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Abstract—The carrier phase of cellular signals can be utilized
for highly accurate positioning, with the potential for orders-
of-magnitude performance improvements compared to standard
time-difference-of-arrival positioning. Due to the integer ambigu-
ities, standard performance evaluation tools such as the Cramér-
Rao bound (CRB) are overly optimistic. In this paper, a new
performance bound, called the mixed-integer CRB (MICRB) is
introduced that explicitly accounts for this integer ambiguity.
While computationally more complex than the standard CRB,
the MICRB can accurately predict positioning performance, as
verified by numerical simulations, and hence it serves as an useful
guide to choose the system parameters that facilitate carrier
phase positioning.

Index Terms—Carrier phase positioning, cellular positioning,
performance bound, Cramér-Rao bound.

I. INTRODUCTION

In the evolution from 5G to 5G advanced and ultimately
6G, positioning has come more and more into focus [1]. This
is due to two compounding effects: a technology push and a
requirements pull. The push is driven by the utilization of
higher frequency bands with more available spectrum, the
need for larger arrays at both the user and infrastructure
side to overcome path loss, and the introduction of novel
hardware (e.g., reconfigurable intelligent surface (RIS)), novel
deployments (e.g., cell-free MIMO) and novel methodologies
(e.g., artificial intelligence (AI)). Combined, they will provide
orders-of-magnitude positioning improvements compared to
previous generations and enable new functionalities, such as
radar-like sensing [2]. Complementary to this, the pull from
the requirements leads to more strict demands regarding the
relevant key performance indicators (KPIs), including accu-
racy, latency, availability, and integrity, in support of use cases
such as extended reality in autonomous robotics [3].

Positioning quality is fundamentally tied to the quality of
the underlying measurements, which typically include time
and angle-based measurements, such as time-of-arrival (ToA),
angle-of-arrival (AoA), and angle-of-departure (AoD) [4].
These measurements, in turn, involve the estimation of phase
differences across subcarriers or antennas, with respect to ar-
bitrary absolute phase references [5]. Since the absolute phase
of the signal is related to the propagation distance between
the transmitter and the receiver, it can also be utilized in
positioning, a process referred to as carrier phase positioning
(CPP) [6]. CPP has been studied extensively in the context
of global navigation satellite system (GNSS) positioning, via

time and phase 
synchronized base stations

unsynchronized user

downlink pilots absolute 
phase

�
<latexit sha1_base64="I5AFxH05QcLNPuu9Q4YoqU87dtg=">AAAB7nicdVBNSwMxFHxbv2r9qnr0EiyCp5Jdpba3ohePFawttEvJZrNtaDa7JFmhlP4ILx4U8erv8ea/MdtWUNGBwDAzj7w3QSq4Nhh/OIWV1bX1jeJmaWt7Z3evvH9wp5NMUdamiUhUNyCaCS5Z23AjWDdVjMSBYJ1gfJX7nXumNE/krZmkzI/JUPKIU2Ks1OkLGw3JoFzBVWxRq6GcuHXsWtJo1D2vgdy5hXEFlmgNyu/9MKFZzKShgmjdc3Fq/ClRhlPBZqV+pllK6JgMWc9SSWKm/el83Rk6sUqIokTZJw2aq98npiTWehIHNhkTM9K/vVz8y+tlJqr7Uy7TzDBJFx9FmUAmQfntKOSKUSMmlhCquN0V0RFRhBrbUMmW8HUp+p/ceVX3rOrdnFeal8s6inAEx3AKLlxAE66hBW2gMIYHeIJnJ3UenRfndREtOMuZQ/gB5+0TlViPvg==</latexit>

kxbs
,m
� xue

k

<latexit sha1_base64="z6aHfKwI2tLgsNOgoEB2tD3+cn8="></latexit>

Fig. 1. The received signal from each BS information contains information
about the distance in both the ToA and the carrier phase. The BSs are time
and phase synchronized, while the user is not.

