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Abstract—Orthogonal time frequency space (OTFS) is a
promising alternative to orthogonal frequency-division multiplex-
ing (OFDM) for high-mobility communications. We propose a
novel multiple-input multiple-output (MIMO) integrated sensing
and communication (ISAC) system based on OTFS modulation.
We begin by deriving new sensing and communication signal
models for the proposed MIMO-OTFS ISAC system that ex-
plicitly capture inter-symbol interference (ISI) and inter-carrier
interference (ICI) effects. We then develop a generalized likeli-
hood ratio test (GLRT) based multi-target detection and delay-
Doppler-angle estimation algorithm for MIMO-OTFS radar sens-
ing that can simultaneously mitigate and exploit ISI/ICI effects,
to prevent target masking and surpass standard unambiguous
detection limits in range/velocity. Moreover, considering two oper-
ational modes (discovery/track), we propose an adaptive MIMO-
OTFS ISAC transmission strategy. For the discovery mode,
we introduce the concept of delay-Doppler (DD) multiplexing,
enabling omnidirectional probing of the environment and large
virtual array at the OTFS radar receiver. For the track mode, we
pursue a directional transmission approach and design an OTFS
ISAC optimization algorithm in spatial and DD domains, seeking
the optimal trade-off between radar signal-to-noise ratio (SNR)
and achievable rate. Simulation results verify the effectiveness of
the proposed sensing algorithm and reveal valuable insights into
OTFS ISAC trade-offs under varying communication channel
characteristics.

Index Terms– OTFS, OFDM, ISAC, inter-symbol interference,
inter-carrier interference, delay-Doppler multiplexing.

I. INTRODUCTION

A. Background and Motivation

As 5G systems are being rolled out, the time has come
to conceive and develop 6G communication systems. There
are now several initiatives in Europe, the USA, and Asia to
define what 6G will be in terms of use cases and requirements
[1], [2]. As with all previous generations, one requirement
will be a 10-fold increase in peak data rate. Unlike previous
generations, there is now greater emphasis placed on integrated
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sensing and communications (ISAC) [3], driven not only by
localization/sensing use cases but also the inherent geometric
nature of the wireless propagation channel [4].

In pursuit of higher data rates, lower latency, and higher
sensing accuracies, we have no choice but to consider larger
carrier frequencies, above the 24 GHz band in 5G, as this
is where larger bandwidths are available [5]. At lower fre-
quencies, (despite intense competition) orthogonal frequency-
division multiplexing (OFDM) has remained the communica-
tion waveform of choice, due to its robustness to multipath,
simple equalization, straightforward integration with multi-
antenna systems, and high flexibility in terms of power and
rate allocation [6]. In addition, OFDM proves to be suitable for
ISAC with standard FFT-processing, in both mono-static and
bi-static configurations [3], [7]. However, at 6G frequencies,
OFDM is challenged by several effects, which necessitates
the consideration of alternative modulation formats. Firstly,
OFDM suffers from a high peak-to-average power ratio
(PAPR), leading to reduced power efficiency, which becomes
a limiting factor at high carriers. Secondly, OFDM requires
frequent adaptation due to mobility and fading, which would
lead to prohibitive overheads at high carriers due to the short
coherence times [6]. Moreover, the robustness to multipath
comes at a cost of inserting a cyclic prefix (CP) between
OFDM symbols, resulting in a rate loss, to combat inter-
symbol interference (ISI). Finally, for radar, OFDM is sensitive
to inter-carrier-interference (ICI), resulting from Doppler shifts
under high target velocities [8].

These drawbacks of OFDM have sparked renewed interest
in alternative modulation schemes, in particular with favorable
properties in terms of ISAC performance. Orthogonal time
frequency space (OTFS) has become a promising candidate in
this respect, as it has lower PAPR [9], requires less frequent
adaptation [10], incurs a much lower CP overhead and can
cope with much larger Doppler shifts [11]. As opposed to
frequency-time (FT) domain multiplexing in OFDM modula-
tion, OTFS multiplexes the data symbols in the delay-Doppler
(DD) domain. This implies that a time-varying channel with
constant Doppler will appear time-invariant to OTFS [12],
which can be exploited to improve bit error rate (BER) perfor-
mance in high-mobility scenarios [13], [14]. From a practical
viewpoint, efficient Zak transform-based implementations of
OTFS have been recently proposed [15], [16]. In addition to its
advantages for communications, OTFS can also bring potential
benefits for radar sensing since radar detections are of the form
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of range (delay) and velocity (Doppler) tuples [17]. Overall,
OTFS stands out as a natural candidate for ISAC, especially
in high-mobility vehicular applications, as evidenced by recent
activity in this area [14], [17]–[25].

B. Related Work on OTFS ISAC
As a common approach in the OTFS ISAC literature,

target detection and range-velocity estimation are performed
by converting the received time-domain signal back to the DD
domain [18]–[20], [23]. This leads to high complexity, e.g.,
requiring iterative interference cancellation-based processing
due to significant side-lobe levels1 [18]. In addition, the
expression of the radar signal in the DD domain is quite
complicated (see, e.g., [20, Eq. (12)], [18, Eq. (11)], [23,
Eq. (11)]), making it difficult to derive insights into the
structure of the OTFS signal in terms of ISI and ICI effects.
Moreover, the majority of the existing studies (e.g., [17]–
[21], [23], [24]) suffers from standard ambiguity limits in
range and velocity estimation (i.e., dictated by subcarrier
spacing) as far-away and high-mobility targets lead to severe
ISI and ICI effects. Recently, several approaches have been
proposed to surpass the standard limits in radar detection
[22], [25]. In [22], a virtual CP insertion technique has been
considered to increase maximum unambiguous range under the
assumption of known number of targets. In [25], improvements
in the unambiguous range and velocity of an OTFS correlation
receiver have been investigated in a single-target scenario.
However, the studies [22], [25] share two major shortcomings
limiting their applicability and potential in practical OTFS
systems. First, these approaches do not address the problem
of multi-target detection with OTFS under ISI and ICI effects,
which could be extremely challenging due to increased side-
lobe levels and the accompanying masking effect [8], [27].
Second, possible benefits of ISI and ICI in OTFS sensing (e.g.,
improved target resolvability in range and velocity [8]) have
not been explored in [22], [25].

An important aspect of OTFS ISAC schemes pertains to the
utilization of multiple-input multiple-output (MIMO) architec-
tures to provide additional degrees-of-freedom in transmission
and generate angle estimates together with delay-Doppler
measurements in radar sensing [14], [17], [18], [21], [23], [23].
In [18], [21], [23] [23], considering a hybrid analog-digital
architecture for MIMO-OTFS ISAC systems, successive in-
terference cancellation based multi-target detection/estimation
algorithms have been proposed. The study in [23] considers
a discovery mode where the aim is to create a beampattern
covering a wide angular sector to detect potential targets/users,
and a track mode where narrow beams are designed to illu-
minate the detected targets/users. The work in [17] develops
a MIMO-OTFS ISAC transmission strategy based on spatial
spreading and de-spreading, and investigates the impact of
antenna power allocation on communication and sensing per-
formances. Moreover, [14] designs a sensing-assisted predic-
tive beamforming scheme for MIMO-OTFS ISAC systems in

1OTFS can lead to signal processing challenges also at the communica-
tions side, especially related to equalization due to large pilot overhead and
high signal-to-noise ratio (SNR) requirement to obtain accurate channel state
information [26].

vehicular networks. Despite a significant body of research con-
cerning single-antenna and MIMO OTFS ISAC systems [14],
[17]–[25], the following fundamental topics remain unexplored
so far: (i) development of insightful OTFS signal models for
radar and communication that explicitly capture ISI and ICI
effects, (ii) design of multi-target detection and delay-Doppler-
angle estimation algorithms for MIMO-OTFS radar sensing
in the presence of ISI and ICI effects, (iii) exploitation of
ISI and ICI to improve sensing performance of MIMO-OTFS,
and (iv) investigation and optimization of MIMO-OTFS ISAC
trade-offs in spatial and DD domains under varying channel
characteristics.

C. Contributions

Extending the preliminary results in [27], this study aims
to fill the aforementioned knowledge gaps and proposes a
MIMO-OTFS ISAC system by introducing novel observation
models, transmission strategies, signal designs and radar re-
ceiver algorithms. The main contributions can be summarized
as follows:
• Novel Signal Models for OTFS ISAC: We derive novel

radar and communication signal models for MIMO-OTFS
ISAC systems by rigorously taking into account ISI
and ICI effects. We formulate radar and communication
channels as a function of continuous-valued physical
path parameters (i.e., delays, Dopplers and angles) to
reveal the explicit impact of ISI and ICI on the final
observations, providing valuable analytical insights into
the manifestation of these effects in OTFS systems.

• MIMO-OTFS Radar Sensing under ISI/ICI: Based on
the new radar model, we design a generalized likelihood
ratio test (GLRT) for multi-target detection/estimation
algorithm at the MIMO-OTFS radar receiver that enables
simultaneous mitigation and exploitation of ISI and ICI
effects. This approach surpasses the range/velocity ambi-
guity barrier encountered in most existing OTFS studies
[17]–[21], [23], [24] and allows for detection of any
practically relevant range/velocity. The proposed ISI/ICI
exploitation strategy serves to transform these typically
detrimental effects into advantageous components, thus
enriching the capabilities of the OTFS radar receiver.

