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Abstract—Location information is often used as a proxy to
guarantee the performance of a wireless communication link.
However, localization errors can result in a significant mismatch
with the guarantees, particularly detrimental to users operating
the ultra-reliable low-latency communication (URLLC) regime.
This paper unveils the fundamental statistical relations between
location estimation uncertainty and wireless link reliability,
specifically in the context of rate selection for ultra-reliable
communication. We start with a simple one-dimensional nar-
rowband Rayleigh fading scenario and build towards a two-
dimensional scenario in a rich scattering environment. The
wireless link reliability is characterized by the meta-probability,
the probability with respect to localization error of exceeding the
outage capacity, and by removing other sources of errors in the
system, we show that reliability is sensitive to localization errors.
The ϵ-outage coherence radius is defined and shown to provide
valuable insight into the problem of location-based rate selection.
However, it is generally challenging to guarantee reliability
without accurate knowledge of the propagation environment.
Finally, several rate-selection schemes are proposed, showcasing
the problem’s dynamics and revealing that properly accounting
for the localization error is critical to ensure good performance
in terms of reliability and achievable throughput.

I. INTRODUCTION

A s wireless communication moves towards developing and
deploying the sixth-generation wireless (6G) networks,

localization and sensing are expected to play a crucial role
in shaping the future of communication technology. This
includes the area of ultra-reliable low-latency communica-
tions (URLLC), where 6G aims to provide unprecedented
connectivity, low latency, and reliable communication for a
wide range of applications, including autonomous vehicles,
industrial automation, augmented reality (AR), and more. Key
enablers for high-accuracy localization include using new and
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higher frequency bands, deploying intelligent surfaces in the
propagation environment, intelligent beamforming, and apply-
ing machine learning and artificial intelligence techniques [1].
The amount of available data is also increasing with, e.g.,
the recent standardization by the 3rd Generation Partnership
Project (3GPP) of minimization of drive tests (MDT) [2], al-
lowing the operators to utilize the end-user devices for collect-
ing location-specific measurements. Furthermore, the concept
of channel charting has been shown to provide location-like
information by exploiting rich channel state information (CSI)
samples from massive multiple input multiple output (MIMO)
systems, thus providing an attractive replacement for localiza-
tion [3]. With the increasing availability of user measurements
associated with high-accuracy location information, it becomes
progressively more viable to use the location as a proxy
for local channel conditions. Examples of this include using
location information to predict traffic levels in machine-type
communication (MTC) [4], location-aided beamforming for
vehicle communication [5], and a protocol for scheduling time-
frequency resources in RIS-aided OFDM systems based on
localization information [6]. A promising direction to facilitate
these applications is a new generation of radio coverage maps
that goes beyond modeling the received signal strength as is
classically done. A few similar terms are currently seen in
the literature, including channel knowledge maps (CKMs) [7],
statistical radio maps [8], and channel density information
(CDI) maps [9] — all referring to a database containing
various channel-related information tagged with associated
location information. These new-generation radio maps are
thus expected to play a vital role in enabling environment-
aware communication in 6G [7].

Concerning URLLC in specific, localization can be ex-
ploited by using that reliability of wireless transmission is
related to, among others, the behavior of the propagation
channel, which is inherently correlated with spatial location.
Consequently, exploiting this relationship is envisioned as a
promising direction for URLLC [8], [10], [11]. In [10], it
is proposed to use a user-generated radio map at the radio
access network (RAN) control center to estimate the risk
of outages and determine network configurations. In [11], a
rate adjustment scheduler using location-aware prediction of
interference is proposed for URLLC networks. Similarly, [8]
uses location information for a rate selection scheme based
on a radio map to enable statistical guarantees for URLLC.
These examples differ from conventional approaches, where
samples are acquired over time to estimate channel statistics
and, thus, reliability [12]. Considering the latency introduced
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by estimating channel statistics, a communication system that
predicts reliability based on localization using only a few
measurements is an attractive alternative. An important aspect
of these location-based inference strategies is the capability to
estimate the location accurately. The literature rarely addresses
this issue, and it is common to assume error-free localization.
This practice is not without justification; indeed, 6G networks
are expected to have centimeter-level localization accuracy
[7], but these metrics are yet to be realized with current
performances in the meter-level range [13]. Regardless, the
accuracy of localization could be a liability for systems in the
ultra-reliable domain relying on location information, which
raises the fundamental question: How can the accuracy of
the localization procedures impact the wireless reliability
guarantees?

We posed this question and provided the first preliminary
study in [14], where the basic relations between location
uncertainty and reliability were analyzed based on a simple
channel model in a one-dimensional scenario, i.e., a user
equipment (UE) estimating its location along a line. In this
work, we generalize the analysis to a broader range of scenar-
ios, including two-dimensional localization and more realistic
channels with a variable number of paths. The general setup
is the following: A UE in the URLLC regime communicates
with a base station (BS) and should choose the transmission
parameters to fulfill certain requirements in terms of reliability.
It is assumed that estimation of CSI is not possible, e.g.,
in a scenario with aperiodic and spontaneous transmissions
where the latency constraint prohibits CSI acquisition. The
UE must therefore rely on statistical information of long-
term channel conditions to ensure reliability [15]. We here
analyze the feasibility of a localization-based approach, where
the location is used as a proxy for characterizing the channel.
To isolate the impact of location uncertainty on reliability, this
paper assumes that a radio map of the propagation environment
has already been obtained, such that the relevant channel
statistics are known at each location. Thus, if the location
were also perfectly known, the UE would correctly allocate
resources to guarantee a target level of reliability, but given the
uncertainty of the estimated location, the predicted reliability
is also uncertain. The UE must therefore account for scenarios
where, e.g., the signal level is weaker at the true location than
at the estimated location. With this setup, this paper will study
the problem of location-based rate selection and how localiza-
tion error can affect the resulting reliability and throughput.
Reliability is statistically characterized following the probably
correct reliability approach introduced in [12], and localiza-
tion performance is modeled, among others, through Fisher
information (FI) analysis [16]. The contributions of this paper
are summarized in the following:

• Two scenarios and propagation environments are ana-
lyzed, starting with a simple one-dimensional scenario
subjected to narrowband Rayleigh fading, and continuing
with a wideband channel with propagation conditions
according to standardized 3GPP models generated using
the simulation tool QuaDRiGa [17]. The former is a
simplification of the model in [14], considering nar-

rowband Rayleigh fading instead of Rician channels at
each subcarrier, allowing to extract analytical insights
and a deeper understanding of the problem. The latter
is a generalization of [14], with more realistic channel
models, large-scale fading effects such as shadowing, and
two-dimensional localization.

• The relation between local variations of channel statistics
and the performance of location-based rate selection is
studied extensively. Specifically, we explore how the ϵ-
outage coherence radius is a good performance indicator.
The impact of the localization error severity is also
thoroughly evaluated.