either precise point positioning (PPP) or real-time kinematic
(RTK), relying on observations over time from several satel-
lites [7]. Inherent to all CPP approaches is the so-called integer
ambiguity, which refers to the fact that an observed phase is
proportional to distance modulo the signal wavelength. The
integer ambiguity renders both the positioning problem, as
well as its analysis, more challenging. In the context of 5G,
studies have considered both the integration with GNSS CPP
[8] and 5G stand-alone CPP [6]. Focusing on the stand-alone
operation, several studies have been conducted in recent years
[6], [9]–[16], considering both frequency range (FR) 1 (below
6 GHz) and to a lesser extent FR2 (mmWave, above 24 GHz).
In [1], several practical challenges for CPP are identified,
including the integer ambiguities and multipath, and new
opportunities are highlighted, including novel pilots optimized
for CPP. In FR1, [9], [10] demonstrated opportunistic 5G CPP
for unmanned aerial vehicle (UAV) tracking, while the other
studies focused on simulations. In particular, [11] shows how
to perform carrier phase tracking for positioning with orthog-
onal frequency-division multiplexing (OFDM) signals from
time and frequency synchronized BSs, considering aspects of
multipath and phase wrapping, while [12] shows that CPP in
FR1 provides sub-meter accuracies for both static and dynamic
users. The use of reference stations, common in GNSS RTK,
was also explored for 5G positioning [6], [15]. CPP has
also been combined with various MIMO configurations, such
as massive MIMO [16] for tracking phase information from



multipath components, cell-free MIMO [13] for evaluating
the impact of dense multipath, and near-field tracking [17].
In FR2, [14] uses CPP for inter-BS synchronization and user
equipment (UE) tracking. An in-depth performance evaluation
of CPP can be found in 3GPP report [18]. Surprisingly, despite
this variety of algorithmic work, few papers have addressed
the problem of fundamental performance bounds, which are
useful for gaining deeper insights without the need for time-
consuming simulations. While [13], [17], [19] conducted
Cramér-Rao bound (CRB) analyses, neither considered the
ambiguity. In [20], the ambiguity was considered, but only
in a small range. In [17], the absolute phase was not utilized
for positioning, so there was no ambiguity.

In this paper, we consider the CPP problem in its simplest
form (i.e., snapshot positioning of an unsynchronized UE
from ToA and carrier phase measurements from respect to
several BSs, as shown in Fig. 1) in order to derive a novel
fundamental performance bound. Our contributions are as
follows: (i) We develop the signal model, revealing when
the integer ambiguity appears in going from the waveform
observation to the delay and phase observation; (ii) We derive a
novel bound, the mixed-integer Cramér-Rao bound (MICRB),
which accounts for the integer ambiguity; (iii) Via simulations,
we demonstrate the tightness and usefulness of the bound,
and show under which conditions CPP is most promising,
including for cell-free MIMO systems.

II. SYSTEM MODEL

We consider a scenario with 1 UE, M ≥ 4 BSs. The UE
has an unknown position xue ∈ R3 and is not synchronized
to the BSs. We further assume that the BSs are all mutually
phase synchronized and have known locations xbs,m ∈ R3.
In case the time or phase synchronization does not hold, a
reference station (RS) can be used for computing differential
measurements in which the per-BS time and phase biases are
removed. For simplicity, we assume that any frequency offsets
among all entities have been corrected.

OFDM pilot signals with unit-modulus pilots are transmitted
by the BSs, comprising N subcarriers with subcarrier spacing
∆f . The M BSs transmit orthogonal OFDM waveforms (i.e.,
each BS uses N/M different subcarriers per OFDM symbol
and M OFDM symbols) with a transmit power Ptx. After
filtering, sampling, and cyclic prefix removal and combining
over OFDM symbols, the frequency-domain signal (i.e., across
the subcarriers) in terms of in-phase and quadrature (IQ)
samples at the UE from BS m under ideal line-of-sight (LoS)
is given by [4, eq. (1)–(2)]

yiq,m =
√
Esαmd(τm) +wm, (1)

where Es is the energy per subcarrier (with Es =
Ptx/(N∆f )), αm = ρmeȷϑm is the complex channel gain (in
which ρm ∈ R captures the effect of path loss and transmitter
and receiver antenna gains), τm is the ToA, [d(τ)]n =
e−ȷ2πn∆fτ for n ∈ {0, . . . , N−1}−(N−1)/2 is the centered
delay steering vector, and wm ∼ CN (0N×1, N0IN×N ) is the
noise. We also introduce W = N∆f as the system bandwidth.

