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Robustness quantification in yeast 
A methodology to study phenotypic, evolutionary, and genomic aspects of microbial robustness 
Cecilia Trivellin 
Division of Industrial Biotechnology – Department of Life Sciences 
Chalmers University of Technology 

Abstract 

Bioprocesses contributes to the shift towards a more sustainable economy. In 

bioprocesses, valuable chemicals can be generated from renewable resources while, at the 

same time, reducing carbon emissions. A major hurdle in bringing bio-based products to 

market is the time and cost involved in designing efficient cell factories. Cell factories 

developed in controlled laboratory settings achieve high yields and productivities, but often 

fail at a larger scale because of unforeseen perturbations. Microbial robustness, i.e., the 

ability to maintain functionality despite perturbations, is critical for designing cell factories 

but remains poorly studied, particularly with respect to quantification as well as evolutionary 

and genetic aspects. 

In this thesis work, mathematical evaluation, phenotypic characterization, evolution 

and genomics were applied to address the lack of quantification methods and explore 

robustness in yeast. A Fano factor-based approach for measuring robustness across multiple 

parameters and perturbations was created. Measurement of physiological data revealed 

trade-offs between robustness and performance in yeast. Moreover, when screening yeast 

deletion libraries, it pointed to the MET28 gene, which encodes a transcription factor 

regulating sulfur metabolism, as a mediator of robustness. Finally, evolution in fluctuating 

environments improved robustness in the industrial strain Ethanol Red, but not in two 

laboratory strains, contrasting with fitness trends.  

Altogether, applying robustness quantification to various experimental set-ups, 

enabled the identification of key genes and metabolic processes linked to enhanced 

robustness. This thesis thereby contributes to the field of physiology, particularly in the 

context of robustness. The developed techniques have potential to advance design 

optimization and testing of robust strains in laboratory settings, thereby enabling a faster 

scale-up to industrial environments. 

 

 

Keywords: High-throughput, Saccharomyces cerevisiae, adaptive laboratory 

evolution, fluctuating conditions, bioproduction, perturbations 
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1 Chapter 1. Introduction 
 

Biological systems are constantly subjected to perturbations, which may arise internally, for 
example, via genetic mutations, or from external factors such as changes in temperature. 
The system’s ability to withstand such perturbations and exhibit a stable phenotype is called 
microbial robustness (1,2). Robustness has been rarely quantified in applied research or 
when evaluating bioprocesses. The absence of practical quantification techniques hinders 
the exploration of the fundamental mechanisms that contribute to robustness.  

The overall aim of my thesis was to develop a methodology for quantifying microbial 
robustness and to explore its use in different applications.  

The robustness quantification method was applied to various phenotypic datasets to 
identify microbial strains with robust phenotypes, as well as to yeast deletion collections to 
investigate genetic markers of robust phenotypes. Additionally, it facilitated the exploration 
of robustness during laboratory evolution. The proposed method serves as a practical tool 
for various immediate applications, such as the selection of yeast strains exhibiting stable 
ethanol yields in beer production. In a broader perspective, grasping the mechanisms of 
robustness could facilitate the development of industrial strains. 

1.1. Microbial robustness 
Microbial robustness is an inherent characteristic of many microorganisms. In large-volume 
reactors typical of bioprocesses, microbial cultures must withstand widely varying gradients 
while maintaining consistent performance (3,4). To survive in dynamic environments or 
cope with internal perturbations, biological systems have evolved buffering mechanisms 
(1,2,5–8). Understanding robustness in biological systems helps not only to contextualize 
the observed trade-offs between different phenotypes (9), but also to design more resilient 
cell factories (10). 

1.2. Perturbations and robustness quantification 
An important aspect to consider when investigating robustness are the perturbations that 
prompted the emergence of robust mechanisms. In bioproduction, perturbations are 
associated mainly with variations in environmental factors, such as substrate composition, 
reactor gradients, and contamination (2). If perturbations are effectively replicated at 
laboratory scale, despite the many challenges related to such an endeavor (11), it becomes 
possible to quantify robustness and predict a strain’s behavior on a larger scale. In this 
thesis, several quantification strategies were evaluated, with the mean normalized Fano 
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factor providing a reliable, precise, and standardized method. As highlighted above, 
quantification is used for initial strain selection and as a quality check for laboratory-
designed strains before scale-up. Quantification and perturbation studies extend beyond 
bioproduction. Exploring the stability of fluorescent protein expression, for instance, proves 
valuable in synthetic biology (12); while investigating the robustness of microbial community 
composition provides insights on population dynamics across different contexts (13,14). 

1.3. Intrinsic aspects of robustness 
Although robustness can be studied from a phenotypic perspective, the underlying 
principles remain poorly understood (5,15). Proposed mechanisms include feedback 
regulation, redundancy, and modularity (1,16). Different approaches allow to explore the 
intracellular mechanisms of robustness, including rational genetic design based on 
tolerance studies (17) or mutant libraries grown under different perturbations (18,19). The 
quantification of robustness from phenotypic data and screens of yeast deletion collections 
performed within the scope of this thesis pointed to genes responsible for robust 
phenotypes. Even though the latter remain complex and difficult to describe in biological 
terms; various pathways and genes, such as the heat shock protein Hsp90 that regulates 
protein folding, have been suggested as key determinants of robustness (7,20). 

1.4. Aim of the thesis 
The primary aim of my thesis was to establish a method for quantifying microbial 
robustness. The secondary aim was to illustrate its application in examining 
robustness across phenotypic responses, as well as genetic and metabolic aspects.  

 

Phenotypic data obtained from yeast cultivations in diverse environments were 
employed to test and validate the quantification formula, as well as to identify robust strains 
and their characteristics (Papers II and III). Evolution experiments using different 
methodologies revealed how robustness evolved over time and allowed to explore genetic 
hot spots through variant analysis (Paper V). The latter, combined with robustness 
quantification of variant mutant libraries established the basis for examining the metabolic 
and genetic aspects of microbial robustness (Paper IV) (Figure 1.1).  
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The following research questions were formulated in this thesis:  

 

Which quantification theory is better suited to measure microbial robustness? Which 
experimental set-up can be used for this quantification?  

To address these questions, I first cultivated yeast strains sampled from various 
sources in a perturbation set composed of nearly 30 different perturbations. The resulting 
dataset contained three dimensions: strains, perturbations, and measured phenotypes. 
Different formulae proposed by previous studies were tested on the collected data. After 
various iterations, the Fano factor proved to be the most suitable score (explanation in 
Paper II), in line with the definition of microbial robustness outlined in Review Paper I. The 
final formula for robustness quantification underwent adjustments to facilitate normalization 
and interpretation (Paper II). 

How can the effect of perturbations be included in a microbial robustness measure? 

Perturbations play a crucial role in understanding robustness, and their nature is 
intricately tied to specific robustness features. This thesis explores how various types of 
perturbations (Review Paper I) impact robustness. To evaluate phenotypic responses 
under different perturbations, diverse phenotypes and their robustness were assessed 
(Papers II and III). This analysis addressed broader biological questions, such as the 
potential trade-off between performance and robustness, or whether robustness is a 
general property rather than specific to the defined set of perturbations. Additionally, I 
explored how different sets of perturbations affected the phenotypic responses of a 
laboratory Saccharomyces cerevisiae strain carrying various gene deletions (Paper IV).  

How can adaptive laboratory evolution be used to improve robustness? 

Microbial robustness is referred to as the stability of phenotypes in the face of different 
perturbations (Review Paper I). This definition led to the question of whether fluctuating 
environments can serve as a selective pressure in evolving robustness within a laboratory 
setting. To test the validity of this hypothesis, I subjected various S. cerevisiae strains to an 
evolutionary experiment under fluctuating conditions (Paper V). 

How can genetic and metabolic markers of robustness be identified? 

Microbial robustness has rarely been linked to genetic and metabolic processes. The 
challenge arises from the absence of a broadly applicable quantification method, such as 
the one developed in this thesis (Paper II), and the complexity of the underlying genetic 
and metabolic architecture. However, exploration of genetic variants in the evolution 
experiment (Paper V) and analysis of the phenotypic responses of a yeast deletion library 
(Paper IV) highlighted a few crucial genes and metabolic processes associated with 
changes in robustness. 
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Figure 1.1: Overview of the research topics investigated in this thesis. In this thesis a 
methodology to quantify microbial robustness was developed. Different aspects of robustness were 
investigated. Yeast cultivations in many environments as well as adaptive laboratory evolution were 
used in combination with the quantification method to characterize robustness in terms of phenotypic 
response. Quantification was applied to yeast deletion libraries and mutations from the evolution 
experiment were analysed to investigate robustness from a genetic and metabolic perspective.  

 

The long-term objective of my work is to contribute with tools and insights on 
molecular mechanisms of robustness that can be used to design robust cell factories and 
answer broader scientific questions.  

In Chapter 2, the current potential of bioproduction and associated challenges are 
outlined. Special attention is given to the use of microbial cell factories within bioprocesses, 
the performance metrics currently employed, and the perturbations encountered in 
bioprocesses or beyond. Additionally, a brief overview of the strains, datasets, and 
phenotypic methods adopted in this thesis is provided.  
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Chapter 3 is entirely dedicated to the theoretical foundations and quantification of 

microbial robustness. It begins by presenting the definition and significance of robustness 
in various contexts. The work in this thesis is then contextualized within other studies on 
robustness, encompassing both theoretical and experimental investigations from different 
datasets. Chapter 3 discusses the advantages and disadvantages of different quantification 
methods, including the one developed in this thesis. The perturbation space is placed in 
the context of robustness quantification, exploring combined effects of perturbations. The 
chapter concludes with a discussion on trade-offs, adopting a Pareto front perspective. 

Chapter 4 explores robustness from a genomic and metabolic standpoint. My work 
on mutant libraries and evolution experiments is put into perspective with state-of-the-art 
knowledge. Chapter 4 also explores applications of the quantification formula in other yeast 
deletion collections screens. 

Chapter 5 provides a conclusive statement and explores future perspectives. 
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Chapter 2. Microbial Performance and 
Perturbations in Bioprocesses 

 

The first part of Chapter 2 is centered on the use of cell factories within bioprocesses and 
the metrics for evaluating their performance. Special emphasis is given to the yeast S. 
cerevisiae, which is featured throughout this thesis. The latter part is dedicated to 
perturbations that occur frequently during lignocellulose fermentation to produce ethanol. 

2.1 Sustainable production of commodities  
As countries try to address the United Nations’ Sustainable Development Goals (SDGs), 
the integration of biotechnology and bioprocesses has emerged as efficient means to 
achieve prosperity, sustainability, and development. This thesis is driven by the objectives 
of SDG 13, which calls for urgent action to fight climate change and its effects. Specifically, 
this work can contribute to a sustainable bio-production that lowers CO2 emissions and 
replaces fossil-based chemicals. To this end, I propose different tools to investigate 
robustness, with which robust and more efficient cell factories could be designed.  

Since the industrial revolution, humanity has reaped the benefits of consuming fossil 
fuels, such as oil, coal, and gas, to generate heat, power engines, and produce electricity 
(21). Upon combustion, fossil fuels emit CO2, the primary catalyst of climate change and a 
significant contributor to air pollution (22). The main sources of CO2 emissions include 
electricity and heat production, as well as the transportation and manufacturing industries 
(Figure 2.1.a) (23,24).  

In response to the concerns raised by elevated CO2 emissions and their impact on 
climate change, countries participating in the United Nations Paris Agreement have outlined 
strategies to limit carbon emissions and shift towards more sustainable forms of energy. 
Currently, 194 nations have presented nationally determined contributions, in which 
measures to address climate change are embedded within national policies (25). Some of 
these policies envision the transition to various forms of renewable energy, with hydropower 
currently accounting for more than half the output (over 4000 TWh as of 2022) (Figure 2.1.b) 
(26,27). In Europe and the United States, wind farms could make up a similar share (28).  
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Figure 2.1: World CO2 emissions and renewable energy generation. a) Data were downloaded 
from (24) and normalized to total emissions. Data represents world emission in 2020. Each circle 
corresponds to approximately 500 MtCO2 equivalents and each sector is denoted by a different hue. 
b) Data were downloaded from (29) and normalized to total renewable energy production. Data 
represents world production in 2022. Each circle corresponds to approximately 85 TWh and each 
production source is denoted by a different hue.   
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Another important source of renewable energy are biofuels. Derived from renewable 
feedstock, biofuels offer a sustainable alternative to fossil fuels. Ethanol, for example, is 
produced through the fermentation of renewable resources, such as corn or lignocellulosic 
biomass. It is commonly mixed with gasoline in different percentages for use in 
transportation. Bioethanol and biodiesel lower overall greenhouse gas emissions, provide 
a comparable net energy yield as gasoline, and are cost-competitive (30). Nevertheless, 
biofuels constitute a relatively small portion of the global renewable energy landscape. Only 
in the United States and Brazil, are biofuels and biodiesel derived from crops, such as 
sugarcane or corn mandated as components of transport fuel (31,32). 

Achieving a more sustainable economy extends beyond bioenergy. Converting 
renewable resources into diverse bio-based chemicals could replace fossil-based 
counterparts and bioprocesses play a pivotal role in ensuring the success of this transition.  

2.1.1 The requirement for robust biocatalysts 

The success of bioprocesses relies on the effective execution of upstream (i.e., media 
preparation, cell inoculum), production (i.e., fermentation), and downstream (i.e., product 
purification, isolation, refinement) processes. Although all three phases are vital for 
achieving large-scale and high-quality output, rapid processing, and cost-efficiency, 
production stands at the core of a successful bioprocess (33). This thesis gives particular 
attention to the production phase and the microorganisms, also called biocatalysts or cell 
factories, involved in it. As these microorganisms should effectively convert the given 
substrates into desired products, production depends on the development of robust cell 
factories. This includes strategies aimed at minimizing by-products, balancing ATP and 
reducing power, and enhancing tolerance to industrial stresses, such as medium 
components, temperature, pH, and limited oxygen (4). Cell factory performance and 
industrial perturbations are described in detail in sections 2.2 and 2.3 of this thesis.  

2.2 Cell factories in bioprocesses  
Cell factories capable of converting renewable resources into valuable chemicals are 
important players in the global economy (34). The European Commission has identified bio-
based products that are already cheaper and environmentally friendlier than their fossil-
based counterparts (35). Examples include the production of acrylic acid in Escherichia coli 
by BASF (Germany), Cargill (USA), and Novozymes (Denmark), as well as polyethylene by 
Braskem (Brazil) (36,37).  

Model organisms, such as S. cerevisiae or E. coli, are widely used as microbial cell 
factories (38). The choice of these organisms is driven primarily by the availability of 
resources for their manipulation, including synthetic biology tools, sequenced genomes, and 
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comprehensive knowledge of their metabolism, as well as their rapid specific growth rates 
(39). Model organisms can be engineered to enhance the yield of primary or secondary 
metabolites of interest, biomass or macromolecules. Heterologous genes and pathways 
can also be introduced into the host to produce non-native compounds (40). While this 
approach comes with its benefits, there are various reasons why engineering a production 
host may not always yield the desired results. The integration of heterologous pathways or 
genes can often interfere with host metabolism. This interference may arise from the toxicity 
of the produced compound or poor understanding of regulatory mechanisms governing the 
heterologous pathway in the native and host microorganism, making it challenging to 
transfer these mechanisms into the host (41). Another potential hurdle stems from 
imbalances created by the diversion of resources and energy towards side reactions.  

An alternative approach to using model hosts involves employing non-conventional 
organisms already possessing the desired characteristics and establishing large-scale 
production directly from them (42–44). Successful examples of this approach include the 
production of polyhydroxyalkanoates in Clostridium sp., or the synthesis of oleaginous 
compounds in Rhodococcus sp. (45–47). In such cases, there is a clear advantage in 
maintaining the metabolic pathway responsible for producing the desired product, along 
with all the associated regulatory mechanisms and post-translation protein modifications 
(48). Moreover, non-conventional organisms often exhibit remarkable levels of 
osmotolerance, thermotolerance or tolerance to inhibitors, thereby holding an advantage 
under the harsh conditions encountered during bioprocessing as compared to the laboratory 
(49). However, given that physiology of non-conventional hosts is less well known, it may 
be challenging to predict their behavior in various environments, particularly when scaled 
up. Enhancing yields or inhibiting by-products becomes more difficult in such cases, due to 
the limited availability of tools for metabolic engineering (48).  