• Several location-based rate selection schemes that ac-
count for localization uncertainty are considered. The
reliability and throughput of these schemes are then
studied both analytically and through simulation. For
simple environments (narrowband Rayleigh fading), we
analytically solve the rate selection problem, and numer-
ical methods are used in the wideband scenario.

• By analyzing the performance of the proposed schemes,
it is highlighted that the efficiency of location-based rate
selection schemes — i.e., spectral efficiency for a given
reliability target — is severely compromised if location
errors are not properly considered.

The remainder of the paper is structured as follows. Section II
introduces the general channel model and formally introduces
the problem of location-based rate selection. Section III studies
a simple Rayleigh fading channel model with average received
power according to path loss and one-dimensional localization.
Section IV examines the problem in a two-dimensional wide-
band scenario based on numerical methods, and the paper is
concluded in Sec. V. Error bounds of time of arrival (TOA)-
based localization are derived in App. A.

Supplementary resources: The code used for simulations
and figures shown in the paper can be found at
https://github.com/TobiasKallehauge/Localization-and-
Reliability-in-URLLC.

Notation: N, R, R+, C denotes the sets of positive integers,
real numbers, non-negative real numbers, and complex num-
bers, respectively. R(z) and I(z) are the real and imaginary
parts of complex number z, and ȷ is the imaginary unit. (·)T

and (·)H are the matrix transpose and conjugate transpose,
respectively, and ∥·∥ is the ℓ2-norm. N (µ, σ2) and CN (µ, σ2)
denote Gaussian and circularly symmetric complex Gaussian
distributions with mean µ and variance σ2. ln is used for
the natural logarithm, while logarithms with other bases will
be denoted explicitly in the subscript, e.g., log2. The n × n
identity matrix is denoted In. Finally, E[·], Var[·], T[·], denote,
respectively, the expectation, variance, and trace operators.

II. LOCATION-BASED RATE SELECTION

This section formally introduces the problem of location-
based rate selection. We start by introducing the channel model
and method of evaluating reliability used throughout the paper.

https://github.com/TobiasKallehauge/Localization-and-Reliability-in-URLLC
https://github.com/TobiasKallehauge/Localization-and-Reliability-in-URLLC
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A. Channel Model and Reliability

A cellular network with an arbitrary number of BSs sup-
ports both localization and ultra-reliable communications. The
BSs and the UEs are all equipped with a single antenna,
and an orthogonal frequency division multiplexing (OFDM)
modulation scheme is considered transmitting at bandwidth
W over N subcarriers spaced ∆f = W/N for N ≥ 1. Thus,
with normalized symbol s ∈ CN (i.e., E[∥s∥2] = N ), the
received baseband signal from a BS in the frequency domain
at subcarrier j is given by1

yj =
√

Ptx

K∑
k=1

akdj(τk)sj + nj , j = 0, . . . , N − 1 (1)

where Ptx is the transmit power per subcarrier, K is the
number of paths or clusters, nj ∼ CN (0,WN0) is the noise
term with variance WN0, and N0 is the power spectral density
of the noise. The channel within each path/cluster is defined
by the delay τk ∈ R+ and the coefficient ak ∈ C, where
dj(τk) = exp(−2πȷ∆f jτk) is the induced phase rotation
due to the signal delay. With the possible exception of a
line-of-sight (LoS) path, ak for k = 1, . . . ,K, are modeled
as stochastic variables arising from the sum of multiple —
irresolvable — scattered paths within each cluster.

The reliability of transmissions over the channel (1) depends
on the transmission policy and temporal and spatial dynamics
of the channel. At the physical layer, we focus on selecting
the communication rate to determine the transmission policy
and then define the outage probability as a reliability metric,
which characterizes the event when the chosen rate exceeds
the channel capacity. With maximum ratio combining at the
receiver, the normalized capacity of the channel becomes

C =

N−1∑
j=0

log2

(
1 +

Ptx

WN0
|hj |2

)
, (2)

where hj =
∑K

k=1 akdj(τk) such that the random variation
of ak induces a random variation in the channel capacity. The
reliability given selected rate R > 0 is hence defined

pout(R) = P (C ≤ R), (3)

and we require that pout(R) ≤ ϵ for a target level of reliability
ϵ ∈ (0, 1).

B. Statistical Learning for Location-Based Rate Selection

The reliability requirement ϵ is trivially fulfilled if the
statistics of the capacity C are known by selecting

R = Cϵ ≜ sup{R ≥ 0 |pout(R) ≤ ϵ}, (4)

known as the ϵ-outage capacity. However, a real system must
rely on the available data to estimate the ϵ-outage capacity,
which introduces an additional layer of uncertainty (in addition
to the random variation in the channel). Statistical learning is
the field of characterizing the effects that random data has
on statistical inference [12]. In general, consider that some

1We assume identical uplink and downlink channels. Note the assumption
of no intersymbol interference due to OFDM modulation.

data D is available to the UE, which is used to select the
rate as R(D). The data D is considered random, which also
makes the selected rate R(D) and hence outage probability
pout(R(D)) random, which may ultimately cause the relia-
bility requirement ϵ to be violated. Statistical learning can
account for these violations by imposing different probabilistic
requirements on the outage probability with respect to the
uncertainty of the data. We here focus on the concept of meta-
probability, defined as the probability that the target reliability
ϵ is exceeded, i.e., [12]

p̃ϵ = PD(pout(R(D)) > ϵ) = PD(R(D) > Cϵ), (5)

where the outer probability is with respect to the joint distri-
bution of the data and the second equality follows from (4).
The meta-probability measure in (5) can describe any scenario
where the rate is selected from empirical data. To study the
reliability of location-based rate selection, we consider the
following scenario:

A radio map of the cellular network has been built, e.g.,
via a dedicated mapping campaign or by gathering channel
estimates from previous users in the network as suggested
in [10]. The cell is denoted R ⊂ RD with D ≥ 1 and
with UE locations within the cell x ∈ R. The map can, in
principle, model any information about the channel relevant
to the specific application. In our case of rate selection, the
ϵ-outage channel capacity in (2) is a good choice (as seen
later), and the map is then able to associate any location within
the cell x with the outage capacity at that location, denoted
Cϵ(x). A new UE now joins the system and needs to select
its communication rate following the two-step protocol:

1) The UE at true location x estimates its location as x̂.
The model for the localization error will depend on the
scenario, as specified later.

2) Using the estimated location x̂ and the radio map, the
UE selects its transmission rate, denoted as R(x̂). It then
starts the communication with the BSs by sending data
over the channel in (1).

As an important remark, note that the channels used in steps
1 and 2 do not need to be the same, as exemplified in Sec.
III, where localization uses a separate system.

