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A B S T R A C T   

Data are naturally collected in their raw state and must undergo a series of preprocessing steps to obtain data in 
their input state for Artificial Intelligence (AI) and other applications. The data preprocessing phase is not only 
necessary to fit input requirements but also effective in improving AI training efficiency and output accuracy. 
Data preprocessing is a time consuming and complex phase that lacks a unified and structured approach. We 
survey data preprocessing techniques under different categories to provide an extended and structured scope of 
data preprocessing relevant to numerical time-series data. We also provide an empirical analysis of the impact of 
preprocessing techniques on the quality of the data and on the performance of AI algorithms. In addition, we 
discuss the feasibility of distributing some of the surveyed techniques to the edge. Leveraging edge computing to 
distribute data preprocessing reduces the workload on central systems, creates more manageable data lakes, 
reduces the consumption of resources (e.g., energy) and enables EdgeAI.   

Introduction 

One can identify from literature a common understanding that data 
preprocessing is the set of operations that transform raw data into 
quality input data. It includes operations such as dimensionality 
reduction, normalization and outlier detection [3,59,92,167]. Pre-
processing data is necessary to obtain quality input and ultimately 
quality output, particularly for AI models and networks. To list a few 
challenges, raw data may be incompatible (in terms of size, format, etc.), 
biased, or may consist of outliers and redundancies. Even though they 
are not considered as quality issues, the heterogeneity and high 
dimensionality of data may impose further challenges. To perform 
analysis on data, it must first undergo several preprocessing operations. 
The required preprocessing tasks, their sequence, optimal location of 
execution, and parameters depend on many factors, including the type 
of data, the data source, system context, application, available re-
sources, and the type of algorithm consuming the data. There are also 
“individual factors”, such as the user’s experience in preparing data 
[107]. Data preprocessing is also typically tailored for a specific problem 
or application [54,110,139] and is initiated after the accumulation of 
raw data (batched), thus lacking standardization and being prone to 
errors and delays. This approach could result in repeating common and 
shared preprocessing tasks on the same data but for different 

applications. Accumulating raw data in a central system collectively 
wastes bandwidth (used to transfer raw data from sensors), storage, and 
other resources (time, energy, etc.), as raw data often include anomalies 
that fruitlessly consume these valuable resources. This may be tolerated 
to some extent, however, with the wide spread of IoT applications and 
devices, the accumulation of data collected from the edge and trans-
ferred to central systems have considerably higher impact on available 
resources and infrastructure. The automotive sector is a good example, 
where there is an imbalance between the volume of data sensed from 
vehicles and infrastructure’s capacities, in addition to the inherent 
limitations of batch technology [81]. Batch preprocessing raw data in a 
central system may take up to 80% of available resources [92,110]. 
While preprocessing data streams (i.e., as data is collected) close to the 
data source could improve efficiency and standardize shared pre-
processing requirements across different applications. Edge pre-
processing is also an intuitive approach to address private or biased data 
to fulfill regulations concerning privacy protection (e.g., GDPR) and 
fairness. 

This survey is a broad account of different types of preprocessing 
based on a holistic notion and an extended scope of data preprocessing. 
It is not limited to addressing data cleaning but also covers techniques 
that address other aspects such as sensor fusion and data compression. 
Fig. 4 introduces our holistic and standardized taxonomy of data 
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preprocessing. Also worth highlighting about the scope of the survey is 
that it focuses on techniques applicable to numerical time-series data. 
Our objective is to provide a practical data preprocessing guide for 
practitioners and academics alike. It is also the first survey to include 
experimental analyses of the impact of the tested preprocessing tech-
niques on both the quality of the data (model input) and the quality and 
accuracy of the extracted information (model output). For the empirical 
analysis, we used a real-world dataset and a use-case with controlled 
experimental setup and configuration. We also briefly discuss the 
feasibility of distributing some of the techniques to the edge for the 
aforementioned benefits. 

The survey is organized as follows: In Section 2, we define quality 
data and its characteristics. We describe our experimental setup and the 
selected real-world dataset in addition to our evaluation methods and 
metrics in Section 3. In section 4, we propose a broader definition of data 
preprocessing and present data preprocessing techniques under different 
identified categories. We also highlight dependencies between different 
data preprocessing categories in Section 5. Lastly, we conclude and 
present future research opportunities in Section 6. 

Characteristics of data quality 

Some of the characteristics of quality data mentioned in relevant 
literature include: clean, compatible, accurate, reliable, interpretable, 
complete, trustworthy, unbiased, secure, useful, valuable, easy to access, 
traceable, and timely [7,78,100,188]. Data with such characteristics 
contribute to the application’s performance and integrity and prevent 
errors from propagating through the dataflow pipeline, causing losses 
and delays. From a technical perspective, quality data contribute to 
better predictions and classifications and faster convergence (more 
efficient learning). From a business perspective, quality data result in 
more reliable decision-making, achieve legal compliance, and boost 
operations’ efficiency [141]. To obtain the aforementioned character-
istics, factors that hinder data quality must be addressed. These factors 
and challenges include outliers, missing instances, high dimensional 
data, variant scales, biased data, and sensitive or private data. Many 
techniques have been proposed by the research community to address 
each factor, with some challenges attracting more attention, such as 
missing data. This survey is comprehensive in the sense that it presents 
techniques for addressing different data anomalies and challenges. Thus, 
it is not limited to data cleaning but rather broadens the meaning of data 
preprocessing to cover categories that achieve wider characteristics of 
quality in data by addressing extended challenges found in the data. 
Each category is self-contained, with many categories having an exten-
sive research history and a wide range of proposed solutions by active 
research communities. 

Dataset and experimental details 

The preprocessing techniques are evaluated based on their impact on 
the data and their impact on the prediction model. Our selection criteria 

are based on choosing techniques of diverse types (univariate, multi-
variate, statistical ML, etc.). We used the same dataset, applied the same 
overall data preprocessing pipeline, and used the same evaluation 
strategy across all experiments within the categories covered in the 
survey. This was important to ensure consistency and control variations 
in the experimental environment. The evaluation strategy also involved 
training Long Short Term Memory (LSTM) networks using the dataset 
produced by each preprocessing experiment to evaluate the impact of 
the preprocessing technique on prediction quality and not just the data 
quality and characteristics. To control experimental variation, the same 
training configuration and evaluation metrics were used in all of our 
experiments. The following are the details of each of these empirical 
components: 

The dataset 

We used the real-world time-series AirQuality[193] dataset from the 
UCI Machine Learning repository. The dataset includes 9358 instances 
(1.3 MB) of hourly averaged values of 15 variables, including temper-
ature, humidity, and air pollutant chemicals, that were collected from 
sensors located in a polluted area in an Italian city between March 2004 
and February 2005. We selected the dataset because it consists of 
continuous sensor data and can be used to evaluate a wide range of 
regression preprocessing techniques, which is our focus, and classifica-
tion preprocessing techniques. The only limitation of the dataset for the 
purpose of this survey is that it cannot be used to evaluate privacy 
preservation techniques and debiasing techniques as it does not include 
protected or sensitive features. The dataset is a good example of sce-
narios where deploying preprocessing to the edge is feasible and intui-
tive. The dataset was divided so that 90% of the data is used for training 
while the rest is used for testing. From the 15 features in the dataset, we 
allocated the feature Carbon Monoxide (CO) as the response variable 
and the rest of the features as predictors. Models or networks trained 
would attempt to predict the values of CO from the predictors, which are 
the input used for training and predicting. As a future work, we wish to 
perform similar tests on several other datasets from different industries 
to confirm and generalize our conclusions. 

Standardized preprocessing of the dataset across all experiments 

To control variations in our experiments and for comparable results, 
we standardized the required preprocessing tasks across all experiments. 
As a default and for any dataset, the presence of anomalies, such as 
missing data and outliers, must be checked and handled. To avoid 
overfitting, we also normalized the scales of the different features and 
performed feature selection to select the most informative features. We 
tested multiple techniques for each category on the selected dataset and 
chose the techniques that yielded the best results. The preprocessing 
pipeline starts with replacing the reserved value ( − 200) for missing 
data in the dataset with NaN. This is followed by detecting outliers in 
each feature using the Grubbs outlier detection technique for normally 
distributed features and the Interquartile Range outlier detection tech-
nique otherwise. The outliers are replaced with estimated values using 
the imputation technique Cubic Spline Interpolation. The next anomaly 
addressed is the missing data anomaly. As proposed in [186], we 
differentiated between isolated and sequence missing instances and used 
an optimal technique for each. For isolated missing instances, we used 
Cubic Spline Interpolation to estimate the missing instances. For 
sequence missing data, we used Expectation Maximization (EM) to 
impute the missing data. For our dataset, the different attributes (fea-
tures) have already been fused into one dataset; however, in a real-world 
IoT scenario, a sensor fusion technique must be applied prior to EM as it 
is the first multivariate technique in the preprocessing plan. Finally, we 
applied multiple feature selection techniques, including Neighborhood 
Component Analysis and Laplacian Scores, and selected the top most 
common features. The Directed Acyclic Diagram (DAG) in Fig. 1 (see 

Fig. 1. The Preprocessing DAG.  
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appendix) represents the preprocessing plan used across the different 
experiments of the survey. At each category represented in the DAG (e. 
g., Missing Data Imputation), the default technique for all the experi-
ments is replaced with the tested techniques for evaluation and com-
parison, while the rest of the preprocessing categories of the DAG remain 
unchanged (with the same default technique). Categories not repre-
sented in the DAG (e.g., compression) are applied after the last node, 
after Feature Selection, as further preprocessing. 

The preprocessing pipeline presented in Fig. 1 is specific to this 
particular dataset and to our experiments. It was derived based on our 
experimental evaluations of different preprocessing techniques, 
including their applicability, and yielded results. For example, data 
debiasing and privacy preserving techniques were not applied as the 
dataset does not contain attributes that are explicitly or implicitly 
related to individuals. Fig. 1 does not represent the scope of data pre-
processing as presented in this survey, nor does it imply the order or 
depth of our survey and experimentations. We have covered more pre-
processing categories and techniques for both the survey and experi-
mental analysis. The preprocessing pipeline presented in Fig. 1 is merely 
for controlling and standardizing variations in our experiments. 

Empirical evaluation methods and metrics 

Evaluating the effectiveness of a preprocessing technique in 
addressing an anomaly in the data and its impact on the quality of the 
data (Input Quality) is not sufficient as the only evaluation component. 
For example, detecting potential outliers in a dataset using an outlier 
detection technique based on local or global value ranges that highlight 
extreme values at both ends is only one part of determining the per-
formance of the technique or the quality of the produced data. An 
extreme value may not necessarily be an outlier but rather provide 
important information about the real-world. The bottom line is that we 
want quality data because we want accurate predictions and valuable 
information obtained from the data. For such reasons and to help us 
assess the amount of information loss or accuracy gains that resulted 
from applying a preprocessing technique, we also evaluate the technique 
based on its impact on the prediction accuracy (Output Quality). For 
such purpose, we trained LSTM networks [87] that predict the values of 
Carbon Monoxide CO. LSTM is a recurrent neural network (RNN) that 
models sequential or time-series data with memory capacity to capture 
long term dependencies. LSTM was proposed to address the diminishing 
gradients issue suffered by RNN [87,176,178]. LSTM networks are 
proven powerful solutions for speech recognition, handwriting recog-
nition, and making predictions based on time-series data [24,31,62,70, 
133,202,208]. In addition, LSTM can be used for non-linear, non--
monotonic, and fluctuating data where historic information maintains 

its value [87]; making the LSTM algorithm a plausible choice for our 
experiments. 

We used MATLAB R2020b to conduct our experiments on two local 
machines. The LSTM network architecture consists of a sequence input 
layer, an LSTM layer with 200 hidden units, a fully connected layer, and 
a regression output layer. We trained the network using the Adaptive 
Moment Estimation (Adam) optimization algorithm with an initial 
learning rate of 0.005 and a maximum of 100 full passes through the 
entire dataset. 

We evaluated trained LSTM networks using three error metrics, 
namely Root Mean Square Error (RMSE), Mean Absolute Error (MAE) 
and Mean Absolute Percentage Error (MAPE), which are commonly used 
by the research community [75,105,127,146,188]. We denormalized 
the predictions and observations of the response variable to present the 
results on the original CO scale and thus obtain comparable results. We 
repeated each experiment at least three times. The averaged error metric 
results (the average result of the last three tests) for each experiment are 
presented in the tables that summarize the tested techniques. We also 
present the results visually using suitable plots for the different cate-
gories, which are included in the appendix. 

Figure 2 contains two plots representing the results of two experi-
ments. The one on the left plots the predictions of an LSTM network 
trained on the AirQuality dataset preprocessed according to the DAG 
shown in Fig. 1 and the one on the right plots the predictions of an LSTM 
network trained on data with minimum preprocessing to remove the 
NaN values using Cubic Spline Interpolation. The later experiment 
required the removal of the NaN values to avoid errors in training; 
otherwise, the data are kept in their original state. The values of the 
error metrics on the plots are from the last test conducted. The average 
errors of the last three tests for the experiment where the complete DAG 
is applied are: 0.32 for the RMSE metric, 0.23 for the MAE metric, and 
25.26% for the MAPE metric. While the average errors of the last three 
tests for the experiment where the DAG was not applied are: 0.60 for the 
RMSE metric, 0.45 for the MAE metric, and 51.41% for the MAPE 
metric. The prediction accuracy difference between the two LSTM net-
works is significant, with the network trained on the DAG preprocessed 
data yielding error reductions of ~ 46.66% in the RMSE value, ~ 
48.88% in the MAE value, and of ~ 50.87% in the MAPE value. The 
observations (blue lines in 1) between the two experiments vary slightly 
because the data in the experiment represented by the left plot under-
went several preprocessing steps (see 1) that included replacing outliers. 

Data preprocessing 

Our objective is to cover as many techniques as possible under each 
identified category and sub-category. Given the time constraint, 

Fig. 2. LSTM Performance Trained on Preprocessed Data (Left) and Trained on the Original Data.  
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however, covering all techniques under some categories and sub- 
categories is not feasible. Our selection criteria prioritize techniques 
recommended by the research community [4,59,60,137] and recom-
mended or practically validated by industry (site MATLAB, Google, 
Scikit, etc.). Thus, selected techniques may not necessarily be considered 
state-of-the-art, but instead they are recognized and proven to be 

impactful and effective in practice. Our selection criteria are also gov-
erned by the availability of the technique in MATLAB or by a third-party 
library developed for MATLAB, especially for categories and 
sub-categories that included an empirical analysis. We also selected 
techniques that are applicable to numerical time-series data. Under each 
category and sub-category, we start with the simplest techniques or 
technique types and gradually present more complex techniques. We 
also mention some state-of-the-art solutions and highlight techniques 
that are proposed for distribution to the edge. Our search criteria 
included “missing data imputation”, “outlier detection”, “data dis-
cretization”, “feature selection”, “feature reduction”, “sensor fusion”, 
“data sampling”, etc. The research databases used for our search 
included “IEEE Xplore”, “ACM Digital Library”, “a-z.lu”, “ScienceDir-
ect”, etc. We selected techniques based on the following criteria:  

(1) Techniques that are thoroughly tested and extensively used by 
academics, researchers and practitioners.  

(2) Techniques applicable on time-series numerical data.  
(3) Techniques with the potential of being effectively distributed to 

the edge. 
(4) For the empirical analysis, use techniques with available imple-

mentation details or existing libraries in MATLAB.  
(5) Techniques that are state-of-the art and at least satisfy point 2 and 

for the empirical analysis, also satisfy point 4. 

Criterion 4 stated above ensures the reproducibility of our test results 
as the same implementations of different preprocessing techniques are 
readily available for us and for other researchers and evaluators. Most of 
the preprocessing techniques used and tested in both parts of the survey, 
including those that are part of the generalized preprocessing plan are 
available by default or as libraries in MATLAB R2020b. Using the 
selected dataset, which is publicly available [193], and applying the 
generalized preprocessing plan of our empirical analysis, presented in 
Fig. 1, one can obtain results similar to our results that are presented in 
this extended survey. Tables 1, 2 list the techniques we cover in depth or 
with an empirical evaluation and highlight the extended categories we 
cover in this survey. For a comprehensive view of the data preprocessing 

Table 1 
Sample of Preprocessing Techniques Covered in The Survey.  

# Technique Category Input Type Tested  

1 Min-Max Scaling Normalization Univariate Yes  
2 Z-score Normalization Univariate Yes  
3 Robust Standardization Normalization Univariate Yes  
4 P-Norm Normalization Univariate Yes  
5 Decimal Scaling Normalization Univariate Yes  
6 Log-scaling Normalization Univariate Yes  
7 Box-Cox Transform Normalization Univariate Yes  
8 Ignore Missing Missing Data Univariate No  
9 Reserved Value Imputation Missing Data Univariate No  
10 Mean or Median Imputation Missing Data Univariate Yes  
11 Piecewise linear interpolation 

(LI) 
Missing Data Univariate Yes  

12 piecewise cubic spline 
interpolation 

Missing Data Univariate Yes  

13 Autoregressive (AR, MA, 
ARMA & ARIMA) 

Missing Data Univariate No  

14 Vector Autoregressive (VAR) Missing Data Multivariate No  
15 Hot Deck and Cold Deck 

Imputation 
Missing Data Multivariate Yes  

16 Expectation Maximization Missing Data Multivariate Yes  
17 Linear regression and 

Stochastic Linear Regression 
Missing Data Multivariate No  

18 K-Nearest Neighbor (kNN) 
Imputation 

Missing Data Multivariate No  

19 Support Vector Machines 
(SVM) Imputation 

Missing Data Multivariate Yes  

20 Long Short Term Memory 
(LSTM) Imputation 

Missing Data Multivariate No  

21 Multiple Imputation (MI) Missing Data Multivariate Yes  
21 Hybrid Missing Type Based 

Approach 
Missing Data Dependent Yes  

22 Median Absolute Deviation 
(MAD) 

Outlier 
Detection 

Univariate Yes  

23 Grubbs Test Outlier 
Detection 

Univariate Yes  

24 Generalized Extreme 
Studentized Deviate (GESD) 

Outlier 
Detection 

Univariate Yes  

25 Interquartile Range (IQR) Outlier 
Detection 

Univariate Yes  

26 Minimum Covariance 
Determinant 

Outlier 
Detection 

Multivariate No  

27 Olive-Hawkins estimate Outlier 
Detection 

Multivariate No  

28 Local Outlier Factor (LOF) Outlier 
Detection 

Multivariate No  

29 Density-Based Spatial 
Clustering of Applications 
with Noise (DBSCAN) 

Outlier 
Detection 

Multivariate Yes  

30 Isolation Forest (iForest) Outlier 
Detection 

Multivariate Yes  

31 One Class Support Vector 
Machine (OCSVM) 

Outlier 
Detection 

Multivariate No  

32 Kalman Filter (KF) & 
Unscented KF 

Sensor Fusion Multivariate No  

33 Particle Filter (PF) Sensor Fusion Multivariate No  
34 Dempster-Shafer Sensor Fusion Multivariate No  
35 Equal-Width Binning Discretization Univariate Yes  
36 Equal-Width Binning Discretization Univariate Yes  
37 Gaussian Approximation Discretization Univariate Yes  
38 K-means Discretization Discretization Multivariate Yes  
39 Shared Nearest Neighbor 

(SNN) 
Discretization Multivariate No  

40 Self Organizing Map (SOM) Discretization Multivariate Yes  
41 Class-Attribute Contingency 

Coefficient (CACC) 
Discretization Univariate No  

42 Chi-Merge Discretization Univariate No  

Table 2 
Preprocessing Techniques Covered in Survey - Continued.  