2.2.1 Saccharomyces cerevisiae  

Owing to its central role in this thesis and its widespread use in bioprocesses, the yeast S. 
cerevisiae is described in more detail in this subchapter. Achieving optimal robustness and 
performance by cell factories hinges on a delicate balance between host physiology, 
product output, and tolerance to various chemical and physical stresses. S. cerevisiae 
stands out as a preferred choice in bioprocesses, primarily for its innate ability to generate 
ethanol and CO2, which are valuable in the food industry (e.g., for beer production and 
baking) and as biofuels (50,51). The versatility of S. cerevisiae extends to its role in 
heterologous protein production, exemplified by the ground-breaking production of human 
insulin initiated by Novo (now Novo Nordisk) in 1987, which revolutionized diabetes 
treatment (52). As a model organism, S. cerevisiae is invaluable in exploring biological 
mechanisms, owing to its genetic similarity and conservation of essential processes with 
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more complex organisms. The ease of manipulation and well-established cultivation tools 
further enhance its suitability for investigating various biological processes (53). In the 
present thesis work, S. cerevisiae was used as a model to investigate differences in 
phenotypic responses to perturbations and robustness (Papers II–V). 

S. cerevisiae comes in a multitude of strains, each uniquely adapted to its specific 
environment (54,55). Strains vary primarily in ploidy and genetic diversity, as demonstrated 
by a comprehensive genotypic/phenotypic analysis conducted by Liti and colleagues on 
1011 isolates (section 2.4: Dataset 4) (56). The wide diversity among S. cerevisiae strains 
presents a remarkable opportunity to delve into species physiology and map the intricate 
relationship between genotypic diversity and phenotypic responses.  

In Paper V, three specific S. cerevisiae strains—two laboratory: CEN.PK113-7D, 
S288C, and one industrial: Ethanol Red—revealed substantial differences in terms of single 
nucleotide polymorphisms, deletions, and ploidy. These genetic distinctions translated into 
visible phenotypic variations (Paper V: Figures S1, S2, and S3). Industrial strain isolates 
often exhibit higher tolerance to heat, low pH, and substrate inhibitors compared to 
laboratory strains such as S. cerevisiae S288C. They also have displayed increased 
fermentation rates compared to laboratory strains (57). In order to evaluate the differences 
in performance between laboratory and industrial strains, the laboratory strain CEN.PK113-
7D and various industrial strains, including those isolated from cachaça by Brazilian 
distilleries (58) were cultivated in micro-aerobic conditions using microtiter plates and 
chemically defined medium containing 2% glucose (Papers II and III: Material and 
Methods; section 2.4: Dataset 1). Generally, the specific growth rate or ethanol yield of 
industrial strains was not consistently higher than those of laboratory strains (Figure 2.2.a). 
Moreover, no significant distinction in performance was observed among the three groups 
of strains (Figure 2.2.b) when uniform manifold approximation and projection was applied 
to the collected phenotypic data comprising five measured variables, 24 strains, and 29 
conditions (section 2.4: Dataset 1). Hence, categorizing strains simply as laboratory or 
industrial could result in misleading generalizations. A categorization based on, for example, 
genetic differences or ploidy would be more accurate. 
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Figure 2.2: Performance comparison of S. cerevisiae strains. a) Six industrial strains (two of 
which isolated from cachaça production sites in Brazil: LBCM1046 and LBCM1079) are compared 
to a laboratory strain (CEN.PK113-7D). Performance is shown for the maximum specific growth rate 
(µmax, 1/h) and ethanol yield (g/g). Different colors of the dots correspond to the replicates (n=3). B) 
Dimensionality reduction (uniform manifold approximation and projection: UMAP) was performed on 
phenotypic data from five measured variables measured under 29 conditions. The two principal 
dimensions are shown on the x and y axes. Each point corresponds to a strain and colored differently 
based on strain type (industrial: Ethanol Red, Thermosacc, Redstar, PE2; laboratory: S288C and 
CEN.PK113-7D; LBCM: LBCM collection from cachaça producing strains).  

 

Exploring the diverse phenotypic responses among S. cerevisiae strains is crucial 
(Papers III and IV), particularly when considering their potential application in industrial 
settings. Evaluating phenotypes, such as yields, titers, resistance to freeze-thaw cycles, 
shelf life, dehydration resistance or specific growth rates at different bioprocess stages, is 
important when assessing a strain's suitability for industrial application. However, even 
before testing potential microorganisms for production, it is essential to identify the right 
performance parameters to assess. 

2.2.2 Performance metrics for the design of cell factories  

When designing and testing cell factories, it is essential that performance measurements 
align with the specific objectives set for the process (59). Performance metrics serve to 
evaluate microbial performance and the corresponding economic feasibility of the process. 
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The following parameters are commonly included in the performance metric for 
benchmarking bioprocesses (60,61):  

1) Titer or product concentration (mass of product/reaction volume) 

2) Rate, productivity or space-time yield (mass of product/reaction volume/reaction 

time) 

3) Yield (mass product/mass substrate) 

Attaining elevated values in the titer-rate-yield (TRY) metric requires a concerted effort 
across various strategies (38). In particular, not all parameters in the TRY metric can be 
maximized simultaneously due to inherent trade-offs within microorganisms (62), as 
detailed in section 3.3.1. 

TRY metrics directly linked to performance are crucial in designing cell factories, 
although they are not the sole parameters that demand attention. Numerous other factors 
are relevant in ensuring the success of bioprocesses. A universally applicable parameter 
for nearly all fermentation processes is the specific growth rate. On the one hand, 
simulations have suggested that a high specific growth rate can have a more significant 
impact than process productivity on strain selection (63). On the other hand, given that the 
biosynthesis of certain compounds competes with cell growth for energy and carbon 
resources, conducting fermentations at near-zero growth rates may minimize the diversion 
of feedstock towards biomass production (64).  

Cell viability, especially in relation to cryopreservation, is rarely assessed. Cells are 
typically preserved in glycerol at -80°C. However, cryopreservation can potentially damage 
and diminish cell viability and overall survival, therefore making viability a potential factor in 
lowering the performance of the cells (65). The cell viability is a critical parameter in the 
production of bioethanol in Brazil, where the yeast pellet reused during fermentation 
undergo a viability check during the acid wash (66,67).  The lag phase can pose challenges, 
particularly in batch and fed-batch fermentations. Typically, the lag phase is not a 
constraining factor in processes that use rich media as a substrate. However, when 
exploiting waste streams and less purified substrates, a long lag phase can become a 
limiting factor (68). A decline in productivity can be linked also to genetic instability and the 
gradual enrichment in non-producing cells over the course of fermentation (69–71).  

It is beyond the scope of this thesis to investigate all these performance metrics and 
their impact; however, during the design of cell factories, it is important to keep in mind all 
aspects of a successful bioprocess. This can be facilitated by outlining the key design steps 
(Figure 2.3) and by engaging with experts in the field. In this thesis, I asked bioprocess 
experts to answer a survey comprising five questions related to bioprocesses and their 
associated challenges. I received five survey responses; two respondents had worked in 
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the bioprocessing sector for 5 to 10 years and the other three for less than 5 years. The 
participants held various positions, ranging from R&D to business development, and came 
from industries located across the globe. A combination of the design decision steps and 
survey answers is outlined below. 

The first step of the decision process should define the goals of the bioprocess. The 
goals include evaluation of process outcomes, critical quality attributes, regulations in 
different countries where production is located, market value, costumers’ demands, and 
environmental and societal impacts. Life-cycle assessment modelling tools can help define 
production goals (72). 

The second step involves determining the relevant and measurable parameters that 
constitute the performance metric. This can be accomplished through analysis of 
comparable processes or a literature review (73). The objective is to look beyond the 
primary goal of desired product yield, and include often neglected secondary parameters 
such as cell viability. When surveyed about the performance metrics most commonly 
employed in bioprocesses, responders pointed to product yields, final titers, specific growth 
rates, cell survival and volumetric biomass productivity. These results underline how the 
choice of performance metrics varies significantly depending on the specific process being 
examined.  

The identification of bottlenecks within a bioprocess allows for a more focused effort 
towards their elimination by optimizing performance parameters. Notably, most survey 
respondents identified the scaling up of microbial performance, coupled with downstream 
processing and fermentation-related capital expenditures, as significant bottleneck steps. 
The bottleneck arising from scaling up emphasizes the significance of my thesis work, as 
the methodology I developed to quantify the robustness of various cell factory parameters 
(discussed in Chapter 3 and Paper II) could help predict, while still at a laboratory scale, 
strain performance in industrial environments.  

The third and fourth steps should focus on the most suitable ranges and targets of the 
chosen metrics and their priority in relation to the objectives identified in the first step. 
Various tools can facilitate this process. Monte Carlo simulations for parameter sensitivity 
analysis and linearization techniques have proven effective for automating two critical 
quality by design tasks: i) assigning severity rankings for risk assessment and ii) formulating 
preliminary control strategies for critical process parameters (74). These methods have 
been successful in ranking parameters by importance and are essential given the inherent 
trade-offs encountered in bioprocesses, as discussed further in section 3.3.1.  

The fifth step involves monitoring and controlling metric parameters. Fermentations 
are monitored with on-line sensors such as pH, temperature, and oxygen probes (75). Off-
gas sensors are preferred for measuring CO2, oxygen, and ethanol as they avoid 
interference with liquid and suspended particles (76). Vibrational Raman spectroscopy can 



Chapter 2. Microbial Performance and Perturbations in Bioprocesses 

15 
  

2 

detect compounds in the fermentation media without the need for sample preparation. The 
implementation of biosensors, an effective synthetic biology tool, allows for the specific 
monitoring of compounds such as acetic acid (12,77). Infrared spectroscopy or 
biocalorimeters are employed to monitor biomass (78,79). Soft sensors and model-driven 
sensors play crucial roles in data analysis, process control, and optimization. Moreover, 
they have the capability to interpret data from other sensors and conduct fault detection 
(80).  

In the survey, a question was posed about whether bioprocesses required more 
robust strains or more controlled processes. Despite significant progress in process control 
and sensor technology, all participants agreed that bioprocesses would benefit more from 
robust strains. They justified their choice by noting that highly controlled processes tended 
to be labor-intensive and expensive. If costs were equivalent, a combination of robust 
strains with controlled processes would be the preferred option. 

In the sixth and last step, the process is optimized using observations from the 
previous steps. Here, data analysis is fundamental in the reporting and assessment of 
collected values, especially those from step five.  

The decision process described above (Figure 2.3) can be applied to all aspects of a 
bioprocess, including fermentation technology and design of cell factories. In this thesis, 
particular attention was given to steps two to four, in relation to cell factory design and 
optimization.  

Data from the cultivation of S. cerevisiae strains under 29 different conditions (Paper 
III, section 2.4: Dataset 1) showed that strains exhibiting a consistent product yield might 
also be characterized by slow specific growth rates or long lag phase. For example, the PE2 
strain utilized in bioethanol production from sugarcane, displayed an exceptional high 
ethanol yield; however, its specific growth rate ranked the lowest among the scrutinized 
strains (Figure 2.4). In contrast, LBCM1079, with a specific growth rate comparable to the 
other investigated strains, demonstrated notably poor yields. Such observations highlight 
not only the natural trade-offs between performance parameters (discussed further in 
section 3.3.1), but emphasize also the need for a thorough decision-making process when 
selecting metric parameters to prevent scale-up delays and cost increases. Furthermore, a 
distinction among performance parameters is fundamental in the investigation of robustness 
(Chapter 3). 

Finally, the environmental context in which performance metrics are assessed should 
also be considered. This implies a comprehensive examination of the industrial settings, 
with accompanying potential perturbations. Such approach is particularly relevant, if the 
ultimate objective is to develop a robust cell factory capable of maintaining consistent 
performance despite experiencing various perturbations. 
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Figure 2.3: Bioprocess decision-making steps in relation to performance metric.  Illustration of 
the decision-making process in bioprocess design. Points 1 to 6 are described in detail above. 

 

 

 

Figure 2.4: Investigation of different performance parameters in S. cerevisiae strains. Six 
industrial strains (including cachaça strains LABCM1046 and LBCM79) and one laboratory strain 
(CEN.PK113-7D) are shown. Each dot corresponds to a replicate (n=3). Six parameters were 
measured: specific growth rate (µmax), lag phase (lag), cell dry weight (CDW), ethanol yield (Yp), 
and biomass yield (Yx).  
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2.3 Perturbations 
Perturbation is defined as an event that triggers a change in a system. A major challenge 
encountered when scaling up processes with laboratory-designed microorganisms is the 
identification and replication of large-scale perturbations in small-scale set-ups (61). 
Perturbations play a crucial role not only in bioprocesses, but also when studying cell 
physiology. In ecology, disturbances or perturbations are fundamental for species diversity 
and, ultimately, evolution. A strategy to improve predictions and streamline the scale-up 
process involves identifying potential perturbations and utilizing high-throughput testing to 
assess performance across a broad array of perturbations, referred to as the perturbation 
space. High-throughput testing has proven effective in uncovering mechanisms that were 
inaccessible through traditional rational approaches and in identifying strains with desired 
characteristics (81). 

2.3.1 Perturbations in lignocellulose fermentation processes 

In this thesis, the impact of perturbations on the fermentation of lignocellulosic biomass into 
ethanol was assessed in multiple papers (Papers II–V). Lignocellulosic biomass 
fermentation is a particularly relevant example owing to its various types of perturbations, 
relevance to the United Nations' SDGs, and abundance. The production of bioethanol from 
sugarcane, corn or sugar beet (classified as first-generation or 1G) started some 50 years 
ago and is now a well-established process. Bioethanol production from 1G feedstocks 
allows the United States and Brazil to replace part of their fossil fuels with biofuels. Instead, 
biomass-to-ethanol processes using second-generation (2G) feedstock, including corn 
stover, wheat straw or spruce, are marred by low cost-effectiveness and poor scalability 
(82). 2G biomass has been suggested as a more sustainable alternative to 1G sources, 
owing to concerns related to food security and land use (83). Agricultural and forestry 
residues, which constitute 2G biomass, are primarily composed of cellulose (35%–50%), 
hemicellulose (20%–35%), and lignin (84). The structural arrangement and proportion of 
these components depend largely on the plant type, season, country, and weather 
conditions. Such heterogeneity influences the accessibility of cellulose to hydrolytic 
enzymes and the subsequent release of fermentable sugars (Table 2.1) (85). Crystallinity, 
particle size, and accessible surface area play a crucial role in the success of enzymatic 
hydrolysis. 
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Table 2.1 Composition of lignocellulose biomass from different sources (adapted from (86)) 

 

To enhance enzyme accessibility, lignocellulosic biomass typically undergoes pre-
treatment, via physical or chemical methods. Physical pre-treatments encompass milling, 
extrusion or microwaving; whereas chemical pre-treatments include acid, alkali or ammonia 
steam-explosion (86). While these pre-treatments are essential for increasing sugar 
accessibility, they also result in the release of inhibitory compounds that retard the 
fermentation process (Figure 2.5) (87). Hemicellulose hydrolysis yields pentoses and uronic 
acids, which undergo dehydration to form furfural; while hexoses are dehydrated to 5-
hydroxymethylfurfural (HMF) (88). At elevated temperatures and acid concentrations, HMF 
can be further degraded into levulinic and formic acids, along with furfural. Additionally, 
acetyl groups from hemicellulose are hydrolyzed into acetic acid (89,90), and vanillin is 
released through lignin oxidation (91,92). These compounds can be present in relatively 
high concentrations, posing challenges to the fermentation process (87). 