The described scenario clearly has many sources of un-
certainty in the process of constructing the radio map and
afterward estimating the location of the UE. Our focus is
on studying the impact of the latter, namely localization
uncertainty, so to isolate the effect of this, we assume that the
process of constructing the radio map is error-free2. Naturally,
this represents an ideal scenario, but isolating the effect
of localization uncertainty allows us to directly analyze the
feasibility of location-based rate selection, extract insights
relating specifically to localization, and also provide an upper
bound in performance for the full scenario. This leads to the
problem statement.

2See [8] for a statistical learning framework that analyses uncertainty of
constructing the radio map.
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C. Problem Statement

Assuming an error-free radio map of Cϵ(x), the uncertainty
of the data reduces to the location, i.e., D = x̂. The meta-
probability for the UE at true location x is then

p̃ϵ(x) = Px̂(pout,x(R(x̂)) > ϵ) = Px̂(R(x̂) > Cϵ(x)), (6)

where the outer probability is specifically with respect to
the estimated location x̂. Reliability in the statistical learning
framework is ensured by designing the rate selection function
R such that the meta-probability does not exceed some target
δ ∈ (0, 1), referred to as the confidence parameter. As such,
ensuring (6) for all UE locations x in the cell R provides
a system-level guarantee that users will fulfill the reliability
requirement despite the exact location being unknown for
any given UE. Since the meta-probability can be arbitrarily
low if a very conservative rate is selected, we combine this
performance indicator with the throughput ratio, defined as
[8], [12]

T (x) =
Ex̂[R(x̂)(1− pout,x(R(x̂))]

Cϵ(x)(1− ϵ)
, (7)

which quantifies the penalty introduced by the location un-
certainty. The throughput ratio is exactly one if the location
is perfectly known and, hence, R(x̂) = Cϵ(x) [12]. The use
of throughput ratio to characterize the rate selection functions
instead of absolute throughput allows us to abstract from all
the system parameters such as transmitted power, noise power,
and bandwidth and focus on the rate loss due to the localization
error.

We arrive at the following problem statement for the
location-based rate-selection problem: Learn a rate selection
function R : R → R+, which maximizes the — average —
throughput ratio while ensuring that the meta-probability stays
below the target, i.e.,

max
R:R→R+

1

|R|

∫
x∈R

T (x) dx st. p̃ϵ(x) ≤ δ ∀x ∈ R. (8)

The above problem is non-trivial, and different heuristic solu-
tions will be presented and compared throughout this paper.

III. RATE SELECTION WITH NARROWBAND RAYLEIGH
FADING CHANNEL

We start with laying the foundation of the location-based
rate selection problem by studying a simple, albeit illustrative,
scenario. This allows tractable analysis of the problem, thus
greatly improving the understanding acquired in [14], where
the insight was mainly based on numerical simulations. We
consider the case of narrowband Rayleigh channel — a
special case of (1) — with the added simplification of a one-
dimensional cell (D = 1). While localization is often based
on wideband systems, this is not necessarily incompatible
with the scenario here. Practical examples could include
narrowband communication with GPS for localization or, as
proposed in [18], a phase-based localization approach where
channel-hopping is used to sample a wide spectrum to resolve
multipath fading (despite each channel being narrowband).

A. Scenario

We consider a BS located at xbs = 0 communicating with
a UE at location x within the cell [xmin, xmax] with xmin >
0. Under the Rayleigh fading assumption, the channel in (1)
reduces to a single non-line-of-sight (NLoS) component as

y =
√

Ptxhs+ n, (9)

where h =
√

P (x)α, α ∼ CN (0, 1) is the power-normalized
fading coefficient and P (x) is the average received power
modeled according to the path loss formula [19, ch. 2]

P (x) = G0x
−η, x > 0 (10)

with G0 ∈ R a gain factor and η > 0 the path loss exponent.
The average signal-to-noise ratio (SNR) is denoted γ(x) =
γ0P (x), where γ0 = Ptx

WN0
, such that the instantaneous SNR

is γ(x) = γ(x)|α|2, which follows an exponential distribution
with mean γ(x).

We further assume an unbiased location estimator with nor-
mally distributed errors (which is consistent with the localiza-
tion theory presented in App. A and used in the next section).
Hence, the estimated location is modeled as x̂ ∼ N (x, σ2

x),
where x is the true (unknown) UE location and σ2

x ≜ Var[x̂]
models the localization variance for each x ∈ [xmin, xmax].
While not necessary for analyzing the problem, it is assumed
that P (x̂ < 0) = 0, which simplifies the analysis by removing
some edge cases where the estimated location is to the left of
the BS.

In this case, the capacity in (2) reduces to C(x) =
log2(1 + γ(x)|α|2), yielding

P (C(x) ≤ R) = P

(
|α|2 ≤ 2R − 1

γ(x)

)
(11)

= 1− exp

(
−2R − 1

γ(x)

)
(12)

for R > 0, where the last equality follows from |α|2 being ex-
pontentially distributed with unit mean. The ϵ-outage capacity
then follows directly from (12) as

Cϵ(x) = log2(1− γ(x) ln(1− ϵ)). (13)

Note that Cϵ is a smooth function of x due to path loss being
the only large-scale fading phenomenon in the model, so the
scenario here does not capture effects like blockages that cause
an abrupt change in the channel. Lastly, we introduce the ϵ-
outage coherence radius (or simply coherence radius) defined
as the minimum radius from the UE location x where the
maximum relative change in Cϵ within the radius exceeds some
threshold t > 0, i.e.,

CR(x) = min
ϱ>0

{
ϱ

∣∣∣∣ max
z∈[x−ϱ,x+ϱ]

{ |Cϵ(x)− Cϵ(z)|
Cϵ(x)

}
≥ t

}
.

(14)

The coherence radius is thus a measure of the local spatial
variation of the channel conditions and will be useful to
get insight into the location-based rate selection problem.
Since the average SNR γ(x) decays with the power −η, the
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maximum of the ratio in (14) is always attained at z = x− ϱ
and it follows directly from (13) that

CR(x) = x−
(

γ0G0 ln(1− ϵ)

1− (1− γ0G0x−η ln(1− ϵ))
1+t

)1/η

(15)

≈ x(1− (1 + t)−1/η), (16)

being thus approximately proportional to x (i.e., the distance
to the BS)3.

