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Robustness quantification in yeast
A methodology to study phenotypic, evolutionary, and genomic aspects of microbial robustness

Cecilia Trivellin
Division of Industrial Biotechnology — Department of Life Sciences
Chalmers University of Technology

Abstract

Bioprocesses contributes to the shift towards a more sustainable economy. In
bioprocesses, valuable chemicals can be generated from renewable resources while, at the
same time, reducing carbon emissions. A major hurdle in bringing bio-based products to
market is the time and cost involved in designing efficient cell factories. Cell factories
developed in controlled laboratory settings achieve high yields and productivities, but often
fail at a larger scale because of unforeseen perturbations. Microbial robustness, i.e., the
ability to maintain functionality despite perturbations, is critical for designing cell factories
but remains poorly studied, particularly with respect to quantification as well as evolutionary
and genetic aspects.

In this thesis work, mathematical evaluation, phenotypic characterization, evolution
and genomics were applied to address the lack of quantification methods and explore
robustness in yeast. A Fano factor-based approach for measuring robustness across multiple
parameters and perturbations was created. Measurement of physiological data revealed
trade-offs between robustness and performance in yeast. Moreover, when screening yeast
deletion libraries, it pointed to the MET28 gene, which encodes a transcription factor
regulating sulfur metabolism, as a mediator of robustness. Finally, evolution in fluctuating
environments improved robustness in the industrial strain Ethanol Red, but not in two
laboratory strains, contrasting with fitness trends.

Altogether, applying robustness quantification to various experimental set-ups,
enabled the identification of key genes and metabolic processes linked to enhanced
robustness. This thesis thereby contributes to the field of physiology, particularly in the
context of robustness. The developed techniques have potential to advance design
optimization and testing of robust strains in laboratory settings, thereby enabling a faster

scale-up to industrial environments.

Keywords: High-throughput, Saccharomyces cerevisiae, adaptive laboratory

evolution, fluctuating conditions, bioproduction, perturbations
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Chapter 1. Introduction

Biological systems are constantly subjected to perturbations, which may arise internally, for
example, via genetic mutations, or from external factors such as changes in temperature.
The system’s ability to withstand such perturbations and exhibit a stable phenotype is called
microbial robustness (1,2). Robustness has been rarely quantified in applied research or
when evaluating bioprocesses. The absence of practical quantification techniques hinders
the exploration of the fundamental mechanisms that contribute to robustness.

The overall aim of my thesis was to develop a methodology for quantifying microbial

robustness and to explore its use in different applications.

The robustness quantification method was applied to various phenotypic datasets to
identify microbial strains with robust phenotypes, as well as to yeast deletion collections to
investigate genetic markers of robust phenotypes. Additionally, it facilitated the exploration
of robustness during laboratory evolution. The proposed method serves as a practical tool
for various immediate applications, such as the selection of yeast strains exhibiting stable
ethanol yields in beer production. In a broader perspective, grasping the mechanisms of
robustness could facilitate the development of industrial strains.

1.1. Microbial robustness

Microbial robustness is an inherent characteristic of many microorganisms. In large-volume
reactors typical of bioprocesses, microbial cultures must withstand widely varying gradients
while maintaining consistent performance (3,4). To survive in dynamic environments or
cope with internal perturbations, biological systems have evolved buffering mechanisms
(1,2,5-8). Understanding robustness in biological systems helps not only to contextualize
the observed trade-offs between different phenotypes (9), but also to design more resilient
cell factories (10).

1.2. Perturbations and robustness quantification

An important aspect to consider when investigating robustness are the perturbations that
prompted the emergence of robust mechanisms. In bioproduction, perturbations are
associated mainly with variations in environmental factors, such as substrate composition,
reactor gradients, and contamination (2). If perturbations are effectively replicated at
laboratory scale, despite the many challenges related to such an endeavor (11), it becomes
possible to quantify robustness and predict a strain’s behavior on a larger scale. In this
thesis, several quantification strategies were evaluated, with the mean normalized Fano




Chapter 1. Introduction

factor providing a reliable, precise, and standardized method. As highlighted above,
quantification is used for initial strain selection and as a quality check for laboratory-
designed strains before scale-up. Quantification and perturbation studies extend beyond
bioproduction. Exploring the stability of fluorescent protein expression, for instance, proves
valuable in synthetic biology (12); while investigating the robustness of microbial community
composition provides insights on population dynamics across different contexts (13,14).

1.3. Intrinsic aspects of robustness

Although robustness can be studied from a phenotypic perspective, the underlying
principles remain poorly understood (5,15). Proposed mechanisms include feedback
regulation, redundancy, and modularity (1,16). Different approaches allow to explore the
intracellular mechanisms of robustness, including rational genetic design based on
tolerance studies (17) or mutant libraries grown under different perturbations (18,19). The
quantification of robustness from phenotypic data and screens of yeast deletion collections
performed within the scope of this thesis pointed to genes responsible for robust
phenotypes. Even though the latter remain complex and difficult to describe in biological
terms; various pathways and genes, such as the heat shock protein Hsp90 that regulates
protein folding, have been suggested as key determinants of robustness (7,20).

1.4. Aim of the thesis

The primary aim of my thesis was to establish a method for quantifying microbial
robustness. The secondary aim was to illustrate its application in examining
robustness across phenotypic responses, as well as genetic and metabolic aspects.

Phenotypic data obtained from yeast cultivations in diverse environments were
employed to test and validate the quantification formula, as well as to identify robust strains
and their characteristics (Papers Il and Ill). Evolution experiments using different
methodologies revealed how robustness evolved over time and allowed to explore genetic
hot spots through variant analysis (Paper V). The latter, combined with robustness
quantification of variant mutant libraries established the basis for examining the metabolic
and genetic aspects of microbial robustness (Paper IV) (Figure 1.1).
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The following research questions were formulated in this thesis:

Which quantification theory is better suited to measure microbial robustness? Which
experimental set-up can be used for this quantification?

To address these questions, | first cultivated yeast strains sampled from various
sources in a perturbation set composed of nearly 30 different perturbations. The resulting
dataset contained three dimensions: strains, perturbations, and measured phenotypes.
Different formulae proposed by previous studies were tested on the collected data. After
various iterations, the Fano factor proved to be the most suitable score (explanation in
Paper ll), in line with the definition of microbial robustness outlined in Review Paper I. The
final formula for robustness quantification underwent adjustments to facilitate normalization
and interpretation (Paper II).

How can the effect of perturbations be included in a microbial robustness measure?

Perturbations play a crucial role in understanding robustness, and their nature is
intricately tied to specific robustness features. This thesis explores how various types of
perturbations (Review Paper I) impact robustness. To evaluate phenotypic responses
under different perturbations, diverse phenotypes and their robustness were assessed
(Papers Il and lll). This analysis addressed broader biological questions, such as the
potential trade-off between performance and robustness, or whether robustness is a
general property rather than specific to the defined set of perturbations. Additionally, |
explored how different sets of perturbations affected the phenotypic responses of a
laboratory Saccharomyces cerevisiae strain carrying various gene deletions (Paper IV).

How can adaptive laboratory evolution be used to improve robustness?

Microbial robustness is referred to as the stability of phenotypes in the face of different
perturbations (Review Paper I). This definition led to the question of whether fluctuating
environments can serve as a selective pressure in evolving robustness within a laboratory
setting. To test the validity of this hypothesis, | subjected various S. cerevisiae strains to an
evolutionary experiment under fluctuating conditions (Paper V).

How can genetic and metabolic markers of robustness be identified?

Microbial robustness has rarely been linked to genetic and metabolic processes. The
challenge arises from the absence of a broadly applicable quantification method, such as
the one developed in this thesis (Paper Il), and the complexity of the underlying genetic
and metabolic architecture. However, exploration of genetic variants in the evolution
experiment (Paper V) and analysis of the phenotypic responses of a yeast deletion library
(Paper IV) highlighted a few crucial genes and metabolic processes associated with
changes in robustness.
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Figure 1.1: Overview of the research topics investigated in this thesis. In this thesis a

methodology to quantify microbial robustness was developed. Different aspects of robustness were
investigated. Yeast cultivations in many environments as well as adaptive laboratory evolution were
used in combination with the quantification method to characterize robustness in terms of phenotypic
response. Quantification was applied to yeast deletion libraries and mutations from the evolution
experiment were analysed to investigate robustness from a genetic and metabolic perspective.

The long-term objective of my work is to contribute with tools and insights on
molecular mechanisms of robustness that can be used to design robust cell factories and
answer broader scientific questions.

In Chapter 2, the current potential of bioproduction and associated challenges are
outlined. Special attention is given to the use of microbial cell factories within bioprocesses,
the performance metrics currently employed, and the perturbations encountered in
bioprocesses or beyond. Additionally, a brief overview of the strains, datasets, and
phenotypic methods adopted in this thesis is provided.
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Chapter 3 is entirely dedicated to the theoretical foundations and quantification of
microbial robustness. It begins by presenting the definition and significance of robustness
in various contexts. The work in this thesis is then contextualized within other studies on
robustness, encompassing both theoretical and experimental investigations from different
datasets. Chapter 3 discusses the advantages and disadvantages of different quantification
methods, including the one developed in this thesis. The perturbation space is placed in
the context of robustness quantification, exploring combined effects of perturbations. The
chapter concludes with a discussion on trade-offs, adopting a Pareto front perspective.

Chapter 4 explores robustness from a genomic and metabolic standpoint. My work
on mutant libraries and evolution experiments is put into perspective with state-of-the-art
knowledge. Chapter 4 also explores applications of the quantification formula in other yeast
deletion collections screens.

Chapter 5 provides a conclusive statement and explores future perspectives.
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Chapter 2. Microbial Performance and
Perturbations in Bioprocesses

The first part of Chapter 2 is centered on the use of cell factories within bioprocesses and
the metrics for evaluating their performance. Special emphasis is given to the yeast S.
cerevisiae, which is featured throughout this thesis. The latter part is dedicated to
perturbations that occur frequently during lignocellulose fermentation to produce ethanol.

2.1 Sustainable production of commodities

As countries try to address the United Nations’ Sustainable Development Goals (SDGs),
the integration of biotechnology and bioprocesses has emerged as efficient means to
achieve prosperity, sustainability, and development. This thesis is driven by the objectives
of SDG 13, which calls for urgent action to fight climate change and its effects. Specifically,
this work can contribute to a sustainable bio-production that lowers CO, emissions and
replaces fossil-based chemicals. To this end, | propose different tools to investigate
robustness, with which robust and more efficient cell factories could be designed.

Since the industrial revolution, humanity has reaped the benefits of consuming fossil
fuels, such as oil, coal, and gas, to generate heat, power engines, and produce electricity
(21). Upon combustion, fossil fuels emit CO,, the primary catalyst of climate change and a
significant contributor to air pollution (22). The main sources of CO2 emissions include
electricity and heat production, as well as the transportation and manufacturing industries
(Figure 2.1.a) (23,24).

In response to the concerns raised by elevated CO; emissions and their impact on
climate change, countries participating in the United Nations Paris Agreement have outlined
strategies to limit carbon emissions and shift towards more sustainable forms of energy.
Currently, 194 nations have presented nationally determined contributions, in which
measures to address climate change are embedded within national policies (25). Some of
these policies envision the transition to various forms of renewable energy, with hydropower
currently accounting for more than half the output (over 4000 TWh as of 2022) (Figure 2.1.b)
(26,27). In Europe and the United States, wind farms could make up a similar share (28).
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Figure 2.1: World CO2 emissions and renewable energy generation. a) Data were downloaded
from (24) and normalized to total emissions. Data represents world emission in 2020. Each circle
corresponds to approximately 500 MtCO2 equivalents and each sector is denoted by a different hue.
b) Data were downloaded from (29) and normalized to total renewable energy production. Data
represents world production in 2022. Each circle corresponds to approximately 86 TWh and each
production source is denoted by a different hue.
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Another important source of renewable energy are biofuels. Derived from renewable
feedstock, biofuels offer a sustainable alternative to fossil fuels. Ethanol, for example, is
produced through the fermentation of renewable resources, such as corn or lignocellulosic
biomass. It is commonly mixed with gasoline in different percentages for use in
transportation. Bioethanol and biodiesel lower overall greenhouse gas emissions, provide
a comparable net energy yield as gasoline, and are cost-competitive (30). Nevertheless,
biofuels constitute a relatively small portion of the global renewable energy landscape. Only
in the United States and Brazil, are biofuels and biodiesel derived from crops, such as
sugarcane or corn mandated as components of transport fuel (31,32).

Achieving a more sustainable economy extends beyond bioenergy. Converting
renewable resources into diverse bio-based chemicals could replace fossil-based
counterparts and bioprocesses play a pivotal role in ensuring the success of this transition.

