Networks,” IEEE Communi-
cations Letters, vol. 20, no. 5, pp. 1006–1009, May 2016.

[139] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura,
D. Dujovne, L. A. Grieco, and T. Engel, “On-the-Fly Bandwidth Reser-
vation for 6TiSCH Wireless Industrial Networks,” IEEE Sensors Journal,
vol. 16, no. 2, pp. 550–560, Jan. 2016.

[140] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-Demand TSCH
Scheduling with Traffic-Awareness,” in IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications. IEEE, Jul. 2020.

[141] J. Jung, D. Kim, T. Lee, J. Kang, N. Ahn, and Y. Yi, “Distributed
Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks
via Adaptive Parameterization,” in 2020 19th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). IEEE,
Apr. 2020.

[142] H. Nguyen-Duy, T. Ngo-Quynh, F. KOJIMA, T. Pham-Van, T. Nguyen-
Duc, and S. Luongoudon, “RL-TSCH: A Reinforcement Learning Algo-
rithm for Radio Scheduling in TSCH 802.15.4e,” in 2019 International
Conference on Information and Communication Technology Convergence
(ICTC). IEEE, Oct. 2019.

[143] Y. H. Pratama and S. Chung, “RL-SF: Reinforcement Learning based
Scheduling Function for Distributed TSCH Networks,” in 2022 IEEE
12th International Conference on Electronics Information and Emergency
Communication (ICEIEC). IEEE, Jul. 2022.

[144] O. Tavallaie, S. M. Zandavi, H. Haddadi, and A. Y. Zomaya, “GT-
TSCH: Game-Theoretic Distributed TSCH Scheduler for Low-Power IoT
Networks,” 2023.

[145] A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, and I. Crad-
dock, “Scheduling High-Rate Unpredictable Traffic in IEEE 802.15.4
TSCH Networks,” in 2017 13th International Conference on Distributed
Computing in Sensor Systems (DCOSS). IEEE, Jun. 2017.

BIBLIOGRAPHY 153

[146] J. Shi, M. Sha, and Z. Yang, “Distributed Graph Routing and Scheduling
for Industrial Wireless Sensor-Actuator Networks,” IEEE/ACM Trans-
actions on Networking, vol. 27, no. 4, pp. 1669–1682, Aug. 2019.

[147] S. Oh, D. Hwang, K.-H. Kim, and K. Kim, “Escalator: An Autonomous
Scheduling Scheme for Convergecast in TSCH,” Sensors, vol. 18, no. 4,
p. 1209, Apr. 2018.

[148] S. Kim, H.-S. Kim, and C. Kim, “ALICE: autonomous link-based cell
scheduling for TSCH,” in Proceedings of the 18th International Conference
on Information Processing in Sensor Networks, ser. IPSN ’19. ACM,
Apr. 2019.

[149] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, “TESLA: Traffic-Aware
Elastic Slotframe Adjustment in TSCH Networks,” IEEE Access, vol. 7,
pp. 130 468–130 483, 2019.

[150] J. Jung, D. Kim, J. Hong, J. Kang, and Y. Yi, “Parameterized slot schedul-
ing for adaptive and autonomous TSCH networks,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE, Apr. 2018.

[151] S. Rekik, N. Baccour, M. Jmaiel, K. Drira, and L. A. Grieco, “Au-
tonomous and traffic-aware scheduling for TSCH networks,” Computer
Networks, vol. 135, pp. 201–212, Apr. 2018.

[152] X. Cheng and M. Sha, “ATRIA: Autonomous Traffic-Aware Scheduling
for Industrial Wireless Sensor-Actuator Networks,” in 2021 IEEE 29th
International Conference on Network Protocols (ICNP). IEEE, Nov.
2021.

[153] ——, “Autonomous Traffic-Aware Scheduling for Industrial Wireless
Sensor-Actuator Networks,” ACM Transactions on Sensor Networks,
vol. 19, no. 2, pp. 1–25, Feb. 2023.

[154] M. Osman and F. Nabki, “OSCAR: An Optimized Scheduling Cell Allo-
cation Algorithm for Convergecast in IEEE 802.15.4e TSCH Networks,”
Sensors, vol. 21, no. 7, p. 2493, Apr. 2021.

[155] S. Kim, H.-S. Kim, and C.-k. Kim, “A3: Adaptive Autonomous Allocation
of TSCH Slots,” in Proceedings of the 20th International Conference on
Information Processing in Sensor Networks (co-located with CPS-IoT
Week 2021), ser. IPSN ’21. ACM, May 2021.

[156] A. R. Urke, Ø. Kure, and K. Øvsthus, “Experimental Evaluation of
the Layered Flow-Based Autonomous TSCH Scheduler,” IEEE Access,
vol. 11, pp. 3970–3982, 2023.

[157] ——, “Autonomous Flow-Based TSCH Scheduling for Heterogeneous
Traffic Patterns: Challenges, Design, Simulation, and Testbed Evalua-
tion,” IEEE Open Journal of the Communications Society, vol. 4, pp.
2357–2372, 2023.

154 BIBLIOGRAPHY

[158] P. Thubert, M. R. Palattella, and T. Engel, “6TiSCH centralized schedul-
ing: When SDN meet IoT,” in 2015 IEEE Conference on Standards for
Communications and Networking (CSCN). IEEE, Oct. 2015.

[159] G. Exarchakos, I. Oztelcan, D. Sarakiotis, and A. Liotta, “plexi: Adap-
tive re-scheduling web-service of time synchronized low-power wireless
networks,” Journal of Network and Computer Applications, vol. 81, pp.
62–73, Mar. 2017.

[160] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution
for WIreless SEnsor networks,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, Apr. 2015.

[161] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and
D. Simeonidou, “Evolving SDN for Low-Power IoT Networks,” in 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft).
IEEE, Jun. 2018.