• MIMO-OTFS ISAC Transmission Schemes: We pro-
pose an adaptive MIMO-OTFS ISAC transmission strat-
egy that considers the different operational modes (i.e.,
discovery and track [28]) of the proposed ISAC system. In
discovery/search mode (where no information is available
on sensing and communication directions), we introduce
the concept of delay-Doppler (DD) multiplexing, which
assigns non-overlapping DD bins to TX antennas, en-
abling omnidirectional transmission from the ISAC trans-
mitter and construction of a virtual array with improved
angular resolution at the radar receiver.

• MIMO-OTFS ISAC Trade-off Optimization: For the
track mode, we develop an algorithm for ISAC signal
design that optimizes the trade-off between radar and
communications in the presence of a-priori location infor-
mation on radar targets and the communication receiver.
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Fig. 1. The proposed MIMO-OTFS ISAC system consisting of a multiple-antenna OTFS transmitter and radar receiver on the same hardware platform, and
a remote single-antenna OTFS communication receiver.

We derive an achievable rate expression based on the
covariance matrix of the linear minimum mean square
error (LMMSE) estimator and formulate an ISAC trade-
off problem by optimizing over DD domain power allo-
cation and transmit beamforming, following a directional
phased-array transmission strategy. Compared to [23], the
proposed ISAC transmission scheme enables detection of
potential radar targets/communication receiver uniformly
in all directions in discovery mode, and allows investi-
gation of OTFS ISAC trade-off characteristics in track
mode.

Notations: diag (x) outputs a diagonal matrix with the
elements of a vector x on the diagonals, diag (X) represents
a diagonal matrix with the diagonal elements of a square
matrix X on the diagonals, vec(·) denotes matrix vectorization
operator, and reshapeN,M (·) reshapes a vector into an N×M
matrix column-wise. � and ⊗ denote the Hadamard (element-
wise) and Kronecker products, respectively. ‖X‖F is the
Frobenius norm of X.

II. MIMO-OTFS ISAC SYSTEM MODEL

We consider a MIMO-OTFS ISAC system consisting of a
MIMO-OTFS ISAC transceiver and a single-antenna OTFS
communication receiver (RX), as shown in Fig. 1. The
transceiver contains, on the same hardware platform, (i) an
ISAC transmitter (TX) with an NT-element digital array that
generates the OTFS ISAC signal for sending data symbols
to the communication RX, and (ii) a radar RX with an NR-
element digital array that processes the backscattered signals
for target detection and parameter estimation [20]. In this
section, we present the proposed MIMO-OTFS transmission
scheme, and derive the OTFS transmit signal model and the
corresponding observation models at the radar and commu-
nication receivers by adopting the single cyclic-prefix (CP)
OTFS modulation architecture2 [17], [19], [20], [26], [30],
[31].

2CP is inserted per symbol in OFDM to prevent ISI and ensure orthogo-
nality of symbols in the time-frequency domain, while a single CP is inserted
per block/frame in OTFS (consisting of many symbols) to prevent inter-block
interference (IBI) [11], [29]. This provides a significant overhead reduction
in OTFS at the cost of increasing receiver complexity [11].

A. OTFS Transmit Signal Model

The OTFS system has a total bandwidth N∆f and total
frame duration MT (excluding any CP), where N and M
denote the number of subcarriers and the number of symbols,
respectively, ∆f is the subcarrier spacing and T = 1/∆f
represents the symbol duration. Let XDD ∈ CN×M denote
the two-dimensional (2-D) OTFS frame in the DD domain
consisting of NM transmit data symbols that reside on the
DD grid

G =

{(
n

N∆f
,
m

MT

) ∣∣∣ 0 ≤ n ≤ N − 1, 0 ≤ m ≤M − 1

}
.

In the following, XDD will be processed in four steps: (i) DD
windowing/precoding of XDD for transmission over multiple
TX antennas, (ii) transforming from DD to frequency-time
(FT) domain, (iii) Heisenberg transform, and (iv) addition of
CP.

1) Delay-Doppler Windowing/Precoding: In the proposed
DD windowing scheme, the ith TX antenna transmits a win-
dowed/precoded version of the OTFS frame XDD, represented
by [17]

XDD
i , XDD �Wi , (1)

where Wi ∈ CN×M is the windowing matrix for the ith

antenna satisfying the total power constraint
∑NT

i=1 ‖Wi‖2F =
NMNT. Note that the DD windowing operation in (1) can
be interpreted as symbol-wise precoding in the DD domain
[17]. Depending on the operational mode of the OTFS ISAC
system, the windowing matrices {Wi}NT

i=1 can be designed in
different ways.

• Discovery Mode: In discovery mode where no a-priori
information about radar targets and the communication
RX is available, the ISAC TX can follow an omnidirec-
tional transmission strategy [28] and achieve orthogonal-
ity across the TX antennas by dividing the entire DD do-
main into mutually exclusive and collectively exhaustive
subsets of NT Boolean masks (see Fig. 1), i.e.,

Wi �Wj = 0N×M , ∀i 6= j , (2a)
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NT∑
i=1

Wi = 1N×M . (2b)

The proposed discovery mode strategy in (2) is here-
after called DD multiplexing. This enables constructing
a virtual array of NTNR elements for MIMO-OTFS
radar sensing to improve angular resolvability of mul-
tiple targets, as will be elaborated on in Sec. III-B.
Additionally, omnidirectional transmission through DD
multiplexing facilitates the detection of potential targets
and the communication RX uniformly in all directions.

• Track Mode: Once the communication RX and/or targets
are detected in discovery mode3, the ISAC TX acquires
a-priori knowledge on the communication and sensing
directions. Then, the ISAC TX can switch to track mode
and construct the windows to steer beams towards desired
angular sectors [33], [34]. In track mode, we transmit the
same waveform over all antennas (i.e., phased-array radar
[35]) with adjustable complex coefficients per antenna
to create directional narrow beams maximizing SNR
towards an angular sector of interest. This also enables
optimizing the trade-off between radar and communica-
tions. In compliance with the phased-array transmission,
we can express the windows in (1) as

wi = βip , (3)

where wi , vec(Wi) ∈ CNM×1, p ∈ RNM×1 contains
the amplitudes for the DD bins, common to all TX anten-
nas, and βi ∈ C denotes the complex coefficient applied
at the ith TX antenna, used for beam steering4. The
design of {βi}NT

i=1 and p will be discussed in Sec. V-C.

2) Transformation from Delay-Doppler to Frequency-Time
Domain: Applying an inverse symplectic finite Fourier trans-
form (ISFFT) (i.e., an N -point FFT over the columns and an
M -point IFFT over the rows of XDD), we transform the 2-D
transmit data block from the DD domain to the frequency-time
(FT) domain [10], [13], [30], [36], [37]

Xi = FNXDD
i FHM , (4)

where Xi ∈ CN×M is the FT domain signal for the
ith TX antenna and FN ∈ CN×N is a unitary dis-
crete Fourier transform (DFT) matrix with [FN ]`,n =

1√
N
e−j2πn

`
N , `, n = 0, . . . , N − 1. Note that the DD domain

windowing in (1) can equivalently be implemented as a 2D
filter in the FT domain since point-wise multiplication in the
DD domain corresponds to 2D circular convolution in the FT
domain [38].

3Discovery and track modes can be interpreted in the context of sensing-
assisted beam management (or, sensing-assisted communications [32]). First,
the communication RX can be sensed in discovery mode as a passive object
using the echoes of the downlink transmission and then distinguished from
other targets in the environment by the ISAC TX in the uplink phase [28].

4The structure in (3) reduces the search space for the window design
problem, making power allocation and antenna weight optimization more
tractable computationally. More flexible designs can be adopted to achieve
improved optimization results at the cost of increased complexity and will be
investigated in a future work.

3) Heisenberg Transform: To map the FT domain 2-D
sequence Xi to a time domain signal transmitted over the
wireless channel, we apply the Heisenberg transform [10],
[37], which entails an N -point IFFT together with a transmit
pulse-shaping waveform gtx(t) (which is time limited to
[0, T ]). The time domain signal for the ith TX antenna and
the mth symbol after the Heisenberg transform can be written
as

sm,i(t) =
1√
N

N−1∑
n=0

[Xi]n,m e
j2πn∆ftgtx(t) , 0 ≤ t ≤ T .