Following pre-treatment and enzymatic hydrolysis, the resulting lignocellulosic 
hydrolysate is utilized for fermentation. However, the presence of inhibitory compounds in 
this hydrolysate limits microbial performance (93–95). Weak acids exist in equilibrium 
between their dissociated and undissociated forms, with the shift in equilibrium depending 
on the dissociation constant (pKa) and the pH of the environment. At low pH, the 
undissociated form predominates and can diffuse through the cell membrane. Once inside, 
a slightly higher pH leads to its dissociation and consequent acidification. This event sets 
off a cascade of reactions. ATPase pumps protons out of the cell, diverting ATP from other 
metabolic processes such as biomass formation. Weak acids inhibit enzyme permeases, 
reducing the uptake of aromatic amino acids. Increased glycerol production implies a 
compromised capacity of cells to generate NAD+; whereas an increased output of reactive 

Lignocellulose 
biomass type 

Cellulose (%) Hemicellulose (%) Lignin (%) 

Corn stalks 50 20 30 

Sugarcane tops 43 27 17 

Sugarcane bagasse 35 35.8 16.1 

Corn stover 38.4 22.9 20.1 

Rice husk 37.1 29.4 24.1 

Rice straw 35.8 21.5 24.4 

Spruce wood 43 29.4 27.6 

Beech wood 44.2 33.5 21.8 
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oxygen species can damage cell components. Finally, a lower DNA and RNA synthesis has 
also been observed (96).  

Formic acid has been noted for its elevated toxicity in comparison to other acids 
(Figure 2.6). This increased toxicity is likely attributed to its lower pKa and smaller size, 
which facilitates its diffusion. In Papers II and III formic acid did not affect the cells 
significantly more than acetic acid, probably because at pH 5, most of the formic acid was 
in dissociated form. Prior research has indicated that formic acid leads to the 
downregulation of proteins associated with the biosynthesis and transformation of succinyl-
CoA, as well as with alterations in the N-termini of core histones, thereby influencing cell 
development (97,98). While studies have indicated that levulinic acid leads to a more 
pronounced inhibition of cell growth (99), our findings show that levulinic acid had only a 
minimal effect on the specific growth rate (Figure 2.6). Lactic acid is not directly derived 
from lignocellulose pretreatment, but can be present in fermentations due to contamination 
from lactic acid bacteria (100). In my studies (Papers II and III), lactic acid had the lowest 
impact on fermentation (Figure 2.6), which could be attributed to its pKa and the pH during 
cultivations. In addition, lactic acid has been associated with an increased biosynthesis of 
glutathione (101). Interestingly, co-cultivation of S. cerevisiae with Lactobacillus amylovorus 
had been found to increase sugarcane fermentation yield by 3% when cross-feeding 
acetaldehyde, demonstrating a beneficial interaction between these two species (102).  

Furfural and HMF inhibit microbial growth, even though they are converted to their 
less harmful alcohol counterparts under both aerobic and anaerobic conditions. HMF is 
thought to cause greater inhibition due to its slower conversion rate compared to furfural. 
Nevertheless, the reduction in fermentation and specific growth rate is more substantial with 
furfural than with HMF (103).  

In the cultivations carried out in Paper III (section 2.4: Dataset 1), vanillin was found 
to affect strain growth more than HMF and furfural, even though S. cerevisiae can degrade 
it to vanillyl alcohol (104) (Figure 2.6). Vanillin disrupts the structural integrity of biological 
membranes, blocks translation by affecting the function of the large ribosomal subunit, and 
triggers the formation of processing bodies and stress granules. It also induces oxidative 
stress and mitochondrial fragmentation. The toxicity of vanillin is associated with chromatin 
remodeling, vesicle transport, and ergosterol biosynthesis (105).  

High-throughput cultivations in conditions resembling the one encountered during 
lignocellulose fermentation (section 2.4: Dataset 1) provided insights on specific strain 
responses. For example, acid stress exerted a significantly higher impact on ethanol yield 
than on specific growth rate (Paper III: Figure 1). The same study showed poor acid 
tolerance by strains used in cachaça production (Figure 2.7). LBCM1001, LBCM1008, and 
LBCM1017 did not grow in the presence of acetic acid and LBCM110 failed to grow in the 
presence of almost all tested acids. Instead, most LBCM strains along with Ethanol Red 
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grew on 3 g/L furfural (Figure 2.7). Such specific behaviors point towards promising 
candidates for investigating the mechanisms underlying tolerance to different stressors. For 
instance, a phenotypic study comparing Zygosaccharomyces bailii with S. cerevisiae 
highlighted the former's pronounced tolerance to acetic acid. This disparity prompted further 
investigation into Z. bailii, whose enhanced acid tolerance was attributed to the structure 
and composition of its cell membrane (106,107). 

 
Figure 2.5: Composition of lignocellulose biomass. Average percentages of hemicellulose, 
cellulose, and lignin are shown on the left. Sugars and inhibitors released during pretreatment of 
lignocellulosic biomass are listed on the right.  

 

 

Figure 2.6: Specific growth rate of S. cerevisiae strains cultivated with acids and aldehydes. 
Maximum specific growth rate is plotted on the y-axis and conditions are shown on the x-axis. Strains 
are plotted in different colors.   
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Figure 2.7: Specific growth rate of 24 Saccharomyces strains cultivated under 29 growth 
conditions. Growth conditions are indicated on the y-axis and strains on the x-axis. Tile color 
represents the maximum specific growth rate of the strains.  

2.3.2 Bioprocess perturbations  

The fermentation of lignocellulosic biomass into bioethanol serves as a notable example of 
how to effectively address complex processes by breaking down an intricate perturbation 
space into smaller, individual perturbations. The inhibitors present in the hydrolysates, along 
with sugars, are easily reproducible in controlled settings by preparing media with varying 
concentrations of inhibitors (Papers II and III). This approach finds application in another 
perturbation context, beer fermentation, as detailed in Paper IV. Within beer fermentation, 
yeast interacts with multiple complex substrates, impacting not only the fermentation 
outcome but also the taste profile of beer. Perturbations in this scenario did not exhibit a 
visible impact in the presence of a specific hop type or aroma. However, when compared 
to laboratory growth medium (Delft 2% glucose), the specific growth rate of both the 
industrial strain Ethanol Red and the laboratory strain CEN.PK113-7D was markedly lower 
(Paper IV: Figure 6). Once again, substrate variation proved to be straightforward to 
replicate compared to other types of perturbations such as pressure gradients. In the 
previously mentioned survey, when asked to identify significant perturbations in 
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bioprocesses, respondents answered that pH and temperature control, as well as reactor 
gradients, were the most critical factors affecting their processes. 

Substrate variation represents only a fraction of the comprehensive array of 
perturbations faced by cell factories within industrial fermenters. Perturbations come in two 
forms: predictable and stochastic. Predictable perturbations are more manageable through 
process technology; whereas stochastic perturbations are more difficult to control and 
identify (Review Paper I). Anticipated perturbations encompass variations in substrate 
batches, inhibition stemming from both substrate and end products, gradients in nutrient 
and oxygen levels within large-volume reactors, and shear pressure (108). Cell 
performance is affected also by pH and temperature fluctuations. Instead, stochastic 
perturbations involve unpredictable events, such as declines in cell viability, contaminations, 
population heterogeneity, and genetic instability (109).  

2.3.3 Three aspects in perturbation studies important for 
performance assessment 

When assessing microbial performance under different perturbations, three aspects should 
be included:  

I. perturbation probability, i.e., the probability that a certain perturbation will 
occur within the process. 

II. perturbation intensity, i.e., the extent or magnitude of a particular perturbation. 

III. interaction effects between perturbations.  

The first factor concerns the relevance of a perturbation in relation to a specific 
process. An advantage of evaluating microbial performance across numerous perturbations 
lies in the ability to discern which ones are not pertinent to the process outcome. In beer 
production, assessing the performance of yeast strains with respect to furfural may be much 
less relevant than testing them against high levels of sugars or ethanol, as these conditions 
are predominant during brewing. Relevance of a perturbation to a process, known also as 
“perturbation probability”, has been estimated in the context of robustness assessment (15), 
but experimental quantification is not routinely performed. The challenge lies in attributing 
a probability/relevance value to each perturbation and estimating the likelihood of its 
occurrence in a process. Access to data regarding controlled parameters (e.g., temperature, 
pH or off-gas analysis) from industrial fermentations could inform such analysis.  

To determine whether five phenotypes of 24 S. cerevisiae strains (section 2.4: 
Dataset 1) were influenced by the probability of occurrence assigned to each perturbation, 
random weights (sum of 29 weights equal to 1) were assigned to each of the 29 tested 
perturbations (unpublished data). Subsequently, the mean performance (for each of the five 
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phenotypes) of each strain across the weighted perturbations was computed (Figure 2.8). 
This process was repeated 1000 times with different randomly assigned weights. This 
resulted in 1000 mean values (across weighted perturbations) for each phenotype and 
strain. The distributions of calculated mean performances for all 1000 times were plotted 
for each phenotype and strain, as shown in Figure 2.8 for lag phase and cell dry weight. In 
the case of cell dry weight, only two strains exhibited a highly narrowed distribution (close 
to zero), suggesting that, regardless of the weight assigned to the perturbation, their 
performance remained remarkably stable. In contrast, other strains displayed wider 
distributions, indicating that perturbation probability had, in fact, an impact on performance 
evaluation. For the lag phase, strain distributions aligned into two distinct groups, each with 
similar modes. This alignment indicates that strain behavior was affected equally by 
different perturbation probabilities but with two distinct modalities. Ultimately, this test with 
randomly generated perturbation probabilities shows that certain strains are more 
influenced by the whole set of perturbations than others. 

 

Figure 2.8: Distribution of phenotype weighted means over 1000 randomly assigned 
perturbation weights. The distributions represent the weighted mean performance (random weight 
assigned to the perturbations) calculated 1000 times with different weights. Each color corresponds 
to a different strain type. The grey distributions belong to different strain types but just two strains per 
group were highlighted with a thicker line for simplicity.  

 

The second aspect involves perturbation intensity, meaning the amplitude of each 
perturbation (e.g., concentration of an inhibitor). If the concentration of a tested inhibitor is 
too low, it might not exert a discernible effect on the examined strain compared to when the 
perturbation is absent. Conversely, excessively high concentrations or perturbation 
intensities could severely impact cells, potentially inhibiting growth entirely. Consequently, 
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it is essential to conduct tests across a broad range of intensities. Lignocellulose 
hydrolysates vary in composition, depending on the type of biomass (section 2.3.1: Table 
2.1), therefore sugars and inhibitors released during pretreatment can have very different 
concentrations. For instance, in the evaluation of S. cerevisiae strains PE2 and 
CEN.PK113-7D (unpublished data), four concentrations were tested for each perturbation 
(Delft media plus an inhibitor or different sugars) and are indicated after the name on the x-
axis in Figure 2.9. The lower and higher concentrations were chosen based on published 
lignocellulose hydrolysate composition studies, offering a real although not necessarily 
optimal framework for testing. The specific growth rate of two exemplary strains was 
calculated for fourteen perturbation each divided in four concentrations (Figure 2.9). In the 
case of vanillin, HMF, and ethanol, the highest concentrations (3,9 and 123 g/L respectively) 
were excluded as no growth was detected. Subsequently, only two concentrations that 
partially blocked strain growth were chosen for further investigation (Papers II and III). 

Finally, the third aspects that should be included when addressing bioprocess 
perturbations is the interaction effect of different perturbations occurring simultaneously. 
This arises from the concurrent presence of different perturbations, which may lead to 
synergistic interactions and downstream effects that are either more favorable or more 
detrimental than when the perturbations are evaluated individually. A study has found that 
high temperatures (37°C) lead to an increase in acetic acid production in S. cerevisiae, 
which, along with the presence of ethanol and reactive oxygen species, synergistically 
hinders cell growth and ethanol production rate (110,111). In the context of lignocellulosic 
biomass, the combination of liquid fraction of pretreated wheat straw mixed with ethanol 
and high temperatures resulted in no growth of two S. cerevisiae strains in a spot assay on 
agar (112).  
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Figure 2.9: Maximum specific growth rate of two S. cerevisiae strains. PE2 and CEN.PK113-
7D were cultivated under 14 different conditions each containing the indicated compound at four 
concentrations (points of different hues). Concentrations of each compound are reported after the 
compound name in g/L on the x-axis labels.  

In this thesis, Ethanol Red and CEN.PK113-7D underwent testing under various 
combinations of inhibitors, and specific growth rates were compared to those of single 
inhibitors (Figure 2.10, unpublished data, section 2.4: Dataset 2). Notably, the specific 
growth rate for both strains exhibited a decrease when they were cultivated with a 
combination of two or three inhibitors. Combination of different acids with NaCl, aldehydes, 
and ethanol almost always resulted in no growth. The only condition that showed higher 
specific growth rate than the control (Delft medium + 2% glucose) was the combination of 
glucose (6.5%) with mannose (1.6%) and galactose (0.45%). 
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Figure 2.10: Combined effects of lignocellulose inhibitors on S. cerevisiae performance. 
Maximum specific growth rate (y-axis) of CEN.PK113-7D and Ethanol Red cultivated under different 
conditions (x-axis). Different hues correspond to the two strains. Inhibitor name and concentrations 
are reported on the x-axis. Cultivations are divided based on the number of inhibitors tested 
simultaneously (up to three).  The dotted line represents the control of both strains grown in Delft 2% 
glucose. The dots with a thick stroke line are highlighted as example and referred to in the text.  
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2.4 Methods, datasets, and strains  
In this thesis two main high-throughput methodologies were used to cultivate S. cerevisiae 
strains and monitor their growth: cultivation in 96-well plates using a growth profiler and 
cultivation on agar plates using the scan-o-matic. A detailed explanation of the methods can 
be found in Papers II–IV for the growth profiler and Paper V for the scan-o-matic; while a 
brief description is provided hereafter. The cultivation procedure employed in the evolution 
experiment involved a daily dilution in 96-well plates, and details can be found in Paper V: 
Material and Methods. 

1. Cultivation in 96-well plates using the growth profiler  

Strains from a glycerol stock were thawed and 10 μL were transferred to 5 mL Delft 
medium to be cultivated at 30°C overnight. Optical density at 600 nm (OD600) of the 
overnight culture was measured and a volume corresponding to a starting OD600 of 
0.02 was transferred to 96-well plates for a total culture volume of 250 μL. Multiple 
compounds were added to Delft medium to mimic different perturbations (e.g., acetic 
acid, vanillin). The 96-well plates were closed with either aerobic or micro-aerobic lids 
and placed in the growth profiler. Growth was monitored for 48 h at 30°C and 250 rpm 
shaking. The maximum specific growth rate and lag phase were calculated from the 
growth curves.  

To calculate cell dry weight and yields, the final OD600 of the culture was measured in 
a spectrophotometer and converted in cell dry weight through previously determined 
calibration curves. After removing the cells from the cultures, enzymatic assays were 
used to measure ethanol and sugars from the media at 48 h. The assays were based 
on enzymatic reactions, which produced NADH, whose absorbance at 340 nm was read 
in a spectrophotometer. Based on these measurements and initial concentrations, it was 
possible to calculate ethanol and biomass yields.  

2. Cultivation on agar plates using scan-o-matic  

Strains from the glycerol stocks (kept on 96-well plates) were thawed on ice and 
pinned on a YPD agar plate in a 1536 colonies format. A normalization strain is 
generally pinned throughout the plate to adjust for variation. Colonies were pinned on 
a pre-culture medium (e.g., Delft medium in the case of Paper V phenotypic assays), 
after which the pre-cultures were pinned on agar plates containing the compound of 
interest (e.g., acids, ethanol). Colony growth was monitored in scanners for 72 h in 
four replicate plates to determine generation time and the produced biomass 
(calculated as final biomass - initial biomass) by the scan-o-matic software.  
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In this thesis work, I not only utilized datasets produced through my own experiments but 
also showed how applying robustness calculations to existing literature datasets could lead 
to new knowledge. The datasets used throughout this thesis are summarized below.  