[162] P. Du and G. Roussos, “Adaptive time slotted channel hopping for
wireless sensor networks,” in 2012 4th Computer Science and Electronic
Engineering Conference (CEEC). IEEE, Sep. 2012.

[163] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Enhanced Time-
Slotted Channel Hopping in WSNs Using Non-intrusive Channel-Quality
Estimation,” in 2015 IEEE 12th International Conference on Mobile Ad
Hoc and Sensor Systems. IEEE, Oct. 2015.

[164] P. H. Gomes, T. Watteyne, and B. Krishnamachari, “MABO-TSCH: Mul-
tihop and blacklist-based optimized time synchronized channel hopping,”
Transactions on Emerging Telecommunications Technologies, vol. 29,
no. 7, Aug. 2017.

[165] A. Elsts, X. Fafoutis, R. Piechocki, and I. Craddock, “Adaptive channel
selection in IEEE 802.15.4 TSCH networks,” in 2017 Global Internet of
Things Summit (GIoTS). IEEE, Jun. 2017.

[166] P. Minet, I. Khoufi, and A. Laouiti, “Increasing reliability of a TSCH net-
work for the industry 4.0,” in 2017 IEEE 16th International Symposium
on Network Computing and Applications (NCA). IEEE, Oct. 2017.

[167] T. Lagos Jenschke, R.-A. Koutsiamanis, G. Z. Papadopoulos, and N. Mon-
tavont, “Multi-path Selection in RPL Based on Replication and Elimina-
tion,” in Ad-hoc, Mobile, and Wireless Networks, 2018, vol. 11104.

[168] E. Mozaffari Ahrar, M. Nassiri, and F. Theoleyre, “Multipath aware
scheduling for high reliability and fault tolerance in low power industrial
networks,” Journal of Network and Computer Applications, vol. 142, pp.
25–36, Sep. 2019.

[169] A. C. Estrin, T. Lagos Jenschke, G. Z. Papadopoulos, J. Ignacio Alvarez-
Hamelin, and N. Montavont, “Thorough Investigation of multipath Tech-
niques in RPL based Wireless Networks,” in 2020 IEEE Symposium on
Computers and Communications (ISCC). IEEE, Jul. 2020.

BIBLIOGRAPHY 155

[170] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, Kausa: KPI-aware
Scheduling Algorithm for Multi-flow in Multi-hop IoT Networks. Springer
International Publishing, 2016, pp. 47–61.

[171] S. Biswas and R. Morris, “ExOR: opportunistic multi-hop routing for
wireless networks,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 4, pp. 133–144, Aug. 2005.

[172] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” ACM SIGCOMM
Computer Communication Review, vol. 37, no. 4, pp. 169–180, Aug. 2007.

[173] R. R. Choudhury and N. H. Vaidya, “MAC-layer anycasting in ad hoc
networks,” ACM SIGCOMM Computer Communication Review, vol. 34,
no. 1, pp. 75–80, Jan. 2004.

[174] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
Power, Low delay: Oportunistic Routing meets Duty Cycling,” in 2012
ACM/IEEE 11th International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, Apr. 2012.

[175] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree Bloom: scalable
opportunistic routing with ORPL,” in Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’13.
ACM, Nov. 2013.

[176] J. So and H. Byun, “Load-Balanced Opportunistic Routing for Duty-
Cycled Wireless Sensor Networks,” IEEE Transactions on Mobile Com-
puting, vol. 16, no. 7, pp. 1940–1955, Jul. 2017.

[177] A. Hawbani, X. Wang, Y. Sharabi, A. Ghannami, H. Kuhlani, and S. Kar-
moshi, “LORA: Load-Balanced Opportunistic Routing for Asynchronous
Duty-Cycled WSN,” IEEE Transactions on Mobile Computing, vol. 18,
no. 7, pp. 1601–1615, Jul. 2019.

[178] W. Wu, X. Wang, A. Hawbani, P. Liu, L. Zhao, and A. Al-Dubai,
“FLORA: Fuzzy Based Load-Balanced Opportunistic Routing for Asyn-
chronous Duty-Cycled WSNs,” IEEE Transactions on Mobile Computing,
vol. 22, no. 1, pp. 253–268, Jan. 2023.

[179] M. U. Farooq, X. Wang, A. Hawbani, L. Zhao, A. Al-Dubai, and O. Bu-
saileh, “SDORP: SDN Based Opportunistic Routing for Asynchronous
Wireless Sensor Networks,” IEEE Transactions on Mobile Computing,
vol. 22, no. 8, pp. 4912–4929, Aug. 2023.

[180] T. Huynh, F. Theoleyre, and W.-J. Hwang, “On the interest of op-
portunistic anycast scheduling for wireless low power lossy networks,”
Computer Communications, vol. 104, pp. 55–66, May 2017.

[181] R. T. Hermeto, A. Gallais, and F. Theoleyre, “Is Link-Layer Anycast
Scheduling Relevant for IEEE 802.15.4-TSCH Networks?” in 2019 IEEE
44th LCN Symposium on Emerging Topics in Networking (LCN Sympo-
sium). IEEE, Oct. 2019.

156 BIBLIOGRAPHY

[182] I. Hosni and F. Théoleyre, Adaptive k-cast Scheduling for High-Reliability
and Low-Latency in IEEE802.15.4-TSCH. Springer International Pub-
lishing, 2018, pp. 3–14.

[183] Y. Jin, U. Raza, and M. Sooriyabandara, “BOOST: Bringing Opportunis-
tic ROuting and Effortless-Scheduling to TSCH MAC,” in 2018 IEEE
Global Communications Conference (GLOBECOM). IEEE, Dec. 2018.