2.1.1 The requirement for robust biocatalysts

The success of bioprocesses relies on the effective execution of upstream (i.e., media
preparation, cell inoculum), production (i.e., fermentation), and downstream (i.e., product
purification, isolation, refinement) processes. Although all three phases are vital for
achieving large-scale and high-quality output, rapid processing, and cost-efficiency,
production stands at the core of a successful bioprocess (33). This thesis gives particular
attention to the production phase and the microorganisms, also called biocatalysts or cell
factories, involved in it. As these microorganisms should effectively convert the given
substrates into desired products, production depends on the development of robust cell
factories. This includes strategies aimed at minimizing by-products, balancing ATP and
reducing power, and enhancing tolerance to industrial stresses, such as medium
components, temperature, pH, and limited oxygen (4). Cell factory performance and
industrial perturbations are described in detail in sections 2.2 and 2.3 of this thesis.

2.2 Cell factories in bioprocesses

Cell factories capable of converting renewable resources into valuable chemicals are
important players in the global economy (34). The European Commission has identified bio-
based products that are already cheaper and environmentally friendlier than their fossil-
based counterparts (35). Examples include the production of acrylic acid in Escherichia coli
by BASF (Germany), Cargill (USA), and Novozymes (Denmark), as well as polyethylene by
Braskem (Brazil) (36,37).

Model organisms, such as S. cerevisiae or E. coli, are widely used as microbial cell
factories (38). The choice of these organisms is driven primarily by the availability of
resources for their manipulation, including synthetic biology tools, sequenced genomes, and
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comprehensive knowledge of their metabolism, as well as their rapid specific growth rates
(39). Model organisms can be engineered to enhance the yield of primary or secondary
metabolites of interest, biomass or macromolecules. Heterologous genes and pathways
can also be introduced into the host to produce non-native compounds (40). While this
approach comes with its benefits, there are various reasons why engineering a production
host may not always yield the desired results. The integration of heterologous pathways or
genes can often interfere with host metabolism. This interference may arise from the toxicity
of the produced compound or poor understanding of regulatory mechanisms governing the
heterologous pathway in the native and host microorganism, making it challenging to
transfer these mechanisms into the host (41). Another potential hurdle stems from
imbalances created by the diversion of resources and energy towards side reactions.

An alternative approach to using model hosts involves employing non-conventional
organisms already possessing the desired characteristics and establishing large-scale
production directly from them (42—44). Successful examples of this approach include the
production of polyhydroxyalkanoates in Clostridium sp., or the synthesis of oleaginous
compounds in Rhodococcus sp. (45-47). In such cases, there is a clear advantage in
maintaining the metabolic pathway responsible for producing the desired product, along
with all the associated regulatory mechanisms and post-translation protein modifications
(48). Moreover, non-conventional organisms often exhibit remarkable levels of
osmotolerance, thermotolerance or tolerance to inhibitors, thereby holding an advantage
under the harsh conditions encountered during bioprocessing as compared to the laboratory
(49). However, given that physiology of non-conventional hosts is less well known, it may
be challenging to predict their behavior in various environments, particularly when scaled
up. Enhancing yields or inhibiting by-products becomes more difficult in such cases, due to
the limited availability of tools for metabolic engineering (48).

2.2.1 Saccharomyces cerevisiae

Owing to its central role in this thesis and its widespread use in bioprocesses, the yeast S.
cerevisiae is described in more detail in this subchapter. Achieving optimal robustness and
performance by cell factories hinges on a delicate balance between host physiology,
product output, and tolerance to various chemical and physical stresses. S. cerevisiae
stands out as a preferred choice in bioprocesses, primarily for its innate ability to generate
ethanol and CO-, which are valuable in the food industry (e.g., for beer production and
baking) and as biofuels (50,51). The versatility of S. cerevisiae extends to its role in
heterologous protein production, exemplified by the ground-breaking production of human
insulin initiated by Novo (now Novo Nordisk) in 1987, which revolutionized diabetes
treatment (52). As a model organism, S. cerevisiae is invaluable in exploring biological
mechanisms, owing to its genetic similarity and conservation of essential processes with
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more complex organisms. The ease of manipulation and well-established cultivation tools
further enhance its suitability for investigating various biological processes (53). In the
present thesis work, S. cerevisiae was used as a model to investigate differences in
phenotypic responses to perturbations and robustness (Papers II-V).

S. cerevisiae comes in a multitude of strains, each uniquely adapted to its specific
environment (54,55). Strains vary primarily in ploidy and genetic diversity, as demonstrated
by a comprehensive genotypic/phenotypic analysis conducted by Liti and colleagues on
1011 isolates (section 2.4: Dataset 4) (56). The wide diversity among S. cerevisiae strains
presents a remarkable opportunity to delve into species physiology and map the intricate
relationship between genotypic diversity and phenotypic responses.

In Paper V, three specific S. cerevisiae strains—two laboratory: CEN.PK113-7D,
S288C, and one industrial: Ethanol Red—revealed substantial differences in terms of single
nucleotide polymorphisms, deletions, and ploidy. These genetic distinctions translated into
visible phenotypic variations (Paper V: Figures S1, S2, and S3). Industrial strain isolates
often exhibit higher tolerance to heat, low pH, and substrate inhibitors compared to
laboratory strains such as S. cerevisiae S288C. They also have displayed increased
fermentation rates compared to laboratory strains (57). In order to evaluate the differences
in performance between laboratory and industrial strains, the laboratory strain CEN.PK113-
7D and various industrial strains, including those isolated from cachaga by Brazilian
distilleries (58) were cultivated in micro-aerobic conditions using microtiter plates and
chemically defined medium containing 2% glucose (Papers Il and Illl: Material and
Methods; section 2.4: Dataset 1). Generally, the specific growth rate or ethanol yield of
industrial strains was not consistently higher than those of laboratory strains (Figure 2.2.a).
Moreover, no significant distinction in performance was observed among the three groups
of strains (Figure 2.2.b) when uniform manifold approximation and projection was applied
to the collected phenotypic data comprising five measured variables, 24 strains, and 29
conditions (section 2.4: Dataset 1). Hence, categorizing strains simply as laboratory or
industrial could result in misleading generalizations. A categorization based on, for example,
genetic differences or ploidy would be more accurate.
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Figure 2.2: Performance comparison of S. cerevisiae strains. a) Six industrial strains (two of
which isolated from cachaga production sites in Brazil: LBCM1046 and LBCM1079) are compared
to a laboratory strain (CEN.PK113-7D). Performance is shown for the maximum specific growth rate
(umax, 1/h) and ethanol yield (g/g). Different colors of the dots correspond to the replicates (n=3). B)
Dimensionality reduction (uniform manifold approximation and projection: UMAP) was performed on
phenotypic data from five measured variables measured under 29 conditions. The two principal
dimensions are shown on the x and y axes. Each point corresponds to a strain and colored differently
based on strain type (industrial: Ethanol Red, Thermosacc, Redstar, PE2; laboratory: S288C and
CEN.PK113-7D; LBCM: LBCM collection from cachaga producing strains).

Exploring the diverse phenotypic responses among S. cerevisiae strains is crucial
(Papers lll and IV), particularly when considering their potential application in industrial
settings. Evaluating phenotypes, such as yields, titers, resistance to freeze-thaw cycles,
shelf life, dehydration resistance or specific growth rates at different bioprocess stages, is
important when assessing a strain's suitability for industrial application. However, even
before testing potential microorganisms for production, it is essential to identify the right
performance parameters to assess.

2.2.2 Performance metrics for the design of cell factories

When designing and testing cell factories, it is essential that performance measurements
align with the specific objectives set for the process (59). Performance metrics serve to
evaluate microbial performance and the corresponding economic feasibility of the process.
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The following parameters are commonly included in the performance metric for
benchmarking bioprocesses (60,61):

1) Titer or product concentration (mass of product/reaction volume)

2) Rate, productivity or space-time yield (mass of product/reaction volume/reaction

time)
3) Yield (mass product/mass substrate)

Attaining elevated values in the titer-rate-yield (TRY) metric requires a concerted effort
across various strategies (38). In particular, not all parameters in the TRY metric can be
maximized simultaneously due to inherent trade-offs within microorganisms (62), as
detailed in section 3.3.1.

TRY metrics directly linked to performance are crucial in designing cell factories,
although they are not the sole parameters that demand attention. Numerous other factors
are relevant in ensuring the success of bioprocesses. A universally applicable parameter
for nearly all fermentation processes is the specific growth rate. On the one hand,
simulations have suggested that a high specific growth rate can have a more significant
impact than process productivity on strain selection (63). On the other hand, given that the
biosynthesis of certain compounds competes with cell growth for energy and carbon
resources, conducting fermentations at near-zero growth rates may minimize the diversion
of feedstock towards biomass production (64).

Cell viability, especially in relation to cryopreservation, is rarely assessed. Cells are
typically preserved in glycerol at -80°C. However, cryopreservation can potentially damage
and diminish cell viability and overall survival, therefore making viability a potential factor in
lowering the performance of the cells (65). The cell viability is a critical parameter in the
production of bioethanol in Brazil, where the yeast pellet reused during fermentation
undergo a viability check during the acid wash (66,67). The lag phase can pose challenges,
particularly in batch and fed-batch fermentations. Typically, the lag phase is not a
constraining factor in processes that use rich media as a substrate. However, when
exploiting waste streams and less purified substrates, a long lag phase can become a
limiting factor (68). A decline in productivity can be linked also to genetic instability and the
gradual enrichment in non-producing cells over the course of fermentation (69-71).

It is beyond the scope of this thesis to investigate all these performance metrics and
their impact; however, during the design of cell factories, it is important to keep in mind all
aspects of a successful bioprocess. This can be facilitated by outlining the key design steps
(Figure 2.3) and by engaging with experts in the field. In this thesis, | asked bioprocess
experts to answer a survey comprising five questions related to bioprocesses and their
associated challenges. | received five survey responses; two respondents had worked in
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the bioprocessing sector for 5 to 10 years and the other three for less than 5 years. The
participants held various positions, ranging from R&D to business development, and came
from industries located across the globe. A combination of the design decision steps and
survey answers is outlined below.

The first step of the decision process should define the goals of the bioprocess. The
goals include evaluation of process outcomes, critical quality attributes, regulations in
different countries where production is located, market value, costumers’ demands, and
environmental and societal impacts. Life-cycle assessment modelling tools can help define
production goals (72).

The second step involves determining the relevant and measurable parameters that
constitute the performance metric. This can be accomplished through analysis of
comparable processes or a literature review (73). The objective is to look beyond the
primary goal of desired product yield, and include often neglected secondary parameters
such as cell viability. When surveyed about the performance metrics most commonly
employed in bioprocesses, responders pointed to product yields, final titers, specific growth
rates, cell survival and volumetric biomass productivity. These results underline how the
choice of performance metrics varies significantly depending on the specific process being
examined.

The identification of bottlenecks within a bioprocess allows for a more focused effort
towards their elimination by optimizing performance parameters. Notably, most survey
respondents identified the scaling up of microbial performance, coupled with downstream
processing and fermentation-related capital expenditures, as significant bottleneck steps.
The bottleneck arising from scaling up emphasizes the significance of my thesis work, as
the methodology | developed to quantify the robustness of various cell factory parameters
(discussed in Chapter 3 and Paper Il) could help predict, while still at a laboratory scale,
strain performance in industrial environments.

The third and fourth steps should focus on the most suitable ranges and targets of the
chosen metrics and their priority in relation to the objectives identified in the first step.
Various tools can facilitate this process. Monte Carlo simulations for parameter sensitivity
analysis and linearization techniques have proven effective for automating two critical
quality by design tasks: i) assigning severity rankings for risk assessment and ii) formulating
preliminary control strategies for critical process parameters (74). These methods have
been successful in ranking parameters by importance and are essential given the inherent
trade-offs encountered in bioprocesses, as discussed further in section 3.3.1.

The fifth step involves monitoring and controlling metric parameters. Fermentations
are monitored with on-line sensors such as pH, temperature, and oxygen probes (75). Off-
gas sensors are preferred for measuring CO2, oxygen, and ethanol as they avoid
interference with liquid and suspended particles (76). Vibrational Raman spectroscopy can
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detect compounds in the fermentation media without the need for sample preparation. The
implementation of biosensors, an effective synthetic biology tool, allows for the specific
monitoring of compounds such as acetic acid (12,77). Infrared spectroscopy or
biocalorimeters are employed to monitor biomass (78,79). Soft sensors and model-driven
sensors play crucial roles in data analysis, process control, and optimization. Moreover,
they have the capability to interpret data from other sensors and conduct fault detection
(80).

In the survey, a question was posed about whether bioprocesses required more
robust strains or more controlled processes. Despite significant progress in process control
and sensor technology, all participants agreed that bioprocesses would benefit more from
robust strains. They justified their choice by noting that highly controlled processes tended
to be labor-intensive and expensive. If costs were equivalent, a combination of robust
strains with controlled processes would be the preferred option.

In the sixth and last step, the process is optimized using observations from the
previous steps. Here, data analysis is fundamental in the reporting and assessment of
collected values, especially those from step five.

The decision process described above (Figure 2.3) can be applied to all aspects of a
bioprocess, including fermentation technology and design of cell factories. In this thesis,
particular attention was given to steps two to four, in relation to cell factory design and
optimization.