B. Backoff Rate Selection

The structure of (13) inspires the trivial solution to (8)

R(x̂) = log2(1− βγ(x̂) ln(1− ϵ)), (17)

for some β ∈ (0, 1]. We denote this solution as backoff rate
selection, where the rate is chosen as the ϵ-outage capacity at
the estimated location x̂, but re-scaling the average SNR by β
— backoff — to account for the uncertainty in the estimated
location. Note the assumption that the average SNR is known
given the location, so the uncertainty in the selected rate is only
affected by the localization error, yielding the meta-probability

p̃ϵ(x) = Px̂(R(x̂) > Cϵ(x)) = Px̂(βγ(x̂) > γ(x)). (18)

It follows that βγ(x̂) > γ(x) ⇔ x̂ < xβ1/η . Defining ξ =
x−x̂, we see that the outage probability is exceeded whenever
ξ > x(1− β1/η). Since ξ ∼ N (0, σ2

x), the meta-probability is
finally given by

p̃ϵ(x) = Pξ(ξ ≥ x(1− β1/η)) (19)

= 1− Φ

(
x

σx
(1− β1/η)

)
, (20)

where Φ is the cumulative distribution function (CDF) of the
standard normal distribution.

The performance of the proposed backoff rate selection is
exemplified in Fig. 1, which shows the selected rate R(x̂) at
different locations and Cϵ(x) for the true location x, together
with the localization probability density function (PDF). As
predicted by (17), we see that the selected rate is a decreasing
function on x̂ since, the larger the distance to the BS, the
larger the path loss. The figure also depicts the outage region,
defined as the range of estimated locations where the selected
rate exceeds the ϵ-outage capacity, i.e., the region defined by
ξ > x(1 − β1/η) as discussed previously. Fig. 1 reveals the
fundamental observation that the UE will choose an overly
optimistic rate if it thinks it has better channel conditions than
it actually has — that is, closer to the BS than it actually is.
Conversely, if the UE underestimates the channel conditions
(x̂ > x), it chooses an overly conservative rate, lowering the
spectral efficiency. Overall, lower values of β lead to more
conservative rates and move the outage region further away
from the UE. These observations are similar to those extracted
in [14], where reliable transmission can be achieved at the cost
of reduced spectral efficiency.

3The approximation in (16) is based on the 1st order Taylor expansion
f(y) = (1− y)t+1 ≈ 1− (1 + t)y. Applying this in the denominator of
(15) directly gives (16), which is accurate whenever γ0G0 ln(1− ϵ) ≈ 0.
The approximation errors for (16) are less than 10−4 m for all x ∈ [20, 100]
m with the settings used in this section.
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Fig. 1: Illustration of backoff rate selection with β = 0.5 for a user at true
location x = 50 m with σ2

x = 16 m2, γ0 = 30 dB, G0 = 0 dB, η = 2 and
ϵ = 10−5. The distance from x to the outage region is 14.6 m resulting in
p̃ϵ(x) = 0.013 % according to (20).

As observed, the value of β is critical in the system’s
performance. Therefore, the problem in (8) is now solved
for backoff rate-selection by finding the maximum value of
β such that p̃ϵ(x) ≤ δ for all x ∈ [xmin, xmax]

4. To find this
maximum, we first notice the location x with the highest meta
probability p̃ϵ(x) in (20) (i.e., lowest reliability), is when x

σx

is minimized since Φ is monotonically increasing. Denoting
x∗ as that location, we solve p̃ϵ(x

∗) = δ for β to obtain the
value that will ensure that the meta-probability requirement at
all locations. The solution follows as:

β =

(
1− Φ−1(1− δ)σx∗

x∗

)η

, x∗ = min
x∈[xmin,xmax]

(
x

σx

)
,

(21)

Interestingly, it can be proved that x∗ = xmin if xmin

σxmin
<

x0

σxmin+x0
−σxmin

, for all x0 ∈ [0, xmax − xmin], which is
satisfied when the localization variance grows slower than
the distance to the BS. The intuition behind why the lowest
reliability is experienced close to the BS can be understood
through the coherence radius. From (16), it is apparent that
the relative change in channel conditions gradually flattens as
the UE moves away from the BS, and vice versa as the UE
moves towards the BS (as also seen in Fig. 1). So even a small
localization error close to a BS can cause the UE to pick a
much higher rate, whereas the same error farther away causes
a smaller change in the selected rate.

Figure 2 plots some examples of the meta-probability us-
ing backoff rate selection, showing that, although the target
reliabilities are met at all locations, the rate is selected too
conservatively except for locations close to the BS. Hence,
the global backoff solution is inherently flawed in providing
an efficient solution due to its strong dependence on the UE
location. One option to improve the backoff rate-selection
scheme would be to make the backoff β dependent on the
estimated location. However, we will instead suggest an al-

4The throughput ratio in (7) increases monotonically for higher selected
rates up till the point where the term 1− pout,x(R(x̂)) starts to penalize the
average rate. When operating the high-reliability domain with ϵ ≪ 1, this
term is negligible, and the problem in (8) reduces to finding the maximum
rates that satisfy the reliability constraint for each location.
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Fig. 2: Meta-probability for backoff rate selection. The upper plot have
constant localization standard deviation of 4 m, and the lower plot have
σx = −0.025x+ 4.5 such that σ20 m = 4 m and σ100 m = 2 m.

ternative approach, which provides a more efficient solution
while still being analytically tractable.

C. Interval Rate Selection

Instead of selecting the rate as a function of the average
SNR at the estimated location, we introduce interval rate
selection, which directly considers the localization error. The
idea is to select the smallest ϵ-outage capacity within an
interval around the estimated location, resulting in the rate
selection function

R(x̂, σx) = min{Cϵ(z) |z ∈ [x̂− qσx, x̂+ qσx] ≜ I(x̂)},
(22)

where 2qσx is the size of the interval I(x̂). Note that the
standard deviation σx of the location estimator is assumed to
be known5. In this simple scenario where fading is dominated
by path loss, the minimum rate within I(x̂) is the right interval
limit such that R(x̂, σx) = Cϵ(x̂+ qσx), and then the meta-
probability becomes

p̃ϵ(x) = Px̂(Cϵ(x̂+ qσx) > Cϵ(x))

= Px̂(x̂ < x− qσx) = Φ(−q), (23)

where (13) has been used. The scenario for interval rate
selection is similar to the one illustrated in Fig. 1, but instead
of scaling the average SNR by a factor β, it is shifted to
the left by qσx, making the distance to the outage region
x − qσx. Additionally, (23) shows that the dependence on
location in the meta-probability is canceled out, which enables
high spectral efficiency for all locations while still meeting
the meta-probability requirement. Specifically, by selecting
q = −Φ−1(δ), we get p̃ϵ(x) = δ for all x.

5Assuming that the variance of an estimator is known is a common
assumption in maximum likelihood estimation. In practice, the variance of
the estimate x̂ can be approximated from the observed information function
evaluated at estimated channel parameters obtained during the localization
procedure (see [20] for further details).
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Fig. 3: Throughput ratio for backoff and interval rate selection at different
locations and different target confidence δ. The dotted horizontal lines show
the backoff value β for δ = 10−1, 10−3, 10−5, respectively. σx = 4 m for
all locations.

