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Abstract—Cell-Free massive MIMO networks provide huge
power gains and resolve inter-cell interference by coherent pro-
cessing over a massive number of distributed instead of co-
located antennas in access points (APs). Cost-efficient hardware
is preferred but imperfect local oscillators in both APs and users
introduce multiplicative phase noise (PN), which affects the phase
coherence between APs and users even with centralized processing.
In this paper, we first formulate the system model of a PN-
impaired uplink Cell-Free massive MIMO orthogonal frequency
division multiplexing network, and then propose a PN-aware linear
minimum mean square error channel estimator and derive a PN-
impaired uplink spectral efficiency expression. Numerical results
are used to quantify the spectral efficiency gain of the proposed
channel estimator over alternative schemes for different receiving
combiners.

Index Terms—Cell-Free massive OFDM MIMO, hardware im-
pairments, phase noise, channel estimation, spectral efficiency.

I. INTRODUCTION

Massive MIMO offers phenomenal received power gains by
coherently transmitting a signal over multiple antennas without
increasing the transmit power [1]. This coherent transmission
can be implemented in two ways, classified by the deployment
of antennas: deploying co-located antennas leads to cellular
network [2], while deploying distributed antennas over APs
leads to cell-free network [3]–[5]. Coherent transmissions in
cell-free networks relies on both time and phase synchronization
among APs [6]. Even if there is a centralized central processing
unit (CPU) that synchronizes all APs, the imperfect LOs at both
APs and user equipments (UEs) introduce different PN that
varies over time, which unavoidably affects the transmission
coherence and reduces the power gain [7]. Using better quality
LOs can alleviate the PN problem, while the corresponding
hardware cost scales up with up to hundreds of LOs in APs
and UEs. Thus, to design an economical and reliable cell-free
network, it is important to evaluate the relation of the PN impact
and the LO quality.
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There exist several works investing the PN impact on ei-
ther cellular or cell-free massive MIMO networks [6]–[12].
However, the vast majority of these works model the PN in
a single-carrier fashion, while most modern communication
systems utilize OFDM. The loss of orthogonality between
OFDM subcarriers in the presence of PN is ignored by the
conventional single-carrier models. This may have an impact
on the design of the network. For example, it may result into
a mismatched channel estimator and a mismatched combin-
ing/precoding scheme. The authors in [11] studied the PN
impact on the uplink achievable spectral efficiency (SE) in an
OFDM system under the assumption of perfect channel state
information, while a practical PN-aware channel estimation and
the corresponding achievable SE are not studied.

The aim of this paper is to evaluate the impact of PN in
the uplink of cell-free OFDM massive MIMO. To this end, we
first provide the PN-impaired system model, which correctly
models the impact of the time-domain PN on any subcarrier of
the received frequency-domain OFDM symbols. The model is
then used to derive the PN-aware LMMSE channel estimation
scheme and a novel uplink achievable SE considering the
intercarrier interference (ICI) caused by the PN. Numerical
results are used to evaluate the SE and to show that the proposed
channel estimator provides higher SE compared to both PN-
aware and PN-unaware estimators stemmed from single-carrier
systems.

Notation: Lowercase and uppercase boldface letters, x and
X , denote column vectors and matrices respectively. The su-
perscripts T, ∗, H and † denote transpose, conjugate, conjugate
transpose, and pseudo-inverse, respectively. Variables with the
check mark ,̌ e.g., x̌, represents that they are in time-domain.
The n× n identity matrix is In. We use ≜ for definitions and
diag(x) for a diagonal matrix with x on the diagonal. The
expected value of x is denoted by E{x}.

II. SYSTEM MODEL

We consider a cell-free OFDM network comprising L ran-
domly distributed single-antenna APs, which are connected to a
CPU via a fronthaul network and serve K single-antenna UEs.
Each OFDM symbol consists of N subcarriers with spacing
∆f . A cyclic prefix (CP) length of NCP is considered. The
signal bandwidth is W = N∆f so that the sampling time is
Ts = 1/W . The OFDM symbol time is T = NTs = 1/∆f .



