
Survey: Time-Series Data Preprocessing: A Survey and an Empirical
Analysis

Downloaded from: https://research.chalmers.se, 2024-04-20 02:00 UTC

Citation for the original published paper (version of record):
Tawalkuli, A., Havers, B., Gulisano, V. et al (2024). Survey: Time-Series Data Preprocessing: A
Survey and an Empirical Analysis. Journal of Engineering Research.
http://dx.doi.org/10.1016/j.jer.2024.02.018

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Journal of Engineering Research xxx (xxxx) xxx

Please cite this article as: Amal Tawakuli et al., Journal of Engineering Research, https://doi.org/10.1016/j.jer.2024.02.018

Available online 8 March 2024
2307-1877/© 2024 University of Luxembourg. Published by Elsevier B.V. on behalf of Kuwait University. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Survey:Time-series data preprocessing: A survey and an empirical analysis

Amal Tawakuli a,*, Bastian Havers b, Vincenzo Gulisano c, Daniel Kaiser a, Thomas Engel a

a University of Luxembourg, Esch-sur-Alzette, Luxembourg
b Volvo Car Corporation, Gothenburg, Sweden
c Chalmers University of Technology, Gothenburg, Sweden

A R T I C L E I N F O

Keywords:
Data preprocessing
Data quality

A B S T R A C T

Data are naturally collected in their raw state and must undergo a series of preprocessing steps to obtain data in
their input state for Artificial Intelligence (AI) and other applications. The data preprocessing phase is not only
necessary to fit input requirements but also effective in improving AI training efficiency and output accuracy.
Data preprocessing is a time consuming and complex phase that lacks a unified and structured approach. We
survey data preprocessing techniques under different categories to provide an extended and structured scope of
data preprocessing relevant to numerical time-series data. We also provide an empirical analysis of the impact of
preprocessing techniques on the quality of the data and on the performance of AI algorithms. In addition, we
discuss the feasibility of distributing some of the surveyed techniques to the edge. Leveraging edge computing to
distribute data preprocessing reduces the workload on central systems, creates more manageable data lakes,
reduces the consumption of resources (e.g., energy) and enables EdgeAI.

Introduction

One can identify from literature a common understanding that data
preprocessing is the set of operations that transform raw data into
quality input data. It includes operations such as dimensionality
reduction, normalization and outlier detection [3,59,92,167]. Pre-
processing data is necessary to obtain quality input and ultimately
quality output, particularly for AI models and networks. To list a few
challenges, raw data may be incompatible (in terms of size, format, etc.),
biased, or may consist of outliers and redundancies. Even though they
are not considered as quality issues, the heterogeneity and high
dimensionality of data may impose further challenges. To perform
analysis on data, it must first undergo several preprocessing operations.
The required preprocessing tasks, their sequence, optimal location of
execution, and parameters depend on many factors, including the type
of data, the data source, system context, application, available re-
sources, and the type of algorithm consuming the data. There are also
“individual factors”, such as the user’s experience in preparing data
[107]. Data preprocessing is also typically tailored for a specific problem
or application [54,110,139] and is initiated after the accumulation of
raw data (batched), thus lacking standardization and being prone to
errors and delays. This approach could result in repeating common and
shared preprocessing tasks on the same data but for different

applications. Accumulating raw data in a central system collectively
wastes bandwidth (used to transfer raw data from sensors), storage, and
other resources (time, energy, etc.), as raw data often include anomalies
that fruitlessly consume these valuable resources. This may be tolerated
to some extent, however, with the wide spread of IoT applications and
devices, the accumulation of data collected from the edge and trans-
ferred to central systems have considerably higher impact on available
resources and infrastructure. The automotive sector is a good example,
where there is an imbalance between the volume of data sensed from
vehicles and infrastructure’s capacities, in addition to the inherent
limitations of batch technology [81]. Batch preprocessing raw data in a
central system may take up to 80% of available resources [92,110].
While preprocessing data streams (i.e., as data is collected) close to the
data source could improve efficiency and standardize shared pre-
processing requirements across different applications. Edge pre-
processing is also an intuitive approach to address private or biased data
to fulfill regulations concerning privacy protection (e.g., GDPR) and
fairness.

This survey is a broad account of different types of preprocessing
based on a holistic notion and an extended scope of data preprocessing.
It is not limited to addressing data cleaning but also covers techniques
that address other aspects such as sensor fusion and data compression.
Fig. 4 introduces our holistic and standardized taxonomy of data

* Corresponding author.
E-mail address: amal.tawakuli@uni.lu (A. Tawakuli).

Contents lists available at ScienceDirect

Journal of Engineering Research

journal homepage: www.journals.elsevier.com/journal-of-engineering-research

https://doi.org/10.1016/j.jer.2024.02.018
Received 19 November 2023; Received in revised form 18 February 2024; Accepted 26 February 2024

mailto:amal.tawakuli@uni.lu
www.sciencedirect.com/science/journal/23071877
https://www.journals.elsevier.com/journal-of-engineering-research
https://doi.org/10.1016/j.jer.2024.02.018
https://doi.org/10.1016/j.jer.2024.02.018
https://doi.org/10.1016/j.jer.2024.02.018
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Engineering Research xxx (xxxx) xxx

2

preprocessing. Also worth highlighting about the scope of the survey is
that it focuses on techniques applicable to numerical time-series data.
Our objective is to provide a practical data preprocessing guide for
practitioners and academics alike. It is also the first survey to include
experimental analyses of the impact of the tested preprocessing tech-
niques on both the quality of the data (model input) and the quality and
accuracy of the extracted information (model output). For the empirical
analysis, we used a real-world dataset and a use-case with controlled
experimental setup and configuration. We also briefly discuss the
feasibility of distributing some of the techniques to the edge for the
aforementioned benefits.

The survey is organized as follows: In Section 2, we define quality
data and its characteristics. We describe our experimental setup and the
selected real-world dataset in addition to our evaluation methods and
metrics in Section 3. In section 4, we propose a broader definition of data
preprocessing and present data preprocessing techniques under different
identified categories. We also highlight dependencies between different
data preprocessing categories in Section 5. Lastly, we conclude and
present future research opportunities in Section 6.

Characteristics of data quality

Some of the characteristics of quality data mentioned in relevant
literature include: clean, compatible, accurate, reliable, interpretable,
complete, trustworthy, unbiased, secure, useful, valuable, easy to access,
traceable, and timely [7,78,100,188]. Data with such characteristics
contribute to the application’s performance and integrity and prevent
errors from propagating through the dataflow pipeline, causing losses
and delays. From a technical perspective, quality data contribute to
better predictions and classifications and faster convergence (more
efficient learning). From a business perspective, quality data result in
more reliable decision-making, achieve legal compliance, and boost
operations’ efficiency [141]. To obtain the aforementioned character-
istics, factors that hinder data quality must be addressed. These factors
and challenges include outliers, missing instances, high dimensional
data, variant scales, biased data, and sensitive or private data. Many
techniques have been proposed by the research community to address
each factor, with some challenges attracting more attention, such as
missing data. This survey is comprehensive in the sense that it presents
techniques for addressing different data anomalies and challenges. Thus,
it is not limited to data cleaning but rather broadens the meaning of data
preprocessing to cover categories that achieve wider characteristics of
quality in data by addressing extended challenges found in the data.
Each category is self-contained, with many categories having an exten-
sive research history and a wide range of proposed solutions by active
research communities.

Dataset and experimental details

The preprocessing techniques are evaluated based on their impact on
the data and their impact on the prediction model. Our selection criteria

are based on choosing techniques of diverse types (univariate, multi-
variate, statistical ML, etc.). We used the same dataset, applied the same
overall data preprocessing pipeline, and used the same evaluation
strategy across all experiments within the categories covered in the
survey. This was important to ensure consistency and control variations
in the experimental environment. The evaluation strategy also involved
training Long Short Term Memory (LSTM) networks using the dataset
produced by each preprocessing experiment to evaluate the impact of
the preprocessing technique on prediction quality and not just the data
quality and characteristics. To control experimental variation, the same
training configuration and evaluation metrics were used in all of our
experiments. The following are the details of each of these empirical
components:

The dataset

We used the real-world time-series AirQuality[193] dataset from the
UCI Machine Learning repository. The dataset includes 9358 instances
(1.3 MB) of hourly averaged values of 15 variables, including temper-
ature, humidity, and air pollutant chemicals, that were collected from
sensors located in a polluted area in an Italian city between March 2004
and February 2005. We selected the dataset because it consists of
continuous sensor data and can be used to evaluate a wide range of
regression preprocessing techniques, which is our focus, and classifica-
tion preprocessing techniques. The only limitation of the dataset for the
purpose of this survey is that it cannot be used to evaluate privacy
preservation techniques and debiasing techniques as it does not include
protected or sensitive features. The dataset is a good example of sce-
narios where deploying preprocessing to the edge is feasible and intui-
tive. The dataset was divided so that 90% of the data is used for training
while the rest is used for testing. From the 15 features in the dataset, we
allocated the feature Carbon Monoxide (CO) as the response variable
and the rest of the features as predictors. Models or networks trained
would attempt to predict the values of CO from the predictors, which are
the input used for training and predicting. As a future work, we wish to
perform similar tests on several other datasets from different industries
to confirm and generalize our conclusions.

Standardized preprocessing of the dataset across all experiments

To control variations in our experiments and for comparable results,
we standardized the required preprocessing tasks across all experiments.
As a default and for any dataset, the presence of anomalies, such as
missing data and outliers, must be checked and handled. To avoid
overfitting, we also normalized the scales of the different features and
performed feature selection to select the most informative features. We
tested multiple techniques for each category on the selected dataset and
chose the techniques that yielded the best results. The preprocessing
pipeline starts with replacing the reserved value (− 200) for missing
data in the dataset with NaN. This is followed by detecting outliers in
each feature using the Grubbs outlier detection technique for normally
distributed features and the Interquartile Range outlier detection tech-
nique otherwise. The outliers are replaced with estimated values using
the imputation technique Cubic Spline Interpolation. The next anomaly
addressed is the missing data anomaly. As proposed in [186], we
differentiated between isolated and sequence missing instances and used
an optimal technique for each. For isolated missing instances, we used
Cubic Spline Interpolation to estimate the missing instances. For
sequence missing data, we used Expectation Maximization (EM) to
impute the missing data. For our dataset, the different attributes (fea-
tures) have already been fused into one dataset; however, in a real-world
IoT scenario, a sensor fusion technique must be applied prior to EM as it
is the first multivariate technique in the preprocessing plan. Finally, we
applied multiple feature selection techniques, including Neighborhood
Component Analysis and Laplacian Scores, and selected the top most
common features. The Directed Acyclic Diagram (DAG) in Fig. 1 (see

Fig. 1. The Preprocessing DAG.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

3

appendix) represents the preprocessing plan used across the different
experiments of the survey. At each category represented in the DAG (e.
g., Missing Data Imputation), the default technique for all the experi-
ments is replaced with the tested techniques for evaluation and com-
parison, while the rest of the preprocessing categories of the DAG remain
unchanged (with the same default technique). Categories not repre-
sented in the DAG (e.g., compression) are applied after the last node,
after Feature Selection, as further preprocessing.

The preprocessing pipeline presented in Fig. 1 is specific to this
particular dataset and to our experiments. It was derived based on our
experimental evaluations of different preprocessing techniques,
including their applicability, and yielded results. For example, data
debiasing and privacy preserving techniques were not applied as the
dataset does not contain attributes that are explicitly or implicitly
related to individuals. Fig. 1 does not represent the scope of data pre-
processing as presented in this survey, nor does it imply the order or
depth of our survey and experimentations. We have covered more pre-
processing categories and techniques for both the survey and experi-
mental analysis. The preprocessing pipeline presented in Fig. 1 is merely
for controlling and standardizing variations in our experiments.

Empirical evaluation methods and metrics

Evaluating the effectiveness of a preprocessing technique in
addressing an anomaly in the data and its impact on the quality of the
data (Input Quality) is not sufficient as the only evaluation component.
For example, detecting potential outliers in a dataset using an outlier
detection technique based on local or global value ranges that highlight
extreme values at both ends is only one part of determining the per-
formance of the technique or the quality of the produced data. An
extreme value may not necessarily be an outlier but rather provide
important information about the real-world. The bottom line is that we
want quality data because we want accurate predictions and valuable
information obtained from the data. For such reasons and to help us
assess the amount of information loss or accuracy gains that resulted
from applying a preprocessing technique, we also evaluate the technique
based on its impact on the prediction accuracy (Output Quality). For
such purpose, we trained LSTM networks [87] that predict the values of
Carbon Monoxide CO. LSTM is a recurrent neural network (RNN) that
models sequential or time-series data with memory capacity to capture
long term dependencies. LSTM was proposed to address the diminishing
gradients issue suffered by RNN [87,176,178]. LSTM networks are
proven powerful solutions for speech recognition, handwriting recog-
nition, and making predictions based on time-series data [24,31,62,70,
133,202,208]. In addition, LSTM can be used for non-linear, non--
monotonic, and fluctuating data where historic information maintains

its value [87]; making the LSTM algorithm a plausible choice for our
experiments.

We used MATLAB R2020b to conduct our experiments on two local
machines. The LSTM network architecture consists of a sequence input
layer, an LSTM layer with 200 hidden units, a fully connected layer, and
a regression output layer. We trained the network using the Adaptive
Moment Estimation (Adam) optimization algorithm with an initial
learning rate of 0.005 and a maximum of 100 full passes through the
entire dataset.

We evaluated trained LSTM networks using three error metrics,
namely Root Mean Square Error (RMSE), Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE), which are commonly used
by the research community [75,105,127,146,188]. We denormalized
the predictions and observations of the response variable to present the
results on the original CO scale and thus obtain comparable results. We
repeated each experiment at least three times. The averaged error metric
results (the average result of the last three tests) for each experiment are
presented in the tables that summarize the tested techniques. We also
present the results visually using suitable plots for the different cate-
gories, which are included in the appendix.

Figure 2 contains two plots representing the results of two experi-
ments. The one on the left plots the predictions of an LSTM network
trained on the AirQuality dataset preprocessed according to the DAG
shown in Fig. 1 and the one on the right plots the predictions of an LSTM
network trained on data with minimum preprocessing to remove the
NaN values using Cubic Spline Interpolation. The later experiment
required the removal of the NaN values to avoid errors in training;
otherwise, the data are kept in their original state. The values of the
error metrics on the plots are from the last test conducted. The average
errors of the last three tests for the experiment where the complete DAG
is applied are: 0.32 for the RMSE metric, 0.23 for the MAE metric, and
25.26% for the MAPE metric. While the average errors of the last three
tests for the experiment where the DAG was not applied are: 0.60 for the
RMSE metric, 0.45 for the MAE metric, and 51.41% for the MAPE
metric. The prediction accuracy difference between the two LSTM net-
works is significant, with the network trained on the DAG preprocessed
data yielding error reductions of ~ 46.66% in the RMSE value, ~
48.88% in the MAE value, and of ~ 50.87% in the MAPE value. The
observations (blue lines in 1) between the two experiments vary slightly
because the data in the experiment represented by the left plot under-
went several preprocessing steps (see 1) that included replacing outliers.

Data preprocessing

Our objective is to cover as many techniques as possible under each
identified category and sub-category. Given the time constraint,

Fig. 2. LSTM Performance Trained on Preprocessed Data (Left) and Trained on the Original Data.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

4

however, covering all techniques under some categories and sub-
categories is not feasible. Our selection criteria prioritize techniques
recommended by the research community [4,59,60,137] and recom-
mended or practically validated by industry (site MATLAB, Google,
Scikit, etc.). Thus, selected techniques may not necessarily be considered
state-of-the-art, but instead they are recognized and proven to be

impactful and effective in practice. Our selection criteria are also gov-
erned by the availability of the technique in MATLAB or by a third-party
library developed for MATLAB, especially for categories and
sub-categories that included an empirical analysis. We also selected
techniques that are applicable to numerical time-series data. Under each
category and sub-category, we start with the simplest techniques or
technique types and gradually present more complex techniques. We
also mention some state-of-the-art solutions and highlight techniques
that are proposed for distribution to the edge. Our search criteria
included “missing data imputation”, “outlier detection”, “data dis-
cretization”, “feature selection”, “feature reduction”, “sensor fusion”,
“data sampling”, etc. The research databases used for our search
included “IEEE Xplore”, “ACM Digital Library”, “a-z.lu”, “ScienceDir-
ect”, etc. We selected techniques based on the following criteria:

(1) Techniques that are thoroughly tested and extensively used by
academics, researchers and practitioners.

(2) Techniques applicable on time-series numerical data.
(3) Techniques with the potential of being effectively distributed to

the edge.
(4) For the empirical analysis, use techniques with available imple-

mentation details or existing libraries in MATLAB.
(5) Techniques that are state-of-the art and at least satisfy point 2 and

for the empirical analysis, also satisfy point 4.

Criterion 4 stated above ensures the reproducibility of our test results
as the same implementations of different preprocessing techniques are
readily available for us and for other researchers and evaluators. Most of
the preprocessing techniques used and tested in both parts of the survey,
including those that are part of the generalized preprocessing plan are
available by default or as libraries in MATLAB R2020b. Using the
selected dataset, which is publicly available [193], and applying the
generalized preprocessing plan of our empirical analysis, presented in
Fig. 1, one can obtain results similar to our results that are presented in
this extended survey. Tables 1, 2 list the techniques we cover in depth or
with an empirical evaluation and highlight the extended categories we
cover in this survey. For a comprehensive view of the data preprocessing

Table 1
Sample of Preprocessing Techniques Covered in The Survey.

Technique Category Input Type Tested

1 Min-Max Scaling Normalization Univariate Yes
2 Z-score Normalization Univariate Yes
3 Robust Standardization Normalization Univariate Yes
4 P-Norm Normalization Univariate Yes
5 Decimal Scaling Normalization Univariate Yes
6 Log-scaling Normalization Univariate Yes
7 Box-Cox Transform Normalization Univariate Yes
8 Ignore Missing Missing Data Univariate No
9 Reserved Value Imputation Missing Data Univariate No
10 Mean or Median Imputation Missing Data Univariate Yes
11 Piecewise linear interpolation

(LI)
Missing Data Univariate Yes

12 piecewise cubic spline
interpolation

Missing Data Univariate Yes

13 Autoregressive (AR, MA,
ARMA & ARIMA)

Missing Data Univariate No

14 Vector Autoregressive (VAR) Missing Data Multivariate No
15 Hot Deck and Cold Deck

Imputation
Missing Data Multivariate Yes

16 Expectation Maximization Missing Data Multivariate Yes
17 Linear regression and

Stochastic Linear Regression
Missing Data Multivariate No

18 K-Nearest Neighbor (kNN)
Imputation

Missing Data Multivariate No

19 Support Vector Machines
(SVM) Imputation

Missing Data Multivariate Yes

20 Long Short Term Memory
(LSTM) Imputation

Missing Data Multivariate No

21 Multiple Imputation (MI) Missing Data Multivariate Yes
21 Hybrid Missing Type Based

Approach
Missing Data Dependent Yes

22 Median Absolute Deviation
(MAD)

Outlier
Detection

Univariate Yes

23 Grubbs Test Outlier
Detection

Univariate Yes

24 Generalized Extreme
Studentized Deviate (GESD)

Outlier
Detection

Univariate Yes

25 Interquartile Range (IQR) Outlier
Detection

Univariate Yes

26 Minimum Covariance
Determinant

Outlier
Detection

Multivariate No

27 Olive-Hawkins estimate Outlier
Detection

Multivariate No

28 Local Outlier Factor (LOF) Outlier
Detection

Multivariate No

29 Density-Based Spatial
Clustering of Applications
with Noise (DBSCAN)

Outlier
Detection

Multivariate Yes

30 Isolation Forest (iForest) Outlier
Detection

Multivariate Yes

31 One Class Support Vector
Machine (OCSVM)

Outlier
Detection

Multivariate No

32 Kalman Filter (KF) &
Unscented KF

Sensor Fusion Multivariate No

33 Particle Filter (PF) Sensor Fusion Multivariate No
34 Dempster-Shafer Sensor Fusion Multivariate No
35 Equal-Width Binning Discretization Univariate Yes
36 Equal-Width Binning Discretization Univariate Yes
37 Gaussian Approximation Discretization Univariate Yes
38 K-means Discretization Discretization Multivariate Yes
39 Shared Nearest Neighbor

(SNN)
Discretization Multivariate No

40 Self Organizing Map (SOM) Discretization Multivariate Yes
41 Class-Attribute Contingency

Coefficient (CACC)
Discretization Univariate No

42 Chi-Merge Discretization Univariate No

Table 2
Preprocessing Techniques Covered in Survey - Continued.

Technique Category Input Type Tested

43 Class-Attribute
Interdependence
Maximization (CAIM)

Discretization Univariate No

44 Low Variance Filter Feature
Selection

Univariate No

45 Correlation-based Feature
Selection (CFS)

Feature
Selection

Multivariate No

46 F-test Feature
Selection

Univariate Yes

47 Relief & RReliefF Feature
Selection

Multivariate Yes

48 Laplacian Score Feature
Selection

Univariate Yes

49 Neighborhood Component
Analysis (NCA)

Feature
Selection

Multivariate Yes

50 Minimum Redundancy and
Maximum Relevance (mRmR)

Feature
Selection

Multivariate No

51 Genetic Algorithm Feature
Selection

Multivariate No

52 Principle Component Analysis
(PCA)

Feature
Extraction

Multivariate Yes

53 Linear Discriminant Analysis
(LDA)

Feature
Extraction

Multivariate Yes

54 Piecewise Aggregate
Approximation

Compression Bivariate Yes

55 Piecewise Linear
Approximation

Compression Bivariate Yes

56 Gorilla compression Compression Multivariate Yes
57 ZIP / deflate Compression Multivariate Yes

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

5

categories, we included Fig. 4 in the appendix, which is the first data
preprocessing taxonomy that we have proposed towards normalizing
and unifying the definition and practices of the data preprocessing
phase.

Normalization

par Impact: Normalization is a preprocessing step crucial and
effective for distance based algorithms including K-Nearest Neighbors
(K-NN), K-means clustering and Support-Vector Machine (SVN) as it
prevents biases towards features with higher magnitudes. It also accel-
erates the convergence of gradient descent in linear regression, logistic
regression and artificial neural networks as it generates a cost function
with circular contours making the path to a global minimum more
direct. Principle Component Analysis (PCA) used for feature extraction
is an example where normalizing features before being used as input for
the algorithm is essential to the performance of the algorithm. This is
because normalization would prevent features with wider scales from
dominating the direction of maximum variance and consequently being
determined by PCA as more important features.

Normalization equalizes the influence and importance of feature
scales and thus prevents wide ranges or higher magnitudes from having
greater influence on learning [3,26,78,109]. In [185], empirical results
presented indicate that standardization reduces the interquartile range
of transmission time and predication time, in other words more stable
and persistent transmission and prediction durations.

Definition: Normalization techniques rescale the values of numeric
features to produce features with similar range of scale. It is applicable
on multiple features datasets that have significantly different scales.

Techniques: Several normalization techniques exist that can be used
on numerical sensor data at the edge using local or global data statistics.
An overview of tested techniques can be found in Table 3. In P-Norm
normalization, each element is scaled between the range zero to one
using the magnitude measures L1-norm (Manhattan distance) or L2-
norm (Euclidean distance) [4]. Min-Max is a scaling technique that
can be used when the upper and lower bounds of the dataset are known
with few or no outliers and the data are approximately uniformly
distributed across the minimum and maximum range. Min/Max scales
each feature between the range {0,1} using its minimum and maximum
values [4,59,69]. Log scaling is effective with datasets that have

Table 3
Tested Normalization Techniques.