# Technique Category Input Type Tested  

43 Class-Attribute 
Interdependence 
Maximization (CAIM) 

Discretization Univariate No  

44 Low Variance Filter Feature 
Selection 

Univariate No  

45 Correlation-based Feature 
Selection (CFS) 

Feature 
Selection 

Multivariate No  

46 F-test Feature 
Selection 

Univariate Yes  

47 Relief & RReliefF Feature 
Selection 

Multivariate Yes  

48 Laplacian Score Feature 
Selection 

Univariate Yes  

49 Neighborhood Component 
Analysis (NCA) 

Feature 
Selection 

Multivariate Yes  

50 Minimum Redundancy and 
Maximum Relevance (mRmR) 

Feature 
Selection 

Multivariate No  

51 Genetic Algorithm Feature 
Selection 

Multivariate No  

52 Principle Component Analysis 
(PCA) 

Feature 
Extraction 

Multivariate Yes  

53 Linear Discriminant Analysis 
(LDA) 

Feature 
Extraction 

Multivariate Yes  

54 Piecewise Aggregate 
Approximation 

Compression Bivariate Yes  

55 Piecewise Linear 
Approximation 

Compression Bivariate Yes  

56 Gorilla compression Compression Multivariate Yes  
57 ZIP / deflate Compression Multivariate Yes  
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categories, we included Fig. 4 in the appendix, which is the first data 
preprocessing taxonomy that we have proposed towards normalizing 
and unifying the definition and practices of the data preprocessing 
phase. 

Normalization 

par Impact: Normalization is a preprocessing step crucial and 
effective for distance based algorithms including K-Nearest Neighbors 
(K-NN), K-means clustering and Support-Vector Machine (SVN) as it 
prevents biases towards features with higher magnitudes. It also accel-
erates the convergence of gradient descent in linear regression, logistic 
regression and artificial neural networks as it generates a cost function 
with circular contours making the path to a global minimum more 
direct. Principle Component Analysis (PCA) used for feature extraction 
is an example where normalizing features before being used as input for 
the algorithm is essential to the performance of the algorithm. This is 
because normalization would prevent features with wider scales from 
dominating the direction of maximum variance and consequently being 
determined by PCA as more important features. 

Normalization equalizes the influence and importance of feature 
scales and thus prevents wide ranges or higher magnitudes from having 
greater influence on learning [3,26,78,109]. In [185], empirical results 
presented indicate that standardization reduces the interquartile range 
of transmission time and predication time, in other words more stable 
and persistent transmission and prediction durations. 

Definition: Normalization techniques rescale the values of numeric 
features to produce features with similar range of scale. It is applicable 
on multiple features datasets that have significantly different scales. 

Techniques: Several normalization techniques exist that can be used 
on numerical sensor data at the edge using local or global data statistics. 
An overview of tested techniques can be found in Table 3. In P-Norm 
normalization, each element is scaled between the range zero to one 
using the magnitude measures L1-norm (Manhattan distance) or L2- 
norm (Euclidean distance) [4]. Min-Max is a scaling technique that 
can be used when the upper and lower bounds of the dataset are known 
with few or no outliers and the data are approximately uniformly 
distributed across the minimum and maximum range. Min/Max scales 
each feature between the range {0,1} using its minimum and maximum 
values [4,59,69]. Log scaling is effective with datasets that have 

Table 3 
Tested Normalization Techniques.  

Technique Formula Property Results 

Min-Max 
x′i =

xi − min(X)
max(X) − min(X)

Gaussian Distributions, Known Minimum and Maximum, Sparse Values RMSE    

0.46    
MAE    
0.29    
MAPE    
30.46% 

Z-score x′i =
xi − μ

σ 
Minimum Outliers, Non-gaussian Distributions RMSE    

0.35    
MAE    
0.25    
MAPE    
27.26% 

Robust Standardization x′i =
xi − median
Q75 − Q25 

Tolerates Many Outliers RMSE    

0.38    
MAE    
0.25    
MAPE    
27.57% 

P-Norm x′i =
xi

[
∑N

k=1
⃒
⃒xk|

p
]

1
p 

Tolerates Outliers RMSE    

0.57    
MAE    
0.46    
MAPE    
49.75% 

Decimal Scaling x′i =
xi

10k 
Known Maximum, Preserves feature values RMSE    

0.45    
MAE    
0.30    
MAPE    
32.42% 

Log Scaling x′i = loga(xi) Power Law distribution, Non-negative Values RMSE    
0.52    
MAE    
0.36    
MAPE    
33.77% 

Box-Cox 
x′i =

⎧
⎨

⎩

xλ
i − 1

λ
if λ ∕= 0

ln(xi) if λ = 0 

Skewed and Poisson Distributions, Non-negative Values RMSE    

0.48    
MAE    
0.31    
MAPE    
28.55%  
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dominant values while the rest of the values have few data points. Such 
dataset is not linear but follow the power law distribution (heavy-tailed 
distribution). Linearization of the power law distribution is possible by 
taking the logarithm of variables with skewed distributions to compress 
the range of large values and expand the range of small values thus 
transforming the distribution closer to a gaussian distribution [4,69]. 
Box-Cox transform [17] is a power transform and a generalization of log 
scaling that creates a monotonic transformation and a distribution more 
resembling to normal distribution to stabilize variances. Power trans-
forms also improve the validity of association measures between vari-
ables such Pearson Correlation. Similar to log scale, Box-Cox transform 
only works with positive values. The transformation or power parameter 
(λ) is chosen using maximum likelihood, goodness-of-fit or Bayesian 
methods. If λ is zero then log scaling is applied on the target variable [4, 
17]. 

The equation demonstrating how the new distribution is obtained 
can be found in Table 3. Standardization (z-score) transforms data with 
Gaussian distributions to a standard distribution with zero mean and 
unit variance (standard deviation of 1) [3,69,78]. It is effective on data 
distributions that exclude extreme outliers [69] and used for algorithms 
that assume gaussian distribution of the input data such as linear and 
logistic regressions. For image data, the mean can be calculated per 
image or for the whole image set. Z-index uses the mean (μ) and stan-
dard deviation (σ) of the dataset to standardize each element. Using the 
mean absolute deviation instead of the standard deviation provides 
more robustness to outliers because the deviations from the mean are 
not squared thus reducing the effects of outliers [59]. Robust stan-
dardization is used to standardize datasets with outliers as the technique 
ignores outliers in the calculations by using the median (Q50) and the 
interquartile range (Q75 − Q25) [166]. Decimal scaling reduces decimal 
values to be less than one by moving decimal points based on the 
maximum absolute value to the left [4,78]. Decimal scaling transforms 
the scale range to [-1,1] and keeps the original values of the features but 
with decimal points shifts. Z-score and robust standardization can be 
deployed to the edge and executed efficiently due to their low compu-
tational and storage requirements. Normalizing streaming data at the 
edge is challenging as the data are volatile with evolving statistical 
properties [146]. To overcome this challenge authors in [73,146] pro-
posed adaptive normalization. This approach uses fixed-sized sliding 
windows, a concept popular in data streaming, to compute statistics 
within each window and thus consider seasonality and volatility. Most 
of the normalization techniques discussed (z-score, Min-Max, etc.) are 
also reversible; meaning the original values can be restored in the cloud 
if the statistical properties used at the edge are available. Thus, we 
recommend moving adaptive normalization to the edge to be executed 
by smart sensors or other smart devices. It is also important to mention 
that multiple different normalization techniques can be used sequen-
tially on the same data to achieve different effects. For example, using 
Box-Cox to change the data distribution of features (e.g., to a gaussian 
distribution) and Z-score to change the scale of features. 

Normalization functions are simple. Apart from traversing the con-
tent (tuples) of a window, they do not involve looping, recursion or 
matrix operations. Thus, they can be distributed to small edge compo-
nents for execution (Raspberry Pi, smart sensors) without overloading 
the components. The parameters of normalization techniques (e.g., the 

mean and standard deviation for the z-score) are extracted during AI 
training. The same parameters from training are then used for testing 
and operations (on new data). These characteristics render normaliza-
tion ideal for distribution to the edge where they can be applied 
immediately as the data are collected. The distributed transformation is 
perfumed using pre-defined parameters with the possibility of per-
forming regular parameter updates to reflect changes in the data and 
application. In our experiments [184,185], we distributed min-max and 
z-score and thus proved the feasibility of distributing normalization 
techniques to the edge. The experimental results also highlighted the 
normalization techniques’ impact in controlling and reducing variations 
in transmission time and bandwidth usage. 

Empirical Results: The graphs in Figs. 5 and 6 show the impact of 
the normalization techniques on the distribution and scale of the data 
while graphs in Fig. 7 demonstrate the impact of the different techniques 
on the performance of the LSTM networks. The different tested tech-
niques generate different scales. Min-Max produces the same scale (0, 1) 
for all features while the rest of the techniques produce similar scales for 
the different features. Log Scale and Box-Cox also change the distribu-
tion of features and can be used to obtain gaussian distributions for 
features with other distributions and where the predictor model assumes 
gaussian distribution of the data. Standardization (z-score) and robust 
standardization generated LSTM networks that produced the most ac-
curate predictions as shown in Table 3; compared to an average RMSE of 
~ 0.69, average MAE of ~ 0.57 and an average MAPE of ~ 59% when 
the input data are not normalized. Yielding an improvement in accuracy 
by ~ 49% for RMSE, ~ 56% for MAE and ~ 54% for MAPE when using z- 
score to normalize the data compared to unnormalized. 

Data cleaning 

Impact: Anomalies in data could result in errors in the value 
extraction process or misleading and incorrect information and in-
ferences about the real-world resulting in costly consequences. In 
addition, anomalies may propagate the dataflow pipeline and their 
presence and impact can be amplified in results and models thus the 
need to address them thoroughly and early in the pipeline. 

Definition: Data Cleaning is the process of identifying and handling 
anomalies that render the data of poor quality including missing data, 
outliers and noisy data [59,92,116]. 

Missing data impact 
The missing data problem is one of the most common data quality 

problems found in sensor data. The presence of missing instances hin-
ders the performance of models, causes errors (e.g., NaN propagation) 
and introduces biases [59,109]. Statistical operations are not feasible 
with null values. Using reserved values and categories to represent 
missing data leads to biased outputs and misleading results [79]. There 
are three types of missing data:  

• Missing Not At Random (MNAR): the probability of a missing value 
depends on the unobserved variable value [46,157]. For example, 
the probability of missing temperature values is dependent on 
whether the unobserved values are higher than a maximum 
threshold or not. 

• Missing At Random (MAR): the probability of a missing value de-
pends on other observed variable(s) [46,157]. For example, the 
probability that temperature values are missing in a sensor network 
is dependent on high humidity values observed.  

• Missing Completely At Random (MCAR): The probability of missing 
value is independent from observed and unobserved values [46, 
157]. For example, all the temperature sensors in a sensor network 
has a missing value rate of 7%. 

Figure 3 provide further illustration of the difference between the 
three missing data types and their mathematical formula. 

Fig. 3. Dissertation Structure.  
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Missing Data Techniques: A plethora of techniques exist to handle 
missing data making it an extensively researched area. Tables 4 and 5 
provide a summary of tested missing data techniques and their empirical 
results. The theoretical analysis in the next paragraphs cover more 
techniques. We refer to the paper [1] for a comprehensive survey on 
Imputation techniques dedicated for IoT. 

Univariate techniques only consider the variable to be pre-
processed for missing data. The most trivial technique sample dropping 
or Ignore Missing (IM), which discards entire rows containing missing 
values [59,78,109]. IM is a simple solution, however similar to random 
sampling, it is effective when the complete observed sample represents 
the original or entire dataset. IM is recommended when data are MCAR 
as removing incomplete samples would not introduce biases [59,78]. 
The number of variables and the percentage of missing values are also 
factors in determining the applicability of IM. Dropping rows with one 
missing variable and several observed variables 

(e.g., 20 observed features) results in significant loss of information 
even when IM would result in the removal of less than 10% of the 
samples. 

Another approach to handle missing data is to recover the missing 
values via substitution or estimation. This approach is called missing 
data imputation. Techniques under this category are more effective as 
they retain all samples and attempt to produce a plausible recovery of 
the missing instances. Imputing missing values with reserved categorical 
or continuous values is the simplest univariate imputation technique. It, 
however, introduces biases and reduces the variability of the dataset [3, 
116]. Using the next or previous values are also traditional imputation 
solutions. Their use is limited as they are not effective in exerting pat-
terns and seasonality. 

Using the mean, for normal distributions, or the median, for skewed 
distributions, to fill missing instances are popular univariate imputation 
techniques [3,109,116,157]. The mean or median imputation, however, 
results in an underestimated variance when the dataset consists of many 
missing instances and adds biases when used on data that are MAR or 
MNAR [46,157]. 

Piecewise linear interpolation (LI) is often used for time-series linear 
data to find a missing value between two points. For non-linear data, 
piecewise cubic spline interpolation (CS) could provide more accurate 
results and it is relatively more efficient than polynomial interpolation. 
The cubic spline and both its first and second derivatives are continuous 
functions providing for a smoother curves thus better approximations 
for non-linear data [160]. 

Another class of univariate imputation techniques is stationarity 
models for time-series data. To build models (e.g., linear regression) 
under this category, stationarity in time-series data must be strong or 
weak. Strong stationarity is when moving a window across the dataset 
yields similar distributions while a weak stationarity would yield a 
similar mean and finite covariance. Stationarity models include the 
Autoregressive (AR) technique which uses observations from a previous 
time step to predict a missing or unknown value of the next time step. 
Previous observations are called value lags and can span one or n lags(s). 
The notation AR(n) indicates the number of previous lags considered. 
Assuming AR(1), then each observation xt is dependent on the previous 
observation xt− 1 and consecutively, instance xt− 1 is dependent on xt− 2; 
repeating this calculation recursively until reaching the first observa-
tion. This makes AR a long memory model, in which all value lags have 
an effect on predicting the missing or unknown value but the effect is 
reduced with older value lags. Moving Average (MA) Models, replace 
value lags with error lags, other literature call them innovations, and 
thus predicting a missing or unknown value depends on n previous error 
lag(s) of previous predictions. MA is a short memory model as older 
error lags stop having an effect on predictions with time. Autoregressive 
Moving Average Model (ARMA) includes both AR value lags and MA 
error lags thus it is a short and long memory model. Data with trends, 
seasonality and volatility shifts are not stationary and thus AR, MA and 
ARMA are not applicable. Using differencing removes trends and 

Table 4 
Tested Missing Data Imputation Techniques.  

Technique Formula Property Results 

Mean 
Replace each missing instance with: μ =
∑n

i=1xi

n 
where n is the number of 

instances 

Constant, 
Statistical 
Based 

RMSE    

0.54    
MAE    
0.37    
MAPE    
39.03% 

LI Given (x0, y0) and (x1, y1), find the 
missing attribute y of instance (x, y) via: 

y =
y0(x1 − x) + y1(x − x0)

x1 − x0 

Linear Data, 
Statistical 
Based 

RMSE    

0.47    
MAE    
0.30    
MAPE    
34.84% 

CS Given the cubic polynomials pk(x) on 
intervals xk, xk+1, a cubic spline (S) is 
interpolated under the conditions:   

1) Each polynomial pass through its 
endpoint pk(xk) = akx3 + bkx2 + ckx 
+ dk = yk AND pk+1(xk+1) = ak+1x3 

+ bk+1x2 + ck+1x + dk+1 = yk+1  

2) The first derivatives at the middle 
points match (continuous at S′): 
p′k(xk+1) = p′k+1(xk+1)

3) The second derivatives at the middle 
points match (continuous at S″): 
p″k(xk+1) = p″k+1(xk+1)  

4) The second derivatives at the end 
points are equal to 0 p″1(1) = 0 & 
p″m− 1(xm) = 0 where m is the 
number of points 

Gaussian 
Distribution, 
Statistical 
Based 

RMSE    

0.49    
MAE    
0.32    
MAPE    
35.60% 

Hot Deck  1) Find similar instances S = s1, s2, …, 
sn in the datasetD. E.g., such that If 
si&sj ∈ S ⇒ si(Month) = sj(Month)  

2) Take the average value of the similar 
instances to impute the missing: 

smissing(Temperature) =

∑n
i=1si

n  3) Repeat for all missing instances. 

Nearest 
Neighbor 
Approach, 
Statistical 
Modeling 

RMSE    

0.49    
MAE    
0.33    
MAPE    
35.46% 

EM Given the observed values (X), the 
missing values (Z) are computed via:   

1) Initialize (θ): θ = θt  

2) E-step: Z(t) = E(Z∣θ(t), X)  
3) M-step: θt+1 = argmaxθQ(θ, θt) When 

Q(θ, θt) =
∑

Z
p(Z

⃒
⃒X, θt)logp(X, Z|θ)

(discrete) or Q(θ, θt) =
∫

p(Z
⃒
⃒X, θt)

logp(X,Z|θ) dZ (continuous) and 
where (t) is the iteration count.  

4) Iterate steps 2) and 3) until ∣θt+1 −

θt∣ < threshold.  
5) Impute missing data: Z = E(Z∣X, 

θoptimal). 

Exponential 
Family 
Distributions, 
Statistical 
Based 

RMSE    

0.34    
MAE    
0.23    
MAPE    
27.17%  
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seasonality, however this requires an additional preprocessing step. 
Autoregressive Integrated Moving Average Model (ARIMA) includes the 
additional differencing step to achieve stationarity followed by fitting an 
ARMA model. Other disadvantages of ARMA and ARIMA models include 
the challenge of choosing optimal parameters and their tendency to 
overfit the data [16,192]. 