[184] M. Brachmann, S. Duquennoy, N. Tsiftes, and T. Voigt, “IEEE 802.15.4
TSCH in Sub-GHz: Design Considerations and Multi-band Support,” in
2019 IEEE 44th Conference on Local Computer Networks (LCN). IEEE,
Oct. 2019.

[185] D. Van Leemput, J. Bauwens, R. Elsas, J. Hoebeke, W. Joseph, and
E. De Poorter, “Adaptive multi-PHY IEEE802.15.4 TSCH in sub-GHz
industrial wireless networks,” Ad Hoc Networks, vol. 111, p. 102330, Feb.
2021.

[186] M. Rady, Q. Lampin, D. Barthel, and T. Watteyne, “g6TiSCH: General-
ized 6TiSCH for Agile Multi-PHY Wireless Networking,” IEEE Access,
vol. 9, pp. 84 465–84 479, 2021.

[187] M. Haubro, C. Orfanidis, G. Oikonomou, and X. Fafoutis, “TSCH-over-
LoRA: Long Range and Reliable IPv6 Multi-hop Networks for the Internet
of Things,” Internet Technology Letters, vol. 3, no. 4, May 2020.

[188] D. M. King, B. G. Nickerson, and W. Song, “Evaluation of ultra-wideband
radio for industrial wireless control,” in 2017 IEEE 38th Sarnoff Sympo-
sium. IEEE, Sep. 2017.

[189] M. Charlier, B. Quoitin, and D. Hauweele, “Challenges in using time
slotted channel hopping with ultra wideband communications,” in Pro-
ceedings of the International Conference on Internet of Things Design
and Implementation, ser. IoTDI ’19. ACM, Apr. 2019.

[190] O. Carhacioglu, P. Zand, and M. Nabi, “Cooperative Coexistence of
BLE and Time Slotted Channel Hopping Networks,” in 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC). IEEE, Sep. 2018.

[191] H. Hajizadeh, M. Nabi, M. Vermeulen, and K. Goossens, “Coexistence
Analysis of Co-Located BLE and IEEE 802.15.4 TSCH Networks,” IEEE
Sensors Journal, vol. 21, no. 15, pp. 17 360–17 372, Aug. 2021.

[192] Nordic Semiconductor, “nRF52840.” [Online]. Available: https:
//www.nordicsemi.com/products/nrf52840

[193] M. Baddeley, A. Aijaz, U. Raza, A. Stanoev, Y. Jin, M. Schuß, C. A.
Boano, and G. Oikonomou, “6TiSCH++ with Bluetooth 5 and Concur-
rent Transmissions,” in Proceedings of the 2021 International Conference
on Embedded Wireless Systems and Networks (EWSN), 2021.

https://www.nordicsemi.com/products/nrf52840
https://www.nordicsemi.com/products/nrf52840

BIBLIOGRAPHY 157

[194] G. Patti, L. Leonardi, and L. Lo Bello, “A Bluetooth Low Energy real-
time protocol for Industrial Wireless mesh Networks,” in IECON 2016
- 42nd Annual Conference of the IEEE Industrial Electronics Society.
IEEE, Oct. 2016.

[195] L. Leonardi, G. Patti, and L. Lo Bello, “Multi-Hop Real-Time Communi-
cations Over Bluetooth Low Energy Industrial Wireless Mesh Networks,”
IEEE Access, vol. 6, pp. 26 505–26 519, 2018.

[196] L. Leonardi, L. Lo Bello, and G. Patti, “RESEMBLE: A Real-Time Stack
for Synchronized Mesh Mobile Bluetooth Low Energy Networks,” Applied
System Innovation, vol. 6, no. 1, p. 19, Jan. 2023.

[197] H. Petersen, T. C. Schmidt, and M. Wählisch, “Mind the gap: multi-hop
IPv6 over BLE in the IoT,” in Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies, ser.
CoNEXT ’21. ACM, Dec. 2021.

[198] T. Lee, M.-S. Lee, H.-S. Kim, and S. Bahk, “A Synergistic Architecture
for RPL over BLE,” in 2016 13th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON). IEEE, Jun.
2016.

[199] C. Bae, S. Yang, M. Baddeley, A. Elsts, and I. Haque, “BlueTiSCH:
A Multi-PHY Simulation of Low-Power 6TiSCH IoT Networks,” in
GLOBECOM 2022 - 2022 IEEE Global Communications Conference.
IEEE, Dec. 2022.

[200] BeagleBoard.org Foundation, “SeeedStudio BeagleBone® Green.”
[Online]. Available: https://www.beagleboard.org/boards/seeedstudio-
beaglebone-green

[201] S. Subedi and J.-Y. Pyun, “A Survey of Smartphone-Based Indoor
Positioning System Using RF-Based Wireless Technologies,” Sensors,
vol. 20, no. 24, p. 7230, Dec. 2020.

[202] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based
user location and tracking system,” in Proceedings of the Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), ser. INFCOM-00. IEEE, 2000.

[203] I. Guvenc, C. Abdallah, R. Jordan, and O. Dedeoglu, “Enhancements
to RSS based indoor tracking systems using Kalman filters,” in GSPx &
International Signal Processing Conference, 2003, pp. 91–102.

[204] D. Fox, J.Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian
filtering for location estimation,” IEEE Pervasive Computing, vol. 2,
no. 3, pp. 24–33, Jul. 2003.

[205] J. Hightower and G. Borriello, “Particle Filters for Location Estimation
in Ubiquitous Computing: A Case Study,” in UbiComp 2004: Ubiquitous
Computing, N. Davies, E. D. Mynatt, and I. Siio, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 88–106.

https://www.beagleboard.org/boards/seeedstudio-beaglebone-green
https://www.beagleboard.org/boards/seeedstudio-beaglebone-green

158 BIBLIOGRAPHY

[206] A. S. Paul and E. A. Wan, “Wi-Fi based indoor localization and track-
ing using sigma-point Kalman filtering methods,” in 2008 IEEE/ION
Position, Location and Navigation Symposium. IEEE, 2008.