Under the stated assumptions, the ToA and carrier phase are
related to the geometry by

τm =
1

c
∥xbs,m − xue∥+Bue (2)

ϑm =
2π

λ
∥xbs,m − xue∥+ ϕue, (3)

where Bue is the clock bias of the UE, ϕue is the phase bias
of the UE. The objective of the UE is to estimate its position
xue from yiq,m, for m = 1, . . . ,M .

III. OBSERVATION MODEL AND PERFORMANCE BOUNDS

In this section, we first present an observation model of the
ToA and carrier phase, from which we will derive the different
bounds.

A. Intermediate Observation Model

In order to derive all performance bounds, we will adopt a
two-stage estimation process, where first the ToA and carrier
phase are estimated from yiq,m, as say τ̂ue,m and ϑ̂ue,m, and
then the UE position is determined. It is important to note that
ϑ̂ue,m is an estimate of ϕue + 2π∥xbs,m − x∥/λ modulo 2π.
Hence, we can express the ToA and phase observations directly
as distances yτ,m = τ̂ue,m × c and yϑ,m = ϑ̂ue,m × λ/(2π),
given by

yτ,m = ∥xbs,m − xue∥+Buec+ wτ,m (4)

yϑ,m = ∥xbs,m − xue∥+ zmλ+ ϕue
λ

2π
+ wϑ,m, (5)

where zm ∈ Z is unknown.
Stacking observations from different BSs, we introduce y =

[y⊤
τ y

⊤
ϑ ]

⊤, where yτ = [yτ,1, . . . , yτ,M ]⊤ ∈ RM and yϑ =
[yϑ,1, . . . , yϑ,M ]⊤ ∈ RM . Stacking the unknowns, we intro-
duce η = [s⊤, z⊤]⊤ ∈ R5 ×ZM , where s = [x⊤

ue, Bue, ϕue]
⊤.

As shown in the Appendix, the lower bounds on the error
covariance matrices of the noises wτ and wϑ are diagonal ma-
trices Στ and Σϑ, where [Στ ]

−1
m = 2SNRmπ2W 2/(3c2) and

[Σϑ]
−1
m = 8SNRmπ2/λ2, in which SNRm = NEsρ

2
m/N0.

B. Classical Performance Bounds

From the observation model (4)–(5), classical performance
bounds are derived, which ignore the integer ambiguities z
[21], or relax the ambiguities to real numbers.

1) Known Integer Ambiguity: When z is known, an opti-
mistic bound is obtained. The Fisher information matrix (FIM)
of s = [x⊤

ue, Bue, ϕue]
⊤ is given by

Jknown(s) (6)

=

 UJU⊤ cUdiag(Jτ )
λ
2πUdiag(Jϑ)

c(Udiag(Jτ ))
⊤ tr(Jτ )c

2 0
λ
2π (Udiag(Jϑ))

⊤ 0 tr(Jϑ)
λ2

(2π)2

 ,

where Jϑ = Σ−1
ϑ , Jτ = Σ−1

τ , J = Jϑ + Jτ , and U =
[u1, . . . ,uM ], in which um = (xue−xbs,m)/∥xue−xbs,m∥. By
inverting Jknown(s), the error covariance bound on the position
is readily obtained, i.e., Σknown(xue) = [J−1

known(s)]1:3,1:3.