D. Throughput

The backoff and interval rate selection schemes are com-
pared in Fig. 36 in terms of the throughput ratio T (x) from
(7). In general, we can observe that the backoff approach is
excessively conservative, with a throughput ratio depending
weakly on the UE location and converging to β as x increases.
For interval rate selection, we see a larger dependence on the
UE location with a throughput ratio that is significantly higher
than for backoff rate selection under the same target δ. The
throughput ratio increases as the UE moves away from the BS,
and numerical evaluations reveal that T (x) → 1 as x → ∞
for the interval approach.

The increase of T (x) with x for the interval rate selection
scheme is readily explained by the coherence radius in (16).
For large x, the coherence radius is also large, and thus the
localization error has less impact, i.e., Cϵ(x̂) ≈ Cϵ(x) with
high probability resulting in T (x) ≈ 1. However, since the
backoff approach uses a global β, even if the coherence radius
is so large that the localization error is negligible, the rate is
still chosen with a backoff from the average SNR leading to
overprovisioning and hence low spectral efficiency.

We shall see that many of the observations made in the
simple scenario here generalize well and are indicative of the
results using similar rate-selection methods in more complex
settings. Specifically, we will now turn our attention to a more
realistic wideband scenario with two-dimensional localization
and generalize the proposed rate-selection methods for this
setting.

IV. RATE SELECTION WITH WIDEBAND MULTIPATH
CHANNEL

We now leverage the previous results to a more realistic two-
dimensional wideband scenario with the general path-based
channel model in (1). Location-based inference is more prac-
tical in wide scenarios since the channel can simultaneously
support communication and TOA-based localization. However,

6The throughput in (7) is evaluated utilizing numerical integration methods.
The expectation is simplified using 1− pout,x(R(x̂)) = (1− ϵ)β(x/x̂)

η
for

backoff and 1− pout,x(R(x̂, σx)) = (1− ϵ)(x/(x̂+qσx))η for interval rate
selection.
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Fig. 4: Exemplary scenario for two-dimensional location-based rate selection.

the added complexity of multiple subcarriers excludes the
possibility of closed-from expressions, so the different rate
selection functions are calibrated numerically, and the per-
formance is illustrated through simulations in an exemplary
cellular scenario.

A. Scenario and Simulated Data

The considered scenario is a square cell R of size 100×100
m2 with a UE at location x ∈ R and four BSs, one in each
corner, as illustrated in Fig. 4. The UE follows the protocol
in Sec. II-A of first estimating its location using signals from
all four BSs and then selecting the communication rate for
transmission with BS1. Note that a more realistic scenario
would include some handover policy, e.g., letting the UE
communicate with the BS that had the highest power during
localization. This would correspond to the BS having four
spatial models of the ϵ-outage capacity — one for each BS
— but otherwise does not change the fundamental relation
between localization error and reliability, and hence we do not
consider this here for sake of simplicity. The channel between
each BS and the UE follows the generic model in (1), where
the first path is the LoS component while the remaining paths
(k > 1) represent the scattering. We simulate the parameters
of (1) — namely ak and τk for k = 1, . . . ,K — for each
location in a grid of points within the cell with grid spacing
∆x7. The parameters are simulated with the tool QuaDRiGa
following the 3GPP NR Urban Micro-Cell scenario with LoS
(see [17, p. 81]). The simulation parameters are summarized
in Table I.

Aiming at reproducing the impact of fast fading, an arbitrary
number of channel realizations are obtained by adding a
random phase shift to each multipath component, according
to the method in [21]. Hence, the i-th channel realization at
subcarrier j is obtained as

hi,j =

K∑
k=1

akdj(τk)e
ȷθi,k , j = 0, . . . , N − 1, (24)

where θi,k
iid.∼ uniform[−π, π). The ground-truth ϵ-outage

capacity Cϵ is estimated numerically as the ϵ-quantile of
105 simulations of the instantaneous capacity C in (2), and

7An area around the cell is also simulated to avoid edge effects when
computing the meta-probability and throughput ratio — we refer to the
supplementary resources for details on this.

TABLE I: Channel and simulation parameters

Description Symbol Value

Cell area R [−50, 50]× [−50, 50] m2

BS heights 10 m
UE height 1.5 m

Grid spacing ∆x 1.42 m
QuaDRiGa model 3GPP_3D_UMi_LOS
Number of paths K 10

Rx and Tx antenna Dipole (vertical polarization)
Centre frequency fc 3.6 GHz

Bandwidth W 20 MHz
Number of subcarriers N 601

Transmit SNR per subcarrier Ptx
WN0

60 dB
Target outage probability ϵ 10−3

Confidence parameter δ 5%
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Fig. 5: ϵ-outage capacity when the UE communicates with BS1 for simulation
parameters in Table I.

depicted in Fig. 5 — see the supplementary resources for
further details on the simulations. It is clearly seen that the
ϵ-outage capacity is affected by path loss depending on the
distance to the BS, but local variations, commonly referred to
as shadowing, are also observed. We again see that Cϵ is a
smooth function of the UE location x.

B. Localization Error

The location is estimated using signals from the four BSs,
denoted by Y = {y1, . . . ,y4}, such that x̂ = g(Y), where g
is some TOA-based estimator. We assume that g is a consistent
— i.e., estimates converge to the true location — maximum-
likelihood estimator, which is sufficient for the asymptotic
result that the estimated location is Gaussian distributed as
[20, ch. 7]

x̂ ∼ N (x,Σx) (25)

where the covariance matrix Σx equals the Cramér-Rao lower
bound, derived from first principles in App. A. The appendix
also provides the position error bound (PEB) defined as a
lower bound of the root-mean-square-error of the location
estimate, i.e., √

E[∥x̂− x∥2] ≥ PEB. (26)

Figure 6 shows the PEB at each UE location in our exemplary
scenario based on localization using the BSs at each corner of
the cell. Comparing the PEB map in Fig. 6 with the outage
capacity map in Fig. 5, no clear correlations are observed,

https://github.com/TobiasKallehauge/Localization-and-Reliability-in-URLLC
https://github.com/TobiasKallehauge/Localization-and-Reliability-in-URLLC
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Fig. 6: PEB for simulation parameters in Table I.

likely because the PEB depends on the channel conditions
for all four BSs, whereas the ϵ-outage capacity only depends
on BS1 as illustrated in Fig. 4. Moreover, a strong multipath
component is detrimental to the performance of TOA but not
necessarily for communications.

The Cramér-Rao lower bound Σx in (25) captures well
how localization error arises when the location estimation is
based on wireless radio-frequency measurements. Studying
realistic error processes is important, especially considering
the increased attention to the intersection of wireless commu-
nications and localization [13], [22]. However, the increased
realism complicates analyzing the results, so to separate the
effects of changing channel statistics (in Fig. 5) and local-
ization statistics (in Fig. 6), we will also analyze a simpler
form of the problem in which the covariance matrix is on
the form Σx = σ2I2 where σ2 > 0 is constant for all
locations. Sections IV-D and IV-E will therefore assume a
constant localization variance and Sec. IV-F will showcase
the more general scenario, where the localization variance is
derived from the Cramér-Rao lower bound. Before proceeding
to the results, three rate selection functions are introduced by
generalizing the approaches from Sec. III.