Technique Formula Property Results

Min-Max
x′i =

xi − min(X)
max(X) − min(X)

Gaussian Distributions, Known Minimum and Maximum, Sparse Values RMSE

0.46
MAE
0.29
MAPE
30.46%

Z-score x′i =
xi − μ

σ
Minimum Outliers, Non-gaussian Distributions RMSE

0.35
MAE
0.25
MAPE
27.26%

Robust Standardization x′i =
xi − median
Q75 − Q25

Tolerates Many Outliers RMSE

0.38
MAE
0.25
MAPE
27.57%

P-Norm x′i =
xi

[
∑N

k=1
⃒
⃒xk|

p
]

1
p

Tolerates Outliers RMSE

0.57
MAE
0.46
MAPE
49.75%

Decimal Scaling x′i =
xi

10k
Known Maximum, Preserves feature values RMSE

0.45
MAE
0.30
MAPE
32.42%

Log Scaling x′i = loga(xi) Power Law distribution, Non-negative Values RMSE
0.52
MAE
0.36
MAPE
33.77%

Box-Cox
x′i =

⎧
⎨

⎩

xλ
i − 1

λ
if λ ∕= 0

ln(xi) if λ = 0

Skewed and Poisson Distributions, Non-negative Values RMSE

0.48
MAE
0.31
MAPE
28.55%

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

6

dominant values while the rest of the values have few data points. Such
dataset is not linear but follow the power law distribution (heavy-tailed
distribution). Linearization of the power law distribution is possible by
taking the logarithm of variables with skewed distributions to compress
the range of large values and expand the range of small values thus
transforming the distribution closer to a gaussian distribution [4,69].
Box-Cox transform [17] is a power transform and a generalization of log
scaling that creates a monotonic transformation and a distribution more
resembling to normal distribution to stabilize variances. Power trans-
forms also improve the validity of association measures between vari-
ables such Pearson Correlation. Similar to log scale, Box-Cox transform
only works with positive values. The transformation or power parameter
(λ) is chosen using maximum likelihood, goodness-of-fit or Bayesian
methods. If λ is zero then log scaling is applied on the target variable [4,
17].

The equation demonstrating how the new distribution is obtained
can be found in Table 3. Standardization (z-score) transforms data with
Gaussian distributions to a standard distribution with zero mean and
unit variance (standard deviation of 1) [3,69,78]. It is effective on data
distributions that exclude extreme outliers [69] and used for algorithms
that assume gaussian distribution of the input data such as linear and
logistic regressions. For image data, the mean can be calculated per
image or for the whole image set. Z-index uses the mean (μ) and stan-
dard deviation (σ) of the dataset to standardize each element. Using the
mean absolute deviation instead of the standard deviation provides
more robustness to outliers because the deviations from the mean are
not squared thus reducing the effects of outliers [59]. Robust stan-
dardization is used to standardize datasets with outliers as the technique
ignores outliers in the calculations by using the median (Q50) and the
interquartile range (Q75 − Q25) [166]. Decimal scaling reduces decimal
values to be less than one by moving decimal points based on the
maximum absolute value to the left [4,78]. Decimal scaling transforms
the scale range to [-1,1] and keeps the original values of the features but
with decimal points shifts. Z-score and robust standardization can be
deployed to the edge and executed efficiently due to their low compu-
tational and storage requirements. Normalizing streaming data at the
edge is challenging as the data are volatile with evolving statistical
properties [146]. To overcome this challenge authors in [73,146] pro-
posed adaptive normalization. This approach uses fixed-sized sliding
windows, a concept popular in data streaming, to compute statistics
within each window and thus consider seasonality and volatility. Most
of the normalization techniques discussed (z-score, Min-Max, etc.) are
also reversible; meaning the original values can be restored in the cloud
if the statistical properties used at the edge are available. Thus, we
recommend moving adaptive normalization to the edge to be executed
by smart sensors or other smart devices. It is also important to mention
that multiple different normalization techniques can be used sequen-
tially on the same data to achieve different effects. For example, using
Box-Cox to change the data distribution of features (e.g., to a gaussian
distribution) and Z-score to change the scale of features.

Normalization functions are simple. Apart from traversing the con-
tent (tuples) of a window, they do not involve looping, recursion or
matrix operations. Thus, they can be distributed to small edge compo-
nents for execution (Raspberry Pi, smart sensors) without overloading
the components. The parameters of normalization techniques (e.g., the

mean and standard deviation for the z-score) are extracted during AI
training. The same parameters from training are then used for testing
and operations (on new data). These characteristics render normaliza-
tion ideal for distribution to the edge where they can be applied
immediately as the data are collected. The distributed transformation is
perfumed using pre-defined parameters with the possibility of per-
forming regular parameter updates to reflect changes in the data and
application. In our experiments [184,185], we distributed min-max and
z-score and thus proved the feasibility of distributing normalization
techniques to the edge. The experimental results also highlighted the
normalization techniques’ impact in controlling and reducing variations
in transmission time and bandwidth usage.

Empirical Results: The graphs in Figs. 5 and 6 show the impact of
the normalization techniques on the distribution and scale of the data
while graphs in Fig. 7 demonstrate the impact of the different techniques
on the performance of the LSTM networks. The different tested tech-
niques generate different scales. Min-Max produces the same scale (0, 1)
for all features while the rest of the techniques produce similar scales for
the different features. Log Scale and Box-Cox also change the distribu-
tion of features and can be used to obtain gaussian distributions for
features with other distributions and where the predictor model assumes
gaussian distribution of the data. Standardization (z-score) and robust
standardization generated LSTM networks that produced the most ac-
curate predictions as shown in Table 3; compared to an average RMSE of
~ 0.69, average MAE of ~ 0.57 and an average MAPE of ~ 59% when
the input data are not normalized. Yielding an improvement in accuracy
by ~ 49% for RMSE, ~ 56% for MAE and ~ 54% for MAPE when using z-
score to normalize the data compared to unnormalized.

Data cleaning

Impact: Anomalies in data could result in errors in the value
extraction process or misleading and incorrect information and in-
ferences about the real-world resulting in costly consequences. In
addition, anomalies may propagate the dataflow pipeline and their
presence and impact can be amplified in results and models thus the
need to address them thoroughly and early in the pipeline.

Definition: Data Cleaning is the process of identifying and handling
anomalies that render the data of poor quality including missing data,
outliers and noisy data [59,92,116].

Missing data impact
The missing data problem is one of the most common data quality

problems found in sensor data. The presence of missing instances hin-
ders the performance of models, causes errors (e.g., NaN propagation)
and introduces biases [59,109]. Statistical operations are not feasible
with null values. Using reserved values and categories to represent
missing data leads to biased outputs and misleading results [79]. There
are three types of missing data:

• Missing Not At Random (MNAR): the probability of a missing value
depends on the unobserved variable value [46,157]. For example,
the probability of missing temperature values is dependent on
whether the unobserved values are higher than a maximum
threshold or not.

• Missing At Random (MAR): the probability of a missing value de-
pends on other observed variable(s) [46,157]. For example, the
probability that temperature values are missing in a sensor network
is dependent on high humidity values observed.

• Missing Completely At Random (MCAR): The probability of missing
value is independent from observed and unobserved values [46,
157]. For example, all the temperature sensors in a sensor network
has a missing value rate of 7%.

Figure 3 provide further illustration of the difference between the
three missing data types and their mathematical formula.

Fig. 3. Dissertation Structure.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

7

Missing Data Techniques: A plethora of techniques exist to handle
missing data making it an extensively researched area. Tables 4 and 5
provide a summary of tested missing data techniques and their empirical
results. The theoretical analysis in the next paragraphs cover more
techniques. We refer to the paper [1] for a comprehensive survey on
Imputation techniques dedicated for IoT.

Univariate techniques only consider the variable to be pre-
processed for missing data. The most trivial technique sample dropping
or Ignore Missing (IM), which discards entire rows containing missing
values [59,78,109]. IM is a simple solution, however similar to random
sampling, it is effective when the complete observed sample represents
the original or entire dataset. IM is recommended when data are MCAR
as removing incomplete samples would not introduce biases [59,78].
The number of variables and the percentage of missing values are also
factors in determining the applicability of IM. Dropping rows with one
missing variable and several observed variables

(e.g., 20 observed features) results in significant loss of information
even when IM would result in the removal of less than 10% of the
samples.

Another approach to handle missing data is to recover the missing
values via substitution or estimation. This approach is called missing
data imputation. Techniques under this category are more effective as
they retain all samples and attempt to produce a plausible recovery of
the missing instances. Imputing missing values with reserved categorical
or continuous values is the simplest univariate imputation technique. It,
however, introduces biases and reduces the variability of the dataset [3,
116]. Using the next or previous values are also traditional imputation
solutions. Their use is limited as they are not effective in exerting pat-
terns and seasonality.

Using the mean, for normal distributions, or the median, for skewed
distributions, to fill missing instances are popular univariate imputation
techniques [3,109,116,157]. The mean or median imputation, however,
results in an underestimated variance when the dataset consists of many
missing instances and adds biases when used on data that are MAR or
MNAR [46,157].

Piecewise linear interpolation (LI) is often used for time-series linear
data to find a missing value between two points. For non-linear data,
piecewise cubic spline interpolation (CS) could provide more accurate
results and it is relatively more efficient than polynomial interpolation.
The cubic spline and both its first and second derivatives are continuous
functions providing for a smoother curves thus better approximations
for non-linear data [160].

Another class of univariate imputation techniques is stationarity
models for time-series data. To build models (e.g., linear regression)
under this category, stationarity in time-series data must be strong or
weak. Strong stationarity is when moving a window across the dataset
yields similar distributions while a weak stationarity would yield a
similar mean and finite covariance. Stationarity models include the
Autoregressive (AR) technique which uses observations from a previous
time step to predict a missing or unknown value of the next time step.
Previous observations are called value lags and can span one or n lags(s).
The notation AR(n) indicates the number of previous lags considered.
Assuming AR(1), then each observation xt is dependent on the previous
observation xt− 1 and consecutively, instance xt− 1 is dependent on xt− 2;
repeating this calculation recursively until reaching the first observa-
tion. This makes AR a long memory model, in which all value lags have
an effect on predicting the missing or unknown value but the effect is
reduced with older value lags. Moving Average (MA) Models, replace
value lags with error lags, other literature call them innovations, and
thus predicting a missing or unknown value depends on n previous error
lag(s) of previous predictions. MA is a short memory model as older
error lags stop having an effect on predictions with time. Autoregressive
Moving Average Model (ARMA) includes both AR value lags and MA
error lags thus it is a short and long memory model. Data with trends,
seasonality and volatility shifts are not stationary and thus AR, MA and
ARMA are not applicable. Using differencing removes trends and

Table 4
Tested Missing Data Imputation Techniques.

Technique Formula Property Results

Mean
Replace each missing instance with: μ =
∑n

i=1xi

n
where n is the number of

instances

Constant,
Statistical
Based

RMSE

0.54
MAE
0.37
MAPE
39.03%

LI Given (x0, y0) and (x1, y1), find the
missing attribute y of instance (x, y) via:

y =
y0(x1 − x) + y1(x − x0)

x1 − x0

Linear Data,
Statistical
Based

RMSE

0.47
MAE
0.30
MAPE
34.84%

CS Given the cubic polynomials pk(x) on
intervals xk, xk+1, a cubic spline (S) is
interpolated under the conditions:

1) Each polynomial pass through its
endpoint pk(xk) = akx3 + bkx2 + ckx
+ dk = yk AND pk+1(xk+1) = ak+1x3

+ bk+1x2 + ck+1x + dk+1 = yk+1

2) The first derivatives at the middle
points match (continuous at S′):
p′k(xk+1) = p′k+1(xk+1)

3) The second derivatives at the middle
points match (continuous at S″):
p″k(xk+1) = p″k+1(xk+1)

4) The second derivatives at the end
points are equal to 0 p″1(1) = 0 &
p″m− 1(xm) = 0 where m is the
number of points

Gaussian
Distribution,
Statistical
Based

RMSE

0.49
MAE
0.32
MAPE
35.60%

Hot Deck 1) Find similar instances S = s1, s2, …,
sn in the datasetD. E.g., such that If
si&sj ∈ S ⇒ si(Month) = sj(Month)

2) Take the average value of the similar
instances to impute the missing:

smissing(Temperature) =

∑n
i=1si

n 3) Repeat for all missing instances.

Nearest
Neighbor
Approach,
Statistical
Modeling

RMSE

0.49
MAE
0.33
MAPE
35.46%

EM Given the observed values (X), the
missing values (Z) are computed via:

1) Initialize (θ): θ = θt

2) E-step: Z(t) = E(Z∣θ(t), X)
3) M-step: θt+1 = argmaxθQ(θ, θt) When

Q(θ, θt) =
∑

Z
p(Z

⃒
⃒X, θt)logp(X, Z|θ)

(discrete) or Q(θ, θt) =
∫

p(Z
⃒
⃒X, θt)

logp(X,Z|θ) dZ (continuous) and
where (t) is the iteration count.

4) Iterate steps 2) and 3) until ∣θt+1 −

θt∣ < threshold.
5) Impute missing data: Z = E(Z∣X,

θoptimal).

Exponential
Family
Distributions,
Statistical
Based

RMSE

0.34
MAE
0.23
MAPE
27.17%

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

8

seasonality, however this requires an additional preprocessing step.
Autoregressive Integrated Moving Average Model (ARIMA) includes the
additional differencing step to achieve stationarity followed by fitting an
ARMA model. Other disadvantages of ARMA and ARIMA models include
the challenge of choosing optimal parameters and their tendency to
overfit the data [16,192].

Multivariate techniques use multiple features (predictors) to esti-
mate the missing instances of the response variable. Vector Autore-
gressive (VAR) is a generalization of the AR model for multivariate time-
series data. VAR model includes the value lags of the response variable,
the value lags of the predictors and the error lags. Several estimators can
be used to estimate the regression coefficients including Maximum
Likelihood and Bayesian analysis [77,122]. VAR as an imputation
technique is only applicable on stationary time-series data.

Hot deck imputation finds complete samples where the predictors
have similar values and calculate the mean or median of their response
variable values to fill the missing instances [78,107,109]. Given it is a
multivariate technique, hot deck imputation is computationally more
expensive than univariate techniques, which corresponds to more
computational and storage capacities as requirements when choosing a
deployment edge device. It underestimates standard errors and produces
bias estimates [49]. Cold deck imputation is a variation of Hot deck
where samples are taken from a different dataset.

Expectation Maximization (EM) is a traditional multivariate impu-
tation technique that finds the Maximum Likelihood Estimate (MLE) or
the maximum a posteriori (MAP) estimate from datasets with missing

values or models that depend on latent variables. In this context there
are two unknowns, the missing values and the parameters (θ), i.e., mean
(μ), covariance (ϵ) or standard deviation (σ), of the probability distri-
bution. EM algorithm tackles the problem by initializing the parameters
with plausible values and iterating through two steps; the Expectation
(E) Step and the Maximization (M) Step. The E-Step computes the
expectation of the posterior distribution of the missing values given the
observed values and the initialized parameters [11,37,59]. It uses the
initialized parameters to build models (e.g., stochastic regression
models) to predict the missing values from observed values [49]. The
M-Step maximizes the expected value of the log likelihood based on the
complete data obtained from the E-Step [37,49]. EM iterates the E-Step
and the M-Step until convergence; that is when changes in θ values are
zero or smaller than a threshold. The optimal parameters (θoptimal) are
then used to impute the missing values as the last step. EM algorithm is
used as an imputation technique for data missing at random (MAR) and
performs best on datasets with exponential family probability distribu-
tions (e.g., normal, exponential, gamma, etc.). Under these conditions
EM provides less biased results compared to the techniques previously
discussed. It can be used to impute missing values of discrete and
continuous data and it is simple and easy to implement [44,59]. Datasets
with large number of variables and missing values result in a slower
convergence of the EM algorithm and increased probability of getting a
local maximum rather than the global maximum and thus the MLE is not
guaranteed. EM can also suffer from overfitting and its performance
depends on the initialization of the parameters [44,46,59].

Table 5
Tested Missing Data Imputation Techniques - Continued.

Technique Formula Property Results

SVM Training: find the cost function f(x) s.t., regularized hinged loss function using the training dataset.

1) The Primal Formula: w∗ =
1
2

w′w + C
∑N

n=1
(ξn + ξn∗) where w* is the margin to be optimized, ξn and ξn* are the slack

variables that allow for soft margins, N is the number of instances and C is the regularization variable that controls sensitivity
to errors and avoids overfitting.

2) Dual Formula: A Lagrange function is constructed from the primal function to facilitate the optimization problem by finding

the coefficients that minimize: L(α) = 1
2
∑N

i=1

∑N
j=1

(αi − αi∗)(αj − αj∗)G(xi, xj) + ε
∑N

i=1(αi − αi∗)
∑N

i=1yi(αi∗ − αi) where αn and

αn* are non-negative multipliers for each instance xn and G(xi, xj) = e− ||xi − xj||2
is the kernel function that maps the instances

into higher dimensional space to obtain a nonlinear SVM regression model. The dual formula is subject to the following
constraints:
a)

∑N
n=1(αn − αn∗) = 0

b) ∀ n: 0≤αn≤C
c) ∀ n: 0≤αn*≤C

3) The solver algorithms above are computed iteratively until convergence via a convergence criterion: Δ =
w ∗ +L(α)

w ∗ +1
<

threshold Predicting: missing values are imputed via: f(x) =
∑N

n− 1(αn − αn∗)G(xi,xj)+ b

Non-linear Modeling
technique

RMSE

0.48
MAE
0.33
MAPE
35.24%

MI with
(PMM)

Imputation:

1) I-Step: Yt*P(Ymis∣Yobs, θt− 1*)
2) P-Step: θt*P(θ∣Yobs, Yt− 1*)
Repeat the imputation phase m times Analysis: Perform regression analysis on m datasets. Pooling: ̃θ =

1
m
∑m

i=1
θ̂i , pooling the

standard errors requires the following:

1) Within imputation variance: VW =
1
m
∑m

i=1
SE2

t

2) Between imputation variance: VB =
1

m − 1
∑m

i=1
(θ̂i − θ̃)2

3) Pooled standard error: SEp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

VW + VB +
VB

m

√

Apply the above steps to pool the covariance matrices.

Non-Gaussian
Distribution

RMSE

0.42
MAE
0.29
MAPE
31.13%

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

9

Machine learning (ML) models and Artificial Neural Networks (ANN)
as imputation techniques have recently gained the attention of the
research community. Linear regression is used to impute missing values
of continuous data. It involves using a complete-case subset and esti-
mating the regression coefficients for each covariate. The fitted model is
then used to predict the missing values of the response variable. In
deterministic regression imputed values have high correlation with the
observed values of the predictors. This overestimation of correlation
translates to lack of variability and substantial biases that would
otherwise not be present should the data be available (not missing) [3,
49]. Stochastic regression adds noise to each imputed value to increase
variability and reduce biases. The noise is a random selection from a
sample of residuals (residual distribution) of the regression model. The
residual distribution is a normal distribution with mean of zero and
variance equal to the residual variance. Stochastic regression under-
performs if applied on datasets with heteroskedasticity, where the
variance of errors is not constant along the regression line. Imputation
via stochastic regression attenuates standard error as it ignores addi-
tional sampling error introduced from missing values [46,49].

K Nearest Neighbor (kNN) imputation has two variations; kNN
classification for discrete data and kNN regression for continuous data. A
distance metric (e.g., Euclidean, Manhattan, Mahalanobis, Minkowski,
etc.) is used to determine feature similarity between samples and
together with the k parameter, the neighbors for a given sample is
determined. A kNN model is constructed from the training set based on
the predictors and the specified k value. The model is then used to
predict the missing values of the response variable. The k parameter is
key to the prediction accuracy. Small k values render predictions subject
to distortion caused by noise and outliers while too large k values
diminish categories with small number of samples and increases biases.
In kNN regression, the imputed value of a response variable is the
average of neighbor values. kNN is a robust and effective imputation
technique given the right k value. Its performance, however, suffers with
large datasets as it traverses the entire dataset to calculate distance
based similarities. A kNN classifier must be created for each variable
with missing values that require imputation [46,59].

Support Vector Machines (SVM) is a multivariate and non-linear
modeling technique with two variations; SVM regression (SVR) to
impute missing instances of continuous variables and SVM classification
(SVC) to impute missing instances of categorical data. The technique is
recommended when non-linear relationships exist in datasets. SVM at-
tempts to learn the decision boundary of the training data by fitting a
partition hyperplane, or hypersphere depending on the dimensionality,
that maximizes the margin of separation from the origin. For non-linear
classification and regression, the data are implicitly mapped into a
higher dimensional feature space by using non-linear kernel functions
[172,217]. Examples of Kernel functions include polynomial kernel,
gaussian radial basis function kernel and sigmoid kernel. The implicit
mapping of data avoids actual transformation to the higher dimen-
sionality feature space but rather computes the inner product in the
feature space by evaluating the kernel function thus improving
computational efficiency and space usage [78]. The quadratic problem
is solved by using Lagrange multipliers and setting the derivates of the
equation’s variables equal to zero [172]. SVM performance deteriorates
with larger number of variables. Choosing the kernel function is
dependent on the dataset and application.

Long Short Term Memory (LSTM) is a recurrent neural network
(RNN) that models sequential or time-series data with memory capacity
to capture long term dependencies. LSTM was proposed to address the
diminishing gradients issue suffered by RNN. A central feature of LSTM
is the Constant Error Carousel (CEC), which is the control of the error
flow that prevents diminishing gradients thus bridging long time lags (e.
g., 1000 time steps). LSTM maintains an internal state via recurrently
connected memory blocks. Each block contains one or more memory cell
(s) with recurrently connected CEC. The CEC is extended with three
gates called input, output and forget gates. The forget gate limits

internal state growth thus discarding obsolete information. The output
and input gates control access to constant error flow through the CEC
thus controlling retention degree of the current state and the flow of
information passed forward [176,178]. In recent years, several solutions
have been proposed that extend LSTM to address missing data specif-
ically massive missing percentage of data or large blocks of data in
time-series [56,176,215]. LSTM can be used as multivariate imputation
technique for non-linear data where historic information maintains its
value. LSTM produces relatively better results with non-monotonic and
fluctuating data, however, it is a complex algorithm that does not yield
optimal results in all forecasting time-series applications as demon-
strated by the authors of [62]. Authors of [56] proposed an LSTM based
model to address MNAR instances of massive volumes. They incorpo-
rated forward and backward time intervals and the missing rate of the
response variables in their model, thus increasing its adaptability to
massive data and improving its imputation accuracy. In [130], authors
proposed a hybrid LSTM that performs bi-directional imputations. The
empirical evaluation of their method indicate improved imputation
accuracy and better restoration of information; however, the improve-
ment range is wide and is dependent on experimental and contextual
details.

Other types of ANN were exploited to impute missing data including
in [22] where authors proposed a Generative Adversarial Network based
imputation method and in [95] where a Convolutional Autoencoder
based model was proposed to impute missing instances. To obtain more
accurate imputations, ensemble imputation techniques, which uses
multiple ML techniques, were proposed such as Random Forest [78,89,
179].