[207] C.-L. Wu, L.-C. Fu, and F.-L. Lian, “WLAN location determination in e-
home via support vector classification,” in IEEE International Conference
on Networking, Sensing and Control, 2004. IEEE, 2004.

[208] J. Pan, W.-J. Zheng, Q. Yang, and H. Hu, “Transfer learning for WiFi-
based indoor localization,” in AAAI Conference on Artificial Intelligence,
2008. [Online]. Available: https://cdn.aaai.org/Workshops/2008/WS-08-
13/WS08-13-008.pdf

[209] K.-H. Chow, S. He, J. Tan, and S.-H. G. Chan, “Efficient Locality
Classification for Indoor Fingerprint-Based Systems,” IEEE Transactions
on Mobile Computing, vol. 18, no. 2, pp. 290–304, Feb. 2019.

[210] W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep Neural
Networks for wireless localization in indoor and outdoor environments,”
Neurocomputing, vol. 194, pp. 279–287, Jun. 2016.

[211] A. Thaljaoui, T. Val, N. Nasri, and D. Brulin, “BLE localization using
RSSI measurements and iRingLA,” in 2015 IEEE International Confer-
ence on Industrial Technology (ICIT). IEEE, Mar. 2015.

[212] A. I. Kyritsis, P. Kostopoulos, M. Deriaz, and D. Konstantas, “A BLE-
based probabilistic room-level localization method,” in 2016 International
Conference on Localization and GNSS (ICL-GNSS). IEEE, Jun. 2016.

[213] R. Faragher and R. Harle, “Location Fingerprinting With Bluetooth Low
Energy Beacons,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 11, pp. 2418–2428, Nov. 2015.

[214] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy, “Smartphone-Based
Indoor Localization with Bluetooth Low Energy Beacons,” Sensors,
vol. 16, no. 5, p. 596, Apr. 2016.

[215] A. Jimenez and F. Seco, “Finding objects using UWB or BLE localization
technology: A museum-like use case,” in 2017 International Conference
on Indoor Positioning and Indoor Navigation (IPIN). IEEE, Sep. 2017.

[216] A. Koutris, T. Siozos, Y. Kopsinis, A. Pikrakis, T. Merk, M. Mahlig,
S. Papaharalabos, and P. Karlsson, “Deep Learning-Based Indoor Local-
ization Using Multi-View BLE Signal,” Sensors, vol. 22, no. 7, p. 2759,
Apr. 2022.

[217] B. Perez, T. J. Pierson, G. Mazzaro, and D. Kotz, “Identification and
Classification of Electronic Devices Using Harmonic Radar,” in 2023 19th
International Conference on Distributed Computing in Smart Systems
and the Internet of Things (DCOSS-IoT). IEEE, Jun. 2023.

[218] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identi-
fication with radiometric signatures,” in Proceedings of the 14th ACM
international conference on Mobile computing and networking, ser. Mobi-
Com08. ACM, Sep. 2008.

https://cdn.aaai.org/Workshops/2008/WS-08-13/WS08-13-008.pdf
https://cdn.aaai.org/Workshops/2008/WS-08-13/WS08-13-008.pdf

BIBLIOGRAPHY 159

[219] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and K. Chowd-
hury, “ORACLE: Optimized Radio clAssification through Convolutional
neuraL nEtworks,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications. IEEE, Apr. 2019.

[220] L. Xie, L. Peng, J. Zhang, and A. Hu, “Radio frequency fingerprint
identification for Internet of Things: A survey,” Security and Safety,
vol. 3, p. 2023022, Sep. 2023.

[221] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. Costa Rendon,
N. Soltani, J. Dy, S. Ioannidis, K. Chowdhury, and T. Melodia, “Exposing
the Fingerprint: Dissecting the Impact of the Wireless Channel on
Radio Fingerprinting,” in IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications. IEEE, Jul. 2020.

[222] D. Zhang, J. Ma, Q. Chen, and L. M. Ni, “An RF-Based System for
Tracking Transceiver-Free Objects,” in Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom’07).
IEEE, 2007.

[223] C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe, R. Howard,
F. Zhang, and N. An, “SCPL: indoor device-free multi-subject counting
and localization using radio signal strength,” in Proceedings of the 12th
international conference on Information processing in sensor networks,
ser. IPSN 2013. ACM, Apr. 2013.

[224] Y. Chen, W. Dong, Y. Gao, X. Liu, and T. Gu, “Rapid: A Multimodal
and Device-free Approach Using Noise Estimation for Robust Person
Identification,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 1, no. 3, pp. 1–27, Sep. 2017.

[225] M. F. R. M. Billah, N. Saoda, J. Gao, and B. Campbell, “BLE Can See:
A Reinforcement Learning Approach for RF-based Indoor Occupancy
Detection,” in Proceedings of the 20th International Conference on Infor-
mation Processing in Sensor Networks (co-located with CPS-IoT Week
2021), ser. IPSN ’21. ACM, May 2021.

[226] H. Choi, M. Fujimoto, T. Matsui, S. Misaki, and K. Yasumoto, “Wi-CaL:
WiFi Sensing and Machine Learning Based Device-Free Crowd Counting
and Localization,” IEEE Access, vol. 10, pp. 24 395–24 410, 2022.

[227] W. Wang, F. Nikseresht, V. G. Rajan, J. Gao, and B. Campbell, “En-
abling Ubiquitous Occupancy Detection in Smart Buildings: A WiFi
FTM-Based Approach,” in 2023 19th International Conference on Dis-
tributed Computing in Smart Systems and the Internet of Things (DCOSS-
IoT). IEEE, Jun. 2023.