C. Two-dimensional Rate Selection

1) Backoff Approach: Since selecting the rate with a back-
off from the average SNR as in (17) is not analytically tractable
here, we choose a similar approach of selecting the rate
proportional to the ϵ-outage capacity at the given location,
i.e.,

R(x̂) = βCϵ(x̂), β ∈ (0, 1]. (27)

The meta-probability at UE location x then becomes

p̃ϵ(x) = Px̂(βCϵ(x̂) > Cϵ(x)) = Px̂(x̂ ∈ S(x))), (28)

where S(x) is the outage region defined as the set of locations
where the selected rate exceeds the ϵ-outage capacity at
location x, i.e.,

S(x) = {x̂ ∈ R2 |βCϵ(x̂) > Cϵ(x)}. (29)

Figure 7 shows the outage region for β = 0.5. We observe that,
similarly to the one-dimensional case, the outage probability
is generally violated if the UE thinks it is closer to the BS
at (−50, 50) m than it actually is. However, due to local
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Fig. 7: Outage region S(x) for simulation parameters in Table I, UE location

x = (11,−15, 1.5) m, and Σx =

[
3.3 1.1
1.1 2.6

]
m2 (computed as in App.

A). The UE experiences outage when the estimated location is inside S(x),
which is indicated with the underlying colors showing the localization PDF
in units of m−2. The ellipse represents the 95 % confidence interval for
estimated locations.

variations caused by shadowing and other propagation effects,
the outage region is not perfectly circular as one may expect
from the previous section, and the border of S(x) is diffuse.
Interestingly, despite having a PEB of 2.4 m in this case,
which makes localization errors larger than a few meters quite
unlikely, the outage probability is not-negligible, and the meta-
probability is 0.48 in this case.

2) Interval Approach: Generalizing the approach for the
one-dimensional case, we here select the minimum value of
the ϵ-outage capacity within an area around the estimated
location. Inspired by the confidence interval for the mean of
a multivariate normal distribution, the rate is selected as8

R(x̂,Σx) = min{Cϵ(z) |z ∈ I(x̂;Σx)}, (30)

I(x̂;Σx) = {z ∈ R2 |(z− x̂)TΣ−1
x (z− x̂) ≤ q2} (31)

where, as in (22), q is a parameter to control the size of
the interval. Hence, the interval rate selection approach uses
knowledge of the localization error as in Sec. III, but in
the two-dimensional case, the statistics characterized by Σx

are richer with variances along both axes and the correlation
between the error in each direction.

3) Distance Approach: To study the importance of account-
ing for the local positioning error, we introduce a simplified
version of the interval rate selection, referred to as the distance
approach, which chooses the minimum rate within a circle of
radius d, i.e.,

R(x̂) = min{Cϵ(z) | ∥z− x̂∥2 ≤ d2}. (32)

Note that (30) reduces to (32) if Σx = σ2I2.

D. Numerical Results with Constant Localization Error

As mentioned before, to decouple the impact of the channel
conditions in both the rate selection and the localization
accuracy, we first assume a fixed localization error on the
form Σx = σ2I2 and where σ2 > 0 is constant for all

8Selecting q2 as the (1−α)-quantile of the chi-squared distribution with 2
degrees of freedom provides a 1−α confidence interval for the true location
x.
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locations. Under these conditions, we evaluate the performance
of the different rate selection functions in our exemplary
scenario (simulation parameters in Table I). Note that, since
Σx = σ2I2, the distance rate selection is equivalent to the
interval approach; hence, the former is neglected here.

We fix σ2 = 12.5 m2 — which gives a PEB of 5 m —
and solve (8) numerically for both the backoff and interval
approaches, yielding β = 0.036 and q2 = 5.92 for a
confidence δ = 5 percent. The resulting meta-probability and
throughput ratio are depicted in Figs. 8-9, respectively, and
the distribution of both performance indicators across the cell
is plotted in Fig. 10.

As in Sec. III, we notice an excessively conservative rate
for the backoff approach, rendering a meta-probability much
lower than required in a large portion of the cell. While
not reaching δ at all locations, as in the Rayleigh case,
the interval approach is generally closer to the target meta-
probability. This is better observed in Fig. 10, where it is
also seen that the throughput ratio obtained by the backoff
approach is considerably lower than the interval approach —
specifically, an average throughput ratio of 0.042 and 0.321
for the backoff and interval approaches, respectively. Again,
the global selection of β is penalizing the spectral efficiency
of the system.

Compared to the simple scenario in Sec. III, a key dif-
ference is that the distance to the BS is no longer a good
performance indicator — in the one-dimensional Rayleigh
case, improved performance was obtained as the UE moved
farther away from the BS due to increased coherence radius.
In this more realistic case, local variations of the ϵ-outage
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Fig. 10: Distribution of meta-probability (top) and throughput ratio (bottom)
for all UE locations within the cell.

capacity due to different shadowing and fading conditions
must be considered (see Fig. 5).

To further study the relation between the ϵ-outage capacity
and performance (i.e., how Fig. 5 relates to Figs. 8 and 9), we
observe that low values of meta-probability and throughput
ratio are correlated with local maxima of Cϵ whereas, in turn,
high values are associated with local minima of Cϵ. This
relation is quantified in Fig. 11, where local maxima (peaks)
and minima (valleys) of the ϵ-outage capacity are detected9,
and the results at the detected locations are then grouped by
either peak or valley. In this example, 41 peaks and 32 valleys
are detected within the cell, and the statistics for the meta-
probability and throughput ratio are summarized by boxplots,
showing the median, the 1st and 3rd quartile, and the α and
1− α quantiles of the data (α = 5%).

The figure confirms the previous observation, showing that
the meta-probability for the interval approach is only close to
the target value δ at the valleys, and the throughput ratio is
also only close to 1 at the valleys. The same relation holds for
the backoff approach, however, the overall poorer performance
makes the difference less noticeable. To understand the effect
of peaks and valleys, consider first that the UE is located at
a peak of the ϵ-outage capacity. Since Cϵ(x) is, by definition,
larger at the peak than the surrounding locations, any error in
the location estimation will make the UE to believe its channel
conditions are worse than the actual ones, leading to conser-
vative rate selection and low meta-probability and throughput.
Conversely, at valley locations, the UE almost surely thinks
it has better channel conditions making rate selection less
conservative, yielding larger meta-probabilities and throughput
ratios. Hence, we see here that local minimum of Cϵ(x) have
the highest probabilities of violating the outage requirement
while simultaneously having high throughput ratio.