Multiple Imputation (MI) [168] differ from the previous techniques
discussed in that each missing value is imputed with multiple values
generating multiple datasets with different plausible values for the
missing data. Thus, MI techniques explicitly account for uncertainty
associated with missing data. MI is divided into three phases; the
imputation phase, analysis phase and pooling phase. The imputation
phase consists of two steps the I-Step and the P-Step. The I-Step predicts
the missing data from the observed data using a model with a stochastic
component such as stochastic regression. The P-Step is a Bayesian
analysis that uses the imputed dataset from the previous step and a priori
model as prior belief to describe the posterior distribution of the pa-
rameters. Using Monte Carlo sampling or Markov Chain Monte Carlo
(MCMC) methods, new estimate parameters (mean vector and covari-
ance matrix) are randomly drawn from the estimated posterior predic-
tive distribution. The new parameters randomly differ from the
parameters of the previous iteration and are used in the next iteration of
the I-Step to obtain a model with new regression coefficients and thus
estimating new imputations and creating a new imputed dataset. The
imputation phase is repeated m times to create m different imputed
datasets. Choosing the right m value depends on the percentage of
missing instances in the dataset and the size of the dataset. In the
analysis phase, m sets of parameter estimates and standard errors are
obtained from the m imputed datasets using, for example, regression
analysis. The pooling phase, involves combining the m parameter esti-
mates into a single parameter estimate by taking, for example, the
average. It also involves pooling the standard errors into a single stan-
dard error via, for example, Rubin’s combining rules [46,49,180]. Pre-
dictive Mean Matching (PMM) is a variation of MI that imputes missing
values of variables that are not normally distributed. During the impu-
tation phase, predictions are made for both missing instances and
observation and a pool of k potential replacements (donors) are defined
for each missing instance. Donors are determined by selecting obser-
vations with predictions close to the prediction of the missing instance.
A donor is then selected randomly from the k donor list and its obser-
vation value is used to impute the missing instance. The process is
repeated for each missing instance [142]. MI avoids underestimating the
standard error because the technique counts in the additional sampling
error caused by having missing values. It is effective on data missing at

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

10

Table 6
Tested Outlier Detection Techniques.

Technique Formula Property Results

MAD 1) Find: MAD = b × Median(∣x − μ∣)
2) Detect outliers using the range: μ − (threshold × MAD) < x < μ + (threshold × MAD)

Symmetric Distribution,
Statistical Based

RMSE

0.37
MAE
0.25
MAPE
28.91%

Grubbs For each potential outlier i ∈ I perform the following hypothesis test: H0: There are no outlier in the dataset H1: There is
exactly one outlier in the dataset

1) Find the Grubbs test statistic (two-tailed): Gtest =
maxI

i
⃒
⃒Yi − Ŷ

⃒
⃒

s
where Ŷ is the mean and s is the standard deviation.

2) Compute the critical value (Gcritical) via:
N − 1

̅̅̅̅
N

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

t2α∕(2N),N− 2

N − 2 + t2α∕(2N),N− 2

√
√
√
√), where tα∕(2N),N− 2 is the upper critical value of

t-distribution with N-2 degree of freedom.
3) Reject the null hypothesis if Gtest > Gcritical.

Gaussian Distribution, Statistical
Based

RMSE

0.32
MAE
0.22
MAPE
26.70%

GESD
1) Given rcycles, calculate the z-index of each element in xto find the Max z-index for each cycle: TiMax =

|x − μ|
σ

2) Calculate the critical value of cycle i: λi =
(n − i)tn− i− 1,p

̅̅
(n − i − 1 + t2n− i− 1,p)(n − i + 1)

√ , where i = 1, 2…, r and

p = 1 −
α

2(n − i + 1)
(pth percentile of distribution t.H0 is rejectedwhen TjMax > λj.

Gaussian Distribution, Statistical
Based

RMSE

0.34
MAE
0.23
MAPE
27.82%

IQR 1) Find the first quartile (Q1), the median (Q2) and the third quartile (Q3) of feature j of the dataset.
2) The interquartile range is: IQR = Q3 − Q1

3) An instance i is detected as an outlier if: xij > UpperBound = Q3 + (1.5 × IQR) or xij < Lowerbound = Q1 − (1.5 ×
IQR)

Non-Gaussian Distribution,
Statistical Based

RMSE

0.35
MAE
0.24
MAPE
28.41%

DBSCAN 1) Find neighborhood for each point: ∀ p ∈ D, Nϵ(p) = {q ∈ D∣dist(p, q)≤ϵ}
2) Find core points: CO = {q ∈ D|‖Nϵ(p)‖ ≥ MinPts} Given {p ∈ D|p ∈ Nϵ(q)&‖Nϵ(q)‖ ≥ MinPts} then directReach(p,

q) is satisfied and given ∃ p1, …, pn where p1 = q, pn = p such that directReach(pi+1, pi) then, reach(q, p) is satisfied
and given ∃ v where reach(v, p) and reach(v, q) then, densityConnected(p, q) is satisfied.

3) Find the clusters (C): ∀ p, q ∈ D, if q ∈ C & reach(q, p), then p ∈ C ∀ p, q ∈ D, if densityConnected(p, q) then, p, q ∈ C
Outliers are defined as: {p ∈ D∣p ∕∈ Ci ∀ i = 1, …, k}

Unsupervised, Density Based RMSE

0.55
MAE
0.37
MAPE
37.96%

IForest Given the dataset X = {x1, x2, …, xn}

1) Build k iTrees from a sample X′ of Ψ instances by recursively splitting X′ using a randomly selected feature q and a
split value p. Repeat until the node has one instance or all instances have the same value. The number of external
nodes will equal to Ψ.

2) The path (h(x)) of each instance in each iTree is computed. The path is the number of edges x traverses in an iTree
starting from the root node until the traversal is terminated at an external node.

3) Find the anomaly score (s) from h(x) values obtained from k iTree: s(x,Ψ) = 2
−
E(h(x))

c(Ψ) where c(Ψ) =

2H(Ψ − 1) −
2(Ψ − 1)

n
for Ψ > 2

1 for Ψ = 2

0 otherwise

When s is close to 1 then x is likely to be an anomaly.

Unsupervised, Projection Based,
Non-Linear Outliers

RMSE

0.38
MAE
0.26
MAPE
23.26%

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

11

random if the influencer variables are included as input for the MI al-
gorithm. MI is computationally intensive and requires large storage
capacity as it generates m imputed datasets from originally large dataset
which makes it an expensive technique [46,49,180]. As such, MI may
not be deployable to edge components with limited computational and
storage capacities.

In [186], authors conducted an empirical analysis to evaluate the
performance of different imputation techniques on isolated and
sequence missing instances. From their results, they suggest adopting a
new hybrid approach that uses two imputation techniques from any type
(univariate, multivariate, ML, DL, etc.). The idea is to choose an optimal
technique for isolated missing instances and another technique that is
optimal for sequence missing data. This provides flexibility in choosing
the least expensive technique to be deployed at the edge. The approach
yields better overall imputation accuracy and addresses possible
perturbation in individual technique’s performance.

In this survey, we have centrally evaluated a wide range of missing
data solutions; from simple univariate imputation techniques to com-
plex AI based techniques. Further empirical analysis conducted [184]
also included distributing the univariate technique LI to edge compo-
nents. Univariate imputation techniques can be distributed and executed
at edge components without the prerequisite of data fusion. The distri-
bution is also feasible for multivariate techniques, after data fusion,
including AI based solutions. It is less complex if the trained models and
networks are strictly distributed and not the whole training process.
Distributing AI (training and prediction) to the edge is currently an
active research direction (EdgeAI) [27], which also covers the distri-
bution of AI based data preprocessing techniques. Few standalone so-
lutions [57,197] have been proposed that are distributed versions or
completely novel solutions of missing data imputation techniques
designed for edge execution. A practical analysis of the performance and
impact of the different imputation techniques distributed in IoT devices
is yet to be proposed and thus we identify an empirical research gap in
this area. Some missing data imputation techniques, such as MI and
ensemble solutions, are intuitively expensive to distribute to the edge as
they generate multiple plausible imputations using one or more tech-
nique(s) to minimize uncertainty in the final imputations. We also
highlight the advantage of distributing missing data handling tech-
niques in addressing the anomalies early in the pipeline and thus
minimizing error propagation. In addition, missing data causes training
and prediction to fail and thus complete input data must be made readily
available for Edge AI to function correctly.

Empirical Results: Several techniques required configuration and
setup. In addition to MATLAB libraries of missing data imputation
techniques, we also used third-party libraries and developed our own.
For the EM technique, we used the third-party library [171] imple-
mented for MATLAB. For the SVM experiment, we trained a non-linear
SVM model using the Gaussian Kernel. We created our own imple-
mentation of MI and used predictive mean matching (pmm) to replace
imputations of a model with coefficients randomly drawn from a pos-
terior predictive distribution of the P-Step. The MI imputation phase is
repeated seven times. We imputed the missing data present in the
real-world dataset (AirQuality) and thus there is no baseline observa-
tions for the missing instances. Fig. 8 presents the imputations of the
different tested techniques. The time-series data are non-monotonic and
frequently fluctuate rendering the imputation tasks difficult particularly
for the tested univariate techniques as they do not capture patterns and
seasonality present in the data. The plots in Fig. 9 present the predictions
of the different models trained on datasets produced with different
imputation techniques. The observations reflect the original data and
the imputed data using the tested technique. As mentioned previously,
we do not have a baseline for the missing instances as they are actual and
not simulated. EM imputations included yielded the second best pre-
dictions after the hybrid approach proposed by [186] which uses
optimal imputation techniques for each type of missing data (i.e., an
optimal technique for isolated instances and another for blocks of

missing data). We choose the combination EM to impute sequences
(blocks) of missing instances and cubic spline to impute isolated missing
instances. There is a slight improvement in using two techniques
compared to using EM only. As expected, mean imputation produced the
least accurate LSTM model in addition to adding biases to the data.
Univariate techniques had comparable performances to the multivariate
techniques with cubic spline outperforming most of the multivariate
techniques for this dataset and experimental setup. This outcome is an
advantage with regards to deployment within an IoT context as uni-
variate techniques are more efficient at consuming resources (e.g.,
consume less energy, have less dependencies in that no data fusion is
required, etc.). ML and DL solutions require the predictors to be free
from missing instances for training to complete successfully without Null
or Not a Number (NaN) propagation.

Outliers impact
are examples of noisy data that hinder knowledge extraction and

models’ performance [3,59]. Similarity measures can be falsified by
outliers, which results in misclassifications [3]. Outliers can be classified
as:

• Global Outliers: data points that significantly deviate from the entire
dataset [78].

• Local Outliers: data points that are within the normal range of the
entire datasets but deviate significantly from the surrounding data
points (local area) [78].

• Contextual Outliers: also called conditional outliers, are data points
that deviate significantly given a specific context (time, location,
etc.) [78].

• Collective Outliers: data points that, together, deviate from the rest
of the dataset[78].

Outliers Techniques: there are several approaches to detect out-
liers. Table 6 provides an overview of the techniques that were tested
including their performance. While the following paragraphs detail
further outlier detection techniques in addition to the ones tested.

Median Absolute Deviations (MAD) is a statistic based method. MAD
is a robust scale univariate estimator that finds positive and negative
deviations from the median of a sorted dataset [166]. MAD calculates
the absolute difference between the median of the dataset and the data
points and then multiplies the median by 1

Q(75) where Q(75) is the 0.75
quantile of the distribution. The dataset’s median, the MAD value and a
threshold (e.g., 2, 2.5 or 3) are used to determine the range by which
outliers are identified [115]. MAD assumes equal dispersion at both
sides of the median (symmetry) thus it is less effective on skewed dis-
tributions [166]. It is possible to use MAD at the edge to find local
outliers within a window.

Grubbs Test [71], also known as the Maximum Normalized Residual
test is a univariate statistic based outlier detection technique applied on
data with a gaussian distribution. With the presence of multiple outliers,
the technique is iterative and produces new datasets that exclude a
detected outlier in the previous iteration. Grubbs test involves evalu-
ating the deviation of potential outliers from the mean by studentizing
the instances. The studentized value is compared against a critical value
to determine the significance level and whether the instance is to be
rejected from the dataset or not (i.e., consider it as an outlier or not). The
mean and standard deviation are calculated for each new dataset and a
different critical value is used in each iteration [97].

The Generalized Extreme Studentized Deviate (GESD) test detects
multiple outliers in univariate datasets with a normal distribution but
only requires the upper bound for the number of outliers expected. GESD
is defined for the zero hypothesis “There are no outliers in the dataset”
and alternative hypothesis “There are up to r outliers in the dataset”. The
test uses the mean (μ) and standard deviation (σ) of the dataset to
remove the data point with maximum z-score (TiMax) and repeats the

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

12

step r cycles with the μ and σ of the new subset. A critical value is
calculated for each cycle (λi). Starting with the last cycle, the maximum
z-score (TiMax) and λi are compared until the maximum z-score of a cycle
r-j (Tr− jMax) exceeds its critical value (λr− j). Tr− jMax and the maximum z-
scores of all prior cycles are considered outliers [134]. Having dynamic
critical values or rejection threshold for each cycle offers better detec-
tion of outliers while minimizing false positives.

Interquartile Range (IQR) can be applied on multivariate and uni-
variate data with non-Gaussian distribution to detect outliers. By finding
the median (Q2), the first (Q1) and third (Q3) quantiles are calculated to
determine the IQR from their difference. The IQR is then used to define
upper and lower bounds against which outliers are detected. IQR
execution efficiency makes it deployable at the edge to detect outliers
within a window but it may not necessarily detect all outliers [195].

Another class of outlier detection techniques is the Robust Estimators
class. Maximum Likelihood Estimate and Log Likelihood Estimate are
both sensitive to outliers. This means that the estimates are pulled to-
wards existing outliers in the dataset. Mahalanobis distance measure is
also sensitive to outliers. To calculate a multivariate mean and covari-
ance of a gaussian distribution while being robust to the presence of
outliers in the dataset, robust estimators are used instead. The general
concept of robust estimators is to extract a subset that represent the
underlying distribution and use it to estimate the mean and covariance.
The Minimum Covariance Determinant (MCD) and the Olive-Hawkins
estimate are examples of robust estimators of multivariate covariance
that can be used to detect outliers by estimating the parameters of the
normal data. Olive-Hawkins estimate uses the concentrations algorithm
technique. The iterative process produces a sequence of estimates called
attractors via k concentration steps. The final estimator is the attractor
that optimizes the criterion for each parameter estimated (mean and
covariance), which represent a distribution that exclude the impact of
outliers [149].

Local Outlier Factor (LOF) [18] is a density based outlier detection
technique with the intuition that the density around an outlier is
significantly lower than the density around normal points. The tech-
nique starts by finding the k nearest neighbors of the data points using a
distance metric and identifying the distance of the farthest neighbor.
The neighborhood of each point is then determined using the kth dis-
tance. The technique calculates the Local Reachability Density (lrdk(o))
for identified neighborhoods using the number of neighbors within a
neighborhood and the reachability distance of neighbors
(reachdistk(o←o)). Finally, the local outlier factor (lofk(o)) is calculated
for each data point using the reachability distance and local reachability
density of its neighbors. The points with the highest lofk(o) are more
likely to be outliers [18]. LOF can be applied on data with skewed dis-
tributions and can detect both global and local outliers. The technique,
however, is computationally expensive and requires large memory
space. Several modified versions have been proposed including Top-N
local outlier detection (TOLF) which uses a pruning strategy to
exclude normal points and only calculate (lofk(o)) of potential outliers;
making TOLF a more plausible choice for edge deployment than LOF
[205].

Density-based spatial clustering of applications with noise (DBSCAN)
[52] is another density-based technique, which is a clustering algorithm
that finds arbitrary shaped and non-linearly separable clusters. DBSCAN
is robust to outliers and can isolate global and local outliers. A priori
requirements are limited to the maximum radium of neighborhoods (ϵ)
and the minimum number of neighbors (MinPts). The algorithm iden-
tifies data points under three types; core, border and outlier and uses
these identifications to find clusters. It starts by randomly selecting a
data point and finding the number of neighbors that are within ϵ dis-
tance from it. If the number of neighbors is equal to or greater than
MinPts then the data point is considered a core. The algorithm traverses
the neighbors and performs the same check. If the former condition is
not satisfied then the algorithm tests if the data point is an ϵ distance
from a core point to determine whether it is a border point or not. Lastly

a point is considered an outlier if it is not reachable from a core or border
point. Reachable core points are clustered together with their border
points. For outlier detection, DBSCAN underperforms on datasets with
clusters of variable densities and on datasets with large dimensionality.
The later weakness is mainly contributed to the Euclidean distance in
what is known as the curse of dimensionality [173]. The term curse of
dimensionality was first introduced in [9] and in our domain, refers to
the need for exponentially more data with the increase in dimensionality
(number of features). This because with high dimensional datasets, the
available data become sparser. To address the time complexity weakness
of DBSCAN (O(n2)), OPTICS [5] and HDBSCAN, [23] extends DBSCAN
to hierarchical clustering and AnyDBC [131] reduces the query range
and label propagation times.

Isolation Forest (iForest) [124] is a projection-based learning tech-
nique that constructs fully random binary trees based on a subsampling
size and two randomly selected parameters. The first random parameter
is the splitting attribute (j) and the second is the splitting threshold (θ),
which is uniformly selected from the [min(xj), max(xj)] range of attri-
bute j. The subsamples of a dataset are recursively split until every data
point is in its own leaf node with the result of constructing an ensemble
of iTrees. It is also possible to optimize the iTree construction by stopping
the splitting earlier. After the construction of the iTrees, the average leaf
depth is computed, which is used to calculate the anomaly score. The
intuition of the algorithm is that outliers will be isolated faster by the
splitting compared to nominal points. A score closer to 1 means the data
point is likely to be an anomaly while a score less than or equal to 0.5
means the data point is likely to be nominal. The iForest algorithm
consist of two phases; the training phase to construct the ensemble of
iTrees and the prediction phase at which the anomaly score is calculated
for test or new data. iForest is robust to swamping (non-outlier classified
as an outlier) and masking (undetected outlier) and it remains effective
with high-dimensional datasets with irrelevant attributes and training
samples with no outliers [124]. The algorithm does not use a distance
metric to calculate distances or densities thus having a linear time
complexity and small memory requirement which is well suited for edge
deployment. By having randomly selected j and θ, the technique avoid
overfitting, however, biases are introduced in the anomaly score map as
the splitting using the aforementioned parameters result in vertical and
horizontal branch cuts. IForest performs well with high dimensional
data [123]. The authors of Extended Isolation Forest (EIF) [80]address
this limitation by performing the splitting based on branch cuts with
random slopes and random intercept points. iForest was also extended to
handle stream data in several work including iForestASD [43], which
leverages the notion of sliding windows.

One class support vector machine (OCSVM) is a quantile-based un-
supervised outlier detection algorithm. It attempts to learn the decision
boundary of normal data by fitting a hyperplane that maximizes the
margin of separation from the origin. Data points that fall outside the
decision boundary or in other words close to the origin are considered as
outliers. Learning the decision boundary and accounting outliers is
achieved by the use of non-linear kernel functions that implicitly map
data points into a higher dimensional feature space away from the
origin. The implicit mapping avoids actual transformation of the data to
the higher dimensional feature space but rather computes the inner
product in the feature space by evaluating the kernel function thus
improving computational efficiency and space usage. A regularization
parameter controls the number of slack admitted, i.e., the number of
data points allowed on the other side of the decision boundary and thus
considered as outliers. The quadratic problem is solved by using
Lagrange multipliers and setting the derivates of the equation’s vari-
ables equal to zero [172]. Other variations of OCSVM include fitting a
hypersphere with minimum radius to define the decision boundary of
normal data and thus points outside the sphere are considered outliers
[187]. Online and distributed variations of OCSVM were proposed by
[212] in which they use linear optimization to fit a hyper-ellipsoid
centered at the origin with minimum radius using Mahalanobis

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

13

distance metric. Each sensor models its own hyper-ellipsoidal OCSVM
within a window to detect local outliers and update the model as the
data distribution changes. Model parameters are exchanged between
sensors to derive global parameters from local outliers detected within a
time window [212]. Authors in [207] also extended OCSVM to be more
efficient for IoT applications by leveraging clustering and Gaussian
mixture models to decrease prediction time and memory requirement.

Distributing Normalization and Missing Data Handling techniques to
the edge requires the distribution of Outlier Handling techniques. This is
due to a dependency that exist between the different preprocessing
categories where outlier handling is the prerequisite. The dependency is
not functional in that both normalization and missing data handling
techniques can function with the presence of outliers, however, their
performance is negatively impacted by outliers [186]. The main chal-
lenge with executing density-based and distance-based outlier handling
techniques using edge computing is the lack of the whole dataset or
sufficient data at a given window to identify global and local outliers.
There are several examples in literature, however, of distributing outlier
handling solutions to IoT components and applied as the data are
collected including univariate techniques [184], multivariate and AI
solutions [199,218]. Similar to the missing data category, AI based
outlier handling techniques can be trained in the cloud and deployed to
edge components to be executed on new data. Thus, the same parame-
ters and coefficients used in training are used in deployment. There is a
lack of sufficient empirical analysis that leverage edge computing to
execute outliers detection techniques on sensor data streams. A com-
parison of the performance and impact of traditional and state-of-the-art
techniques is identified as a future work.

Empirical Results: The diagrams in Fig. 10 show the outliers
detected by the different tested techniques for the response variable
(CO). We wanted to keep the consistency of using the same variable (CO)
to present our results as it facilitates more comparisons of impact be-
tween input and output. Having said that, we also applied and tested the
different techniques on the rest of the variables (predictors) to detect
possible outliers. Due to space restrictions we suffice with presenting the
outliers detected for one variable (CO). All instances of the dataset were
included in the plot. Some techniques had different performances for
each feature while other techniques detected overlapping or identical
outliers. For example, GESD and Grubbs detected the same outliers for
CO. Generally, the prediction accuracy from the GESD and Grubbs ex-
periments were very similar because they identified similar outliers
across the different features. Fig. 11 highlights the impact of removing
the detected outliers from the predictors by the different outlier detec-
tion techniques on the prediction accuracy of the produced LSTM

Table 7
Surveyed Data Fusion Techniques.

Technique Formula Property

KF Prediction Step:

1) Use the transition model to predict the
new state from the previous state via: xtp

= Atxt− 1 + Btut + wt where At is the state
transition model, Btut is the effect of
external factors and wt is the process
noise.

2) Find the prediction error via: Ptp =

AtPt− 1AT
t + Qt where Ptp is the predicted

process covariance matrix and Qt is the
process noise covariance matrix.

Correction Step:

1) Obtain the measurement in the right
format and considering the noise: zt =

Ctxt + vt where vt is the measurement
noise and Ct is the transformation matrix
(e.g., identity matrix)

2) Compute: KG =
PtpHT

H ∗ PtpHT + Rt
, where Rt

is the noise covariance matrix and Ht is
the transformation matrix

3) Compute the current state’s estimate
using the prediction value, the
measurement value and their weights
via: xt = xtp + KG[zt − Htxtp]

4) Update the process estimate covariance
matrix for the next iteration using: Pt =

(I − KG*Ht)Ptp where I is the
transformation matrix

Statistical Estimation,
Assumes Linear Model
and Gaussian Noise

PF Prediction step:

1) The current state estimate for each
particle in the previous set of particles is
computed using the transition model

(counting transition noise): x[i]
t =

π(xt

⃒
⃒
⃒x[i]

t− 1,ut)

Correction step:

1) The observation model is used to
compute the weight w[i]

t for each particle
while counting observation noise via:

w[i]
t = η[

p(xt

⃒
⃒
⃒x[i]

t− 1, ut)

π(xt

⃒
⃒
⃒x[i]

t− 1, ut)
]∝p(zt

⃒
⃒
⃒x[i]

t) where zt

is the current observation with pre-
condition that p(x) > 0 ⇒ π(x) > 0.