Data from the cultivation of S. cerevisiae strains under 29 different conditions (Paper
lll, section 2.4: Dataset 1) showed that strains exhibiting a consistent product yield might
also be characterized by slow specific growth rates or long lag phase. For example, the PE2
strain utilized in bioethanol production from sugarcane, displayed an exceptional high
ethanol yield; however, its specific growth rate ranked the lowest among the scrutinized
strains (Figure 2.4). In contrast, LBCM1079, with a specific growth rate comparable to the
other investigated strains, demonstrated notably poor yields. Such observations highlight
not only the natural trade-offs between performance parameters (discussed further in
section 3.3.1), but emphasize also the need for a thorough decision-making process when
selecting metric parameters to prevent scale-up delays and cost increases. Furthermore, a
distinction among performance parameters is fundamental in the investigation of robustness
(Chapter 3).

Finally, the environmental context in which performance metrics are assessed should
also be considered. This implies a comprehensive examination of the industrial settings,
with accompanying potential perturbations. Such approach is particularly relevant, if the
ultimate objective is to develop a robust cell factory capable of maintaining consistent
performance despite experiencing various perturbations.
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Figure 2.3: Bioprocess decision-making steps in relation to performance metric. lllustration of
the decision-making process in bioprocess design. Points 1 to 6 are described in detail above.
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Figure 2.4: Investigation of different performance parameters in S. cerevisiae strains. Six
industrial strains (including cachaca strains LABCM1046 and LBCM79) and one laboratory strain
(CEN.PK113-7D) are shown. Each dot corresponds to a replicate (n=3). Six parameters were
measured: specific growth rate (umax), lag phase (lag), cell dry weight (CDW), ethanol yield (Yp),
and biomass yield (Yx).
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2.3 Perturbations

Perturbation is defined as an event that triggers a change in a system. A major challenge
encountered when scaling up processes with laboratory-designed microorganisms is the
identification and replication of large-scale perturbations in small-scale set-ups (61).
Perturbations play a crucial role not only in bioprocesses, but also when studying cell
physiology. In ecology, disturbances or perturbations are fundamental for species diversity
and, ultimately, evolution. A strategy to improve predictions and streamline the scale-up
process involves identifying potential perturbations and utilizing high-throughput testing to
assess performance across a broad array of perturbations, referred to as the perturbation
space. High-throughput testing has proven effective in uncovering mechanisms that were
inaccessible through traditional rational approaches and in identifying strains with desired
characteristics (81).

2.3.1 Perturbations in lignocellulose fermentation processes

In this thesis, the impact of perturbations on the fermentation of lignocellulosic biomass into
ethanol was assessed in multiple papers (Papers II-V). Lignocellulosic biomass
fermentation is a particularly relevant example owing to its various types of perturbations,
relevance to the United Nations' SDGs, and abundance. The production of bioethanol from
sugarcane, corn or sugar beet (classified as first-generation or 1G) started some 50 years
ago and is now a well-established process. Bioethanol production from 1G feedstocks
allows the United States and Brazil to replace part of their fossil fuels with biofuels. Instead,
biomass-to-ethanol processes using second-generation (2G) feedstock, including corn
stover, wheat straw or spruce, are marred by low cost-effectiveness and poor scalability
(82). 2G biomass has been suggested as a more sustainable alternative to 1G sources,
owing to concerns related to food security and land use (83). Agricultural and forestry
residues, which constitute 2G biomass, are primarily composed of cellulose (35%-50%),
hemicellulose (20%—-35%), and lignin (84). The structural arrangement and proportion of
these components depend largely on the plant type, season, country, and weather
conditions. Such heterogeneity influences the accessibility of cellulose to hydrolytic
enzymes and the subsequent release of fermentable sugars (Table 2.1) (85). Crystallinity,
particle size, and accessible surface area play a crucial role in the success of enzymatic
hydrolysis.
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Table 2.1 Composition of lignocellulose biomass from different sources (adapted from (86))

Lignocellulose Cellulose (%) Hemicellulose (%) Lignin (%)
biomass type

Corn stalks 50 20 30

Sugarcane tops 43 27 17

Sugarcane bagasse 35 35.8 16.1
Corn stover 38.4 22.9 20.1
Rice husk 371 294 24 1
Rice straw 35.8 21.5 244
Spruce wood 43 29.4 27.6
Beech wood 44 .2 33.5 21.8

To enhance enzyme accessibility, lignocellulosic biomass typically undergoes pre-
treatment, via physical or chemical methods. Physical pre-treatments encompass milling,
extrusion or microwaving; whereas chemical pre-treatments include acid, alkali or ammonia
steam-explosion (86). While these pre-treatments are essential for increasing sugar
accessibility, they also result in the release of inhibitory compounds that retard the
fermentation process (Figure 2.5) (87). Hemicellulose hydrolysis yields pentoses and uronic
acids, which undergo dehydration to form furfural, while hexoses are dehydrated to 5-
hydroxymethylfurfural (HMF) (88). At elevated temperatures and acid concentrations, HMF
can be further degraded into levulinic and formic acids, along with furfural. Additionally,
acetyl groups from hemicellulose are hydrolyzed into acetic acid (89,90), and vanillin is
released through lignin oxidation (91,92). These compounds can be present in relatively
high concentrations, posing challenges to the fermentation process (87).

Following pre-treatment and enzymatic hydrolysis, the resulting lignocellulosic
hydrolysate is utilized for fermentation. However, the presence of inhibitory compounds in
this hydrolysate limits microbial performance (93-95). Weak acids exist in equilibrium
between their dissociated and undissociated forms, with the shift in equilibrium depending
on the dissociation constant (pKa) and the pH of the environment. At low pH, the
undissociated form predominates and can diffuse through the cell membrane. Once inside,
a slightly higher pH leads to its dissociation and consequent acidification. This event sets
off a cascade of reactions. ATPase pumps protons out of the cell, diverting ATP from other
metabolic processes such as biomass formation. Weak acids inhibit enzyme permeases,
reducing the uptake of aromatic amino acids. Increased glycerol production implies a
compromised capacity of cells to generate NAD*; whereas an increased output of reactive
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oxygen species can damage cell components. Finally, a lower DNA and RNA synthesis has
also been observed (96).

Formic acid has been noted for its elevated toxicity in comparison to other acids
(Figure 2.6). This increased toxicity is likely attributed to its lower pKa and smaller size,
which facilitates its diffusion. In Papers Il and Ill formic acid did not affect the cells
significantly more than acetic acid, probably because at pH 5, most of the formic acid was
in dissociated form. Prior research has indicated that formic acid leads to the
downregulation of proteins associated with the biosynthesis and transformation of succinyl-
CoA, as well as with alterations in the N-termini of core histones, thereby influencing cell
development (97,98). While studies have indicated that levulinic acid leads to a more
pronounced inhibition of cell growth (99), our findings show that levulinic acid had only a
minimal effect on the specific growth rate (Figure 2.6). Lactic acid is not directly derived
from lignocellulose pretreatment, but can be present in fermentations due to contamination
from lactic acid bacteria (100). In my studies (Papers Il and lll), lactic acid had the lowest
impact on fermentation (Figure 2.6), which could be attributed to its pKa and the pH during
cultivations. In addition, lactic acid has been associated with an increased biosynthesis of
glutathione (101). Interestingly, co-cultivation of S. cerevisiae with Lactobacillus amylovorus
had been found to increase sugarcane fermentation yield by 3% when cross-feeding
acetaldehyde, demonstrating a beneficial interaction between these two species (102).

Furfural and HMF inhibit microbial growth, even though they are converted to their
less harmful alcohol counterparts under both aerobic and anaerobic conditions. HMF is
thought to cause greater inhibition due to its slower conversion rate compared to furfural.
Nevertheless, the reduction in fermentation and specific growth rate is more substantial with
furfural than with HMF (103).

In the cultivations carried out in Paper lll (section 2.4: Dataset 1), vanillin was found
to affect strain growth more than HMF and furfural, even though S. cerevisiae can degrade
it to vanillyl alcohol (104) (Figure 2.6). Vanillin disrupts the structural integrity of biological
membranes, blocks translation by affecting the function of the large ribosomal subunit, and
triggers the formation of processing bodies and stress granules. It also induces oxidative
stress and mitochondrial fragmentation. The toxicity of vanillin is associated with chromatin
remodeling, vesicle transport, and ergosterol biosynthesis (105).

High-throughput cultivations in conditions resembling the one encountered during
lignocellulose fermentation (section 2.4: Dataset 1) provided insights on specific strain
responses. For example, acid stress exerted a significantly higher impact on ethanol yield
than on specific growth rate (Paper lll: Figure 1). The same study showed poor acid
tolerance by strains used in cachaga production (Figure 2.7). LBCM1001, LBCM1008, and
LBCM1017 did not grow in the presence of acetic acid and LBCM110 failed to grow in the
presence of almost all tested acids. Instead, most LBCM strains along with Ethanol Red

19




Chapter 2. Microbial Performance and Perturbations in Bioprocesses

grew on 3 g/L furfural (Figure 2.7). Such specific behaviors point towards promising
candidates for investigating the mechanisms underlying tolerance to different stressors. For
instance, a phenotypic study comparing Zygosaccharomyces bailii with S. cerevisiae
highlighted the former's pronounced tolerance to acetic acid. This disparity prompted further
investigation into Z. bailii, whose enhanced acid tolerance was attributed to the structure

and composition of its cell membrane (106,107).
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Figure 2.5: Composition of lignocellulose biomass. Average percentages of hemicellulose,

cellulose, and lignin are shown on the left. Sugars and inhibitors released during pretreatment of
lignocellulosic biomass are listed on the right.
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Figure 2.6: Specific growth rate of S. cerevisiae strains cultivated with acids and aldehydes.

Maximum specific growth rate is plotted on the y-axis and conditions are shown on the x-axis. Strains
are plotted in different colors.
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Figure 2.7: Specific growth rate of 24 Saccharomyces strains cultivated under 29 growth

strain

conditions. Growth conditions are indicated on the y-axis and strains on the x-axis. Tile color
represents the maximum specific growth rate of the strains.

2.3.2 Bioprocess perturbations

The fermentation of lignocellulosic biomass into bioethanol serves as a notable example of
how to effectively address complex processes by breaking down an intricate perturbation
space into smaller, individual perturbations. The inhibitors present in the hydrolysates, along
with sugars, are easily reproducible in controlled settings by preparing media with varying
concentrations of inhibitors (Papers Il and Ill). This approach finds application in another
perturbation context, beer fermentation, as detailed in Paper IV. Within beer fermentation,
yeast interacts with multiple complex substrates, impacting not only the fermentation
outcome but also the taste profile of beer. Perturbations in this scenario did not exhibit a
visible impact in the presence of a specific hop type or aroma. However, when compared
to laboratory growth medium (Delft 2% glucose), the specific growth rate of both the
industrial strain Ethanol Red and the laboratory strain CEN.PK113-7D was markedly lower
(Paper IV: Figure 6). Once again, substrate variation proved to be straightforward to
replicate compared to other types of perturbations such as pressure gradients. In the
previously mentioned survey, when asked to identify significant perturbations in
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bioprocesses, respondents answered that pH and temperature control, as well as reactor
gradients, were the most critical factors affecting their processes.

Substrate variation represents only a fraction of the comprehensive array of
perturbations faced by cell factories within industrial fermenters. Perturbations come in two
forms: predictable and stochastic. Predictable perturbations are more manageable through
process technology; whereas stochastic perturbations are more difficult to control and
identify (Review Paper I). Anticipated perturbations encompass variations in substrate
batches, inhibition stemming from both substrate and end products, gradients in nutrient
and oxygen levels within large-volume reactors, and shear pressure (108). Cell
performance is affected also by pH and temperature fluctuations. Instead, stochastic
perturbations involve unpredictable events, such as declines in cell viability, contaminations,
population heterogeneity, and genetic instability (109).

2.3.3 Three aspects in perturbation studies important for
performance assessment

When assessing microbial performance under different perturbations, three aspects should
be included:

l. perturbation probability, i.e., the probability that a certain perturbation will
occur within the process.

Il. perturbation intensity, i.e., the extent or magnitude of a particular perturbation.
M. interaction effects between perturbations.

The first factor concerns the relevance of a perturbation in relation to a specific
process. An advantage of evaluating microbial performance across numerous perturbations
lies in the ability to discern which ones are not pertinent to the process outcome. In beer
production, assessing the performance of yeast strains with respect to furfural may be much
less relevant than testing them against high levels of sugars or ethanol, as these conditions
are predominant during brewing. Relevance of a perturbation to a process, known also as
“perturbation probability”, has been estimated in the context of robustness assessment (15),
but experimental quantification is not routinely performed. The challenge lies in attributing
a probability/relevance value to each perturbation and estimating the likelihood of its
occurrence in a process. Access to data regarding controlled parameters (e.g., temperature,
pH or off-gas analysis) from industrial fermentations could inform such analysis.