A. Block Fading Channel Model
The time-domain channel between UE k and AP l is

modeled as a Q-tap finite impulse response filter ȟk,l =
[ȟk,l,0, · · · , ȟk,l,Q−1]

T, where the filter length Q is no longer
than the multi-path delay spread Td normalized by the sam-
pling time, i.e., Q ≤ ⌈Td/Ts⌉. The corresponding channel
in frequency-domain can be obtained by an N -point discrete
Fourier transform (DFT) on ȟk,l. This yields a correlated
channel in the frequency domain. In this paper, we neglect
this correlation but assume that the time-frequency resources
are divided into coherence blocks where each channel is time-
invariant and frequency-flat, considering the standard TDD
multicarrier protocol of a canonical massive MIMO network
from [2]. As illustrated in Fig. 1, each coherence block has a
coherence time Tc = τcT and a coherence bandwidth Wc =
Nc∆f , i.e., τc OFDM symbols and Nc subcarriers. In total,
the number of coherent channel uses, i.e., number of coherent
samples, is WcTc = τcNc, consisting of τp and (τcNc − τp)
channel uses for pilot and data, respectively. Subcarriers in each
OFDM symbol are split by R = ⌈N/Nc⌉ coherence blocks,
where the subcarrier set in the coherence block r ∈ {1, · · · , R}
is denoted by Rr = {(r − 1)Nc, · · · , rNc − 1}. For an
arbitrary coherence block r, the frequency-domain channel
between UE k and AP l over subcarrier n ∈ Rr is denoted
by hk,l,n ∼ NC(0, βk,l), where βk,l represents the large-
scale fading coefficient. Notice that hk,l,n1

= hk,l,n2
, for

n1, n2 ∈ Rr, while E{hk,l,n1
hk,l,n2

} = E{hk1,l,nhk2,l,n} = 0,
for n1, n2 /∈ Rr and k1 ̸= k2.

B. Phase Noise Model
Imperfect LOs at APs and UEs introduce PN. The PN ϕ̌

(τ)
l,m

and φ̌
(τ)
k,m from the LOs of AP l and UE k, respectively, at time

sample m of OFDM symbol τ , can be modeled as discrete-time
Wiener processes [13],

ϕ̌
(τ)
l,m = ϕ̌

(τ)
l,m−1 + δ̌ϕm, φ̌

(τ)
k,m = φ̌

(τ)
k,m−1 + δ̌φm, (1)

where δ̌ϕm ∼ N (0, σ2
ϕ) and δ̌φn ∼ N (0, σ2

φ). The increment
variance of the PN process is modeled as σ2

i = 4π2f2
c γiTs, for

i ∈ {ϕ, φ}, where fc and γi denote the carrier frequency and
a constant describing the oscillator quality. Note that different
APs and UEs may have different quality. The uplink received
PN from UE k and AP l at time-domain sample m of OFDM
symbol τ is combined as θ̌

(τ)
k,l,m = ϕ̌

(τ)
l,m + φ̌

(τ)
k,m, and its

vector form for the whole OFDM symbol τ is denoted by
θ̌
(τ)
k,l = [θ̌

(τ)
k,l,0, · · · , θ̌

(τ)
k,l,N−1]

T. Considering the CP length NCP,
the phase noise at the first time-domain sample of (τ + 1)-th
OFDM symbol can be modeled as θ̌

(τ+1)
k,l,0 = θ̌

(τ)
k,l,N−1 + δ̌CP,

where δ̌CP ∼ N (0, (NCP + 1)(σ2
ϕ + σ2

φ)).
For any OFDM symbol τ , the multiplicative PN exp(jθ̌(τ)

k,l ) ∈
CN in time-domain is equivalent to the convolutional
frequency-domain phase-drift vector J

(τ)
k,l ∈ CN , whose i-th

entry J
(τ)
k,l,i, for i = −N/2, · · · , N/2− 1, is obtained by [13]

J
(τ)
k,l,i =

1

N

N−1∑
n=0

ejθ
(τ)
k,l,ne−j2πni/N . (2)

Time

Frequency Coherence Time Tc

Coherence
bandwidth
Wc

Nc

Subcarriers

Pilot sample
s
(τ)
tk,n

Data sample
s
(τ+1)
k,n+1

...