[228] S. Sigg, U. Blanke, and G. Troster, “The telepathic phone: Frictionless
activity recognition from WiFi-RSSI,” in 2014 IEEE International Con-
ference on Pervasive Computing and Communications (PerCom). IEEE,
Mar. 2014.

160 BIBLIOGRAPHY

[229] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-eyes:
device-free location-oriented activity identification using fine-grained
WiFi signatures,” in Proceedings of the 20th annual international con-
ference on Mobile computing and networking, ser. MobiCom’14. ACM,
Sep. 2014.

[230] Z. Chen, C. Cai, T. Zheng, J. Luo, J. Xiong, and X. Wang, “RF-Based
Human Activity Recognition Using Signal Adapted Convolutional Neural
Network,” IEEE Transactions on Mobile Computing, vol. 22, no. 1, pp.
487–499, Jan. 2023.

[231] M. Zhao, T. Li, M. A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, and
D. Katabi, “Through-Wall Human Pose Estimation Using Radio Sig-
nals,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, Jun. 2018.

[232] T. Li, L. Fan, M. Zhao, Y. Liu, and D. Katabi, “Making the Invis-
ible Visible: Action Recognition Through Walls and Occlusions,” in
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
IEEE, Oct. 2019.

[233] J. Geng, D. Huang, and F. De la Torre, “DensePose From WiFi,” 2023.

[234] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for
sensor-based activity recognition: A survey,” Pattern Recognition Letters,
vol. 119, pp. 3–11, Mar. 2019.

[235] L. Ma, B. Milner, and D. Smith, “Acoustic Environment Classification,”
ACM Trans. Speech Lang. Process., vol. 3, no. 2, p. 1–22, Jul. 2006.

[236] M. A. Qamhan, H. Altaheri, A. H. Meftah, G. Muhammad, and Y. A.
Alotaibi, “Digital Audio Forensics: Microphone and Environment Classi-
fication Using Deep Learning,” IEEE Access, vol. 9, pp. 62 719–62 733,
2021.

[237] T. Heittola, A. Mesaros, and T. Virtanen, “Audio context recognition
using audio event histograms,” in European Signal Processing Conference,
2010, pp. 1272–1276.

[238] W.-H. Choi, S.-I. Kim, M.-S. Keum, W. Han, H. Ko, and D. K. Han,
“Acoustic and visual signal based context awareness system for mobile
application,” in IEEE Intl. Conf. on Consumer Electronics (ICCE), 2011,
pp. 627–628.

[239] X. Liang and G. Wang, “A Convolutional Neural Network for Trans-
portation Mode Detection Based on Smartphone Platform,” in IEEE
Intl, Conf, on Mobile Ad Hoc and Sensor Systems (MASS), 2017.

[240] L. Harms and O. Landsiedel, “MASTER: Long-Term Stable Routing
and Scheduling in Low-Power Wireless Networks,” in 2020 16th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, May 2020.

BIBLIOGRAPHY 161

[241] P. T. Michalski, “Design and Evaluation of Deadline-Based
Scheduling Algorithms for the Industrial Internet of Things,”
Bachelor’s Thesis, Kiel University, 2020. [Online]. Avail-
able: https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-
master-theses/completed-master-and-bachelor-theses/2020 Design and
Evaluation of Deadline-Based Scheduling Algorithms for the Industrial
Internet of Things Patrik Thomas Michalski.pdf

[242] V. Paskal, “Design and Evaluation of a Neighbor Data
Collection and Schedule Distribution System for Cen-
trally Scheduled TSCH,” Master’s Thesis, Kiel Univer-
sity, 2022. [Online]. Available: https://www.ds.informatik.uni-
kiel.de/en/teaching/bachelor-and-master-theses/completed-master-
and-bachelor-theses/2022 Master Viktor Paskal.pdf

[243] L. Harms and O. Landsiedel, “Opportunistic Routing and Synchronous
Transmissions Meet TSCH,” in 2021 IEEE 46th Conference on Local
Computer Networks (LCN). IEEE, Oct. 2021.

[244] V. Poirot, L. Harms, H. Martens, and O. Landsiedel, “BlueSeer: AI-
driven environment detection via BLE scans,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, ser. DAC ’22. ACM, Jul.
2022.

[245] Tensorflow, “TensorFlow Lite for Microcontrollers,” 2023. [Online].
Available: https://www.tensorflow.org/lite/microcontrollers

[246] M. Pöhls, “AI-Driven Precise Location Fingerprinting from
Bluetooth Low Energy Transmissions,” Master’s Thesis, Kiel
University, 2022. [Online]. Available: https://www.ds.informatik.uni-
kiel.de/en/teaching/bachelor-and-master-theses/completed-master-
and-bachelor-theses/2022 Master Mika Poehls.pdf

[247] M. Becker, “Location Fingerprinting with Bluetooth Low Energy:
A Supervised Learning Approach,” Master’s Thesis, Kiel Uni-
versity, 2023. [Online]. Available: https://www.ds.informatik.uni-
kiel.de/en/teaching/bachelor-and-master-theses/completed-master-
and-bachelor-theses/2023 Master Marcel Becker.pdf

[248] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. A. Zúñiga, “JamLab:
Augmenting Sensornet Testbeds with Realistic and Controlled Interfer-
ence Generation,” in Proceedings of the 10th ACM/IEEE International
Conference on Information Processing in Sensor Networks, 2011.

[249] M. Schuß, C. A. Boano, M. Weber, M. Schulz, M. Hollick, and K. Römer,
“JamLab-NG: Benchmarking Low-Power Wireless Protocols under Con-
trollable and Repeatable Wi-Fi Interference.” in Proceedings of the 2019
International Conference on Embedded Wireless Systems and Networks
(EWSN), 2019, pp. 83–94.