(5)
Hence, the time domain signal transmitted by the ith TX
antenna for the entire OTFS frame without CP is given by

si(t) =

M−1∑
m=0

sm,i(t−mT ) , 0 ≤ t ≤MT . (6)

4) CP Addition: Finally, the entire time domain signal with
CP (of duration Tcp) for the ith TX antenna is given by [19],
[20], [26], [30], [31]

sCP,i(t) =

{
si(t), 0 ≤ t ≤MT

si(t+MT ), − Tcp ≤ t ≤ 0
. (7)

B. OTFS Radar Signal Model
Assuming the existence of K point targets in the sensing

environment, we consider the narrowband time-varying MIMO
radar channel model [20], [21], [23], [39]

H(t, τ) =

K−1∑
k=0

αkδ(τ − τk)ej2πνktarx(θk)aTtx(θk) , (8)

where atx(θ) ∈ CNT×1 and arx(θ) ∈ CNR×1 denote the
steering vectors of the TX and radar RX arrays, respectively,
and the kth target is characterized by a complex channel
gain αk, an initial round-trip delay τk = 2Rk/c, a Doppler
shift νk = 2vk/λ and an angle-of-arrival (AOA)/angle-of-
departure (AOD)5 θk, with Rk, vk, c and λ denoting the
initial range at t = 0, radial velocity, speed of propagation
and carrier wavelength, respectively. Based on the channel
model in (8), the backscattered signal (i.e., superposition of
the echoes generated by the targets) at the RX array of the
radar receiver is

yCP(t) =

∫
H(t, τ)sCP(t− τ) dτ + z(t) ∈ CNR×1 (9)

=

K−1∑
k=0

αke
j2πνktarx(θk)aTtx(θk)sCP(t− τk) + z(t)

for −Tcp ≤ t ≤ MT , where sCP(t) =
[sCP,1(t) · · · sCP,NT(t)]T ∈ CNT×1, with sCP,i(t) in
(7), and z(t) ∈ CNR×1 is additive white Gaussian noise
(AWGN)6.

5Due to co-located TX and radar RX arrays, AOA and AOD assume the
same value for the radar channel.

6The narrowband model in (8) is valid if the time-bandwidth product
satisfies NM � c/(2|vk|) ∀k [8], [40], [41]. For typical vehicular OTFS
ISAC systems (i.e., |vk| < 150 m/s, N is on the order of 103 and M is on
the order of 102 [20]), this condition holds true, justifying the narrowband
approximation sCP(t− τk(t)) ≈ sCP(t− τk), where τk(t) = τk − νkt/fc
represents the time-varying delay due to Doppler shift νk [8].
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C. OTFS Communication Signal Model

Suppose that the communication channel between the ISAC
TX and the communication RX consists of K̃ paths. Then,
similar to the radar channel in (8), the multiple-input single-
output (MISO) OTFS communication channel can be modeled
as [17], [20]

hTcom(t, τ) =

K̃−1∑
k=0

α̃kδ(τ − τ̃k)ej2πν̃ktaTtx(θ̃k) , (10)

where α̃k, τ̃k, ν̃k and θ̃k represent, respectively, the complex
channel gain, delay, Doppler shift and AOD of the kth

path7. Using (7) and (10), the received signal at the OTFS
communication RX is given by

ycom,CP(t) =

∫
hTcom(t, τ)sCP(t− τ) dτ + z̃(t) , (11)

=
K̃−1∑
k=0

α̃ke
j2πν̃ktaTtx(θ̃k)sCP(t− τ̃k) + z̃(t)

for −Tcp ≤ t ≤MT , where z̃(t) denotes AWGN. To prevent
inter-frame interference for both radar and communications,
the CP duration is assumed to be larger than the round-trip
delay of the furthermost target [8], [43], [44] and the delay
spread of the communication channel [13], [29].

III. NOVEL OTFS SIGNAL MODEL ACCOUNTING FOR
ISI/ICI EFFECTS

In this section, we derive a novel compact representation
of the OTFS radar and communication signal models in (9)
and (11), respectively, which rigorously captures the ISI and
ICI effects [13], [20], [23], [37]. In addition, we show the
orthogonality of transmit waveforms under the DD multiplex-
ing strategy in discovery mode and the respective virtual array
structure in OTFS radar. Finally, we demonstrate that the new
formulation provides important insights into the manifestation
of the ISI and ICI effects, and enables their exploitation to
improve OTFS radar performance.

A. Time-Spatial Observations for OTFS Radar

1) CP Removal: We begin by formulating the OTFS radar
RX signal in (9) in a compact form. First, we remove the CP
in (9) (i.e., the interval [−Tcp, 0]) to obtain

y(t) =

{
yCP(t), 0 ≤ t ≤MT

0, − Tcp ≤ t ≤ 0
. (12)

Under the assumption Tcp ≥ maxk τk, (7) implies the cyclic
shift property [30, Eq. (6)]

si([t− τk]MT ) = sCP,i(t− τk), 0 ≤ t ≤MT , (13)

7The communication model can be straightforwardly extended to the case
of multiple communication RXs by simultaneously transmitting multiple data
streams in track mode. In the presence of P RXs, a precoding matrix of size
NT×P can be employed to steer the P OTFS time-domain signals towards
the AODs of the respective RXs [42].

where [·]T denotes modulo-T . Accordingly, using (9), the
signal in (12) becomes

y(t) =

K−1∑
k=0

αke
j2πνktarx(θk)aTtx(θk)s([t− τk]MT ) + z(t) ,

(14)

where

s(t) = [s1(t) · · · sNT(t)]T ∈ CNT×1 , (15)

with si(t) being defined in (6).
2) Frequency-Domain Representation: Let Si(f) ,
F{si(t)} =

∫MT

0
si(t)e

−j2πft dt denote the Fourier trans-
form of si(t). Then, a cyclic shift of si(t) corresponds to a
phase shift in Si(f), i.e.,

si([t− τk]MT ) = F−1
{
Si(f)e−j2πfτk

}
, (16)

where F−1{·} represents the inverse Fourier transform. Sam-
pling the time domain at t = `T/N for ` = 0, . . . , NM−1 and
the frequency domain at f = n∆f/M for n = 0, . . . , NM−1,
the equivalent discrete-time representation of (16) can be
written as

si([t− τk]MT )
∣∣
t=`T/N

= FH
(
Fsi � b(τk)

)
(17)

for ` = 0, . . . , NM − 1, where

b(τ) = bN (τ)⊗ bISI(τ) ∈ CNM×1 (18)

is the frequency-domain steering vector with

bN (τ) ,
[
1 e−j2π∆fτ · · · e−j2π(N−1)∆fτ

]T
∈ CN×1 ,

bISI(τ) ,
[
1 e−j2π

1
M ∆fτ · · · e−j2π

M−1
M ∆fτ

]T
∈ CM×1 .

Additionally, F ∈ CNM×NM is a unitary DFT matrix and
si ∈ CNM×1 denotes the sampled version of si(t) in (15).
Note that si can be expressed using (4)–(6) as [29]

si = vec
(
GtxFHNXi

)
= vec

(
GtxXDD

i FHM
)
, (19)

where Gtx , diag (gtx(0), gtx(T/N), . . . , gtx((N − 1)T/N)).
To express the Doppler-dependent term in (14) in a compact

manner, let us define the temporal steering vector

c(ν) = cM (ν)⊗ cICI(ν) ∈ CNM×1 (20)

with

cM (ν) ,
[
1 ej2πTν . . . ej2π(M−1)Tν

]T
∈ CM×1 ,

cICI(ν) ,
[
1 ej2π

T
N ν . . . ej2π

T (N−1)
N ν

]T
∈ CN×1 .

3) Time-Spatial Observations: Using (15), (17), (18) and
(20), the time-varying terms in (14) can be written for ` =
0, . . . , NM − 1 as

ej2πνktaTtx(θk)s([t− τk]MT )
∣∣
t=`T/N

=

(
NT∑
i=1

FH
(
Fsi � b(τk)

)
[atx(θk)]i

)
� c(νk) , (21)

= C(νk)

NT∑
i=1

FHB(τk)Fsi [atx(θk)]i , (22)
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Fig. 2. Transmit beampatterns in discovery and track modes of the proposed
MIMO-OTFS ISAC system, with the parameters in Sec. VI-B.

= C(νk)FHB(τk)FSatx(θk) ∈ CNM×1 , (23)

where B(τ) , diag (b(τ)) ∈ CNM×NM , C(ν) ,
diag (c(ν)) ∈ CNM×NM , and

S , [s1 . . . sNT ] ∈ CNM×NT (24)

is the transmit waveform matrix, i.e., the sampled version of
(15). Plugging (23) into (14), the sampled observations ar-
ranged into time-spatial form are given, for ` = 0, . . . , NM−
1, by

Y , y(t)
∣∣
t=`T/N

∈ CNM×NR , (25)

=

K−1∑
k=0

αkC(νk)FHB(τk)FSatx(θk)aTrx(θk) + Z ,

where Z ∈ CNM×NR is the additive noise matrix with
vec(Z) ∼ CN (0, σ2I). We note that the radar model (25)
is valid for any single-CP waveform of the form (7).

B. Virtual Array Structure in OTFS Radar via Delay-Doppler
Multiplexing

In discovery mode, the proposed DD multiplexing strategy
in (2) leads to mutually orthogonal transmit waveforms, as
shown in the following lemma.

Lemma 1. For rectangular pulse-shapes [17], [29], i.e.,
Gtx = I, the transmit waveform matrix S in (24) with the
DD multiplexing in (2) satisfies

SHS = diag (P1, . . . , PNT) , (26)

where Pi ,
∥∥XDD

i

∥∥2

F
is the transmit power of the ith antenna.

Proof. Please see [45, App. A].

Since (26) provides omnidirectional transmission8, no signal
design is needed in discovery mode to optimize ISAC trade-
offs and we randomly select orthogonal DD windows accord-
ing to (2). Fig. 2 shows an example of the omnidirectional
beampattern in discovery mode along with the beampattern
in track mode. To observe the virtual array structure in the

8With (26), the power at a generic angle θ, i.e., the transmit beampattern,
is given by P (θ) = aHtx(θ)SHSatx(θ) =

∑NT
i=1 Pi [46, Eq. (12)], which

is omnidirectional.

