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Abstract— The development of advanced prosthetic devices that 

can be seamlessly used during an individual's daily life remains a 

significant challenge in the field of rehabilitation engineering. This 

study compares the performance of deep learning architectures to 

shallow networks in decoding motor intent for prosthetic control 

using electromyography (EMG) signals. Four neural network 

architectures, including a feedforward neural network with one 

hidden layer, a feedforward neural network with multiple hidden 

layers, a temporal convolutional network, and a convolutional 

neural network with squeeze-and-excitation operations were 

evaluated in real-time, human-in-the-loop experiments with able-

bodied participants and an individual with an amputation. Our 

results demonstrate that deep learning architectures outperform 

shallow networks in decoding motor intent, with representation 

learning effectively extracting underlying motor control 

information from EMG signals. Furthermore, the observed 

performance improvements by using deep neural networks were 

consistent across both able-bodied and amputee participants. By 

employing deep neural networks instead of a shallow network, 

more reliable and precise control of a prosthesis can be achieved, 

which has the potential to significantly enhance prosthetic 

functionality and improve the quality of life for individuals with 

amputations. 

 
Index Terms— deep learning, myoelectric, pattern recognition, 

prostheses, prosthetics, simultaneous control.  

 

I. INTRODUCTION 

HE loss of a limb can significantly impact an individual's 

quality of life by making even basic daily activities 

challenging. Prosthetic limbs have the potential to restore 

some function after an amputation, thereby facilitating 

navigation through everyday tasks. 

A prevalent method for controlling the joints of a prosthetic 

arm involves interpreting the electromyography (EMG) signals 

from the remnant muscles after amputation. The development 

of such interpretation algorithms to decode the motor intent 

from EMG signals has been an active area of research for 

several years: Standard machine learning algorithms such as 
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Linear Discriminant Analysis (LDA), Support Vector 

Machines (SVM), and Multi-Layer Perceptron (a subset of feed 

forward neural networks or FFNN), have been successfully 

employed to control (virtual) myoelectric prostheses [1]–[7].  

Deep learning, a more recent development in machine 

learning, utilizes neural networks with multiple layers to learn 

hierarchical representations of complex data and thereby solve 

pattern recognition and decision-making tasks. Whereas this 

approach often yields superior predictive accuracy compared to 

standard machine learning, it demands significantly more data, 

involves greater computational complexity, and necessitates 

careful hyperparameter tuning. Despite these challenges, deep 

learning-based neural networks have been remarkably 

successful in many applications, thus recent studies have begun 

exploring whether deep learning could enhance the prosthetic 

control performance of standard machine learning algorithms. 

For instance, Wand et al. [8], demonstrated that FFNNs, 

particularly those with multiple hidden layers, exhibited higher 

offline performance compared to the LDA approach. 

One advantage of certain deep learning network architectures 

like Convolutional Neural Networks (CNNs) over standard 

machine learning algorithms is the elimination of feature-

engineering reliance. Feature-engineering in the field of 

myoelectric control involves transforming raw EMG signals 

into lower-dimensionality features, reducing complexity and 

computational requirements. CNNs are inherently designed to 

extract meaningful features from raw data, a process known as 

representation learning. The absence of hand-crafted features 

could potentially allow networks to discover better data 

representations than those based on expert knowledge, as has 

occurred in fields such as image recognition [9], natural 

language processing [10], and speech recognition [11]. Several 

recent studies have shown that CNNs can effectively extract 

underlying motor control information from EMG signals in 

both offline data sets [12]–[14] and real-time control scenarios 

[15]. Combining CNNs feature-extracting architectures with 

other network modules (e.g., Recurrent Neural Networks 

(RNN) [16], Long Short-Term Memory networks (LSTM) [17], 

[18], or Temporal Convolutional Networks (TCN) [19], [20]) 
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has resulted in even higher offline movement decoding 

performance. 

Neural networks hold another advantage over standard 

machine learning algorithms for prosthetic control: their 

inherent capability for simultaneous classification [1]. This 

means that multiple joints can be active at once, rather than just 

one at a time. When using a prosthetic hand with individually 

actuated fingers to perform common grasp patterns [21], 

simultaneous classification becomes crucial, as closing fingers 

sequentially rather than simultaneously to grasp an object is 

slow, unintuitive, and frustrating.  