2) Delay-only Bound: When the carrier phase observation
yϑ is not considered, the FIM of s̃ = [x⊤

ue, Bue]
⊤ is given by

Jdelay(s̃) =

[
UJτU

⊤ cUdiag(Jτ )
c(Udiag(Jτ ))

⊤ tr(Jτ )c
2

]
. (7)

After inversion and extraction of the first 3 × 3 block, we
obtain Σdelay(xue) = [J−1

delay(s̃)]1:3,1:3.
3) Floating Integer Ambiguity Bound: We consider z is an

unconstrained real vector, so that in (5), ϕue/(2π) is absorbed
in each zm. The estimate of z ∈ RM is known as the float
solution. Hence, η becomes η = [s̃⊤, z⊤]⊤ ∈ R4+M . After
some manipulations of the FIM of η, it can be shown that the
bound on the error covariance of z ∈ RM is

Σunc =
1

λ2
Σϑ +

1

λ2
U⊤Σdelay(xue)U , (8)

while the bound on the error covariance on s̃ is the same as
in the delay-only case.

C. Proposed Mixed-Integer Bound

We first express the stacked observation as
y = f̃(s̃) +Bz + κB1M×1 +w, (9)

where z ∈ ZM , w ∼ N (02M ,Σch), Σch = blkdiag(Στ ,Σϑ),
f(·) is a nonlinear function of s̃, defined as, for m =
1, . . . ,M ,

[f̃(s̃)]m = ∥xbs,m − xue∥+Buec (10)

[f̃(s̃)]M+m = ∥xbs,m − xue∥. (11)
In addition, B = [0M×M ;λIM×M ] ∈ R2M×M , and κ =
ϕue/(2π). Note that κ and z are not jointly identifiable. To
address this, we will reduce the state dimension. In particular,
we express

y = f̃(s̃) +B

[
0

Dz

]
+ κdB1M×1 +w, (12)

where D = [−1(M−1)×1 I(M−1)×(M−1)] and κd = κ + z1,
in which z1 is the first1 entry of z. From this, we introduce
zd

.
= Dz ∈ ZM−1. Then we can write

y = f(s) +BEzd +w, (13)
where f(s) = f̃(s̃) + κdB1M×1 and E =
[0⊤

(M−1)×1; I(M−1)×(M−1)].
From the identifiable formulation (13), we proceed with

the following steps: (i) Considering z ∈ RM , we obtain
the floating integer ambiguity bound Σunc on z and the
bound Σdelay(xue) on xue. (ii) We determine the probability
of making specific errors δ ∈ ZM−1 when determining the
integer solution zd from the float solution. (iii) An integer
ambiguity error in zd leads to a biased estimate of s. This
bias will be characterized. (iv) We put everything together to
compute the final error covariance on s, considering the integer
ambiguity errors, their biases, and their probabilities.

1) Integer Ambiguity Errors: We decompose the float so-
lution ẑunc ∈ RM into

ẑunc = Ezd + κd1M×1 + u,u ∼ N (0,Σunc). (14)

1The choice of D is not unique provided that D ∈ Z(M−1)×M satisfies
D1M×1 = 0(M−1)×1. It also can operate on a permutation of z, say Pz,
where P ∈ {0, 1}M×M is a permutation matrix.

We next determine a differential observation
Dẑunc = DEzd + κdD1M×1 +Du (15)

= zd +Du (16)
since D1M×1 = 0(M−1)×1. We whiten the noise, leading to
an observation r = S−1/2zd + u′, where r = S−1/2Dẑunc,
u′ ∼ N (0(M−1)×1, I(M−1)×(M−1)) and S = DΣuncD

⊤. Fi-
nally, we recover zd by solving the following integer problem

ẑd = arg min
zd∈ZM−1

∥r − S−1/2zd∥, (17)

which can be solved efficiently with standard toolboxes [22],
provided M is not too large. From ẑd, we introduce the integer
error δ = ẑd − zd.

2) Bias in s due to Integer Ambiguity Error: To determine
the bias in s, we linearize (13) around s. With a slight abuse
of notation, this leads to y = As+BEzd+w, after removing
irrelevant terms, and in which A = ∇sf(s) ∈ R2M×5,
computed at the true value of s. After whitening the noise
and computing the least-squares estimate of s, the bias is
immediately recovered as

b(s|δ) = (Σ
−1/2
ch A)†Σ

−1/2
ch BEδ, (18)

where X† is the Moore-Penrose inverse of the tall matrix X ,
i.e., X† = (X⊤X)−1X⊤.