Multivariate techniques use multiple features (predictors) to esti-
mate the missing instances of the response variable. Vector Autore-
gressive (VAR) is a generalization of the AR model for multivariate time- 
series data. VAR model includes the value lags of the response variable, 
the value lags of the predictors and the error lags. Several estimators can 
be used to estimate the regression coefficients including Maximum 
Likelihood and Bayesian analysis [77,122]. VAR as an imputation 
technique is only applicable on stationary time-series data. 

Hot deck imputation finds complete samples where the predictors 
have similar values and calculate the mean or median of their response 
variable values to fill the missing instances [78,107,109]. Given it is a 
multivariate technique, hot deck imputation is computationally more 
expensive than univariate techniques, which corresponds to more 
computational and storage capacities as requirements when choosing a 
deployment edge device. It underestimates standard errors and produces 
bias estimates [49]. Cold deck imputation is a variation of Hot deck 
where samples are taken from a different dataset. 

Expectation Maximization (EM) is a traditional multivariate impu-
tation technique that finds the Maximum Likelihood Estimate (MLE) or 
the maximum a posteriori (MAP) estimate from datasets with missing 

values or models that depend on latent variables. In this context there 
are two unknowns, the missing values and the parameters (θ), i.e., mean 
(μ), covariance (ϵ) or standard deviation (σ), of the probability distri-
bution. EM algorithm tackles the problem by initializing the parameters 
with plausible values and iterating through two steps; the Expectation 
(E) Step and the Maximization (M) Step. The E-Step computes the 
expectation of the posterior distribution of the missing values given the 
observed values and the initialized parameters [11,37,59]. It uses the 
initialized parameters to build models (e.g., stochastic regression 
models) to predict the missing values from observed values [49]. The 
M-Step maximizes the expected value of the log likelihood based on the 
complete data obtained from the E-Step [37,49]. EM iterates the E-Step 
and the M-Step until convergence; that is when changes in θ values are 
zero or smaller than a threshold. The optimal parameters (θoptimal) are 
then used to impute the missing values as the last step. EM algorithm is 
used as an imputation technique for data missing at random (MAR) and 
performs best on datasets with exponential family probability distribu-
tions (e.g., normal, exponential, gamma, etc.). Under these conditions 
EM provides less biased results compared to the techniques previously 
discussed. It can be used to impute missing values of discrete and 
continuous data and it is simple and easy to implement [44,59]. Datasets 
with large number of variables and missing values result in a slower 
convergence of the EM algorithm and increased probability of getting a 
local maximum rather than the global maximum and thus the MLE is not 
guaranteed. EM can also suffer from overfitting and its performance 
depends on the initialization of the parameters [44,46,59]. 

Table 5 
Tested Missing Data Imputation Techniques - Continued.  

Technique Formula Property Results 

SVM Training: find the cost function f(x) s.t., regularized hinged loss function using the training dataset.   

1) The Primal Formula: w∗ =
1
2

w′w + C
∑N

n=1
(ξn + ξn∗) where w* is the margin to be optimized, ξn and ξn* are the slack 

variables that allow for soft margins, N is the number of instances and C is the regularization variable that controls sensitivity 
to errors and avoids overfitting.  

2) Dual Formula: A Lagrange function is constructed from the primal function to facilitate the optimization problem by finding 

the coefficients that minimize: L(α) = 1
2
∑N

i=1

∑N
j=1

(αi − αi∗)(αj − αj∗)G(xi, xj) + ε
∑N

i=1(αi − αi∗)
∑N

i=1yi(αi∗ − αi) where αn and 

αn* are non-negative multipliers for each instance xn and G(xi, xj) = e− ||xi − xj||2 
is the kernel function that maps the instances 

into higher dimensional space to obtain a nonlinear SVM regression model. The dual formula is subject to the following 
constraints:  
a) 

∑N
n=1(αn − αn∗) = 0  

b) ∀ n: 0≤αn≤C  
c) ∀ n: 0≤αn*≤C  

3) The solver algorithms above are computed iteratively until convergence via a convergence criterion: Δ =
w ∗ +L(α)

w ∗ +1
<

threshold Predicting: missing values are imputed via: f(x) =
∑N

n− 1(αn − αn∗)G(xi,xj)+ b 

Non-linear Modeling 
technique 

RMSE    

0.48    
MAE    
0.33    
MAPE    
35.24% 

MI with 
(PMM) 

Imputation:   

1) I-Step: Yt*P(Ymis∣Yobs, θt− 1*)  
2) P-Step: θt*P(θ∣Yobs, Yt− 1*) 
Repeat the imputation phase m times Analysis: Perform regression analysis on m datasets. Pooling: ̃θ =

1
m
∑m

i=1
θ̂i , pooling the 

standard errors requires the following:   

1) Within imputation variance: VW =
1
m
∑m

i=1
SE2

t  

2) Between imputation variance: VB =
1

m − 1
∑m

i=1
(θ̂i − θ̃)2  

3) Pooled standard error: SEp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

VW + VB +
VB

m

√

Apply the above steps to pool the covariance matrices. 

Non-Gaussian 
Distribution 

RMSE    

0.42    
MAE    
0.29    
MAPE    
31.13%  
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Machine learning (ML) models and Artificial Neural Networks (ANN) 
as imputation techniques have recently gained the attention of the 
research community. Linear regression is used to impute missing values 
of continuous data. It involves using a complete-case subset and esti-
mating the regression coefficients for each covariate. The fitted model is 
then used to predict the missing values of the response variable. In 
deterministic regression imputed values have high correlation with the 
observed values of the predictors. This overestimation of correlation 
translates to lack of variability and substantial biases that would 
otherwise not be present should the data be available (not missing) [3, 
49]. Stochastic regression adds noise to each imputed value to increase 
variability and reduce biases. The noise is a random selection from a 
sample of residuals (residual distribution) of the regression model. The 
residual distribution is a normal distribution with mean of zero and 
variance equal to the residual variance. Stochastic regression under-
performs if applied on datasets with heteroskedasticity, where the 
variance of errors is not constant along the regression line. Imputation 
via stochastic regression attenuates standard error as it ignores addi-
tional sampling error introduced from missing values [46,49]. 

K Nearest Neighbor (kNN) imputation has two variations; kNN 
classification for discrete data and kNN regression for continuous data. A 
distance metric (e.g., Euclidean, Manhattan, Mahalanobis, Minkowski, 
etc.) is used to determine feature similarity between samples and 
together with the k parameter, the neighbors for a given sample is 
determined. A kNN model is constructed from the training set based on 
the predictors and the specified k value. The model is then used to 
predict the missing values of the response variable. The k parameter is 
key to the prediction accuracy. Small k values render predictions subject 
to distortion caused by noise and outliers while too large k values 
diminish categories with small number of samples and increases biases. 
In kNN regression, the imputed value of a response variable is the 
average of neighbor values. kNN is a robust and effective imputation 
technique given the right k value. Its performance, however, suffers with 
large datasets as it traverses the entire dataset to calculate distance 
based similarities. A kNN classifier must be created for each variable 
with missing values that require imputation [46,59]. 

Support Vector Machines (SVM) is a multivariate and non-linear 
modeling technique with two variations; SVM regression (SVR) to 
impute missing instances of continuous variables and SVM classification 
(SVC) to impute missing instances of categorical data. The technique is 
recommended when non-linear relationships exist in datasets. SVM at-
tempts to learn the decision boundary of the training data by fitting a 
partition hyperplane, or hypersphere depending on the dimensionality, 
that maximizes the margin of separation from the origin. For non-linear 
classification and regression, the data are implicitly mapped into a 
higher dimensional feature space by using non-linear kernel functions 
[172,217]. Examples of Kernel functions include polynomial kernel, 
gaussian radial basis function kernel and sigmoid kernel. The implicit 
mapping of data avoids actual transformation to the higher dimen-
sionality feature space but rather computes the inner product in the 
feature space by evaluating the kernel function thus improving 
computational efficiency and space usage [78]. The quadratic problem 
is solved by using Lagrange multipliers and setting the derivates of the 
equation’s variables equal to zero [172]. SVM performance deteriorates 
with larger number of variables. Choosing the kernel function is 
dependent on the dataset and application. 

Long Short Term Memory (LSTM) is a recurrent neural network 
(RNN) that models sequential or time-series data with memory capacity 
to capture long term dependencies. LSTM was proposed to address the 
diminishing gradients issue suffered by RNN. A central feature of LSTM 
is the Constant Error Carousel (CEC), which is the control of the error 
flow that prevents diminishing gradients thus bridging long time lags (e. 
g., 1000 time steps). LSTM maintains an internal state via recurrently 
connected memory blocks. Each block contains one or more memory cell 
(s) with recurrently connected CEC. The CEC is extended with three 
gates called input, output and forget gates. The forget gate limits 

internal state growth thus discarding obsolete information. The output 
and input gates control access to constant error flow through the CEC 
thus controlling retention degree of the current state and the flow of 
information passed forward [176,178]. In recent years, several solutions 
have been proposed that extend LSTM to address missing data specif-
ically massive missing percentage of data or large blocks of data in 
time-series [56,176,215]. LSTM can be used as multivariate imputation 
technique for non-linear data where historic information maintains its 
value. LSTM produces relatively better results with non-monotonic and 
fluctuating data, however, it is a complex algorithm that does not yield 
optimal results in all forecasting time-series applications as demon-
strated by the authors of [62]. Authors of [56] proposed an LSTM based 
model to address MNAR instances of massive volumes. They incorpo-
rated forward and backward time intervals and the missing rate of the 
response variables in their model, thus increasing its adaptability to 
massive data and improving its imputation accuracy. In [130], authors 
proposed a hybrid LSTM that performs bi-directional imputations. The 
empirical evaluation of their method indicate improved imputation 
accuracy and better restoration of information; however, the improve-
ment range is wide and is dependent on experimental and contextual 
details. 

Other types of ANN were exploited to impute missing data including 
in [22] where authors proposed a Generative Adversarial Network based 
imputation method and in [95] where a Convolutional Autoencoder 
based model was proposed to impute missing instances. To obtain more 
accurate imputations, ensemble imputation techniques, which uses 
multiple ML techniques, were proposed such as Random Forest [78,89, 
179]. 

Multiple Imputation (MI) [168] differ from the previous techniques 
discussed in that each missing value is imputed with multiple values 
generating multiple datasets with different plausible values for the 
missing data. Thus, MI techniques explicitly account for uncertainty 
associated with missing data. MI is divided into three phases; the 
imputation phase, analysis phase and pooling phase. The imputation 
phase consists of two steps the I-Step and the P-Step. The I-Step predicts 
the missing data from the observed data using a model with a stochastic 
component such as stochastic regression. The P-Step is a Bayesian 
analysis that uses the imputed dataset from the previous step and a priori 
model as prior belief to describe the posterior distribution of the pa-
rameters. Using Monte Carlo sampling or Markov Chain Monte Carlo 
(MCMC) methods, new estimate parameters (mean vector and covari-
ance matrix) are randomly drawn from the estimated posterior predic-
tive distribution. The new parameters randomly differ from the 
parameters of the previous iteration and are used in the next iteration of 
the I-Step to obtain a model with new regression coefficients and thus 
estimating new imputations and creating a new imputed dataset. The 
imputation phase is repeated m times to create m different imputed 
datasets. Choosing the right m value depends on the percentage of 
missing instances in the dataset and the size of the dataset. In the 
analysis phase, m sets of parameter estimates and standard errors are 
obtained from the m imputed datasets using, for example, regression 
analysis. The pooling phase, involves combining the m parameter esti-
mates into a single parameter estimate by taking, for example, the 
average. It also involves pooling the standard errors into a single stan-
dard error via, for example, Rubin’s combining rules [46,49,180]. Pre-
dictive Mean Matching (PMM) is a variation of MI that imputes missing 
values of variables that are not normally distributed. During the impu-
tation phase, predictions are made for both missing instances and 
observation and a pool of k potential replacements (donors) are defined 
for each missing instance. Donors are determined by selecting obser-
vations with predictions close to the prediction of the missing instance. 
A donor is then selected randomly from the k donor list and its obser-
vation value is used to impute the missing instance. The process is 
repeated for each missing instance [142]. MI avoids underestimating the 
standard error because the technique counts in the additional sampling 
error caused by having missing values. It is effective on data missing at 
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Table 6 
Tested Outlier Detection Techniques.  

Technique Formula Property Results 

MAD  1) Find: MAD = b × Median(∣x − μ∣)  
2) Detect outliers using the range: μ − (threshold × MAD) < x < μ + (threshold × MAD) 

Symmetric Distribution, 
Statistical Based 

RMSE    

0.37    
MAE    
0.25    
MAPE    
28.91% 

Grubbs For each potential outlier i ∈ I perform the following hypothesis test: H0: There are no outlier in the dataset H1: There is 
exactly one outlier in the dataset   

1) Find the Grubbs test statistic (two-tailed): Gtest =
maxI

i
⃒
⃒Yi − Ŷ

⃒
⃒

s 
where Ŷ is the mean and s is the standard deviation.  

2) Compute the critical value (Gcritical) via: 
N − 1

̅̅̅̅
N

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

t2α∕(2N),N− 2

N − 2 + t2α∕(2N),N− 2

√
√
√
√ ), where tα∕(2N),N− 2 is the upper critical value of 

t-distribution with N-2 degree of freedom.  
3) Reject the null hypothesis if Gtest > Gcritical. 

Gaussian Distribution, Statistical 
Based 

RMSE    

0.32    
MAE    
0.22    
MAPE    
26.70% 

GESD  
1) Given rcycles, calculate the z-index of each element in xto find the Max z-index for each cycle: TiMax =

|x − μ|
σ  

2) Calculate the critical value of cycle i: λi =
(n − i)tn− i− 1,p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n − i − 1 + t2n− i− 1,p)(n − i + 1)

√ , where i = 1, 2…, r and 

p = 1 −
α

2(n − i + 1)
(pth percentile of distribution t.H0 is rejectedwhen TjMax > λj. 

Gaussian Distribution, Statistical 
Based 

RMSE    

0.34    
MAE    
0.23    
MAPE    
27.82% 

IQR  1) Find the first quartile (Q1), the median (Q2) and the third quartile (Q3) of feature j of the dataset.  
2) The interquartile range is: IQR = Q3 − Q1  

3) An instance i is detected as an outlier if: xij > UpperBound = Q3 + (1.5 × IQR) or xij < Lowerbound = Q1 − (1.5 ×
IQR) 

Non-Gaussian Distribution, 
Statistical Based 

RMSE    

0.35    
MAE    
0.24    
MAPE    
28.41% 

DBSCAN  1) Find neighborhood for each point: ∀ p ∈ D, Nϵ(p) = {q ∈ D∣dist(p, q)≤ϵ}  
2) Find core points: CO = {q ∈ D|‖Nϵ(p)‖ ≥ MinPts} Given {p ∈ D|p ∈ Nϵ(q)&‖Nϵ(q)‖ ≥ MinPts} then directReach(p, 

q) is satisfied and given ∃ p1, …, pn where p1 = q, pn = p such that directReach(pi+1, pi) then, reach(q, p) is satisfied 
and given ∃ v where reach(v, p) and reach(v, q) then, densityConnected(p, q) is satisfied.  

3) Find the clusters (C): ∀ p, q ∈ D, if q ∈ C & reach(q, p), then p ∈ C ∀ p, q ∈ D, if densityConnected(p, q) then, p, q ∈ C 
Outliers are defined as: {p ∈ D∣p ∕∈ Ci ∀ i = 1, …, k} 

Unsupervised, Density Based RMSE    

0.55    
MAE    
0.37    
MAPE    
37.96% 

IForest Given the dataset X = {x1, x2, …, xn}   

1) Build k iTrees from a sample X′ of Ψ instances by recursively splitting X′ using a randomly selected feature q and a 
split value p. Repeat until the node has one instance or all instances have the same value. The number of external 
nodes will equal to Ψ.  

2) The path (h(x)) of each instance in each iTree is computed. The path is the number of edges x traverses in an iTree 
starting from the root node until the traversal is terminated at an external node.  

3) Find the anomaly score (s) from h(x) values obtained from k iTree: s(x,Ψ) = 2
−
E(h(x))

c(Ψ) where c(Ψ) =

2H(Ψ − 1) −
2(Ψ − 1)

n
for Ψ > 2

1 for Ψ = 2

0 otherwise 

When s is close to 1 then x is likely to be an anomaly. 

Unsupervised, Projection Based, 
Non-Linear Outliers 

RMSE    

0.38    
MAE    
0.26    
MAPE    
23.26%  
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random if the influencer variables are included as input for the MI al-
gorithm. MI is computationally intensive and requires large storage 
capacity as it generates m imputed datasets from originally large dataset 
which makes it an expensive technique [46,49,180]. As such, MI may 
not be deployable to edge components with limited computational and 
storage capacities. 

In [186], authors conducted an empirical analysis to evaluate the 
performance of different imputation techniques on isolated and 
sequence missing instances. From their results, they suggest adopting a 
new hybrid approach that uses two imputation techniques from any type 
(univariate, multivariate, ML, DL, etc.). The idea is to choose an optimal 
technique for isolated missing instances and another technique that is 
optimal for sequence missing data. This provides flexibility in choosing 
the least expensive technique to be deployed at the edge. The approach 
yields better overall imputation accuracy and addresses possible 
perturbation in individual technique’s performance. 

In this survey, we have centrally evaluated a wide range of missing 
data solutions; from simple univariate imputation techniques to com-
plex AI based techniques. Further empirical analysis conducted [184] 
also included distributing the univariate technique LI to edge compo-
nents. Univariate imputation techniques can be distributed and executed 
at edge components without the prerequisite of data fusion. The distri-
bution is also feasible for multivariate techniques, after data fusion, 
including AI based solutions. It is less complex if the trained models and 
networks are strictly distributed and not the whole training process. 
Distributing AI (training and prediction) to the edge is currently an 
active research direction (EdgeAI) [27], which also covers the distri-
bution of AI based data preprocessing techniques. Few standalone so-
lutions [57,197] have been proposed that are distributed versions or 
completely novel solutions of missing data imputation techniques 
designed for edge execution. A practical analysis of the performance and 
impact of the different imputation techniques distributed in IoT devices 
is yet to be proposed and thus we identify an empirical research gap in 
this area. Some missing data imputation techniques, such as MI and 
ensemble solutions, are intuitively expensive to distribute to the edge as 
they generate multiple plausible imputations using one or more tech-
nique(s) to minimize uncertainty in the final imputations. We also 
highlight the advantage of distributing missing data handling tech-
niques in addressing the anomalies early in the pipeline and thus 
minimizing error propagation. In addition, missing data causes training 
and prediction to fail and thus complete input data must be made readily 
available for Edge AI to function correctly. 