To determine whether five phenotypes of 24 S. cerevisiae strains (section 2.4:
Dataset 1) were influenced by the probability of occurrence assigned to each perturbation,
random weights (sum of 29 weights equal to 1) were assigned to each of the 29 tested
perturbations (unpublished data). Subsequently, the mean performance (for each of the five
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phenotypes) of each strain across the weighted perturbations was computed (Figure 2.8).
This process was repeated 1000 times with different randomly assigned weights. This
resulted in 1000 mean values (across weighted perturbations) for each phenotype and
strain. The distributions of calculated mean performances for all 1000 times were plotted
for each phenotype and strain, as shown in Figure 2.8 for lag phase and cell dry weight. In
the case of cell dry weight, only two strains exhibited a highly narrowed distribution (close
to zero), suggesting that, regardless of the weight assigned to the perturbation, their
performance remained remarkably stable. In contrast, other strains displayed wider
distributions, indicating that perturbation probability had, in fact, an impact on performance
evaluation. For the lag phase, strain distributions aligned into two distinct groups, each with
similar modes. This alignment indicates that strain behavior was affected equally by
different perturbation probabilities but with two distinct modalities. Ultimately, this test with
randomly generated perturbation probabilities shows that certain strains are more
influenced by the whole set of perturbations than others.
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Figure 2.8: Distribution of phenotype weighted means over 1000 randomly assigned
perturbation weights. The distributions represent the weighted mean performance (random weight
assigned to the perturbations) calculated 1000 times with different weights. Each color corresponds
to a different strain type. The grey distributions belong to different strain types but just two strains per
group were highlighted with a thicker line for simplicity.

The second aspect involves perturbation intensity, meaning the amplitude of each
perturbation (e.g., concentration of an inhibitor). If the concentration of a tested inhibitor is
too low, it might not exert a discernible effect on the examined strain compared to when the
perturbation is absent. Conversely, excessively high concentrations or perturbation
intensities could severely impact cells, potentially inhibiting growth entirely. Consequently,
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it is essential to conduct tests across a broad range of intensities. Lignocellulose
hydrolysates vary in composition, depending on the type of biomass (section 2.3.1: Table
2.1), therefore sugars and inhibitors released during pretreatment can have very different
concentrations. For instance, in the evaluation of S. cerevisiae strains PE2 and
CEN.PK113-7D (unpublished data), four concentrations were tested for each perturbation
(Delft media plus an inhibitor or different sugars) and are indicated after the name on the x-
axis in Figure 2.9. The lower and higher concentrations were chosen based on published
lignocellulose hydrolysate composition studies, offering a real although not necessarily
optimal framework for testing. The specific growth rate of two exemplary strains was
calculated for fourteen perturbation each divided in four concentrations (Figure 2.9). In the
case of vanillin, HMF, and ethanol, the highest concentrations (3,9 and 123 g/L respectively)
were excluded as no growth was detected. Subsequently, only two concentrations that
partially blocked strain growth were chosen for further investigation (Papers Il and IlI).

Finally, the third aspects that should be included when addressing bioprocess
perturbations is the interaction effect of different perturbations occurring simultaneously.
This arises from the concurrent presence of different perturbations, which may lead to
synergistic interactions and downstream effects that are either more favorable or more
detrimental than when the perturbations are evaluated individually. A study has found that
high temperatures (37°C) lead to an increase in acetic acid production in S. cerevisiae,
which, along with the presence of ethanol and reactive oxygen species, synergistically
hinders cell growth and ethanol production rate (110,111). In the context of lignocellulosic
biomass, the combination of liquid fraction of pretreated wheat straw mixed with ethanol
and high temperatures resulted in no growth of two S. cerevisiae strains in a spot assay on
agar (112).
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Figure 2.9: Maximum specific growth rate of two S. cerevisiae strains. PE2 and CEN.PK113-
7D were cultivated under 14 different conditions each containing the indicated compound at four
concentrations (points of different hues). Concentrations of each compound are reported after the
compound name in g/L on the x-axis labels.

In this thesis, Ethanol Red and CEN.PK113-7D underwent testing under various
combinations of inhibitors, and specific growth rates were compared to those of single
inhibitors (Figure 2.10, unpublished data, section 2.4: Dataset 2). Notably, the specific
growth rate for both strains exhibited a decrease when they were cultivated with a
combination of two or three inhibitors. Combination of different acids with NaCl, aldehydes,
and ethanol almost always resulted in no growth. The only condition that showed higher
specific growth rate than the control (Delft medium + 2% glucose) was the combination of
glucose (6.5%) with mannose (1.6%) and galactose (0.45%).
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Figure 2.10: Combined effects of lignocellulose inhibitors on S. cerevisiae performance.

Maximum specific growth rate (y-axis) of CEN.PK113-7D and Ethanol Red cultivated under different

conditions (x-axis). Different hues correspond to the two strains. Inhibitor name and concentrations

are reported on the x-axis. Cultivations are divided based on the number of inhibitors tested

simultaneously (up to three). The dotted line represents the control of both strains grown in Delft 2%

glucose. The dots with a thick stroke line are highlighted as example and referred to in the text.
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2.4 Methods, datasets, and strains

In this thesis two main high-throughput methodologies were used to cultivate S. cerevisiae

strains and monitor their growth: cultivation in 96-well plates using a growth profiler and

cultivation on agar plates using the scan-o-matic. A detailed explanation of the methods can

be found in Papers II-IV for the growth profiler and Paper V for the scan-o-matic; while a

brief description is provided hereafter. The cultivation procedure employed in the evolution

experiment involved a daily dilution in 96-well plates, and details can be found in Paper V:
Material and Methods.

1.

Cultivation in 96-well plates using the growth profiler

Strains from a glycerol stock were thawed and 10 uL were transferred to 5 mL Delft
medium to be cultivated at 30°C overnight. Optical density at 600 nm (OD600) of the
overnight culture was measured and a volume corresponding to a starting OD600 of
0.02 was transferred to 96-well plates for a total culture volume of 250 uL. Multiple
compounds were added to Delft medium to mimic different perturbations (e.g., acetic
acid, vanillin). The 96-well plates were closed with either aerobic or micro-aerobic lids
and placed in the growth profiler. Growth was monitored for 48 h at 30°C and 250 rpm
shaking. The maximum specific growth rate and lag phase were calculated from the

growth curves.

To calculate cell dry weight and yields, the final OD600 of the culture was measured in
a spectrophotometer and converted in cell dry weight through previously determined
calibration curves. After removing the cells from the cultures, enzymatic assays were
used to measure ethanol and sugars from the media at 48 h. The assays were based
on enzymatic reactions, which produced NADH, whose absorbance at 340 nm was read
in a spectrophotometer. Based on these measurements and initial concentrations, it was
possible to calculate ethanol and biomass yields.

Cultivation on agar plates using scan-o-matic

Strains from the glycerol stocks (kept on 96-well plates) were thawed on ice and
pinned on a YPD agar plate in a 1536 colonies format. A normalization strain is
generally pinned throughout the plate to adjust for variation. Colonies were pinned on
a pre-culture medium (e.g., Delft medium in the case of Paper V phenotypic assays),
after which the pre-cultures were pinned on agar plates containing the compound of
interest (e.g., acids, ethanol). Colony growth was monitored in scanners for 72 h in
four replicate plates to determine generation time and the produced biomass
(calculated as final biomass - initial biomass) by the scan-o-matic software.
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In this thesis work, | not only utilized datasets produced through my own experiments but
also showed how applying robustness calculations to existing literature datasets could lead
to new knowledge. The datasets used throughout this thesis are summarized below.

DATASET 1* (lignocellulose)

Strains CEN.PK113-7D, S288C, PE2, Ethanol
Red, Thermosacc, RedStar, LBCM1001,
LBCM1003, LBCM1008, LBCM1013,
LBCM1014, LBCM1017, LBCM1030,
LBCM1046, LBCM1079, LBCM1095,
LBCM1099, LBCM1106, LBCM37,
LBCM67, LBCM97, LBCM103, LBCM109,
and LBCM110.

Applied method Growth profiler + enzymatic assays

Perturbation space 29 conditions: glucose, xylose, galactose,
arabinose, mannose, formic acid, acetic
acid, levulinic acid, lactic acid, HMF,
furfural, vanillin, ethanol, NaCl

Investigated phenotypes Maximum specific growth rate, lag phase,
ethanol yield, biomass yield, cell dry weight

*Details can be found in Papers Il and lll: Material and Methods

DATASET 2 (p. interactions)

Strains CEN.PK113-7D, Ethanol Red
Applied method Growth profiler
Perturbation space* Glucose, xylose, galactose, arabinose,

mannose, formic acid, acetic acid, levulinic
acid, lactic acid, HMF, furfural, vanillin,
ethanol, NaCl

Investigated phenotypes Max. specific growth rate

*Double and triple combinations were tested. For exact concentrations and combinations refer to Figure 2.10 (unpublished
data)
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DATASET 3* (Costanzo)

Strains 4000 strains bearing single gene deletions
(derived from S. cerevisiae BY4741 and

BY7092)
Applied method Solid growth
Perturbation space YPD + 14 antifungal compounds
Investigated phenotypes Normalized colony growth

*Specifics can be found in Paper IV: Material and Methods and (113)

(1]
DATASET 4* (Liti)

Strains 1011 S. cerevisiae strains sampled from
different locations and ecological origins

Applied method Scan-o-matic
Perturbation space* 37 conditions (YPD + different compounds)
Investigated phenotypes Colony growth normalized using growth on

standard YPD medium at 30°C

*Details can be found in Material and Methods and Supplementary tables (56).

DATASET 5* (three p.spaces)

Strains Ethanol Red, CEN.PK113-7D and 14
CEN.PK113-7D strains carrying single
gene deletions

Applied method Growth profiler

Perturbation space Lignocellulose hydrolysates perturbation
space, Costanzo perturbation space, beer
perturbation space each composed of 16
conditions

Investigated phenotypes Maximum specific growth rate

* Details can be found in Paper IV: Material and Methods.
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DATASET 6* (evolution)

Strains

Applied method

Perturbation space*

Investigated phenotypes

CEN.PK113-7D, $S288C, Ethanol Red
(1044 evolved samples, populations plus
extracted single colonies)

Scan-o-matic

20 conditions. Delft plus the following
compounds: glucose, xylose, arabinose,
mannose, formic acid, acetic acid, lactic
acid, levulinic acid, HMF, ethanol, NaCl, no
pH buffering, no trace metals, YPD

produced biomass

*Details can be found in Paper V: Material and Methods.

DATASET 7* (Persson)

Strains

Applied method

Perturbation space

Investigated phenotypes

604 S. cerevisiae strains bearing single
gene deletions

Scan-o-matic

Synthetic complete medium agar plates
supplemented with 3 mM arsenite ([As IlI];

NaAsO2), 4mM arsenite, 0.25mg/L
rapamycin, 400 mg/L paraquat
(methylviologen; N, N-dimethyl-4-4'-

bipiridinium dichloride) or 1.25 M NaCl.

Produced biomass and doubling time

*Details can be found in Material and Methods (114)
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Main Points from Chapter 2

Bioprocesses are fundamental for a shift towards a more sustainable economy.
There is a strong need for robust biocatalysts that can perform consistently in
spite of perturbations.

Performance metric is specific to the bioprocess and should include secondary
parameters not only the TRY metric. Decision steps can help in identify and

prioritize those parameters.

Laboratory-designed strains should be tested for the decided performance metric
before scale-up.

Temperature and pH control, along with reactor gradients, were identified as
major perturbations in bioprocesses.

Perturbation probability, perturbation intensity, and interactions should be
considered when testing strain performance in different conditions.
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Chapter 3. Microbial Robustness

Chapter 3 describes the concept of microbial robustness and explores its significance
across various contexts. It first describes the different methods for measuring robustness,
with a focus on the Fano factor-based approach detailed in Paper Il. This quantification
technique is then applied to various datasets (described in section 2.4) to demonstrate its
adaptability to different scenarios. The chapter concludes with a discussion on the trade-
offs between performance parameters and between performance and robustness.

3.1. The concept of robustness

The term "robustness" has been defined in various contexts. Generally, it refers to the
capability of a system to handle perturbations and maintain a stable output (115). This
attribute is observed in various fields, such as aviation, where modern airplanes incorporate
an automatic flight control system (AFCS) to maintain their flight trajectory. The AFCS
detects deviations in the flight path caused by external perturbations and autonomously
adjusts its input to restore stability. For instance, if strong winds cause an altered output,
the AFCS will modify the route until the plane returns to a stable path (1). Another context
is provided by machine learning, whereby robustness denotes the ability of an algorithm to
produce consistent outputs even when exposed to noise or shifts in data distribution. It also
implies that errors and properties present in the training datasets should align with those in
the testing datasets to ensure stability (116)

In biology, metabolic robustness relates to the stability of diverse phenotypes,
including regulatory mechanisms, gene expression, and phosphorylation (117,118). The
ability to withstand genetic changes and mutations is referred to as mutational robustness,
which is often linked to gene duplication (119). Transcriptional robustness relates to the
ability of overcoming errors in transcription, splicing, translation, or post-translational
modifications, and is crucial for preventing the production of non-functional proteins (120).

3.1.1 Microbial robustness definition

Within the scope of this thesis, most efforts have centered on microbial robustness as
defined below and in Review Paper I.