3) Mixed Integer CRB: To now computed the MICRB, we
first recall that when the estimator of s̃ is biased with bias
b(s|δ), the resulting error covariance is (including the bias)
[23]
Σ(s|δ) = b(s|δ)(b(s|δ))⊤ + (I +Hb)Σknown(s)(I +Hb)

⊤

(19)
where2 Hb = ∇sb(s|δ) ∈ R5×5. Finally, the proposed bound
on the error covariance is obtained by taking the expectation
with respect to the integer ambiguity error:

Σmi(s) =
∑

δ∈ZM−1

Pr(δ)Σ(s|δ). (20)

The summation can be efficiently computed via Monte Carlo
simulation. To do this, we generate Ns samples r(i) =
S−1/2zd+u(i), where u(i) ∼ N (0M−1, IM−1) and determine
the estimate ẑ(i)

d . From this, we obtain δ(i) = ẑ
(i)
d −zd. Finally,

Σmi(s) ≈ 1/Ns

∑Ns

i=1 Σ(s|δ(i)).
4) Complexity Analysis: Due to the involved sampling

(with complexity scaling linearly in Ns) and the need to
solve (17) for each sample (with complexity scaling at least
cubically in M [24]), the complexity of the proposed MICRB
is far higher than the conventional counterparts from Section
III-B.

IV. POSITIONING ALGORITHMS

In this section, we describe two distinct approaches to solve
the CPP problem: the first one is based directly on (13),
while the second one is based on directional statistics. These
algorithms are not the main contributions of this work and are
presented to provide a baseline for the bounds.

2In case the bias is not very sensitive to s, Hb ≈ 0, so that the error
covariance is approximated as Σ(s|δ) ≈ b(s|δ)(b(s|δ))⊤ +Σknown(s).



A. Mixed Integer Approach

The maximum likelihood (ML) problem can be expressed
as
ŝ, ẑd = arg min

s∈R5,zd∈ZM−1
∥ȳ −Σ

−1/2
ch f(s)− B̄zd∥2. (21)

where ȳ = Σ
−1/2
ch y and B̄ = Σ

−1/2
ch BE. Solving this prob-

lem is challenging, due to the combination of the nonlinearity
f(·) and the integer variable zd. To deal with this, the standard
solution involves several steps [25]. First, we linearize (13)
around some value s0:

y ≈ f(s0) +∇f(s0)δs+BEzd +w, (22)
where we recall that s = [x⊤

ue, Bue, ϕue]
⊤. To obtain s0, we

solve

min
xue,Bue

M∑
m=1

(yτ,m − ∥xbs,m − xue∥ − cBue)
2

2σ2
τ,m

(23)

using any conventional time-difference-of-arrival (TDoA)
method. This provides s0, in which we set ϕ̂ue = 0 since
it appears linearly. Then, after removing f(s0), we are left
with

y′ = ∇f(s0)δs+BEzd +w. (24)
We can then find an unconstrained estimate of zd and then
solve (17) to obtain the integer estimate of zd. Finally, we
obtain a closed-form solution of δs from (24), considering zd
to be known.

B. Directional Statistics Approach

As an alternative approach, we can avoid integer ambiguities
by working with directional statistics, where we model the
carrier phase measurements with a von Mises distribution [26].
Then, the negative log-likelihood function (LLF) becomes
− log p(y|xue, Bue, ϕue) = (25)
M∑

m=1

(yτ,m − ∥xbs,m − xue∥ − cBue)
2

2σ2
τ,m

+

M∑
m=1

λ2

(2π)2σ2
ϑ,m

cos
((2π

λ
yϑ,m − 2π

λ
∥xbs,m − xue∥

)
− ϕue

)
.