2) The current state particle set is updated
with the particle and its computed

weight via: St = {< x[i]
t ,w

[i]
t >

⃒
⃒
⃒i = 1…,

J}
3) The posterior distribution of the current

state or belief p(xt) is: p(xt) =
∑J

i wi
tδw[i]

t
(xt), where δ is the Dirac delta

function.
Resampling step:

1) Select the first particle < u1
t ,w1

t >= U1

randomly: U1 = St [0,
1
J
]

2) The other J − 1 samples are then

deterministically determined via:
1
J

steps: Ui = U1 +
i − 1

N
3) A particle is selected for replication

based on its weight and all selected
particles are given equal weights via: St

= {< uj
t ,

1
J
>}

⃒
⃒
⃒
⃒

∑i− 1
k=1

wk
t ≤ uj <

∑i
k=1

wk
t

Monte-Carlo
localization, No
Assumptions on
Linearity or
Distribution

Table 7 (continued)

Technique Formula Property

D-S Given a set of Frame Discernment Θ = {θ1,
θ2}, the Hypotheses set is: 2Θ = {∅, θ1, θ2 ,

θ1 ∪ θ2} where θ1 ∩ θ2 (mutually exclusive),
m(.): 2Θ → [0, 1] (m is the mass function),
∑

θi∈2Θ m(θi) = 1, and m(∅) = 0 (i.e., the
mass of an empty set is 0). To determine
the current state:

1) Obtain degrees of belief for each
hypothesis or question (θi): Bel(θi) =
∑

θj |θj⊆θi
m(θj)

2) Obtain the plausibility for θi: Pl(θi) =
∑

θj|θj∩θi∕=0m(θj) or Pl(θi) = 1 − Bel(θi),

where θi is the negation of θi. From (1)
and (2) the confidence interval is
obtained for θi: [Bel(θi), Pl(θi)].

To combine degrees of belief from
multiple sensors: m1(θi) ⊕ m2(θi) =
∑

θj∩θk=θi∕=∅m1(θj)m2(θk)

1 − (
∑

θj∩θk=∅m1(θj)m2(θk))

Bayesian Inference, No
Assumptions on
Probability
Distribution

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

14

models. Only the first 120 instances of the test dataset (the last 936
instances) are presented in the plots. For all the experiments, the
detected outliers were replaced with plausible estimations using cubic
spline interpolation (see Table 4). The tested techniques (univariate and
multivariate) were applied as univariate to each feature separately.
IForest required replacing NaN values to effectively detect outliers and
thus the test for this experiment required changing the order of the DAG
(see Section 1) to place outlier detection after missing data imputation.
The configuration of the iForest experiments is similar to the configu-
ration proposed by the authors of the original paper [124] and includes
building 100 isolation tree with 256 instance samples with 10 rounds of
repeat for each training. For the DBSCAN experiment, we set the ϵ =
0.01 and number of neighbors MinPts = 7 as the best possible values for
our dataset. From our results, removing outliers from the AirQuality
dataset did not significantly improve the quality of the LSTM models
with some outlier detection techniques having negative impact as the
models slightly yielded higher error metrics. Grubbs performed best
when considering all error metrics followed by iForest, which produced
a far lower MAPE error value than the rest of the experiments. DBSCAN
performed the worst introducing inaccuracies and causing deterioration
in prediction accuracy. This could be because the dataset consists of
clusters of varying densities, which hinders the effectiveness of
DBSCAN. The results could be specific to the dataset and may indicate
that the extreme values present in the dataset are not necessarily outliers
and are providing valuable information to training. Despite the results,
we recommend handling outliers due to their possible impact on model
quality and impact on the effectiveness and performance of other pre-
processing techniques that are sensitive to outliers such as missing data
imputation techniques [186]. As future work, multivariate technique
should be fully leveraged by using other variables to detect outliers.

Sensor fusion

Definition: Sensor or data fusion is the process of combining data
from multiple sensors to produce more consistent, accurate, compre-
hensive, reliable and useful information than if provided by one of the
data sources [?]. In this survey, we present fusion techniques that can be
used to improve data quality including improving accuracy, addressing
missing values and replacing noise or outliers. We consider data fusion
under Dasarathy’s classification, Data-In and Data-Out, and according to
DARPA classification level 0 (source processing) and level 1 (object
refinement). We also focus on techniques that can be implemented in
decentralized architectures and are effective as non-batch processes
[25]. An overview of the surveyed sensor fusion techniques can be found
in Table 7.

Techniques: The Kalman Filter (KF) also known as linear quadratic
estimation, is a recursive estimation technique optimal for systems with
linear transition model, observation model and normalized gaussian
noise. KF fuses low level data (observations) and state predictions to
estimate the current state of a discrete-time process considering the
prediction errors, observation errors and predicted covariance between
variables. The technique consists of two main steps; the prediction step
at which the state prediction (Xtp) is computed from the previous
observation (Xt− 1) considering, if applicable, the control factors and
noise. Control factors are external factors that affect the current state
such as surface inclination for moving vehicles. The prediction step is
followed by the correction step at which the Kalman Gain (KG) is
calculated from measurement error and the prediction error (the state
covariance matrix in N-Dimensions problems). The KG indicates the
kind of error to expect in the processing of the data to determine how
much weight to put on the predicted and measured values when
computing the current state. KG value close to one means there is more
uncertainty in the predicted value and thus the measured value is given
more emphasis when calculating the current state. Overtime, the KG
becomes closer to zero indicating less uncertainty in the predicted value
and thus having more weight and impact on the estimate of the current

state. KF is an optimal solution for linear models with gaussian noises,
however, it underperforms when observations are intermittent and data
sources have unsynchronized clocks. KF does not handle heavy-tailed
distributions and nonlinear systems [25,138,144]. Extended Kalman
Filter (EKF) [99] and Unscented Kalman Filter (UKF) [194] were pro-
posed to address non-linear systems. Compared to EKF, UKF provides
more accurate approximations without the need to compute Jacobian
matrices (reduced complexity). Instead it uses unscented transformation
to pass a gaussian probability distribution through a non-linear function
and onto a more complex distribution. The unscented transform starts
with choosing deterministic sample points from the input distribution
called sigma points, which have the same distribution as the input
probability distribution. Weights are calculated for each sigma point
based on a tuning parameter and the dimensionality of the problem. The
sigma points are then passed through the non-linear transform function.
The mean and covariance of the transformed weighted sigma points are
used to calculate the new gaussian approximation distribution (new
state estimate). EKF, however, assumes gaussian distribution [194] and
remains computationally expensive for edge deployment.

Particle Filter (PF) is a sequential Monte Carlo localization technique
that fuses predictions from a proposed state model with one or more
sensor data. PF does not assume linear systems or gaussian distributions
and it is a non-parametric approach meaning a mean and covariance
matrix are not provided as inputs to represent the state distribution.
Instead, PF draw random samples from a proposed distribution to
represent the state space. The samples are called particles and represent
hypotheses of the next sensor reading. Particles compose of a value
(scalar or matrix) and a weight (scalar). Initially, PF builds the posterior
density function (PDF) by selecting J number of random samples from
the proposed transition model which can be assumed as a gaussian
distribution. Normalized weights of each particle are then computed
using the values from the proposed and actual models; a process called
Importance Sampling. PF then iterates three steps: the Prediction step,
Correction step and the Resampling of the particles. In the prediction
step, a prediction of the next state for each particle is computed using the
proposed transition model and counting in process noise. The correction
step, involves computing the weights of the predicted states (hypothe-
ses) via the observation model counting in measurement noise. The state
estimate (belief) is then computed from the sum of hypotheses multi-
plied by their weights. Using Stochastic Universal Sampling approach,
the particles are resampled by selecting J particles at once and then
iterating the newly selected particles to replace weights with propor-
tional frequencies in the sense that particles with large weights are
replaced with multiple particles and particle with consistently small
weights diminish after several iterations. The weights of particles are
then set to be equal and are normalized. The new particles sample is
dense at regions where particles had large weights and sparse in regions
where particles had small weights [177]. In the adaptive Monte Carlo
variation, the number of particles is reduced as the iterations advance. In
[181], authors used PF to detect and isolate calibration faults (bias and
scaling) by using the prediction state to evaluate whether the observa-
tion value exceeds a threshold that may render it a fault. If the threshold
is surpassed then the algorithm evaluates a null hypothesis of the sensor
being healthy and three alternative hypotheses to determine the type of
error. Depending on the fault type the belief is compensated for bias or
scaling [181]. To provide accurate estimates of complex distributions,
PF require large number of particles. PF works well with low dimen-
sional space (lower than five features). The performance quality of PF is
dependent on identifying good transition (proposed) and sensor
(observation) models [25,177].

Dempster-Shafer (D-F) inference theory is a generalization of
Bayesian inference, which explicitly represents uncertainty and missing
knowledge. It can fuse different types of sensors and does not require
probability distributions as a priori information [25,175]. D-F has un-
certainty management and inference mechanism analogous to the
human reasoning process [200]. It obtains a degree of belief for one

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

15

question from the probabilities of related questions and combine degree
of beliefs of different sources [175]. The target system is represented by
enumerating all possible mutually exclusive states of a target question in
a frame of discernment Θ. A set Hypotheses (2Θ) is then determined from
a frame of discernment. Each hypothesis is assigned a probability rep-
resenting its belief assignment using the mass function or the basic
probability assignment m. With each belief assignment ranging between
zero and one and the sum of all belief assignments is equal to one. A
hypothesis may be a subset of states and has a confidence interval
ranging from the sum of belief assignments of the hypothesis, to the
plausibility of the hypothesis that includes evidence not ruling out the
hypothesis. The confidence interval represents true belief in the hy-
pothesis. Dempster-Shafer combining rule fuses the beliefs from multi-
ple sensors via their mass functions (e.g., miand mj) in addition to the
sensors’ plausibility of the hypothesis, which are used to compute the
hypothesis with the highest probability while counting in uncertainty
[25,175,200]. Authors of [64,85,86,211] use D-F inference to detect
errors (noise, inaccuracies) in sensor data that would help identify faulty
sensors or components. Existing work [42,104] further provide more
extended surveys of sensor fusion techniques.

Distributing multivariate techniques for either preprocessing or
processing to the edge requires fusing the features of data streams
captured by the different sensors at the edge. Thus, there is a de-
pendency between multivariate techniques and sensor fusion where the
former is the dependent. In addition to facilitating the edge execution of

multivariate techniques, sensor fusion distributed to the edge and per-
formed prior to data transmission has several other benefits including
reducing the data volume by including lineage meta-data to aggregated
data once rather than duplicating shared meta-data to each sensor
stream. The fusion can be as simple as a merge of multiple sensor data
into one tuple that is based on the timestamp of when the data were
generated. This includes merging sensors with different frequency by
placing Null for features with no observations at a given timestamp.
Many sensor fusion solutions have been proposed for IoT applications;
including distributed versions of the Kalman Filter [148,182] and Par-
ticle Filter [29].

Feature engineering

The comprehensive definition of feature engineering covers feature
reduction, transformation and synthesis. The ultimate goal is to
formulate “the most appropriate features given the data, the model, and
the task” [214]. We present the following feature engineering
categories:

Discretization definition
is the process of transforming continuous features to discrete features

with finite sets of adjacent intervals and associating each interval with a
value (integer or nominal) thus summarizing the data while minimizing
information loss [78,107,111,189].

Table 8
Tested Continuous Features Discretization Techniques.

Technique Formula Property Results

Equal-width
Binning

Given k splits where ci ∈ {c1, …, ck}, the split points are computed via: ci = min + i.
max − min

k + 1
where max and min can

either be the actual, semantical or contextual values of the feature.

Unsupervised, Top-
down, Static

RMSE

0.47
MAE
0.33
MAPE
37.47%

Equal-frequency
Binning

Given k splits where ci ∈ {c1, …, ck}, the split points are computed via: ci = i.
N

k + 1
, where N is the number of instances. Unsupervised, Top-

down, Static
RMSE

0.44
MAE
0.3
MAPE
32.18%

K-means Initialization:

1) Randomly select k instances as initial centroids: C = {μ1, μ2, …, μk}.
Iteration:

1) For each data point xi, determine its cluster membership ci via: ci = minj∣∣x(i) − μj∣∣2 where ∣∣x(i) − μj∣∣ is the Euclidean
distance between the data point and the centroid. The data point is clustered with the nearest centroid.

2) For each cluster μj, recalculate its centroid via: μj =

∑mj
i=1xi

mj
, where mj is the number of data- points in cluster j. The

steps of the iteration phase are repeated until convergence.

Unsupervised,
Stochastic, Static

RMSE

0.48
MAE
0.36
MAPE
32.14%

SOM 1) Initialize the weights of kneurons of the one dimensional ANN.
2) Randomly select an instance xfrom the training dataset to update the network’s kweights.
3) Compute the winning neuron via: ct(x) = mink∈1,…,K∣∣x − mk(t)∣∣2

4) Update the weights of kneurons via: mk(t + 1) = mk(t) + ϵ(t).hk.ct (x)(t).(x − mk(t)) where ϵ(t) = ϵ0e
− t
τ is the learning

rate and hk.ct (x)(t) = e

−
⃒
⃒
⃒
⃒mk(t) − ct(x)

⃒
⃒|

2

2σ(t)2
is the topological neighborhood. Repeat steps 2–4 on all training data

5) Prune out neurons rarely updated, thus, the interval n: ≤k.

Unsupervised,
Stochastic, Static

RMSE

0.23
MAE
0.17
MAPE
17.32%

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

16

Discretization Impact: Discretization has many benefits including
adapting the data to algorithms that only process categorical data or that
perform better with discretized variables [28,107,111,189]. In addition
to reducing data volume, it also reduces the complexity of data and
makes data patterns easier to understand [78]. Discretizing continuous
feature could also improve learning or model training efficiency and
accuracy [189].

Discretization Techniques: Discretization techniques can be cate-
gorized as unsupervised and supervised. In the later, the technique uses
the response variable (class variable) in determining the intervals and
attempt to maximize the interdependence between the response variable
and the continuous predictor. Discretization techniques can also be
categorized as top-down or bottom-up. The later, considers all available
continuous values of the feature as potential splitting points and then
merges points into bigger intervals repeating the step until the final
intervals are determined via a condition or threshold. While the former
starts with one interval or few splitting points and continues to segment
the data towards obtaining optimal intervals [60,78,111,189]. Static
discretization techniques discretize each continuous feature of the
dataset in an isolated matter and are independent from the modeling
technique thus they are performed as a preprocessing task. While dy-
namic discretization is part of the modeling and training phase and
considers the interdependence between different continuous features
that exist in the dataset. Lastly, global discretization techniques
consume all available data instances (batch processing) while local
techniques discretize on a sample of the data [60,189]. The performance
of discretization techniques is measured by their ability to minimize the
number of intervals created to avoid overfitting, whether the techniques
consider the data distribution or not and by the performance of the
modeling algorithm that consumes the discretized data [3,189]. In
addition, supervised discretization techniques are evaluated based on
their ability to maximize the interdependence between the class variable
and the continuous predictor to be discretized [189]. In our survey we
will focus on static techniques as we aim to decouple preprocessing from
training, modeling and information extraction. We also focus on unsu-
pervised discretization techniques as sensor data are typically unla-
beled. Table 8 is an overview of the discretization techniques we have
included in our experiments.

Binning is an unsupervised top-down discretization technique that
has two variations equal-width and equal-frequency (quantile binning).
Equal-width binning finds the minimum and maximum values of the
feature and then divides the continuous data into k intervals. The pro-
duced bins contain variable number of instances with some bins may
ending up empty. Equal width binning is sensitive to outliers and does
not consider or reflect the original distribution of the feature [45,191].
Equal-frequency binning counts the number of instances of the feature
and then creates intervals with approximately equal number of instances
[3,45]. The technique considers the data distribution of the feature by
adaptively positioning the bins based on the quantiles of the distribution
to obtain for example quartile bins (if k = 4) or decile bins (if k = 10),
which means each interval contain approximately 25% or 10% of the
data respectively [4,28,78,107]. With equal-frequency binning, the
range of some of the bins produced can be skewed by outliers or
non-gaussian distributions placing unrelated instances from vastly
different classes in the same bin [50,103].

Both binning variations require a predefined k value and associate
each bin created with a value which could be nominal or integer (e.g.,
the mean or median value of the instances it contains). Equal-frequency
and equal-width binning are efficient and simple techniques; however,
their discretization is likely to hide patterns in the data, not produce
semantically meaningful intervals and fail to learn certain concepts from
the data which is the result of ignoring the class of the training instances
[103,191]. Gaussian Approximation or Histogram bin count [28] is a
binning technique that uses the standard deviation σ and mean μ in
determining the splitting points k predefined by the user. Its space and
time complexities grow linearly with the number of instances. The

mathematical equations of the binning techniques can be found in
Table 8.

Clustering is a popular discretization approach for continuous fea-
tures that is also unsupervised and requires a predefined k value. Clus-
tering can also be applied as a multivariate discretization approach that
considers all attributes in the dataset when determining the intervals of a
particular continuous attribute [60]. K-means clustering method consist
of two main steps initialization and iteration. In the former, k values are
randomly selected as initial centroids of k number of clusters into which
the continuous feature is divided. Data points are then assigned to the
nearest cluster center using a distance metric (e.g., Euclidean). The al-
gorithm finds a compilation of clusters and member data points with
minimized total sum of distances between the clusters’ centers and their
member data points. The iteration step involves recomputing the cen-
troids of each cluster via the current member data points followed by
reassigning the data points to new clusters if their distance with the
centroid is shorter otherwise they are kept at the current cluster.
K-means is a hard clustering technique, meaning each data point is
assigned to one cluster only. The iteration step repeats until conver-
gence, that is, there are no longer re-assignments of data points. The
generated clusters represent the intervals of the discretized continuous
feature and the value of an instance is determined by its cluster mem-
bership [4,72,191]. K-mean clustering produces intervals that reflect the
distribution of the original data. A global optimum is, however, not
guaranteed and the quality of the discretization depends on the k value
and on the random seed of the initialization step [191]. In addition, the
clustering algorithm is also sensitive to outliers and performs poorly
when clusters are of different shapes, sizes and densities [72].

Shared Nearest Neighbor (SNN) can be used for discretization [72],
which is more resilient to outliers and with improved performance on
high dimensional data producing arbitrarily shaped clusters with
different densities when applicable [51]. The distance and density
measures used in SNN are based on shared neighbors and on similarities
with neighbors, respectively. The introduction of representative or core
points in SNN allowed for irregular shaped clusters to be formed [51].
Similar to K-means, it requires a predefined k value which controls the
granularity of clusters. SNN has a quadratic time complexity.

In [191], authors proposed an unsupervised discretization technique
based on the artificial neural network Self-Organizing Map (SOM). The
algorithm does not require the exact number of clusters k as a-priori but
only requires a fixed maximum number of clusters m. The discretization
technique constructs a one dimensional SOM with m neurons. The
weight of the neurons are learned during training using unlabeled
training data while preserving the feature’s original data distribution.
The training process start with randomly initializing the network
weights. A data point is then randomly selected to initiate the process of
learning and updating the neurons’ weights to model the input data. The
Euclidean distance is used to determine the neuron closest to the current
data point (x(t)), i.e., the neuron with the smallest Euclidean distance,
which is labeled as the Best Matching Unit (BMU) or winning neuron
(ct(x)). The weight of the selected winning neuron is then used to update
its weight and the weights of other neurons in the map space. SOM
neurons are similar to the centroids of K-means; however, the neurons
are connected with each other in the sense that their updates impact the
weights of other neurons but in a reduced scale. This is done using a
weight update formula with a learning rate that controls the significance
of the weight update and a topological neighborhood term which either
magnify the learning rate of the weight update for ct(x) or scale down the
learning rate of the weight update for the other neurons based on their
distance from ct(x). The Euclidean distance metric is used to compute the
distance between the current weights of the neurons mk(t) and the cur-
rent of weight of ct(x). The magnitude of the weight updates decreases
over time to stabilize the learning process and the scope of the neigh-
borhood relations. The idea is to find the neuron closest to the data point
and to update the neuron’s position in the map space towards the data
point in addition to making smaller shifts of other neurons towards the

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

17

same direction depending on their distance from the data point and
ct(x). The process is repeated for each instance in the training data until
convergence (the sum Euclidean distance between data points of each
cluster is minimized) or a stopping condition is fulfilled (the changes in
weights are insignificant or less than a threshold) [108,191]. Neurons
that are rarely updated are pruned and discretization classes produced
can be less than m [191]. SOM is a stochastic algorithm that can produce
different discretization intervals from the same training data. It can take
many iterations before it converges. SOM is an unsupervised learning
algorithm; however, it is possible to incorporate the class variable as
input. Yet, the interdependence between the predictors and the class
variable would still not be the focal point of the learning process. The
equations of the SOM discretization technique can be found in Table 8.

In our survey we focus on unsupervised regression problems as
sensor data are naturally unlabeled and are often continuous. Having
said that, we also cover supervised techniques in this section as dis-
cretization is mostly intended for classification problems. Unsupervised
discretization techniques do not leverage class labels, when present, and
thus they are likely to result in loss of classification information and
produce intervals with instances that are strongly associated with other
classes (i.e., interval has no dominant class) [45]. Chi-Merge [103] is a
supervised, bottom-up and univariate discretization technique that de-
termines the intervals based on the class variable with the objective of
producing a concise summarization of the continuous feature with
intra-interval uniformity and inter-interval difference. The technique
starts with sorting the values and placing each instance in its own in-
terval. Chi-Merge uses Chi-Squared test χ2 to determine whether adja-
cent intervals are different or similar enough to merge. The χ2 value is
computed for each pair of adjacent intervals and pairs with the lowest χ2

value are merged. This means that interval pairs with significantly
different class frequencies (the interval determines the class) are not
merged while pairs where the class is independent from the intervals
(similar class frequencies) are merged [103]. The step is iterated until a
termination condition is fulfilled. Despite its ability to preserve the
feature’s distribution, Chi-Merge is sensitive to the χ2 threshold value
and overestimate the degree of difference if the expected frequency is
small. The algorithm has a time complexity of O(n2) and may construct
too many intervals [14].

Khiops [14] is also a supervised bottom-up method that is based on
χ2 statistics. Its objective is to minimize the confidence level of the null
hypothesis that the class variable and the intervals are independent. The
higher the χ2 values is the lower the confidence level is of the null hy-
pothesis, which means the merge of adjacent intervals achieves inter-
dependence between the interval and the class variable. The process is
repeated until a minimum frequency within each interval is respected
and the confidence level can no longer be minimized. Khiops technique
controls overfitting heuristically by constraining the frequency of in-
stances within each interval to be greater than the square root of the
sample size [14].