In this study, we further explored deep neural networks for 

simultaneous prosthetic control. We evaluated the real-time, 

human-in-the-loop performance of four neural networks: a 

single hidden layer FFNN, a multi-hidden layer FFNN, a TCN, 

and a CNN with channel attention by Squeeze and Excitation 

(SE) operations (CNN-SE). A CNN-SE architecture was 

selected because it demonstrated significant improvement over 

several of the state-of-the-art CNNs [22] and promising results 

in bio-signal classification tasks (i.e., electrocardiogram [23], 

[24] and electroencephalogram [25], [26]), and recently also for 

offline EMG gesture recognition [27], [28]. The choice of the 

other three networks allowed us to investigate if the promising 

offline results of increasing the number of hidden layers in 

FFNNs [8] and the reportedly high performance of TCN’s [19], 
[20] would translate to an online control scenario.  

Our results indicated that deep learning architectures 

outperform shallow networks in decoding motor intent. All 

findings were obtained during human-in-the-loop experiments, 

i.e., the participants received visual feedback about the current 

prediction in real-time. This allowed them to adjust their muscle 

contractions to influence the next prediction. This step is crucial 

because offline algorithm performance - metrics based on 

algorithms trained and tested solely on prerecorded data - may 

not necessarily translate to effective real-time prosthesis control 

[3]. We further observed generalizable network performance in 

simultaneous control over three hand and wrist joints and 

simultaneous control over three fingers. Finally, we also 

observed a trend of improved motor intent decoding 

performance with the participant with amputation when using 

deep neural networks compared to a shallow network. These 

findings indicate a promising potential of utilizing such 

approaches for real-world prosthetic use. 

 

II. METHODS 

A. Study design  

This study investigated if the use of deep neural network 

architectures can lead to a more accurate decoding of motor 

intent in the context of prosthetic control. 

The main study objective was to compare different deep 

neural networks to assess their real-time performance (as 

measured by the Motion Test) in decoding individual and 

simultaneous motor intent for controlling a virtual prosthetic 

limb compared to a shallow network. 

The secondary objective was to assess if any performance 

differences between networks are generalizable and persist 

between different sets of performed movements (as assessed by 

conduction of the Motion Test using either gross movements or 

finger movements). 

The third objective was to investigate if any potential 

performance improvements between networks would translate 

from an able-bodied cohort to a participant with upper limb 

amputation. 

The study protocols were carried out in accordance with the 

declaration of Helsinki. The signed informed consent was 

obtained before conducting the experiments. The study was 

approved by the Regional Ethical Review Board in Gothenburg 

(Dnr. T688-12, Dnr. 2022-06513-01, and Dnr. 2020-04600). 

 

B. Experimental conditions 

To investigate the three different pre-specified objectives, we 

compared the performance of four different neural network 

architectures, performed on two different movement sets and 

two cohorts. 

The four neural network architectures consisted of a one-

layer feed forwarded neural network, henceforth called FFNN1, 

a six-layer feed forward neural network (FFNN6), a temporal 

convolutional network (TCN), and a convolutional neural 

network with a squeeze and excitation module (CNN-SE).  

For the first movement set (gross movements), we chose a 

commonly used set of movements [1] covering three degrees of 

freedom: hand open and close, wrist pronation and supination, 
and wrist flexion and extension. The gross movement condition 

consisted of all possible combinations of the three DoFs, 

totaling to 26 recorded movements (6, 12, and 8 active 

movements involving 1, 2, and 3 DoF, respectively). The 

second movement set (finger movements) consisted of thumb 

flexion and extension, index flexion and extension, and flexion 

and extension of a fused middle, ring, and little finger. 

Additional to the six 1-DoF movements, the finger movement 

condition consisted of a subset of all possible combinations to 

focus on common grasp patterns [21]: simultaneous flexion and 

extension of the thumb and index (pinch), simultaneous flexion 

and extension of the index and middle, ring, and little finger 

(prismatic grasp), and simultaneous flexion and extension of all 

three DoF (hand open and close). The total number of actively 

recorded movements was 12. In both conditions, EMG during 

a resting state was also recorded. 