OTFS radar observations (25), enabled by the orthogonality
property in (26), we consider a single-target scenario without
noise, leading to

Ysingle = αC(ν)FHB(τ)FS atx(θ)aTrx(θ) . (27)

Performing correlation of (27) with the matched filter tuned
to the delay-Doppler pair (τ, ν)

Γ(τ, ν) = C(ν)FHB(τ)FS
(
SHS

)−1 ∈ CNM×NT , (28)

yields the spatial domain observations

Q = ΓH(τ, ν)Ysingle ,

= α
(
SHS

)−1
SHFHBH(τ)FCH(ν)

×C(ν)FHB(τ)FS atx(θ)aTrx(θ) , (29)

= α atx(θ)aTrx(θ) ∈ CNT×NR . (30)

In vector form, we have

vec(Q) = α arx(θ)⊗ atx(θ) ∈ CNTNR×1 , (31)

where arx(θ)⊗atx(θ) represents the steering vector of a virtual
array of NTNR elements [35]. Clearly, (31) verifies that the
proposed DD multiplexing in (2) creates a virtual array for
MIMO-OTFS radar, leading to improved angular resolution.

C. Delay-Doppler Observations for OTFS Communications

Since the communication model in (11) has the same struc-
ture as the radar model in (9), we can follow the same steps
as applied for the radar side in the previous part. Accordingly,
the time-domain observations at the communication RX after
CP removal can be obtained from (11) for ` = 0, . . . , NM−1
as

ycom , ycom,CP(t)
∣∣
t=`T/N

∈ CNM×1 , (32)

=

K̃−1∑
k=0

α̃kC(ν̃k)FHB(τ̃k)FSatx(θ̃k) + z̃ ,

where z̃ ∈ CNM×1 is the AWGN vector with z̃ ∼
CN (0, σ2I). The DD domain symbols can be obtained from
the time-domain observations in (32) by inverting the transmit
side operations in Sec. II-A as [17], [29], [38]

YDD
com = FHN

(
FNGrxYcom

)
FM ∈ CN×M , (33)

where Ycom , reshapeN,M (ycom) ∈ CN×M and Grx =
diag (grx(0), grx(T/N), . . . , grx((N − 1)T/N)) with grx(t)
denoting the pulse shaping filter at the receiver. In (33), we
apply receive pulse shaping for each symbol (i.e., over the
columns of Ycom), take an N -point FFT over the columns to
switch to the FT domain and take an SFFT (i.e., an N -point
IFFT over the columns and an M -point FFT over the rows)
to switch from the FT domain to the DD domain [13].

Assuming rectangular pulse shaping Gtx = Grx = IN [17],
[29], the vectorized version of (33) can be written as [29]

yDD
com = (FM ⊗ IN )ycom ∈ CNM×1 , (34)
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where yDD
com , vec

(
YDD

com

)
. Inserting (32) into (34) yields9

yDD
com = (FM ⊗ IN )

K̃−1∑
k=0

α̃kC(ν̃k)FHB(τ̃k)FSatx(θ̃k) + z̃ .

(35)

To make explicit the relation between the transmit DD domain
symbols XDD in (1) and the received DD domain symbols in
(35), we re-write Satx(θ̃k) as

Satx(θ̃k) =

NT∑
i=1

si[atx(θ̃k)]i =

NT∑
i=1

(FHM ⊗ IN )xDD
i [atx(θ̃k)]i

(36a)

= (FHM ⊗ IN )

NT∑
i=1

(xDD �wi)[atx(θ̃k)]i (36b)

= (FHM ⊗ IN )
(
xDD �Watx(θ̃k)

)
, (36c)

= (FHM ⊗ IN )diag
(
Watx(θ̃k)

)
xDD , (36d)

where xDD
i , vec

(
XDD
i

)
∈ CNM×1, xDD , vec

(
XDD

)
∈

CNM×1 and W , [w1 · · · wNT
] ∈ CNM×NT . Here, (36a)

and (36b) follow from (19) and (1), respectively. Then, using
(36d), the received DD symbols in (35) can be compactly
expressed as

yDD
com = HDDxDD + z̃ , (37)

where the DD domain channel matrix is given by

HDD = (FM ⊗ IN )

K̃−1∑
k=0

[
α̃kC(ν̃k)FHB(τ̃k)F

× (FHM ⊗ IN )diag
(
Watx(θ̃k)

)]
∈ CNM×NM . (38)

D. Manifestation and Exploitation of ISI and ICI Effects

We now elaborate on how ISI and ICI effects manifest
themselves in the radar and communication signal models
in (25) and (37), respectively, and how these effects can be
exploited for improved radar performance.

1) Manifestation of ISI and ICI Effects: The vectors bN (τ)
in (18) and cM (ν) in (20) commonly arise in the context of
OFDM radar, used for recovering target range and velocity, re-
spectively [8], [43], [47], [48]. In contrast, the vectors bISI(τ)
and cICI(ν) specify disturbances degrading radar performance
when standard FFT-based algorithms are employed for range-
velocity estimation, e.g., [7], [47]. In particular,
• bN (τ) quantifies delay-dependent frequency-domain

phase rotations corresponding to the Fourier trans-
form of fast-time (hereafter called fast-frequency do-
main), while bISI(τ) involves inter-symbol (slow-time)
delay-dependent phase rotations (hereafter called slow-
frequency domain), leading to inter-symbol interference
(ISI).

• cICI(ν) represents Doppler-induced fast-time phase ro-
tations causing inter-carrier interference (ICI), similar

9We keep the same notation for the noise vector for ease of exposition
as the noise statistics do not change via multiplication by the unitary matrix
FM ⊗ IN .

to the carrier frequency offset (CFO) effect in OFDM
communications [49], while cM (ν) captures Doppler-
dependent slow-time phase progressions.

Similar analysis holds true also for the communication model
(37), where the ISI and ICI among the DD symbols xDD [20],
[37] are captured through B(τ) and C(ν) in the DD channel
(38).

2) Exploitation of ISI and ICI Effects to Increase Unam-
biguous Detection Intervals for OTFS Radar: The steering
vector structures in (18) and (20) suggest that both radar and
communication receivers in OTFS suffer from ISI and ICI ef-
fects [20], [37]. However, unlike OTFS communications, these
two effects can be turned into an advantage for OTFS radar.
In particular, ISI manifests itself through the slow-frequency
steering vector bISI(τ) and enables sampling the available
bandwidth N∆f at integer multiples of ∆f/M as observed
from the Kronecker structure in (18). In ISI-free operation, the
steering vector in (18) would only involve the fast-frequency
component bN (τ), in which case the bandwidth can only be
sampled with a spacing of ∆f , i.e., the subcarrier spacing.
Hence, ISI can increase the maximum detectable unambiguous
delay by a factor of M by allowing the frequency domain to
be sampled M times faster compared to a standard ISI-free
radar operation (e.g., in OFDM-based OTFS radar10). More
precisely, the unambiguous delays with and without ISI are
given, respectively, by

τ ISI
max = min

{ M
∆f

, Tcp

}
, τmax = min

{ 1

∆f
, Tcp

}
, (39)

where Tcp is the upper limit to prevent inter-frame interference
(i.e., between consecutive OTFS frames) in single-CP OTFS
considered in our model [17], [22], [26] and to prevent ISI
between consecutive symbols in OFDM-based (multiple-CP)
OTFS [13]. In Fig. 3, we provide an illustrative example of
how the unambiguous range is increased via ISI exploitation.

Similarly to ISI, ICI can be exploited to increase the max-
imum detectable unambiguous Doppler by a factor of N [8].
In addition to the standard slow-time steering vector cM (ν),
Doppler-dependent phase rotations can also be captured by the
fast-time steering vector cICI(ν), which allows sampling the
entire time window MT with an interval of T/N . Therefore,
the unambiguous Doppler values with and without ICI can be
expressed, respectively, as

νICI
max =

N

T
, νmax =

1

T
. (40)

IV. DETECTION AND ESTIMATION WITH MIMO-OTFS
RADAR

We next design a GLRT based detection and estimation
scheme for MIMO-OTFS radar that operates on the obser-
vations in (25). The proposed detector/estimator inherently
leverages the ISI/ICI exploitation capability introduced by the
novel OTFS signal formulation, as discussed in Sec. III-D2.
We note that the communication receiver processing is outside

10Contrary to single-CP OTFS [17], OFDM-based OTFS systems use
separate CPs for each symbol in the OTFS/OFDM frame to circumvent the
ISI effect [13], [50].
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Fig. 3. (a) Range profiles corresponding to the OTFS frequency-domain
steering vectors in (18), obtained by taking the inverse DFT at τ = 0, where
N = 20, M = 5 and ∆f = 500 kHz. The inset shows the zoomed-in
version of the first several resolution cells. The Kronecker structure in (18)
introduced by the ISI effect enables b(τ) to increase the unambiguous range
of bN (τ) by a factor of M while retaining its range resolution, creating a
virtual frequency-domain array, as shown in (b).

the scope of this paper, assuming that standard OTFS receive
operations are performed [12], [13], [26].