Empirical Results: Several techniques required configuration and 
setup. In addition to MATLAB libraries of missing data imputation 
techniques, we also used third-party libraries and developed our own. 
For the EM technique, we used the third-party library [171] imple-
mented for MATLAB. For the SVM experiment, we trained a non-linear 
SVM model using the Gaussian Kernel. We created our own imple-
mentation of MI and used predictive mean matching (pmm) to replace 
imputations of a model with coefficients randomly drawn from a pos-
terior predictive distribution of the P-Step. The MI imputation phase is 
repeated seven times. We imputed the missing data present in the 
real-world dataset (AirQuality) and thus there is no baseline observa-
tions for the missing instances. Fig. 8 presents the imputations of the 
different tested techniques. The time-series data are non-monotonic and 
frequently fluctuate rendering the imputation tasks difficult particularly 
for the tested univariate techniques as they do not capture patterns and 
seasonality present in the data. The plots in Fig. 9 present the predictions 
of the different models trained on datasets produced with different 
imputation techniques. The observations reflect the original data and 
the imputed data using the tested technique. As mentioned previously, 
we do not have a baseline for the missing instances as they are actual and 
not simulated. EM imputations included yielded the second best pre-
dictions after the hybrid approach proposed by [186] which uses 
optimal imputation techniques for each type of missing data (i.e., an 
optimal technique for isolated instances and another for blocks of 

missing data). We choose the combination EM to impute sequences 
(blocks) of missing instances and cubic spline to impute isolated missing 
instances. There is a slight improvement in using two techniques 
compared to using EM only. As expected, mean imputation produced the 
least accurate LSTM model in addition to adding biases to the data. 
Univariate techniques had comparable performances to the multivariate 
techniques with cubic spline outperforming most of the multivariate 
techniques for this dataset and experimental setup. This outcome is an 
advantage with regards to deployment within an IoT context as uni-
variate techniques are more efficient at consuming resources (e.g., 
consume less energy, have less dependencies in that no data fusion is 
required, etc.). ML and DL solutions require the predictors to be free 
from missing instances for training to complete successfully without Null 
or Not a Number (NaN) propagation. 

Outliers impact 
are examples of noisy data that hinder knowledge extraction and 

models’ performance [3,59]. Similarity measures can be falsified by 
outliers, which results in misclassifications [3]. Outliers can be classified 
as:  

• Global Outliers: data points that significantly deviate from the entire 
dataset [78].  

• Local Outliers: data points that are within the normal range of the 
entire datasets but deviate significantly from the surrounding data 
points (local area) [78].  

• Contextual Outliers: also called conditional outliers, are data points 
that deviate significantly given a specific context (time, location, 
etc.) [78].  

• Collective Outliers: data points that, together, deviate from the rest 
of the dataset[78]. 

Outliers Techniques: there are several approaches to detect out-
liers. Table 6 provides an overview of the techniques that were tested 
including their performance. While the following paragraphs detail 
further outlier detection techniques in addition to the ones tested. 

Median Absolute Deviations (MAD) is a statistic based method. MAD 
is a robust scale univariate estimator that finds positive and negative 
deviations from the median of a sorted dataset [166]. MAD calculates 
the absolute difference between the median of the dataset and the data 
points and then multiplies the median by 1

Q(75) where Q(75) is the 0.75 
quantile of the distribution. The dataset’s median, the MAD value and a 
threshold (e.g., 2, 2.5 or 3) are used to determine the range by which 
outliers are identified [115]. MAD assumes equal dispersion at both 
sides of the median (symmetry) thus it is less effective on skewed dis-
tributions [166]. It is possible to use MAD at the edge to find local 
outliers within a window. 

Grubbs Test [71], also known as the Maximum Normalized Residual 
test is a univariate statistic based outlier detection technique applied on 
data with a gaussian distribution. With the presence of multiple outliers, 
the technique is iterative and produces new datasets that exclude a 
detected outlier in the previous iteration. Grubbs test involves evalu-
ating the deviation of potential outliers from the mean by studentizing 
the instances. The studentized value is compared against a critical value 
to determine the significance level and whether the instance is to be 
rejected from the dataset or not (i.e., consider it as an outlier or not). The 
mean and standard deviation are calculated for each new dataset and a 
different critical value is used in each iteration [97]. 

The Generalized Extreme Studentized Deviate (GESD) test detects 
multiple outliers in univariate datasets with a normal distribution but 
only requires the upper bound for the number of outliers expected. GESD 
is defined for the zero hypothesis “There are no outliers in the dataset” 
and alternative hypothesis “There are up to r outliers in the dataset”. The 
test uses the mean (μ) and standard deviation (σ) of the dataset to 
remove the data point with maximum z-score (TiMax) and repeats the 
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step r cycles with the μ and σ of the new subset. A critical value is 
calculated for each cycle (λi). Starting with the last cycle, the maximum 
z-score (TiMax) and λi are compared until the maximum z-score of a cycle 
r-j (Tr− jMax) exceeds its critical value (λr− j). Tr− jMax and the maximum z- 
scores of all prior cycles are considered outliers [134]. Having dynamic 
critical values or rejection threshold for each cycle offers better detec-
tion of outliers while minimizing false positives. 

Interquartile Range (IQR) can be applied on multivariate and uni-
variate data with non-Gaussian distribution to detect outliers. By finding 
the median (Q2), the first (Q1) and third (Q3) quantiles are calculated to 
determine the IQR from their difference. The IQR is then used to define 
upper and lower bounds against which outliers are detected. IQR 
execution efficiency makes it deployable at the edge to detect outliers 
within a window but it may not necessarily detect all outliers [195]. 

Another class of outlier detection techniques is the Robust Estimators 
class. Maximum Likelihood Estimate and Log Likelihood Estimate are 
both sensitive to outliers. This means that the estimates are pulled to-
wards existing outliers in the dataset. Mahalanobis distance measure is 
also sensitive to outliers. To calculate a multivariate mean and covari-
ance of a gaussian distribution while being robust to the presence of 
outliers in the dataset, robust estimators are used instead. The general 
concept of robust estimators is to extract a subset that represent the 
underlying distribution and use it to estimate the mean and covariance. 
The Minimum Covariance Determinant (MCD) and the Olive-Hawkins 
estimate are examples of robust estimators of multivariate covariance 
that can be used to detect outliers by estimating the parameters of the 
normal data. Olive-Hawkins estimate uses the concentrations algorithm 
technique. The iterative process produces a sequence of estimates called 
attractors via k concentration steps. The final estimator is the attractor 
that optimizes the criterion for each parameter estimated (mean and 
covariance), which represent a distribution that exclude the impact of 
outliers [149]. 

Local Outlier Factor (LOF) [18] is a density based outlier detection 
technique with the intuition that the density around an outlier is 
significantly lower than the density around normal points. The tech-
nique starts by finding the k nearest neighbors of the data points using a 
distance metric and identifying the distance of the farthest neighbor. 
The neighborhood of each point is then determined using the kth dis-
tance. The technique calculates the Local Reachability Density (lrdk(o)) 
for identified neighborhoods using the number of neighbors within a 
neighborhood and the reachability distance of neighbors 
(reachdistk(o←o)). Finally, the local outlier factor (lofk(o)) is calculated 
for each data point using the reachability distance and local reachability 
density of its neighbors. The points with the highest lofk(o) are more 
likely to be outliers [18]. LOF can be applied on data with skewed dis-
tributions and can detect both global and local outliers. The technique, 
however, is computationally expensive and requires large memory 
space. Several modified versions have been proposed including Top-N 
local outlier detection (TOLF) which uses a pruning strategy to 
exclude normal points and only calculate (lofk(o)) of potential outliers; 
making TOLF a more plausible choice for edge deployment than LOF 
[205]. 

Density-based spatial clustering of applications with noise (DBSCAN) 
[52] is another density-based technique, which is a clustering algorithm 
that finds arbitrary shaped and non-linearly separable clusters. DBSCAN 
is robust to outliers and can isolate global and local outliers. A priori 
requirements are limited to the maximum radium of neighborhoods (ϵ) 
and the minimum number of neighbors (MinPts). The algorithm iden-
tifies data points under three types; core, border and outlier and uses 
these identifications to find clusters. It starts by randomly selecting a 
data point and finding the number of neighbors that are within ϵ dis-
tance from it. If the number of neighbors is equal to or greater than 
MinPts then the data point is considered a core. The algorithm traverses 
the neighbors and performs the same check. If the former condition is 
not satisfied then the algorithm tests if the data point is an ϵ distance 
from a core point to determine whether it is a border point or not. Lastly 

a point is considered an outlier if it is not reachable from a core or border 
point. Reachable core points are clustered together with their border 
points. For outlier detection, DBSCAN underperforms on datasets with 
clusters of variable densities and on datasets with large dimensionality. 
The later weakness is mainly contributed to the Euclidean distance in 
what is known as the curse of dimensionality [173]. The term curse of 
dimensionality was first introduced in [9] and in our domain, refers to 
the need for exponentially more data with the increase in dimensionality 
(number of features). This because with high dimensional datasets, the 
available data become sparser. To address the time complexity weakness 
of DBSCAN (O(n2)), OPTICS [5] and HDBSCAN, [23] extends DBSCAN 
to hierarchical clustering and AnyDBC [131] reduces the query range 
and label propagation times. 

Isolation Forest (iForest) [124] is a projection-based learning tech-
nique that constructs fully random binary trees based on a subsampling 
size and two randomly selected parameters. The first random parameter 
is the splitting attribute (j) and the second is the splitting threshold (θ), 
which is uniformly selected from the [min(xj), max(xj)] range of attri-
bute j. The subsamples of a dataset are recursively split until every data 
point is in its own leaf node with the result of constructing an ensemble 
of iTrees. It is also possible to optimize the iTree construction by stopping 
the splitting earlier. After the construction of the iTrees, the average leaf 
depth is computed, which is used to calculate the anomaly score. The 
intuition of the algorithm is that outliers will be isolated faster by the 
splitting compared to nominal points. A score closer to 1 means the data 
point is likely to be an anomaly while a score less than or equal to 0.5 
means the data point is likely to be nominal. The iForest algorithm 
consist of two phases; the training phase to construct the ensemble of 
iTrees and the prediction phase at which the anomaly score is calculated 
for test or new data. iForest is robust to swamping (non-outlier classified 
as an outlier) and masking (undetected outlier) and it remains effective 
with high-dimensional datasets with irrelevant attributes and training 
samples with no outliers [124]. The algorithm does not use a distance 
metric to calculate distances or densities thus having a linear time 
complexity and small memory requirement which is well suited for edge 
deployment. By having randomly selected j and θ, the technique avoid 
overfitting, however, biases are introduced in the anomaly score map as 
the splitting using the aforementioned parameters result in vertical and 
horizontal branch cuts. IForest performs well with high dimensional 
data [123]. The authors of Extended Isolation Forest (EIF) [80]address 
this limitation by performing the splitting based on branch cuts with 
random slopes and random intercept points. iForest was also extended to 
handle stream data in several work including iForestASD [43], which 
leverages the notion of sliding windows. 

One class support vector machine (OCSVM) is a quantile-based un-
supervised outlier detection algorithm. It attempts to learn the decision 
boundary of normal data by fitting a hyperplane that maximizes the 
margin of separation from the origin. Data points that fall outside the 
decision boundary or in other words close to the origin are considered as 
outliers. Learning the decision boundary and accounting outliers is 
achieved by the use of non-linear kernel functions that implicitly map 
data points into a higher dimensional feature space away from the 
origin. The implicit mapping avoids actual transformation of the data to 
the higher dimensional feature space but rather computes the inner 
product in the feature space by evaluating the kernel function thus 
improving computational efficiency and space usage. A regularization 
parameter controls the number of slack admitted, i.e., the number of 
data points allowed on the other side of the decision boundary and thus 
considered as outliers. The quadratic problem is solved by using 
Lagrange multipliers and setting the derivates of the equation’s vari-
ables equal to zero [172]. Other variations of OCSVM include fitting a 
hypersphere with minimum radius to define the decision boundary of 
normal data and thus points outside the sphere are considered outliers 
[187]. Online and distributed variations of OCSVM were proposed by 
[212] in which they use linear optimization to fit a hyper-ellipsoid 
centered at the origin with minimum radius using Mahalanobis 
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distance metric. Each sensor models its own hyper-ellipsoidal OCSVM 
within a window to detect local outliers and update the model as the 
data distribution changes. Model parameters are exchanged between 
sensors to derive global parameters from local outliers detected within a 
time window [212]. Authors in [207] also extended OCSVM to be more 
efficient for IoT applications by leveraging clustering and Gaussian 
mixture models to decrease prediction time and memory requirement. 

Distributing Normalization and Missing Data Handling techniques to 
the edge requires the distribution of Outlier Handling techniques. This is 
due to a dependency that exist between the different preprocessing 
categories where outlier handling is the prerequisite. The dependency is 
not functional in that both normalization and missing data handling 
techniques can function with the presence of outliers, however, their 
performance is negatively impacted by outliers [186]. The main chal-
lenge with executing density-based and distance-based outlier handling 
techniques using edge computing is the lack of the whole dataset or 
sufficient data at a given window to identify global and local outliers. 
There are several examples in literature, however, of distributing outlier 
handling solutions to IoT components and applied as the data are 
collected including univariate techniques [184], multivariate and AI 
solutions [199,218]. Similar to the missing data category, AI based 
outlier handling techniques can be trained in the cloud and deployed to 
edge components to be executed on new data. Thus, the same parame-
ters and coefficients used in training are used in deployment. There is a 
lack of sufficient empirical analysis that leverage edge computing to 
execute outliers detection techniques on sensor data streams. A com-
parison of the performance and impact of traditional and state-of-the-art 
techniques is identified as a future work. 

Empirical Results: The diagrams in Fig. 10 show the outliers 
detected by the different tested techniques for the response variable 
(CO). We wanted to keep the consistency of using the same variable (CO) 
to present our results as it facilitates more comparisons of impact be-
tween input and output. Having said that, we also applied and tested the 
different techniques on the rest of the variables (predictors) to detect 
possible outliers. Due to space restrictions we suffice with presenting the 
outliers detected for one variable (CO). All instances of the dataset were 
included in the plot. Some techniques had different performances for 
each feature while other techniques detected overlapping or identical 
outliers. For example, GESD and Grubbs detected the same outliers for 
CO. Generally, the prediction accuracy from the GESD and Grubbs ex-
periments were very similar because they identified similar outliers 
across the different features. Fig. 11 highlights the impact of removing 
the detected outliers from the predictors by the different outlier detec-
tion techniques on the prediction accuracy of the produced LSTM 

Table 7 
Surveyed Data Fusion Techniques.  

Technique Formula Property 

KF Prediction Step:   

1) Use the transition model to predict the 
new state from the previous state via: xtp 

= Atxt− 1 + Btut + wt where At is the state 
transition model, Btut is the effect of 
external factors and wt is the process 
noise.  

2) Find the prediction error via: Ptp =

AtPt− 1AT
t + Qt where Ptp is the predicted 

process covariance matrix and Qt is the 
process noise covariance matrix. 

Correction Step:   

1) Obtain the measurement in the right 
format and considering the noise: zt =

Ctxt + vt where vt is the measurement 
noise and Ct is the transformation matrix 
(e.g., identity matrix)  

2) Compute: KG =
PtpHT

H ∗ PtpHT + Rt
, where Rt 

is the noise covariance matrix and Ht is 
the transformation matrix  

3) Compute the current state’s estimate 
using the prediction value, the 
measurement value and their weights 
via: xt = xtp + KG[zt − Htxtp]  

4) Update the process estimate covariance 
matrix for the next iteration using: Pt =

(I − KG*Ht)Ptp where I is the 
transformation matrix 

Statistical Estimation, 
Assumes Linear Model 
and Gaussian Noise 

PF Prediction step:   

1) The current state estimate for each 
particle in the previous set of particles is 
computed using the transition model 

(counting transition noise): x[i]
t =

π(xt

⃒
⃒
⃒x[i]

t− 1,ut)

Correction step:   

1) The observation model is used to 
compute the weight w[i]

t for each particle 
while counting observation noise via: 

w[i]
t = η[

p(xt

⃒
⃒
⃒x[i]

t− 1, ut)

π(xt

⃒
⃒
⃒x[i]

t− 1, ut)
]∝p(zt

⃒
⃒
⃒x[i]

t ) where zt 

is the current observation with pre- 
condition that p(x) > 0 ⇒ π(x) > 0.  

2) The current state particle set is updated 
with the particle and its computed 

weight via: St = {< x[i]
t ,w

[i]
t >

⃒
⃒
⃒i = 1…,

J}
3) The posterior distribution of the current 

state or belief p(xt) is: p(xt) =
∑J

i wi
tδw[i]

t
(xt), where δ is the Dirac delta 

function. 
Resampling step:   

1) Select the first particle < u1
t ,w1

t >= U1 

randomly: U1 = St [0,
1
J
]

2) The other J − 1 samples are then 

deterministically determined via: 
1
J 

steps: Ui = U1 +
i − 1

N  
3) A particle is selected for replication 

based on its weight and all selected 
particles are given equal weights via: St 

= {< uj
t ,

1
J
>}

⃒
⃒
⃒
⃒

∑i− 1
k=1

wk
t ≤ uj <

∑i
k=1

wk
t 

Monte-Carlo 
localization, No 
Assumptions on 
Linearity or 
Distribution  

Table 7 (continued ) 

Technique Formula Property 

D-S Given a set of Frame Discernment Θ = {θ1, 
θ2}, the Hypotheses set is: 2Θ = {∅, θ1, θ2 ,

θ1 ∪ θ2} where θ1 ∩ θ2 (mutually exclusive), 
m(. ): 2Θ → [0, 1] (m is the mass function), 
∑

θi∈2Θ m(θi) = 1, and m(∅) = 0 (i.e., the 
mass of an empty set is 0). To determine 
the current state:   

1) Obtain degrees of belief for each 
hypothesis or question (θi): Bel(θi) =
∑

θj |θj⊆θi
m(θj)

2) Obtain the plausibility for θi: Pl(θi) =
∑

θj|θj∩θi∕=0m(θj) or Pl(θi) = 1 − Bel(θi), 

where θi is the negation of θi. From (1) 
and (2) the confidence interval is 
obtained for θi: [Bel(θi), Pl(θi)]. 