For the able-bodied cohort, ten participants were recruited on 

a convenience sample basis (2 male/8 female, mean age 26.5 

and range 24-32) to perform the Motion Test using gross 

movements. Ten able-bodied participants were recruited on a 

convenience sample basis (6 male/4 female, mean age 28.5 and 

range 25-33) to perform the Motion Test using finger 

movements. The number of participants was chosen based on a 

power analysis assuming a 10% score increase at 0.1 standard 

deviation. 

One participant with transhumeral amputation, age 54, who 

received an implanted neuromusculoskeletal interface with 

electro-neuromuscular constructs [29] was recruited for both 

the gross and finger movement condition. This specific 

participant was recruited as the surgically created electro-

neuromuscular constructs allowed him to perform both the 

gross and finger movements. 
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C. Setup for able-bodied participants 

Eight pair of surface electrodes in a bipolar configuration 

were placed around the arm with an interelectrode distance of 2 

cm. The first pair were targeted towards extensor carpi ulnaris. 

For the gross movement condition, the other seven electrode 

pairs were equally spaced around the arm. For the finger 

movement condition, five other pairs were equally spaced 

around the forearm and two pairs were targeted towards Flexor 

pollicis longus and Extensor Indicis, respectively. Additionally, 

one electrode was placed on the Ulnar Styloid as reference.  

The EMG-signals were acquired with an in-house developed 

system [30]. Standard parameters [31] for acquiring (sampling 

rate of 1,000 Hz) and filtering (an analogue low-pass filter with 

cutoff frequency 500 Hz, and a digital butterworth high-pass 

filter with cutoff frequency of 20 Hz and a second order notch 

filter at 50 Hz) surface EMG signals were used. 

 

D. Setup for a participant with transhumeral amputation 

One participant with a transhumeral amputation who 

received an implanted neuromusculoskeletal interface [32] was 

recruited for the evaluation in potential users. The participant 

underwent a nerve transfer surgery to create myoelectric 

sources for joints lost due to the amputation [29]. Specifically, 

three native muscles and five free muscles grafts were 

reinnervated by the ulnar, median, and radial nerve, allowing 
for control of individual fingers. Instead of using Ag/AgCl 

surface electrodes, the electrodes were implanted on the 

epimysium or intramuscularly to simplify daily use of the 

prosthesis (the electrodes stay at the same place, so no daily 

retraining of the control algorithm is necessary), allow signal 

acquisition from all electro-neuromuscular constructs (the free 

muscle grafts are placed deep inside the arm, thus their signals 

are difficult to acquire with surface electrodes), and generally 

improve the acquired signals (higher signal-to-noise ration due 

to measuring closer to the signals source). Together with four 

electrodes on unreconstructed muscles, signals of a total of 12 

monopolar implanted electrodes were used.  The abutment of 

the osseointegrated implant was used as reference.  

The signals from the electrodes were acquired using the 

Artificial Limb Controller, an embedded system for controlling 

prosthetic devices [33]. The signals were sampled at 500 Hz 

(limited by the available embedded system memory) with 16-

bit resolution and online high-pass and notch filtered at 20 Hz 

and 50 Hz, respectively.  

 

E. Training dataset acquisition and preprocessing 

The participants were instructed to perform each movement 

at contraction levels of around 50-70% of their maximum 

voluntary contraction strength. Each movement was recorded 

for 5s each, repeated 6 times. The first and last 10% of each 

recording was removed to exclude the transient period of the 

contraction. Each recording was further divided into windows 

with a time length of 200 ms, using an overlap of 150 ms. The 

second and fifth recording of every movement were reserved to 

be used as test- and validation data. The remaining recordings 

represented the training dataset. Due to the data being recorded 

in windows with overlapping information, using specific 

recordings instead of a randomized split of all windows of data 

avoids having trained on data in the test and validation sets. 

Four (mean absolute value, zero crossing, slope sign changes, 

and wave form length) of the five features in the Hudgins set 

[34] were extracted channel-wise for the feed forward 

networks, whereas no features were extracted for the 

convolutional architectures. Finally, the datasets were 

normalized by z-score normalization. The normalization 

occurred channel-wise for the convolutional architectures, 

whereas feature-wise for each channel for the feed forward 

architectures. To keep the test- and validation datasets unseen, 

these were normalized using the mean- and standard deviation 

values from the training set solely. 

 

F. Neural networks 

The FFNN1 consisted of one FFNN module (see Fig. 1a), 

which contains a fully connected layer with 128 nodes, a 

dropout layer (drop out probability d = 0.1), and rectified linear 

unit (ReLU) layer.  