[250] C. Richter, “Design and Implementation of GPIO Sensing
for Minimally Intrusive Tracing of Wireless Sensor Networks,”

https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design and Evaluation of Deadline-Based Scheduling Algorithms for the Industrial Internet of Things Patrik Thomas Michalski.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design and Evaluation of Deadline-Based Scheduling Algorithms for the Industrial Internet of Things Patrik Thomas Michalski.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design and Evaluation of Deadline-Based Scheduling Algorithms for the Industrial Internet of Things Patrik Thomas Michalski.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design and Evaluation of Deadline-Based Scheduling Algorithms for the Industrial Internet of Things Patrik Thomas Michalski.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2022_Master_Viktor_Paskal.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2022_Master_Viktor_Paskal.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2022_Master_Viktor_Paskal.pdf
https://www.tensorflow.org/lite/microcontrollers
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2022_Master_Mika_Poehls.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2022_Master_Mika_Poehls.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2022_Master_Mika_Poehls.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2023_Master_Marcel_Becker.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2023_Master_Marcel_Becker.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2023_Master_Marcel_Becker.pdf

162 BIBLIOGRAPHY

Bachelor’s Thesis, Kiel University, 2020. [Online]. Avail-
able: https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-
and-master-theses/completed-master-and-bachelor-theses/2020
Design and Implementation of GPIO Sensing for Minimally Intrusive
Tracing of Wireless Sensor Networks Christian Richter.pdf

[251] L. Harms, C. Richter, and O. Landsiedel, “Grace: Low-Cost Time-
Synchronized GPIO Tracing for IoT Testbeds,” in 2022 18th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, may 2022.

[252] ——, “Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT
Testbeds,” Computer Networks, vol. 228, p. 109746, Jun. 2023.

[253] Semtech Corporation, “SX1278,” 2024. [Online]. Available: https:
//www.semtech.com/products/wireless-rf/lora-connect/sx1278

[254] L. Harms and O. Landsiedel, “TSCH Meets BLE: Routed Mesh Communi-
cation Over BLE,” in 2023 19th International Conference on Distributed
Computing in Smart Systems and the Internet of Things (DCOSS-IoT).
IEEE, Jun. 2023.

[255] A. S. Tanenbaum and H. Bos, “Section 2.4.2: Scheduling in Batch Systems
- Shortest Job First,” in Modern Operating Systems, 4th ed. Pearson
Education, Inc., 2015, pp. 157–158.

[256] “Contiki-NG: The OS for Next Generation IoT Devices,” 2020. [Online].
Available: http://www.contiki-ng.org/

[257] C. A. Boano and M. Schuß, “EWSN 2019 Dependability Com-
petition Logistics Information, rev. 1,” Jan. 2018. [Online].
Available: https://iti-testbed.tugraz.at/fileupload/static/fileupload/
EWSN2019 DC Logistics 1.pdf

[258] L. R̊ade and B. Westergren, Mathematics Handbook for Science and
Engineering. Lund: Studentlitteratur AB, 2004.

[259] J. Shi, M. Sha, and Z. Yang, “DiGS: Distributed Graph Routing and
Scheduling for Industrial Wireless Sensor-Actuator Networks,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, Jul. 2018.

[260] T. Chang, T. Watteyne, X. Vilajosana, and P. H. Gomes, “Constructive
Interference in 802.15.4: A Tutorial,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 217–237, 2018.

[261] P. H. Gomes, T. Watteyne, P. Gosh, and B. Krishnamachari, “Competi-
tion: Reliability through Timeslotted Channel Hopping and Flooding-
Based Routing,” in Proceedings of the 2016 International Conference on
Embedded Wireless Systems and Networks (EWSN), 2016.

[262] F. Ben Abdesslem, A. Phillips, and T. Henderson, “Indoor distance
estimated from Bluetooth Low Energy signal strength: Comparison of
regression models,” in IEEE Sensors Applications Symposium (SAS),
2016, pp. 1–5.

https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design_and_Implementation_of_GPIO_Sensing_for_Minimally_Intrusive_Tracing_of_Wireless_Sensor_Networks Christian Richter.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design_and_Implementation_of_GPIO_Sensing_for_Minimally_Intrusive_Tracing_of_Wireless_Sensor_Networks Christian Richter.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design_and_Implementation_of_GPIO_Sensing_for_Minimally_Intrusive_Tracing_of_Wireless_Sensor_Networks Christian Richter.pdf
https://www.ds.informatik.uni-kiel.de/en/teaching/bachelor-and-master-theses/completed-master-and-bachelor-theses/2020 Design_and_Implementation_of_GPIO_Sensing_for_Minimally_Intrusive_Tracing_of_Wireless_Sensor_Networks Christian Richter.pdf
https://www.semtech.com/products/wireless-rf/lora-connect/sx1278
https://www.semtech.com/products/wireless-rf/lora-connect/sx1278
http://www.contiki-ng.org/
https://iti-testbed.tugraz.at/fileupload/static/fileupload/EWSN2019_DC_Logistics_1.pdf
https://iti-testbed.tugraz.at/fileupload/static/fileupload/EWSN2019_DC_Logistics_1.pdf

BIBLIOGRAPHY 163

[263] C. Falsi, D. Dardari, L. Mucchi, and M. Z. Win, “Time of arrival esti-
mation for UWB localizers in realistic environments,” EURASIP J. on
Advances in Signal Processing, vol. 2006, pp. 1–13, 2006.

[264] P. Lazik, N. Rajagopal, O. Shih, B. Sinopoli, and A. Rowe, “ALPS: A
Bluetooth and Ultrasound Platform for Mapping and Localization,” in
ACM Conf. on Embedded Networked Sensor Systems (SenSys), 2015, p.
73–84.