To combine degrees of belief from 
multiple sensors: m1(θi) ⊕ m2(θi) =
∑

θj∩θk=θi∕=∅m1(θj)m2(θk)

1 − (
∑

θj∩θk=∅m1(θj)m2(θk))

Bayesian Inference, No 
Assumptions on 
Probability 
Distribution  
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models. Only the first 120 instances of the test dataset (the last 936 
instances) are presented in the plots. For all the experiments, the 
detected outliers were replaced with plausible estimations using cubic 
spline interpolation (see Table 4). The tested techniques (univariate and 
multivariate) were applied as univariate to each feature separately. 
IForest required replacing NaN values to effectively detect outliers and 
thus the test for this experiment required changing the order of the DAG 
(see Section 1) to place outlier detection after missing data imputation. 
The configuration of the iForest experiments is similar to the configu-
ration proposed by the authors of the original paper [124] and includes 
building 100 isolation tree with 256 instance samples with 10 rounds of 
repeat for each training. For the DBSCAN experiment, we set the ϵ =
0.01 and number of neighbors MinPts = 7 as the best possible values for 
our dataset. From our results, removing outliers from the AirQuality 
dataset did not significantly improve the quality of the LSTM models 
with some outlier detection techniques having negative impact as the 
models slightly yielded higher error metrics. Grubbs performed best 
when considering all error metrics followed by iForest, which produced 
a far lower MAPE error value than the rest of the experiments. DBSCAN 
performed the worst introducing inaccuracies and causing deterioration 
in prediction accuracy. This could be because the dataset consists of 
clusters of varying densities, which hinders the effectiveness of 
DBSCAN. The results could be specific to the dataset and may indicate 
that the extreme values present in the dataset are not necessarily outliers 
and are providing valuable information to training. Despite the results, 
we recommend handling outliers due to their possible impact on model 
quality and impact on the effectiveness and performance of other pre-
processing techniques that are sensitive to outliers such as missing data 
imputation techniques [186]. As future work, multivariate technique 
should be fully leveraged by using other variables to detect outliers. 

Sensor fusion 

Definition: Sensor or data fusion is the process of combining data 
from multiple sensors to produce more consistent, accurate, compre-
hensive, reliable and useful information than if provided by one of the 
data sources [?]. In this survey, we present fusion techniques that can be 
used to improve data quality including improving accuracy, addressing 
missing values and replacing noise or outliers. We consider data fusion 
under Dasarathy’s classification, Data-In and Data-Out, and according to 
DARPA classification level 0 (source processing) and level 1 (object 
refinement). We also focus on techniques that can be implemented in 
decentralized architectures and are effective as non-batch processes 
[25]. An overview of the surveyed sensor fusion techniques can be found 
in Table 7. 

Techniques: The Kalman Filter (KF) also known as linear quadratic 
estimation, is a recursive estimation technique optimal for systems with 
linear transition model, observation model and normalized gaussian 
noise. KF fuses low level data (observations) and state predictions to 
estimate the current state of a discrete-time process considering the 
prediction errors, observation errors and predicted covariance between 
variables. The technique consists of two main steps; the prediction step 
at which the state prediction (Xtp) is computed from the previous 
observation (Xt− 1) considering, if applicable, the control factors and 
noise. Control factors are external factors that affect the current state 
such as surface inclination for moving vehicles. The prediction step is 
followed by the correction step at which the Kalman Gain (KG) is 
calculated from measurement error and the prediction error (the state 
covariance matrix in N-Dimensions problems). The KG indicates the 
kind of error to expect in the processing of the data to determine how 
much weight to put on the predicted and measured values when 
computing the current state. KG value close to one means there is more 
uncertainty in the predicted value and thus the measured value is given 
more emphasis when calculating the current state. Overtime, the KG 
becomes closer to zero indicating less uncertainty in the predicted value 
and thus having more weight and impact on the estimate of the current 

state. KF is an optimal solution for linear models with gaussian noises, 
however, it underperforms when observations are intermittent and data 
sources have unsynchronized clocks. KF does not handle heavy-tailed 
distributions and nonlinear systems [25,138,144]. Extended Kalman 
Filter (EKF) [99] and Unscented Kalman Filter (UKF) [194] were pro-
posed to address non-linear systems. Compared to EKF, UKF provides 
more accurate approximations without the need to compute Jacobian 
matrices (reduced complexity). Instead it uses unscented transformation 
to pass a gaussian probability distribution through a non-linear function 
and onto a more complex distribution. The unscented transform starts 
with choosing deterministic sample points from the input distribution 
called sigma points, which have the same distribution as the input 
probability distribution. Weights are calculated for each sigma point 
based on a tuning parameter and the dimensionality of the problem. The 
sigma points are then passed through the non-linear transform function. 
The mean and covariance of the transformed weighted sigma points are 
used to calculate the new gaussian approximation distribution (new 
state estimate). EKF, however, assumes gaussian distribution [194] and 
remains computationally expensive for edge deployment. 

Particle Filter (PF) is a sequential Monte Carlo localization technique 
that fuses predictions from a proposed state model with one or more 
sensor data. PF does not assume linear systems or gaussian distributions 
and it is a non-parametric approach meaning a mean and covariance 
matrix are not provided as inputs to represent the state distribution. 
Instead, PF draw random samples from a proposed distribution to 
represent the state space. The samples are called particles and represent 
hypotheses of the next sensor reading. Particles compose of a value 
(scalar or matrix) and a weight (scalar). Initially, PF builds the posterior 
density function (PDF) by selecting J number of random samples from 
the proposed transition model which can be assumed as a gaussian 
distribution. Normalized weights of each particle are then computed 
using the values from the proposed and actual models; a process called 
Importance Sampling. PF then iterates three steps: the Prediction step, 
Correction step and the Resampling of the particles. In the prediction 
step, a prediction of the next state for each particle is computed using the 
proposed transition model and counting in process noise. The correction 
step, involves computing the weights of the predicted states (hypothe-
ses) via the observation model counting in measurement noise. The state 
estimate (belief) is then computed from the sum of hypotheses multi-
plied by their weights. Using Stochastic Universal Sampling approach, 
the particles are resampled by selecting J particles at once and then 
iterating the newly selected particles to replace weights with propor-
tional frequencies in the sense that particles with large weights are 
replaced with multiple particles and particle with consistently small 
weights diminish after several iterations. The weights of particles are 
then set to be equal and are normalized. The new particles sample is 
dense at regions where particles had large weights and sparse in regions 
where particles had small weights [177]. In the adaptive Monte Carlo 
variation, the number of particles is reduced as the iterations advance. In 
[181], authors used PF to detect and isolate calibration faults (bias and 
scaling) by using the prediction state to evaluate whether the observa-
tion value exceeds a threshold that may render it a fault. If the threshold 
is surpassed then the algorithm evaluates a null hypothesis of the sensor 
being healthy and three alternative hypotheses to determine the type of 
error. Depending on the fault type the belief is compensated for bias or 
scaling [181]. To provide accurate estimates of complex distributions, 
PF require large number of particles. PF works well with low dimen-
sional space (lower than five features). The performance quality of PF is 
dependent on identifying good transition (proposed) and sensor 
(observation) models [25,177]. 

Dempster-Shafer (D-F) inference theory is a generalization of 
Bayesian inference, which explicitly represents uncertainty and missing 
knowledge. It can fuse different types of sensors and does not require 
probability distributions as a priori information [25,175]. D-F has un-
certainty management and inference mechanism analogous to the 
human reasoning process [200]. It obtains a degree of belief for one 
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question from the probabilities of related questions and combine degree 
of beliefs of different sources [175]. The target system is represented by 
enumerating all possible mutually exclusive states of a target question in 
a frame of discernment Θ. A set Hypotheses (2Θ) is then determined from 
a frame of discernment. Each hypothesis is assigned a probability rep-
resenting its belief assignment using the mass function or the basic 
probability assignment m. With each belief assignment ranging between 
zero and one and the sum of all belief assignments is equal to one. A 
hypothesis may be a subset of states and has a confidence interval 
ranging from the sum of belief assignments of the hypothesis, to the 
plausibility of the hypothesis that includes evidence not ruling out the 
hypothesis. The confidence interval represents true belief in the hy-
pothesis. Dempster-Shafer combining rule fuses the beliefs from multi-
ple sensors via their mass functions (e.g., miand mj) in addition to the 
sensors’ plausibility of the hypothesis, which are used to compute the 
hypothesis with the highest probability while counting in uncertainty 
[25,175,200]. Authors of [64,85,86,211] use D-F inference to detect 
errors (noise, inaccuracies) in sensor data that would help identify faulty 
sensors or components. Existing work [42,104] further provide more 
extended surveys of sensor fusion techniques. 

Distributing multivariate techniques for either preprocessing or 
processing to the edge requires fusing the features of data streams 
captured by the different sensors at the edge. Thus, there is a de-
pendency between multivariate techniques and sensor fusion where the 
former is the dependent. In addition to facilitating the edge execution of 

multivariate techniques, sensor fusion distributed to the edge and per-
formed prior to data transmission has several other benefits including 
reducing the data volume by including lineage meta-data to aggregated 
data once rather than duplicating shared meta-data to each sensor 
stream. The fusion can be as simple as a merge of multiple sensor data 
into one tuple that is based on the timestamp of when the data were 
generated. This includes merging sensors with different frequency by 
placing Null for features with no observations at a given timestamp. 
Many sensor fusion solutions have been proposed for IoT applications; 
including distributed versions of the Kalman Filter [148,182] and Par-
ticle Filter [29]. 

Feature engineering 

The comprehensive definition of feature engineering covers feature 
reduction, transformation and synthesis. The ultimate goal is to 
formulate “the most appropriate features given the data, the model, and 
the task” [214]. We present the following feature engineering 
categories: 

Discretization definition 
is the process of transforming continuous features to discrete features 

with finite sets of adjacent intervals and associating each interval with a 
value (integer or nominal) thus summarizing the data while minimizing 
information loss [78,107,111,189]. 

Table 8 
Tested Continuous Features Discretization Techniques.  

Technique Formula Property Results 

Equal-width 
Binning 

Given k splits where ci ∈ {c1, …, ck}, the split points are computed via: ci = min + i.
max − min

k + 1 
where max and min can 

either be the actual, semantical or contextual values of the feature. 

Unsupervised, Top- 
down, Static 

RMSE    

0.47    
MAE    
0.33    
MAPE    
37.47% 

Equal-frequency 
Binning 

Given k splits where ci ∈ {c1, …, ck}, the split points are computed via: ci = i.
N

k + 1
, where N is the number of instances. Unsupervised, Top- 

down, Static 
RMSE    

0.44    
MAE    
0.3    
MAPE    
32.18% 

K-means Initialization:   

1) Randomly select k instances as initial centroids: C = {μ1, μ2, …, μk}. 
Iteration:   

1) For each data point xi, determine its cluster membership ci via: ci = minj∣∣x(i) − μj∣∣2 where ∣∣x(i) − μj∣∣ is the Euclidean 
distance between the data point and the centroid. The data point is clustered with the nearest centroid.  

2) For each cluster μj, recalculate its centroid via: μj =

∑mj
i=1xi

mj
, where mj is the number of data- points in cluster j. The 

steps of the iteration phase are repeated until convergence. 

Unsupervised, 
Stochastic, Static 

RMSE    

0.48    
MAE    
0.36    
MAPE    
32.14% 

SOM  1) Initialize the weights of kneurons of the one dimensional ANN.  
2) Randomly select an instance xfrom the training dataset to update the network’s kweights.  
3) Compute the winning neuron via: ct(x) = mink∈1,…,K∣∣x − mk(t)∣∣2  

4) Update the weights of kneurons via: mk(t + 1) = mk(t) + ϵ(t).hk.ct (x)(t).(x − mk(t)) where ϵ(t) = ϵ0e
− t
τ is the learning 

rate and hk.ct (x)(t) = e

−
⃒
⃒
⃒
⃒mk(t) − ct(x)

⃒
⃒|

2

2σ(t)2 
is the topological neighborhood. Repeat steps 2–4 on all training data  

5) Prune out neurons rarely updated, thus, the interval n: ≤k. 

Unsupervised, 
Stochastic, Static 

RMSE    

0.23    
MAE    
0.17    
MAPE    
17.32%  
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Discretization Impact: Discretization has many benefits including 
adapting the data to algorithms that only process categorical data or that 
perform better with discretized variables [28,107,111,189]. In addition 
to reducing data volume, it also reduces the complexity of data and 
makes data patterns easier to understand [78]. Discretizing continuous 
feature could also improve learning or model training efficiency and 
accuracy [189]. 

Discretization Techniques: Discretization techniques can be cate-
gorized as unsupervised and supervised. In the later, the technique uses 
the response variable (class variable) in determining the intervals and 
attempt to maximize the interdependence between the response variable 
and the continuous predictor. Discretization techniques can also be 
categorized as top-down or bottom-up. The later, considers all available 
continuous values of the feature as potential splitting points and then 
merges points into bigger intervals repeating the step until the final 
intervals are determined via a condition or threshold. While the former 
starts with one interval or few splitting points and continues to segment 
the data towards obtaining optimal intervals [60,78,111,189]. Static 
discretization techniques discretize each continuous feature of the 
dataset in an isolated matter and are independent from the modeling 
technique thus they are performed as a preprocessing task. While dy-
namic discretization is part of the modeling and training phase and 
considers the interdependence between different continuous features 
that exist in the dataset. Lastly, global discretization techniques 
consume all available data instances (batch processing) while local 
techniques discretize on a sample of the data [60,189]. The performance 
of discretization techniques is measured by their ability to minimize the 
number of intervals created to avoid overfitting, whether the techniques 
consider the data distribution or not and by the performance of the 
modeling algorithm that consumes the discretized data [3,189]. In 
addition, supervised discretization techniques are evaluated based on 
their ability to maximize the interdependence between the class variable 
and the continuous predictor to be discretized [189]. In our survey we 
will focus on static techniques as we aim to decouple preprocessing from 
training, modeling and information extraction. We also focus on unsu-
pervised discretization techniques as sensor data are typically unla-
beled. Table 8 is an overview of the discretization techniques we have 
included in our experiments. 

Binning is an unsupervised top-down discretization technique that 
has two variations equal-width and equal-frequency (quantile binning). 
Equal-width binning finds the minimum and maximum values of the 
feature and then divides the continuous data into k intervals. The pro-
duced bins contain variable number of instances with some bins may 
ending up empty. Equal width binning is sensitive to outliers and does 
not consider or reflect the original distribution of the feature [45,191]. 
Equal-frequency binning counts the number of instances of the feature 
and then creates intervals with approximately equal number of instances 
[3,45]. The technique considers the data distribution of the feature by 
adaptively positioning the bins based on the quantiles of the distribution 
to obtain for example quartile bins (if k = 4) or decile bins (if k = 10), 
which means each interval contain approximately 25% or 10% of the 
data respectively [4,28,78,107]. With equal-frequency binning, the 
range of some of the bins produced can be skewed by outliers or 
non-gaussian distributions placing unrelated instances from vastly 
different classes in the same bin [50,103]. 

Both binning variations require a predefined k value and associate 
each bin created with a value which could be nominal or integer (e.g., 
the mean or median value of the instances it contains). Equal-frequency 
and equal-width binning are efficient and simple techniques; however, 
their discretization is likely to hide patterns in the data, not produce 
semantically meaningful intervals and fail to learn certain concepts from 
the data which is the result of ignoring the class of the training instances 
[103,191]. Gaussian Approximation or Histogram bin count [28] is a 
binning technique that uses the standard deviation σ and mean μ in 
determining the splitting points k predefined by the user. Its space and 
time complexities grow linearly with the number of instances. The 

mathematical equations of the binning techniques can be found in 
Table 8. 

Clustering is a popular discretization approach for continuous fea-
tures that is also unsupervised and requires a predefined k value. Clus-
tering can also be applied as a multivariate discretization approach that 
considers all attributes in the dataset when determining the intervals of a 
particular continuous attribute [60]. K-means clustering method consist 
of two main steps initialization and iteration. In the former, k values are 
randomly selected as initial centroids of k number of clusters into which 
the continuous feature is divided. Data points are then assigned to the 
nearest cluster center using a distance metric (e.g., Euclidean). The al-
gorithm finds a compilation of clusters and member data points with 
minimized total sum of distances between the clusters’ centers and their 
member data points. The iteration step involves recomputing the cen-
troids of each cluster via the current member data points followed by 
reassigning the data points to new clusters if their distance with the 
centroid is shorter otherwise they are kept at the current cluster. 
K-means is a hard clustering technique, meaning each data point is 
assigned to one cluster only. The iteration step repeats until conver-
gence, that is, there are no longer re-assignments of data points. The 
generated clusters represent the intervals of the discretized continuous 
feature and the value of an instance is determined by its cluster mem-
bership [4,72,191]. K-mean clustering produces intervals that reflect the 
distribution of the original data. A global optimum is, however, not 
guaranteed and the quality of the discretization depends on the k value 
and on the random seed of the initialization step [191]. In addition, the 
clustering algorithm is also sensitive to outliers and performs poorly 
when clusters are of different shapes, sizes and densities [72]. 

Shared Nearest Neighbor (SNN) can be used for discretization [72], 
which is more resilient to outliers and with improved performance on 
high dimensional data producing arbitrarily shaped clusters with 
different densities when applicable [51]. The distance and density 
measures used in SNN are based on shared neighbors and on similarities 
with neighbors, respectively. The introduction of representative or core 
points in SNN allowed for irregular shaped clusters to be formed [51]. 
Similar to K-means, it requires a predefined k value which controls the 
granularity of clusters. SNN has a quadratic time complexity. 

In [191], authors proposed an unsupervised discretization technique 
based on the artificial neural network Self-Organizing Map (SOM). The 
algorithm does not require the exact number of clusters k as a-priori but 
only requires a fixed maximum number of clusters m. The discretization 
technique constructs a one dimensional SOM with m neurons. The 
weight of the neurons are learned during training using unlabeled 
training data while preserving the feature’s original data distribution. 
The training process start with randomly initializing the network 
weights. A data point is then randomly selected to initiate the process of 
learning and updating the neurons’ weights to model the input data. The 
Euclidean distance is used to determine the neuron closest to the current 
data point (x(t)), i.e., the neuron with the smallest Euclidean distance, 
which is labeled as the Best Matching Unit (BMU) or winning neuron 
(ct(x)). The weight of the selected winning neuron is then used to update 
its weight and the weights of other neurons in the map space. SOM 
neurons are similar to the centroids of K-means; however, the neurons 
are connected with each other in the sense that their updates impact the 
weights of other neurons but in a reduced scale. This is done using a 
weight update formula with a learning rate that controls the significance 
of the weight update and a topological neighborhood term which either 
magnify the learning rate of the weight update for ct(x) or scale down the 
learning rate of the weight update for the other neurons based on their 
distance from ct(x). The Euclidean distance metric is used to compute the 
distance between the current weights of the neurons mk(t) and the cur-
rent of weight of ct(x). The magnitude of the weight updates decreases 
over time to stabilize the learning process and the scope of the neigh-
borhood relations. The idea is to find the neuron closest to the data point 
and to update the neuron’s position in the map space towards the data 
point in addition to making smaller shifts of other neurons towards the 
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same direction depending on their distance from the data point and 
ct(x). The process is repeated for each instance in the training data until 
convergence (the sum Euclidean distance between data points of each 
cluster is minimized) or a stopping condition is fulfilled (the changes in 
weights are insignificant or less than a threshold) [108,191]. Neurons 
that are rarely updated are pruned and discretization classes produced 
can be less than m [191]. SOM is a stochastic algorithm that can produce 
different discretization intervals from the same training data. It can take 
many iterations before it converges. SOM is an unsupervised learning 
algorithm; however, it is possible to incorporate the class variable as 
input. Yet, the interdependence between the predictors and the class 
variable would still not be the focal point of the learning process. The 
equations of the SOM discretization technique can be found in Table 8. 