The FFNN6 consisted of six FFNN modules, with the same 

128 nodes in each fully connected layer and drop out 

probability of 10%.  

The TCN architecture consisted of three consecutive TCN 

modules (see Fig. 1b). The module included two 1D 

convolutions with 64 filters with a size of 8. Each convolutional 
layer was followed by layer normalization. A spatial dropout (d 

= 0.005) layer was applied after the first normalization layer. 

The module ended with a ReLU activation layer, followed by 

an addition layer to provide residual connection. The last TCN 

module applied global average pooling before its output 

module. 

The CNN-SE architecture consisted of four Conv-SE 

Modules (see Fig. 1c), with 1D convolutional filters with sizes 

of 20, 5, 3, and 3 respectively. The first CNN-SE module did 

not apply max pooling, whereas the other 3 modules had 1D 

max pooling using sizes of 5, 3, and 2, respectively. The max 

pooling was applied with a stride equal to its operational size. 

To avoid overfitting, a spatial dropout layer (d = 0.1) was used. 

Every Conv-SE module ended with a Squeeze and Excitation 

(SE) block, aiming to give attention to the feature maps. All 

convolutional layers used 64 number of filters. The last Conv-

SE module was followed by two FFNN modules (Fig. 1a) with 

128 nodes in their fully connected layers. All networks ended 

with an Output Module (Fig. 1d), with 7 neurons in its fully 

connected layer, corresponding to both directions of each of the 

3DoF movements and the “Rest” class. Since all four models 

had sigmoidal outputs in range [0,1] to allow for multi-label 

classification, a threshold of 0.85 was set consistently on all 

classes for all models. 

The number of feed forward layers in the FFNN6, CNN-SE 

and TCN were chosen based on our pre-study (see Appendix 5 

and 6). All networks were implemented and trained using 

Matlab 2021b. 

G. Model Fitting  

All models were trained offline using the Adam [34] 

optimizer with Binary Cross Entropy (BCE) as loss function. 

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2024.3371896

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



The CNN-SE and TCN both had a mini-batch size of 128, 

iterating for at most 100 epochs. Both the FFNN1 and FFNN6 

used all training samples in every batch and iterated for at most 

1,000 epochs.  The training was terminated if the validation loss 

didn’t improve for 5 consecutive iterations to prevent 

overfitting, known as early-stopping. The initial learning rate 

was 0.001 and decayed by a factor of 0.1 every third epoch for 

the CNN and TCN, whereas for the FFNN1 and FFNN6 it 

remained constant. All models further adopted L2 

regularization with its lambda hyperparameter set to 0.01. 

 

H. Motion Test 

The real time performance of the algorithms was evaluated 

through the Motion Test protocol, first introduced by Kuiken et 

al. [35]. In this test, the participants seated comfortably in front 

of a computer (see Fig. 2a) and asked to perform movements 

randomly prompted on a screen (see Fig. 2b).  

In both the gross and finger movement condition, the list of 

active movement was randomized using a uniform 

pseudorandom number generator prior to each Motion Test trial. 

A total of three consecutive Motion Test trials were performed 

for each of the four neural networks and per condition. A 

movement was considered complete if a total of 2s (40 

predictions) of the correct output was predicted within the time 

limit of 10s. Once a movement completed or reached its time 
limit, a new movement was requested. The four neural networks 

were tested in a randomized order and the participants were not 

told which of the four neural networks was in use.  

Four real-time performance metrics were calculated to assess 

the Motion Tests outcomes. The Completion Rate (as the 

percentage of completed motions), the Completion Time (as the 

time between the first correct prediction and the completion of 

the motion), the Exact Match Ratio (EMR) (the ratio of exact 

correct output vectors over all predicted output vectors), and the 

F1-score (harmonic mean of precision and recall). 

 

 

 

Fig. 2.  Motion Test setup. (A) Able-bodied participant sitting in front of 

monitor while being connected to an EMG acquisition system. The gross 

movement condition electrode configuration is depicted, with eight bipolar 
surface electrode pairs placed around the arm and one electrode placed on the 

Ulnar Styloid as reference. (B) The Motion Test interface, divided into three 

sections: the top section describes the demanded movement in text and image 

which remained static for a certain movement, the middle section shows the 

predicted movement which were updated every 50ms, and the bottom section 
shows the targets which colors changed to green if the demanded target was 

predicted. 