Class-Attribute Interdependence Maximization (CAIM) is a super-
vised univariate statistical technique that maximizes the class-features
interdependence while minimizing the number of discrete intervals
generated. The top-down approach selects the number of intervals
without a predefined k value from the user. The technique then classifies
the continuous values of the feature into the k intervals. This means that
the algorithm starts with one interval D = [d0, dn] containing all values
with a global CAIM value of zero. A new splitting point is added to D and
from the class variable and the feature to be discretized, a quanta matrix
is defined, which includes the number of instances for each class value
within each interval. The CAIM value is then computed using the sum of
the maximum (maxr) count of instances that have the class value i within
interval [dr− 1, dr] of all intervals. maxr is divided by the number of in-
stances within the interval [dr− 1, dr] to account for the negative impact
of the values belonging to other classes and to scale the maximum. The
splitting point is accepted if the computed CAIM value is greater than the
global CAIM. This makes CAIM a greedy search algorithm that

approximate the optimal value by finding a local maximum which may
not necessarily be the global maximum. The greater the value of CAIM
is, the higher the interdependence between the class variable and the
intervals. CAIM favors a discretization scheme where the majority of
instances within an interval belonging to the same class value (intervals
with dominant class value). CAIM is a fast algorithm that automatically
finds the smallest number of intervals, however the number of intervals
is typically equal to the number of class values (k = r).

Class-Attribute Contingency Coefficient (CACC) [189] has the same
steps as CAIM, however, the quality of the intervals in each iteration is
measured using the CACC value. The contingency coefficient is used to
measure the interdependence between the predictor to be discretized
and the class variable. Instead of only considering the class with the
maximum number of instances within an interval, CACC considers the
frequency (number of instances) of all classes for each interval divided
by the log of the total number of interval (log(n)) within the iteration.
The log(n) division avoids overfitting and accelerates the discretization
process. CACC is a greedy algorithm that keeps track of a global CACC
value and terminates if the local CACC is less than the global value and
the number of intervals is equal or greater than the number of classes.
CAAC avoids overfitting and minimizes loss information by considering
the distribution of the data.

Another technique similar to CIAM and CACC is Ameva [68] which
maximizes the contingency coefficient using χ2 statistics with the same
objective of maximizing interdependence between the predictors and
class variable and minimizing the intervals to avoid overfitting. For
supervised discretization, we have mainly presented the statistical based
techniques. The reader can refer to [60] for a comprehensive survey of
discretization techniques including information based and rough-sets
based techniques.

Distributing discretization techniques to the edge is correlated with
EdgeAI; particularly with the distribution of classification machine
learning models. Authors of [96] empirically demonstrated the feasi-
bility of distributing and extended SOM algorithm using Apache Spark.
The proposed distributed GSOM algorithm discretized a large dataset of
unlabeled data into clusters based on a common feature value (human
activity) while excluding temporality. Nyström-Persson et al [145] also
leveraged Apache Spark to develop a distributed binning and k-mer
counting tool, called Discount, for metagenomics data. Using Discount,
the authors yielded evenly distributed and small sized bins, which
improved the efficiency of memory and storage usage and accelerated
overall processing speed. In Applications and use-cases where tempo-
rality is important to encode in the discretization of continuous data,
then time-series discretization techniques are a better fit. Techniques
that are applicable on time-series include Symbolic Aggregate Approx-
imation (SAX) [119], MultIple Normal distributIONS (MINIONS) [58]
and the temporal discretization technique of distributed systems pro-
posed by D’Andrea et al [33]. In [152], authors proposed k-Shape,
which is a partitional time-series clustering algorithm that iteratively
produce homogeneous and well-defined clusters using the
cross-correlation measure Shape-based distance (SBD). Their empirical
results highlighted that in addition to preserving the shapes of
time-series, k-Shape also outperformed other tested techniques in terms
of yielded accuracy. Lastly, we wanted to highlight that further empir-
ical analysis is required to evaluate the feasibility and impact of
distributing the aforementioned time-series techniques to the edge (e.g.,
deployed in IoT devices).

Empirical Results: In our experiments, discretization was per-
formed after the last preprocessing category, which is feature selection,
of our standard preprocessing plan (see the DAG structure presented in
Fig. 1). Several discretization techniques were tested on transforming
continuous features to their categorical representation. K-means and
SOM produced clusters while the rest of the tested techniques produced
bins. Both the clustering techniques k-means and SOM were performed
as multivariate discretization techniques using the feature to be dis-
cretized and the response variable (CO) as inputs. Our experiments

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

18

excluded temporality, however, it will be included as part of our future
work. The histogram diagrams and plots in Fig. 12 present outcomes of
each tested discretization technique. For each technique evaluation, we
performed several tests or attempts (a minimum of three). The clusters
produced by SOM in each test were similar while k-means reflected
inconsistency with significantly varying cluster regions in each test
performed. Using the discretized input data, generated using the
different tested discretization techniques, we trained LSTM models for
the purpose of evaluating the impact of discretization techniques on the
performance and quality of AI models and networks. We used the

discretized predictors (mapped into bins and clusters numerical repre-
sentations) and kept the response variable continuous for LSTM to train
correctly and to evaluate the performance accurately. We evaluated
both univariate and multivariate K-means discretization, however, the
results of the LSTM network were of low accuracy for the univariate
version and thus, based on our experiments, we recommend using
multivariate k-means over univariate k-means discretization. Our
empirical results indicate a generally deteriorating prediction accuracy
of the trained LSTM networks, which is an expected outcome due to the
loss of information caused by discretization. An exception to this trend is

Table 9
Tested Feature Selection Techniques.

Technique Formula Property Results

F-Test For each feature Ai of the dataset, find: F =
MSbetween

MSwithin
where MS is the abbreviation of Mean Squares. Expanding the

numerator and denominator gives: F =

∑K
i− 1ni(YI − Y)2∕(K − 1)

∑K
i=1

∑ni
j=1(Yij − Yi)

2∕(N − K)

Feature Selection, Supervised RMSE

0.33
MAE
0.24
MAPE
27.39%

Laplacian 1) For feature Ai, build the weight graph Gwith m nodes.
2) For each instance, find its neighbors and their distance.
3) Neighbors are connected with edges.

4) A weight matrix is constructed from Gand assigned the following weights: for nearest neighbors: Sij = e
−

⃒
⃒
⃒
⃒xi − xj

⃒
⃒|

2

t ,
otherwise: Sij = 0.

5) Given that fr = [fr1 , fr2 ,…, frm]T contain instance values of attributeAi, the diagonal matrix Dis found via: D(i, i) =
∑m

j=1Sij, where Sis the similarity matrix. Dis multiplied by the identity matrix for m × m dimensions.
6) The Laplacian matrix is obtained via: L = S − D

7) Instances of fr are normalized using zero-centering: fr = fr −
fT
r D1

1TD1
1

8) The Laplacian score is computed via: Lr =
fT
r Lfr

fT
r Dfr

Feature Selection,
Unsupervised, & Supervised

RMSE

0.46
MAE
0.31
MAPE
29.67%

RReliefF 1) Select instance Ri randomly.
2) Select the knearest neighbor Ij ofRi.
3) Find PdiffA = P(differentA∣nearest). PdiffC = P(differentC∣nearest). PdiffC∣diffA = P(differentC∣differentA&nearest). A is the

value set ofAi, C is the value set of the response variable, and nearest is the set of Nearest neighbors of Ri

4) Find the quality estimation: W[A] =
PdiffC|diffAPdiffA

PdiffC
−

1 − PdiffC|diffAPdiffA

1 − PdiffC
The probability is modeled using relative

distance: d(i, j) =
d1(i, j)

∑K
l=1d1(i, l)

where d1(i, j) = e
− (

Rank(Ri, Ij)
σ)

. The exponential distance measure is used to

significantly decrease the influence of neighbors with greater distance from Ri. Ranks are used instead of distance to
diminish the influence of scales.

Feature Selection, Supervised RMSE

0.34
MAE
0.22
MAPE
24.43%

NCA Given the labeled dataset: S = {(xi, yi), i = 1, 2, …, n}

1) Initialize the weight vector w, assigning all features p the same weight.

2) Use stochastic nearest neighbor to maximize the LOO regression accuracy: pij =
k(dw(xi, xj))

∑n
j=1,j∕=ik(dw(xi, xj))

, where dw(xi, xj)

=
∑p

r=1w2
r
⃒
⃒xir − xjr

⃒
⃒ and k = e

−
dw(xi, xj)

σ

3) Evaluate the average loss value of l(yi, ŷi): li =
1
n
∑n

j=1,j∕=i
pij l(yi, ŷi)

4) Subtract the regularization term from the loss function: f(w) =
∑n

i=1 li − λ
∑p

r=1wr

5) Find the weight vector of features using: f′(w) = 2(
1
σ
∑n

i
(pi

∑

j∕=i
pij

⃒
⃒
⃒xir − xjr

⃒
⃒
⃒ − li

⃒
⃒
⃒

⃒
⃒
⃒xir − xjr

⃒
⃒
⃒) − λ)wr

Feature Selection, Stochastic,
Supervised

RMSE

0.35
MAE
0.26
MAPE
27.94%

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

19

SOM, which produced one of the most accurate LSTM networks of all the
experiments completed. The empirical results of the last test performed
is presented in Fig. 13.

Feature reduction definition
As data volume increases, managing data in an effective and efficient

matter becomes more challenging [117]. Reducing data volume can be
achieved by either sampling the data or performing dimensionality
reduction for high dimensional data. In this survey, we focus on
dimensionality reduction, which involves the reduction of the number of
features while capturing the essence of the data [143].

Feature Reduction Impact: High dimensional data may suffer from
various problem including:

• Curse of Dimensionality: As the number of features increases, the
probability of data points being within neighboring distance is low.
In other words, the data become sparser and thus modeling high
dimensional data accurately requires a large number of samples
[117].

• Overfitting: when the number of features is similar or equal to the
number of data samples, modeling algorithms struggle to produce
generalized models, which mean they underperform with test data
and new data [117].

• High Resource Consumption: High dimensional data results in
increased memory requirements and higher computational and en-
ergy costs [117].

Feature reduction has been proven in theory and practice to improve
learning efficiency of modeling algorithms and produce models with
higher accuracy [13,21,74,117,125]. Dimensionality reduction also
improves the efficiency of resource consumption, reduces computational
and storage demands and improves sustainability with less energy costs.
Effective dimensionality reduction could produce less complex and more
comprehensible models [21,98,117]. There are two main categories of
dimensionality reduction: Feature Selection (FS) and Feature Extraction
(FE).

Feature Selection Definition: is the process of obtaining a subset of
the original data based on selection criterion that retains the most
relevant features and removes irrelevant variables [21,117]. FS main-
tains the physical meaning of the original feature space thus producing
models with better readability and interoperability [117]. Due to the
computational complexity of evaluating subsets of m features, most
proposed solutions are heuristic methods that maximize relevance; with
some techniques also minimizing redundancy. FS categories are based
on:

• The training data: supervised, unsupervised and semi-supervised
techniques.

• The relationship with the modeling algorithm: filters, wrappers,
embedded and hybrid.

• The subset search mechanism: forward increase, backward deletion,
random and hybrid.

• The subset evaluation criterion: correlation-based, statistical-based,
similarity-based, distance-based and information theoretical-based.

Feature Selection Techniques: Wrappers produce a high perform-
ing subset tuned for a specific model. It is an expensive technique as each
possible subset is iteratively used to train the model and the error rate of
the model is then used as the score of the subset [4,59]. Greedy search
strategies are feasible for wrapper methods [98]. Examples of wrapper
methods include recursive feature elimination [34], Particle Swarm
Optimization (PSO) [204] and Genetic Wrappers [90]. Filtering is
cheaper to compute; however, it produces a general feature subset
resulting in lower prediction performance. As we are decoupling pre-
processing from processing (e.g., modeling algorithms), we will restrict
our survey to filters and hybrid feature selection techniques. Our

categorization of FS will also make a distinction between cloud execu-
tion and edge deployment. Table 9 provides an overview of the tested FS
techniques and their performance based our empirical analysis.

Filters are feature selection techniques that are independent of the
inference and the modeling algorithms when evaluating feature subsets
and selecting features. Instead, filters use evaluation criterion to mea-
sure the correlation, relevance and redundancies of features. Unlike
wrapper methods, the selected features are not optimized to particular
algorithm or model [21,98,117]. Features correlation (the amount of
new information introduced by a feature) and mutual information (the
amount of information obtained about one feature from another feature)
are some of the measures used for filtering. Features that fall below a
threshold for a measure are filtered out [4,21,59]. There are several
search strategies to find the subset features such as greedy forward se-
lection, greedy backward elimination, simulated annealing, race search
and exhaustive search [21,117].

Removing features with low variance is a univariate statistical filter
that can be used for unsupervised problems. For numerical variables, the
variance is computed using the mean to determine whether the vari-
ables’ variances are below a predetermined threshold or not. The
objective is to remove variables with zero or close to zero variances as
they are less informative or with less predictive power [117]. Correla-
tion based Feature Selection (CFS) [76] is a multivariate
statistical-based filter that eliminates irrelevant and redundant features
using a heuristic evaluation function. CFS measures the correlation be-
tween the features and the response variable (feature-to-class) and the
correlation between the features (feature-to-feature). The algorithm
selects a subset with features that are highly correlated with the class but
uncorrelated with each other. The mathematical formula of CFS subset
evaluation function can be found in Table 9. The numerator of the
function indicates how predictive the subset is of the response variable.
The denominator indicates the subsets’ level of redundancy. The authors
used forward selection, backward elimination and best first as search
strategies to find candidate subsets, however, other search strategies can
also be used for CFS. The three methods are prevented from searching
the entire feature subset search space via stopping criteria with the
objective of choosing the subset with highest evaluation merit found
during the search. CFS is applicable for numerical and categorical data
and for classification and regression problems, however to standardize
the process, discretization [55] is applied on numerical continuous data
as a preprocessing step. CFS fails to identify locally predictive features in
small areas of instance space [76].

F-test is a univariate statistical hypothesis test that evaluates a pre-
dictor’s ability to separate the classes (discretized values) of the
response variable. It compares the mean and variance of the predictor’s
values grouped by the values of the response variable to test if the
different groups come from normal distributions with the same mean
(null hypothesis) or from populations with completely different means
(alternative hypothesis). The F-test equation can be found in Table 9.
The numerator calculates the variance between the classes while the
denominator calculates the variance of each class distribution. The
higher the F-test score is the more predictive the feature is of the
response variable as it separates well the classes or discrete values of the
response variable [174]. To use the F-test feature selection, it is assumed
that the values of each variable are independent and that the residual
errors within each class are samples from normal distributions [113].

Other statistical-based filters include Chi-Square Score [126] and
T-score [35] however their use is limited to classification problems.

Relief algorithms are a series of extended similarity-based filters with
the original Relief algorithm introduced in 1992 [106]. The algorithm
can estimate the importance of features even with strong dependencies
between them. The Relief algorithm and the extensions that followed,
start by randomly selecting an instance and finding its k (k=1 for Relief)
nearest neighbor(s) with the same class and k nearest neighbor(s) with
the other class(es). Instances with same response variable value (class)
are compared to determine whether their values for attribute Ai is

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

20

different or not. Having different values means that the attribute is
separating two instances from the same class and thus the quality esti-
mation of the attribute is decreased. On the other hand, instances with
different classes and different attribute values means that Ai is successful
in separating two instances with different classes and thus its quality
estimation is increased. The RReliefF [164] extension was adapted for
regression problems where the response variable is continuous. In the
absence of discrete classes, the algorithm uses a probabilistic approach
using relative distance to determine whether instances have different
response values or not. Table 9 includes the equations of the RReliefF
filter. The algorithm starts by randomly selecting an instance Ri and
finding k nearest neighbors with Ij being a neighbor instance. The
relative distance between the response values of the instances is used to
model PdiffA, which is the probability of nearest instances having
different values of attribute Ai, PdiffC, which is the probability of nearest
instances having different response values and PdiffA∣diffC, which is the
probability of the nearest instances having different response values
given that they have different values of Ai. The quality estimation of Ai is
then determined using these probabilities and features with highest
weights are selected. RReliefF computational complexity is an

improvement compared to FS techniques that require subset search
followed by evaluation. The iterative process of finding k nearest
neighbors to estimate the quality of A attributes given n instances and
using m iterations (user defined) has a computational complexity of
O (m.n.A) [165]. RReliefF is sensitive to the curse-of-dimensionality and
its performance deteriorates as the number of features increases. The
algorithm may also produce a selected features subset with re-
dundancies [190].

The Laplacian score [84] is a similarity-based univariate filter that
can be performed on both supervised and unsupervised problems. It is
based on the observation that instances from the same class are often
found, in real-world datasets, close to each other. The importance or
quality of features is determined based on their ability to preserve lo-
cality and based on their variance (higher variance being favorable). The
algorithm starts by constructing the nearest neighbor graph G of feature
Ai that consist of m nodes representing m instances. Two nodes (i and j)
are connected with an edge if instances xi and xj have a nearest neighbor
relationship in either direction. From G, the weight matrix S is created,
which consists of the weights of edges between the different nodes. S
models the local structure (relationships) of the data space. If two nodes
xi and xj are connected, then the weight is computed via an exponential
function using a distance measure. Otherwise, the weight is set to zero.
The Laplacian matrix L is then obtained by subtracting the diagonal
matrix D from S. The Laplacian score (Lr) of the feature is calculated
using L, D and using centered (normalized) data instances fr of Ai [84].
We present the full Laplacian algorithm in Table 9. In the Lr equation,
the numerator measures the distance (similarity) between instances and
the smaller the sum of distances the more preserving it is to predefined G
graph structure (i.e., higher locality preserving power). The denomi-
nator measures the features variance and the higher it is the more pre-
dictive is the feature [84,117]. Maintaining undirected graph for each
attribute, especially with high dimensional and large datasets renders
the filter expensive especially with batch processing.

Neighborhood Component Analysis (NCA) Feature Selection [67,
209] is a filter that has two variations: NCA for classification and NCA
for regression. The latter is adapted for continuous response variables.
NCA is a supervised learning non-parametric algorithm that makes no
assumptions about data distribution and problem linearity. It is also
insensitive to large number of irrelevant features. The intuition is that
important features are the ones that best cluster related instances and
separate the different clusters. The objective is to find a feature subset
with which the classification or regression model yields the most accu-
rate results. This is done by computing the features weight vector using
the stochastic nearest neighbor algorithm to optimize the performance
of the Leave-One-Out (LOO) classification or regression on the training
data. In addition, a regularization term is used to derive the weights of
irrelevant features closer to zero and thus facilitate feature selection.
The algorithm starts by randomly selecting a reference point xj for all the
instances xi of the labeled dataset S− i (excluding the instance xi). The
smaller the distance between xi and xj the greater the probability of
selecting xj nearest neighbor as the reference point. To model this
relationship, an exponential kernel function is used to assign a higher
probability to smaller distances. In both [67,209], the Euclidean dis-
tance is used to determine nearest neighbors. After selecting a reference
point, its label yj is assigned to instance xi. Choosing nearest neighbors
increase the probability of correctly estimating the original response
value yi and thus maximizing LOO classification or regression accuracy.
A loss function l(yi, yj) such as Mean Absolute Deviation (MAD) is used to
measure the difference between the estimated and the original response
values. The average LOO estimation accuracy is determined from the
sum of the selected probabilities of stochastic nearest neighbors and the
loss function value of all instances. Authors of [209], introduced f(w),
which consist of a regularization term together with the LOO estimation
accuracy function. Feature weights are determined from the derivative
of f(w). NCA is sensitive to feature scales and thus normalization as a

Table 10
Tested Feature Extraction Techniques.

Technique Formula Property Results

PCA 1) Compute the average row of the data

matrix X: x̂ =
1
n
∑n

i=1
xi

2) Using x̂compute the average matrix:

X̂ =

⎡

⎣
1
⋮
1

⎤

⎦

n

x̂

3) Center X using the average matrix: B
= X − X̂

4) Perform SVD on the centered data: B
= UΣVtwhere Uis an orthogonal
vector with information about the
column space, Vis an orthogonal
vector with information about the
row spaces and Σis a diagonal matrix
with values indicating the amount of
variance.

5) Given that the principle components
decomposition of B is T = BV, then
substituting B with UΣVT from step 4
gives: T = UΣVTV. Given that V is
orthogonal, VTV = 1, then T = UΣ

Feature
Extraction,
Unsupervised

RMSE

0.5
MAE
0.36
MAPE
34.13%

LDA 1) Compute within-class scatter matrix
via:

Sw =
∑C

j=1
∑Nj

i=1(x
j
i − μj)(x

j
i − μj)

T

where xj
i is the ithsample with class

value j, μj is the mean of the classj,
Cis the number of classes, and Nj is
the number of samples with class
value j.

2) Compute the between-class scatter
matrix via: Sb =

∑C
j=1(μj −

μ)(μj − μ)T, μ is the mean of all
classes.

3) Maximize the ratio: LDA =
det|Sb |

det|Dw |
,

where det is the determinant of the
matrix.

Feature
Extraction,
Supervised

RMSE

0.23
MAE
0.16
MAPE
16.37%

A. Tawakuli et al.

JournalofEngineeringResearchxxx(xxxx)xxx

21

Table 11
Highlighted sensor data compression techniques and their various approaches.

Technique Property Example & Approach

PAA
[101]

lossy, single-pass,
numerical time-series

mapping an input series to a series

of constant line segments of length 5

The procedure to construct a PAA using the approach from [101] proceeds as follows, with the segment length m :
1) Split input data into n univariate series
2) Replace series values xi, xi+1, …, xi+m− 1 with their mean (on the left: m = 5).
3) Proceed with values xi+m, xi+m+1, …, xi+2m− 1, etc.
This scheme cannot give guarantees about the maximum approximation error. The compression ratio is ≈ 1∕m. The output is
a series of means.

PLA [82] lossy, single-pass,
numerical data

mapping an input series to a series

of line segments

The procedure to construct a PLA as in [82] proceeds as follows:
1) Split input data into n univariate series
2) Assign an increasing counter to each series
3) Produce best-fit line segments for each series, using counter as dependent variable.
The approximation error (see Figure on left) is bounded to a user-defined value per series. The lines are constructed greedily,
allowing single-pass data processing. Splitting the input into univariate series allows for independent compression &
decompression. The output is a series of triples: 〈segment length, line slope, line intercept〉.

Gorilla Compression
[155]

lossless, single-pass, 64-bit
doubles

value XOR w/ prev. The Gorilla scheme compresses timestamps and values differently. Here, we use the value compression scheme only.

15.5 ∅ 1) Split input data into nunivariate series of 64-bit doubles.
2) In each series, store first value as-is.
3) For all other values, compute the XOR with the previous value (see Table on left for a series of length 4).
4) If value is identical to previous, store ’0’ (1 bit).
5) Else, store ’# of leading zeros’ (5 bit)’ + ’# of meaningful bits’ (6 bit) + ’meaningful bits [in table: black]’
As in the PLA scheme above, splitting the input data allows independent compression and decompression of
multivariate input data. The output is a bitstream.

14.0625 0×003200…
14.0625 0×000000…
8.625 0xd60000…
XOR of doubles with prev- ous value.
Significant bytes in bold.

ZIP
[39]

lossless, multi-pass, arbitrary
byte strings

Huffmann tree en- coding for the

strings “a”, “b”, “c”.

The deflate algorithm processes input data as a byte stream and consists of two main stages:
1) Detect duplicate strings and replace them with a pointer (a variable amount ofprevious data is checked for duplicates tobound

computational complexity).
2) Construct a Huffmann tree (see left), encoding most frequent strings to shortest unique bit sequences (see example on left: “b″ = 00,

“a″ = 01, “c″ = 1).
Stage (1) largely defines the compression ratio through the window of data that is checked for duplicates of a given string.

A
. Taw

akuli et al.

Journal of Engineering Research xxx (xxxx) xxx

22

preprocessing step is required when variables have significantly
different scales. It is also susceptible to the local minimum problem
when minimizing f(w). Table 10 includes the regression equation of
NCA.