In our survey we focus on unsupervised regression problems as 
sensor data are naturally unlabeled and are often continuous. Having 
said that, we also cover supervised techniques in this section as dis-
cretization is mostly intended for classification problems. Unsupervised 
discretization techniques do not leverage class labels, when present, and 
thus they are likely to result in loss of classification information and 
produce intervals with instances that are strongly associated with other 
classes (i.e., interval has no dominant class) [45]. Chi-Merge [103] is a 
supervised, bottom-up and univariate discretization technique that de-
termines the intervals based on the class variable with the objective of 
producing a concise summarization of the continuous feature with 
intra-interval uniformity and inter-interval difference. The technique 
starts with sorting the values and placing each instance in its own in-
terval. Chi-Merge uses Chi-Squared test χ2 to determine whether adja-
cent intervals are different or similar enough to merge. The χ2 value is 
computed for each pair of adjacent intervals and pairs with the lowest χ2 

value are merged. This means that interval pairs with significantly 
different class frequencies (the interval determines the class) are not 
merged while pairs where the class is independent from the intervals 
(similar class frequencies) are merged [103]. The step is iterated until a 
termination condition is fulfilled. Despite its ability to preserve the 
feature’s distribution, Chi-Merge is sensitive to the χ2 threshold value 
and overestimate the degree of difference if the expected frequency is 
small. The algorithm has a time complexity of O(n2) and may construct 
too many intervals [14]. 

Khiops [14] is also a supervised bottom-up method that is based on 
χ2 statistics. Its objective is to minimize the confidence level of the null 
hypothesis that the class variable and the intervals are independent. The 
higher the χ2 values is the lower the confidence level is of the null hy-
pothesis, which means the merge of adjacent intervals achieves inter-
dependence between the interval and the class variable. The process is 
repeated until a minimum frequency within each interval is respected 
and the confidence level can no longer be minimized. Khiops technique 
controls overfitting heuristically by constraining the frequency of in-
stances within each interval to be greater than the square root of the 
sample size [14]. 

Class-Attribute Interdependence Maximization (CAIM) is a super-
vised univariate statistical technique that maximizes the class-features 
interdependence while minimizing the number of discrete intervals 
generated. The top-down approach selects the number of intervals 
without a predefined k value from the user. The technique then classifies 
the continuous values of the feature into the k intervals. This means that 
the algorithm starts with one interval D = [d0, dn] containing all values 
with a global CAIM value of zero. A new splitting point is added to D and 
from the class variable and the feature to be discretized, a quanta matrix 
is defined, which includes the number of instances for each class value 
within each interval. The CAIM value is then computed using the sum of 
the maximum (maxr) count of instances that have the class value i within 
interval [dr− 1, dr] of all intervals. maxr is divided by the number of in-
stances within the interval [dr− 1, dr] to account for the negative impact 
of the values belonging to other classes and to scale the maximum. The 
splitting point is accepted if the computed CAIM value is greater than the 
global CAIM. This makes CAIM a greedy search algorithm that 

approximate the optimal value by finding a local maximum which may 
not necessarily be the global maximum. The greater the value of CAIM 
is, the higher the interdependence between the class variable and the 
intervals. CAIM favors a discretization scheme where the majority of 
instances within an interval belonging to the same class value (intervals 
with dominant class value). CAIM is a fast algorithm that automatically 
finds the smallest number of intervals, however the number of intervals 
is typically equal to the number of class values (k = r). 

Class-Attribute Contingency Coefficient (CACC) [189] has the same 
steps as CAIM, however, the quality of the intervals in each iteration is 
measured using the CACC value. The contingency coefficient is used to 
measure the interdependence between the predictor to be discretized 
and the class variable. Instead of only considering the class with the 
maximum number of instances within an interval, CACC considers the 
frequency (number of instances) of all classes for each interval divided 
by the log of the total number of interval (log(n)) within the iteration. 
The log(n) division avoids overfitting and accelerates the discretization 
process. CACC is a greedy algorithm that keeps track of a global CACC 
value and terminates if the local CACC is less than the global value and 
the number of intervals is equal or greater than the number of classes. 
CAAC avoids overfitting and minimizes loss information by considering 
the distribution of the data. 

Another technique similar to CIAM and CACC is Ameva [68] which 
maximizes the contingency coefficient using χ2 statistics with the same 
objective of maximizing interdependence between the predictors and 
class variable and minimizing the intervals to avoid overfitting. For 
supervised discretization, we have mainly presented the statistical based 
techniques. The reader can refer to [60] for a comprehensive survey of 
discretization techniques including information based and rough-sets 
based techniques. 

Distributing discretization techniques to the edge is correlated with 
EdgeAI; particularly with the distribution of classification machine 
learning models. Authors of [96] empirically demonstrated the feasi-
bility of distributing and extended SOM algorithm using Apache Spark. 
The proposed distributed GSOM algorithm discretized a large dataset of 
unlabeled data into clusters based on a common feature value (human 
activity) while excluding temporality. Nyström-Persson et al [145] also 
leveraged Apache Spark to develop a distributed binning and k-mer 
counting tool, called Discount, for metagenomics data. Using Discount, 
the authors yielded evenly distributed and small sized bins, which 
improved the efficiency of memory and storage usage and accelerated 
overall processing speed. In Applications and use-cases where tempo-
rality is important to encode in the discretization of continuous data, 
then time-series discretization techniques are a better fit. Techniques 
that are applicable on time-series include Symbolic Aggregate Approx-
imation (SAX) [119], MultIple Normal distributIONS (MINIONS) [58] 
and the temporal discretization technique of distributed systems pro-
posed by D’Andrea et al [33]. In [152], authors proposed k-Shape, 
which is a partitional time-series clustering algorithm that iteratively 
produce homogeneous and well-defined clusters using the 
cross-correlation measure Shape-based distance (SBD). Their empirical 
results highlighted that in addition to preserving the shapes of 
time-series, k-Shape also outperformed other tested techniques in terms 
of yielded accuracy. Lastly, we wanted to highlight that further empir-
ical analysis is required to evaluate the feasibility and impact of 
distributing the aforementioned time-series techniques to the edge (e.g., 
deployed in IoT devices). 

Empirical Results: In our experiments, discretization was per-
formed after the last preprocessing category, which is feature selection, 
of our standard preprocessing plan (see the DAG structure presented in 
Fig. 1). Several discretization techniques were tested on transforming 
continuous features to their categorical representation. K-means and 
SOM produced clusters while the rest of the tested techniques produced 
bins. Both the clustering techniques k-means and SOM were performed 
as multivariate discretization techniques using the feature to be dis-
cretized and the response variable (CO) as inputs. Our experiments 
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excluded temporality, however, it will be included as part of our future 
work. The histogram diagrams and plots in Fig. 12 present outcomes of 
each tested discretization technique. For each technique evaluation, we 
performed several tests or attempts (a minimum of three). The clusters 
produced by SOM in each test were similar while k-means reflected 
inconsistency with significantly varying cluster regions in each test 
performed. Using the discretized input data, generated using the 
different tested discretization techniques, we trained LSTM models for 
the purpose of evaluating the impact of discretization techniques on the 
performance and quality of AI models and networks. We used the 

discretized predictors (mapped into bins and clusters numerical repre-
sentations) and kept the response variable continuous for LSTM to train 
correctly and to evaluate the performance accurately. We evaluated 
both univariate and multivariate K-means discretization, however, the 
results of the LSTM network were of low accuracy for the univariate 
version and thus, based on our experiments, we recommend using 
multivariate k-means over univariate k-means discretization. Our 
empirical results indicate a generally deteriorating prediction accuracy 
of the trained LSTM networks, which is an expected outcome due to the 
loss of information caused by discretization. An exception to this trend is 

Table 9 
Tested Feature Selection Techniques.  

Technique Formula Property Results 

F-Test For each feature Ai of the dataset, find: F =
MSbetween

MSwithin 
where MS is the abbreviation of Mean Squares. Expanding the 

numerator and denominator gives: F =

∑K
i− 1ni(YI − Y)2∕(K − 1)

∑K
i=1

∑ni
j=1(Yij − Yi)

2∕(N − K)

Feature Selection, Supervised RMSE    

0.33    
MAE    
0.24    
MAPE    
27.39% 

Laplacian  1) For feature Ai, build the weight graph Gwith m nodes.  
2) For each instance, find its neighbors and their distance.  
3) Neighbors are connected with edges.  

4) A weight matrix is constructed from Gand assigned the following weights: for nearest neighbors: Sij = e
−

⃒
⃒
⃒
⃒xi − xj

⃒
⃒|

2

t , 
otherwise: Sij = 0.  

5) Given that fr = [fr1 , fr2 ,…, frm]T contain instance values of attributeAi, the diagonal matrix Dis found via: D(i, i) =
∑m

j=1Sij, where Sis the similarity matrix. Dis multiplied by the identity matrix for m × m dimensions.  
6) The Laplacian matrix is obtained via: L = S − D  

7) Instances of fr are normalized using zero-centering: fr = fr −
fT
r D1

1TD1
1  

8) The Laplacian score is computed via: Lr =
fT
r Lfr

fT
r Dfr 

Feature Selection, 
Unsupervised, & Supervised 

RMSE    

0.46    
MAE    
0.31    
MAPE    
29.67% 

RReliefF  1) Select instance Ri randomly.  
2) Select the knearest neighbor Ij ofRi.  
3) Find PdiffA = P(differentA∣nearest). PdiffC = P(differentC∣nearest). PdiffC∣diffA = P(differentC∣differentA&nearest). A is the 

value set ofAi, C is the value set of the response variable, and nearest is the set of Nearest neighbors of Ri  

4) Find the quality estimation: W[A] =
PdiffC|diffAPdiffA

PdiffC
−

1 − PdiffC|diffAPdiffA

1 − PdiffC 
The probability is modeled using relative 

distance: d(i, j) =
d1(i, j)

∑K
l=1d1(i, l)

where d1(i, j) = e
− (

Rank(Ri, Ij)
σ )

. The exponential distance measure is used to 

significantly decrease the influence of neighbors with greater distance from Ri. Ranks are used instead of distance to 
diminish the influence of scales. 

Feature Selection, Supervised RMSE    

0.34    
MAE    
0.22    
MAPE    
24.43% 

NCA Given the labeled dataset: S = {(xi, yi), i = 1, 2, …, n}   

1) Initialize the weight vector w, assigning all features p the same weight.  

2) Use stochastic nearest neighbor to maximize the LOO regression accuracy: pij =
k(dw(xi, xj))

∑n
j=1,j∕=ik(dw(xi, xj))

, where dw(xi, xj)

=
∑p

r=1w2
r
⃒
⃒xir − xjr

⃒
⃒ and k = e

−
dw(xi, xj)

σ  

3) Evaluate the average loss value of l(yi, ŷi ): li =
1
n
∑n

j=1,j∕=i
pij l(yi, ŷi )

4) Subtract the regularization term from the loss function: f(w) =
∑n

i=1 li − λ
∑p

r=1wr  

5) Find the weight vector of features using: f′(w) = 2(
1
σ
∑n

i
(pi

∑

j∕=i
pij

⃒
⃒
⃒xir − xjr

⃒
⃒
⃒ − li

⃒
⃒
⃒

⃒
⃒
⃒xir − xjr

⃒
⃒
⃒) − λ)wr 

Feature Selection, Stochastic, 
Supervised 

RMSE    

0.35    
MAE    
0.26    
MAPE    
27.94%  
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SOM, which produced one of the most accurate LSTM networks of all the 
experiments completed. The empirical results of the last test performed 
is presented in Fig. 13. 

Feature reduction definition 
As data volume increases, managing data in an effective and efficient 

matter becomes more challenging [117]. Reducing data volume can be 
achieved by either sampling the data or performing dimensionality 
reduction for high dimensional data. In this survey, we focus on 
dimensionality reduction, which involves the reduction of the number of 
features while capturing the essence of the data [143]. 

Feature Reduction Impact: High dimensional data may suffer from 
various problem including:  

• Curse of Dimensionality: As the number of features increases, the 
probability of data points being within neighboring distance is low. 
In other words, the data become sparser and thus modeling high 
dimensional data accurately requires a large number of samples 
[117].  

• Overfitting: when the number of features is similar or equal to the 
number of data samples, modeling algorithms struggle to produce 
generalized models, which mean they underperform with test data 
and new data [117].  

• High Resource Consumption: High dimensional data results in 
increased memory requirements and higher computational and en-
ergy costs [117]. 

Feature reduction has been proven in theory and practice to improve 
learning efficiency of modeling algorithms and produce models with 
higher accuracy [13,21,74,117,125]. Dimensionality reduction also 
improves the efficiency of resource consumption, reduces computational 
and storage demands and improves sustainability with less energy costs. 
Effective dimensionality reduction could produce less complex and more 
comprehensible models [21,98,117]. There are two main categories of 
dimensionality reduction: Feature Selection (FS) and Feature Extraction 
(FE). 

Feature Selection Definition: is the process of obtaining a subset of 
the original data based on selection criterion that retains the most 
relevant features and removes irrelevant variables [21,117]. FS main-
tains the physical meaning of the original feature space thus producing 
models with better readability and interoperability [117]. Due to the 
computational complexity of evaluating subsets of m features, most 
proposed solutions are heuristic methods that maximize relevance; with 
some techniques also minimizing redundancy. FS categories are based 
on:  

• The training data: supervised, unsupervised and semi-supervised 
techniques.  

• The relationship with the modeling algorithm: filters, wrappers, 
embedded and hybrid.  

• The subset search mechanism: forward increase, backward deletion, 
random and hybrid.  

• The subset evaluation criterion: correlation-based, statistical-based, 
similarity-based, distance-based and information theoretical-based. 

Feature Selection Techniques: Wrappers produce a high perform-
ing subset tuned for a specific model. It is an expensive technique as each 
possible subset is iteratively used to train the model and the error rate of 
the model is then used as the score of the subset [4,59]. Greedy search 
strategies are feasible for wrapper methods [98]. Examples of wrapper 
methods include recursive feature elimination [34], Particle Swarm 
Optimization (PSO) [204] and Genetic Wrappers [90]. Filtering is 
cheaper to compute; however, it produces a general feature subset 
resulting in lower prediction performance. As we are decoupling pre-
processing from processing (e.g., modeling algorithms), we will restrict 
our survey to filters and hybrid feature selection techniques. Our 

categorization of FS will also make a distinction between cloud execu-
tion and edge deployment. Table 9 provides an overview of the tested FS 
techniques and their performance based our empirical analysis. 

Filters are feature selection techniques that are independent of the 
inference and the modeling algorithms when evaluating feature subsets 
and selecting features. Instead, filters use evaluation criterion to mea-
sure the correlation, relevance and redundancies of features. Unlike 
wrapper methods, the selected features are not optimized to particular 
algorithm or model [21,98,117]. Features correlation (the amount of 
new information introduced by a feature) and mutual information (the 
amount of information obtained about one feature from another feature) 
are some of the measures used for filtering. Features that fall below a 
threshold for a measure are filtered out [4,21,59]. There are several 
search strategies to find the subset features such as greedy forward se-
lection, greedy backward elimination, simulated annealing, race search 
and exhaustive search [21,117]. 

Removing features with low variance is a univariate statistical filter 
that can be used for unsupervised problems. For numerical variables, the 
variance is computed using the mean to determine whether the vari-
ables’ variances are below a predetermined threshold or not. The 
objective is to remove variables with zero or close to zero variances as 
they are less informative or with less predictive power [117]. Correla-
tion based Feature Selection (CFS) [76] is a multivariate 
statistical-based filter that eliminates irrelevant and redundant features 
using a heuristic evaluation function. CFS measures the correlation be-
tween the features and the response variable (feature-to-class) and the 
correlation between the features (feature-to-feature). The algorithm 
selects a subset with features that are highly correlated with the class but 
uncorrelated with each other. The mathematical formula of CFS subset 
evaluation function can be found in Table 9. The numerator of the 
function indicates how predictive the subset is of the response variable. 
The denominator indicates the subsets’ level of redundancy. The authors 
used forward selection, backward elimination and best first as search 
strategies to find candidate subsets, however, other search strategies can 
also be used for CFS. The three methods are prevented from searching 
the entire feature subset search space via stopping criteria with the 
objective of choosing the subset with highest evaluation merit found 
during the search. CFS is applicable for numerical and categorical data 
and for classification and regression problems, however to standardize 
the process, discretization [55] is applied on numerical continuous data 
as a preprocessing step. CFS fails to identify locally predictive features in 
small areas of instance space [76]. 

F-test is a univariate statistical hypothesis test that evaluates a pre-
dictor’s ability to separate the classes (discretized values) of the 
response variable. It compares the mean and variance of the predictor’s 
values grouped by the values of the response variable to test if the 
different groups come from normal distributions with the same mean 
(null hypothesis) or from populations with completely different means 
(alternative hypothesis). The F-test equation can be found in Table 9. 
The numerator calculates the variance between the classes while the 
denominator calculates the variance of each class distribution. The 
higher the F-test score is the more predictive the feature is of the 
response variable as it separates well the classes or discrete values of the 
response variable [174]. To use the F-test feature selection, it is assumed 
that the values of each variable are independent and that the residual 
errors within each class are samples from normal distributions [113]. 

Other statistical-based filters include Chi-Square Score [126] and 
T-score [35] however their use is limited to classification problems. 