A. GLRT for Detection/Estimation in MIMO-OTFS Radar

Given the transmit signal S in (24), the problem of interest
for MIMO-OTFS radar sensing is to detect the presence of
multiple targets and estimate their parameters, i.e., gains,
delays, Dopplers and angles {(αk, τk, νk, θk)}K−1

k=0 from the
observation in (25). Unlike most of the existing works in the
OTFS radar literature, e.g., [18]–[21], [23], where estimator
design is based on the received symbols in the DD domain, we
perform detection/estimation directly using time domain obser-
vations at multiple RX antennas without transforming them
into DD domain. As an improvement over previous OTFS
radar studies [17]–[23], this approach enables exploiting the
ISI and ICI effects to surpass the standard ambiguity limits in
range and velocity estimation. Additionally, directly using Y
in (25) for radar sensing allows us to estimate continuous target
parameters and circumvent the off-grid problem commonly
encountered in OTFS channel estimation [12], [51].

The hypothesis testing problem to test the presence of a
single target in (25) can be expressed as

Y =

{
Z, under H0

αC(ν)FHB(τ)FS atx(θ)aTrx(θ) + Z, under H1

,

(41)

where the hypotheses H0 and H1 represent the absence and
presence of a target, respectively. To solve (41), we treat α,

τ , ν and θ as deterministic unknown parameters and resort to
the GLRT

Λ(Y) =
maxα,τ,ν,θ p(Y |H1;α, τ, ν, θ)

p(Y |H0)

H1

≷
H0

η , (42)

where η is a threshold set to satisfy a given probability of
false alarm. Under the assumption vec(W) ∼ CN (0, σ2I),
the GLRT after taking the logarithm becomes

Λlog(y) = ‖Y‖2F (43)

− min
α,τ,ν,θ

∥∥Y − αC(ν)FHB(τ)FS atx(θ)aTrx(θ)
∥∥2

F

H1

≷
H0

η̃ ,

where Λlog(y) = log Λ(y) and η̃ = σ2 log η. For fixed
τ , ν and θ, the optimal channel gain in (43) is given by
α̂ = tr

(
AH(τ, ν, θ)Y

)
/‖A(τ, ν, θ)‖2F , where A(τ, ν, θ) ,

C(ν)FHB(τ)FS atx(θ)aTrx(θ). Plugging α̂ back into (43), we
have the detection test

max
τ,ν,θ

∣∣∣tr(AH(τ, ν, θ)Y
)∣∣∣2

‖A(τ, ν, θ)‖2F

H1

≷
H0

η̃ . (44)

For coherent processing, computing the decision statistic in
(44) entails a computationally prohibitive 3-D search in the
delay-Doppler-angle domain [52]. To ease the computational
burden (especially for automotive applications), we propose
to first perform 2-D delay-Doppler processing by noncoherent
integration across the antenna elements and then estimate the
angles via 1-D spatial processing at the detected delay-Doppler
locations [52], [53], as described next.

B. Reduced-Complexity GLRT via Noncoherent Integration

Opening up the terms in the numerator of (44), we obtain∣∣∣tr(AH(τ, ν, θ)Y
)∣∣∣2 (45)

=
∣∣∣aHtx(θ)SHFHBH(τ)FCH(ν)Ya∗rx(θ)

∣∣∣2 .
Noncoherent integration in the spatial domain in (45) corre-
sponds to summing up the squared magnitudes of the elements
of the spatial domain matrix SHFHBH(τ)FCH(ν)Y ∈
CNT×NR instead of phase-aligning with the TX and RX
steering vectors atx(θ) and arx(θ), i.e.,

χ(τ, ν) =
∥∥SHFHBH(τ)FCH(ν)Y

∥∥2

F
. (46)

Similarly, the denominator of (44) can be written after
straightforward algebraic manipulations as

‖A(τ, ν, θ)‖2F = aHtx(θ)SHSatx(θ) . (47)

Following noncoherent integration across the antenna ele-
ments, we have

∥∥SHS
∥∥
F

for the expression in (47). Combin-
ing this with (46) and defining η = η̃

∥∥SHS
∥∥
F

, the reduced-
complexity version of the GLRT in (44) is given by

max
τ,ν

χ(τ, ν)
H1

≷
H0

η . (48)



9

Algorithm 1 GLRT Based 3-D MIMO-OTFS Radar Sensing
1: Input: MIMO-OTFS radar observations Y in (25), prob-

ability of false alarm Pfa.
2: Output: Delay-Doppler-angle estimates {τ̂k, ν̂k, θ̂k}K−1

k=0

of multiple targets.
3: Compute the GLRT metric in (48) over a delay-Doppler

region.
4: Detect targets in delay-Doppler domain by running a

CFAR detector with the given Pfa.
5: For each detected target with (τ̂k, ν̂k), compute the angular

spectrum in (49).
6: Estimate angles from the spectrum by running a CFAR

detector with the given Pfa.

C. Multi-Target Detection and Angle Estimation

To account for the presence of multiple targets, the decision
statistic χ(τ, ν) in (48) can be computed over a discretized
delay-Doppler region and targets are declared at those lo-
cations where there is a peak exceeding the threshold [54,
Ch. 6.2.4]. To adapt to varying noise conditions (e.g., increased
noise floor due to the presence of strong targets), we employ
a constant false alarm rate (CFAR) detector with a given
probability of false alarm Pfa using χ(τ, ν) as the value of the
delay-Doppler cell (τ, ν) [54, Ch. 7.2]. For a cell-averaging
CFAR detector, the threshold in (48) can be computed as
η = (P

−1/Nc

fa −1)
∑Nc

i=1 χi, where Nc is the number of training
cells and χi denotes the value of the ith delay-Doppler cell [54,
Ch. 7.3.1]. Let {τ̂k, ν̂k}K−1

k=0 be the delay-Doppler values of the
targets detected through the GLRT in (48). Then, the angle
estimation for the kth target can be performed by solving the
maximization problem in the original GLRT formulation (44)
after plugging the associated delay-Doppler estimates, i.e.,

θ̂k = arg max
θk

∣∣∣aHtx(θk)SHFHBH(τ̂k)FCH(ν̂k)Ya∗rx(θk)
∣∣∣2

aHtx(θk)SHSatx(θk)
.

(49)

Considering the possibility that there exist multiple targets in
the same delay-Doppler bin with different angles, we search
for multiple peaks in the angular spectrum of (49) using
a CFAR detector. Additionally, to prevent leakage between
different targets in the angular domain, an orthogonal matching
pursuit (OMP)-like simple interference subtraction procedure
(e.g., [55]) is applied for refining angle estimates. The overall
algorithm to detect multiple targets and estimate their delay-
Doppler-angle parameters is summarized in Algorithm 1. It
should be noted that Algorithm 1 is generic and can be
employed for any single-CP waveform S.

V. MIMO-OTFS SIGNAL DESIGN FOR ISAC
In this section, we propose signal design strategies (i.e., the

design of the DD windows {Wi}NT
i=1) to be employed in the

track mode of the MIMO-OTFS ISAC system, mentioned in
Sec. II-A1. We derive radar and communication performance
metrics for the track mode, formulate the OTFS ISAC trade-
off problem to optimize the DD windows and propose an
algorithm based on DD-domain water-filling and Rayleigh
quotient maximization to solve it.

A. Radar Metric

According to (3), our optimization variables of interest in
track mode are the TX beamformer β , [β1 · · · βNT

]T ∈
CNT×1 and the DD amplitudes p ∈ RNM×1. We adopt
the integrated SNR as the radar metric: SNRrad(p,β) =∫ ∫ ∫ ∫

SNRrad(p,β;α, τ, ν, θ)f(α, τ, ν, θ) dα dτ dν dθ,
where

SNRrad(p,β;α, τ, ν, θ) =
|α|2|βTatx(θ)|2

σ2
(50)

represents the SNR for a target located at (τ, ν, θ) with channel
gain α (see App. A for details), and f(α, τ, ν, θ) is the joint
prior pdf of gain (|α|2), delay, Doppler and angle parameters,
respectively. It is evident from (50) that the SNR depends
neither on the DD window/power allocation p nor on the
delay-Doppler (τ, ν) of the target. Using (50), the SNR metric
is given by

SNRrad(β) = βTDradβ
∗ , (51)

where Drad = 1
σ2

∑K−1
k=0 |α̂k|2atx(θ̂k)aHtx(θ̂k), with α̂k and

θ̂k denoting the estimated gain and angle parameters of the
targets (i.e., f(α, θ) =

∑K−1
k=0 δ(|α|2 − |α̂k|2)δ(θ − θ̂k)).

B. Communication Metric

We now derive the communication metric to be employed
in the track mode. The LMMSE estimate of the transmit DD
symbols based on the received DD symbols in (37) is given
by [38] x̂DD = HH

DD

(
HDDHH

DD + σ2I
)−1

yDD
com, with the

corresponding covariance matrix

RLMMSE , E
{

(x̂DD − xDD)(x̂DD − xDD)H
}
,

=
(
I +

1

σ2
HH

DDHDD

)−1

∈ CNM×NM . (52)

The LMMSE covariance matrix in (52) can be used to provide
an expression for an achievable rate of the OTFS commu-
nication channel characterizing the DD domain input-output
relation in (37) [48], [56], [57]:

R(p,β) = − log det RLMMSE(p,β) . (53)

In the following lemma, we derive an expression for RLMMSE

in terms of the optimization variables p and β.