Minimum Redundancy and Maximum Relevance (mRmR) [156] is
an information based feature selection methods that uses mutual in-
formation to measure feature relevance and redundancy. The technique
selects relevant features while controlling redundancy in the subset. A
recent extension of mRmR is introduced in [213], in which Randomized
Dependence Coefficient (RDC) is used as the redundancy measure and
Random-Forest Correlation Quotient (RFCQ) is used as the relevance
measure. RDC addresses non-linear problems while the idea behind
using RFCQ is to leverage a relevance measure that is related to the
processing model. Information-Theoretical-Based methods including
mRmR techniques, Conditional Infomax Feature Extraction (CIFE) [118]
and Joint Mutual Information (JMI) [206] are only applicable on su-
pervised classification problems.

Genetic Algorithm (GA) [114] is also a popular heuristic approach
used for feature selection which is a search function that incorporates an
evaluation function (fitness function). GA belongs to a larger class of
evolutionary algorithms based on the biological process natural selec-
tion. The subset search problem of FS has an exponential search space
making it an NP-hard problem. This makes GA a natural optimization
strategy for high dimensional datasets as it efficiently finds approximate
solutions that are more compact yet more informative compared to
traditional solutions. The fitness function can be a linear classifier (using
least square as the error function) [83], inconsistency rate filter [112],
support vector machine [132] or random forests [216]. GA can be used
for regression and classification problems [114]. The general algorithm
starts with randomly selecting the populations (chromosomes) of the
first generation. Each population is defined as the genetic representation
(binary) of the features (genes) that are included (set as 1) and excluded
(set as 0) in the population. The evaluation (fitness) function determines
the weight of each population based on their performance in predicting
the response variable (supervised) or based on their variance (unsu-
pervised). The next generation is constructed by inheriting elite pop-
ulations, those with large weights, from the previous generation and by
crossing-over randomly selected population to produce new populations
(offspring). The cross-over function has several variation including
choosing k number of genes randomly and swapping them between each
pair. Another approach is to randomly select a splicing point for the
swap. The next generation undergoes one more process called mutation,
in which genes in each population are randomly selected and flipped.
Mutations simulate big jumps in the search space to avoid local optimum
and deadlocks [114]. GA algorithms are computationally expensive and
require careful tuning of the different parameters (e.g., crossover and

mutation rates) thus these limitations must be considered in the context
of IoT.

In [88], authors proposed a framework that distributes five feature
selection techniques to edge components using AURA neural network
and Apache Hadoop. The distributed feature selection techniques
calculate the weights of the different features at different edge devices.
The framework collects the calculated weights from edge components
and aggregate them into one result. Their empirical analysis using their
framework demonstrated the feasibility of distributing feature selection
techniques which can be extended to IoT. Authors of [140] recom-
mended distributing feature selection techniques especially with large
datasets. Their experimental results demonstrate improvements in run-
time and in the quality and accuracy of AI solutions trained on the data.
Their experimental analysis covered many techniques including CFS and
ReliefF feature selection techniques. In [38], authors distributed feature
selection techniques, including Chi-square, using Apache Spark with the
objective of selecting a subset of sensor streams. Their empirical analysis
demonstrated performance efficiency of the distributed techniques,
however, they highlighted the need to distribute other preprocessing
categories (e.g., normalization) to further improve the performance of
feature selection techniques.

Empirical Results: Our experimental results confirm that FS tech-
niques are more effective and yield positive results when the dataset is
high dimensional. This was not the case with our dataset (derived from
the AirQuality dataset) as we only had 15 features. For all of our feature
selection experiments we selected the top five high scoring features. The
LSTM model performed best when using all features as opposed to just
using five features that had highest importance scores determined by the
tested FS techniques. This is an expected outcome due to the information
loss caused by FS. Having said that, FS could still prevent overfitting
[117] and improve resource (computation, storage and energy) usage
efficiency. Comparing the results of the different FS techniques we
tested, RReliefF yielded the most accurate predictions while the Lap-
lacian score performed the worst (highest error scores), which can be
attributed to the fact that the Laplacian score is an unsupervised
technique.

As for the rest of our survey’s experiments, we combined the results
of the four techniques tested selecting the five most commonly selected
features to be used in all the survey’s experiments across the different
preprocessing categories. Benzene was the only feature that was selected
by all four techniques tested. Hydrocarbons and NOx where selected by
at least three techniques. The results of our experiments are presented in
Figs. 14, 15.

Feature Extraction Definition: Feature extraction (FE) is the pro-
jection of a high dimensional feature space to a low dimensional feature
space with strong pattern recognition ability [21,117].

Fig. 4. Data Preprocessing Taxonomy. The Colors Distinguish the Different Categories (Sub-categories Inclusive) for Improved Readability.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

23

Fig. 5. Impact of Normalization Techniques on Features’ Distribution and Scale.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

24

Fig. 6. Impact of Normalization Techniques on Features’ Distribution and Scale.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

25

Fig. 7. Impact of normalization techniques on the prediction accuracy.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

26

Fig. 8. Estimated Imputations of Missing Data of the Tested Techniques.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

27

Fig. 9. Impact of Missing Data Imputation Techniques on Prediction Accuracy.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

28

Feature Extraction Techniques: We surveyed and tested two pop-
ular FE techniques that can be generalized and applied on a wide range
of data including IoT data. The feature extraction techniques are sum-
marized in Table 10.

Principle Component Analysis (PCA) is a linear feature extraction
method that transforms correlated features to uncorrelated orthogonal
vectors called Principle Components. It reduces the data into a lower
dimensional linear subspace by replacing the original features that may
consist of redundancies with new but fewer features that adequately
summarize information contained in the original feature space [162].

Hence PCA uncovers low dimensional patterns that can be used to build
better models. The first step of PCA is centering the data matrix X rep-
resenting the multi-dimensional feature space using the mean matrix to
obtain a mean centered data matrix B. This is followed by computing
either the singular value decomposition (SVD) of B to obtain the load-
ings and scores or Eigen decomposition of the covariance matrix BTB to
obtain the eigen values and vectors. Both decomposition approaches
provide the same principle components [19]. The decomposition sum-
marizes the statistical variations of the dataset at new axes or directions.
The newly derived axes are called Principle Components (PCs) and are

Fig. 10. Outliers Detected by the Different Techniques Tested.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

29

Fig. 11. Outlier Detection Techniques’ Impact on Prediction Accuracy.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

30

equal to the number of features in the dataset. The PCs are ordered based
on their magnitude with the first PC having the maximum variance and
thus encapsulates most of the information in the data. Dimensionality
reduction is possible with minimum loss of information by choosing the
first n principle components as they maximize variation and better
separate the data. The final step involves projecting the data into the
lower dimensionality space, which can then be used as input for ML and
DL models [4,19,162]. PCA, however, is computationally expensive and
difficult to perform on data streams [162]. It is also sensitive to feature
scales and outliers and thus normalization and outlier removal should be
prerequisite steps [4,19,162]. For such reasons, applying PCA on sensor
data should be periodically performed centrally to capture changes in
patterns of multiple sensor data.

Linear Discriminant Analysis (LDA) is a Gaussian maximum likeli-
hood classification used as a feature extraction technique. It creates new
linear axes from exiting features that maximize the separability of the
different classes. This makes LDA a supervised technique where the
predictors are continuous and the response variable is categorical with
two or multiple categories (i.e., classes). The algorithm searches for a
vector in the underlying space that best discriminates between the
different categories and creates a linear combination of features that
yields the maximum mean difference between the classes and minimum
variation within each class [135,163]. Details of LDA algorithm are
presented in Table 10. LDA assumes that the underlying distribution of
each class is Gaussian and that the classes have the same covariance.
Quadratic Discriminant Analysis is a variation of LDA that allows for
different feature covariance matrices for different classes thus producing
quadratic separation axes [201]. In [63], authors proposed a fast in-
cremental LDA for feature extraction that can be deployed for streaming
data, which can be more ideal for IoT applications. Authors of [135]
concluded from their empirical evaluation that PCA can outperform LDA

in cases where the number of instances for each class value are small and
when the training data do not uniformly sample the underlying distri-
bution. LDA, however, is applicable on supervised problems where the
response variable is categorical.

Other feature extraction techniques include Convolutional Auto-
Encoders for non-linear dimensionality reduction [136], Gradient Di-
rection Histogram (HOG) [32] and Speeded-Up Robust Features (SURF)
[8], as image feature descriptors.

In [184], the feasibility of distributing LDA to IoT components was
demonstrated. Using the training data, we computed the linear dis-
criminants matrix of the new subspace. The matrix was then distributed
to the edge and multiplied with new data to transform them onto the
new subspace. Our empirical results demonstrated the feasibility and
efficiency of distributing the linear discriminants after training and
highlighted significant improvement in the consumption of resources
including energy. Several examples [15,196,198] in literature distribute
PCA using edge computing or parallel computing to reduce the dimen-
sionality of data. These solutions either partly or completely train PCA
on partitions of data streams. In [196,198], the results (local parame-
ters) from distributed devices are aggregated into a global PCA model in
a central system.

Experimental Results: We kept our experiments consistent with the
feature selection experiments by using the top five features extracted by
each tested technique. The first five principle components extracted by
PCA explained approximately 93–94% of the total variance. Training
with features extracted by PCA produced a less accurate model
compared to the tested feature selection techniques and compared to
using all 14 features (see Figs. 15 for comparison). LDA required using a
discretization technique to transform the continuous response variable
CO to a categorical format. We used equal-width binning to discretize
the response variable CO into 10 categories. The predictors were kept as

Fig. 12. Intervals and Bins Generated From the Tested Discretization Techniques.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

31

continuous variables as required by the LDA algorithm. We used the top
five LDA extracted features to train an LSTM model. The produced
model has superior accuracy compared to the rest of the feature
reduction techniques tested. We attribute the significant variation in
accuracy between LDA and PCA to the fact that the former is supervised
and uses summarized information from the response variable in deter-
mining the new feature space. The results of our feature extraction test
are presented in Figs. 16.

Data compression

The amounts of data generated by edge devices is growing rapidly.
While this development is one of the major enablers of data-intensive
value extraction techniques such as Machine Learning using Deep
Neural Networks, which rely on vast amounts of data for creating highly
complex models, it also stresses the computing and communication
infrastructure. At the edge, available storage is typically smaller than at
central utilities, and transmission to these may be costly and slow [159].
At central utilities, while storage capacity is larger, usually the data from
many edge devices is collocated. Compressing sensor data can alleviate
the storage bottlenecks occurring at the edge and at central utilities as
well as reduce the cost and duration of data transmission [6,82]. While
the goal of data compression is always to find a smaller representation of
data, different families of techniques rely on different paradigms for data
compression. In the following, we will differentiate such techniques
along two major dimensions. The first of these dimensions is the pro-
cessing paradigm: On the one hand, techniques that compress via mul-
tiple passes over the data, and on the other hand stream compression
techniques that compress data in a single pass. The former allows for
greater compression, while the latter’s greedy nature enables high data

throughput and the processing of unbounded data streams even on
low-powered devices. A second main divider is the faithfulness of the
compression; one may differentiate between lossless and lossy
compression techniques. Lossless compression allows an identical
reconstruction of the original data from the compressed representation,
while lossy compression leads to strictly smaller data volumes while at
most allowing guarantees on the deviations between the original and
reconstructed data. We will focus on general techniques suitable for
compressing sensor data in the form of numerical multivariate
time-series data, to present compression tools viable in a wide range of
scenarios (in contrast to more data-specific techniques such as for
example image [93], video [147], or LiDAR data [94] compression).

Presentation of compression techniques

Multi-pass & lossless. In the first class of techniques, we regard multi-
pass lossless techniques. An early variant is presented by the DEFLATE
algorithm [39] (see also Table 11), that is implemented for example in
the gzip file format. Using a general dictionary-based compression
scheme (e.g., a mapping from symbols between the raw and the com-
pressed data representation that matches the most frequent raw symbols
to the smallest representation), DEFLATE can compress arbitrary types
of data, including numerical time-series data (as evaluated in [82]).
However, creating the necessary dictionary requires an additional pass
over the data. Google’s Brotli [2] is a more recent compression algo-
rithm that expands on DEFLATE’s compression paradigm. While opti-
mized for web page compression, Brotli is capable of general-purpose
compression, and its use of a predetermined static dictionary is benefi-
cial for shorter sequences of data and lends the compression scheme
more to the streaming paradigm. Facebook’s Zstandard [30] dictionary

Fig. 13. Discretization Techniques Impact on Prediction Accuracy.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

32

compression algorithm further emphasizes static dictionaries by
including support for training data-specific dictionaries on provided
example files, thus allowing to tailor to specific data types before
deployment for example at an edge device.

Single-pass & lossless. For the compression of continuously-valued time-
series, dictionary-based approaches that rely on the frequency of sym-
bols can be disadvantaged. A class of compression algorithms better
adapted to this scenario is that of delta encoders, which losslessly encode
the series of differences of data in a single pass. One variant is base-delta
encoding, presented in [154], which encodes values as their distance
from a base value. In [153], this idea was used to introduce an online
compression algorithm specifically suited for increasing the throughput
in data streaming systems.

Lindstrom and Isenburg present a compression scheme suitable for
variable-precision floating point and integer data [121] that calculates
the bitwise XOR of a value with previous series values, and provides
competitive performance for 2D and 3D visualization data, while
Burtscher and Ratanaworabhan’s FPC algorithm, using the same idea for
double-precision floats, significantly outperforms DEFLATE-family dic-
tionary compressors in speed [20]. Facebook’s Gorilla database [155]
employs a similar scheme, specifically tailored to time-series data
compression, by using delta-of-deltas encoding for timestamps (com-
pressing 96% of timestamps in the authors’ testing to a single bit) and a
modified floating-point XOR compression scheme for the associated
values (see also Table 11). A contrasting approach is present in earlier
work for double-precision floats by Ratanaworabhan et. al. [161], where
XORing of each value is performed with a prediction for said value based

on a hash-table lookup, inspired in parts by [170].

Single-pass & lossy. The lossless compressibility of data is reversely tied
to the data’s entropy. Lossy compression, on the other hand, can achieve
arbitrary compression rates, while sacrificing precision. Several tech-
niques in the domain of lossless compression effectively reduce the
data’s dimensionality and thus enable more efficient search, while also
compressing the data volume. Discrete Fourier Transform (DFT) [36,53]
divides a time-series into a superposition of periodic functions, allowing
a decomposition of data into its main frequencies (and a large data
reduction if storing only the coefficients of leading contributions), but
suffers from the assumption of periodic data. Wavelet transforms
abandon this assumption and have partially superseded DFT by using a
different set of local decomposition functions [158]. Using specialized
compression schemes, wavelet transforms may also provide guarantees
about the faithfulness of reconstructed data [61,91]. In [65], the authors
present a wavelet-based approximation technique for continuous data
streams of time-series data, with the promise of broad applicability to
various types of signals.

A very intuitive subclass of lossy compression techniques is that of
piecewise linear functions, which encode a time-series of data points by
finding a set of linear approximations for subsequences. PAA (piecewise-
aggregate approximation) encodes a sequence of points by their average
value, thus resulting in an encoding of constant segments. In [101,210],
the authors present such an encoding scheme with a constant segment
length, enabling very efficient compression (by encoding each segment
with only one value, its average) in a single-pass fashion. However, this
approach neglects potential error bounds defined by the user of the

Fig. 14. Feature Selection Techniques’ Feature Importance Scores.

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

33

compression. [102] makes the segment length of PAA adaptive, at the
cost of requiring multiple passes over the data, but delivering segments
that minimize the reconstruction error. In [120], constant-length seg-
ments are combined with a string representation for the segment values,
where the fixed-size set of strings offers a second layer of encoding (the
resulting strings are prominently used for time-series similarity search).
PLA (piecewise-linear approximation) is a similar technique that fits line
segments of certain length and slope to subsequences of data and then
encodes the line segment parameters, while commonly ensuring that the
approximation error is bounded. A host of variations of PLA exist, e.g.,
[10,48,129], that mainly differ in how the error bound is enforced. As a
common feature, these techniques all support single-pass greedy inges-
tion of points, as only a window of past points has to be maintained (for
each subsequence). [47] furthermore uses an adaptive streaming output
protocol that can also encode singleton values (values that are not

Fig. 15. Feature Selection Techniques’ Impact on Prediction accuracy.

Fig. 16. Feature Extraction Techniques’ Impact on LSTM accuracy.

Fig. 17. RMSE achieved in LSTM experiment using compressed-decompressed
data plotted against the respective compression ratio of the compressed data
(boxplots of five experiment repetitions).

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

34

compressed) to ensure that the protocol is non-inflating, while [82]
builds on this technique to deliver an implementation that compresses
the time and value streams independently from each other.

Combined approaches. To forgo the disadvantages of single techniques,
or combine their strengths, a body of techniques exist that present a
mixtures of different compression approaches. In [12], the authors
present Sprintz, a compression scheme that combines dictionary-based
compression with delta encoding to further reduce data sizes. Their
technique is optimized for deployment on highly resource-constrained
edge devices. Similarly, in [203] the authors suggest combining PLA
with delta encoding for on-board compression of vehicular data. [6,40]
present Squeeze, which locally optimizes the prediction of the next data
point in a series by choosing among constant, linear, or quadratic fitting,
or using a binary compression scheme, and demonstrate its advantages
in edge deployment scenarios. Finally, the authors of [128] present a
middleware that chooses the optimal compression method on the edge
among a set of dictionary-based (e.g., DEFLATE) or combined (Squeeze)
techniques, relative to available CPU and network capacity as well as the
data type.

Selected evaluations
Table 11 displays a selection of compression techniques, represen-

tative of different approaches to time-series compression, in more detail:
PAA, PLA, Gorilla, and ZIP. The selection of highlighted techniques was
partly guided by the availability of source code (or ease of reproduc-
tion). For these techniques, we evaluate in the following the achievable
compression ratio (in % of original binary data volume) as well as the
achievable accuracy as measured by the RMSE when using compression
for the running use-case of LSTM-based time-series prediction, to give
pointers concerning the trade-offs these techniques introduce. After the
preprocessing of the whole dataset, the training set AirQuality[193] is
compressed and decompressed. In the case of PAA and PLA, the resulting
dataset is an approximation of the original data (due to the lossy char-
acter of the compression). Then, the LSTM is trained using the decom-
pressed data, and evaluated against the testing set (which has not
undergone compression).

Figure 17 shows the results of the experiment, with the RMSE ach-
ieved in the LSTM experiment plotted against the compression ratio
achieved by the respective technique (boxplots of five experiment rep-
etitions). Gorilla and ZIP are shown as single boxplots, as the compres-
sion achieved with these techniques is not variable. As both are lossless,
the achieved RMSE equals the one achieved on data that has not un-
dergone compression and decompression. It appears that Gorilla has
difficulties compressing the data used in this experiment, achieving a
compression ratio below 90%, while ZIP compresses the dataset to
around 50% of its original size, demonstrating the general-purpose na-
ture of the deflate algorithm used in ZIP. The authors of Gorilla [155]
demonstrate much more beneficial compression ratios on time-series
data than the one observed here, which may be an indication of the
correspondence between signal shape and achievable compression for
Gorilla. The variable compression ratios of PLA are achieved by varying
the maximum error bound, and those of PAA by varying the segment
length (see Table 11). Both compression techniques demonstrate that
any reconstruction losses from PAA and PLA do not hurt the achievable
RMSE (which is close to that of using no compression), with clearer
trade-offs for higher compression ratios. Clear comparisons between
PAA and PLA are difficult, but the graph hints that for reducing the
compression ratio from 50% to below 20% leads to a reduction in RMSE
of 70%, and scales roughly linearly in the region in-between. From this
experiment, one may choose PLA or PAA compression over ZIP for the
potential speed benefit of a single-pass technique, and choose a
compression ratio that is aligned with a target RMSE. It should be noted
here that while using lossy compression leads to factually lower RMSE, it
potentially allows the transmission and storage of larger amounts of

data, thereby potentially increasing the accuracy of a trained model and
thereby the RMSE.

Preprocessing steps governed by dependencies

It is important to highlight that dependencies between preprocessing
categories and techniques exist. As an example, outlier detection and
removal can precede data normalization such that the data mean and
variance for normalization are not distorted by artifacts. Similarly,
missing data imputation may require the data to be normalized first, in
case the imputation method is sensitive to the scale of the data. A more
detailed analysis of dependencies between different preprocessing cat-
egories and their impact can be found in [183].

In general, preprocessing can encompass any combination, including
repeated application, of individual preprocessing techniques. This
combination of preprocessing techniques can usually be expressed as a
directed acyclic graph (DAG), where nodes are individual preprocessing
steps (preprocessing tasks) and edges are the dependencies between
them. Fig. 1 shows how a series of preprocessing steps can be modeled as
a DAG, with data flowing along the arrows and nodes being pre-
processing steps or operators: First, outliers in the data are detected
using the data’s interquartile range (IQR) step 1. In step 2, the data is
normalized to the 0, 1 interval. Now, missing data is to be imputed. To
improve the performance of the imputation, in step 3 isolated missing
instances are passed to a Linear Interpolation (LI) preprocessing step,
while sequences of missing data are imputed using Expectation Maxi-
mization (EM); afterwards, the data is passed forward as a single dataset
again. In step 4, important features of the data are selected using
multiple FS techniques, including RReliefF, F-test, and NCA.

Modeling applications in this fashion as graphs of operators is a
common technique used, for example, by parallel and distributed Big
Data processing tools such as Apache Spark and Apache Flink. Viewing
preprocessing in this light allows us to leverage results, especially from
the latter field, to optimize the processing of more complex pre-
processing DAGs. As an example, step 4 in Fig. 1 may be situated in the
cloud due to the increased computational complexity, while steps 1–3
could be deployed on said edge device close to the data source. This
notion of targeted deployment of operators, e.g., to reduce processing
latencies or optimize resource usage, is widely researched in the context
of stream processing (see, e.g., [41]).

While it is not in the scope of this survey to review results from the
field of data stream processing, we want to highlight one more inter-
esting connection. As the nodes in a preprocessing graph can have non-
trivial interdependencies, it can be difficult to reason about, replicate, or
improve upon the preprocessing graph, which introduces novel chal-
lenges that may be overlooked when considering only individual pre-
processing steps. Here, the concept of data provenance may be helpful,
as it allows us to connect results from various processing steps with each
other to answer questions about why and how a result came to be. [66]
(for the stream processing engine Borealis) offers fine-grained data-level
provenance by instrumenting the individual processing steps of the
processing graph. Genealog [150] is a similar framework that delivers
fine-grained provenance in, among others, the Apache Flink stream
processing engine while incurring only a constant overhead per data
point for tracking data provenance. In addition to providing insight into
individual data transformations or the data workflow at large, data
provenance may also be employed for sophisticated selection of input
data, as demonstrated in [151]: Rewriting the preprocessing step of data
selection as a query over the input data that may involve multiple
transformations and aggregations with secondary data types and a final
filter for checking conformity to a desired attribute, provenance allows
the retrieval of exactly that input data that contributed to any result
passing the final filter. Tools like these can aid in disentangling, un-
derstanding, and improving complex preprocessing workflows, and they
underline how the adoption of a graph view of data preprocessing can
aid in improving the eventual quality of the data, but also the process of

A. Tawakuli et al.

Journal of Engineering Research xxx (xxxx) xxx

35

preprocessing itself.