Relief algorithms are a series of extended similarity-based filters with 
the original Relief algorithm introduced in 1992 [106]. The algorithm 
can estimate the importance of features even with strong dependencies 
between them. The Relief algorithm and the extensions that followed, 
start by randomly selecting an instance and finding its k (k=1 for Relief) 
nearest neighbor(s) with the same class and k nearest neighbor(s) with 
the other class(es). Instances with same response variable value (class) 
are compared to determine whether their values for attribute Ai is 
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different or not. Having different values means that the attribute is 
separating two instances from the same class and thus the quality esti-
mation of the attribute is decreased. On the other hand, instances with 
different classes and different attribute values means that Ai is successful 
in separating two instances with different classes and thus its quality 
estimation is increased. The RReliefF [164] extension was adapted for 
regression problems where the response variable is continuous. In the 
absence of discrete classes, the algorithm uses a probabilistic approach 
using relative distance to determine whether instances have different 
response values or not. Table 9 includes the equations of the RReliefF 
filter. The algorithm starts by randomly selecting an instance Ri and 
finding k nearest neighbors with Ij being a neighbor instance. The 
relative distance between the response values of the instances is used to 
model PdiffA, which is the probability of nearest instances having 
different values of attribute Ai, PdiffC, which is the probability of nearest 
instances having different response values and PdiffA∣diffC, which is the 
probability of the nearest instances having different response values 
given that they have different values of Ai. The quality estimation of Ai is 
then determined using these probabilities and features with highest 
weights are selected. RReliefF computational complexity is an 

improvement compared to FS techniques that require subset search 
followed by evaluation. The iterative process of finding k nearest 
neighbors to estimate the quality of A attributes given n instances and 
using m iterations (user defined) has a computational complexity of 
O (m.n.A) [165]. RReliefF is sensitive to the curse-of-dimensionality and 
its performance deteriorates as the number of features increases. The 
algorithm may also produce a selected features subset with re-
dundancies [190]. 

The Laplacian score [84] is a similarity-based univariate filter that 
can be performed on both supervised and unsupervised problems. It is 
based on the observation that instances from the same class are often 
found, in real-world datasets, close to each other. The importance or 
quality of features is determined based on their ability to preserve lo-
cality and based on their variance (higher variance being favorable). The 
algorithm starts by constructing the nearest neighbor graph G of feature 
Ai that consist of m nodes representing m instances. Two nodes (i and j) 
are connected with an edge if instances xi and xj have a nearest neighbor 
relationship in either direction. From G, the weight matrix S is created, 
which consists of the weights of edges between the different nodes. S 
models the local structure (relationships) of the data space. If two nodes 
xi and xj are connected, then the weight is computed via an exponential 
function using a distance measure. Otherwise, the weight is set to zero. 
The Laplacian matrix L is then obtained by subtracting the diagonal 
matrix D from S. The Laplacian score (Lr) of the feature is calculated 
using L, D and using centered (normalized) data instances fr of Ai [84]. 
We present the full Laplacian algorithm in Table 9. In the Lr equation, 
the numerator measures the distance (similarity) between instances and 
the smaller the sum of distances the more preserving it is to predefined G 
graph structure (i.e., higher locality preserving power). The denomi-
nator measures the features variance and the higher it is the more pre-
dictive is the feature [84,117]. Maintaining undirected graph for each 
attribute, especially with high dimensional and large datasets renders 
the filter expensive especially with batch processing. 

Neighborhood Component Analysis (NCA) Feature Selection [67, 
209] is a filter that has two variations: NCA for classification and NCA 
for regression. The latter is adapted for continuous response variables. 
NCA is a supervised learning non-parametric algorithm that makes no 
assumptions about data distribution and problem linearity. It is also 
insensitive to large number of irrelevant features. The intuition is that 
important features are the ones that best cluster related instances and 
separate the different clusters. The objective is to find a feature subset 
with which the classification or regression model yields the most accu-
rate results. This is done by computing the features weight vector using 
the stochastic nearest neighbor algorithm to optimize the performance 
of the Leave-One-Out (LOO) classification or regression on the training 
data. In addition, a regularization term is used to derive the weights of 
irrelevant features closer to zero and thus facilitate feature selection. 
The algorithm starts by randomly selecting a reference point xj for all the 
instances xi of the labeled dataset S− i (excluding the instance xi). The 
smaller the distance between xi and xj the greater the probability of 
selecting xj nearest neighbor as the reference point. To model this 
relationship, an exponential kernel function is used to assign a higher 
probability to smaller distances. In both [67,209], the Euclidean dis-
tance is used to determine nearest neighbors. After selecting a reference 
point, its label yj is assigned to instance xi. Choosing nearest neighbors 
increase the probability of correctly estimating the original response 
value yi and thus maximizing LOO classification or regression accuracy. 
A loss function l(yi, yj) such as Mean Absolute Deviation (MAD) is used to 
measure the difference between the estimated and the original response 
values. The average LOO estimation accuracy is determined from the 
sum of the selected probabilities of stochastic nearest neighbors and the 
loss function value of all instances. Authors of [209], introduced f(w), 
which consist of a regularization term together with the LOO estimation 
accuracy function. Feature weights are determined from the derivative 
of f(w). NCA is sensitive to feature scales and thus normalization as a 

Table 10 
Tested Feature Extraction Techniques.  

Technique Formula Property Results 

PCA  1) Compute the average row of the data 

matrix X: x̂ =
1
n
∑n

i=1
xi  

2) Using x̂compute the average matrix: 

X̂ =

⎡

⎣
1
⋮
1

⎤

⎦

n

x̂  

3) Center X using the average matrix: B 
= X − X̂  

4) Perform SVD on the centered data: B 
= UΣVtwhere Uis an orthogonal 
vector with information about the 
column space, Vis an orthogonal 
vector with information about the 
row spaces and Σis a diagonal matrix 
with values indicating the amount of 
variance.  

5) Given that the principle components 
decomposition of B is T = BV, then 
substituting B with UΣVT from step 4 
gives: T = UΣVTV. Given that V is 
orthogonal, VTV = 1, then T = UΣ 

Feature 
Extraction, 
Unsupervised 

RMSE    

0.5    
MAE    
0.36    
MAPE    
34.13% 

LDA  1) Compute within-class scatter matrix 
via: 

Sw =
∑C

j=1
∑Nj

i=1(x
j
i − μj)(x

j
i − μj)

T 

where xj
i is the ithsample with class 

value j, μj is the mean of the classj, 
Cis the number of classes, and Nj is 
the number of samples with class 
value j.  

2) Compute the between-class scatter 
matrix via: Sb =

∑C
j=1(μj −

μ)(μj − μ)T, μ is the mean of all 
classes.  

3) Maximize the ratio: LDA =
det|Sb |

det|Dw |
, 

where det is the determinant of the 
matrix. 

Feature 
Extraction, 
Supervised 

RMSE    

0.23    
MAE    
0.16    
MAPE    
16.37%  
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Table 11 
Highlighted sensor data compression techniques and their various approaches.  

Technique Property Example & Approach 

PAA  
[101] 

lossy, single-pass, 
numerical time-series 

mapping an input series to a series 

of constant line segments of length 5 

The procedure to construct a PAA using the approach from [101] proceeds as follows, with the segment length m :  
1) Split input data into n univariate series  
2) Replace series values xi, xi+1, …, xi+m− 1 with their mean (on the left: m = 5).  
3) Proceed with values xi+m, xi+m+1, …, xi+2m− 1, etc. 
This scheme cannot give guarantees about the maximum approximation error. The compression ratio is ≈ 1∕m. The output is 
a series of means. 

PLA [82] lossy, single-pass, 
numerical data 

mapping an input series to a series 

of line segments   

The procedure to construct a PLA as in [82] proceeds as follows:  
1) Split input data into n univariate series  
2) Assign an increasing counter to each series  
3) Produce best-fit line segments for each series, using counter as dependent variable. 
The approximation error (see Figure on left) is bounded to a user-defined value per series. The lines are constructed greedily, 
allowing single-pass data processing. Splitting the input into univariate series allows for independent compression & 
decompression. The output is a series of triples: 〈segment length, line slope, line intercept〉.  

Gorilla Compression  
[155] 

lossless, single-pass, 64-bit 
doubles 

value XOR w/ prev. The Gorilla scheme compresses timestamps and values differently. Here, we use the value compression scheme only.   

15.5 ∅  1) Split input data into nunivariate series of 64-bit doubles.  
2) In each series, store first value as-is.  
3) For all other values, compute the XOR with the previous value (see Table on left for a series of length 4).  
4) If value is identical to previous, store ’0’ (1 bit).  
5) Else, store ’# of leading zeros’ (5 bit)’ + ’# of meaningful bits’ (6 bit) + ’meaningful bits [in table: black]’     
As in the PLA scheme above, splitting the input data allows independent compression and decompression of 
multivariate input data. The output is a bitstream.   

14.0625 0×003200…    
14.0625 0×000000…    
8.625 0xd60000…    
XOR of doubles with prev- ous value. 
Significant bytes in bold.    

ZIP  
[39] 

lossless, multi-pass, arbitrary 
byte strings 

Huffmann tree en- coding for the 

strings “a”, “b”, “c”.    

The deflate algorithm processes input data as a byte stream and consists of two main stages:  
1) Detect duplicate strings and replace them with a pointer (a variable amount ofprevious data is checked for duplicates tobound 

computational complexity).  
2) Construct a Huffmann tree (see left), encoding most frequent strings to shortest unique bit sequences (see example on left: “b″ = 00, 

“a″ = 01, “c″ = 1). 
Stage (1) largely defines the compression ratio through the window of data that is checked for duplicates of a given string.  
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preprocessing step is required when variables have significantly 
different scales. It is also susceptible to the local minimum problem 
when minimizing f(w). Table 10 includes the regression equation of 
NCA. 

Minimum Redundancy and Maximum Relevance (mRmR) [156] is 
an information based feature selection methods that uses mutual in-
formation to measure feature relevance and redundancy. The technique 
selects relevant features while controlling redundancy in the subset. A 
recent extension of mRmR is introduced in [213], in which Randomized 
Dependence Coefficient (RDC) is used as the redundancy measure and 
Random-Forest Correlation Quotient (RFCQ) is used as the relevance 
measure. RDC addresses non-linear problems while the idea behind 
using RFCQ is to leverage a relevance measure that is related to the 
processing model. Information-Theoretical-Based methods including 
mRmR techniques, Conditional Infomax Feature Extraction (CIFE) [118] 
and Joint Mutual Information (JMI) [206] are only applicable on su-
pervised classification problems. 

Genetic Algorithm (GA) [114] is also a popular heuristic approach 
used for feature selection which is a search function that incorporates an 
evaluation function (fitness function). GA belongs to a larger class of 
evolutionary algorithms based on the biological process natural selec-
tion. The subset search problem of FS has an exponential search space 
making it an NP-hard problem. This makes GA a natural optimization 
strategy for high dimensional datasets as it efficiently finds approximate 
solutions that are more compact yet more informative compared to 
traditional solutions. The fitness function can be a linear classifier (using 
least square as the error function) [83], inconsistency rate filter [112], 
support vector machine [132] or random forests [216]. GA can be used 
for regression and classification problems [114]. The general algorithm 
starts with randomly selecting the populations (chromosomes) of the 
first generation. Each population is defined as the genetic representation 
(binary) of the features (genes) that are included (set as 1) and excluded 
(set as 0) in the population. The evaluation (fitness) function determines 
the weight of each population based on their performance in predicting 
the response variable (supervised) or based on their variance (unsu-
pervised). The next generation is constructed by inheriting elite pop-
ulations, those with large weights, from the previous generation and by 
crossing-over randomly selected population to produce new populations 
(offspring). The cross-over function has several variation including 
choosing k number of genes randomly and swapping them between each 
pair. Another approach is to randomly select a splicing point for the 
swap. The next generation undergoes one more process called mutation, 
in which genes in each population are randomly selected and flipped. 
Mutations simulate big jumps in the search space to avoid local optimum 
and deadlocks [114]. GA algorithms are computationally expensive and 
require careful tuning of the different parameters (e.g., crossover and 

mutation rates) thus these limitations must be considered in the context 
of IoT. 

In [88], authors proposed a framework that distributes five feature 
selection techniques to edge components using AURA neural network 
and Apache Hadoop. The distributed feature selection techniques 
calculate the weights of the different features at different edge devices. 
The framework collects the calculated weights from edge components 
and aggregate them into one result. Their empirical analysis using their 
framework demonstrated the feasibility of distributing feature selection 
techniques which can be extended to IoT. Authors of [140] recom-
mended distributing feature selection techniques especially with large 
datasets. Their experimental results demonstrate improvements in run-
time and in the quality and accuracy of AI solutions trained on the data. 
Their experimental analysis covered many techniques including CFS and 
ReliefF feature selection techniques. In [38], authors distributed feature 
selection techniques, including Chi-square, using Apache Spark with the 
objective of selecting a subset of sensor streams. Their empirical analysis 
demonstrated performance efficiency of the distributed techniques, 
however, they highlighted the need to distribute other preprocessing 
categories (e.g., normalization) to further improve the performance of 
feature selection techniques. 

Empirical Results: Our experimental results confirm that FS tech-
niques are more effective and yield positive results when the dataset is 
high dimensional. This was not the case with our dataset (derived from 
the AirQuality dataset) as we only had 15 features. For all of our feature 
selection experiments we selected the top five high scoring features. The 
LSTM model performed best when using all features as opposed to just 
using five features that had highest importance scores determined by the 
tested FS techniques. This is an expected outcome due to the information 
loss caused by FS. Having said that, FS could still prevent overfitting 
[117] and improve resource (computation, storage and energy) usage 
efficiency. Comparing the results of the different FS techniques we 
tested, RReliefF yielded the most accurate predictions while the Lap-
lacian score performed the worst (highest error scores), which can be 
attributed to the fact that the Laplacian score is an unsupervised 
technique. 

As for the rest of our survey’s experiments, we combined the results 
of the four techniques tested selecting the five most commonly selected 
features to be used in all the survey’s experiments across the different 
preprocessing categories. Benzene was the only feature that was selected 
by all four techniques tested. Hydrocarbons and NOx where selected by 
at least three techniques. The results of our experiments are presented in 
Figs. 14, 15. 

Feature Extraction Definition: Feature extraction (FE) is the pro-
jection of a high dimensional feature space to a low dimensional feature 
space with strong pattern recognition ability [21,117]. 

Fig. 4. Data Preprocessing Taxonomy. The Colors Distinguish the Different Categories (Sub-categories Inclusive) for Improved Readability.  
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Fig. 5. Impact of Normalization Techniques on Features’ Distribution and Scale.  
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Fig. 6. Impact of Normalization Techniques on Features’ Distribution and Scale.  
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Fig. 7. Impact of normalization techniques on the prediction accuracy.  
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Fig. 8. Estimated Imputations of Missing Data of the Tested Techniques.  

A. Tawakuli et al.                                                                                                                                                                                                                               



Journal of Engineering Research xxx (xxxx) xxx

27

Fig. 9. Impact of Missing Data Imputation Techniques on Prediction Accuracy.  
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Feature Extraction Techniques: We surveyed and tested two pop-
ular FE techniques that can be generalized and applied on a wide range 
of data including IoT data. The feature extraction techniques are sum-
marized in Table 10. 

Principle Component Analysis (PCA) is a linear feature extraction 
method that transforms correlated features to uncorrelated orthogonal 
vectors called Principle Components. It reduces the data into a lower 
dimensional linear subspace by replacing the original features that may 
consist of redundancies with new but fewer features that adequately 
summarize information contained in the original feature space [162]. 

Hence PCA uncovers low dimensional patterns that can be used to build 
better models. The first step of PCA is centering the data matrix X rep-
resenting the multi-dimensional feature space using the mean matrix to 
obtain a mean centered data matrix B. This is followed by computing 
either the singular value decomposition (SVD) of B to obtain the load-
ings and scores or Eigen decomposition of the covariance matrix BTB to 
obtain the eigen values and vectors. Both decomposition approaches 
provide the same principle components [19]. The decomposition sum-
marizes the statistical variations of the dataset at new axes or directions. 
The newly derived axes are called Principle Components (PCs) and are 

Fig. 10. Outliers Detected by the Different Techniques Tested.  
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Fig. 11. Outlier Detection Techniques’ Impact on Prediction Accuracy.  
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equal to the number of features in the dataset. The PCs are ordered based 
on their magnitude with the first PC having the maximum variance and 
thus encapsulates most of the information in the data. Dimensionality 
reduction is possible with minimum loss of information by choosing the 
first n principle components as they maximize variation and better 
separate the data. The final step involves projecting the data into the 
lower dimensionality space, which can then be used as input for ML and 
DL models [4,19,162]. PCA, however, is computationally expensive and 
difficult to perform on data streams [162]. It is also sensitive to feature 
scales and outliers and thus normalization and outlier removal should be 
prerequisite steps [4,19,162]. For such reasons, applying PCA on sensor 
data should be periodically performed centrally to capture changes in 
patterns of multiple sensor data. 

Linear Discriminant Analysis (LDA) is a Gaussian maximum likeli-
hood classification used as a feature extraction technique. It creates new 
linear axes from exiting features that maximize the separability of the 
different classes. This makes LDA a supervised technique where the 
predictors are continuous and the response variable is categorical with 
two or multiple categories (i.e., classes). The algorithm searches for a 
vector in the underlying space that best discriminates between the 
different categories and creates a linear combination of features that 
yields the maximum mean difference between the classes and minimum 
variation within each class [135,163]. Details of LDA algorithm are 
presented in Table 10. LDA assumes that the underlying distribution of 
each class is Gaussian and that the classes have the same covariance. 
Quadratic Discriminant Analysis is a variation of LDA that allows for 
different feature covariance matrices for different classes thus producing 
quadratic separation axes [201]. In [63], authors proposed a fast in-
cremental LDA for feature extraction that can be deployed for streaming 
data, which can be more ideal for IoT applications. Authors of [135] 
concluded from their empirical evaluation that PCA can outperform LDA 

in cases where the number of instances for each class value are small and 
when the training data do not uniformly sample the underlying distri-
bution. LDA, however, is applicable on supervised problems where the 
response variable is categorical. 

Other feature extraction techniques include Convolutional Auto- 
Encoders for non-linear dimensionality reduction [136], Gradient Di-
rection Histogram (HOG) [32] and Speeded-Up Robust Features (SURF) 
[8], as image feature descriptors. 

In [184], the feasibility of distributing LDA to IoT components was 
demonstrated. Using the training data, we computed the linear dis-
criminants matrix of the new subspace. The matrix was then distributed 
to the edge and multiplied with new data to transform them onto the 
new subspace. Our empirical results demonstrated the feasibility and 
efficiency of distributing the linear discriminants after training and 
highlighted significant improvement in the consumption of resources 
including energy. Several examples [15,196,198] in literature distribute 
PCA using edge computing or parallel computing to reduce the dimen-
sionality of data. These solutions either partly or completely train PCA 
on partitions of data streams. In [196,198], the results (local parame-
ters) from distributed devices are aggregated into a global PCA model in 
a central system. 