Microbial robustness is defined as the ability of a system to maintain consistent performance
despite external or internal perturbations (1,2,5,7,8).

Hence, by definition, microbial robustness is tied to three fundamental characteristics:
the system (e.g., a strain, microorganism or population), the phenotype (and its measured
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performance, also referred to as cellular function), and the perturbation space (Paper II).
Phenotypes are manifestations of intricate sub features. Features, such as gene
expression, enzymatic conversion rates, substrate uptake rates, and enzyme inhibition, can
collectively influence ethanol yield (the main phenotype). In a simple scenario, if the
phenotype "product yield" of a strain A exhibited two similar values when applying
perturbations 1 and 2, then the phenotype "product yield" could be marked as robust across
perturbations 1 and 2. Yet, the features of system A contributing to product yield when
applying perturbations 1 and 2 may vary significantly (Figure 3.1). In fact, robustness tends
to preserve functionality within a system despite perturbations, often demanding that the
system dynamically adjusts its features (1).

x1,X2,...,.xn w1,w2,...,wn
K features =Y O O
2 S B B
< 1,Y2,...,yn 2
.1; X1,X2,....XN Yl S y 22 n w1,w2,...,wn .1; z1,22,...,.zn
S 5 ()
3 3 y1,¥2,...,yn
& s ,e
pt p2 3 pd p p2 p3 pd
Perturbation Perturbation

Figure 3.1: The robustness of phenotypes and its features. The hypothetical product yield (y-
axis) of systems A (red) and B (yellow) is represented in relation to four perturbations (x-axis). System
A has a similar product yield in the four perturbations, which makes it is robust under the given
conditions, even though it exhibits different features (x, y, z, and w). Conversely, system B, which
also exhibits different features in the four perturbations, does not exhibit a similar product yield and,
therefore, is less robust than system A.

3.1.2 Relevance of microbial robustness

Microbial robustness becomes relevant when systems encounter perturbations and should
maintain steady performance. While this quality is desirable in specific scenarios, it may
assume a secondary role or be undesirable in other contexts. Bioprocesses aim for a stable
and predictable outcome, particularly with respect to the TRY metric. In ethanol production
from lignocellulosic biomass or side streams, robustness is indispensable to guarantee a
consistent production flow, especially because of differences in substrate composition or
batch-to-batch variations. In contrast, well-established processes such as insulin production
may not rely so heavily on microbial robustness. The procedure has been meticulously fine-
tuned over the past 40 years and employs highly pure sugars as substrates, thereby
minimizing batch variations. The impact of other potential disturbances has been
significantly mitigated through the optimization of strains and processes. In the United
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States, Food and Drugs Administration regulations mandate "quality by design" in
pharmaceutical manufacturing, with European countries following up on it. Process
analytical technology supports and emphasizes the integration of quality into design,
thereby reducing the focus on strain robustness (121).

As highlighted by the survey, there is a preference for designing robust strains over
controlling processes (section 2.2.2), as well as for consistent performance over peak
performance. Respondents pointed out that predictability and repeatability were essential
for cost-effective operations. Additionally, the choice between robustness and high yield is
influenced by product type. For products in high demand, the quantity produced (volumetric
production rate) might outweigh the need for maximum yield; whereas titers, for example,
become more critical for compounds that require extensive down-stream processing.

Robustness is an undesirable trait in cancer and antibiotic-resistant bacteria. Cancer
is considered a robust system. While certain types, such as breast or ovarian cancer, exhibit
a strong high initial response to chemotherapy, they often relapse, and the recurrent tumors
frequently develop resistance to subsequent therapeutic interventions (122). Cancer is
robust in the face of physiological challenges, such as low oxygen levels and metabolic
stress. Extensive research over the years has linked this robustness to tumor heterogeneity,
which arises from variability in size, morphology, antigen expression, membrane
composition, proliferation rate, and metastatic potential (122). Heterogeneity offers a
significant degree of modularity (different cells in the tumor are specialized in different tasks)
and redundancy and is further strengthened through feedback controls, which contribute to
robustness. The same can be observed in bioprocesses (Review Paper I) (123).

Another instance of highly robust systems is found in antibiotic-resistant bacteria such
as Pseudomonas aeruginosa, which pose a significant threat to human health (124). P.
aeruginosa exhibits a remarkable array of mechanisms to neutralize antibiotics, including
low outer membrane permeability, efflux pumps expelling antibiotics, and the production of
antibiotic-inactivating enzymes. Robustness is then further reinforced by the ability to form
biofilms and horizontal transfer of resistance genes (125).

Understanding the mechanisms of robustness becomes crucial in such cases, as it
enables the development of drugs that prevent disease recurrence after initial treatment.

3.2 Quantification of microbial robustness

To fully understand robustness and its inherent properties, it was necessary to develop a
method for its quantification (Paper IlI). This would allow the evaluation of strain
performance and comparative analyses of the targeted phenotypes. Performance
evaluation provides insights on how effectively a system can navigate various perturbations
and environmental conditions. For example, as elucidated in Chapter 2 and detailed in
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Paper lll, the collection of performance data across various perturbations facilitates the

identification of strains with a consistent behavior. Here, it enabled the assessment of

performance across perturbations and whether it was consistently high or low for five

distinct phenotypes. Ethanol Red was identified as a highly performing and robust strain

(Papers Il and Ill).

Robustness quantification can serve various purposes (Table 3.1). Engineered strains

can be evaluated directly before scaling up or conducting quality checks for industrial strains

(Review Paper I). Physiological studies can include measurements of the stability shown

by intracellular parameters in different media. Furthermore, population heterogeneity can

be quantified using microfluidic devices (126,127).

Table 3.1 Applications of the robustness quantification formula

Robustness
Scope System Examples
calculated across:
Study trade-offs between Paper lil,
phenotypes and between Strains Perturbations Dataset 1
performance and robustness (128)
Paper lll,
Identify highly performing strains _ _ Dataset 1,
) Strains Perturbations
with robust phenotypes Dataset 4
(56,128)
Paper IV,
Dataset 3,
Identify genetic and metabolic Strains bearin
. v . ot 9 Perturbations Dataset 5,
markers of robustness gene deletions Dataset 7
(113,114)
Paper V,
Quantify robustness in phenotypic  Evolvin
y , P , yp g Perturbations Daset 7
assays from evolution experiments  populations
(114)
Evaluate the impact of
perturbations on strains Strains Strains (126)
performance
Establish the degree of intracellular . i
) Strains Time (126,127)
parameter fluctuations
) . ) Single cells, ) .
Quantify population heterogeneity Time, perturbations (126,127)

subpopulations
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3.2.1 State-of-the-art in robustness quantification

Various methodologies have been suggested to measure robustness (Review Paper I).
Equations commonly employed in theoretical assessments of robustness include Kitano's
formula (Equation 1) (15) and the one utilized by Yang et al. (129). Kitano's approach

involves quantifying the robustness of a system “S” and a function “a” by integrating the

evaluation function “D” across numerous perturbations “p” (perturbation space = P)

multiplied by the single perturbation frequency “w(p)’. The evaluation function represents

the ratio of the function "a" in a perturbed state “p” with respect to the same function in a

non-perturbed state “p0” (Figure 3.2.a).

Rip = [, ¥ @)D (p)dp Equation 1

Equation 1 was previously employed to conduct conditional robustness analysis and
offer a valuable tool for exploring biochemical interaction networks in cancer (130,131). An
alternative approach to assess robustness is through the coefficient of variation (CV), which
is defined as the ratio of standard deviation to the mean of a measured quantity (129).
Equation 2 defines robustness R as 1 minus the CV.

R=1-—- Equation 2

While these two equations have found various applications, they pose challenges
when applied to the microbial robustness definition introduced in section 3.1.1 (Paper II).
Issues arise primarily from the selection of arbitrary reference conditions to determine
perturbation probabilities, and the inherent difficulty of comparing robustness for different
phenotypes because of scaling and unit differences.

3.2.2 Fano factor-based quantification

To address the above-mentioned challenges, a different formula (Equation 3) for quantifying
robustness was introduced in Paper Il. Equation 3 was derived based on prior research, in
which the Fano factor had been proposed as a reliable method for measuring both
robustness and variation in phenotypic data (7,132). Equation 3 measures robustness of a
system (S) and a phenotype (a) across a perturbation space (P) by dividing the variance
(62) by the mean (x) of the data and normalizing with the mean of performance data across
all tested strains (m) (Figure 3.2.b).
2

Rosp = —%% Equation 3

This formula has the following benefits (outlined in Paper Il):

i) it eliminates the need for arbitrary control conditions and perturbation
frequencies (unlike Kitano's formula, which requires p0O and y(p));
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ii) the introduction of 1/m for normalization allows for the comparison of
robustness across different phenotypes within the set of analyzed strains;

iii) the negative sign enables the representation of stronger robustness with
higher values (with 0 signifying maximum robustness and no data variation).

In contrast to Equation 2, whose R becomes negative when the CV is >1, therefore,
complicating interpretation, the Fano factor emerges as a more suitable representation,
particularly for data approaching zero. This is crucial, considering the broad spectrum of
values phenotypes can encompass (133).

When evaluating robustness quantification methods in this thesis, 1000 data points
aligned along eight distinct distributions were generated using different functions in R
softare (e.g., normal - rnorm, uniform - runif, and exponential - rexp) (Figure 3.3.a).
Subsequently, Equations 1, 2, and 3 were employed to calculate the robustness of the
generated data. To simplify the process, the p0 in Equation 1 was assigned a random value
within the distribution range, and the probability of each perturbation was disregarded.
Notably, modifications were made to Kitano's formula to adapt it for discrete data analysis.
Multimodal and normal distributions exhibit a higher spread. Intuitively, based on the
microbial robustness definition, one would anticipate lower robustness for the multimodal
and normal distributions. However, Kitano's formula yielded unexpected results, associating
exponential and binomial distributions with the lowest robustness values (Figure 3.3.b).

When employing the CV for robustness calculation, the multimodal and normal
distributions attained the lowest values. Yet, R was negative for the multimodal distribution,
which complicated the interpretation of robustness, because Equation 2 expects robustness
to fall within the range of 0 to 1. Akin to the CV, Equation 3 assigned the lowest robustness
to the multimodal and normal distributions. Comparable values emerged for the remaining
distributions, with the gamma distribution achieving the highest robustness. Consequently,
even when confronted with diverse data distributions, Equation 3 appears to be better at
quantifying microbial robustness according to the four criteria outlined in Paper Il: statistical
significance, independence from performance, standardization, and comparison among
phenotypes. Equation 3 can be applied also to a widely varying range and scale of values,
as demonstrated when quantifying robustness for cell area or protein fluorescence
(126,127).
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Figure 3.2: Quantification of robustness. a) Quantification of robustness according to Equation 1
(adapted from Review Paper I: Figure 5). The x-axis corresponds to the perturbation space and the
y-axis to the evaluation function. b) Quantification of robustness according to Equation 3 (Paper Il).
The x-axis corresponds to the perturbations and the y-axis to the performance of phenotype “a”. The
dotted line is the mean and the colored rectangle to the spread of the data. An example for two
hypothetical systems S1 and S2 is given. Equation 3 is shown in the box and the quantified

robustness is represented by bar plots.
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Figure 3.3: Quantification of robustness with different formulae. a) Eight different distributions
(colors) are plotted on the y-axis with performance values of a hypothetical phenotype on the x-axis.
b) Robustness of the generated data for each distribution was computed using Kitano's formula
(Equation 1), Yang's formula (Equation 2), and the formula based on the Fano factor (Equation 3,
Paper Il). Robustness is reported on the y-axis and the different distributions are denoted by different

colors.
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3.2.3 Robustness and tolerance

Exploration of robustness properties and definitions highlighted a discrepancy in
terminology. Earlier studies often used the term "robustness" when discussing what would
be more accurately described as "tolerance" (2). As elucidated in Review Paper |, tolerance
is defined as the ability of microorganisms to survive in the presence of specific stressors.
For example, tolerance to acetic acid refers to the maximum specific growth rate of strains
in increasing concentrations of acetic acid (134). The concept of tolerance is also relevant
in antibiotic resistance, whereby tolerant bacteria withstand increasing concentrations of
antibiotics. This phenomenon was vividly demonstrated in a compelling experiment
conducted by Baym and colleagues on a MEGA agar plate, on which bacteria were able to
grow at increasing concentrations of antibiotics (135). In contrast, robustness does not
specifically relate to survival and specific growth rate. Microbial robustness is indicative of
the stability of performance across a broad spectrum of concentrations, perturbations, and
phenotypes (Review Paper I: Figure 2).