...

Fig. 1. An example of coherence block r over the time-frequency plane
consisting of τcNc channel uses with an arbitrary pilot distribution.

For i = 0, the phase-drift J (τ)
k,l,0 = 1/N

∑
n e

jθ̌
(τ)
k,l,n is known

as the common phase error (CPE) [13] since it acts on all
subcarriers. The other non-zero phase-drifts J (τ)

k,l,i for i ̸= 0 lead
to ICI. The correlation between J

(τ1)
k,l,i1

and J
(τ2)
k,l,i2

is calculated
as [13]
E{J (τ1)

k,l,i1
J
∗(τ2)
k,l,i2

} ≜ B
(τ1−τ2)
i1,i2

= (3)

1

N2

N−1∑
n1=0

N−1∑
n2=0

e−
σ2
φ+σ2

ϕ
2 (|(τ1−τ2)N+n1−n2|)e

−j2π(n1i1−n2i2)
N .

C. Uplink Pilot Assignment
We assume the network utilizes a pilot book consisting

of τp mutually orthogonal τp-length frequency-domain pilot
sequences, collected into a pilot set Sp = {s1, s2, . . . , sτp},
with ∥st∥2 = τp and sHt1st2 = 0 for t1 ̸= t2. We assume each
UE uses the same pilot sequence for all coherence blocks. In
each coherence block, the rest of the (Ncτc − τp) channel uses
are used for data transmission. When K > τp, users have to
share pilots, which causes pilot contamination [2]. An arbitrary
distribution of the τp-length pilot in an coherence block can be
implemented, as shown in Fig. 1. For an arbitrary coherence
block r, the set of subcarrier and OFDM symbol indices used
for pilot transmission is denoted by Np = {n1, · · · , nτp} ⊆ Rr,
and Tp = {τ1, · · · , ττp} ⊆ {1, · · · , τc}, respectively. The set of
remaining subcarrier indices for data transmission is denoted
by Nd = Rr\Np. We assume all UEs use the same pilot
distribution.

UE k is assigned with pilot stk ∈ Cτp from Sp, where we de-
note the index of the pilot assigned to UE k as tk ∈ {1, · · · , τp}.
UE k distributes its pilot stk over pilot subcarriers n ∈ Np and
OFDM symbols τ ∈ Tp, with each sample denoted by s

(τ)
tk,n

.
The τ -th OFDM symbol of UE k is s

(τ)
tk

∈ CN , which consists
of both pilot and data samples.

D. Signal Model
For UE k, the i-th time-domain sample of τ -th OFDM

symbol is obtained by an IDFT on s
(τ)
tk

as š
(τ)
tk,i

=
1√
N

∑N−1
n=0 s

(τ)
tk,n

e
j2πni

N , and its vector form for the whole

OFDM symbol τ is denoted by š
(τ)
tk

∈ CN . With the PN

diag(ejθ̌
(τ)
k,l ), the time-domain received signal y̌

(τ)
l ∈ CN at

AP l for the τ -th OFDM symbol is

y̌
(τ)
l =

K∑
k=1

√
pkdiag(ejθ̌

(τ)
k,l )(ȟk,l ⊛ š

(τ)
tk

) + η̌
(τ)
l , (4)



where pk ≥ 0 is the transmit power of UE k, ⊛ denotes the
circular convolution, η̌(τ)

k,l ∼ NC(0, σ
2IN ) denotes the thermal

noise. By applying a N -point DFT to both sides of (4), the
frequency-domain received signal is

y
(τ)
l =

K∑
k=1

√
pkJ

(τ)
k,l ⊛ (hk,l ⊙ s

(τ)
tk

) + η
(τ)
l , (5)

where ⊙ denotes the Hadamard product, the thermal noise fol-
lows the same distribution η