To solve (25), we note that for a given xue, we can easily
determine Bue (in closed form) and ϕue (by a 1D search).
The method thus proceeds as follows. From the ToA measure-
ments, a coarse estimate of xue is obtained, as in (23). Then,
a fine grid around xue is defined with step size dependent
on the bound Σknown(xue) and a grid size dependent on
the bound Σdelay(xue). For each trial location, Bue and ϕue
are determined and the solution with minimal negative log-
likelihood is selected. Overall, this method requires a fine 4D
search, which is computationally complex.

V. NUMERICAL RESULTS

A. Scenario

We consider a UE at a fixed location xue = [0; 0; 5]⊤ and M
BSs located in 3D space, with xbs,m ∼ N (0, (0.1 km)2I3×3).
The default system parameters are as follows: carrier fre-
quency fc = 28 GHz, subcarrier spacing ∆f = 20 kHz,
N = 300 subcarriers, −174 dBm/Hz noise power spectral
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Fig. 2. Impact of carrier frequency on PEB and positioning RMSE.
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Fig. 3. LLF at 3 GHz carrier for delay only and combined delay and carrier
phase observations.

density, a receiver noise figure of 13 dB, transmission power of
0 dBm, and M = 7 BSs. We set ρm = λ/(4π∥xbs,m −xue∥),
to model the dependence of the free space path loss on the
carrier frequency.

B. Bounds and Algorithms

Performance of algorithms will be measured in terms of
the root mean squared error (RMSE), while the bounds will
be represented by the position error bound (PEB), defined
as PEB =

√
trace(Σ(xue)). The RMSE and PEB are both

expressed in meters. We will study the following bounds:
the bound with known integer ambiguity3 based on (6), the
delay-only bound from (7), and the proposed MICRB (20)
computed with Ns = 1000. We will present the following
algorithms: the mixed integer approach from Section IV-A,
the directional statistics approach from Section IV-B, and the
delay-only estimator.

C. Results and Discussion

We will evaluate the impact of the following parameters: the
carrier frequency, the bandwidth, the transmission power, and
the number of BSs. When varying one parameter, the other
parameters are set to their default values.

1) Impact of Carrier Frequency: We first vary the car-
rier frequency fc, leading to the results in Fig. 2. This

3In all cases, this bound turned out to coincide with the generalized CRB
from [20], so the latter bound is not included in the results.
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figure reveals several interesting facts. The PEB for delay-
only estimation (PEBdelay) increases with carrier frequency,
due to the increasing path loss. In contrast, the PEB with
known ambiguity (PEBknown) is relatively constant, due to
two counter-acting effects: large path loss (leading to lower
SNR) vs. smaller wavelength (leading to better carrier phase
estimates for a given SNR). The proposed bound PEBmi has a
markedly different behavior: for low carrier frequencies (below
20 GHz) it coincides with PEBknown, while for higher carrier
frequencies (above 50 GHz), it coincides with PEBdelay. The
reason for this will be discussed shortly. Focusing on the
algorithms, we observe that both methods show a similar
trend as PEBmi, with the mixed-integer approach perform-
ing worse for carriers below 30 GHz, while the directional
statistics approach deviates from the bound above 30 GHz.
To understand the transitions, we consider a 1D cut of the
LLF at 3 GHz (Fig. 3) and at 30 GHz (Fig. 4). At 3 GHz the
wavelength (10 cm) is on the order of the uncertainty of the
delay-only position estimates. This means that the LLF near
the delay-only estimate is relatively smooth. Since the SNR
is high enough, there is a clear peak around the true value,
separate from the peak of the delay-only LLF. At 30 GHz, the
delay-only LLF is much broader (due to the increased path
loss), while phase estimates in units of cycles also become
worse due to path loss, which means that although the carrier
phase accuracy in meter units does not degrade, this accuracy
becomes actually worse with respect to the wavelength. the
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Fig. 6. Impact of transmission power on PEB and positioning RMSE.
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Fig. 7. Impact of number of BSs on PEB and positioning RMSE.

wavelength has become much smaller. The overall effect on
the combined LLF is shown. Note that there are many local
optima, with LLF close to the global optimum. This leads
to an increased probability of selecting the wrong optimum,
corresponding to an integer ambiguity error.