Tolerance can be studied by measuring different phenotypes, including the specific
growth rate in the presence of different concentrations of chemicals. In Figure 3.4.a depicts
robustness for strains with similar or different specific growth rates and tolerance. The same
data from section 2.3.3 (specific growth rates of two S. cerevisiae strains CEN.PK113-7D
and PE2 grown at four concentrations of different chemicals) were used to evaluate
tolerance and robustness. Their maximum specific growth rates are shown in Figure 3.4.b
for three different growth conditions and four concentrations of chemicals. Notably, when
evaluating robustness across different concentrations of the same stressor, the specific
growth rate of PE2 remained relatively consistent in the presence of acetic acid; whereas
that of CEN.PK113-7D was stable in the presence of glucose alone. The specific growth
rates of both strains decreased in the presence of HMF; although CEN.PK113-7D was more
tolerant because it survived at higher concentrations of HMF than PE2. Robustness
quantification offered a more general depiction of strain stability across concentrations for
all fourteen tested conditions, something not possible with tolerance studies. In the above
case, robustness of the specific growth rate calculated with Equation 3 revealed that P2
was more robust than CEN.PK113-7D (-0.16 vs -0.26 respectively).
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Figure 3.4: Robustness vs tolerance. a) Growth curves (biomass vs time) refer to two different

yeast strains, M1 and M2, cultivated in the presence four different concentrations of a specific
inhibitor (different hues). The left graph illustrates robustness, with similar specific growth rates; the
right graph showcases a less robust strain, tolerant to the inhibitor up to concentration 4. b) Maximum
specific growth rate of two S. cerevisiae strains, CEN.PK113-7D (pink) and PE2 (brown)(y-axis) with
respect to four different concentrations of three inhibitors (different facets)(x-axis). Robustness
calculated across four concentrations for each condition and each strain is shown above the bar
plots.

3.2.4 Robustness quantification using available datasets

The quantification formula (Equation 3) can be used to measure robustness of strains
cultivated under diverse conditions, exploiting publicly accessible datasets (19,136,137). In
this thesis, Equation 3 was applied to evaluate the robustness of five distinct phenotypes
across 24 S. cerevisiae strains and 29 conditions (section 2.4: Dataset 1). However,

41




Chapter 3. Microbial Robustness

acquiring data, particularly through high-throughput methods, is resource-intensive and
time-consuming, even if numerous cultivations can be carried out in parallel. Numerous
datasets containing diverse phenotypic information are available publicly, enabling the
identification of robust strains within specified perturbation spaces. Additionally, robustness
quantification applied to yeast deletion libraries can identify specific gene deletions that
confer heightened robustness, as demonstrated in Paper IV (113).

To prove the flexibility and potential to identify strains with robust phenotypes,
Equation 3 was employed on a published dataset encompassing 1011 S. cerevisiae strains
(section 2.4: Dataset 4) (56). The dataset comprised 971 strains, which were grown on
agar plates and analyzed in terms of produced biomass across 36 conditions (Figure 3.5)
(56). These strains were sourced from 369 distinct locations, representing 24 ecological
origins and 312 geographical origins. The top three most robust strains had been isolated
from wine amphoras in Georgia. Strains isolated from fermentation environments and palm
wine displayed the highest mean robustness; whereas laboratory strains and bioethanol
strains exhibited the lowest (Figure 3.5). The tested conditions in this dataset encompassed
temperature, sugars, ethanol, salts, metals, and antifungal agents, thereby covering a wide
range of perturbations.

The relationship between robustness and ploidy was also investigated with the same
dataset (Figure 3.5, right part). Diploid strains exhibited the highest mean robustness,
although at higher ploidy values, R values showed less variation and lower means
(potentially due to fewer data points available for those categories). Application of Equation
3 to the dataset described above, with 1011 strains (section 2.4: Dataset 4) revealed that
higher ploidy was not necessarily associated with higher robustness, as observed also
when plotting robustness data from the evolution experiment in Paper V. There, the haploid
parental strain, S288C, exhibited higher robustness than the Ethanol Red diploid strain
when grown across 20 different media. Given that robustness is associated with genetic
and metabolic redundancy, having more copies of certain chromosomes should imply
higher robustness (Review Paper I). Nevertheless, even if redundancy implied higher
robustness, regulatory networks and gene expression patterns would play a role in the
robustness of phenotypes in haploid vs polyploid strains.

Utilizing Equation 3 with available datasets enables the identification of strains highly
robust across various origins and facilitates the correlation between strain property (for
example ploidy) and robustness. Comparable investigations can be conducted using
different datasets, such as those containing information on single-cell phenotypes. These
studies serve to evaluate population heterogeneity or screen for potential genes associated
with robust characteristics (Paper IV and section 3.2: Table 3.1).
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Figure3.5: Robustness of produced biomass for 1011 S. cerevisiae strains. Robustness of each
of the 1011 strains from Dataset 4 was computed using Equation 3 across 36 perturbations and
plotted against various ecological origins (x-axis, left graph) or ploidy (x-axis, right graph). The mean
robustness for each ecological origin or ploidy is shown by the dark red dot.

3.2.5 Combined effects of perturbations on robustness

Perturbations are indispensable when measuring robustness, as demonstrated by their
influence on the same strains (Paper lll: Figure 1; Paper IV: Figure 6) (7,128). The
evaluation of robustness is contingent upon the number and nature of perturbations tested,
underscoring the importance of conducting a thorough investigation of the perturbation
space before undertaking robustness calculations. Even when many perturbations are
tested, including those with low probability of occurrence, removal or addition of pertinent
perturbations in a specific process step or environment offers a versatile tool that can be fit
to different scenarios. Furthermore, the analysis of a wide range of perturbations could be
indicative of a more general robustness mechanism that is not necessarily tied to a
perturbation space. A discussion on which perturbations to incorporate into the perturbation
space has been addressed in Paper lll (Figure S2).

Robustness mechanisms are linked to perturbations in three distinct ways:
i) they evolved from previous exposure to similar stressors
ii) they arose from exposure to different stressors
iii) they exist without having any direct association with the perturbation (8).

In the third case, there are only minimal differences in robustness among perturbation
spaces, as shown for CEN.PK113-7D met28 in Paper IV. Moreover, as discussed in
section 2.2, both the frequency and magnitude of perturbations have an impact not only on
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performance but also on robustness. While laboratory environments often simplify complex
real-world conditions by breaking them down into single relevant perturbations, it is
important to acknowledge that combined effects between compounds can significantly
influence microbial performance (Figure 2.10).

To illustrate the effect of combined perturbations on robustness, the same dataset in
which CEN.PK113-7D and Ethanol Red were grown in different combinations of two or three
inhibitors and the maximum specific growth rate was calculated (section 2.4: Dataset 2;
Figure 2.10), was employed to calculate robustness using Equation 3 (unpublished data).
Combined effects were simulated by substituting the two individual perturbations with their
synergistic action. When examining the combination of NaCl and formic acid, the two single
perturbations were excluded from the perturbation space and were replaced by the
performance measured in medium containing both stressors. Robustness of the specific
growth rate was then quantified using Equation 3 (Figure 3.6).

The trends observed for robustness of the maximum specific growth rate mirrored
those seen for overall performance (Figure 2.10), with a noticeable drop in robustness when
all three inhibitors were present simultaneously, in particular when combining ethanol with
acids, aldehydes, or NaCl. These findings suggest that a high-throughput setup, which tests
only single perturbations, may need to be supplemented with combinations of different
perturbations to provide a more realistic depiction of robustness in complex environments.
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Figure 3.6: Effect of combined perturbations on robustness. Robustness of the specific growth
rate was computed using Equation 3 and is plotted on the y-axis. Two strains, CEN.PK113-7D and
Ethanol Red, are represented by different colors. Robustness was calculated across combinations
of two or three perturbations, as plotted on the x-axis. In the control strains, robustness was
calculated only for individual perturbations, as shown in the right “C” panel.

3.3 Robustness vs performance

Equation 3 was designed to quantify robustness according to the definition given in Review
Paper | and reported in section 3.1.1. However, its formulation (Paper Il) entails that strain
performance is not depicted in the formula (high robustness can result both from strains
with high or low performance). For instance, biomass data from Peter et al. (2018), who
cultivated 1011 yeast strains isolated from different locations and in 36 distinct conditions
on agar plates (56) (section 2.4: Dataset 4), were used to calculate robustness with
Equation 3. When plotting robustness against performance, the data revealed that most
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strains exhibited an average mean performance clustered around a robustness value of -
0.4 (Figure 3.7). These plots offer a clearer view of which strains exhibit the highest
robustness, performance or a good balance between the two (see section 3.3.2 for detailed
optimization analyses). For example, strains CAQ and CAB, isolated from wine preserved
in amphoras in Georgia, display the highest robustness but an average mean biomass
around 0.3 (values normalized to growth on YPD). Conversely, strains CQG, BMK, BMH,
CQH, and BMF, isolated from cocoa bean fermentation in West Africa and clinical samples
in Italy, exhibit some of the highest performance and robustness. Finally, SACE_GAP and
ACQ isolated from wine in Chile and Russia exhibited the highest performance. These plots
can also be used to investigate potential trade-offs between properties.

O bestR O bestP () optimalRand P

CAB, wine, Georgia ) . CQG, cocoa, West Africa
@CAQ wine, Georgia \ BMK, human, ltaly
M%BI\;H_ human, Italy

Y
\&\BMF human, UK
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Figure 3.7: Robustness vs performance for 1011 S. cerevisiae isolates. A total of 1011 yeast
strains were cultivated across 36 conditions, and the produced biomass was calculated. Robustness
was computed across the 36 conditions for each strain using Equation 3 and plotted on the y-axis
against the mean performance of each strain (x-axis). Three shaded areas identify strains with high
robustness, performance or with the best compromise between robustness and performance. The

code identifying each strain, together with the ecological and geographical origin, is provided (56).
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3.3.1 Trade-offs

By plotting robustness against performance (Figure 3.7), it becomes apparent how most
strains engage in a trade-off between high performance and robustness of the same
phenotypes. A system cannot maximize all objectives (e.g., specific growth rate, product
yield, biomass, and specific growth rate across many conditions) simultaneously due to both
biological and thermodynamic constraints (138,139). Trade-offs can arise among
performance values of different phenotypes as well as between performance and
robustness of the same phenotype (Paper lll). In large-scale production settings,
microorganisms often exhibit a trade-off between production and growth. Typically, after a
certain number of generations (often around 100), high-producing cells are outcompeted by
non-producing ones. The latter generally display higher specific growth rates, probably due
to mutations that have been selected for phenotypes other than product yields (140).

Past studies have revealed a trade-off across 62 fungal species between the rate of
hyphal growth and the production of melanin, a compound in the cell wall of fungi, which
provides resistance to UV light, desiccation, pathogens, and osmotic stress (141). Trade-
offs have been observed in bacteria between lag phase and specific growth rate in
fluctuating environments (142). Trade-offs between the rate of ATP production and its yield
in heterotrophic organisms have revealed even more intricate mechanisms such as the
transition from unicellular to multicellular organisms following a rise in ATP yield during
respiratory metabolism (143). Moreover, a trade-off exists between the maximum specific
growth rate per individual r and the carrying capacity (biomass yield) K, and is known as the
1/K selection theory (144).

The trade-offs listed in the previous examples have been supported by phenotypic
data collected in this thesis; they include specific growth rate, lag phase or cell-dry weight
(Paper lll: Figure S1). The trade-offs observed using data from Paper lll, with 24 strains
cultivated in 29 conditions (section 2.4: Dataset 1) revealed a positive correlation between
end of cultivation cell dry weight and the maximum specific growth rate. Interestingly, this
pattern, which is the opposite of a trade-off, became more pronounced under stressful
conditions, such as exposure to ethanol and aldehydes (Paper lll: Figure S1). This confirms
previous observations, where positive correlations were detected in stressful environments,
while trade-offs were seen in nutrient-rich media such as YPD (144).

The dataset generated in Paper V, was used to further investigate trade-offs (section
2.4: Dataset 6). The dataset contained information on generation time (transformed in
maximum specific growth rate) and produced biomass of the parental strains Ethanol Red,
CEN.PK113-7D, and S288C cultivated in 20 different media on agar plates. Spearman
correlation coefficients between the two phenotypes for each group of conditions, were
calculated (Figure 3.8). In line with what observed above with Dataset1, negative
correlations were only observed in the case of Ethanol Red cultivated with HMF and
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CEN.PK113-7D cultivated without pH buffering or trace metals. Therefore, positive
correlations in this case were observed not only in the case of stressful environments but
also in control conditions such as Delft with 2% glucose.
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Figure 3.8: Correlation between maximum specific growth rate and produced biomass in three
S. cerevisiae strains. The produced biomass was plotted on a logarithmic scale (y-axis) against the
maximum specific growth rate (x-axis) for three S. cerevisiae strains (colors) and seven groups of
conditions (columns). Each facet displays the Spearman correlation coefficient rho "p". The
significance was not represented but the p-value was < 0.0001 for all correlations except for Ethanol
Red and S288C in the “other” group, whereby the p-value was not significant. A linear regression
line denotes the direction and strength of the correlation. The data are extracted from the parental
strains phenotypic assays (Paper V).