(τ)
l ∼ NC(0, σ

2IN ). The elements
of the phase-drift J (τ)

k,l are defined in (2). The frequency-domain
sample y

(τ)
l,n received over subcarrier n can be decomposed as

y
(τ)
l,n =

K∑
k=1

(√
pks

(τ)
tk,n

h
(τ)
k,l,n + ζ

(τ)
k,l,n

)
+ η

(τ)
l,n (6)

where
h
(τ)
k,l,n ≜ J

(τ)
k,l,0hk,l,n (7)

is the effective channel (including the CPE) and

ζ
(τ)
k,l,n =

√
pk

N−1∑
ȷ=0,ȷ ̸=n

s
(τ)
tk,ȷ

J
(τ)
k,l,n−ȷhk,l,ȷ (8)

is the ICI component over subcarrier n and OFDM symbol τ .
Within an arbitrary coherence block r, the effective channels
are the same only for subcarriers in the same OFDM symbol,

h
(τ1)
k,l,n1

= h
(τ1)
k,l,n2

̸= h
(τ2)
k,l,n1

, for {n1, n2} ∈ Rr, τ1 ̸= τ2.

Note that the CPE coefficient J
(τ)
k,l,0 is the same for all sub-

carriers of OFDM symbol τ . Other phase error coefficients
{J (τ)

k,l,i, i ̸= n} introduce ICIs on an arbitrary subcarrier n.
Note also that the different CPEs break the pilot orthogonality.

Finally, observe that utilizing the time-domain single-carrier
PN model to the frequency-domain OFDM system model (6)
leads to a mismatched system model as in [6]–[10]. The
mismatch disappears only if a single carrier system is utilized,
where the single-carrier PN model becomes equivalent in both
time and frequency domains, i.e., J (τ)

k,l,n = J
(τ)
k,l,0 = ejθ

(τ)
k,l,0 , and

the effective channel in [6]–[10] becomes the same as (7).

III. CHANNEL ESTIMATION AND UPLINK DATA
TRANSMISSION WITH PHASE NOISE

We now derive a PN-aware channel estimator and an achiev-
able uplink SE expression in the presence of PN in cell-free
massive MIMO networks.

A. Channel Estimation With Phase Noise

From (6) and (7), we see that, although the true channels
follow a block fading model, the PN make the effective channel
h
(τ)
k,l,n change over each OFDM symbol τ . For each coherence

block, we need to do the channel estimation for just one
subcarrier of each OFDM symbol, instead of estimating the
effective channel for every channel use as indicated by the
single-carrier channel estimation methods in [7], [8]. We now
derive an estimator of the effective channel h

(τ)
k,l,n for any

subcarrier n ∈ Rr and OFDM symbol τ ∈ {1, · · · , τc}. The
conventional minimum mean square error (MMSE) estimation
is hard to compute since the received signal and channel are not

joint Gaussian distributed due to the PN. Therefore, we derive
a LMMSE estimator [14]. In the absence of PN, the LMMSE
estimator becomes the optimal MMSE estimator [15] since the
received samples and channels are jointly Gaussian.

Lemma 1. The LMMSE estimate of h
(τ)
k,l,n based on yl ≜

[y
(τ1)
l,n1

, · · · , y(τp)l,nτp
]Tis

ĥ
(τ)
k,l,n = ĥ

(τ)
k,l =

√
pkβk,ls

H
tk
B

(τ)
0,0Ψ

−1
l yl. (9)

where

B
(τ)
0,0 = diag

([
B

(τ−τ1)
0,0 , · · · , B(τ−τp)

0,0

]T)
(10)

Ψl =
∑K

k=1
pkβk,lΦk +ZICI

l + σ2Iτp (11)

[Φk]τ1,τ2 = s
(τ1)
tk,n1

s
∗(τ2)
tk,n2

B
(τ1−τ2)
0,0 . (12)

Here B
(τ1−τ2)
i1,i2

and ZICI
l are defined in (3) and (25).