Lemma 2. In track mode where the DD windows are given in
(3), the LMMSE covariance matrix in (52) can be expressed
as a function of the TX beamformer β and the DD domain
amplitudes p as

RLMMSE(p,β) =
(
I + (ppT )�G

)−1
, (54)

where

G =
1

σ2
(FM ⊗ IN )HH

T HT(FHM ⊗ IN ) , (55)

HT =

K̃−1∑
k=0

α̃kβ
Tatx(θ̃k)C(ν̃k)FHB(τ̃k)F . (56)

Proof. Please see App. B.
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The following lemma presents an approximation of (53)
that will enable formulating the ISAC trade-off signal design
problem for β without the knowledge of p.

Lemma 3. Under the condition that M is small or ∆f is
large11 or channel Doppler spread is small, the achievable
rate (53) can be approximated as

R(p,β) ≈
NM−1∑
i=0

log
(
1 + qiβ

TDcomβ∗
)
, (57)

where q = p � p = [q0 · · · qNM−1]T and Dcom =
1
σ2

∑K̃−1
k=0 |α̃k|2atx(θ̃k)aHtx(θ̃k).

Proof. Please see App. C.

C. MIMO-OTFS ISAC Trade-off Signal Design

Based on Lemma 3, optimization over β to maximize the
metric in (57) can be carried out independently from p. Hence,
we first optimize the spatial domain (β) degrees of freedom to
achieve the best OTFS ISAC trade-off and then optimize the
DD domain (p) degrees of freedom given the optimal ISAC
beamformer.

1) Optimize β: We employ the communication metric in
(57) and the radar metric in (51) to formulate the ISAC trade-
off optimization problem for the TX beamformer β as follows:

βopt = arg max
β

ρβTDradβ
∗ + (1− ρ)βTDcomβ∗ (58a)

s.t. ‖β‖22 ≤ 1 , (58b)

where the ISAC weight 0 ≤ ρ ≤ 1 governs the trade-off be-
tween radar and communications. The problem (58) represents
a Rayleigh quotient maximization problem12, whose optimal
solution βopt is given by the conjugate of the dominant
eigenvector of Dρ.

2) Optimize p for Given β: Since the radar metric in (51)
does not depend on p, we optimize only the communication
metric to determine the optimal p. Given the optimal ISAC
beamformer βopt from (58), we revert back to the original
objective (53) and derive another approximation which will
be employed to optimize p (or, equivalently q) in a tractable
manner, as specified in the following lemma.

Lemma 4. Assuming that G in (55) has small off-diagonal
elements (justified in the proof of Lemma 3), the objective (53)
can be approximated as R(p,β) ≈

∑NM−1
i=0 log(1 + qigi),

where g = [g0 · · · gNM−1]T = diag (G).

Proof. Please see [45, App. E].

11Under the same time-bandwidth product, denoted as N∆fMT = NM ,
radar detection performance remains consistent, unaffected by whether the
conditions (i.e., small M or large ∆f ) are satisfied or not. Detection
performance primarily depends on the total number of DD bins, denoted
as NM , which represents the integrated SNR over an OTFS frame, rather
than on individual values of N or M . In cases where these conditions are
not satisfied, velocity estimation performance improves due to longer sensing
duration (large M and T ). However, this leads to a trade-off with ranging
performance, which is less favorable due to smaller bandwidth (small N and
∆f ).

12Specifically, the problem is defined as maxβ βTDρβ∗/ ‖β‖22, where
Dρ = ρDrad + (1− ρ)Dcom.

Algorithm 2 Algorithm to Design OTFS ISAC Trade-off
Signal in Spatial and DD Domains

1: Input: Radar target parameters {α̂k, θ̂k}K−1
k=0 , communica-

tion channel parameters {α̃k, τ̃k, ν̃k, θ̃k}K̃−1
k=0 , ISAC trade-

off parameter ρ.
2: Output: ISAC TX beamformer βopt, DD amplitudes

popt.
3: Solve (58) via Rayleigh quotient maximization to obtain

βopt.
4: Using βopt, solve (59) via DD-domain water-filling.

Based on Lemma 4, we propose to optimize q as follows:

qopt = arg max
q

NM−1∑
i=0

log(1 + qigi) (59a)

s.t. 1Tq ≤ NM, q � 0 , (59b)

where gi’s are computed in (55) and (56) by plugging
β = βopt. The problem (59) represents a classical rate
maximization problem whose optimal solution is given by DD-
domain water-filling with respect to the diagonals g of the
DD correlation matrix G [58, Ch. (4.4.1)]. Summarizing the
overall algorithm (Algorithm 2), we first solve (58) using the
OTFS radar and communication channel parameters (angles
and gains), which appear in the matrices Drad and Dcom.
Then, we solve (59) by plugging the resulting βopt into (55)
and (56), and obtain popt =

√
qopt.

VI. NUMERICAL RESULTS

In this section, we assess the performance of radar sensing
in Alg. 1 and investigate OTFS ISAC trade-offs through Alg. 2.
The number of antennas at the ISAC transceiver is taken
as NT = NR = 8. Here, the TX and the radar RX are
equipped with uniform linear arrays (ULAs) with λ/2 and
NTλ/2 element spacings, respectively, to enable constructing
a virtual ULA of NTNR = 64 elements in discovery mode via
orthogonal transmission, as specified in (2). For a target/path
with channel gain α, we define the signal-to-noise ratio (SNR)
as SNR = |α|2/σ2. In addition, a rectangular pulse shaping
waveform [17], [22] is used for gtx(t) in (5).

A. Performance of MIMO-OTFS Radar Sensing

To evaluate the performance of the MIMO-OTFS radar
sensing algorithm in Alg. 1, we assume discovery mode
operation with DD multiplexing in (2) and consider two
different parameter sets at mmWave, as shown in Table I, for
illustrating the results in both ISI-dominant (i.e., high ∆f )
and ICI-dominant (i.e., small ∆f ) operation regimes13. In the
ISI-dominant regime, maximum range is the limiting factor
for radar detection performance, while in the ICI-dominant
regime, radar performance is mainly limited by maximum
velocity. The MIMO-OTFS radar observations are generated
using (9) instead of the derived compact model in (25) to
provide an implicit verification of the transition from (9) to

13The performance of Alg. 1 has also been evaluated in an intermediate
operation regime with ∆f = 120 kHz, yielding similar results.
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TABLE I
OTFS PARAMETER SETS FOR RADAR SIMULATIONS

Parameter ISI-dominant ICI-dominant
Regime Regime

Carrier Frequency, fc 28 GHz 28 GHz
Subcarrier Spacing, ∆f 480 kHz 30 kHz
Number of Subcarriers, N 64 1024
Cyclic Prefix Duration, Tcp 12.5µs 12.5µs
Number of Symbols, M 128 8
Maximum Range, Rmax 312.5 m 5000 m
(Standard)
Maximum Range, RISI

max 1875 m no practical limit
(ISI Embracing)
Maximum Velocity, vmax ±1285.7 m/s ±80.35 m/s
(Standard)
Maximum Velocity, vICI

max no practical limit no practical limit
(ICI Embracing)
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Fig. 4. Range-angle scenario for MIMO-OTFS sensing in the ISI-dominant
regime, where target SNRs are given by {20, 15, 5, 25, 10} dB, respectively.
All targets have the same velocity 20 m/s. Conventional FFT-based algo-
rithms can detect at most three targets (right), while Alg. 1 can go beyond
the standard maximum range through ISI exploitation and detect all targets
(left).

(25). The transmit symbols XDD in (1) are chosen randomly
from a 64-QAM alphabet. As a benchmark, we consider a
standard 2-D FFT based processing [7], [43], [47] traditionally
employed in MIMO-OFDM radar [53], where delay-Doppler
images from all spatial channels are noncoherently integrated
to perform detection in the delay-Doppler domain, followed
by angle estimation, as done in Alg. 1. To evaluate detection
performances for both Alg. 1 and the FFT benchmark, a cell-
averaging CFAR detector is employed with the probability of
false alarm Pfa = 10−4 to declare targets in the delay-Doppler
domain.

1) ISI-Dominant Regime: In the ISI-dominant regime, we
consider a scenario with five targets with the same velocity
(20 m/s), but with different ranges and angles, as shown in
Fig. 4. As shown in Fig. 4 (right), the standard FFT processing
[43], [47], [53] can detect at most three targets since Target 4
and Target 5 fall into the same range-velocity-angle bin as
Target 1 and Target 2, respectively.

Fig. 5 shows an instance of the range profiles14 of the
considered methods after noncoherent integration along the
spatial channels in two different scenarios. In addition, Fig. 6
illustrates the range-velocity profiles for the scenario in
Fig. 5(a). It is observed that by virtue of ISI exploitation,
the proposed GLRT detector in (48) can detect four target
ranges separately (Target 2 and Target 3 will be resolved later

14The range profile associated with Alg. 1 is obtained by plotting the
decision statistic in (48) for a fixed Doppler ν over an interval of delay values
τ . For the 2-D FFT method, range profile corresponds to the range slice of
the 2-D FFT output, taken from a certain Doppler ν.
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Fig. 5. ISI-dominant regime: Range profile at v = 20 m/s obtained by the
different methods (a) for the scenario in Fig. 4, and (b) for a modified version
of the scenario in Fig. 4, where Target 4 moved 30 m further and Target 5
moved 30 m closer.