DATASET 1* (lignocellulose) 

Strains CEN.PK113-7D, S288C, PE2, Ethanol 
Red, Thermosacc, RedStar, LBCM1001, 
LBCM1003, LBCM1008, LBCM1013, 
LBCM1014, LBCM1017, LBCM1030, 
LBCM1046, LBCM1079, LBCM1095, 
LBCM1099, LBCM1106, LBCM37, 
LBCM67, LBCM97, LBCM103, LBCM109, 
and LBCM110. 

Applied method Growth profiler + enzymatic assays 

Perturbation space 29 conditions: glucose, xylose, galactose, 
arabinose, mannose, formic acid, acetic 
acid, levulinic acid, lactic acid, HMF, 
furfural, vanillin, ethanol, NaCl 

Investigated phenotypes Maximum specific growth rate, lag phase, 
ethanol yield, biomass yield, cell dry weight 

*Details can be found in Papers II and III: Material and Methods 

 

 

DATASET 2 (p. interactions) 

Strains CEN.PK113-7D, Ethanol Red 

Applied method Growth profiler  

Perturbation space* Glucose, xylose, galactose, arabinose, 
mannose, formic acid, acetic acid, levulinic 
acid, lactic acid, HMF, furfural, vanillin, 
ethanol, NaCl  

Investigated phenotypes Max. specific growth rate 

*Double and triple combinations were tested. For exact concentrations and combinations refer to Figure 2.10 (unpublished 
data) 
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DATASET 3* (Costanzo) 

Strains 4000 strains bearing single gene deletions 
(derived from S. cerevisiae BY4741 and 
BY7092)  

Applied method Solid growth  

Perturbation space YPD + 14 antifungal compounds  

Investigated phenotypes Normalized colony growth 

*Specifics can be found in Paper IV: Material and Methods and (113) 

 

 

DATASET 4* (Liti) 

Strains 1011 S. cerevisiae strains sampled from 
different locations and ecological origins 

Applied method Scan-o-matic 

Perturbation space* 37 conditions (YPD + different compounds)  

Investigated phenotypes Colony growth normalized using growth on 
standard YPD medium at 30°C 

*Details can be found in Material and Methods and Supplementary tables (56). 

 

 

DATASET 5* (three p.spaces) 

Strains Ethanol Red, CEN.PK113-7D and 14 
CEN.PK113-7D strains carrying single 
gene deletions 

Applied method Growth profiler 

Perturbation space Lignocellulose hydrolysates perturbation 
space, Costanzo perturbation space, beer 
perturbation space each composed of 16 
conditions   

Investigated phenotypes Maximum specific growth rate  

* Details can be found in Paper IV: Material and Methods. 
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DATASET 6* (evolution) 

Strains CEN.PK113-7D, S288C, Ethanol Red 
(1044 evolved samples, populations plus 
extracted single colonies) 

Applied method Scan-o-matic 

Perturbation space* 20 conditions. Delft plus the following 
compounds: glucose, xylose, arabinose, 
mannose, formic acid, acetic acid, lactic 
acid, levulinic acid, HMF, ethanol, NaCl, no 
pH buffering, no trace metals, YPD 

Investigated phenotypes produced biomass 

*Details can be found in Paper V: Material and Methods. 

 

 

DATASET 7* (Persson) 

Strains 604 S. cerevisiae strains bearing single 
gene deletions 

Applied method Scan-o-matic 

Perturbation space Synthetic complete medium agar plates 
supplemented with 3 mM arsenite ([As III]; 
NaAsO2), 4 mM arsenite, 0.25 mg/L 
rapamycin, 400 mg/L paraquat 
(methylviologen; N, N-dimethyl-4-4′-
bipiridinium dichloride) or 1.25 M NaCl. 

Investigated phenotypes Produced biomass and doubling time 

*Details can be found in Material and Methods (114) 

 

 

 

 

 

 



Chapter 2. Microbial Performance and Perturbations in Bioprocesses 

31 
  

2 

Main Points from Chapter 2 

• Bioprocesses are fundamental for a shift towards a more sustainable economy. 
There is a strong need for robust biocatalysts that can perform consistently in 
spite of perturbations.  

• Performance metric is specific to the bioprocess and should include secondary 
parameters not only the TRY metric. Decision steps can help in identify and 
prioritize those parameters. 

• Laboratory-designed strains should be tested for the decided performance metric 
before scale-up.  

• Temperature and pH control, along with reactor gradients, were identified as 
major perturbations in bioprocesses. 

• Perturbation probability, perturbation intensity, and interactions should be 
considered when testing strain performance in different conditions. 
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Chapter 3. Microbial Robustness 
  

Chapter 3 describes the concept of microbial robustness and explores its significance 
across various contexts. It first describes the different methods for measuring robustness, 
with a focus on the Fano factor-based approach detailed in Paper II. This quantification 
technique is then applied to various datasets (described in section 2.4) to demonstrate its 
adaptability to different scenarios. The chapter concludes with a discussion on the trade-
offs between performance parameters and between performance and robustness.  

3.1. The concept of robustness 
The term "robustness" has been defined in various contexts. Generally, it refers to the 
capability of a system to handle perturbations and maintain a stable output (115). This 
attribute is observed in various fields, such as aviation, where modern airplanes incorporate 
an automatic flight control system (AFCS) to maintain their flight trajectory. The AFCS 
detects deviations in the flight path caused by external perturbations and autonomously 
adjusts its input to restore stability. For instance, if strong winds cause an altered output, 
the AFCS will modify the route until the plane returns to a stable path (1). Another context 
is provided by machine learning, whereby robustness denotes the ability of an algorithm to 
produce consistent outputs even when exposed to noise or shifts in data distribution. It also 
implies that errors and properties present in the training datasets should align with those in 
the testing datasets to ensure stability (116)  

In biology, metabolic robustness relates to the stability of diverse phenotypes, 
including regulatory mechanisms, gene expression, and phosphorylation (117,118). The 
ability to withstand genetic changes and mutations is referred to as mutational robustness, 
which is often linked to gene duplication (119). Transcriptional robustness relates to the 
ability of overcoming errors in transcription, splicing, translation, or post-translational 
modifications, and is crucial for preventing the production of non-functional proteins (120). 

3.1.1 Microbial robustness definition 

Within the scope of this thesis, most efforts have centered on microbial robustness as 
defined below and in Review Paper I.  

Microbial robustness is defined as the ability of a system to maintain consistent performance 
despite external or internal perturbations (1,2,5,7,8).  

Hence, by definition, microbial robustness is tied to three fundamental characteristics: 
the system (e.g., a strain, microorganism or population), the phenotype (and its measured 
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performance, also referred to as cellular function), and the perturbation space (Paper II). 
Phenotypes are manifestations of intricate sub features. Features, such as gene 
expression, enzymatic conversion rates, substrate uptake rates, and enzyme inhibition, can 
collectively influence ethanol yield (the main phenotype). In a simple scenario, if the 
phenotype "product yield" of a strain A exhibited two similar values when applying 
perturbations 1 and 2, then the phenotype "product yield" could be marked as robust across 
perturbations 1 and 2. Yet, the features of system A contributing to product yield when 
applying perturbations 1 and 2 may vary significantly (Figure 3.1). In fact, robustness tends 
to preserve functionality within a system despite perturbations, often demanding that the 
system dynamically adjusts its features (1).  

 

Figure 3.1: The robustness of phenotypes and its features. The hypothetical product yield (y-
axis) of systems A (red) and B (yellow) is represented in relation to four perturbations (x-axis). System 
A has a similar product yield in the four perturbations, which makes it is robust under the given 
conditions, even though it exhibits different features (x, y, z, and w). Conversely, system B, which 
also exhibits different features in the four perturbations, does not exhibit a similar product yield and, 
therefore, is less robust than system A.  

 

3.1.2 Relevance of microbial robustness 

Microbial robustness becomes relevant when systems encounter perturbations and should 
maintain steady performance. While this quality is desirable in specific scenarios, it may 
assume a secondary role or be undesirable in other contexts. Bioprocesses aim for a stable 
and predictable outcome, particularly with respect to the TRY metric. In ethanol production 
from lignocellulosic biomass or side streams, robustness is indispensable to guarantee a 
consistent production flow, especially because of differences in substrate composition or 
batch-to-batch variations. In contrast, well-established processes such as insulin production 
may not rely so heavily on microbial robustness. The procedure has been meticulously fine-
tuned over the past 40 years and employs highly pure sugars as substrates, thereby 
minimizing batch variations. The impact of other potential disturbances has been 
significantly mitigated through the optimization of strains and processes. In the United 
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States, Food and Drugs Administration regulations mandate "quality by design" in 
pharmaceutical manufacturing, with European countries following up on it. Process 
analytical technology supports and emphasizes the integration of quality into design, 
thereby reducing the focus on strain robustness (121).  

As highlighted by the survey, there is a preference for designing robust strains over 
controlling processes (section 2.2.2), as well as for consistent performance over peak 
performance. Respondents pointed out that predictability and repeatability were essential 
for cost-effective operations. Additionally, the choice between robustness and high yield is 
influenced by product type. For products in high demand, the quantity produced (volumetric 
production rate) might outweigh the need for maximum yield; whereas titers, for example, 
become more critical for compounds that require extensive down-stream processing.  

Robustness is an undesirable trait in cancer and antibiotic-resistant bacteria. Cancer 
is considered a robust system. While certain types, such as breast or ovarian cancer, exhibit 
a strong high initial response to chemotherapy, they often relapse, and the recurrent tumors 
frequently develop resistance to subsequent therapeutic interventions (122). Cancer is 
robust in the face of physiological challenges, such as low oxygen levels and metabolic 
stress. Extensive research over the years has linked this robustness to tumor heterogeneity, 
which arises from variability in size, morphology, antigen expression, membrane 
composition, proliferation rate, and metastatic potential (122). Heterogeneity offers a 
significant degree of modularity (different cells in the tumor are specialized in different tasks) 
and redundancy and is further strengthened through feedback controls, which contribute to 
robustness. The same can be observed in bioprocesses (Review Paper I) (123). 

Another instance of highly robust systems is found in antibiotic-resistant bacteria such 
as Pseudomonas aeruginosa, which pose a significant threat to human health (124). P. 
aeruginosa exhibits a remarkable array of mechanisms to neutralize antibiotics, including 
low outer membrane permeability, efflux pumps expelling antibiotics, and the production of 
antibiotic-inactivating enzymes. Robustness is then further reinforced by the ability to form 
biofilms and horizontal transfer of resistance genes (125). 

Understanding the mechanisms of robustness becomes crucial in such cases, as it 
enables the development of drugs that prevent disease recurrence after initial treatment. 

3.2 Quantification of microbial robustness 
To fully understand robustness and its inherent properties, it was necessary to develop a 
method for its quantification (Paper II). This would allow the evaluation of strain 
performance and comparative analyses of the targeted phenotypes. Performance 
evaluation provides insights on how effectively a system can navigate various perturbations 
and environmental conditions. For example, as elucidated in Chapter 2 and detailed in 
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Paper III, the collection of performance data across various perturbations facilitates the 
identification of strains with a consistent behavior. Here, it enabled the assessment of 
performance across perturbations and whether it was consistently high or low for five 
distinct phenotypes. Ethanol Red was identified as a highly performing and robust strain 
(Papers II and III).  

Robustness quantification can serve various purposes (Table 3.1). Engineered strains 
can be evaluated directly before scaling up or conducting quality checks for industrial strains 
(Review Paper I). Physiological studies can include measurements of the stability shown 
by intracellular parameters in different media. Furthermore, population heterogeneity can 
be quantified using microfluidic devices (126,127).  

Table 3.1 Applications of the robustness quantification formula  

Scope System  
Robustness 
calculated across: 

Examples 

Study trade-offs between 
phenotypes and between 
performance and robustness  

Strains Perturbations  

Paper III, 
Dataset 1 

(128) 

Identify highly performing strains 
with robust phenotypes 

Strains Perturbations 

Paper III, 
Dataset 1, 
Dataset 4 

(56,128) 

Identify genetic and metabolic 
markers of robustness 

Strains bearing 
gene deletions 

Perturbations 

Paper IV, 
Dataset 3, 
Dataset 5, 
Dataset 7  

(113,114) 

Quantify robustness in phenotypic 
assays from evolution experiments  

Evolving 
populations  

Perturbations 

Paper V, 
Daset 7 

(114) 

Evaluate the impact of 
perturbations on strains 
performance  

Strains Strains  (126) 

Establish the degree of intracellular 
parameter fluctuations 

Strains Time (126,127) 

Quantify population heterogeneity 
Single cells, 
subpopulations 

Time, perturbations (126,127) 
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3.2.1 State-of-the-art in robustness quantification  

Various methodologies have been suggested to measure robustness (Review Paper I). 
Equations commonly employed in theoretical assessments of robustness include Kitano's 
formula (Equation 1) (15) and the one utilized by Yang et al. (129). Kitano's approach 
involves quantifying the robustness of a system “S” and a function “a” by integrating the 
evaluation function “D” across numerous perturbations “p” (perturbation space = P) 
multiplied by the single perturbation frequency “ψ(p)”. The evaluation function represents 
the ratio of the function "a" in a perturbed state “p” with respect to the same function in a 
non-perturbed state “p0” (Figure 3.2.a). 

			𝑅!,#	% = ∫ 𝜓# (𝑝)𝐷!&(𝑝)𝑑𝑝 Equation 1 

Equation 1 was previously employed to conduct conditional robustness analysis and 
offer a valuable tool for exploring biochemical interaction networks in cancer (130,131). An 
alternative approach to assess robustness is through the coefficient of variation (CV), which 
is defined as the ratio of standard deviation to the mean of a measured quantity (129). 
Equation 2 defines robustness R as 1 minus the CV.  

𝑅 = 1 − '
(
   Equation 2 

While these two equations have found various applications, they pose challenges 
when applied to the microbial robustness definition introduced in section 3.1.1 (Paper II). 
Issues arise primarily from the selection of arbitrary reference conditions to determine 
perturbation probabilities, and the inherent difficulty of comparing robustness for different 
phenotypes because of scaling and unit differences. 

3.2.2 Fano factor-based quantification 

To address the above-mentioned challenges, a different formula (Equation 3) for quantifying 
robustness was introduced in Paper II. Equation 3 was derived based on prior research, in 
which the Fano factor had been proposed as a reliable method for measuring both 
robustness and variation in phenotypic data (7,132). Equation 3 measures robustness of a 
system (S) and a phenotype (a) across a perturbation space (P) by dividing the variance 
(𝜎!) by the mean (�̅�) of the data and normalizing with the mean of performance data across 
all tested strains (𝑚) (Figure 3.2.b).  

𝑅!,%,# = − '!

)̅
+
,

 Equation 3 

This formula has the following benefits (outlined in Paper II):  

i) it eliminates the need for arbitrary control conditions and perturbation 
frequencies (unlike Kitano's formula, which requires p0 and ψ(p));  



Chapter 3. Microbial Robustness 

38 
 

ii) the introduction of 1/m for normalization allows for the comparison of 
robustness across different phenotypes within the set of analyzed strains;  

iii) the negative sign enables the representation of stronger robustness with 
higher values (with 0 signifying maximum robustness and no data variation).  

In contrast to Equation 2, whose R becomes negative when the CV is >1, therefore, 
complicating interpretation, the Fano factor emerges as a more suitable representation, 
particularly for data approaching zero. This is crucial, considering the broad spectrum of 
values phenotypes can encompass (133).  