Conclusion and future work

In this survey, an extensive number of preprocessing techniques were
surveyed under each category. In addition, we empirically evaluated the
impact of selected techniques on the data and on the prediction accuracy
of an LSTM network centrally trained on the respective preprocessed
data. This makes the survey a distinctive account that includes both
theoretical and empirical analysis. We expanded the scope of data pre-
processing to include traditional categories such as data cleaning and
non-traditional categories such as data compression. We also high-
lighted the importance of considering dependencies between different
preprocessing techniques and categories as they impact the performance
and functioning of the dependent techniques. The survey focuses on
preprocessing numerical time-series data, which is significantly
collected from the edge given the popularity of Internet of Things ap-
plications. Thus, a third dimension of the survey includes discussions
and examples that suggest the applicability and feasibility of deploying
preprocessing techniques to the edge and the promising impact of such
distribution. The survey is a starting point and a guide for researchers
and practitioners to address data preprocessing comprehensively,
effectively, and via a standardized and normalized approach.

Due to the depth and scope of this survey and other factors and
limitations, our experiments were restricted to one dataset and to
selected preprocessing techniques from some categories. To remove
biases and extract generalized conclusions, the empirical analysis should
be extended to other real-world datasets in future work. We recommend
selecting datasets from different domains that demonstrate different
characteristics (e.g., different distributions). Having said that, our re-
sults provide valuable insights and highlight disparities in the impact of
the different preprocessing techniques under the same category on both
the dataset and the AI algorithm consuming the data. The impact of
some categories or techniques on the data can also be generalized due to
their fixed objectives. For example, regardless of the dataset and original
feature scale, min-max scaling will always transform features to a scale
between zero and one. We also plan to extend our empirical analysis to
cover categories that were not evaluated in this survey. For example,
handling non-stationarity (changing data characteristics) in the data as a
new data preprocessing category [169]. Lastly, we identify the need to
systematically evaluate the feasibility and impact of distributing data
preprocessing techniques to the edge to be applied on IoT data early in
the dataflow.

Declaration of Competing Interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Preprocessing: Definition and Scope

We introduce an extended definition of data preprocessing based on
a holistic and modern prospective. We also present the first taxonomy of
data preprocessing based on the proposed definition:

Definition. Data preprocessing includes any operation performed on
the data, prior to information and value extraction and after data
ingestion, to improve the quality of the data and prepare it for the
consuming algorithms. The operations fall under several categories as
highlighted by the taxonomy in Fig. 4 to achieve many data quality
characteristics including accuracy, unbiased, completeness, and
traceability

Figures of the Empirical Results

We used different types of figures (e.g., plots, bar-charts, etc.),
included in the appendix, to present the impact of the preprocessing
techniques on the data (Input Quality). The figures highlight the trans-
formation of the data or outline the outcomes and diagnosis of the
techniques. We align the figures presenting the impact of the different
techniques for effective comparison and provide a baseline only when
relevant.

We also evaluated the impact of the preprocessing techniques on AI
algorithms (Output Quality), specifically LSTM networks. The perfor-
mances of the trained LSTM networks under the different preprocessing
categories are presented in two dimensional line plots of the predicted
values against the observations after preprocessing, if any was applied.
The plots represent the results of the last test performed of that partic-
ular experiment including the metric values at the top of the plot.

We present a graphical representation of our empirical results based
on the two main evaluation approaches clarified above and in the order
the category was discussed in the survey Fig. 5, 6,7,8, 9, 10, 11, 12, 13,
14, 15, 16, 17.

References

[1] D. Adhikari, W. Jiang, J. Zhan, Z. He, D.B. Rawat, U. Aickelin, H.A. Khorshidi,
A comprehensive survey on imputation of missing data in internet of things, ACM
Comput. Surv. (2022) (Just Accepted).

[2] J. Alakuijala, A. Farruggia, P. Ferragina, E. Kliuchnikov, R. Obryk, Z. Szabadka,
L. Vandevenne, Brotli: A general-purpose data compressor, ACM Trans. Inf. Syst.
(TOIS) 37 (1) (2018) 1–30.

[3] S.-A. Alexandropoulos, S. Kotsiantis, M. Vrahatis, Data preprocessing in
predictive data mining, Knowl. Eng. Rev. 34 (2019).

[4] A.C. Alice Zheng, Feature Engineering for Machine Learning Models, O’Reilly UK
Ltd., 2018.

[5] M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS. Proceedings of the
1999 ACM SIGMOD international conference on Management of data - SIGMOD’
99, ACM Press, 1999.

[6] J. Azar, A. Makhoul, M. Barhamgi, R. Couturier, An energy efficient IoT data
compression approach for edge machine learning, Future Gener. Comput. Syst. 96
(2019) 168–175.

[7] C. Batini, C. Cappiello, C. Francalanci, A. Maurino, Methodologies for data
quality assessment and improvement, ACM Comput. Surv. 41 (3) (2009).

[8] H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Speeded-up robust features (SURF),
Comput. Vis. Image Underst. 110 (3) (2008) 346–359.

[9] R.E. Bellman, Adaptive Control Processes: A Guided Tour, Princet. Leg. Libr. 04
(2016).

[10] E. Berlin, K. Van Laerhoven, An on-line piecewise linear approximation technique
for wireless sensor networks. IEEE Local Computer Network Conference, IEEE,
2010, pp. 905–912.

[11] C.M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag New
York Inc., 2006.

[12] D. Blalock, S. Madden, J. Guttag, Sprintz: Time series compression for the internet
of things, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (3) (2018).

[13] A.L. Blum, P. Langley, Selection of relevant features and examples in machine
learning, Artif. Intell. 97 (1-2) (1997) 245–271.

[14] M.Khiops Boullé, A discretization method of continuous attributes with
guaranteed resistance to noise, in: P. Perner, A. Rosenfeld (Eds.), Machine
Learning and Data Mining in Pattern Recognition (Berlin, Heidelberg, Springer,
Berlin Heidelberg, 2003, pp. 50–64.

[15] Boutsidis, C., Woodruff, D.P., and Zhong, P. Optimal principal component
analysis in distributed and streaming models, 2015.

[16] E.P. Box George, G.C.R.G.M.J.G.M.L. Box, Time Series Analysis 5e, John Wiley &
Sons, 2015.

[17] G.E.P. Box, D.R. Cox, An analysis of transformations, J. R. Stat. Soc. Ser. B
(Methodol.) 26 (2) (1964) 211–252.

[18] Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. LOF: Identifying density-
based local outliers.In: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA, 2000), SIGMOD ’00,
Association for Computing Machinery, 93-104.

[19] S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering, Cambridge
University Press, 2019.

[20] M. Burtscher, P. Ratanaworabhan, High throughput compression of double-
precision floating-point data. 2007 Data Compression Conference (DCC’07),
IEEE, 2007, pp. 293–302.

[21] J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A new
perspective, Neurocomputing 300 (2018) 70–79.

[22] Cai, L., Wang, Z., Gao, H., Shen, D., and Ji, S. Deep adversarial learning for multi-
modality missing data completion.In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (2018).

A. Tawakuli et al.

http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref1
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref1
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref1
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref2
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref2
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref2
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref3
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref3
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref4
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref4
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref5
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref5
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref5
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref6
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref6
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref6
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref7
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref7
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref8
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref8
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref9
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref9
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref10
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref10
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref10
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref11
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref11
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref12
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref12
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref13
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref13
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref14
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref14
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref14
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref14
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref15
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref15
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref16
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref16
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref17
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref17
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref18
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref18
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref18
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref19
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref19

Journal of Engineering Research xxx (xxxx) xxx

36

[23] R.J.G.B. Campello, D. Moulavi, A. Zimek, J. Sander, Hierarchical density
estimates for data clustering, visualization, and outlier detection, ACM Trans.
Knowl. Discov. Data 10 (1) (2015) 1–51.

[24] Capes, T., Coles, P., Conkie, A., Golipour, L., Hadjitarkhani, A., Hu, Q.,
Huddleston, N., Hunt, M., Li, J., Neeracher, M., Prahallad, K., Raitio, T.,
Rasipuram, R., Townsend, G., Williamson, B., Winarsky, D., Wu, Z., and Zhang, H.
Siri on-device deep learning-guided unit selection text-to-speech system.In: Proc.
Interspeech 2017 (2017), 4011-4015.

[25] F. Castanedo, A review of data fusion techniques, Sci. World J. (2013) 1–19.
[26] S. Chakrabarti, E. Cox, E. Frank, Data Mining: Know It All, Morgan Kaufmann

Publ Inc, 2008.
[27] Z. Chang, S. Liu, X. Xiong, Z. Cai, G. Tu, A survey of recent advances in edge-

computing-powered artificial intelligence of things, IEEE Internet Things J. 8 (18)
(2021).

[28] D. Chickering, C. Meek, R. Rounthwaite, Efficient determination of dynamic split
points in a decision tree. Proceedings 2001 IEEE International Conference on Data
Mining, IEEE Comput. Soc, 2001.

[29] Coates, M. Distributed particle filters for sensor networks.2004 IPSN ’04,
Association for Computing Machinery.

[30] Collett, Y. Zstandard compression and the application/zstd media type 〈https://
tools.ietf.org/html/rfc8478〉.Accessed: 2021-03-10.

[31] S. Dai, L. Li, Z. Li, Modeling vehicle interactions via modified lstm models for
trajectory prediction, IEEE Access 7 (2019) 38287–38296.

[32] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection. 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), IEEE, 2005.

[33] D’Andrea, R., Beck, C., and Dullerud, G. Temporal discretization of spatially
distributed systems.In: Proceedings of the 38th IEEE Conference on Decision and
Control (Cat. No.99CH36304) (1999), vol. 1.

[34] B.F. Darst, K.C. Malecki, C.D. Engelman, Using recursive feature elimination in
random forest to account for correlated variables in high dimensional data, BMC
Genet. 19 (S1) (2018).

[35] J.C. Davis. Statistics and Data Analysis in Geology, 3 ed., John Wiley & Sons,
2002.

[36] Davood Rafiei, A.M. Efficient retrieval of similar time sequences using dft.In: 5th
Intl. Conf. on Foundations of Data Organizations and Algorithms(1998).

[37] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. 39 (1) (1977) 1–38.

[38] D’Este, C., Sharman, C., and Rahman, A. Distributed feature selection with big
sensor data.2014 MLSDA’14, Association for Computing Machinery.

[39] Deutsch, L.P., DEFLATE compressed data format specification version 1.3 2021
〈https://tools.ietf.org/html/rfc1951〉.Accessed: 2021-03-10.

[40] Di, S., and Cappello, F. Fast error-bounded lossy hpc data compression with sz.In:
IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(2016), 730-739.

[41] M. Dias de Assunção, A. da Silva Veith, R. Buyya, Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions, J. Netw. Comput. Appl. 103 (2018) 1–17.

[42] W. Ding, X. Jing, Z. Yan, L.T. Yang, A survey on data fusion in internet of things:
Towards secure and privacy-preserving fusion, Inf. Fusion 51 (C) (2019).

[43] Z. Ding, M. Fei, An anomaly detection approach based on isolation forest
algorithm for streaming data using sliding window, IFAC Proc. Vol. 46 (20)
(2013) 12–17.

[44] Y. Dong, C.-Y.J. Peng, Principled missing data methods for researchers,
SpringerPlus 2 (1) (2013).

[45] J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization
of continuous features. Machine Learning Proceedings 1995, Elsevier, 1995,
pp. 194–202.

[46] J. Du, M. Hu, W. Zhang, Missing data problem in the monitoring system: A
review, IEEE Sens. J. (2015).

[47] R. Duvignau, V. Gulisano, M. Papatriantafilou, V. Savic, Streaming piecewise
linear approximation for efficient data management in edge computing, Proc.
34th ACM/SIGAPP Symp. . Appl. Comput. (2019) 593–596.

[48] H. Elmeleegy, A.K. Elmagarmid, E. Cecchet, W.G. Aref, W. Zwaenepoel, Online
piece-wise linear approximation of numerical streams with precision guarantees,
Proc. VLDB Endow. 2 (1) (2009).

[49] C.K. Enders, Applied Missing Data Analysis, Guilford Publications, 2010.
[50] K.M. Engle, A. Gangopadhyay, An efficient method for discretizing continuous

attributes, Int. J. Data Warehous. Min. 6 (2) (2010) 1–21.
[51] Ertöz, L., Steinbach, M., and Kumar, V. A new shared nearest neighbor clustering

algorithm and its applications.2002.
[52] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for

discovering clusters in large spatial databases with noise, AAAI Press, 1996.
[53] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. Fast subsequence matching

in time-series databases.In: Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA, 1994), SIGMOD ’94,
Association for Computing Machinery, 419-429.

[54] C.M.D. Farias, W. Li, F.C. Delicato, L. Pirmez, A.Y. Zomaya, P.F. Pires, J.N.
D. Souza, A systematic review of shared sensor networks, ACM Comput. Surv. 48
(4) (2016).

[55] Fayyad, U.M., and Irani, K.B. Multi-interval discretization of continuous-valued
attributes for classication learning.In: International Joint Conference on Artificial
Intelligence (1993), 1022-1029.

[56] N. Fouladgar, K. Främling, A novel LSTM for multivariate time series with
massive missingness, Sensors 20 (10) (2020) 2832.

[57] Fountas, P., and Kolomvatsos, K. Ensemble based data imputation at the edge.In:
2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI) (2020).

[58] Gandhi, S., Oates, T., Boedihardjo, A., Chen, C., Lin, J., Senin, P., Frankenstein, S.,
and Wang, X. A generative model for time series discretization based on multiple
normal distributions.PIKM ’15, Association for Computing Machinery.2015.

[59] S. García, J. Luengo, F. Herrera, Data Preprocessing in Data Mining, Springer-
Verlag GmbH, 2014.

[60] S. García, J. Luengo, J.A. Sáez, V. López, F. Herrera, A survey of discretization
techniques: Taxonomy and empirical analysis in supervised learning, IEEE Trans.
Knowl. Data Eng. 25 (4) (2013).

[61] Garofalakis, M., and Gibbons, P.B. Wavelet synopses with error guarantees.In:
Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2002), SIGMOD ’02, Association for Computing
Machinery, 476-487.

[62] F.A. Gers, D. Eck, J. Schmidhuber, Applying LSTM to time series predictable
through time-window approaches. Artificial Neural Networks — ICANN 2001,
Springer, Berlin Heidelberg, 2001, pp. 669–676.

[63] Y.A. Ghassabeh, F. Rudzicz, H.A. Moghaddam, Fast incremental LDA feature
extraction, Pattern Recognit. 48 (6) (2015) 1999–2012.

[64] N. Ghosh, R. Paul, S. Maity, K. Maity, S. Saha, Fault matters: Sensor data fusion
for detection of faults using Dempster–Shafer theory of evidence in IoT-based
applications, Expert Syst. Appl. 162 (2020).

[65] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.J. Strauss, One-pass wavelet
decompositions of data streams, IEEE Trans. Knowl. data Eng. 15 (3) (2003)
541–554.

[66] Glavic, B., Sheykh Esmaili, K., Fischer, P.M., and Tatbul, N. Ariadne: Managing
fine-grained provenance on data streams.In: Proceedings of the 7th ACM
international conference on Distributed event-based systems (2013), 39-50.

[67] J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Neighbourhood
components analysis. Proceedings of the 17th International Conference on Neural
Information Processing Systems (Cambridge, MA, USA, MIT Press, 2004.

[68] L. Gonzalez-Abril, F. Cuberos, F. Velasco, J. Ortega, Ameva: An autonomous
discretization algorithm, Expert Syst. Appl. 36 (3) (2009) 5327–5332.

[69] Google.Introduction to machine learning, 2020.
[70] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber,

A novel connectionist system for unconstrained handwriting recognition, IEEE
Trans. Pattern Anal. Mach. Intell. 31 (5) (2009) 855–868.

[71] F.E. Grubbs, Procedures for detecting outlying observations in samples,
Technometrics 11 (1) (1969).

[72] A. Gupta, K.G. Mehrotra, C. Mohan, A clustering-based discretization for
supervised learning, Stat. Probab. Lett. 80 (9-10) (2010) 816–824.

[73] V. Gupta, R. Hewett, Adaptive normalization in streaming data. Proceedings of
the 2019 3rd International Conference on Big Data Research, ACM, 2019.

[74] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (2003).

[75] S.J. Hadeed, M.K. O’Rourke, J.L. Burgess, R.B. Harris, R.A. Canales, Imputation
methods for addressing missing data in short-term monitoring of air pollutants,
Sci. Total Environ. 730 (2020) 139140.

[76] Hall, M.A. Correlation-based feature selection for machine learning, 1999.
[77] J. Hamilton-Paterson, Time Series Analysis, Princeton Univers. Press, 1994.
[78] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 2011, Morgan

Kaufmann, 2012.
[79] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Elsevier LTD,

Oxford, 2017.
[80] S. Hariri, M.C. Kind, R.J. Brunner, Extended isolation forest, IEEE Trans. Knowl.

Data Eng. (2019) 1.
[81] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A.C. Koppisetty,

M. Papatriantafilou, DRIVEN: a framework for efficient data retrieval and
clustering in vehicular networks. 2019 IEEE 35th International Conference on
Data Engineering (ICDE), IEEE, 2019.

[82] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, M. Papatriantafilou, A.
C. Koppisetty, DRIVEN: A framework for efficient data retrieval and clustering in
vehicular networks, Future Gener. Comput. Syst. 107 (2020) 1–17.

[83] F. He, H. Yang, Y. Miao, R. Louis, A hybrid feature selection method based on
genetic algorithm and information gain. 2016 5th International Conference on
Computer Science and Network Technology (ICCSNT), IEEE, 2016.

[84] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, NIPS’05.
Proceedings of the 18th International Conference on Neural Information
Processing Systems (Cambridge, MA, USA, MIT Press, 2005, pp. 507–514.
NIPS’05.

[85] F. Hermans, N. Dziengel, J. Schiller, Quality estimation based data fusion in
wireless sensor networks. 2009 IEEE 6th International Conference on Mobile
Adhoc and Sensor Systems, IEEE, 2009.

[86] D.T. Hoang, H.J. Kang, A bearing fault diagnosis method using transfer learning
and Dempster–Shafer evidence theory. Proceedings of the 2019 International
Conference on Artificial Intelligence, Robotics and Control, ACM, 2019.

[87] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[88] V. Hodge, S. O’Keefe, J. Austin, Hadoop neural network for parallel and
distributed feature selection, Neural Netw. 78 (2016).

[89] S. Hong, H.S. Lynn, Accuracy of random-forest-based imputation of missing data
in the presence of non-normality, non-linearity, and interaction, BMC Med. Res.
Methodol. 20 (1) (2020).

A. Tawakuli et al.

http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref20
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref20
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref20
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref21
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref22
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref22
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref23
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref23
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref23
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref24
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref24
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref24
https://tools.ietf.org/html/rfc8478
https://tools.ietf.org/html/rfc8478
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref25
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref25
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref26
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref26
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref26
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref27
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref27
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref27
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref28
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref28
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref29
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref29
https://tools.ietf.org/html/rfc1951
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref30
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref30
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref30
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref31
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref31
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref32
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref32
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref32
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref33
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref33
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref34
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref34
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref34
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref35
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref35
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref36
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref36
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref36
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref37
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref37
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref37
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref38
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref39
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref39
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref40
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref40
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref41
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref41
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref41
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref42
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref42
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref43
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref43
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref44
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref44
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref44
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref45
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref45
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref45
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref46
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref46
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref47
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref47
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref47
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref48
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref48
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref48
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref49
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref49
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref49
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref50
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref50
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref51
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref51
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref51
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref52
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref52
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref53
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref53
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref54
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref54
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref55
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref55
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref56
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref56
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref56
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref57
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref58
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref58
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref59
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref59
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref60
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref60
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref61
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref61
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref61
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref61
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref62
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref62
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref62
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref63
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref63
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref63
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref64
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref64
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref64
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref64
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref65
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref65
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref65
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref66
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref66
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref66
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref67
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref67
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref68
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref68
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref69
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref69
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref69

Journal of Engineering Research xxx (xxxx) xxx

37

[90] W.H. Hsu, Genetic wrappers for feature selection in decision tree induction and
variable ordering in bayesian network structure learning, Inf. Sci. 163 (1-3)
(2004) 103–122.

[91] Chen, H., Li, J., and Mohapatra, P. Race: time series compression with rate
adaptivity and error bound for sensor networks.In: 2004 IEEE International
Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975)
(2004), 124-133.

[92] Y. Huang, M. Milani, F. Chiang, PACAS: Privacy-aware, data cleaning-as-a-
service. 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018.

[93] A.J. Hussain, A. Al-Fayadh, N. Radi, Image compression techniques: A survey in
lossless and lossy algorithms, Neurocomputing 300 (2018) 44–69.

[94] M. Isenburg, Laszip: lossless compression of lidar data, Photogramm. Eng. Remote
Sens. 79 (2013) 2.

[95] J.-H. Jang, J. Choi, H.W. Roh, S.J. Son, C.H. Hong, E.Y. Kim, T.Y. Kim, D. Yoon,
Deep learning approach for imputation of missing values in actigraphy data:
Algorithm development study, JMIR mHealth uHealth 8 (7) (2020).

[96] Jayaratne, M., Alahakoon, D., De Silva, D., and Yu, X. Apache spark based
distributed self-organizing map algorithm for sensor data analysis.In: IECON
2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society (2017),
8343-8349.

[97] A.R. Jones, Tails of the unexpected (2): Outing the outliers. Probability, Statistics
and Other Frightening Stuff, Routledge, 2018, pp. 392–441.

[98] A. Jovic, K. Brkic, N. Bogunovic, A review of feature selection methods with
applications. 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), IEEE,
2015.

[99] S. Julier, J. Uhlmann, A new extension of the kalman filter to nonlinear systems,
Proc. AeroSense Symp. (1997) 54–65.

[100] A. Karkouch, H. Mousannif, H.A. Moatassime, T. Noel, Data quality in internet of
things: A state-of-the-art survey, J. Netw. Comput. Appl. 73 (2016) 57–81.

[101] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for
fast similarity search in large time series databases, Knowl. Inf. Syst. 3 (3) (2001)
263–286.

[102] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. Locally adaptive
dimensionality reduction for indexing large time series databases.In: Proceedings
of the 2001 ACM SIGMOD international conference on Management of data
(2001), 151-162.

[103] R. Kerber, Chimerge: Discretization of numeric attributes, AAAI’92. Proceedings
of the Tenth National Conference on Artificial Intelligence, AAAI Press, 1992,
pp. 123–128. AAAI’92.

[104] B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor data fusion: A
review of the state-of-the-art, Inf. Fusion 14 (1) (2013).

[105] M. Khayati, A. Lerner, Z. Tymchenko, P. Cudré-Mauroux, Mind the gap, Proc.
VLDB Endow. 13 (5) (2020) 768–782.

[106] K. Kira, L.A. Rendell, The feature selection problem: Traditional methods and a
new algorithm, AAAI’92. Proceedings of the Tenth National Conference on
Artificial Intelligence, AAAI Press, 1992, pp. 129–134. AAAI’92.

[107] K. Kirchner, J. Zec, B. Delibašić, Facilitating data preprocessing by a generic
framework: a proposal for clustering, Artif. Intell. Rev. 45 (3) (2015) 271–297.