[265] F. Ben Abdesslem, A. Phillips, and T. Henderson, “Less is More: Energy-
Efficient Mobile Sensing with Senseless,” in ACM Workshop on Network-
ing, Systems, and Applications for Mobile Handhelds (MobiHeld), 2009,
p. 61–62.

[266] Bluetooth SIG, “Bluetooth 2021 Market Update,” 2021. [Online].
Available: https://www.bluetooth.com/wp-content/uploads/2021/01/
2021-Bluetooth Market Update.pdf

[267] B. Etzlinger, B. Nußbaummüller, P. Peterseil, and K. A. Hummel, “Dis-
tance Estimation for BLE-based Contact Tracing – A Measurement
Study,” in Wireless Days (WD), 2021.

[268] R. David, J. Duke, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang, P. Warden, and R. Rhodes, “TensorFlow
Lite Micro: Embedded Machine Learning for TinyML Systems,” in
Machine Learning and Systems (MLSys), vol. 3, 2021, pp. 800–811.

[269] Zephyr Project, “Zephyr Real-Time Operating System,” 2016.

[270] Y. Zhan and T. Kuroda, “Wearable sensor-based human activity recogni-
tion from environmental background sounds,” J. of Ambient Intelligence
and Humanized Computing, vol. 5, no. 1, pp. 77–89, 2014.

[271] N. Kern, B. Schiele, and A. Schmidt, “Multi-sensor Activity Context
Detection for Wearable Computing,” in Ambient Intelligence. Springer,
2003, pp. 220–232.

[272] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L.-S.
Peh, “Using Mobile Phone Barometer for Low-Power Transportation
Context Detection,” in ACM Conf. on Embedded Network Sensor Systems
(SenSys), 2014, p. 191–205.

[273] J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-Free Occupant Activity
Sensing Using WiFi-Enabled IoT Devices for Smart Homes,” IEEE
Internet of Things J., vol. 5, no. 5, 2018.

[274] B. Kempke, P. Pannuto, B. Campbell, and P. Dutta, “SurePoint: Exploit-
ing Ultra Wideband Flooding and Diversity to Provide Robust, Scalable,
High-Fidelity Indoor Localization,” in ACM Conf. on Embedded Network
Sensor Systems (SenSys), 2016, p. 137–149.

[275] Y. Ma, N. Selby, and F. Adib, “Minding the Billions: Ultra-Wideband Lo-
calization for Deployed RFID Tags,” in Intl. Conf. on Mobile Computing
and Networking (MobiCom), 2017, p. 248–260.

https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf

164 BIBLIOGRAPHY

[276] A. von See, “Number of Internet of Things (IoT) connected devices
worldwide from 2019 to 2030,” 2021. [Online]. Available: https://www.
statista.com/statistics/1183457/iot-connected-devices-worldwide/

[277] “BabbleSim - A physical layer simulator.” [Online]. Available:
https://babblesim.github.io/

[278] “Publications and Standards from the National Marine Electronics
Association (NMEA) / NMEA 0183,” Tech. Rep., Nov. 2008.
[Online]. Available: https://web.archive.org/web/20131021183159/http:
//www.nmea.org/content/nmea standards/nmea 0183 v 410.asp

[279] G. Baddeley, “GPS - NMEA sentence information,” 2001. [Online].
Available: http://aprs.gids.nl/nmea/#rmc

[280] Electronic Notes, “What is a Logic Analyzer.” [Online]. Avail-
able: https://www.electronics-notes.com/articles/test-methods/logic-
analyzer/basics-tutorial.php

[281] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “TWIST: a scalable
and reconfigurable testbed for wireless indoor experiments with sensor
networks,” in Proceedings of the 2nd international workshop on Multi-hop
ad hoc networks: from theory to reality. ACM, may 2006.

[282] E. Ertin, M. Nesterenko, A. Arora, R. Ramnath, V. Naik, S. Bapat,
V. Kulathumani, M. Sridharan, H. Zhang, and H. Cao, “Kansei: A
Testbed for Sensing at Scale,” in Proceedings of the fifth international
conference on Information processing in sensor networks - IPSN '06.
ACM Press, 2006.

[283] L. Sanchez, J. A. Galache, V. Gutierrez, J. M. Hernandez, J. Bernat,
A. Gluhak, and T. Garcia, “Smartsantander: The meeting point between
future internet research and experimentation and the smart cities,” in
2011 Future Network & Mobile Summit. IEEE, 2011, pp. 1–8.

[284] Wikipedia contributors, “Itu region — Wikipedia, the free encyclopedia,”
2022, [Online; accessed 1-October-2022]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=ITU Region&oldid=1082115274

[285] ——, “Unix time — Wikipedia, the free encyclopedia,” 2022,
[Online; accessed 1-October-2022]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Unix time&oldid=1112784820

[286] CC1101 - Low-Power Sub-1 GHz RF Transceiver, Texas Instruments.
[Online]. Available: https://www.ti.com/lit/ds/symlink/cc1101.pdf

[287] Adafruit, “Ultimate GPS Module - 66 channel w/10 Hz updates
- PA1616S - MTK3339 Chipset.” [Online]. Available: https:
//www.adafruit.com/product/790

[288] EZ-USB® Technical Reference Manual, Cypress Semiconductor,
Cypress Semiconductor, 198 Champion Court, San Jose, CA 95134-1709,
2019, 001-13670 Rev. *G. [Online]. Available: https://www.infineon.
com/dgdl/Infineon-EZ-USB TECHNICAL REFERENCE MANUAL-
AdditionalTechnicalInformation-v08 00-EN.pdf