(a) (b)

Fig. 6. The GLRT decision statistic (48) and the 2-D FFT output in the
range-velocity domain for the scenario in Fig. 5(a), where the ground-truth
target locations are indicated with + markers.

in angle domain via coherent spatial processing in (49)) by
increasing the maximum range by a factor of 6 (see (39)
and Table I), whereas the 2-D FFT yields peaks only at the
locations of Target 1 and Target 2. In addition, the GLRT
detector achieves lower side-lobe levels than the 2-D FFT
method by taking into account the ISI in detector design,
which enables compensating for its effect on the range profile.
Moreover, even when Target 4 and Target 5 are displaced in
Fig. 5(b) so that four targets are resolvable in the ambiguity
region, the 2-D FFT can only detect Target 1 due to the strong
ISI effect, while all the target peaks are clearly visible in the
range profile of the GLRT detector. Therefore, the proposed
approach can simultaneously mitigate ISI to have low side-
lobes and embrace the information conveyed by ISI to detect
targets beyond the standard maximum range limit Rmax.

To illustrate the detection and location estimation perfor-
mance of Alg. 1, we simulate 100 independent Monte Carlo
noise realizations and choose Target 3 as the reference target.
Fig. 7 shows the probability of detection and the root mean-
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Fig. 7. Detection and estimation performances for Target 3 in the scenario
of Fig. 4, obtained by the proposed MIMO-OTFS radar processing algorithm
(Alg. 1) and the FFT benchmark, along with the corresponding Cramér-Rao
bounds (CRBs), as a function of SNR in the ISI-dominant regime, where
Pfa = 10−4. (a) Probability of detection, and (b) localization RMSE.

squared error (RMSE) of location estimates of the reference
target with respect to its SNR15. It is seen that the proposed
detector/estimator in Alg. 1 significantly outperforms the stan-
dard FFT method in terms of both detection and localization
performance. This performance boost is accomplished through
the ISI-aware modeling in (25) and the corresponding detector
design in (48), which performs ISI compensation via the term
BH(τ) and helps suppression of ISI-induced side-lobe levels,
in agreement with Fig. 5. Moreover, the detection results in
Fig. 7 also indicate that Target 2 and Target 3 can be resolved
in the angular domain using a virtual ULA of 64 elements
in discovery mode. We note that the GLRT detector/estimator
in (48) performs block-wise processing of the entire OTFS
frame (NM symbols), while the FFT method applies separate
N - and M -point FFTs over frequency and time domains, re-
spectively, which provides computational simplicity, but leads
to poor radar performance.

2) ICI-Dominant Regime: In the ICI-dominant regime, a
scenario with five targets located at the same range (100 m),
but with different velocities and angles is considered, as shown
in Fig. 8. Similar to the ISI-dominant regime, at most three
targets can be detected via conventional FFT processing as
the high-speed targets fall into the same bin as the (relatively)
low-speed ones, as seen from Fig. 8 (right).

We illustrate an instance of the velocity profiles obtained
by the considered methods in Fig. 9. As indicated in (40)

15The gap between the RMSE of Alg. 1 and the CRB can be attributed to
the utilization of a computationally efficient, reduced-complexity version of
the original GLRT in (44). Achieving the CRB in a multi-target environment
necessitates intricate multi-dimensional optimization across the parameter
space for all targets (15-dimensional optimization for 5 targets), e.g., via
the SAGE algorithm [59], which will be investigated in future research.
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Fig. 8. Velocity-angle scenario for MIMO-OTFS sensing in the ICI-dominant
regime, where target SNRs are given by {20, 15, 5, 25, 10} dB, respectively.
All targets have the same range 100 m. The proposed GLRT-based sensing
algorithm can detect all targets separately via ICI exploitation (left), whereas
standard FFT-based algorithms can detect only three targets due to maximum
velocity limit dictated by symbol duration (right).

and Table I, the proposed approach increases the maximum
velocity by a factor of N = 1024, which allows detection
of targets beyond the standard velocity limit vmax. Hence, in
the range-velocity domain, the proposed approach in Alg. 1
can resolve four targets and detect their true (unambiguous)
velocities through its ICI exploitation capability, while the 2-D
FFT method can only detect two targets. Moreover, as seen
from Fig. 10, Target 2 and Target 3 are resolved later in the
angular domain after delay-Doppler processing (see lines 5
and 6 in Alg. 1). Therefore, all five targets can be resolved
through ICI exploitation and via the proposed 3-D MIMO-
OTFS sensing algorithm. Fig. 10 also corroborates the or-
thogonality of transmit waveforms generated according to the
proposed DD multiplexing strategy, as specified in Lemma 1.
Specifically, an RX ULA of 8 elements has approximately 12◦

beamwidth, which is not sufficient to resolve Target 2 and
Target 3 separated by 5◦. With a virtual ULA of 64 elements
(which has approximately 2◦ beamwidth), it becomes possible
to resolve Target 2 and Target 3 via coherent spatial processing
in Alg. 1.

Finally, the detection and location estimation performances
in the ICI-dominant regime are shown in Fig. 11, with respect
to the SNR of the reference target, Target 3, averaged over 100
realizations. Similar to the ISI-dominant case, the proposed
approach in Alg. 1 achieves significant performance gains over
the conventional FFT method by explicitly accounting for the
ICI effect in detector/estimator design.

B. Evaluation of OTFS ISAC Trade-offs

In this part, we evaluate OTFS ISAC trade-offs in track
mode, as described in (3), using the proposed signal design
approach in Alg. 2. An OTFS system with N = 32, M =
16, ∆f = 120 kHz, fc = 28 GHz is considered. For the
communication channel in (10), we consider K̃ = 11 paths
and define the line-of-sight (LOS)-to-multipath ratio (LMR)
parameter [60] as JR = |α̃0|2/

∑K̃−1
k=1 |α̃k|2 (k = 0 denotes

the LOS path) to explore ISAC trade-offs under different
multipath conditions. For a given JR, α̃k’s are randomly
generated such that the communication SNR in (32), defined
as
∑K̃−1
k=0 |α̃k|2/σ2, satisfies a desired value. To separately

observe spatial and DD domain effects in isolation from each
other, the path angles are set to θ̃k = −30◦ ∀k, while the path
delays and Dopplers are randomly generated. The resulting
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Fig. 9. ICI-dominant regime: Velocity profile at R = 100 m obtained by
the different methods for the scenario in Fig. 8.
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Fig. 10. Angular profile at R = 100 m and v = −60 m/s, obtained by
Alg. 1 for the scenario in Fig. 8.

delay-Doppler channel with JR = 0 dB is shown in Fig. 12.
For the radar channel, we adopt the same scenario as shown
in Fig. 4.

We first study the impact of the DD-domain water-filling
(qopt) and spatial domain optimization (βopt) in Alg. 2 on
OTFS ISAC trade-offs, comparing it with the DD-domain
uniform power allocation (q = 1 and βopt) and the benchmark
beamforming scheme [33], [61] using water-filling (qopt and
βbenc)16. Fig. 13 shows the ISAC trade-off curves as ρ varies
over [0, 1] under various communication SNR levels. It is
observed that the DD-domain water-filling achieves the same
OTFS ISAC trade-off performance as uniform allocation while
outperforming the benchmark scheme. First, the reason why
βopt outperforms βbenc is that the proposed algorithm directly
targets the optimization of the weighted average of radar SNR
and a proxy metric for communication rate, as expressed in
(58), and therefore yields superior trade-offs compared to the
benchmark approach, which does not factor in the channel
gains associated with individual propagation paths. Second,
the reason why the uniform allocation exhibits the same
performance as the water-filling scheme is that gi in (59),
the diagonal values of the DD correlation matrix G in (55),
are very close to each other, making the uniform allocation

16Using the multi-beam approach in [33], the benchmark ISAC beam-
former is obtained as βbenc =

√
ρβrad +

√
1− ρβcom, where 0 ≤ ρ ≤ 1

is the ISAC trade-off weight. Here, the sensing and communication beamform-
ers, βrad and βcom, are designed by employing the procedure in [61, App. A]
with the prior angular information on the radar target and communication
channel parameters, i.e., {θ̂k}K−1

k=0 and {θ̃k}K−1
k=0 .
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Fig. 11. Detection and estimation performances for Target 3 in the scenario
of Fig. 8, obtained by the proposed MIMO-OTFS radar processing algorithm
(Alg. 1) and the FFT benchmark, along with the corresponding CRBs, as
a function of SNR in the ICI-dominant regime, where Pfa = 10−4. (a)
Probability of detection, and (b) localization RMSE.
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Fig. 12. Impulse response of the delay-Doppler channel in (10) with the
LOS-to-multipath ratio (LMR) JR = 0 dB.

a near-optimal strategy for rate maximization, similar to the
convergence of uniform allocation to water-filling for OFDM
at high SNRs17 [62]–[65]. We note that according to the proof
of Lemma 3 in Appendix C, the matrix HH

T HT can be approx-
imated as HH

T HT ≈ σ2
HINM under certain conditions, where

σ2
H ,

∑K̃−1
k=0 |α̃k|2|βTatx(θ̃k)|2. Then, one can approximate

G as G ≈ 1
σ2 (FM ⊗ IN )σ2

HINM (FHM ⊗ IN ) =
σ2
H

σ2 INM ,
which explains the uniformity of gi’s across the DD domain
and the near-optimality of the uniform power allocation strat-
egy.