Trade-offs were observed with respect to performance of different phenotypes but
also between robustness and performance of the same phenotype, as discussed in Paper
lll. However, contrary to expectations based on existing literature, data from various
phenotypes revealed that trade-offs between performance and robustness were not always
present. In some cases, such as the specific growth rate, the correlation between
performance and robustness was positive, likely due to evolutionary mechanisms that have
optimized both properties (Paper Ill). While correlation studies can provide valuable insights
when assessing large datasets with phenotypic data, it is important to remember that these
studies are limited to the experiments performed and should not be relied upon solely as
evidence of trade-offs or to confirm causal mechanisms.

48



Chapter 3. Microbial Robustness

3.3.2 Pareto fronts

A useful tool to investigate trade-offs and multi-optimization strategies among different
quantities is Pareto optimality. The Pareto front is a geometrical shape that represents
Pareto optimality and has often the shape of a curve. It can be used in multi-objective
optimization studies to identify the best possible compromise between conflicting objectives,
such as performance and robustness (145-147). Based on Figure 3.7, in which the
performance and robustness of produced biomass were plotted for 1011 S. cerevisiae
strains (56) (section 2.4: Dataset 4), a Pareto front was plotted by delineating the
dominance region of the plot, i.e., where one variable dominated or had greater influence
over another variable (Figure 3.9). The Pareto front links two archetypes, representing the
maximum of each property: one strain with maximum performance (ACQ: isolated from
Russian wine) and another with maximum robustness (CAB: isolated from Georgian wine),
via a line connecting all other strains that exhibit varying degrees of optimization between
the two properties. In this context, the same results indicated by circles in Figure 3.7, were
now emphasized by the Pareto Front.

Pareto optimization strategies applied to genome-scale metabolic models have been
used before to propose gene knockouts that would improve both specific growth rates and
product biosynthesis (148). Pareto front analysis has been instrumental in understanding
why certain E. coli strains were not optimized and, therefore, did not appear on the Pareto
front. The strains prioritized robustness in environments subjected to perturbations,
optimizing for stability over peak performance. Specifically, these cells adjusted their
metabolic flux to sustain growth across various conditions, which resulted in a compromise,
whereby they were not as close to the Pareto front (149). Robustness has not been yet
integrated in the Pareto optimization analysis. Now, typical optimization studies are
performed between microbial production and growth, for example. Coupling Pareto
optimization with conditional robustness algorithms (technique that quantifies how
perturbations affects cellular parameters and metabolic outputs of biological networks)
could optimize robustness objectives together with performance in different perturbation
spaces.

The phenotypic data (produced biomass vs maximum specific growth rate) of 1044
strains from Paper V grown in 20 conditions on agar plates (section 2.4: Dataset 6) was
exploited to show the application of the Pareto front in dynamic settings. In this case,
evolved S. cerevisiae strains displayed different Pareto fronts for the traits produced
biomass and generation time. The shift in the Pareto front showed that cells had adapted
over time, not only in terms of produced biomass or specific growth rate, but certain
populations had successfully optimized both variables simultaneously.
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Figure 3.9: Pareto front for robustness and performance of produced biomass by S.
cerevisiae strains. A total of 1011 yeast strains were cultivated across 36 conditions, and the
produced biomass was calculated relative to the produced biomass on YPD agar. Robustness was
computed across the 36 conditions for each strain using Equation 3 and plotted on the y-axis against
the mean performance of each strain (x-axis). The best robustness or performance and the best
compromise between the two were previously identified by the shaded area in Figure 3.7. The Pareto
front is highlighted by a line and the best, optimal strains in terms of robustness and performance
corresponds to the points along this line. The code identifying each strain, together with the ecological

and geographical origin, is provided (56).

In Figure 3.10 the Pareto front was built using only the parental strains (left) and then
only the evolved strains (right). A comparison of the plots from parental or evolved strains,
highlighted the shift in the Pareto Front. For Ethanol Red, the Pareto front was almost
identical in the two cases, indicating that the strain did not further optimize its performance
(as concluded in Paper V). By confronting the Pareto front of different strains both before
and after evolution we might be able to gain insights on the strain adaptability, as reported
previously in S. cerevisiae (150). Furthermore, by including a high variety of strains (e.g.,
Dataset 4 (56)), showcasing natural diversity in the Pareto front analysis, it might be
possible to delineate realistic biological limits to optimization, which could direct strain
design towards tolerance and even simultaneous optimization of different traits.
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Figure 3.10: Dynamics of Pareto fronts with parental and evolved S. cerevisiae strains. The
maximum specific growth rate (x-axis) is plotted against the produced biomass (y-axis) for three S.
cerevisiae strains (each row). The panels to the left show the parental strains’ fitness; those to the
right show the evolved strains’ fitness. The Pareto front for both parental and evolved strains is
represented by a continuous line joining together large dots. The dotted horizontal line for each strain
indicates where the Pareto front of the parental strain was superimposed on the evolved strains’
graph, and the black arrow points to the shift in the front after evolution.

Main Points from Chapter 3

e The Fano factor-based quantification is preferred to others as it is frequency
independent, dimensionless, and free from arbitrary control conditions.

¢ The quantification formula can be used for many applications, for example to
study trade-offs or to identify strains with robust phenotypes for industrial
purposes.

e Pareto fronts are a useful tool to identify strains that show the best compromise
between two traits or objectives, such as performance and robustness.
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Chapter 4. Microbial robustness concepts
applied to evolution and genomics

Chapter 4 presents a summary of how genetic markers linked to microbial robustness can
be identified. Genetic markers were derived from existing literature and by applying
Equation 3 to different screens of yeast deletion collections. The latter part of the chapter
discusses the evolution of microbial robustness, and employs fitness landscapes as a
theoretical framework to elucidate evolutionary outcomes. Additionally, the chapter touches
on history-dependent behaviors in relation to the results presented in Paper lil.

The development of a methodology to quantify microbial robustness has enabled its
quantification across different strains and perturbation spaces. While previous chapters
primarily explored robustness in terms of measurable phenotypes such as specific growth
rates or produced biomass during cultivation; this chapter focuses on the intracellular
aspects of robustness. Equation 3 was applied to yeast deletion libraries containing fithess
data to explore metabolic hot spots connected to robustness in different perturbation spaces
(Paper IV). Additionally, it allowed the investigation of how different evolution set-ups
influenced the robustness of produced biomass by three S. cerevisiae strains (Paper V).

4.1. Genetic markers of microbial robustness

The stability of microbial phenotypes across diverse environmental settings (i.e.,
robustness) is achieved via a collaborative action of core intracellular mechanisms,
spanning from complex metabolic pathways and their regulation to gene expression and
transcription-related events (8). Microbial robustness is characterized by three principles: i)
redundancy, ii) modularity, and iii) control strategies (as discussed in Review Paper 1:
Figure 1). Redundancy refers to different genes and metabolic pathways covering the same
function (151). It can also refer to the complex wiring of different transcription factors.
Transcription factors are proteins that bind to a specific DNA sequence and regulate the
rate at which genetic information is transcribed from DNA to mRNA. For example, single
transcription factors may bind to the same regulatory DNA element or, conversely,
transcription factors from different families may interact with a single regulatory element
(152). Modularity refers to the modular organization of biological networks (153). Control
strategies, such as feedback loops, detect variation in a specific output and apply a
corrective action in the input, which immediately compensates for the sensed variation
(154). Examples of feedback loops adopted as a control strategy are the lactose operon in
E. coli or galactose utilization in S. cerevisiae (155). These characteristics act together,
making it difficult to pinpoint specific pathways or genes that could be uniquely responsible
for robustness.
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4.1.1. Previously investigated markers

Previous studies have reported a variety of genes, which act as “robustness factors” or
“phenotypic capacitors” to ensure low phenotypic variability across perturbations. One of
them is heat shock protein 90 (Hsp90), a molecular chaperone and key regulator of
proteostasis under both standard and stressful conditions. Chaperones interact with other
proteins to make them functionally active. Hsp90 is involved in protein folding, binding of
ligands to their receptors, and assembly of multiprotein complexes (156,157). Studies on
Hsp90 from Arabidopsis and Drosophila have shown that its disruption correlates with
higher phenotypic variation (158). However, due to lack of comparison with other genes and
poor understanding of Hsp90 buffering mechanisms, further investigation of Hsp90 and its
ability to lower phenotypic variance is needed (7).

More recent studies have used high-throughput approaches to assess morphological
changes in single-gene deletion strains and discover phenotypic capacitors (159). Siegal et
al. identified phenotypic capacitors enriched in the following Gene Ontology terms:
chromosome organization, DNA integrity, RNA elongation, and response to stress. The
identified capacitors include CCR4, whose deletion caused irregular colony morphology
(160), SWI6, whose deletion caused variability in cell size in liquid media (161), and FUS3,
whose knockout shows cell-to-cell variation in response to pheromones(162). Furthermore,
the same study revealed that phenotypic capacitors acted as hubs (i.e., highly connected
nodes) in protein-protein interaction networks. Hsp90 and its homologue Hsp70-SSE1 are
both phenotypic capacitors and network hubs. It has also been shown that deletions or
mutations of network hubs relate with specific growth rate variation in E. coli in response to
different environmental perturbations (163).

To dive into the discovery of robustness markers, | applied Equation 3 on publicly
available yeast deletion collection screens to quantify their robustness.

4.1.2 Yeast deletion collections: a tool for identifying robustness
markers

The findings from this thesis and previous research suggest there are no universal
regulators of microbial robustness (164). However, applying Equation 3 to single-deletions
libraries could reveal unknown genetic or metabolic determinants of robustness. In this
regard, datasets from yeast knockout (YKO) libraries, as well as other phenotypic datasets,
have proven valuable in elucidating genotype-to-phenotype relationships, phenotypes
correlations, and transcriptional responses to various stressors (139,165,166). Hence,
perturbation experiments, in which different strains or YKO collections are exposed to
multiple perturbations, remain a primary tool for exploring the mechanistic basis of
robustness.
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A dataset containing more than 4000 single-gene deletions in S. cerevisiae (derived
from strains BY4741 and BY7092) was grown under 14 conditions to investigate genes and
mechanisms correlated with robustness (113)( (Paper IV) (section 2.4: Dataset 3). The
robustness quantification formula (Equation 3) was applied to the dataset and fourteen gene
deletions with the highest or lowest values of either robustness or fitness were selected and
replicated in S. cerevisiae CEN.PK113-7D. The fourteen deletion mutants, the industrial
strain Ethanol Red, and the parental strain CEN.PK113-7D were grown in three distinct
perturbation spaces each with 16 perturbations (Paper IV). The three perturbation spaces
mimicked beer fermentation (beer perturbation space), 2G bioethanol production
(lignocellulose hydrolysate perturbation space), and the original conditions containing
antifungal agents and sugars (Costanzo perturbation space) (113). This strategy revealed
gene deletions that resulted in robust phenotypes in one perturbation space, but not in
others (section 2.4: Dataset 5).

Deletion of the SMA2 gene (Paper IV: Figure 6) resulted in a robust specific growth
rate in the beer and Costanzo perturbation space, but not in the lignocellulose hydrolysate
perturbation space. In contrast, deletion of MET28 (Paper IV: Figure 6) resulted in a robust
but overall lower specific growth rate in all three perturbation spaces. MET28 participates
in sulfur metabolism, influencing glutathione biosynthesis and other metabolic processes
such as DNA replication (167,168). Glutathione protects against oxidative stress during
lignocellulose ethanol production (169,170). Deleting MET28 destabilizes the Met4 complex
and sulfur metabolism in S. cerevisiae. At present, it remains unclear whether MET28 alone
contributes to robustness, because genes related to it, including CBF1 or MET4, were not
examined. Nevertheless, the findings in Paper IV suggest that sulfur metabolism may be
responsible for robustness mechanisms.

Akin to the approach taken in Paper IV, datasets featuring phenotypic data of YKO
strains grown under different experimental conditions can be used for robustness analysis.
Turco and colleagues published a collection of more than 14,500 YKO screens describing
6731 phenotypes and 7536 experimental conditions (171) and referred to it as the Yeast
Phenome. In one of these screenings, a subset of the YKO collection encompassing 604
single-deletion strains (114) (section 2.4: Dataset 7) was grown on synthetic complete
medium agar plates supplemented with 3 mM arsenite ([As lll]; NaAsO), 4 mM arsenite,
0.25ug/mL rapamycin, 400ug/mL paraquat (methylviologen; N, N-dimethyl-4-4'-
bipiridinium dichloride), 50 uM cadmium chloride or 1.25 M NaCl. Growth was monitored
using the scan-o-matic set-up (section 2.4: high-throughput methodologies) and the
produced biomass and doubling time were calculated from the resulting growth curves
(172).

When Equation 3 was applied to calculate robustness of the produced biomass and
generation time across the tested conditions (section 2.4: Dataset 7), some strains carrying
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single deletions displayed notably lower robustness than the parental strain (Figure 4.1.a).
One of them was oca1, which encodes a tyrosine phosphatase required for cell cycle arrest
in response to oxidative damage of DNA, and exhibited 86% lower robustness for
generation time than the wild-type strain. Two other candidates were met3, which
corresponds to an ATP sulfurylase, and rpS27a, which encodes a component of the small
(40S) ribosomal subunit (173—-175).