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://babblesim.github.io/
https://web.archive.org/web/20131021183159/http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
https://web.archive.org/web/20131021183159/http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://aprs.gids.nl/nmea/#rmc
https://www.electronics-notes.com/articles/test-methods/logic-analyzer/basics-tutorial.php
https://www.electronics-notes.com/articles/test-methods/logic-analyzer/basics-tutorial.php
https://en.wikipedia.org/w/index.php?title=ITU_Region&oldid=1082115274
https://en.wikipedia.org/w/index.php?title=ITU_Region&oldid=1082115274
https://en.wikipedia.org/w/index.php?title=Unix_time&oldid=1112784820
https://en.wikipedia.org/w/index.php?title=Unix_time&oldid=1112784820
https://www.ti.com/lit/ds/symlink/cc1101.pdf
https://www.adafruit.com/product/790
https://www.adafruit.com/product/790
https://www.infineon.com/dgdl/Infineon-EZ-USB_TECHNICAL_REFERENCE_MANUAL-AdditionalTechnicalInformation-v08_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-EZ-USB_TECHNICAL_REFERENCE_MANUAL-AdditionalTechnicalInformation-v08_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-EZ-USB_TECHNICAL_REFERENCE_MANUAL-AdditionalTechnicalInformation-v08_00-EN.pdf

BIBLIOGRAPHY 165

[289] “Saleae Logic Pro 8 USB Logic Analyzer,” 2023. [Online]. Available:
https://downloads.saleae.com/specs/Logic Pro 8 Product Fact Sheet.pdf

[290] Saleae Support, “Time Measurement Error,” 2021. [Online]. Available:
https://support.saleae.com/faq/technical-faq/time-measurement-error

[291] Nordic Semiconductor, “nRF52840 DK.” [Online]. Available: https:
//www.nordicsemi.com/Products/Development-hardware/nrf52840-dk

[292] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “Concurrent Transmis-
sions for Multi-Hop Bluetooth 5,” in Proceedings of the 2019 International
Conference on Embedded Wireless Systems and Networks (EWSN), 2019,
pp. 130–141.

https://downloads.saleae.com/specs/Logic Pro 8 Product Fact Sheet.pdf
https://support.saleae.com/faq/technical-faq/time-measurement-error
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk

	Abstract
	Acknowledgement
	List of Publications
	Thesis Overview
	Introduction
	Motivation and Goals
	Background
	Low-Power Wireless Communication
	IEEE 802.15.4
	Bluetooth Low Energy (BLE)
	Time-Slotted Channel Hopping (TSCH)
	Concurrent Transmissions
	Time Synchronization
	Evaluation of Low-Power Wireless Networks
	Embedded Intelligence and Tiny Machine Learning

	Related Work
	Scheduling TSCH
	Overcoming Interference in TSCH
	TSCH and BLE
	Time-Synchronized Testing and Evaluation
	Wireless Localization & Sensing

	Research Questions
	Thesis Contributions
	Chapter A � Master: Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks
	Chapter B � Opportunistic Routing and Synchronous Transmissions Meet TSCH
	Chapter C � BlueSeer: AI-Driven Environment Detection via BLE Scans
	Chapter D � Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds
	Chapter E � TSCH meets BLE: Routed Mesh Communication over BLE

	Conclusion and Emerging Directions

	Master: Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks
	Introduction
	Background
	Time-Slotted Channel Hopping
	Link quality metric
	Scheduling
	Retransmissions

	Design
	Centralized Routing and Scheduling with Master
	Master's Flow-based transmission strategy
	Time Synchronization
	System Design

	Evaluation
	Evaluation Setup
	Baselines
	Performance of Master's transmission strategies
	Master vs. Orchestra
	Long-term stability of Master

	Related Work
	Conclusion

	Opportunistic Routing and Synchronous Transmissions Meet TSCH
	Introduction
	Background & Related Work
	Time-Slotted Channel Hopping (TSCH)
	Opportunistic Routing
	Synchronous Transmissions

	Design
	Autobahn: General Idea
	Routing Set
	Anycast forwarding in Autobahn
	Active slots in Autobahn
	System Integration
	Integration in Master's routing layer

	Evaluation
	Evaluation Setup
	Baselines
	Possibility of Synchronous Transmissions in TSCH
	Performance without Interference
	Performance under Interference
	Autobahn vs. Orchestra
	Recovery from interference
	Long-term stability of Autobahn

	Conclusion

	BlueSeer: AI-Driven Environment Detection via BLE Scans
	Introduction
	Background: Bluetooth LE
	Design: BlueSeer
	Overview
	Feature Extraction
	Embedded Neural Network
	Implementation

	Evaluation
	Neural Architecture
	Feature Analysis
	Overall Performance

	Related Work
	Conclusion

	Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds
	Introduction
	Background
	Time Synchronization
	Global Positioning System (GPS)
	Network Time Protocol (NTP)
	Reference Broadcasting System (RBS)
	Logic Analyzer

	Related Work
	Design
	Design Overview
	Low-intrusive time stamping
	Synchronization Node
	Testbed node
	GPIO Tracing
	Trace Data Processing
	Post-processing
	Implementation
	Discussion

	Evaluation
	Evaluation Setup
	Output intrusiveness
	Logic Analyzer Frequency Stability
	Frequency Stability Of Synchronization Node
	Receiver Stability
	Clock Correction
	Multiple Time Sources
	Summary

	Conclusion

	TSCH meets BLE: Routed Mesh Communication over BLE
	Introduction
	Background
	IEEE 802.15.4
	Time-Slotted Channel Hopping (TSCH)
	Bluetooth Low Energy (BLE)

	Dissecting TSCH
	TSCH Timeslot Timing
	TSCH packet duration
	TSCH time synchronization
	Hopping sequences

	Design
	Overview
	Derived Timing
	Packet duration
	Time Synchronization
	Hopping Sequences
	Standard-compliance Discussion

	Evaluation
	Reachability
	Performance Evaluation

	Related Work
	Conclusion

	Bibliography