When evaluating robustness quantification methods in this thesis, 1000 data points 
aligned along eight distinct distributions were generated using different functions in R 
softare (e.g., normal - rnorm, uniform - runif, and exponential - rexp) (Figure 3.3.a). 
Subsequently, Equations 1, 2, and 3 were employed to calculate the robustness of the 
generated data. To simplify the process, the p0 in Equation 1 was assigned a random value 
within the distribution range, and the probability of each perturbation was disregarded. 
Notably, modifications were made to Kitano's formula to adapt it for discrete data analysis. 
Multimodal and normal distributions exhibit a higher spread. Intuitively, based on the 
microbial robustness definition, one would anticipate lower robustness for the multimodal 
and normal distributions. However, Kitano's formula yielded unexpected results, associating 
exponential and binomial distributions with the lowest robustness values (Figure 3.3.b).  

When employing the CV for robustness calculation, the multimodal and normal 
distributions attained the lowest values. Yet, R was negative for the multimodal distribution, 
which complicated the interpretation of robustness, because Equation 2 expects robustness 
to fall within the range of 0 to 1. Akin to the CV, Equation 3 assigned the lowest robustness 
to the multimodal and normal distributions. Comparable values emerged for the remaining 
distributions, with the gamma distribution achieving the highest robustness. Consequently, 
even when confronted with diverse data distributions, Equation 3 appears to be better at 
quantifying microbial robustness according to the four criteria outlined in Paper II: statistical 
significance, independence from performance, standardization, and comparison among 
phenotypes. Equation 3 can be applied also to a widely varying range and scale of values, 
as demonstrated when quantifying robustness for cell area or protein fluorescence 
(126,127).  
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Figure 3.2: Quantification of robustness. a) Quantification of robustness according to Equation 1 
(adapted from Review Paper I: Figure 5). The x-axis corresponds to the perturbation space and the 
y-axis to the evaluation function. b) Quantification of robustness according to Equation 3 (Paper II). 
The x-axis corresponds to the perturbations and the y-axis to the performance of phenotype “a”. The 
dotted line is the mean and the colored rectangle to the spread of the data. An example for two 
hypothetical systems S1 and S2 is given. Equation 3 is shown in the box and the quantified 
robustness is represented by bar plots.  

 

Figure 3.3: Quantification of robustness with different formulae. a) Eight different distributions 
(colors) are plotted on the y-axis with performance values of a hypothetical phenotype on the x-axis. 
b) Robustness of the generated data for each distribution was computed using Kitano's formula 
(Equation 1), Yang's formula (Equation 2), and the formula based on the Fano factor (Equation 3, 
Paper II). Robustness is reported on the y-axis and the different distributions are denoted by different 
colors.  
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3.2.3 Robustness and tolerance 

Exploration of robustness properties and definitions highlighted a discrepancy in 
terminology. Earlier studies often used the term "robustness" when discussing what would 
be more accurately described as "tolerance" (2). As elucidated in Review Paper I, tolerance 
is defined as the ability of microorganisms to survive in the presence of specific stressors. 
For example, tolerance to acetic acid refers to the maximum specific growth rate of strains 
in increasing concentrations of acetic acid (134). The concept of tolerance is also relevant 
in antibiotic resistance, whereby tolerant bacteria withstand increasing concentrations of 
antibiotics. This phenomenon was vividly demonstrated in a compelling experiment 
conducted by Baym and colleagues on a MEGA agar plate, on which bacteria were able to 
grow at increasing concentrations of antibiotics (135). In contrast, robustness does not 
specifically relate to survival and specific growth rate. Microbial robustness is indicative of 
the stability of performance across a broad spectrum of concentrations, perturbations, and 
phenotypes (Review Paper I: Figure 2). 

 Tolerance can be studied by measuring different phenotypes, including the specific 
growth rate in the presence of different concentrations of chemicals. In Figure 3.4.a depicts 
robustness for strains with similar or different specific growth rates and tolerance. The same 
data from section 2.3.3 (specific growth rates of two S. cerevisiae strains CEN.PK113-7D 
and PE2 grown at four concentrations of different chemicals) were used to evaluate 
tolerance and robustness. Their maximum specific growth rates are shown in Figure 3.4.b 
for three different growth conditions and four concentrations of chemicals. Notably, when 
evaluating robustness across different concentrations of the same stressor, the specific 
growth rate of PE2 remained relatively consistent in the presence of acetic acid; whereas 
that of CEN.PK113-7D was stable in the presence of glucose alone. The specific growth 
rates of both strains decreased in the presence of HMF; although CEN.PK113-7D was more 
tolerant because it survived at higher concentrations of HMF than PE2. Robustness 
quantification offered a more general depiction of strain stability across concentrations for 
all fourteen tested conditions, something not possible with tolerance studies. In the above 
case, robustness of the specific growth rate calculated with Equation 3 revealed that P2 
was more robust than CEN.PK113-7D (-0.16 vs -0.26 respectively).  
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Figure 3.4: Robustness vs tolerance. a) Growth curves (biomass vs time) refer to two different 
yeast strains, M1 and M2, cultivated in the presence four different concentrations of a specific 
inhibitor (different hues). The left graph illustrates robustness, with similar specific growth rates; the 
right graph showcases a less robust strain, tolerant to the inhibitor up to concentration 4. b) Maximum 
specific growth rate of two S. cerevisiae strains, CEN.PK113-7D (pink) and PE2 (brown)(y-axis) with 
respect to four different concentrations of three inhibitors (different facets)(x-axis). Robustness 
calculated across four concentrations for each condition and each strain is shown above the bar 
plots. 

 

3.2.4 Robustness quantification using available datasets 

The quantification formula (Equation 3) can be used to measure robustness of strains 
cultivated under diverse conditions, exploiting publicly accessible datasets (19,136,137). In 
this thesis, Equation 3 was applied to evaluate the robustness of five distinct phenotypes 
across 24 S. cerevisiae strains and 29 conditions (section 2.4: Dataset 1). However, 
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acquiring data, particularly through high-throughput methods, is resource-intensive and 
time-consuming, even if numerous cultivations can be carried out in parallel. Numerous 
datasets containing diverse phenotypic information are available publicly, enabling the 
identification of robust strains within specified perturbation spaces. Additionally, robustness 
quantification applied to yeast deletion libraries can identify specific gene deletions that 
confer heightened robustness, as demonstrated in Paper IV (113).  

To prove the flexibility and potential to identify strains with robust phenotypes, 
Equation 3 was employed on a published dataset encompassing 1011 S. cerevisiae strains 
(section 2.4: Dataset 4) (56). The dataset comprised 971 strains, which were grown on 
agar plates and analyzed in terms of produced biomass across 36 conditions (Figure 3.5) 
(56). These strains were sourced from 369 distinct locations, representing 24 ecological 
origins and 312 geographical origins. The top three most robust strains had been isolated 
from wine amphoras in Georgia. Strains isolated from fermentation environments and palm 
wine displayed the highest mean robustness; whereas laboratory strains and bioethanol 
strains exhibited the lowest (Figure 3.5). The tested conditions in this dataset encompassed 
temperature, sugars, ethanol, salts, metals, and antifungal agents, thereby covering a wide 
range of perturbations.  

The relationship between robustness and ploidy was also investigated with the same 
dataset (Figure 3.5, right part). Diploid strains exhibited the highest mean robustness, 
although at higher ploidy values, R values showed less variation and lower means 
(potentially due to fewer data points available for those categories). Application of Equation 
3 to the dataset described above, with 1011 strains (section 2.4: Dataset 4) revealed that 
higher ploidy was not necessarily associated with higher robustness, as observed also 
when plotting robustness data from the evolution experiment in Paper V. There, the haploid 
parental strain, S288C, exhibited higher robustness than the Ethanol Red diploid strain 
when grown across 20 different media. Given that robustness is associated with genetic 
and metabolic redundancy, having more copies of certain chromosomes should imply 
higher robustness (Review Paper I). Nevertheless, even if redundancy implied higher 
robustness, regulatory networks and gene expression patterns would play a role in the 
robustness of phenotypes in haploid vs polyploid strains.  

Utilizing Equation 3 with available datasets enables the identification of strains highly 
robust across various origins and facilitates the correlation between strain property (for 
example ploidy) and robustness. Comparable investigations can be conducted using 
different datasets, such as those containing information on single-cell phenotypes. These 
studies serve to evaluate population heterogeneity or screen for potential genes associated 
with robust characteristics (Paper IV and section 3.2: Table 3.1).  
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Figure3.5: Robustness of produced biomass for 1011 S. cerevisiae strains. Robustness of each 
of the 1011 strains from Dataset 4 was computed using Equation 3 across 36 perturbations and 
plotted against various ecological origins (x-axis, left graph) or ploidy (x-axis, right graph). The mean 
robustness for each ecological origin or ploidy is shown by the dark red dot.  

 

3.2.5 Combined effects of perturbations on robustness 

Perturbations are indispensable when measuring robustness, as demonstrated by their 
influence on the same strains (Paper III: Figure 1; Paper IV: Figure 6) (7,128). The 
evaluation of robustness is contingent upon the number and nature of perturbations tested, 
underscoring the importance of conducting a thorough investigation of the perturbation 
space before undertaking robustness calculations. Even when many perturbations are 
tested, including those with low probability of occurrence, removal or addition of pertinent 
perturbations in a specific process step or environment offers a versatile tool that can be fit 
to different scenarios. Furthermore, the analysis of a wide range of perturbations could be 
indicative of a more general robustness mechanism that is not necessarily tied to a 
perturbation space. A discussion on which perturbations to incorporate into the perturbation 
space has been addressed in Paper III (Figure S2). 

Robustness mechanisms are linked to perturbations in three distinct ways:  

i) they evolved from previous exposure to similar stressors 

ii) they arose from exposure to different stressors 

iii) they exist without having any direct association with the perturbation (8). 

In the third case, there are only minimal differences in robustness among perturbation 
spaces, as shown for CEN.PK113-7D met28 in Paper IV. Moreover, as discussed in 
section 2.2, both the frequency and magnitude of perturbations have an impact not only on 
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performance but also on robustness. While laboratory environments often simplify complex 
real-world conditions by breaking them down into single relevant perturbations, it is 
important to acknowledge that combined effects between compounds can significantly 
influence microbial performance (Figure 2.10).  

To illustrate the effect of combined perturbations on robustness, the same dataset in 
which CEN.PK113-7D and Ethanol Red were grown in different combinations of two or three 
inhibitors and the maximum specific growth rate was calculated (section 2.4: Dataset 2; 
Figure 2.10), was employed to calculate robustness using Equation 3 (unpublished data). 
Combined effects were simulated by substituting the two individual perturbations with their 
synergistic action. When examining the combination of NaCl and formic acid, the two single 
perturbations were excluded from the perturbation space and were replaced by the 
performance measured in medium containing both stressors. Robustness of the specific 
growth rate was then quantified using Equation 3 (Figure 3.6). 

The trends observed for robustness of the maximum specific growth rate mirrored 
those seen for overall performance (Figure 2.10), with a noticeable drop in robustness when 
all three inhibitors were present simultaneously, in particular when combining ethanol with 
acids, aldehydes, or NaCl. These findings suggest that a high-throughput setup, which tests 
only single perturbations, may need to be supplemented with combinations of different 
perturbations to provide a more realistic depiction of robustness in complex environments. 
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Figure 3.6: Effect of combined perturbations on robustness. Robustness of the specific growth 
rate was computed using Equation 3 and is plotted on the y-axis. Two strains, CEN.PK113-7D and 
Ethanol Red, are represented by different colors. Robustness was calculated across combinations 
of two or three perturbations, as plotted on the x-axis. In the control strains, robustness was 
calculated only for individual perturbations, as shown in the right “C” panel. 

 

3.3 Robustness vs performance 
Equation 3 was designed to quantify robustness according to the definition given in Review 
Paper I and reported in section 3.1.1. However, its formulation (Paper II) entails that strain 
performance is not depicted in the formula (high robustness can result both from strains 
with high or low performance). For instance, biomass data from Peter et al. (2018), who 
cultivated 1011 yeast strains isolated from different locations and in 36 distinct conditions 
on agar plates (56) (section 2.4: Dataset 4), were used to calculate robustness with 
Equation 3. When plotting robustness against performance, the data revealed that most 
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strains exhibited an average mean performance clustered around a robustness value of -
0.4 (Figure 3.7). These plots offer a clearer view of which strains exhibit the highest 
robustness, performance or a good balance between the two (see section 3.3.2 for detailed 
optimization analyses). For example, strains CAQ and CAB, isolated from wine preserved 
in amphoras in Georgia, display the highest robustness but an average mean biomass 
around 0.3 (values normalized to growth on YPD). Conversely, strains CQG, BMK, BMH, 
CQH, and BMF, isolated from cocoa bean fermentation in West Africa and clinical samples 
in Italy, exhibit some of the highest performance and robustness. Finally, SACE_GAP and 
ACQ isolated from wine in Chile and Russia exhibited the highest performance. These plots 
can also be used to investigate potential trade-offs between properties.  

 

Figure 3.7: Robustness vs performance for 1011 S. cerevisiae isolates. A total of 1011 yeast 
strains were cultivated across 36 conditions, and the produced biomass was calculated. Robustness 
was computed across the 36 conditions for each strain using Equation 3 and plotted on the y-axis 
against the mean performance of each strain (x-axis). Three shaded areas identify strains with high 
robustness, performance or with the best compromise between robustness and performance. The 
code identifying each strain, together with the ecological and geographical origin, is provided (56). 
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3.3.1 Trade-offs 

By plotting robustness against performance (Figure 3.7), it becomes apparent how most 
strains engage in a trade-off between high performance and robustness of the same 
phenotypes. A system cannot maximize all objectives (e.g., specific growth rate, product 
yield, biomass, and specific growth rate across many conditions) simultaneously due to both 
biological and thermodynamic constraints (138,139). Trade-offs can arise among 
performance values of different phenotypes as well as between performance and 
robustness of the same phenotype (Paper III). In large-scale production settings, 
microorganisms often exhibit a trade-off between production and growth. Typically, after a 
certain number of generations (often around 100), high-producing cells are outcompeted by 
non-producing ones. The latter generally display higher specific growth rates, probably due 
to mutations that have been selected for phenotypes other than product yields (140).  

Past studies have revealed a trade-off across 62 fungal species between the rate of 
hyphal growth and the production of melanin, a compound in the cell wall of fungi, which 
provides resistance to UV light, desiccation, pathogens, and osmotic stress (141). Trade-
offs have been observed in bacteria between lag phase and specific growth rate in 
fluctuating environments (142). Trade-offs between the rate of ATP production and its yield 
in heterotrophic organisms have revealed even more intricate mechanisms such as the 
transition from unicellular to multicellular organisms following a rise in ATP yield during 
respiratory metabolism (143). Moreover, a trade-off exists between the maximum specific 
growth rate per individual r and the carrying capacity (biomass yield) K, and is known as the 
r/K selection theory (144).  

The trade-offs listed in the previous examples have been supported by phenotypic 
data collected in this thesis; they include specific growth rate, lag phase or cell-dry weight 
(Paper III: Figure S1). The trade-offs observed using data from Paper III, with 24 strains 
cultivated in 29 conditions (section 2.4: Dataset 1) revealed a positive correlation between 
end of cultivation cell dry weight and the maximum specific growth rate. Interestingly, this 
pattern, which is the opposite of a trade-off, became more pronounced under stressful 
conditions, such as exposure to ethanol and aldehydes (Paper III: Figure S1). This confirms 
previous observations, where positive correlations were detected in stressful environments, 
while trade-offs were seen in nutrient-rich media such as YPD (144).  

The dataset generated in Paper V, was used to further investigate trade-offs (section 
2.4: Dataset 6). The dataset contained information on generation time (transformed in 
maximum specific growth rate) and produced biomass of the parental strains Ethanol Red, 
CEN.PK113-7D, and S288C cultivated in 20 different media on agar plates. Spearman 
correlation coefficients between the two phenotypes for each group of conditions, were 
calculated (Figure 3.8). In line with what observed above with Dataset1, negative 
correlations were only observed in the case of Ethanol Red cultivated with HMF and 
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CEN.PK113-7D cultivated without pH buffering or trace metals. Therefore, positive 
correlations in this case were observed not only in the case of stressful environments but 
also in control conditions such as Delft with 2% glucose.  