Experimental Results: We kept our experiments consistent with the 
feature selection experiments by using the top five features extracted by 
each tested technique. The first five principle components extracted by 
PCA explained approximately 93–94% of the total variance. Training 
with features extracted by PCA produced a less accurate model 
compared to the tested feature selection techniques and compared to 
using all 14 features (see Figs. 15 for comparison). LDA required using a 
discretization technique to transform the continuous response variable 
CO to a categorical format. We used equal-width binning to discretize 
the response variable CO into 10 categories. The predictors were kept as 

Fig. 12. Intervals and Bins Generated From the Tested Discretization Techniques.  
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continuous variables as required by the LDA algorithm. We used the top 
five LDA extracted features to train an LSTM model. The produced 
model has superior accuracy compared to the rest of the feature 
reduction techniques tested. We attribute the significant variation in 
accuracy between LDA and PCA to the fact that the former is supervised 
and uses summarized information from the response variable in deter-
mining the new feature space. The results of our feature extraction test 
are presented in Figs. 16. 

Data compression 

The amounts of data generated by edge devices is growing rapidly. 
While this development is one of the major enablers of data-intensive 
value extraction techniques such as Machine Learning using Deep 
Neural Networks, which rely on vast amounts of data for creating highly 
complex models, it also stresses the computing and communication 
infrastructure. At the edge, available storage is typically smaller than at 
central utilities, and transmission to these may be costly and slow [159]. 
At central utilities, while storage capacity is larger, usually the data from 
many edge devices is collocated. Compressing sensor data can alleviate 
the storage bottlenecks occurring at the edge and at central utilities as 
well as reduce the cost and duration of data transmission [6,82]. While 
the goal of data compression is always to find a smaller representation of 
data, different families of techniques rely on different paradigms for data 
compression. In the following, we will differentiate such techniques 
along two major dimensions. The first of these dimensions is the pro-
cessing paradigm: On the one hand, techniques that compress via mul-
tiple passes over the data, and on the other hand stream compression 
techniques that compress data in a single pass. The former allows for 
greater compression, while the latter’s greedy nature enables high data 

throughput and the processing of unbounded data streams even on 
low-powered devices. A second main divider is the faithfulness of the 
compression; one may differentiate between lossless and lossy 
compression techniques. Lossless compression allows an identical 
reconstruction of the original data from the compressed representation, 
while lossy compression leads to strictly smaller data volumes while at 
most allowing guarantees on the deviations between the original and 
reconstructed data. We will focus on general techniques suitable for 
compressing sensor data in the form of numerical multivariate 
time-series data, to present compression tools viable in a wide range of 
scenarios (in contrast to more data-specific techniques such as for 
example image [93], video [147], or LiDAR data [94] compression). 

Presentation of compression techniques 

Multi-pass & lossless. In the first class of techniques, we regard multi- 
pass lossless techniques. An early variant is presented by the DEFLATE 
algorithm [39] (see also Table 11), that is implemented for example in 
the gzip file format. Using a general dictionary-based compression 
scheme (e.g., a mapping from symbols between the raw and the com-
pressed data representation that matches the most frequent raw symbols 
to the smallest representation), DEFLATE can compress arbitrary types 
of data, including numerical time-series data (as evaluated in [82]). 
However, creating the necessary dictionary requires an additional pass 
over the data. Google’s Brotli [2] is a more recent compression algo-
rithm that expands on DEFLATE’s compression paradigm. While opti-
mized for web page compression, Brotli is capable of general-purpose 
compression, and its use of a predetermined static dictionary is benefi-
cial for shorter sequences of data and lends the compression scheme 
more to the streaming paradigm. Facebook’s Zstandard [30] dictionary 

Fig. 13. Discretization Techniques Impact on Prediction Accuracy.  
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compression algorithm further emphasizes static dictionaries by 
including support for training data-specific dictionaries on provided 
example files, thus allowing to tailor to specific data types before 
deployment for example at an edge device. 

Single-pass & lossless. For the compression of continuously-valued time- 
series, dictionary-based approaches that rely on the frequency of sym-
bols can be disadvantaged. A class of compression algorithms better 
adapted to this scenario is that of delta encoders, which losslessly encode 
the series of differences of data in a single pass. One variant is base-delta 
encoding, presented in [154], which encodes values as their distance 
from a base value. In [153], this idea was used to introduce an online 
compression algorithm specifically suited for increasing the throughput 
in data streaming systems. 

Lindstrom and Isenburg present a compression scheme suitable for 
variable-precision floating point and integer data [121] that calculates 
the bitwise XOR of a value with previous series values, and provides 
competitive performance for 2D and 3D visualization data, while 
Burtscher and Ratanaworabhan’s FPC algorithm, using the same idea for 
double-precision floats, significantly outperforms DEFLATE-family dic-
tionary compressors in speed [20]. Facebook’s Gorilla database [155] 
employs a similar scheme, specifically tailored to time-series data 
compression, by using delta-of-deltas encoding for timestamps (com-
pressing 96% of timestamps in the authors’ testing to a single bit) and a 
modified floating-point XOR compression scheme for the associated 
values (see also Table 11). A contrasting approach is present in earlier 
work for double-precision floats by Ratanaworabhan et. al. [161], where 
XORing of each value is performed with a prediction for said value based 

on a hash-table lookup, inspired in parts by [170]. 

Single-pass & lossy. The lossless compressibility of data is reversely tied 
to the data’s entropy. Lossy compression, on the other hand, can achieve 
arbitrary compression rates, while sacrificing precision. Several tech-
niques in the domain of lossless compression effectively reduce the 
data’s dimensionality and thus enable more efficient search, while also 
compressing the data volume. Discrete Fourier Transform (DFT) [36,53] 
divides a time-series into a superposition of periodic functions, allowing 
a decomposition of data into its main frequencies (and a large data 
reduction if storing only the coefficients of leading contributions), but 
suffers from the assumption of periodic data. Wavelet transforms 
abandon this assumption and have partially superseded DFT by using a 
different set of local decomposition functions [158]. Using specialized 
compression schemes, wavelet transforms may also provide guarantees 
about the faithfulness of reconstructed data [61,91]. In [65], the authors 
present a wavelet-based approximation technique for continuous data 
streams of time-series data, with the promise of broad applicability to 
various types of signals. 

A very intuitive subclass of lossy compression techniques is that of 
piecewise linear functions, which encode a time-series of data points by 
finding a set of linear approximations for subsequences. PAA (piecewise- 
aggregate approximation) encodes a sequence of points by their average 
value, thus resulting in an encoding of constant segments. In [101,210], 
the authors present such an encoding scheme with a constant segment 
length, enabling very efficient compression (by encoding each segment 
with only one value, its average) in a single-pass fashion. However, this 
approach neglects potential error bounds defined by the user of the 

Fig. 14. Feature Selection Techniques’ Feature Importance Scores.  
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compression. [102] makes the segment length of PAA adaptive, at the 
cost of requiring multiple passes over the data, but delivering segments 
that minimize the reconstruction error. In [120], constant-length seg-
ments are combined with a string representation for the segment values, 
where the fixed-size set of strings offers a second layer of encoding (the 
resulting strings are prominently used for time-series similarity search). 
PLA (piecewise-linear approximation) is a similar technique that fits line 
segments of certain length and slope to subsequences of data and then 
encodes the line segment parameters, while commonly ensuring that the 
approximation error is bounded. A host of variations of PLA exist, e.g., 
[10,48,129], that mainly differ in how the error bound is enforced. As a 
common feature, these techniques all support single-pass greedy inges-
tion of points, as only a window of past points has to be maintained (for 
each subsequence). [47] furthermore uses an adaptive streaming output 
protocol that can also encode singleton values (values that are not 

Fig. 15. Feature Selection Techniques’ Impact on Prediction accuracy.  

Fig. 16. Feature Extraction Techniques’ Impact on LSTM accuracy.  

Fig. 17. RMSE achieved in LSTM experiment using compressed-decompressed 
data plotted against the respective compression ratio of the compressed data 
(boxplots of five experiment repetitions). 
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compressed) to ensure that the protocol is non-inflating, while [82] 
builds on this technique to deliver an implementation that compresses 
the time and value streams independently from each other. 

Combined approaches. To forgo the disadvantages of single techniques, 
or combine their strengths, a body of techniques exist that present a 
mixtures of different compression approaches. In [12], the authors 
present Sprintz, a compression scheme that combines dictionary-based 
compression with delta encoding to further reduce data sizes. Their 
technique is optimized for deployment on highly resource-constrained 
edge devices. Similarly, in [203] the authors suggest combining PLA 
with delta encoding for on-board compression of vehicular data. [6,40] 
present Squeeze, which locally optimizes the prediction of the next data 
point in a series by choosing among constant, linear, or quadratic fitting, 
or using a binary compression scheme, and demonstrate its advantages 
in edge deployment scenarios. Finally, the authors of [128] present a 
middleware that chooses the optimal compression method on the edge 
among a set of dictionary-based (e.g., DEFLATE) or combined (Squeeze) 
techniques, relative to available CPU and network capacity as well as the 
data type. 

Selected evaluations 
Table 11 displays a selection of compression techniques, represen-

tative of different approaches to time-series compression, in more detail: 
PAA, PLA, Gorilla, and ZIP. The selection of highlighted techniques was 
partly guided by the availability of source code (or ease of reproduc-
tion). For these techniques, we evaluate in the following the achievable 
compression ratio (in % of original binary data volume) as well as the 
achievable accuracy as measured by the RMSE when using compression 
for the running use-case of LSTM-based time-series prediction, to give 
pointers concerning the trade-offs these techniques introduce. After the 
preprocessing of the whole dataset, the training set AirQuality[193] is 
compressed and decompressed. In the case of PAA and PLA, the resulting 
dataset is an approximation of the original data (due to the lossy char-
acter of the compression). Then, the LSTM is trained using the decom-
pressed data, and evaluated against the testing set (which has not 
undergone compression). 

Figure 17 shows the results of the experiment, with the RMSE ach-
ieved in the LSTM experiment plotted against the compression ratio 
achieved by the respective technique (boxplots of five experiment rep-
etitions). Gorilla and ZIP are shown as single boxplots, as the compres-
sion achieved with these techniques is not variable. As both are lossless, 
the achieved RMSE equals the one achieved on data that has not un-
dergone compression and decompression. It appears that Gorilla has 
difficulties compressing the data used in this experiment, achieving a 
compression ratio below 90%, while ZIP compresses the dataset to 
around 50% of its original size, demonstrating the general-purpose na-
ture of the deflate algorithm used in ZIP. The authors of Gorilla [155] 
demonstrate much more beneficial compression ratios on time-series 
data than the one observed here, which may be an indication of the 
correspondence between signal shape and achievable compression for 
Gorilla. The variable compression ratios of PLA are achieved by varying 
the maximum error bound, and those of PAA by varying the segment 
length (see Table 11). Both compression techniques demonstrate that 
any reconstruction losses from PAA and PLA do not hurt the achievable 
RMSE (which is close to that of using no compression), with clearer 
trade-offs for higher compression ratios. Clear comparisons between 
PAA and PLA are difficult, but the graph hints that for reducing the 
compression ratio from 50% to below 20% leads to a reduction in RMSE 
of 70%, and scales roughly linearly in the region in-between. From this 
experiment, one may choose PLA or PAA compression over ZIP for the 
potential speed benefit of a single-pass technique, and choose a 
compression ratio that is aligned with a target RMSE. It should be noted 
here that while using lossy compression leads to factually lower RMSE, it 
potentially allows the transmission and storage of larger amounts of 

data, thereby potentially increasing the accuracy of a trained model and 
thereby the RMSE. 

Preprocessing steps governed by dependencies 

It is important to highlight that dependencies between preprocessing 
categories and techniques exist. As an example, outlier detection and 
removal can precede data normalization such that the data mean and 
variance for normalization are not distorted by artifacts. Similarly, 
missing data imputation may require the data to be normalized first, in 
case the imputation method is sensitive to the scale of the data. A more 
detailed analysis of dependencies between different preprocessing cat-
egories and their impact can be found in [183]. 

In general, preprocessing can encompass any combination, including 
repeated application, of individual preprocessing techniques. This 
combination of preprocessing techniques can usually be expressed as a 
directed acyclic graph (DAG), where nodes are individual preprocessing 
steps (preprocessing tasks) and edges are the dependencies between 
them. Fig. 1 shows how a series of preprocessing steps can be modeled as 
a DAG, with data flowing along the arrows and nodes being pre-
processing steps or operators: First, outliers in the data are detected 
using the data’s interquartile range (IQR) step 1. In step 2, the data is 
normalized to the 0, 1 interval. Now, missing data is to be imputed. To 
improve the performance of the imputation, in step 3 isolated missing 
instances are passed to a Linear Interpolation (LI) preprocessing step, 
while sequences of missing data are imputed using Expectation Maxi-
mization (EM); afterwards, the data is passed forward as a single dataset 
again. In step 4, important features of the data are selected using 
multiple FS techniques, including RReliefF, F-test, and NCA. 

Modeling applications in this fashion as graphs of operators is a 
common technique used, for example, by parallel and distributed Big 
Data processing tools such as Apache Spark and Apache Flink. Viewing 
preprocessing in this light allows us to leverage results, especially from 
the latter field, to optimize the processing of more complex pre-
processing DAGs. As an example, step 4 in Fig. 1 may be situated in the 
cloud due to the increased computational complexity, while steps 1–3 
could be deployed on said edge device close to the data source. This 
notion of targeted deployment of operators, e.g., to reduce processing 
latencies or optimize resource usage, is widely researched in the context 
of stream processing (see, e.g., [41]). 

While it is not in the scope of this survey to review results from the 
field of data stream processing, we want to highlight one more inter-
esting connection. As the nodes in a preprocessing graph can have non- 
trivial interdependencies, it can be difficult to reason about, replicate, or 
improve upon the preprocessing graph, which introduces novel chal-
lenges that may be overlooked when considering only individual pre-
processing steps. Here, the concept of data provenance may be helpful, 
as it allows us to connect results from various processing steps with each 
other to answer questions about why and how a result came to be. [66] 
(for the stream processing engine Borealis) offers fine-grained data-level 
provenance by instrumenting the individual processing steps of the 
processing graph. Genealog [150] is a similar framework that delivers 
fine-grained provenance in, among others, the Apache Flink stream 
processing engine while incurring only a constant overhead per data 
point for tracking data provenance. In addition to providing insight into 
individual data transformations or the data workflow at large, data 
provenance may also be employed for sophisticated selection of input 
data, as demonstrated in [151]: Rewriting the preprocessing step of data 
selection as a query over the input data that may involve multiple 
transformations and aggregations with secondary data types and a final 
filter for checking conformity to a desired attribute, provenance allows 
the retrieval of exactly that input data that contributed to any result 
passing the final filter. Tools like these can aid in disentangling, un-
derstanding, and improving complex preprocessing workflows, and they 
underline how the adoption of a graph view of data preprocessing can 
aid in improving the eventual quality of the data, but also the process of 
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preprocessing itself. 

Conclusion and future work 

In this survey, an extensive number of preprocessing techniques were 
surveyed under each category. In addition, we empirically evaluated the 
impact of selected techniques on the data and on the prediction accuracy 
of an LSTM network centrally trained on the respective preprocessed 
data. This makes the survey a distinctive account that includes both 
theoretical and empirical analysis. We expanded the scope of data pre-
processing to include traditional categories such as data cleaning and 
non-traditional categories such as data compression. We also high-
lighted the importance of considering dependencies between different 
preprocessing techniques and categories as they impact the performance 
and functioning of the dependent techniques. The survey focuses on 
preprocessing numerical time-series data, which is significantly 
collected from the edge given the popularity of Internet of Things ap-
plications. Thus, a third dimension of the survey includes discussions 
and examples that suggest the applicability and feasibility of deploying 
preprocessing techniques to the edge and the promising impact of such 
distribution. The survey is a starting point and a guide for researchers 
and practitioners to address data preprocessing comprehensively, 
effectively, and via a standardized and normalized approach. 

Due to the depth and scope of this survey and other factors and 
limitations, our experiments were restricted to one dataset and to 
selected preprocessing techniques from some categories. To remove 
biases and extract generalized conclusions, the empirical analysis should 
be extended to other real-world datasets in future work. We recommend 
selecting datasets from different domains that demonstrate different 
characteristics (e.g., different distributions). Having said that, our re-
sults provide valuable insights and highlight disparities in the impact of 
the different preprocessing techniques under the same category on both 
the dataset and the AI algorithm consuming the data. The impact of 
some categories or techniques on the data can also be generalized due to 
their fixed objectives. For example, regardless of the dataset and original 
feature scale, min-max scaling will always transform features to a scale 
between zero and one. We also plan to extend our empirical analysis to 
cover categories that were not evaluated in this survey. For example, 
handling non-stationarity (changing data characteristics) in the data as a 
new data preprocessing category [169]. Lastly, we identify the need to 
systematically evaluate the feasibility and impact of distributing data 
preprocessing techniques to the edge to be applied on IoT data early in 
the dataflow. 
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Data Preprocessing: Definition and Scope 

We introduce an extended definition of data preprocessing based on 
a holistic and modern prospective. We also present the first taxonomy of 
data preprocessing based on the proposed definition: 

Definition. Data preprocessing includes any operation performed on 
the data, prior to information and value extraction and after data 
ingestion, to improve the quality of the data and prepare it for the 
consuming algorithms. The operations fall under several categories as 
highlighted by the taxonomy in Fig. 4 to achieve many data quality 
characteristics including accuracy, unbiased, completeness, and 
traceability 

Figures of the Empirical Results 

We used different types of figures (e.g., plots, bar-charts, etc.), 
included in the appendix, to present the impact of the preprocessing 
techniques on the data (Input Quality). The figures highlight the trans-
formation of the data or outline the outcomes and diagnosis of the 
techniques. We align the figures presenting the impact of the different 
techniques for effective comparison and provide a baseline only when 
relevant. 

We also evaluated the impact of the preprocessing techniques on AI 
algorithms (Output Quality), specifically LSTM networks. The perfor-
mances of the trained LSTM networks under the different preprocessing 
categories are presented in two dimensional line plots of the predicted 
values against the observations after preprocessing, if any was applied. 
The plots represent the results of the last test performed of that partic-
ular experiment including the metric values at the top of the plot. 

We present a graphical representation of our empirical results based 
on the two main evaluation approaches clarified above and in the order 
the category was discussed in the survey Fig. 5, 6,7,8, 9, 10, 11, 12, 13, 
14, 15, 16, 17. 
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