Proof. See Appendix A.

With the LMMSE estimation, the channel
estimation ĥ

(τ)
k,l,m is with zero mean and variance

ϵ
(τ)
k,l,m ≜ pkβ

2
k,ls

H
tk,n

B
(τ)
0,0Ψ

−1
l,nB

H,(τ)
0,0 stk,n, and the channel

estimation error h̃(τ)
k,l,n ≜ h

(τ)
k,l,n − ĥ

(τ)
k,l,n is with zero mean and

variance c
(τ)
k,l,m ≜ βk,l − ϵ

(τ)
k,l,m.

Remark 1. The PN-aware LMMSE estimator in (9) is different
from the one in [6]–[10] as a multi-carrier PN model is
considered instead of a single-carrier PN model in the OFDM
system model, which leads to different impacts of PN statistics
in (10) and (11).

B. Uplink Data Transmission

To meet the scalability requirement of CF massive MIMO, we
assume that an arbitrary AP l only serves a subset of UEs [15].
We denote the set of UEs served by AP l by [15]

Dl = {k : dk,l = 1, k ∈ {1, · · · ,K}}, (13)
where dk,l ∈ {0, 1} defines whether UE k and AP l com-
municate to each other according to the dynamic cooperation
clustering (DCC) framework [16]. For an arbitrary AP l, the
cardinality |Dl| is constant as K → ∞ to satisfy the scalability
of a CF massive MIMO network.

For UE k, let s(τ)k,n ∈ C denote the uplink data sample over
subcarrier n ∈ Nd and OFDM symbol τ ∈ {1, · · · , τc} with
zero mean and power pk. The received signals from all APs are
collected at the CPU as

y(τ)
n =

K∑
k=1

h
(τ)
k,ns

(τ)
k,n +

K∑
k=1

ζ
(τ)
k,n + η(τ)

n , (15)

where the concatenate channel, ICI, and thermal noise between
UE k and all L APs over subcarrier n of the τ -th OFDM
symbol are denoted as h

(τ)
k,n = [h

(τ)
k,1,n, · · · , h

(τ)
k,L,n]

T, ζ
(τ)
k,n =

[ζ
(τ)
k,1,n, · · · , ζ

(τ)
k,L,n]

T, and η
(τ)
n ∼ NC(0, σ

2IL). The ICI ζ
(τ)
k,l,n

is defined in in (6).
The collective channel estimates and channel estimation

error are defined by ĥ
(τ)
k,n = [ĥ

(τ)
k,1,n, · · · , ĥ

(τ)
k,L,n]

T

and h̃
(τ)
k,n = [h̃

(τ)
k,1,n, · · · , h̃

(τ)
k,L,n]

T with zero



SINR(τ)
k,n =

pk

∣∣∣E{
v
H,(τ)
k,n Dkh

(τ)
k,n

}∣∣∣2∑K
i=1 piE

{ ∣∣∣vH,(τ)
k,n Dkh

(τ)
i,n

∣∣∣2 }− pk

∣∣∣E{vH,(τ)
k,n Dkh

(τ)
k,n

} ∣∣∣2 + ρ
ICI,(τ)
k,n + σ2E

{ ∣∣∣Dkv
H,(τ)
k,n

∣∣∣2 } (14)

means and variances diag([ϵ(τ)k,1,n, · · · , ϵ
(τ)
k,L,n]

T) and
C

(τ)
k,n = diag([c(τ)k,1,n, · · · , c

(τ)
k,L,n]