Aiming at getting more insight, we re-introduce the notion
of coherence radius as a generalization of (14) for two dimen-
sions as

CR(x) = min
ϱ>0

{
ϱ

∣∣∣∣ max
z∈Bϱ(x)

{ |Cϵ(x)− Cϵ(z)|
Cϵ(x)

}
> t

}
, (33)

9The peaks and valleys are detected manually based on visual inspection.
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where Bϱ(x) is a disk of radius ϱ centered at location x. Using
t = 0.9, the relation of coherence radius with meta-probability
and throughput ratio is illustrated in Fig 12, suggesting a
noticeable correlation most pronounced for the throughput
ratio with correlations in the range [0.40, 0.87]. Interestingly,
the coherence radius at the peaks correlates positively with
the meta-probability and throughput ratio and vice-versa for
the valleys. Hence, the coherence radius provides a continuous
measure of the impact of the UE being in a peak or valley,
e.g., a peak with a low coherence radius tends to have lower
throughput ratio than a peak with a higher coherence radius.
However, we do not see a one-to-one relation as in Sec.
III, so while the coherence radius certainly affects the meta-
probability and throughput ratio, it is too simplistic to fully
characterize the performance of location-based rate selection
under realistic propagation conditions (e.g., due to the local
variations of Cϵ caused by shadowing).

Albeit the peak/valley classification explains the system
performance at the two extreme cases, the ϵ-outage capacity at
the rest of the locations may have a different trend depending
on the direction (as shown in Fig. 5), i.e., the sign of the
gradient of Cϵ(x) depends on the radial direction. Therefore,
it is hard to extract a general conclusion unless full knowledge
of the two-dimensional spatial behavior of Cϵ(x) is available.
Nonetheless, for a specific spatial direction, the previous

findings still hold.

E. Numerical Results with Different Levels of Constant Local-
ization Error

We now evaluate the impact of the localization error on the
system performance; that is, whether the previous conclusions
can be generalized for different localization errors. To that
end, we assume again Σx = σ2I2 and vary the value of σ2.
Specifically, Fig. 13 shows results for σ2 between 12.5 m2

and 5000 m2, corresponding to a PEB between 5 m and 100
m. Note that the latter represents a quite large location error,
but we intentionally included it to see the system performance
in extreme cases.

Observing Fig. 13, we notice that, for the backoff approach,
the meta-probability gets closer to the target value δ as the
localization error variance increases. To understand this, recall
that the localization error does not change the shape of the
outage region (see Fig. 7) but increases the probability of
estimating a location within that region (i.e., higher meta-
probability). Conversely, the meta-probability decreases with
larger location errors for the interval rate selection since it
increases the area of the interval, and hence finding a local
minimum of Cϵ(x) is more likely. In the extreme case, the
interval accounts for the whole cell; thus, the global minimum
is selected. The impact on the throughput ratio is the same
for both rate selection approaches, with decreasing throughput
ratio for larger localization variance. However, the relative
impact on the performance is larger for the interval approach.

Another result is how the localization variance affects the
relationship between coherence radius and performance. It is
found that increasing the localization variance has the effect
of lessening the dependence on the coherence radius (i.e.,
decreasing the correlation). This is because larger location
errors diminish the influence of local variations in ϵ-outage
capacity and hence how the coherence radius affects the
performance. We see this trend in Fig. 14.

F. Numerical Results with Error Bound-Based Localization
Error

As a final result, we now evaluate the system’s performance
in the full scenario wherein the localization error is based on
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the error bounds derived in App. A and illustrated in Fig. 6,
i.e., the localization error covariance matrix is now dependent
on the location and not a diagonal matrix. As previously, (8) is
solved numerically for the three rate selection functions in Sec.
IV-C, yielding β = 0.035 for backoff, q2 = 6.63 for interval,
and d2 = 346 for the distance approach. The resulting rates
R(x̂) at every estimated location x̂ ∈ R within the cell are
plotted in Fig. 15. Note that the rate selection approach from
(30) also depends on the localization covariance Σx, hence,
R(x̂,Σx). The rates shown in the center plot all correspond to
Σx at true UE location x = (−26,−16, 1.5) m, which defines
the shape of the interval I(x̂;Σx) illustrated in the top right
corner.

Fig. 15 immediately reveals that the selected rates in the
interval approach are considerably larger than the two other

approaches, potentially leading to higher spectral efficiency.
While the chosen rates with the backoff approach are simply
a scaled version of the ϵ-outage capacity, the interval and
distance approach shows different spatial patterns, both with
several areas where the selected rate is flat due to a local
minimum in the capacity at the center of the flat areas.

Looking at the overall performance, the statistics for the
meta-probability and throughput ratio are summarized in Fig.
16. We see that the results for the backoff and interval
approaches are similar to those for constant localization error
in Fig. 10, with overall better performance for the inter-
val approach. Similar to the results in Sec. III, the meta-
probability for the backoff approach is generally much lower
than required, being hence a too conservative approach. The
same holds for the distance approach, although with a slight
increase in the average throughput ratio. Interestingly, despite
following a similar rationale, we see that the interval rate
selection approach is more efficient than the distance-based
approach, highlighting the importance of accounting for the
specific localization accuracy. With the added complexity in
the scenario of non-constant localization error, the difference
between results in peaks/valleys of the ϵ-outage capacity is
less pronounced but still significant (albeit not shown in the
figures). The impact of the coherence radius is also lessened
with correlations in the order of |ρ| ≈ 0.25. This again points
out the complexity of the location-based rate selection problem
and the fact that predicting the reliability and throughput
requires extensive knowledge of the scenario (i.e., simply
knowing the coherence radius is not sufficient).

V. CONCLUSIONS

Within the context of ultra-reliable communications, this
paper has analyzed the impact of location uncertainty on
communication reliability when the transmission rate is se-
lected based on localization. Different cases have been studied
through a rigorous statistical framework, ranging from a one-
dimensional scenario subject to Rayleigh fading to a two-
dimensional case with 3GPP channels and localization error
derived from Fisher analysis. By isolating the location error as
the only source of uncertainty, we have shown that it consider-
ably impacts the communication reliability — characterized by
the meta-probability — and the achievable throughput. Over-
all, spatial consistency of the channel statistics is pointed out as
beneficial for performance, resulting in low meta-probability
and high throughput ratio. However, as the propagation envi-
ronment becomes more intricate (equivalently, more realistic),
this correlation is lessened, and some exceptions arise. It was
seen explicitly that higher coherence radius at local minima
of the ϵ-outage capacity causes increases in meta-probability
(i.e., lower reliability) but also higher throughput ratio, and
vice versa for local maxima. A comprehensive understanding
of the system is, therefore, necessary to fully account for
the impact of localization error, but simple measures such as
the coherence radius are still informative. As expected, larger
localization errors translate into a reduced performance but
also reduce the dependency on variations of local channel
conditions. Different rate selection functions have also been
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tested, highlighting that correctly accounting for localization
uncertainty at each position within is of capital importance
to reliably select the transmission rate without penalizing the
spectral efficiency. Overall, global rate selection policies, i.e.,
not accounting for specific local propagation conditions, are
shown to be excessively conservative.