In Fig. 14, we illustrate the transmit beampatterns cor-
responding to the ISAC beamformer βopt obtained at the
output of Alg. 2 for different trade-off values ρ. In com-
pliance with the ISAC trade-off optimization in (58), the

17However, as opposed to the case in OFDM, where the water-filling
allocation can outperform the uniform allocation in frequency domain at low
SNRs [62], the DD-domain water-filling yields the same performance as the
DD-domain uniform allocation at both low and high SNRs for OTFS.
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Fig. 13. OTFS ISAC trade-offs obtained by the DD-domain water-filling and
uniform power allocation in Alg. 2, as well as the benchmark beamforming
scheme [33], [61], under various communication SNRs for JR = 0 dB, where
the communication SNR is defined as

∑K̃−1
k=0 |α̃k|

2/σ2 in (32).

optimal beamformer dominantly illuminates the direction of
the communication paths for small ρ, while the transmit power
is focused more towards the direction of the radar targets
as ρ increases. It is seen that ρ = 0.4 yields a favorable
trade-off between sensing and communications when the two
functionalities are assigned similar importance levels.

To investigate ISAC trade-offs under different DD channel
characteristics, we plot in Fig. 15 the ISAC trade-off curves
obtained through Alg. 2 for different JR at the communication
SNR of 25 dB. It is seen that the achievable rate improves
with increasing JR, leading to more favorable ISAC trade-offs
for channels with larger JR values18. Hence, enhancing the
sparsity of the DD domain communication channel (moving
towards a more LOS-dominant channel as JR becomes larger)
increases the achievable rate, in compliance with the results in
the OTFS literature (e.g., [38], [66], [67]). Intuitively, channel
sparsity facilitates both channel estimation and data detection
due to reduced channel spreading in delay and Doppler
domains [38]. A rigorous explanation of this phenomenon
follows from (64): As the channel becomes more LOS-
dominant, the cross-correlation terms in (64) vanish, making
HH

T HT as well as G in (55) a scaled identity matrix. This
makes (RLMMSE(p,β))−1 in (54) more diagonally dominant,
which in turn decreases log det RLMMSE(p,β) and increases
the achievable rate in (53).

VII. CONCLUDING REMARKS
In this paper, we have performed an in-depth investigation

of MIMO-OTFS ISAC systems, and proposed novel signal
models, radar sensing and signal design algorithms, and ISAC
transmission strategies. First, novel radar and communication
signal models for OTFS have been derived by explicitly taking
into account the impact of ISI and ICI, which unveils valuable
analytical insights into how these effects manifest themselves
in an OTFS system. Based on the new OTFS model, we
have developed a GLRT-based 3-D sensing algorithm that
simultaneously mitigates and exploits ISI and ICI to enhance
delay-Doppler estimation performance. Moreover, we have

18While varying JR, the total communication SNR is kept constant and
all paths have the same angle. Hence, OTFS can exhibit different ISAC trade-
off behavior for different JR only due to changes in the DD domain channel
properties.
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Fig. 14. ISAC transmit beampatterns for various values of the trade-off
parameter ρ, where βopt(ρ) is obtained via Alg. 2 and JR = 0 dB.

16 18 20 22 24 26 28 30 32 34 36

3

4

5

6

7

8

Fig. 15. OTFS ISAC trade-off curves obtained by Alg. 2 for different LMRs
JR at the communication SNR of 25 dB.

proposed a novel strategy, called DD multiplexing, for the
discovery mode of the proposed OTFS ISAC system, and an
algorithm for ISAC signal design in spatial and DD domains
for the track mode, revealing OTFS ISAC trade-offs under
varying levels of DD channel sparsity. Future research will
extend the proposed MIMO-OTFS ISAC methods to multi-
user scenarios, explore more flexible design of windowing
matrices {Wi}NT

i=1 without imposing an additional structure as
in (3), and develop improved multi-target refinement methods
in Alg. 1.

APPENDIX A
COMPUTATION OF RADAR SNR

The radar SNR in the presence of a single target can be
defined, according to (25), as

SNRrad(p,β;α, τ, ν, θ)

=
E
{∥∥αC(ν)FHB(τ)FSatx(θ)aTrx(θ)

∥∥2

F

}
E
{
‖Z‖2F

} , (60)

=
|α|2

σ2NM
tr
(
E
{
a∗rx(θ)aHtx(θ)SHFHBH(τ)F

×CH(ν)C(ν)FHB(τ)FSatx(θ)aTrx(θ)
})

,

=
|α|2

σ2NM
tr
(
‖arx(θ)‖2 E

{
aHtx(θ)SHSatx(θ)

})
,

=
|α|2

σ2NM
E
{
aHtx(θ)SHSatx(θ)

}
.

Using (36d), the SNR becomes

SNRrad(p,β;α, τ, ν, θ)
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=
|α|2

σ2NM
E
{[

(FHM ⊗ IN )βTatx(θ)diag (p) xDD
]H

×
[
(FHM ⊗ IN )βTatx(θ)diag (p) xDD

]}
,

=
|α|2|βTatx(θ)|2

σ2NM
E
{

(xDD)Hdiag (p� p) xDD
}
,

=
|α|2|βTatx(θ)|2

σ2NM
pTE

{
xDD

}
,

=
|α|2|βTatx(θ)|2

σ2
, (61)

where p , p � p and xDD , xDD � (xDD)∗ denote,
respectively, the powers allocated to the DD bins and the
powers of the DD data symbols. The last step in (61) stems
from E

{
xDD

}
= 1 and pT1 = NM .

APPENDIX B
PROOF OF LEMMA 2

With (3), we have Watx(θ̃k) =
∑NT

i=1 wi[atx(θ̃k)]i =

βTatx(θ̃k)p, which allows re-expressing (38) as

HDD = (FM ⊗ IN )HT(FHM ⊗ IN )diag
(
p
)
, (62)

where HT is the time-domain channel matrix defined in (56).
Plugging (62) into (52), the LMMSE covariance matrix can
be written as a function of p and β as follows:

RLMMSE(p,β) =
(
I +

1

σ2
diag

(
p
)H

(FM ⊗ IN )HH
T

× (FHM ⊗ IN )(FM ⊗ IN )HT(FHM ⊗ IN )diag
(
p
))−1

,

=
(
I +

1

σ2
diag

(
p
)
(FM ⊗ IN )HH

T HT(FHM ⊗ IN )diag
(
p
))−1

,

=
(
I + (ppT )�G

)−1
, (63)

where G is as defined in (55).

APPENDIX C
PROOF OF LEMMA 3

The covariance matrix of HT can be obtained from (56) as

HH
T HT =

K̃−1∑
k=0

|α̃k|2|βTatx(θ̃k)|2INM (64)

+

K̃−1∑
k1=0

K̃−1∑
k2=0
k2 6=k1

[
α̃∗k2 α̃k1β

Tatx(θ̃k1)aHtx(θ̃k2)β∗FH

×BH(τ̃k2)FC(ν̃k1 − ν̃k2)FHB(τ̃k1)F
]
.

Since B(τ) is diagonal, the matrix FHB(τ)F is circulant
and represents the channel matrix constructed from the time-
domain channel impulse response FHb(τ) corresponding to τ .
For small M , large ∆f or small Doppler spread, the Doppler
shifts in C(ν̃k1− ν̃k2) will be small, leading to the approxima-
tion C(ν̃k1 − ν̃k2) ≈ INM . Then, the matrix on the third line
of (64) becomes approximately FHBH(τ̃k2)FFHB(τ̃k1)F =
FHB(∆τ )F, which is a circulant time-domain channel matrix
corresponding to the delay ∆τ , τ̃k1 − τ̃k2 , as noted above.
Hence, for ∆τ 6= 0, the principal diagonal of FHB(∆τ )F will
have small magnitude, while only the upper/lower diagonal

corresponding to ∆τ will have large magnitude (however,
being a cross-term, its magnitude is still smaller than that of
the diagonals on the first line of (64)). This implies that the
first (direct) term in (64) adds up the contributions from all
the paths on its diagonal, whereas the second one (cross-term)
spreads the energy of the path cross-correlations across the
different off-diagonals, leading to an approximately diagonal
matrix [68] HH

T HT ≈
∑K̃−1
k=0 |α̃k|2|βTatx(θ̃k)|2INM . Plug-

ging this into (55) and (54), we obtain

log det RLMMSE(p,β) ≈ log det
(
I +

1

σ2
diag

(
p
)
(FM ⊗ IN )

×
K̃−1∑
k=0

|α̃k|2|βTatx(θ̃k)|2(FHM ⊗ IN )diag
(
p
))−1

,

= log det
(
I +

1

σ2
diag

(
q
) K̃−1∑
k=0

|α̃k|2|βTatx(θ̃k)|2
)−1

,

= −
NM−1∑
i=0

log
(
1 + qiβ

TDcomβ∗
)
. (65)
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