T), respectively.
According to the DCC network, only a subset of the APs

participant in the signal detection. The CPU selects a receive
combining scalar v

(τ)
k,l,n for an arbitrary UE k and AP l, and

completes the estimate of s(τ)k,n by computing the summation

ŝ
(τ)
k,n = v

H,(τ)
k,n Dkh

(τ)
k,ns

(τ)
k,n︸ ︷︷ ︸

Desired signal

+
∑K

i̸=k
v
H,(τ)
k,n Dkh

(τ)
i,ns

(τ)
i,n︸ ︷︷ ︸

Inter-user interference

+
∑K

i=1
v
H,(τ)
k,n Dkζ

(τ)
i,n︸ ︷︷ ︸

ICI

+v
H,(τ)
k,n Dkη

(τ)
n , (16)

where v
(τ)
k,n = [v

(τ)
k,1,n, · · · , v

(τ)
k,L,n]

T denotes the collective
combining vector and Dk = diag([dk,1, · · · dk,L]T) denotes a
diagonal matrix.

C. Uplink Spectral Efficiency
The ergodic capacity is unknown for this setup with the PN.

We follow the use-and-then-forget (UatF) bound in massive
MIMO [2, Th. 4.4] and also in [5], [17], [18] for CF massive
MIMO to give an achievable SE expression.

Proposition 1. An achievable SE of UE k at data subcarrier
n ∈ Nd is given by

SEk,n =
1

τc

τc∑
τ=1

log2(1 + SINR(τ)
k,n), (17)

where SINR(τ)
k,n is the effective signal-to-interference-and-noise

ratio (SINR) of UE k over subcarrier n, given in (14) with the
ICI term ρ

ICI,(τ)
k,n being defined in (29).

Proof. See Appendix B.

Note that the SINR in (17) is different for each OFDM
symbol τ because of CPE introduced by the time-domain PN.

The SE expression in (17) can be computed numerically for
any combiner v(τ)

k,n using Monte Carlo methods. In the context
of cell-free massive MIMO, common combiners are represented
by maximum ratio (MR), local-partial MMSE (LP-MMSE),
MMSE, and partial MMSE (PMMSE) combinings, given as [15,
Eqs. (19),(29), (23), (20)]

v
MR,(τ)
k,n = Dkĥ

(τ)
k,n (18)

v
LP-MMSE,(τ)
k,l,n = pk

( ∑
i∈Dl

pi|ĥ(τ)
i,l,n|

2 + c
(τ)
i,l,n + σ2

)†
ĥ
(τ)
i,l,n (19)

v
PMMSE,(τ)
k,n = pk

( ∑
i∈Pk

piĤ
D,(τ)
i,n +Z

′(τ)
i,n

)†
Dkĥ

(τ)
i,n (20)

v
MMSE,(τ)
k,n = pk

( K∑
i=1

piĤ
D,(τ)
i,n +Z

(τ)
i,n

)†
Dkĥ

(τ)
i,n , (21)

where Ĥ
D,(τ)
i,n = Dkĥ

(τ)
i,n ĥ

H,(τ)
i,n Dk, Pk = {i : DkDi ̸=

0L}, Z
′(τ)
i,n = Dk

(∑K
i∈Pk

piC
(τ)
i,n + σ2IL

)
Dk, and Z

(τ)
i,n =

Dk

(∑K
i=1 piC

(τ)
i,n+σ2IL

)
Dk. We refer to a combining scheme

PN-aware or PN-unaware, depending on the usage of PN-aware
or PN-unaware channel estimators, respectively.

IV. NUMERICAL RESULTS

Numerical results are now given to show the advantage of
the proposed PN-aware LMMSE channel estimator over other
estimators in a cell-free OFDM network.