2) Impact of Bandwidth: In this section, we vary the band-
width, as shown in Fig. 5. We observe that PEBdelay improves
with bandwidth, as expected, while PEBknown is approximately
constant since the quality of the carrier phase estimates is
independent of the bandwidth. The proposed MICRB has a
different behavior: for small bandwidths, we have poor delay
estimation, leading again to a similar effect as shown in
Fig. 4, so that the bound coincides with the PEBdelay. As the
bandwidth increases, the delay estimates get better, while the
carrier phase estimates maintain the same quality. Combined,
the MICRB improves. After a bandwidth of 300 MHz (when
the delay estimation is on the order to 10 λ), the MICRB
touches PEBknown, as this case is similar to Fig. 3. Fig. 2 and
Fig. 5 combined clearly show that carrier phase positioning
is possible with any bandwidth and any carrier frequency, but
not with any arbitrary combination of both. In summary, the
bandwidth must be sufficiently large so that the delay estimates
are good enough with respect to the wavelength.

3) Impact of Transmission Power: When we instead change
the transmission power (see Fig. 6), a different story emerges.
Both PEBdelay and PEBknown improve with transmission power
(due to increased SNR) and lead to roughly parallel curves.
The proposed MICRB has a thresholding behavior, where for



sufficiently large transmit power, a more pronounced global
optimum of the carrier phase estimate leads us to correctly
identify the correct optimum. We see that the directional
statistic approach (25) closely follows the MICRB, while the
mixed integer approach (21) is unable to improve upon the
delay-only estimator. This effect can be ascribed to the poor
delay estimates for all considered transmit powers so that
the linearization point s0 used in (22) is far away from the
ML solution. These results clearly indicate that the mixed
integer approach requires a good delay-only estimate, while
the directional statistics approach does not.

4) Impact of Number of BSs: As a last result, we vary
the number of BSs (see Fig. 7). In this figure, BSs are
progressively added when computing the bound PEBdelay
and PEBknown tend to be relatively flat since performance is
dominated by a few BSs with good geometry and SNR. In
correspondence to the results as a function of transmission
power, we can predict that the mixed-integer algorithm will
fail to attain PEBknown, due to poor delay estimates, for the
considered number of BSs. The directional statistics approach
does not suffer from this shortcoming and closely follows
the MICRB PEBmi, harnessing the unique global optimum of
the NLL. This shows the great promise of positioning using
for instance cell-free deployments, where each UE will be
surrounded by many phase-coherent access points [13].

VI. CONCLUSIONS

This paper studied the CPP problem in a cellular context,
considering a snapshot positioning scenario under LoS con-
ditions. A new fundamental performance bound is derived
that can account for the inherent integer ambiguity of the
CPP positioning problem. The new bound is demonstrated
to be tighter than previously known bounds, at a cost of
higher complexity. Results as a function of carrier frequency,
bandwidth, transmission power, and the number of BSs reveal
surprising insights as to when carrier phase information can be
harnessed. In particular, the standard mixed-integer approach
may be far from optimal when the delay estimates are poor.
There are several possible extensions of this work, including
(i) the presence of multipath, (ii) a blocked LoS path; (iii)
reducing the complexity of the MICRB.
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APPENDIX
FIM PER LINK

Consider a generic link and let µ =
√
Esρe

ȷϑd(τ), then
∂µ/∂τ =

√
Esρe

ȷϑDd(τ) and ∂µ/∂ϑ = ȷ
√
Esρe

ȷϑd(τ),
where D = −ȷ2π∆fdiag(−(N − 1)/2, . . . , (N − 1)/2).
Since the subcarrier indices are chosen symmetric around

0, then J(τ) = 2/N0Esρ
2
∑(N−1)/2

n=−(N−1)/2(2πn∆f )
2 ≈

SNR 2π2W 2/3, using
∑(N−1)/2

n=0 n2 ≈ N3/24 for sufficiently
large N . In addition, J(ϑ) = 2Esρ

2N/N0 = 2SNR.
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