 

Figure 3.8: Correlation between maximum specific growth rate and produced biomass in three 
S. cerevisiae strains. The produced biomass was plotted on a logarithmic scale (y-axis) against the 
maximum specific growth rate (x-axis) for three S. cerevisiae strains (colors) and seven groups of 
conditions (columns). Each facet displays the Spearman correlation coefficient rho "ρ". The 
significance was not represented but the p-value was ≤ 0.0001 for all correlations except for Ethanol 
Red and S288C in the “other” group, whereby the p-value was not significant. A linear regression 
line denotes the direction and strength of the correlation. The data are extracted from the parental 
strains phenotypic assays (Paper V). 

 

Trade-offs were observed with respect to performance of different phenotypes but 
also between robustness and performance of the same phenotype, as discussed in Paper 
III. However, contrary to expectations based on existing literature, data from various 
phenotypes revealed that trade-offs between performance and robustness were not always 
present. In some cases, such as the specific growth rate, the correlation between 
performance and robustness was positive, likely due to evolutionary mechanisms that have 
optimized both properties (Paper III). While correlation studies can provide valuable insights 
when assessing large datasets with phenotypic data, it is important to remember that these 
studies are limited to the experiments performed and should not be relied upon solely as 
evidence of trade-offs or to confirm causal mechanisms. 
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3.3.2 Pareto fronts 

A useful tool to investigate trade-offs and multi-optimization strategies among different 
quantities is Pareto optimality. The Pareto front is a geometrical shape that represents 
Pareto optimality and has often the shape of a curve. It can be used in multi-objective 
optimization studies to identify the best possible compromise between conflicting objectives, 
such as performance and robustness (145–147). Based on Figure 3.7, in which the 
performance and robustness of produced biomass were plotted for 1011 S. cerevisiae 
strains (56) (section 2.4: Dataset 4), a Pareto front was plotted by delineating the 
dominance region of the plot, i.e., where one variable dominated or had greater influence 
over another variable (Figure 3.9). The Pareto front links two archetypes, representing the 
maximum of each property: one strain with maximum performance (ACQ: isolated from 
Russian wine) and another with maximum robustness (CAB: isolated from Georgian wine), 
via a line connecting all other strains that exhibit varying degrees of optimization between 
the two properties. In this context, the same results indicated by circles in Figure 3.7, were 
now emphasized by the Pareto Front. 

Pareto optimization strategies applied to genome-scale metabolic models have been 
used before to propose gene knockouts that would improve both specific growth rates and 
product biosynthesis (148). Pareto front analysis has been instrumental in understanding 
why certain E. coli strains were not optimized and, therefore, did not appear on the Pareto 
front. The strains prioritized robustness in environments subjected to perturbations, 
optimizing for stability over peak performance. Specifically, these cells adjusted their 
metabolic flux to sustain growth across various conditions, which resulted in a compromise, 
whereby they were not as close to the Pareto front (149). Robustness has not been yet 
integrated in the Pareto optimization analysis. Now, typical optimization studies are 
performed between microbial production and growth, for example. Coupling Pareto 
optimization with conditional robustness algorithms (technique that quantifies how 
perturbations affects cellular parameters and metabolic outputs of biological networks) 
could optimize robustness objectives together with performance in different perturbation 
spaces.  

The phenotypic data (produced biomass vs maximum specific growth rate) of 1044 
strains from Paper V grown in 20 conditions on agar plates (section 2.4: Dataset 6) was 
exploited to show the application of the Pareto front in dynamic settings. In this case, 
evolved S. cerevisiae strains displayed different Pareto fronts for the traits produced 
biomass and generation time. The shift in the Pareto front showed that cells had adapted 
over time, not only in terms of produced biomass or specific growth rate, but certain 
populations had successfully optimized both variables simultaneously. 
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Figure 3.9: Pareto front for robustness and performance of produced biomass by S. 
cerevisiae strains. A total of 1011 yeast strains were cultivated across 36 conditions, and the 
produced biomass was calculated relative to the produced biomass on YPD agar. Robustness was 
computed across the 36 conditions for each strain using Equation 3 and plotted on the y-axis against 
the mean performance of each strain (x-axis). The best robustness or performance and the best 
compromise between the two were previously identified by the shaded area in Figure 3.7. The Pareto 
front is highlighted by a line and the best, optimal strains in terms of robustness and performance 
corresponds to the points along this line. The code identifying each strain, together with the ecological 
and geographical origin, is provided (56). 

 

In Figure 3.10 the Pareto front was built using only the parental strains (left) and then 
only the evolved strains (right). A comparison of the plots from parental or evolved strains, 
highlighted the shift in the Pareto Front. For Ethanol Red, the Pareto front was almost 
identical in the two cases, indicating that the strain did not further optimize its performance 
(as concluded in Paper V). By confronting the Pareto front of different strains both before 
and after evolution we might be able to gain insights on the strain adaptability, as reported 
previously in S. cerevisiae (150). Furthermore, by including a high variety of strains (e.g., 
Dataset 4 (56)), showcasing natural diversity in the Pareto front analysis, it might be 
possible to delineate realistic biological limits to optimization, which could direct strain 
design towards tolerance and even simultaneous optimization of different traits. 
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Figure 3.10: Dynamics of Pareto fronts with parental and evolved S. cerevisiae strains. The 
maximum specific growth rate (x-axis) is plotted against the produced biomass (y-axis) for three S. 
cerevisiae strains (each row). The panels to the left show the parental strains’ fitness; those to the 
right show the evolved strains’ fitness. The Pareto front for both parental and evolved strains is 
represented by a continuous line joining together large dots. The dotted horizontal line for each strain 
indicates where the Pareto front of the parental strain was superimposed on the evolved strains’ 
graph, and the black arrow points to the shift in the front after evolution. 

Main Points from Chapter 3 

• The Fano factor-based quantification is preferred to others as it is frequency 
independent, dimensionless, and free from arbitrary control conditions. 

• The quantification formula can be used for many applications, for example to 
study trade-offs or to identify strains with robust phenotypes for industrial 
purposes. 

• Pareto fronts are a useful tool to identify strains that show the best compromise 
between two traits or objectives, such as performance and robustness. 
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Chapter 4. Microbial robustness concepts 
applied to evolution and genomics 

 
Chapter 4 presents a summary of how genetic markers linked to microbial robustness can 
be identified. Genetic markers were derived from existing literature and by applying 
Equation 3 to different screens of yeast deletion collections. The latter part of the chapter 
discusses the evolution of microbial robustness, and employs fitness landscapes as a 
theoretical framework to elucidate evolutionary outcomes. Additionally, the chapter touches 
on history-dependent behaviors in relation to the results presented in Paper III. 

The development of a methodology to quantify microbial robustness has enabled its 
quantification across different strains and perturbation spaces. While previous chapters 
primarily explored robustness in terms of measurable phenotypes such as specific growth 
rates or produced biomass during cultivation; this chapter focuses on the intracellular 
aspects of robustness. Equation 3 was applied to yeast deletion libraries containing fitness 
data to explore metabolic hot spots connected to robustness in different perturbation spaces 
(Paper IV). Additionally, it allowed the investigation of how different evolution set-ups 
influenced the robustness of produced biomass by three S. cerevisiae strains (Paper V).  

4.1. Genetic markers of microbial robustness 
The stability of microbial phenotypes across diverse environmental settings (i.e., 
robustness) is achieved via a collaborative action of core intracellular mechanisms, 
spanning from complex metabolic pathways and their regulation to gene expression and 
transcription-related events (8). Microbial robustness is characterized by three principles: i) 
redundancy, ii) modularity, and iii) control strategies (as discussed in Review Paper 1: 
Figure 1). Redundancy refers to different genes and metabolic pathways covering the same 
function (151). It can also refer to the complex wiring of different transcription factors. 
Transcription factors are proteins that bind to a specific DNA sequence and regulate the 
rate at which genetic information is transcribed from DNA to mRNA. For example, single 
transcription factors may bind to the same regulatory DNA element or, conversely, 
transcription factors from different families may interact with a single regulatory element 
(152). Modularity refers to the modular organization of biological networks (153). Control 
strategies, such as feedback loops, detect variation in a specific output and apply a 
corrective action in the input, which immediately compensates for the sensed variation 
(154). Examples of feedback loops adopted as a control strategy are the lactose operon in 
E. coli or galactose utilization in S. cerevisiae (155). These characteristics act together, 
making it difficult to pinpoint specific pathways or genes that could be uniquely responsible 
for robustness. 
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4.1.1. Previously investigated markers  

Previous studies have reported a variety of genes, which act as “robustness factors” or 
“phenotypic capacitors” to ensure low phenotypic variability across perturbations. One of 
them is heat shock protein 90 (Hsp90), a molecular chaperone and key regulator of 
proteostasis under both standard and stressful conditions. Chaperones interact with other 
proteins to make them functionally active. Hsp90 is involved in protein folding, binding of 
ligands to their receptors, and assembly of multiprotein complexes (156,157). Studies on 
Hsp90 from Arabidopsis and Drosophila have shown that its disruption correlates with 
higher phenotypic variation (158). However, due to lack of comparison with other genes and 
poor understanding of Hsp90 buffering mechanisms, further investigation of Hsp90 and its 
ability to lower phenotypic variance is needed (7).  

More recent studies have used high-throughput approaches to assess morphological 
changes in single-gene deletion strains and discover phenotypic capacitors (159). Siegal et 
al. identified phenotypic capacitors enriched in the following Gene Ontology terms: 
chromosome organization, DNA integrity, RNA elongation, and response to stress. The 
identified capacitors include CCR4, whose deletion caused irregular colony morphology 
(160), SWI6, whose deletion caused variability in cell size in liquid media (161), and FUS3, 
whose knockout shows cell-to-cell variation in response to pheromones(162). Furthermore, 
the same study revealed that phenotypic capacitors acted as hubs (i.e., highly connected 
nodes) in protein-protein interaction networks. Hsp90 and its homologue Hsp70-SSE1 are 
both phenotypic capacitors and network hubs. It has also been shown that deletions or 
mutations of network hubs relate with specific growth rate variation in E. coli in response to 
different environmental perturbations (163).  

To dive into the discovery of robustness markers, I applied Equation 3 on publicly 
available yeast deletion collection screens to quantify their robustness. 

4.1.2 Yeast deletion collections: a tool for identifying robustness 
markers 

The findings from this thesis and previous research suggest there are no universal 
regulators of microbial robustness (164). However, applying Equation 3 to single-deletions 
libraries could reveal unknown genetic or metabolic determinants of robustness. In this 
regard, datasets from yeast knockout (YKO) libraries, as well as other phenotypic datasets, 
have proven valuable in elucidating genotype-to-phenotype relationships, phenotypes 
correlations, and transcriptional responses to various stressors (139,165,166). Hence, 
perturbation experiments, in which different strains or YKO collections are exposed to 
multiple perturbations, remain a primary tool for exploring the mechanistic basis of 
robustness. 
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A dataset containing more than 4000 single-gene deletions in S. cerevisiae (derived 
from strains BY4741 and BY7092) was grown under 14 conditions to investigate genes and 
mechanisms correlated with robustness (113)( (Paper IV) (section 2.4: Dataset 3). The 
robustness quantification formula (Equation 3) was applied to the dataset and fourteen gene 
deletions with the highest or lowest values of either robustness or fitness were selected and 
replicated in S. cerevisiae CEN.PK113-7D. The fourteen deletion mutants, the industrial 
strain Ethanol Red, and the parental strain CEN.PK113-7D were grown in three distinct 
perturbation spaces each with 16 perturbations (Paper IV). The three perturbation spaces 
mimicked beer fermentation (beer perturbation space), 2G bioethanol production 
(lignocellulose hydrolysate perturbation space), and the original conditions containing 
antifungal agents and sugars (Costanzo perturbation space) (113). This strategy revealed 
gene deletions that resulted in robust phenotypes in one perturbation space, but not in 
others (section 2.4: Dataset 5).  

Deletion of the SMA2 gene (Paper IV: Figure 6) resulted in a robust specific growth 
rate in the beer and Costanzo perturbation space, but not in the lignocellulose hydrolysate 
perturbation space. In contrast, deletion of MET28 (Paper IV: Figure 6) resulted in a robust 
but overall lower specific growth rate in all three perturbation spaces. MET28 participates 
in sulfur metabolism, influencing glutathione biosynthesis and other metabolic processes 
such as DNA replication (167,168). Glutathione protects against oxidative stress during 
lignocellulose ethanol production (169,170). Deleting MET28 destabilizes the Met4 complex 
and sulfur metabolism in S. cerevisiae. At present, it remains unclear whether MET28 alone 
contributes to robustness, because genes related to it, including CBF1 or MET4, were not 
examined. Nevertheless, the findings in Paper IV suggest that sulfur metabolism may be 
responsible for robustness mechanisms.  

Akin to the approach taken in Paper IV, datasets featuring phenotypic data of YKO 
strains grown under different experimental conditions can be used for robustness analysis. 
Turco and colleagues published a collection of more than 14,500 YKO screens describing 
6731 phenotypes and 7536 experimental conditions (171) and referred to it as the Yeast 
Phenome. In one of these screenings, a subset of the YKO collection encompassing 604 
single-deletion strains (114) (section 2.4: Dataset 7) was grown on synthetic complete 
medium agar plates supplemented with 3 mM arsenite ([As III]; NaAsO2), 4 mM arsenite, 
0.25 ug/mL rapamycin, 400 ug/mL paraquat (methylviologen; N, N-dimethyl-4-4′-
bipiridinium dichloride), 50 uM cadmium chloride or 1.25 M NaCl. Growth was monitored 
using the scan-o-matic set-up (section 2.4: high-throughput methodologies) and the 
produced biomass and doubling time were calculated from the resulting growth curves 
(172).  

When Equation 3 was applied to calculate robustness of the produced biomass and 
generation time across the tested conditions (section 2.4: Dataset 7), some strains carrying 
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single deletions displayed notably lower robustness than the parental strain (Figure 4.1.a). 
One of them was oca1, which encodes a tyrosine phosphatase required for cell cycle arrest 
in response to oxidative damage of DNA, and exhibited 86% lower robustness for 
generation time than the wild-type strain. Two other candidates were met3, which 
corresponds to an ATP sulfurylase, and rpS21a, which encodes a component of the small 
(40S) ribosomal subunit (173–175).  

Robustness of produced biomass (from analysis of robustness using Dataset 7) 
revealed two more targets for robustness: rpL27a and ssa1, which encode a protein of the 
large ribosomal subunit and a member of the Hsp70 family, respectively (176,177). 
Although the mutants highlighted by robustness analysis of this dataset (section 2.4: 
Dataset 7) differed from those studied in Paper IV, significant functional and regulatory 
interactions were found among the translated proteins (e.g., Rps14a from Paper IV interacts 
with Rps21a from Dataset 7 (114). The interactions were confirmed by the analysis 
conducted with the STRING database. STRING systematically compiles genomic 
associations and protein interactions, assigning confidence scores to assess their 
significance, thus facilitating the understanding of protein networks and functional 
relationships (178) (Figure 4.1.b).  

Despite differences in the examined conditions between Dataset 7 and Dataset 5 
(section 2.4), shared genes associated with robustness were identified. Sulfur metabolism, 
heat shock proteins, and ribosomal proteins have emerged as the likeliest effectors of 
robustness. In the above investigation, robustness was evaluated in terms of generation 
time and produced biomass, with different genes identified for each phenotype. This finding 
underscores the importance of examining different phenotypes, because various metabolic 
processes may underlie robustness (as discussed in Papers II and III, as well as section 
2.2.2). Additionally, such analysis could serve as a straightforward illustration of how 
robustness quantification can be applied to YKO collections. 
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Figure 4.1: Performance and robustness of single-deletion mutants and protein interactions. 
a) Five mutant strains carrying a gene deletion plus the wild-type (x-axis) were plotted against the 
performance (left) and robustness (right) of produced biomass and generation time (y-axis). The dots 
correspond to the mean of replicates (n=468) in each environment. The mean of the six environments 
is represented by a square. Hues represents the different perturbations. b) STRING network with 
relevant robustness markers from Dataset 5, Dataset 7, and literature. Each circle represents a gene 
and its translated protein, while the lines connecting the circles represent different types of 
interactions (e.g., gene fusion, co-expression). 