A. Scenario

We consider a simulation scenario where L = 200 AP and
K = 10 UEs are independently and uniformly distributed
in a 1 × 1 km square, all equipped with single-antenna. This
approximates an infinitely large network with 200 antennas/km2

and 10 UEs/km2. We use the same propagation model as in [15]
with spatially correlated fading. We assume that the coherence
time and bandwidth are Tc = 1 ms and Wc = 180 kHz,
respectively, which fits an coherence block setup of Nc = 12
subcarriers with subcarrier spacing ∆f = 15 kHz and τc = 15
OFDM symbols. In total, each coherence block contains 180
samples with τp = 12 pilot samples and (Ncτc − τp) = 168
data samples. We distribute each pilot sequence to the first
subcarrier of τp = 12 OFDM symbols, i.e., Np = {0} and
Tp = {1, · · · , 12}. Each OFDM symbol contains N = 1200
subcarriers which leads to a signal bandwidth W = 18 MHz
and symbol time Ts ≈ 5.6 × 10−8s. We assume a cost-
efficient scenario where all APs and UEs equip low-cost LOs,
with the same level but lower quality than that in [7], [8],
i.e., γϕ = γφ = 4 × 10−17, which leads to a PN variance
σ2
ϕ = σ2

φ ≈ 3.5× 10−4 by setting fc = 2 GHz.

B. Results and Discussion

Fig. 2 illustrates the relation of the uplink SEs per UE to
channel uses in the first coherence block for two combining
schemes (MR and MMSE) with the same generative model
defined in this paper but three different channel estimators:
PN-unaware MMSE [15] (marked by circles), single-carrier
PN-aware LMMSE [8] (named by PNA-SC and marked by
triangles), and the proposed OFDM PN-aware LMMSE (named
by PNA-OFDM and marked by squares). We save space to
not show the results of LP-MMSE and PMMSE combiners
as they imply similar messages. The ideal case of MR and
MMSE combinings with no PN are also shown. We notice
that both combining schemes with both PN-aware estimators
have substantial SE gains over the same combining schemes
with conventional PN-unaware MMSE estimator for channel
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Fig. 2. Uplink SE per UE versus the OFDM symbol τ for two combin-
ing schemes with the proposed PN-aware LMMSE, single-carrier PN-aware
LMMSE, and PN-unaware MMSE estimators for σ2

ϕ = σ2
φ = 3.5× 10−4.

uses within the τp = 12 pilot OFDM symbols, i.e., channel
use ≤ 144, while the SEs drop quickly as the channel use
> 144, where the channel aging effects caused by the PN
become stronger because the chosen pilot distribution has no
pilot samples for OFDM symbol τ > τp. The proposed PN-
aware LMMSE estimator performs better than the single-carrier
PN-aware LMMSE, especially for the MMSE combiner. This
SE gap shows that a mismatched system model as in [6]–
[10] ignoring CPEs and ICIs can deteriorate the performance
substantially. It is interesting to see only the combining schemes
with the PN-unaware estimator have a convex shape, i.e., SEs
are better in the middle than the beginning and the end. This
can be explained that the PN-aware estimator gives different
weights for pilot samples in different OFDM symbols, i.e., B(τ)

0,0

in (10), while the PN-unaware MMSE estimator gives the same
weights, which happen to fit better for channel uses around
(τpNc)/2 = 72.

Fixing the same setup as in Fig. 2 but varying the number of
UEs K, we evaluate the corresponding SEs at channel use 60 in
Fig. 3. We notice that all SEs decrease as K grows because both
the ICI and inter-user interference caused by the PN increase
with K as we indicate in Section II-C. The MMSE combining
with the proposed PN-aware LMMSE estimator performs the
best but eventually degrades to the same as the MMSE (Aware-
SC) combining due to strong pilot contamination.