The EMR is calculated as follows: 

 

 
 

where ŷ denotes the predicted outputs, y the true outputs, and 

ŷ
𝑡𝑘

 and y
𝑡𝑘

 the t’th output of class k. 𝑁 denotes the total number 

of outputs. 

 

The F-1 score is defined as: 

 

𝐹1 =  2  ⋅  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
;      𝐹1 ∈ [0,1] 

 

Where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the ratio of true positives over all positive 

predicted outputs of class k and 𝑟𝑒𝑐𝑎𝑙𝑙 is the ratio of true 

positives among all instances that belong to class k. 

𝐸𝑀𝑅 =
1

𝑁
 ∑ ( ŷ

𝑡𝑘
= y

𝑡𝑘
  , ∀ 𝑘)𝑁

𝑡=1 ;    𝐸𝑀𝑅 ∈ [0,1]                           

Fig. 1. Overview of the used neural network architecture modules. a) The feed 

forward neural network (FFNN) module, used in the FFNN1 and FFNN6 
networks, and at the end of the CNN-SE network. b) The Temporal 

Convolutional Networks (TCN) module, main building block of the TCN 

architecture. c) Convolutional Squeeze and Excitation (Conv-SE) module, main 

building block of CNN-SE network, with zoom into the Squeeze and Excitation 

(SE) block that improves network generalizability by recalibrating channel-
wise feature responses by taking dependencies between channels into account. 

d) Output Module with 7 (number of classes) nodes in its fully connected layer 

and a sigmoid layer that allows for multi-label classification. Used as final 

layers in all four networks. 
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Both the Exact Match Ratio and the F1- score are metrics 

often used for multi-label classification [36] and replace the 

conventionally used accuracy in multi-class classification tasks. 

One movement might have lower completion time than another 

during the motion test, and thereby have fewer predictions to be 

compared with - which result in class imbalances. To remove 

as much bias as possible from this imbalance, the EMR is 

calculated as the macro average over the EMR of each 

demanded movement. 

A common way to extract metrics of the motion test is to only 

consider the predictions during the completion time. Thus, only 

completed movement would contribute to the evaluation 

metrics derived during this time. This practice skews the results 

as the misclassifications of the worst performing classes, i.e., 

the ones where the movements is not completed and by 

extension deteriorate prosthetic functionality the most, are 

neglected. To get a more complete understanding of the 

classifier performance, we derived the EMR and F1-Score from 

all predications made during the test, regardless of completion. 

 

I. Data analysis/ Statistics 

The Wilcxon Signed rank test was used to determine 

statistical significance (p<0.05) between the Motion Test 

outcomes of the shallow network (FFNN1) and the deep 

neural networks (FFNN6, TCN, CNN-SE) for able-bodied 
participants. 

III. RESULTS 

The result is presented in boxplots where the bottom and top 

edges indicate the 25th and 75th percentiles, respectively. 

Outliers are represented as “+”, and statistical significance 

(p<0.05) are shown by “*”. Median values are shown as a 

horizontal line across each corresponding box. 

A. Motion test outcomes from able-bodied participants 

Decoding the individual and simultaneous movements of 

seven gross movements (hand open/close, wrist pro/supination, 

wrist flexion/extension, and no movement (rest) showed that 

deep neural network architectures perform better during the 

Motion Test than shallow networks. The deep neural networks 

(FFNN6, TCN, and CNN-SE) achieved around 5% higher 

completion rates compared to the shallow network (FFNN1), 

with the CNN-SE featuring the highest completion rate, 

completing 71 out of the 78 demanded movements (see Fig. 3a 

and Appendix 1). The completion times decreased by 9-11%  

when using the deep neural network compared to the FFNN1 

(see Fig. 3b). The EMR improved by 8-12%, while the F1-score 

improved by 2-3% using the deep neural networks compared to 

the shallow network (see Fig. 3c and Fig. 3d). For individual 

movements, the shallow network performs up to 10% better in 

terms of completion rate and EMR score compared to the deep 

neural networks (see Fig. 3e-h). However, for simultaneous 

movements, the deep neural networks reach up to 30% higher 

completion rates, 22% lower completion times, 50% higher 

EMR scores, and 9% higher F1-scores (see Fig. 3e-h).  