[108] T. Kohonen, The self-organizing map, Proc. IEEE 78 (9) (1990) 1464–1480.
[109] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, Data preprocessing for supervised

learning, Int. J. Comput. Sci. 1 (2006) 111–117.
[110] Krishnan, S., Franklin, M.J., Goldberg, K., Wang, J., and Wu, E. Activeclean: An

interactive data cleaning framework for modern machine learning.In:
Proceedings of the 2016 International Conference on Management of Data (New
York, NY, USA, 2016), SIGMOD ’16, Association for Computing Machinery, 2117-
2120.

[111] L. Kurgan, K. Cios, CAIM discretization algorithm, IEEE Trans. Knowl. Data Eng.
16 (2) (2004) 145–153.

[112] P. Lanzi, Fast feature selection with genetic algorithms: a filter approach.
Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC ’97), IEEE, 1997.

[113] M.G. Larson, Analysis of variance, Circulation 117 (1) (2008) 115–121.
[114] R. Leardi, R. Boggia, M. Terrile, Genetic algorithms as a strategy for feature

selection, J. Chemom. 6 (5) (1992) 267–281.
[115] C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, Detecting outliers: Do not use

standard deviation around the mean, use absolute deviation around the median,
J. Exp. Soc. Psychol. 49 (4) (2013) 764–766.

[116] H. Li, K. Ota, M. Dong, Learning IoT in edge: Deep learning for the internet of
things with edge computing, IEEE Netw. 32 (1) (2018) 96–101.

[117] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, Feature
selection: A data perspective, ACM Comput. Surv. 50 (6) (2018) 1–45.

[118] D. Lin, X. Tang, Conditional infomax learning: An integrated framework for
feature extraction and fusion. Computer Vision – ECCV 2006 (Berlin, Heidelberg,
Springer, Berlin Heidelberg, 2006, pp. 68–82.

[119] J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time series,
with implications for streaming algorithms, Data Min. Knowl. Discov. (2003) 2.

[120] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. A symbolic representation of time
series, with implications for streaming algorithms.In: Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery
(2003), 2-11.

[121] P. Lindstrom, M. Isenburg, Fast and efficient compression of floating-point data,
IEEE Trans. Vis. Comput. Graph. 12 (5) (2006) 1245–1250.

[122] R.B. Litterman, Forecasting with bayesian vector autoregressions: Five years of
experience, J. Bus. Econ. Stat. 4 (1) (1986) 25.

[123] Liu, F.T., Ting, K.M., and Zhou, Z.-H. Isolation forest.In: 2008 Eighth IEEE
International Conference on Data Mining(2008), 413-422.

[124] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection, CM Trans.
Knowl. Discov. Data 6 (1) (2012) 1–39.

[125] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining,
Springer, US, 1998.

[126] H. Liu, R. Setiono, Chi2: feature selection and discretization of numeric attributes,
in: Anon (Ed.), Proceedings of the International Conference on Tools with
Artificial Intelligence, IEEE, 1995, pp. 388–391.

[127] Y. Liu, T. Dillon, W. Yu, W. Rahayu, F. Mostafa, Missing value imputation for
industrial IoT sensor data with large gaps, IEEE Internet Things J. 7 (8) (2020)
6855–6867.

[128] Lu, T., Xia, W., Zou, X., and Xia, Q. Adaptively compressing IoT data on the
resource-constrained edge.In: 3rd {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 20) (2020).

[129] G. Luo, K. Yi, S.-W. Cheng, Z. Li, W. Fan, C. He, Y. Mu, Piecewise linear
approximation of streaming time series data with max-error guarantees. 2015
IEEE 31st international conference on data engineering, IEEE,, 2015.

[130] J. Ma, J.C. Cheng, F. Jiang, W. Chen, M. Wang, C. Zhai, A bi-directional missing
data imputation scheme based on lstm and transfer learning for building energy
data, Energy Build. 216 (2020) 109941.

[131] S.T. Mai, I. Assent, M. Storgaard, AnyDBC. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2016.

[132] Mao, Y., Zhang, Z., and Fan, D. Hybrid feature selection based on improved
genetic algorithm for stock prediction.In: 2016 6th International Conference on
Digital Home (ICDH) (2016), IEEE.

[133] Märgner, V., and Abed, H.E.ICDAR 2009 arabic handwriting recognition
competition.In: 2009 10th International Conference on Document Analysis and
Recognition(2009), IEEE.

[134] A.R. Martel, The detection of outliers in nondestructive integrations with the
generalized extreme studentized deviate test, Publ. Astron. Soc. Pac. (2015).

[135] A. Martinez, A. Kak, PCA versus LDA, IEEE Trans. Pattern Anal. Mach. Intell. 23
(2) (2001) 228–233.

[136] J. Masci, U. Meier, D. Cireşan, J. Schmidhuber, Stacked convolutional auto-
encoders for hierarchical feature extraction. Lecture Notes in Computer Science,
Springer, Berlin Heidelberg, 2011, pp. 52–59.

[137] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias
and fairness in machine learning, ACM Comput. Surv. 54 (6) (2021) 1–35.

[138] H.B. Mitchell, Data Fusion: Concepts and Ideas, Springer, Berlin Heidelberg,
2012.

[139] B. Mohebali, A. Tahmassebi, A.H. Gandomi, A. Meyer-Bäse, A big data inspired
preprocessing scheme for bandwidth use optimization in smart cities applications
using raspberry pi, in: F. Ahmad (Ed.), Big Data: Learning, Analytics, and
Applications, SPIE, 2019.

[140] L. Morán-Fernández, V. Bolón-Canedo, A. Alonso-Betanzos, Centralized vs.
distributed feature selection methods based on data complexity measures, Know.
-Based Syst. 117 (C) (2017).

[141] Moreno, H. The importance of data quality - good, bad or ugly, 2017.
[142] T.P. Morris, I.R. White, P. Royston, Tuning multiple imputation by predictive

mean matching and local residual draws, BMC Med. Res. Methodol. 14 (1)
(2014).

[143] K.P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press,
2012.

[144] E.F. Nakamura, A.A.F. Loureiro, A.C. Frery, Information fusion for wireless sensor
networks, ACM Comput. Surv. 39 (3) (2007) 9.

[145] J. Nystrom-Persson, G. Keeble-Gagnére, N. Zawad, Compact and evenly
distributed k-mer binning for genomic sequences, Bioinformatics 37 (17) (2021).

[146] Ogasawara, E., Martinez, L.C., de Oliveira, D., Zimbrao, G., Pap, G.L., and
Mattoso, M. Adaptive normalization: A novel data normalization approach for
non-stationary time series.In: The 2010 International Joint Conference on Neural
Networks (IJCNN) (2010), IEEE.

[147] J.-R. Ohm, G.J. Sullivan, H. Schwarz, T.K. Tan, T. Wiegand, Comparison of the
coding efficiency of video coding standards–including high efficiency video
coding (hevc), IEEE Trans. Circuits Syst. Video Technol. 22 (12) (2012)
1669–1684.

[148] Olfati-Saber, R. Distributed kalman filtering for sensor networks.In: 2007 46th
IEEE Conference on Decision and Control(2007).

[149] D.J. Olive, A resistant estimator of multivariate location and dispersion, Comput.
Stat. Data Anal. 46 (1) (2004) 93–102.

[150] D. Palyvos-Giannas, V. Gulisano, M. Papatriantafilou, Genealog: Fine-grained
data streaming provenance in cyber-physical systems, Parallel Comput. 89 (2019)
102552.

[151] D. Palyvos-Giannas, B. Havers, M. Papatriantafilou, V. Gulisano, Ananke: a
streaming framework for live forward provenance, Proc. VLDB Endow. 14 (3)
(2020) 391–403.

[152] J. Paparrizos, L. Gravano, K-shape: Efficient and accurate clustering of time series,
SIGMOD Rec. 45 (1) (2016).

[153] Pekhimenko, G., Guo, C., Jeon, M., Huang, P., and Zhou, L. Tersecades: Efficient
data compression in stream processing.In: 2018 USENIX Annual Technical
Conference(2018), 307-320.

[154] G. Pekhimenko, V. Seshadri, O. Mutlu, M.A. Kozuch, P.B. Gibbons, T.C. Mowry,
Base-delta-immediate compression: Practical data compression for on-chip
caches. 2012 21st international conference on parallel architectures and
compilation techniques (PACT), IEEE, 2012, pp. 377–388.

A. Tawakuli et al.

http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref70
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref70
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref70
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref71
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref71
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref72
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref72
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref73
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref73
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref74
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref74
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref74
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref75
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref75
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref76
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref76
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref76
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref76
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref77
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref77
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref78
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref78
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref79
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref79
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref79
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref80
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref80
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref80
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref81
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref81
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref82
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref82
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref83
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref83
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref83
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref84
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref84
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref85
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref86
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref86
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref87
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref87
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref88
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref88
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref88
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref89
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref90
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref90
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref91
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref91
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref91
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref92
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref92
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref93
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref93
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref94
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref94
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref94
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref95
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref95
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref96
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref96
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref97
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref97
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref98
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref98
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref99
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref99
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref100
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref100
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref100
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref101
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref101
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref101
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref102
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref102
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref102
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref103
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref103
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref103
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref104
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref104
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref105
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref105
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref106
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref106
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref107
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref107
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref107
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref108
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref108
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref109
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref109
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref110
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref110
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref110
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref110
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref111
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref111
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref111
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref112
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref112
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref112
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref113
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref113
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref114
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref114
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref115
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref115
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref116
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref116
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref116
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref116
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref117
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref117
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref118
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref118
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref118
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref119
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref119
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref119
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref120
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref120
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref121
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref121
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref121
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref121

Journal of Engineering Research xxx (xxxx) xxx

38

[155] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
K. Veeraraghavan, Gorilla: A fast, scalable, in-memory time series database, Proc.
VLDB Endow. 8 (12) (2015) 1816–1827.

[156] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern
Anal. Mach. Intell. 27 (8) (2005).

[157] T.D. Pigott, A review of methods for missing data, Educ. Res. Eval. 7 (4) (2001)
353–383.

[158] Popivanov, I., and Miller, R.J. Similarity search over time-series data using
wavelets.In: Proceedings 18th International Conference on Data Engineering
(2002), 212-221.

[159] Psaras, I., Ascigil, O., Rene, S., Pavlou, G., Afanasyev, A., and Zhang, L. Mobile
data repositories at the edge.In: Workshop on Hot Topics in Edge Computing
(HotEdge 18) (2018).

[160] C. Rabbath, D. Corriveau, A comparison of piecewise cubic hermite interpolating
polynomials, cubic splines and piecewise linear functions for the approximation
of projectile aerodynamics, Def. Technol. 15 (5) (2019).

[161] P. Ratanaworabhan, J. Ke, M. Burtscher, Fast lossless compression of scientific
floating-point data. Data Compression Conference (DCC’06), IEEE, 2006,
pp. 133–142.

[162] Richardson, M. Principal component analysis, 2009.
[163] Riffenburgh, R.H. Linear discriminant analysis, 1957.
[164] M. Robnik-Sikonja, I. Kononenko, An adaptation of relief for attribute estimation

in regression, ICML ’97. Proceedings of the Fourteenth International Conference
on Machine Learning (San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.,
1997, pp. 296–304. ICML ’97.

[165] M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of relieff and
rrelieff, Mach. Learn. 53 (2003).

[166] P.J. Rousseeuw, C. Croux, Alternatives to the median absolute deviation, J. Am.
Stat. Assoc. 88 (424) (1993).

[167] S. Ruan, R. Li, J. Bao, T. He, Y. Zheng, CloudTP: A cloud-based flexible trajectory
preprocessing framework. 2018 IEEE 34th International Conference on Data
Engineering (ICDE), IEEE, 2018.

[168] Rubin, D.B. Multiple imputations in sample surveys - a phenomenological
bayesian approach to nonresponse.In: Proceedings of the Survey Research
Methods Section of the American Statistical Association, 20-34.

[169] R. Salles, K. Belloze, F. Porto, P.H. Gonzalez, E. Ogasawara, Nonstationary time
series transformation methods: An experimental review, Knowl. -Based Syst. 164
(2019).

[170] Y. Sazeides, J.E. Smith, The predictability of data values. Proceedings of 30th
Annual International Symposium on Microarchitecture, IEEE, 1997, pp. 248–258.

[171] T. Schneider, Analysis of incomplete climate data: Estimation of mean values and
covariance matrices and imputation of missing values, J. Clim. (2001).

[172] B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Estimating
the support of a high-dimensional distribution, Neural Comput. 13 (7) (2001)
1443–1471.

[173] E. Schubert, J. Sander, M. Ester, H.P. Kriegel, X. Xu, DBSCAN revisited, revisited,
ACM Trans. Database Syst. 42 (3) (2017) 1–21.

[174] Seltman, H.J. One-way ANOVA 2018, ch. Chapter 7.
[175] Shafer, G. Dempster-shafer theory.〈http://www.glennshafer.com/assets/downloa

ds/articles/article48.pdf〉 (2002).
[176] W. Song, C. Gao, Y. Zhao, Y. Zhao, A time series data filling method based on

LSTM–taking the stem moisture as an example, Sensors 20 (18) (2020) 5045.
[177] C. Stachniss, Particle filters for robot navigation, Found. Trends Robot. 3 (4)

(2012) 211–282.
[178] Staudemeyer, R.C., and Morris, E.R. Understanding lstm – a tutorial into long

short-term memory recurrent neural networks.2019.
[179] D.J. Stekhoven, P. Buhlmann, MissForest–non-parametric missing value

imputation for mixed-type data, Bioinformatics 28 (1) (2011) 112–118.
[180] Sterne, J.A.C., White, I.R., Carlin, J.B., Spratt, M., Royston, P., Kenward, M.G.,

Wood, A.M., and Carpenter, J.R. Multiple imputation for missing data in
epidemiological and clinical research: potential and pitfalls.2009.

[181] P. Tadić, Ž. Durović, Particle filtering for sensor fault diagnosis and identification
in nonlinear plants, J. Process Control 24 (4) (2014) 401–409.

[182] Talebi, S.P., and Werner, S. Distributed kalman filtering: Consensus, diffusion,
and mixed.In: 2018 IEEE Conference on Control Technology and Applications
(CCTA) (2018).

[183] Tawakuli, A. Transforming Data Preprocessing: A Holistic, Normalized and
Distributed Approach.PhD thesis, 2022.

[184] Tawakuli, A., Kaiser, D., and Engel, T. Modern data preprocessing is holistic,
normalized and distributed.2022.

[185] A. Tawakuli, D. Kaiser, T. Engel, Synchronized preprocessing of sensor data. 2020
IEEE International Conference on Big Data (Big Data), 2020, pp. 3522–3531.

[186] A. Tawakuli, D. Kaiser, T. Engel, Experience: Differentiating between isolated and
sequence missing data, ACM J. Data Inf. Qual. 14 (3) (2022).

[187] D.M. Tax, R.P. Duin, Support vector data description, Mach. Learn. 54 (1) (2004)
45–66.

[188] H.Y. Teh, A.W. Kempa-Liehr, K.I.-K. Wang, Sensor data quality: a systematic
review, J. Big Data 7 (1) (2020).

[189] C.-J. Tsai, C.-I. Lee, W.-P. Yang, A discretization algorithm based on class-
attribute contingency coefficient, Inf. Sci. 178 (3) (2008) 714–731.

[190] R.J. Urbanowicz, M. Meeker, W.L. Cava, R.S. Olson, J.H. Moore, Relief-based
feature selection: Introduction and review, J. Biomed. Inform. 85 (2018)
189–203.

[191] Vannucci, M., and Colla, V. Meaningful discretization of continuous features for
association rules mining by means of a som.In: Proceedings12th European
Symposium on Artificial Neural Networks ESANN2004 (2004).

[192] C. Velasco-Gallego, I. Lazakis, Real-time data-driven missing data imputation for
short-term sensor data of marine systems. a comparative study, Ocean Eng. 218
(2020) 108261.

[193] S.D. Vito, E. Massera, M. Piga, L. Martinotto, G.D. Francia, On field calibration of
an electronic nose for benzene estimation in an urban pollution monitoring
scenario, Sens. Actuators B: Chem. 129 (2) (2008).

[194] Wan, E., and Merwe, R.V.D. The unscented Kalman filter for nonlinear estimation.
In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373) (2000), IEEE.

[195] C. Wang, J. Caja, E. Gómez, Comparison of methods for outlier identification in
surface characterization, Measurement 117 (2018) 312–325.

[196] Wang, L. Research on distributed parallel dimensionality reduction algorithm
based on pca algorithm.In: 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC)(2019).

[197] T. Wang, H. Ke, A. Jolfaei, S. Wen, M.S. Haghighi, S. Huang, Missing value filling
based on the collaboration of cloud and edge in artificial intelligence of things,
IEEE Trans. Ind. Inform. 18 (8) (2022).

[198] Wang, X., and Chen, J. Distributed principal component analysis based on
randomized low-rank approximation.In: 2020 IEEE International Conference on
Signal Processing, Communications and Computing (ICSPCC)(2020).

[199] Z.-M. Wang, G.-H. Song, C. Gao, An isolation-based distributed outlier detection
framework using nearest neighbor ensembles for wireless sensor networks, IEEE
Access 7 (2019).

[200] Wu, H., Siegel, M., Stiefelhagen, R., and Yang, J. Sensor fusion using dempster-
shafer theory [for context-aware HCI].In: Proceedings of the 19th IEEE
Instrumentation and Measurement Technology Conference (2002), IEEE.

[201] W. Wu, Y. Mallet, B. Walczak, W. Penninckx, D. Massart, S. Heuerding, F. Erni,
Comparison of regularized discriminant analysis linear discriminant analysis and
quadratic discriminant analysis applied to NIR data, Anal. Chim. Acta 329 (3)
(1996) 257–265.

[202] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, K. Łukasz,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
J. Dean, Google’s neural machine translation system: Bridging the gap between
human and machine translation, CoRR. abs/1609 08144 (2016).

[203] Xing, R. The Compression of IoT operational data time series in vehicle embedded
systems. PhD thesis, 2018.

[204] B. Xue, M. Zhang, W.N. Browne, Particle swarm optimisation for feature selection
in classification: Novel initialisation and updating mechanisms, Appl. Soft
Comput. 18 (2014) 261–276.

[205] Yan, Y., Cao, L., and Rundensteiner, E.A. Scalable top-n local outlier detection.In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2017), ACM.

[206] Yang, H.H., and Moody, J. Feature selection based on joint mutual information.In:
In Proceedings of International ICSC Symposium on Advances in Intelligent Data
Analysis (1999), 22-25.

[207] Yang, K., Kpotufe, S., and Feamster, N. An efficient one-class svm for anomaly
detection in the internet of things.

[208] K. Yang, T. Xing, Y. Liu, Z. Li, X. Gong, X. Chen, D. Fang, cDeepArch: A compact
deep neural network architecture for mobile sensing, IEEE/ACM Trans. Netw. 27
(5) (2019) 2043–2055.

[209] W. Yang, K. Wang, W. Zuo, Neighborhood component feature selection for high-
dimensional data, J. Comput. 7 (1) (2012).

[210] Yi, B.-K., and Faloutsos, C. Fast time sequence indexing for arbitrary lp norms.In:
Proceedings of the 26th International Conference on Very Large Data Bases (San
Francisco, CA, USA, 2000), VLDB ’00, Morgan Kaufmann Publishers Inc.

[211] Zahedi, S., Szczodrak, M., Ji, P., Mylaraswamy, D., Srivastava, M., and Young, R.
Tiered architecture for on-line detection, isolation and repair of faults in wireless
sensor networks.In: MILCOM 2008 - 2008 IEEE Military Communications
Conference (2008), IEEE.

[212] Y. Zhang, N. Meratnia, P.J. Havinga, Distributed online outlier detection in
wireless sensor networks using ellipsoidal support vector machine, Ad Hoc Netw.
11 (3) (2013) 1062–1074.

[213] Zhao, Z., Anand, R., and Wang, M. Maximum relevance and minimum
redundancy feature selection methods for a marketing machine learning platform.
In: 2019 IEEE International Conference on Data Science and Advanced Analytics
(DSAA) (2019), IEEE.

[214] X. Zheng, M. Wang, J. Ordieres-Meré, Comparison of data preprocessing
approaches for applying deep learning to human activity recognition in the
context of industry 4.0, Sensors 18 (7) (2018) 2146.

[215] Zhou, J., and Huang, Z. Recover missing sensor data with iterative imputing
network.

[216] Zhou, Z., Wang, Y., and Li, M. Feature selection method based on hybrid SA-GA
and random forests.In: 2020 International Conference on Computing and Data
Science (CDS)(2020), IEEE.

[217] Zhu, M., and Shi, H. A novel support vector machine algorithm for missing data.
In: Proceedings of the 2nd International Conference on Innovation in Artificial
Intelligence - ICIAI ’18 (2018), ACM Press.

[218] R. Zhu, T. Yu, Z. Tan, W. Du, L. Zhao, J. Li, X. Xia, Ptaod: A novel framework for
supporting approximate outlier detection over streaming data for edge
computing, IEEE Access 8 (2020).

A. Tawakuli et al.

http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref122
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref122
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref122
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref123
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref123
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref123
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref124
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref124
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref125
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref125
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref125
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref126
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref126
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref126
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref127
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref127
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref127
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref127
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref128
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref128
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref129
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref129
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref130
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref130
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref130
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref131
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref131
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref131
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref132
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref132
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref133
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref133
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref134
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref134
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref134
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref135
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref135
http://www.glennshafer.com/assets/downloads/articles/article48.pdf
http://www.glennshafer.com/assets/downloads/articles/article48.pdf
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref136
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref136
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref137
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref137
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref138
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref138
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref139
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref139
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref140
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref140
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref141
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref141
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref142
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref142
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref143
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref143
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref144
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref144
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref145
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref145
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref145
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref146
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref146
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref146
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref147
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref147
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref147
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref148
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref148
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref149
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref149
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref149
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref150
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref150
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref150
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref151
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref151
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref151
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref151
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref152
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref152
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref152
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref152
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref152
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref152
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref153
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref153
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref153
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref154
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref154
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref154
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref155
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref155
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref156
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref156
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref156
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref157
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref157
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref157
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref158
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref158
http://refhub.elsevier.com/S2307-1877(24)00045-2/sbref158

	Survey:Time-series data preprocessing: A survey and an empirical analysis
	Introduction
	Characteristics of data quality
	Dataset and experimental details
	The dataset
	Standardized preprocessing of the dataset across all experiments
	Empirical evaluation methods and metrics

	Data preprocessing
	Normalization
	Data cleaning
	Missing data impact
	Outliers impact

	Sensor fusion
	Feature engineering
	Discretization definition
	Feature reduction definition

	Data compression
	Presentation of compression techniques
	Multi-pass & lossless
	Single-pass & lossless
	Single-pass & lossy
	Combined approaches

	Selected evaluations

	Preprocessing steps governed by dependencies
	Conclusion and future work
	Declaration of Competing Interests
	Data Preprocessing: Definition and Scope
	Figures of the Empirical Results
	References