V. CONCLUSION

In this paper, we derived a signal model of PN-impaired cell-
free massive MIMO OFDM networks and proposed a novel PN-
aware LMMSE channel estimator, which estimates any aging
channel in the coherence block caused by the PN. We derived a
new uplink achievable SE expression considering the ICI from
all UEs. Numerical results demonstrate the advantage of the
proposed PN-aware LMMSE estimator over both PN-unaware
and a single-carrier PN-aware estimators for different receiving
schemes.
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Fig. 3. Uplink SE per UE versus the number of UEs K for two combin-
ing schemes with the proposed PN-aware LMMSE, single-carrier PN-aware
LMMSE, and PN-unaware MMSE estimators for σ2
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APPENDIX A
PROOF OF LEMMA 1

The general expression for the LMMSE estimator is [14]
ĥ
(τ)
k,l,n = E{h(τ)

k,l,ny
H
l }

(
E{yly

H
l }

)−1
yl, where we have

E{h(τ)
k,l,ny

H
l } =

√
pkβk,l×[

s
∗(τ1)
tk,n1

E{J (τ)
k,l,0J

∗(τ1)
k,l,0 }, · · · , s∗(τp)tk,nτp

E{J (τ)
k,l,0J

∗(τp)
k,l,0 }

]
=

√
pkβk,ls

H
tk
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(τ)
0,0 , (22)

where B
(τ)
0,0 = diag[E{J (τ)

k,l,0J
∗(τ1)
k,l,0 }, · · · ,E{J (τ)

k,l,0J
∗(τp)
k,l,0 }] and

its τ ′ element B(τ−τ ′)
0,0 ≜ E{J (τ)

k,l,0J
∗(τ ′)
k,l,0 } is calculated follow-

ing (3).
Furthermore, we have
E
{
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H
l

}
= σ2Iτp

+ E
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where the (τ1, τ2) element of Φk ∈ Cτp×τp is
[Φk]τ1,τ2 = s

(τ1)
tk,n1

s
∗(τ2)
tk,n2

B
(τ1−τ2)
0,0 . (24)

The (τ1, τ2) element of the ICI component ZICI
l ∈ Cτp×τp is
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where the correlation term B
(τ1−τ2)
n1−ȷ1,n2−ȷ2 is calculated following

(3).

APPENDIX B
PROOF OF PROPOSITION 1

Since the effective channels vary with each OFDM symbol
τ , we follow the reference [5, Theorem 4.4] using the UatF
bound to obtain an achievable SE for data subcarrier n ∈ Nd

at OFDM symbol τ ∈ {1, · · · , τc}. These achievable SEs are
averaged over all τc OFDM symbols to obtain (17).

Specifically, by adding and subtracting the average effective
channel E

{
v
H,(τ)
k,n Dkh

(τ)
k,n

}
, (16) is rewritten as

ŝ
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where the interference term is
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This can be viewed as a deterministic channel with a gain
E{vH,(τ)

k,n Dkh
(τ)
k,n} and additive interference plus noise term

ν
(τ)
k,n that has zero mean. Note that ν(τ)k,n is uncorrelated with the

desired signal s(τ)k,n due to the independence between each of the
zero-mean symbols s

(τ)
k,n, i.e., E{s(τ)i,ns

(τ)
j,n} = E{s(τ)i,ns

(τ)
i,ȷ } = 0

for n, j ∈ Nd. The denominator of the SINR in (14) is obtained
by
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Here, the ICI term ρ
ICI,(τ)
k,n is computed as

ρ
ICI,(τ)
k,n =
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i=1
E
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where the l-th element of the ICI power λ(τ)
i,n ∈ CL is computed

as
λ
(τ)
i,n,l =

∑N−1
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E{|s(τ)i,ȷ |

2}E{|hi,l,ȷ|2}E{|J (τ)
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B

(0)
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= piβi,l(1−B
(0)
0,0), (30)

where we view the unknown channels over subcarriers other
than n as random variables instead of realizations to reduce
computation complexity. In the ideal case of no PN, λ(τ)

i,n,l = 0

and ρ
ICI,(τ)
k,n = 0, which turns the SINR and SE expressions

in (14) and (17) to be the same as in [15].
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