 

4.2 Evolution of microbial robustness 
Section 4.1.2 showed how the investigation of robustness markers in YKO collections 
pointed to potential key metabolic mechanisms. However, to gain a broader understanding 
of robustness, extensive screenings across multiple conditions and phenotypes are 
necessary. Analysis of more complex mechanisms is limited by the amount of deletions. 
Consequently, in Paper V, the mechanisms underlying robustness were explored from an 
evolutionary perspective. The hypothesis that served as the foundation for the experimental 
design originated from the definition of robustness: 
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If robust strains can consistently perform across various conditions, can fluctuating 
environments serve as a selective pressure in evolving robustness within a laboratory 
setting?  

To address this hypothesis, three S. cerevisiae strains (S288C, CEN.PK113-7D 
haploid, and Ethanol Red diploid) underwent evolution in both stable and fluctuating 
environments for 300 generations. Then, the parental strains as well as the evolved 
samples were assessed in terms of fitness (produced biomass) and the genome of all 
evolved populations was sequenced (Paper V). To align with previous research on 
evolution, in this section, the performance of a phenotype will be referred to as fitness. 
Before delving into the results of the study, a brief overview of the method is provided. 

4.2.1 Adaptive laboratory evolution 

Adaptive laboratory evolution (ALE) is commonly employed in biological research to explore 
evolutionary processes and to improve strain fitness. The fundamental principle of evolution 
is that natural selection favors the survival and reproductive success of organisms best 
suited to a given environment (179). As mutations accumulate over time, they alter the 
fitness of a population. Mutations that negatively impact an organism's survival (deleterious 
mutations) tend to be eliminated through natural selection; whereas those that have a 
positive impact (beneficial mutations) are preserved. In reality, even though harmful 
mutations are typically selected against; in some cases, beneficial mutations might also 
mask deleterious ones. The emergence and maintenance of mutations is influenced by 
several factors, including the effect on fitness of new mutations, population size, and ploidy 
(180,181).  

Microorganisms are particularly amenable to laboratory evolution owing to their large 
population size (i.e., a larger number of individuals provides a greater chance for beneficial 
mutations to arise and potentially be selected), fast specific growth rates, and ease of 
cultivation (179). Different set-ups can be used in laboratory evolution experiments. Batch 
transfers in ALE, whereby cell cultures are propagated in fresh media by serial dilutions, 
can increase tolerance to specific stressors (18). In ALE experiments using batch set-ups, 
the growth phase at the time of transfer influences the selected phenotype. Cells are 
generally transferred in exponential phase to avoid long stationary phase adaptation, which 
could give rise to mutants that are specialized in utilizing nutrients from dead cells (182). 
Alternatively, cells can be maintained at constant specific growth rates inside chemostats, 
where environmental variables are tightly controlled (183). Chemostat evolution with E. coli 
om glycerol-limited environments has been used to improve its growth and biomass yields 
on glycerol (184). In Paper V, batch transfers were used, cells were transferred in late 
exponential phase or at the beginning of stationary phase. Given the variety of conditions 
(15 distinct media) and the multiple strains involved, it was difficult to pinpoint the exact 
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growth phase at transfer. In preliminary experiments, when the growth curve of each strain 
was monitored under all conditions, the transfer was planned in mid-exponential phase. 

Evolutionary experiments can enhance tolerance within a specific medium. Typically, 
that is done by employing batch transfers with incrementally higher levels of the stressor. 
Populations selected under these conditions evolve mechanisms that allow them to 
withstand stressors, while proliferating at elevated specific growth rates. Adaptation to a 
particular environment can hinder performance in a different setting (185) and has been 
attributed to antagonistic pleiotropy (186). Trade-offs can be avoided by using fluctuating 
environments. However, strains evolved under fluctuating conditions tend to exhibit lower 
fitness across all environments, in contrast to those evolved under stable conditions (187). 
Nevertheless, a recent study has demonstrated that, on rare occasions, fluctuating selection 
can result in populations that are more fit to a certain environment than those specialized 
for it (188). In Paper V, fitness data revealed that populations evolved under fluctuating 
conditions exhibited higher fitness than those cultivated in constant environments. 

4.2.2 Phenotypic assays in evolution experiments 

The fitness of evolved populations can be assessed using various methods (189). The three 
main indicators are maximum specific growth rate in different media, minimum inhibitory 
concentration of stressors, and competition assays. Competition assays are favoured in 
evolutionary biology because they account for variations throughout the culture cycle, 
including lag phase and stationary phase dynamics, which are not captured by maximum 
specific growth rate alone (189). However, these assays are challenging to perform when 
using multiple replicates and high-throughput settings. In Paper V, phenotypic assessments 
were conducted using a high-throughput platform called scan-o-matic (172) (section 2.4: 
High-throughput methodologies). Briefly, this system enables parallel growth of 100,000 
populations on agar plates (Paper V: Figure 1), which is its principal advantage over liquid 
cultures and competition assays. Colony growth is tracked by scanners that record changes 
in color and size, with spatial normalization to offset nutrient gradients on the plates (172).  

During evolution experiments in this thesis work, which involved μL-volumes of liquid 
cultures, phenotypic evaluations were preceded by comparisons of generation times in both 
solid and liquid media (section 2.4: High-throughput methodologies) for randomly chosen 
samples from the evolutionary plates of three S. cerevisiae strains. This test was performed 
to determine if high-throughput phenotypic systems could be used to evaluate the fitness of 
evolved samples, as liquid cultivation was not possible due to the high volume of samples 
and conditions. Five media were tested: YPD, Delft, and Delft supplemented with either 
acetic acid (0.2%), HMF (0.1%) or NaCl (2.5%). Solid media resulted in shorter and more 
consistent generation times compared to liquid (Figure 4.2, unpublished data). This can be 
explained by the cells initially sensing the stressor on the agar surface but, as colonies grow 
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both outward and upward the concentration of the stressor for the cells inside of the colony 
is lowered. Consequently, for the phenotypic assessments in Paper V, stressor 
concentrations were higher than those used during evolution. Correlation tests, comparing 
generation times on solid and liquid media from the phenotypic assays, suggested a 
significant overall similarity (p-value < 0.001, unpublished data). Only Delft media exhibited 
a weaker correlation. Given such significant correlations and the high-throughput set-up, 
the scan-o-matic system was employed for phenotypic assays of evolved populations. 

 

Figure 4.2: Comparison of generation times in solid vs liquid growth. The generation time was 
plotted on the y-axis for randomly picked evolved samples (Paper V) grown in liquid cultures (growth 
profiler) and solid medium (scan-o-matic) (x-axis). Each panel represents a different strain. Various 
colors denote different growth media. 

 

4.2.3 Fitness and robustness in ALE 

In my study, the scan-o-matic system was adopted to evaluate the fitness of evolved 
populations across 20 diverse conditions, including those encountered during evolution and 
others with higher concentrations of stressor (Paper V: Material and Methods) (section 2.4: 
Dataset 6). Numerous conditions could be tested and a more reliable depiction of 
robustness was achieved (Figure 4.3). Equation 3 was applied to compare the robustness 
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of evolved samples and parental strains. Contrary to the hypothesis introduced in section 
4.2, where robustness would always increase in evolution in fluctuating environments, the 
results did not uniformly support an increase in robustness following evolution in fluctuating 
environments. Specifically, while Ethanol Red exhibited higher robustness when evolved 
under fluctuating conditions (Paper V: Figure 4); S288C and CEN.PK113-7D failed to 
display a significant improvement, despite enhanced fitness after 300 generations (Paper 
V: Figure 3 and Figure 4). The discussion in Paper V attributed the observed evolutionary 
outcomes to strain genetic background, with ploidy likely playing a key role. 

 

Figure 4.3: Method for calculating robustness from the phenotypic assays of evolved samples 
(section 2.4: Dataset 6). Evolved populations were cultured on agar plates in the scan-o-matic set-
up, with four replicates per condition and across 20 different media. Generation time (h) and 
produced biomass were calculated from the growth curves. Robustness for each population/colony 
was then quantified using Equation 3, based on fitness data gathered from all replicates.  

 

Fitness landscapes offer a straightforward method for visualizing the evolutionary 
trajectory and changes in fitness in relation to a strain’s genetic composition. These 
landscapes are depicted in a three-dimensional plot, with all possible genomic sequence 
combinations plotted across the x-y plane (genotypes), and fitness represented on the z-
axis. In the resulting landscape of peaks (high fitness) and valleys (low fitness), the former 
correspond to high fitness (190). Landscapes take different forms in different environments. 
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Every point on these landscapes represents a distinct genotype, with proximate points 
sharing greater genetic similarity. Mutations drive the organism's evolution through this 
landscape, typically culminating at a fitness peak during what is termed an “adaptive walk” 
(191). In landscapes with multiple peaks, a cell population may settle on any peak, usually 
the one nearest to their evolutionary starting point. In a specific environment, genotypes 
with initially lower fitness often adapt more rapidly than their fitter counterparts (192). This 
is attributed to the fact that fit phenotypes sitting at the top of the landscape's peaks are 
less inclined to descend and traverse another adaptive route; whereas a less fit genotype, 
possibly nestled in a valley, is more predisposed to adapt and ascend to a peak. 

In the evolution experiment of Paper V, it is possible that Ethanol Red did not 
significantly improve fitness because it was already near a fitness peak within each 
evolutionary environment. Consequently, despite shifts in environments and corresponding 
changes in fitness landscapes, Ethanol Red may have consistently occupied a position of 
high fitness (light blue plane, Figure 4.4). During evolution, the strain reached a similar 
fitness peak in all environments, explaining its strong overall robustness. Conversely, 
CEN.PK113-7D and S288C showed no significant changes in robustness but increased 
fitness by the end of evolution. This outcome could be explained by these populations 
navigating toward different fitness peaks and achieving higher yet widely distinct fitness in 
various environments (peaks of different heights), indicative of reduced robustness (light 
violet planes at different levels in Figure 4.4). The use of fitness landscapes to explain 
fitness and robustness accounts also for the initially greater robustness of the S288C strain, 
attributed to its genotypes starting from a valley on the fitness landscape in all environments 
(same fitness level).  

To conclude, fitness-landscape representations can be used to explain evolution 
trajectories that favor the emergence of robust phenotypes. Yet, they cannot be constructed 
by relying uniquely on data from Paper V and without lineage tracking during evolution. 
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Figure 4.4: Fitness landscapes and robustness. The top panels report the fitness landscape for 
Ethanol Red. The x- and y-axes represent the genomic sequence space of all possible genotypes. 
The z-axis indicates the fitness level for each genotype. The depicted landscape is one of many 
possible configurations, characterized by varying peaks and valleys. The black dot pinpoints the 
genotype's location at a selected evolutionary stage. The arrows show the evolutionary trajectory of 
this genotype within the given environment. The plane serves to illustrate the fitness threshold at 
which the black dot is positioned. The bottom panels report the fitness landscape for S288C or 
CEN.PK113-7D, following the same conventions as for Ethanol Red. This landscape visualization 
aids in understanding the evolutionary path and fitness level of a genotype at a specific point in its 
evolution.  

 

Monitoring of evolutionary progress in Paper V could have shed light on the genesis 
of robustness mechanisms. However, this type of analysis was not feasible, as only end-
stage evolution samples were phenotyped and sequenced. Revisiting section 4.1.2, a 
subset of the YKO collection was assessed at five different evolutionary time points (114) 
(section 2.4: Dataset 7). Results indicated that evolution in constant environments tended 
to improve fitness, as reflected by both generation time and yield (Figure 4.5). The only 
exception was medium containing 50 µM CdCl2, whereby fitness gains were not significant. 
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Figure 4.5: Fitness of the YKO collection (Dataset 7) during evolution in constant 
environments. Generation time and produced biomass are shown in the two rows (y-axis). Columns 
denote the media employed in the evolution experiment, while the x-axis reports the time points 
during evolution (0, 25, 50, 75, and 100 generations). The black point in the middle of the distribution 
represents the mean fitness across all deletion strains. 

 

Robustness of the YKO collection (dataset 7) was calculated for each evolution time 
point, across six environments, and for both generation time and biomass. Robustness 
increased gradually during evolution, concurrently with fitness improvements (Figure 4.6). 
Trends in robustness are highly dependent on the evolution set-up and the tested 
environments. In Paper V, Ethanol Red may have experienced a progression similar to the 
one depicted in Figure 4.6. In contrast, S288C showed no increase in robustness, possibly 
because the evolutionary environments induced uneven fitness gains (especially under 
constant conditions). 
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Figure 4.6: Robustness of the YKO collection (Dataset 7) during evolution across six 
environments. Robustness for each time point was calculated with Equation 3. Robustness of the 
generation time and produced biomass is shown in the two rows. Different generations (0, 25, 50, 
75, and 100 generations) are reported on the x-axis. The black dots represent the mean of the 
distributions. Significant differences are indicated by asterisks top of the plots, **** (p-value < 0.0001). 

 

The evolutionary trajectory of each population may vary significantly in fluctuating 
environments (Figure 4.4). A daily shift in conditions could disrupt progression towards a 
fitness peak, potentially reverting the population to a lower fitness valley (Figure 4.7). Each 
environment presents a unique fitness landscape (ENV1 versus ENV2), where a population 
ascending towards a peak in one condition could find itself descending in another. 
Adaptations beneficial in ENV1 may lead to a less fit genotype in ENV2, when cells are 
transferred to a new medium. The sequence of encountered environments shapes the 
overall fitness of a population (Paper V: Figure 3). Therefore, robustness could result from 
cells being stuck in a valley at the same fitness level due to a changing environment. 
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Figure 4.7: Adaptive walks during evolution in fluctuating environments. All possible genotypes 
are represented by the x-y plane while fitness is shown on the z-axis. Environments are separated 
across rows and time during evolution across columns. The dot represents the genotype at a specific 
time during evolution (generation 0 vs generation 8). The direction of the white arrows denotes the 
direction the genotype is taking in that specific environment/landscape. The dashed blue arrow 
shows the transfer of populations to a new environment.  

 

Building upon the robustness markers discussed in section 4.1, the evolutionary 
experiment and genome sequencing facilitated the analysis of genes that underwent 
mutations throughout the evolutionary process in both stable and variable environments. 

4.2.4 Genomic variants   

In Paper V, several genes mutated across different populations from diverse evolutionary 
set-ups and strains were reported (multi-hit genes), suggesting similar selection dynamics 
in separate populations. Mutations in RHO5 and SNF2 (Table 4.1) had a high impact on 
CEN.PK113-7D and Ethanol Red evolved in fluctuating environments. Hsp104p, 
collaborates with Ssa1p and Hsp82p, was also found among the multi-hit genes. Hsp104p 
has been shown to interact with the yeast prion-like element [PSI+], considered an 
evolutionary and phenotypic capacitor (193), (194). Prions are nonchromosomal genes 
composed of altered forms of proteins which can alter other proteins in the same manner 
(195). Deletion of HSP104 in [PSI+] yeast can irreversibly eliminate [PSI+], thereby 
disrupting nonsense suppression and potentially altering protein function (194). Here, as 
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HSP104 mutations were predominantly missense, making the implications for protein 
function are less clear. Hsp104p interact with yeast prion [PSI+]. The mutated genes from 
Paper V thus relate to the robustness markers discussed in section 4.1. 