Future work in studying the impact of localization error on
ultra-reliable communication includes exploring more realistic
channel models, e.g., including blockages to introduce non-
smooth channel statistics, analyzing non-static propagation
environments, or working with real datasets. Another impor-
tant future direction is to include the error introduced in the
process of mapping channel statistics based on location. That
is, analyzing radio mapping approaches (e.g., in [8]) and using
the insight gained in this work to account for localization
errors. This work helps to lay the foundation for understanding
how localization errors impact ultra-reliable communication.
We specifically studied physical layer reliability for location-
based rate selection, but the results here can be generalized
with the ultimate objective of enabling ultra-high reliability
using localization and sensing in future networks such as 6G.

APPENDIX

A. Error-Bounds for Time of Arrival-Based Localization

In this appendix, the error of TOA-based localization is
modeled in the scenario described in Sec. IV-A with signals
from the channel in (1), where the first path (k = 1) is the
LoS path and the remaining paths (k > 1) are NLoS scattering.
TOA localization is assumed, based on the propagation delay
of the LoS path and requiring D + 1 reference signals from
different BSs. The scenario in Fig. 4 is considered, and
the incoming signal from each BS is denoted by yi for
i = 1, . . . , 4. Assuming that the estimator x̂ = g(Y) of
the true position x with Y = {y1, . . . ,y4} is unbiased,
its variance is lower-bounded through the Cramér-Rao lower
bound (CRLB) as Var[x̂] ≥ J−1(x), where J(x) is the Fisher
information matrix (FIM) corresponding to the UE location x
and the inequality is in the positive semi-definite sense [20].
This bound is derived in the following.

The first step in finding the FIM for x is to compute
the FIM with respect to all unknown parameters in (1).
Since the UE clock may not be synchronized with the
BSs, the delays are given by τ̃i,1 = ∥x− xbs,i∥ /c + B
where c is the speed of light and B ∈ R is the
clock bias. We then denote the unknown parameters as
ηi =

[
τ̃i,1 . . . τ̃i,K′

i
R(ai,1) . . . R(ai,K′

i
) I(ai,1) . . . I(ai,K′

i
)
]T

for i = 1, 2, 3, 4, where the first subscript in the parameters
denotes the BS, the second denotes the path index, and K ′

i is
the number of non-resolvable paths from the ith BS plus the
LoS path. The non-resolvable paths are defined as all NLoS
scattered paths such that |τ̃i,1 − τ̃i,k| ≤ 1

W , k > 1, where W
is the system bandwidth [23].

Denoting d(τ̃i,k) as the vector with elements dj(τ̃i,k) =
exp(−2πȷ∆f jτ̃i,k), the normalized received signal yi/

√
Ptx

in (1) follows a circularly symmetric, complex Gaussian
distribution with mean µi =

∑K
k=1 ai,kd(τ̃i,k) and covariance

WN0

Ptx
IN . Therefore [20]:

J(ηi) =
2Ptx

WN0

N−1∑
j=0

R

(
∂µi,j

∂ηi

(
∂µi,j

∂ηi

)H
)
. (34)

The partial derivatives in (34) with respect to the un-
known channel parameters are ∂µi,j

∂τ̃i,k
= −ai,kȷ2πj∆fdj(τ̃i,k),
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∂µi,j

∂R(ai,k)
= dj(τ̃i,k), and ∂µi,j

∂I(ai,k)
= ȷdj(τ̃i,k). Simplified

expressions for the FI matrix can be found in the appendix of
[24]. In ηi, only the LoS delay τ̃i,1 contains information about
the location x, so we continue with the equivalent FI [16]

JE(τ̃i,1) = [J(ηi)]1,1 − [J(ηi)]1,2:([J(ηi)]2:,2:)
−1[J(ηi)]2:,1

(35)
where [J ]i:j,k:p denotes the submatrix of J from row i to j
and column k to p. The second term is interpreted as the
information loss from the unknown nuisance parameters.

Assuming independence of the signals from the four BSs,
JE(τ̃1,1, τ̃2,1, τ̃3,1, τ̃4,1) is the diagonal matrix with elements
JE(τ̃1,1), J

E(τ̃2,1), J
E(τ̃3,1), J

E(τ̃4,1), and the FIM with re-
spect to the location x = [x1 x2]

T and clock bias B is obtained
using the transformation [20]

J(x, B) = TTJE(τ̃1,1, τ̃2,1, τ̃3,1, τ̃4,1)T, (36)

where

T =


∂τ̃1,1
∂x1

∂τ̃1,1
∂x2

∂τ̃1,1
∂B

...
...

...
∂τ̃4,1
∂x1

∂τ̃4,1
∂x2

∂τ̃4,1
∂B

 , (37)

with ∂τ̃i,1
∂xd

=
xd−(xbs,i)d
c∥x−xbs,i∥ , for d = 1, 2 and i = 1, . . . , 4,

and ∂τ̃i,1
∂B = 1, for i = 1, . . . , 4. The CRLB of the position

estimator is then
[
J(x, B)−1

]
1:2,1:2

.
This bound was derived for a specific set of parameters

{η1, . . . ,η4}, wherein the channel coefficients ai,k are mod-
eled as random variables while the delays τ̃i,k are assumed
deterministic. Assuming that the channel changes quickly
(e.g., in a block-fading channel), the localization model should
reflect the average behavior rather than a specific realization.
Denote A = {R(ai,k), I(ai,k) : k = 1, . . . ,K ′

i, i =
1, . . . , 4} as the total set of all random parameters such that
J−1(x;A) ≜

[
J(x, B)−1

]
1:2,1:2

is the conditional CRLB
given a specific channel realization [25]. This, in turn, means
that Var[x̂ |A] ≥ J−1(x;A), and the law of total variance
then tells us that

Var[x̂] = E[Var[x̂ |A]] + Var[E[x̂ |A]]

≥
∫

J−1(x;A)f(A) dA ≜ J−1(x), (38)

where f(A) denotes the joint distribution of the channel
coefficients. We note that the inequality in (38) holds since
J−1(x;A) is positive definite and f(A) is non-negative, which
is sufficient for the integration to preserve the inequality. To
have a scalar measure for the localization error, we define the
position error bound (PEB) as

PEB(x) ≜
√

T[J−1(x)] ≤
√

E[∥x̂− x∥2]. (39)
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