Robustness of produced biomass (from analysis of robustness using Dataset 7)
revealed two more targets for robustness: rpL27a and ssa, which encode a protein of the
large ribosomal subunit and a member of the Hsp70 family, respectively (176,177).
Although the mutants highlighted by robustness analysis of this dataset (section 2.4:
Dataset 7) differed from those studied in Paper IV, significant functional and regulatory
interactions were found among the translated proteins (e.g., Rps14a from Paper IV interacts
with Rps21a from Dataset 7 (114). The interactions were confirmed by the analysis
conducted with the STRING database. STRING systematically compiles genomic
associations and protein interactions, assigning confidence scores to assess their
significance, thus facilitating the understanding of protein networks and functional
relationships (178) (Figure 4.1.b).

Despite differences in the examined conditions between Dataset 7 and Dataset 5
(section 2.4), shared genes associated with robustness were identified. Sulfur metabolism,
heat shock proteins, and ribosomal proteins have emerged as the likeliest effectors of
robustness. In the above investigation, robustness was evaluated in terms of generation
time and produced biomass, with different genes identified for each phenotype. This finding
underscores the importance of examining different phenotypes, because various metabolic
processes may underlie robustness (as discussed in Papers Il and lll, as well as section
2.2.2). Additionally, such analysis could serve as a straightforward illustration of how
robustness quantification can be applied to YKO collections.
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Figure 4.1: Performance and robustness of single-deletion mutants and protein interactions.
a) Five mutant strains carrying a gene deletion plus the wild-type (x-axis) were plotted against the
performance (left) and robustness (right) of produced biomass and generation time (y-axis). The dots
correspond to the mean of replicates (n=468) in each environment. The mean of the six environments
is represented by a square. Hues represents the different perturbations. b) STRING network with
relevant robustness markers from Dataset 5, Dataset 7, and literature. Each circle represents a gene
and its translated protein, while the lines connecting the circles represent different types of

interactions (e.g., gene fusion, co-expression).

4.2 Evolution of microbial robustness

Section 4.1.2 showed how the investigation of robustness markers in YKO collections
pointed to potential key metabolic mechanisms. However, to gain a broader understanding
of robustness, extensive screenings across multiple conditions and phenotypes are
necessary. Analysis of more complex mechanisms is limited by the amount of deletions.
Consequently, in Paper V, the mechanisms underlying robustness were explored from an
evolutionary perspective. The hypothesis that served as the foundation for the experimental
design originated from the definition of robustness:
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If robust strains can consistently perform across various conditions, can fluctuating
environments serve as a selective pressure in evolving robustness within a laboratory
setting?

To address this hypothesis, three S. cerevisiae strains (S288C, CEN.PK113-7D
haploid, and Ethanol Red diploid) underwent evolution in both stable and fluctuating
environments for 300 generations. Then, the parental strains as well as the evolved
samples were assessed in terms of fitness (produced biomass) and the genome of all
evolved populations was sequenced (Paper V). To align with previous research on
evolution, in this section, the performance of a phenotype will be referred to as fitness.
Before delving into the results of the study, a brief overview of the method is provided.

4.2.1 Adaptive laboratory evolution

Adaptive laboratory evolution (ALE) is commonly employed in biological research to explore
evolutionary processes and to improve strain fitness. The fundamental principle of evolution
is that natural selection favors the survival and reproductive success of organisms best
suited to a given environment (179). As mutations accumulate over time, they alter the
fitness of a population. Mutations that negatively impact an organism's survival (deleterious
mutations) tend to be eliminated through natural selection; whereas those that have a
positive impact (beneficial mutations) are preserved. In reality, even though harmful
mutations are typically selected against; in some cases, beneficial mutations might also
mask deleterious ones. The emergence and maintenance of mutations is influenced by
several factors, including the effect on fithess of new mutations, population size, and ploidy
(180,181).

Microorganisms are particularly amenable to laboratory evolution owing to their large
population size (i.e., a larger number of individuals provides a greater chance for beneficial
mutations to arise and potentially be selected), fast specific growth rates, and ease of
cultivation (179). Different set-ups can be used in laboratory evolution experiments. Batch
transfers in ALE, whereby cell cultures are propagated in fresh media by serial dilutions,
can increase tolerance to specific stressors (18). In ALE experiments using batch set-ups,
the growth phase at the time of transfer influences the selected phenotype. Cells are
generally transferred in exponential phase to avoid long stationary phase adaptation, which
could give rise to mutants that are specialized in utilizing nutrients from dead cells (182).
Alternatively, cells can be maintained at constant specific growth rates inside chemostats,
where environmental variables are tightly controlled (183). Chemostat evolution with E. coli
om glycerol-limited environments has been used to improve its growth and biomass yields
on glycerol (184). In Paper V, batch transfers were used, cells were transferred in late
exponential phase or at the beginning of stationary phase. Given the variety of conditions
(15 distinct media) and the multiple strains involved, it was difficult to pinpoint the exact
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growth phase at transfer. In preliminary experiments, when the growth curve of each strain
was monitored under all conditions, the transfer was planned in mid-exponential phase.

Evolutionary experiments can enhance tolerance within a specific medium. Typically,
that is done by employing batch transfers with incrementally higher levels of the stressor.
Populations selected under these conditions evolve mechanisms that allow them to
withstand stressors, while proliferating at elevated specific growth rates. Adaptation to a
particular environment can hinder performance in a different setting (185) and has been
attributed to antagonistic pleiotropy (186). Trade-offs can be avoided by using fluctuating
environments. However, strains evolved under fluctuating conditions tend to exhibit lower
fitness across all environments, in contrast to those evolved under stable conditions (187).
Nevertheless, a recent study has demonstrated that, on rare occasions, fluctuating selection
can result in populations that are more fit to a certain environment than those specialized
for it (188). In Paper V, fithess data revealed that populations evolved under fluctuating
conditions exhibited higher fithess than those cultivated in constant environments.

4.2.2 Phenotypic assays in evolution experiments

The fitness of evolved populations can be assessed using various methods (189). The three
main indicators are maximum specific growth rate in different media, minimum inhibitory
concentration of stressors, and competition assays. Competition assays are favoured in
evolutionary biology because they account for variations throughout the culture cycle,
including lag phase and stationary phase dynamics, which are not captured by maximum
specific growth rate alone (189). However, these assays are challenging to perform when
using multiple replicates and high-throughput settings. In Paper V, phenotypic assessments
were conducted using a high-throughput platform called scan-o-matic (172) (section 2.4:
High-throughput methodologies). Briefly, this system enables parallel growth of 100,000
populations on agar plates (Paper V: Figure 1), which is its principal advantage over liquid
cultures and competition assays. Colony growth is tracked by scanners that record changes
in color and size, with spatial normalization to offset nutrient gradients on the plates (172).

During evolution experiments in this thesis work, which involved pL-volumes of liquid
cultures, phenotypic evaluations were preceded by comparisons of generation times in both
solid and liquid media (section 2.4: High-throughput methodologies) for randomly chosen
samples from the evolutionary plates of three S. cerevisiae strains. This test was performed
to determine if high-throughput phenotypic systems could be used to evaluate the fitness of
evolved samples, as liquid cultivation was not possible due to the high volume of samples
and conditions. Five media were tested: YPD, Delft, and Delft supplemented with either
acetic acid (0.2%), HMF (0.1%) or NaCl (2.5%). Solid media resulted in shorter and more
consistent generation times compared to liquid (Figure 4.2, unpublished data). This can be
explained by the cells initially sensing the stressor on the agar surface but, as colonies grow
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both outward and upward the concentration of the stressor for the cells inside of the colony
is lowered. Consequently, for the phenotypic assessments in Paper V, stressor
concentrations were higher than those used during evolution. Correlation tests, comparing
generation times on solid and liquid media from the phenotypic assays, suggested a
significant overall similarity (p-value < 0.001, unpublished data). Only Delft media exhibited
a weaker correlation. Given such significant correlations and the high-throughput set-up,
the scan-o-matic system was employed for phenotypic assays of evolved populations.
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Figure 4.2: Comparison of generation times in solid vs liquid growth. The generation time was
plotted on the y-axis for randomly picked evolved samples (Paper V) grown in liquid cultures (growth
profiler) and solid medium (scan-o-matic) (x-axis). Each panel represents a different strain. Various
colors denote different growth media.

4.2.3 Fitness and robustness in ALE

In my study, the scan-o-matic system was adopted to evaluate the fitness of evolved
populations across 20 diverse conditions, including those encountered during evolution and
others with higher concentrations of stressor (Paper V: Material and Methods) (section 2.4:
Dataset 6). Numerous conditions could be tested and a more reliable depiction of
robustness was achieved (Figure 4.3). Equation 3 was applied to compare the robustness
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of evolved samples and parental strains. Contrary to the hypothesis introduced in section
4.2, where robustness would always increase in evolution in fluctuating environments, the
results did not uniformly support an increase in robustness following evolution in fluctuating
environments. Specifically, while Ethanol Red exhibited higher robustness when evolved
under fluctuating conditions (Paper V: Figure 4); S288C and CEN.PK113-7D failed to
display a significant improvement, despite enhanced fitness after 300 generations (Paper
V: Figure 3 and Figure 4). The discussion in Paper V attributed the observed evolutionary
outcomes to strain genetic background, with ploidy likely playing a key role.
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Figure 4.3: Method for calculating robustness from the phenotypic assays of evolved samples
(section 2.4: Dataset 6). Evolved populations were cultured on agar plates in the scan-o-matic set-
up, with four replicates per condition and across 20 different media. Generation time (h) and
produced biomass were calculated from the growth curves. Robustness for each population/colony
was then quantified using Equation 3, based on fitness data gathered from all replicates.

Fitness landscapes offer a straightforward method for visualizing the evolutionary
trajectory and changes in fithess in relation to a strain’s genetic composition. These
landscapes are depicted in a three-dimensional plot, with all possible genomic sequence
combinations plotted across the x-y plane (genotypes), and fithess represented on the z-
axis. In the resulting landscape of peaks (high fitness) and valleys (low fitness), the former
correspond to high fitness (190). Landscapes take different forms in different environments.
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Every point on these landscapes represents a distinct genotype, with proximate points
sharing greater genetic similarity. Mutations drive the organism's evolution through this
landscape, typically culminating at a fitness peak during what is termed an “adaptive walk”
(191). In landscapes with multiple peaks, a cell population may settle on any peak, usually
the one nearest to their evolutionary starting point. In a specific environment, genotypes
with initially lower fitness often adapt more rapidly than their fitter counterparts (192). This
is attributed to the fact that fit phenotypes sitting at the top of the landscape's peaks are
less inclined to descend and traverse another adaptive route; whereas a less fit genotype,
possibly nestled in a valley, is more predisposed to adapt and ascend to a peak.

In the evolution experiment of Paper V, it is possible that Ethanol Red did not
significantly improve fitness because it was already near a fithess peak within each
evolutionary environment. Consequently, despite shifts in environments and corresponding
changes in fitness landscapes, Ethanol Red may have consistently occupied a position of
high fitness (light blue plane, Figure 4.4). During evolution, the strain reached a similar
fitness peak in all environments, explaining its strong overall robustness. Conversely,
CEN.PK113-7D and S288C showed no significant changes in robustness but increased
fitness by the end of evolution. This outcome could be explained by these populations
navigating toward different fitness peaks and achieving higher yet widely distinct fitness in
various environments (peaks of different heights), indicative of reduced robustness (light
violet planes at different levels in Figure 4.4). The use of fitness landscapes to explain
fitness and robustness accounts also for the initially greater robustness of the S288C strain,
attributed to its genotypes starting from a valley on the fithess landscape in all environments
(same fitness level).

To conclude, fitness-landscape representations can be used to explain evolution
trajectories that favor the emergence of robust phenotypes. Yet, they cannot be constructed
by relying uniquely on data from Paper V and without lineage tracking during evolution.
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Figure 4.4: Fitness landscapes and robustness. The top panels report the fitness landscape for
Ethanol Red. The x- and y-axes represent the genomic sequence space of all possible genotypes.
The z-axis indicates the fitness level for each genotype. The depicted landscape is one of many
possible configurations, characterized by varying peaks and valleys. The black dot pinpoints the
genotype's location at a selected evolutionary stage. The arrows show the evolutionary trajectory of
this genotype within the given environment. The plane serves to illustrate the fitness threshold at
which the black dot is positioned. The bottom panels report the fitness landscape for S288C or
CEN.PK113-7D, following the same conventions as for Ethanol Red. This landscape visualization
aids in understanding the evolutionary path and fitness level of a genotype at a specific point in its
evolution.

Monitoring of evolutionary progress in Paper V could have shed light on the genesis
of robustness mechanisms. However, this type of analysis was not feasible, as only end-
stage evolution samples were phenotyped and sequenced. Revisiting section 4.1.2, a
subset of the YKO collection was assessed at five different evolutionary time points (114)
(section 2.4: Dataset 7). Results indicated that evolution in constant environments tended
to improve fitness, as reflected by both generation time and yield (Figure 4.5). The only
exception was medium containing 50 uM CdClz, whereby fitness gains were not significant.
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