Table 4.1 Mutated genes identified in the evolution experiment (Paper V) 

Gene name Description Reference 

RHO5  Rho5, a GTPase, is involved in oxidative stress response 
and apoptosis, with its deletion mutants exhibiting resistance 
to oxidation  

(196) 

SNF2 Snf2, a component of the SWI/SNF complex, is essential for 
chromatin remodeling  

(197) 

HSP104 Molecular chaperone that clears aggregates after heat 
shock and propagation of prions 

(198) 

SSA1 Members of one of the yeast cytosolic hsp70 subfamilies, is 
involved in translocation of secretory proteins into the lumen 
of the endoplasmic reticulum 

(176) 

HSP82 Hsp90 chaperone (157) 

 

To further validate the implications of genetic mutations on measured fitness and 
robustness, several methodologies can be used. Genome-wide association studies and 
quantitative trait loci are the most used approaches (199,200). While these methods were 
not employed in this thesis, an analysis of fitness and robustness among colonies with 
multiple genetic mutations revealed specific trends (section 2.4: Dataset 6). Colonies 
exhibiting differences in fitness and robustness were picked (Figure 4.8). Those harboring 
a deletion in PCL6 displayed improved fitness in the presence of HMF; whereas those with 
mutations in SEC31 and SNF2 were associated with greater fitness under acidic conditions 
(Figure 4.8.a). Similarly, Ethanol Red colonies carrying mutations in CEP3, IRA2, POL2, 
SEC31, SNF2, and STB5 exhibited notably higher robustness than the parental strain 
(Figure 4.8.b). Importantly, these observations do not imply that mutations in these genes 
are the direct cause of increased fitness and robustness. To establish a causal relationship, 
genome-wide association studies would be necessary. Additionally, the impact of these 
mutations could be further verified by introducing them into the ancestral strain and 
evaluating their effects under the same experimental conditions.  
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Figure 4.8: Fitness and robustness of strains carrying mutations in multi-hit genes (Dataset 
6). a) Three multi-hit genes are shown on the x-axis and the ratio of produced biomass of the evolved 
samples over that of the parental samples is shown on the y-axis. Strains are reported on top. Colors 
correspond to different environments. The two circles highlight the highest produced biomass. b) Six 
genes are listed on the x-axis and robustness of produced biomass is plotted on the y-axis. Black 
dots correspond to robustness of the parental strain. K8: constant conditions; G80: evolution in 
fluctuating conditions (80 generations media change). 

 

4.2.5 Robustness and history-dependent behavior 

The concluding part of this section on evolutionary dynamics focuses on a non-genetic 
adaptation method known as acclimatization or short-term adaptation. Populations 
previously exposed to specific conditions often exhibit reduced lag phase or elevated 
specific growth rate upon re-exposure to the same condition. This phenomenon is described 
as history-dependent behavior. Unlike genetic mutations, history-dependent behavior 
arises from hereditary mechanisms distinct from DNA sequences and is common in yeast 
adapting to shifts in carbon source (201). Possible explanations for this behavior include 
epigenetic factors such as DNA methylation, the persistence of proteins and transcription 
factors that are not broken down following environmental changes, and the cellular 
metabolic state (202). These mechanisms can explain the observed increase in specific 
growth rates after transfer to the same medium (Paper III: Figure 4).  
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The results of Chapter 4 underscore the benefit of investigating robustness 
mechanisms through evolutionary studies, as well as the use of yeast collections with 
comprehensive genetic and phenotypic data.  

 

Main Points from Chapter 4 

• Hsp90 has been suggested as phenotypic capacitor suppressing phenotypic 
variation.  

• Robustness quantification can be applied to yeast deletion collection screens to 
identify robustness markers.  

• Sulfur metabolism, heat shock proteins, and ribosomal proteins have emerged as 
the likeliest effectors of robustness. 

• Evolution in fluctuating environments enhanced the robustness of the yeast strain 
Ethanol Red but not the one of laboratory strains CEN.PK113-7D and S288C. 
The opposite trend was observed for fitness.  

• Fitness landscapes are useful tools to explain the fitness and robustness trends 
during evolution.  

• Mutations in heat shock proteins and in proteins interacting with the yeast prion 
[PSI+] were hit multiple times during the evolution experiment in both constant 
and fluctuating conditions.  
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Chapter 5. Conclusions and Outlook 
 
The work presented in this thesis focuses on the quantification of microbial robustness and 
exploration of its use in different applications. The first section of this chapter outlines how 
the research objectives presented in Chapter 1 were achieved. The second section 
presents future perspectives on the presented topics.  

5.1 Conclusions  
Which quantification theory is better suited to quantify microbial robustness? Which 
experimental setup can be used such quantification?  

To address these questions, different quantification theories were assessed, including 
Kitano's formula, CV, and the Fano factor, the latter two being indicators of variation. The 
first two options did not meet some of the criteria required for quantifying robustness 
according to the definition given in Review Paper I. For one, they did not represent 
measurements of robustness across various phenotypes and scales without depending on 
subjective choices for controls. In Paper II, I showed that the robustness quantification 
formula based on the normalised Fano factor accurately depicted robustness using 
experimental data. A normalization factor and a negative sign were added to the formula to 
facilitate interpretation and to be able to compare the robustness of different phenotypes. 

To assess how robust a system's phenotype is when faced with different 
perturbations, I designed an experimental set-up based on the collection of extensive 
phenotypic data from numerous strains. This resulted effective when calculating robustness 
with the formula presented in Paper II. The experiment involved simplifying complex 
perturbation spaces, such as lignocellulose hydrolysates, by applying individual 
perturbations and then growing strains under these specific conditions.  

The combination of experimental design and the robustness quantification method allowed 
the identification of new phenotypic responses, such as weak acids affecting more 
significantly ethanol yield than the specific growth rate. This approach also highlighted 
strains such as Ethanol Red, which possessed robust phenotypes. Additionally, it 
demonstrated that the expected trade-offs between performance and robustness in yeast 
did not apply universally across all phenotypes, as happened when evaluating the maximum 
specific growth rate (Paper III). 

How can the effect of perturbations be included in a microbial robustness measure? 

Perturbations play a crucial role in understanding robustness, and their nature is 
intricately tied to the nature of robustness. First, in Papers III and IV, I demonstrated that 
robustness was inherently connected to the perturbation space. Various perturbation 
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spaces, each made up of different individual perturbations, resulted in completely different 
robustness scores for the same phenotype of a given strain. This insight is particularly 
critical when evaluating strains for industrial use, where a comprehensive assessment of all 
potential predictable and stochastic perturbations is essential for a precise measurement of 
robustness. Paper III also indicated that some perturbations did not impact the robustness 
value in a perturbation space, but analysis of performance in many of them could still be 
convenient and informative in different processes and other perturbation spaces. 

In this thesis, I presented three crucial factors to consider when evaluating 
robustness and indirectly the perturbation space:  

I. perturbation probability 

II. perturbation intensity 

III. interaction effects between perturbations.  

These three aspects are not included in the quantification formula so far, but they 
represent better the industrial environments. Additionally, perturbations are important in the 
context of evolution as different selective pressures might favour certain populations. It is 
also worth noting, as demonstrated in Paper IV, that some strains exhibit a high level of 
inherent robustness, which may be largely unaffected by the nature of the perturbation 
space. However, numerous theoretical works, including those by Kitano, suggest that the 
concept of a universally robust strain is improbable, particularly due to the existence of 
trade-offs. 

How can adaptive laboratory evolution be used to evolve robustness? 

Leveraging the robustness definition from Review Paper I, I designed an evolution 
experiment under fluctuating conditions which, after 300 generations, led to an increased 
robustness in the industrial strain Ethanol Red (Paper V). By evolving strains with different 
genetic backgrounds, fitness, and ploidy, I found that the inherent characteristics of the 
strains had a more significant impact on the evolved robustness than the evolutionary 
regime applied. Specifically, strains with lower initial fitness, such as CEN.PK113-7D and 
S288C, strongly improved in a fluctuating environment; yet. their robustness levels after 
evolution remained unchanged after evolution. Fitness landscapes offer a framework to 
understand how the genetic background influence the evolution of robustness. Still, further 
experiments are needed to confirm the proposed adaptive walks and especially the role of 
mutations on both fitness and robustness.  

How can genetic and metabolic markers of robustness be identified? 

The work presented in this thesis revolves primarily around the measurement of 
phenotypic data within various perturbation spaces for subsequent robustness assessment. 
However, the quantification formula can be applied to evaluate robustness from a cellular 
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and metabolic standpoint. In Papers IV and V, I applied the robustness quantification 
formula from Paper II to candidate genetic markers or metabolic routes associated with 
robustness. One approach involved applying the robustness formula to existing datasets 
that included phenotypic measurements from the yeast deletion collection. Another strategy 
was to investigate the genetic variants of populations that were associated with increased 
robustness after evolution in fluctuating environments. 

Through this analysis, proteins associated with sulfur metabolism, heat shock 
proteins, and ribosomal proteins were identified as potential robustness markers, 
particularly due to their interactions with known phenotypic capacitors such as Hsp90. 

In conclusion, the research questions addressed in this thesis achieved the goal of 
establishing a methodology for quantifying microbial robustness, particularly through the 
use of experimental data, and demonstrated its application across various studies.  

5.2 Outlook and Future perspectives 
This thesis contributes to a greater understanding of microbial robustness. Nevertheless, 
the present work has also left some questions unanswered, along with new ones that have 
merged. 

5.2.1 Microbial robustness quantification  

The robustness quantification formula has been utilized to measure the stability of various 
phenotypes across several contexts, ranging from specific growth rates to product yields. 
The same equation was applied also in a different study to evaluate the robustness of 
intracellular parameters monitored through biosensors, such as intracellular ATP levels. 
This involved monitoring the stability of phenotypes over time and measuring population 
heterogeneity using single-cell analyses in microfluidic devices (126,127). Hence, the 
formula has proven to be widely applicable in diverse contexts.  

While the robustness quantification formula introduced in Paper II has proven helpful, 
it requires further refinement and development. Currently, assessment of the perturbation 
space relies on review of available literature or consultation with field experts which are 
heavily influenced by individual experience, highlighting the need for a more systematic 
method that selects perturbations based on empirical data. Additionally, the three 
perturbation aspects—combined effects, intensity, and probability—discussed in Chapter 
2, are not effectively incorporated into the quantification formula. Gaining access to actual 
measurements from large-scale fermenters, especially from a real industrial site, would 
improve our understanding of the fluctuations that occur in such settings. This could be 
achieved by analyzing data from available measurements such as temperature or pH 
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sensors, both of which have been mentioned in the survey as significant contributors to 
variability. Alternatively, one could implement flow-following sensor devices which describe 
gradients in the reactors (203), to provide better guidance on the types of fluctuations, their 
probability, and their intensity in industrial fermenters. Computational fluid dynamic models 
have also great potential in predicting gradients and perturbations in bioreactors (204). 
Integration of real perturbation data on the robustness quantification would allow better 
reproducibility of the performance metric measured at lab-scale in large-scale processes. 

Another limitation hindering the routine implementation of robustness measurements 
is the lack of high-throughput equipment for phenotypic measurements. The experimental 
techniques employed in this thesis, such as the growth profiler, scan-o-matic, and Adaptive 
Laboratory Evolution (ALE) in 96-well plates outlined in Chapter 2, enabled the rapid 
collection of extensive phenotypic data, which would not have been feasible with basic 
cultivation methods, such as plate readers or shake flasks. However, high-throughput 
screenings present their own set of challenges. They do not accommodate certain 
perturbations, such as those involving high pressure, strictly anaerobic conditions or 
temperatures other than 30°C. Additionally, high-throughput methods can make it difficult 
to measure certain phenotypes such as cell dry weight, and collecting samples during the 
growth process is not feasible, complicating the measurement of ethanol productivity.  

Liquid handlers simplify the process by enabling the rapid dispensing of substantial 
volumes of media and facilitating culture transfers, thus minimizing experimental timelines. 
Liquid chromatography equipped with 96-well plate configurations can be used to determine 
the concentrations of sugars and inhibitors on a large scale. For a more accurate simulation 
of anaerobic conditions or varied bioreactor setups, the BioLector (Beckman) offers a 
preferable alternative to the growth profiler. Nonetheless, the ideal system that fulfils all 
these requirements, particularly one that is fully automated, has yet to be realized. 
Compromises among accuracy, sensitivity, speed, and high throughput remain inevitable. 

Furthermore, the robustness quantification method described in Paper II does not 
distinguish for high or low performing strains. Consequently, strains with low fitness may 
still exhibit high robustness. While this can be valuable for physiological studies, it may not 
be desirable when developing industrial strains. For future robustness assessments in 
bioprocesses, it would be beneficial to weigh performance and fitness equally. Incorporating 
Pareto efficiency into the evaluation of robustness and fitness, as suggested in Chapter 3, 
could aid in identifying strains that optimally balance high fitness and robustness. 

An additional point to consider for future research is that when different perturbations 
are tested, the actual cultivation might evaluate different subpopulations, even if cultures 
originate from the same initial population. Past research has shown that these 
subpopulations, and even individual cells, can exhibit very different behavior within the 
same overall population (205). To address population heterogeneity concerns, robustness 
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should be evaluated by exposing a population to a series of perturbations in bioreactors. 
This approach may face challenges, such as the appearance of mutations in the population. 
One intriguing option would be to investigate the robustness of the transcriptome during a 
chemostat cultivation, when the culture is subjected to various perturbations. With 
technological progress in reactor design, I anticipate robustness quantification to be feasible 
on a scale larger than the current 250-µl cultures in 96-well plates, and rely instead on 
Pioreactors (pioreactor ©, Canada) with 20-mL volumes. 

Addressing the points described above regarding perturbations, performance, and 
heterogeneity could significantly enhance the integration of robustness quantification in the 
design of microbial strains, making it an essential step prior to scale-up. Companies such 
as Genomatica are already implementing a similar approach using small-scale reactors 
during the pre-scale-up stage. As emerged from the survey conducted in this thesis, 
business developers, R&D directors, and process scientists favor the development of robust 
cell factories more than process control. This preference stems from the fact that the latter 
is expensive and require continuous maintenance.  

5.2.2 Metabolic and genetic markers of robustness 

Based on the findings from Paper IV and V, as well as the cumulative insights from this 
thesis, my opinion lies more with pursuing robust design strategies over searching for 
specific robustness markers. While there are promising associations between certain 
cellular processes and robustness, it is clear that this area of research is still in its infancy. 
Additionally, it remains unclear whether these markers are unique to certain perturbation 
spaces or if they have a universal value. Insights from Paper IV suggest a dual nature. 
Deletion of MET28 appears to confer general robustness to the specific growth rate of the 
CEN.PK113-7D strain; whereas other markers such as SMA2, seem to be perturbation 
space-specific. Reflecting on Chapter 3 and the discussions on the sub-features of 
robustness, it is evident that a phenotype's external robustness does not necessarily imply 
stability of its internal cellular features. In fact, it may be quite the contrary; to preserve 
phenotypic stability, internal cellular features might have to adapt or change. 

The theories surrounding phenotypic and evolutionary capacitors that buffer for 
phenotypic variation are certainly valuable, but more should be done to determine the 
context in which these capacitors are functional compared to other genes. The question 
remains as to why certain strains exhibit greater robustness in relation to specific 
phenotypes. Based on current data, it would be interesting to further investigate areas, such 
as protein degradation and regulation, phenotypic capacitors, and ploidy levels. 

In the absence of a clearly defined methodology, designing a robust strain remains a 
complex task. Adaptive evolution in fluctuating environments appears to be a promising 
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approach, but as shown in Paper V, its success is strain-specific, and the link to ploidy and 
fitness requires more validation. Deletion of MET28 is also of interest, though it significantly 
reduced strain fitness, indicating a need for further tests across different strains. 

Future work should include more comprehensive analysis of yeast deletion collections 
to evaluate robustness across various conditions and phenotypes. It is also important to 
assess the robustness of the transcriptome under different environmental challenges. 
Additionally, leveraging genome-scale metabolic models to target phenotypic robustness 
while controlling gene deletions or perturbing the metabolic networks could provide insights 
into designing robust strains. 

Over time, research efforts such as those presented in this thesis and the 
methodologies proposed in this discussion are expected to offer strategies for the 
engineering of strains with inherently robust traits. 
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