Similar trends as in the gross movement condition were 

observed for conducting the Motion Test with individual and 
simultaneous finger movements (thumb flexion/extension, 

index flexion/extension, and middle/ring/little finger 

flexion/extension). The deep neural networks achieved up to 

17% higher completion rates and 19% lower completion times 

(see Fig. 4a, Fig. 4b, and Appendix 2). And the EMR improved 

between 17-36% and the F1-Score between 9-16% when using 

Fig. 3. Motion test outcomes of able-bodied participants (n = 10 participants) controlling simultaneous hand open/close, wrist pronation/supination, and wrist 

flexion/extension movements (n = 26 movements, 3 trials). (a)  Motion test completion rate for simultaneous gross movements where 100% indicates that all 

required movements were performed. (b) Motion test completion time (c) Exact-match-ratio and (d) F1-score for all degrees of freedom during the motion test. (e-

f) Show all metrics split up per degree of freedom (1DoF n = 6 movements, 2DoF n = 12 movements, and 3DoF n= 8 movements). 
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deep neural network architectures compared to a shallow 

network (see Fig. 4c and Fig. 4d). In the finger movement case, 

however, the shallow network was generally outperformed by 

deep neural networks during both individual (e.g., up to 17% 

higher EMR score and 13% higher F1-score) and simultaneous 

(e.g., up to 65% higher EMR score and 20% higher F1-score) 

movements (see Fig. 4e-h).  

B. Motion test outcomes from participant with amputation 

For the participant with amputation, completion rates of 34.6% 

(FFNN1), 39.7% (FFNN6), 43.6% (TCN), and 33.3% (CNN-

SE) were observed during the Motion Tests with gross 

movements (see Fig. 5a and Appendix 3). The corresponding 

completion times were: 5.4s (FFNN1), 5.8s (FFNN6), 5.0s 

(TCN), and 4.8s (CNN-SE) (see Fig. 5b). 

Fig. 4. Motion test outcomes of able-bodied participants (n = 10 participants) controlling simultaneous thumb flexion/extension, index flexion/extension, and 
middle/ring/little finger flexion/extension movements (n = 12 movements, 3 trials). (a)  Motion test completion rate for simultaneous finger movements. (b) Motion 

test completion time (c) Exact-match-ratio and (d) F1-score for all degrees of freedom during the motion test. (e-f) Show all metrics split up per degree of freedom 

(1DoF n = 6 movements, 2DoF n = 4 movements, and 3DoF n= 2 movements). 

Fig. 5. Motion test outcomes of a participant with amputation (n = 1) controlling simultaneous hand open/close, wrist pronation/supination, and wrist 

flexion/extension movements (n = 26 movements, 3 trials). (a)  Motion test completion rate for simultaneous gross movements. (b) Completion time of Motion 
Test (d) Exact-match- ratio and (d) F1-score for all degrees of freedom during the motion test. (e-f) Show all metrics split up per degree of freedom (1DoF n = 6 

movements, 2DoF n = 12 movements, and 3DoF n= 8 movements). The network architectures were tested in the following order: FFNN6, TCN, FFNN1, CNN-

SE. 
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The respective EMR and F1-scores were 0.18 and 0.45 

(FFNN1), 0.21 and 0.59 (FFNN6), 0.27 and 0.56 (TCN), and 

0.20 and 0.47 (CNN-SE) (see Fig. 5c and Fig. 5d). A 

considerable difference in completion rate and EMR score was 

observed between individual and simultaneous movements for 

all four networks (see Fig. 5e-h).  

During the Motion Test with finger movements, performed 

by the participant with amputation, completion rates increased 

between 10-17% from 80.6% (FFNN1) to 91.6% (FFNN6), 

88.9% (TCN), and 94.4% (CNN-SE) (see Fig. 6a and Appendix 

4). The corresponding completion times decreased by around 

15% from 4.0s (FFNN1) to 3.5s (FFNN6), 3.5s (TCN), and 3.4s 

(CNN-SE) (see Fig. 6b). The EMR increased by 9-14% from 

0.56 (FFNN1) to 0.64 (FFNN6), 0.61 (TCN), and 0.64 (CNN-

SE) (see Fig. 6c). The F1 scores increased by 3-8% from 0.73 

(FFNN1) to 0.75 (FFNN6), 0.78 (TCN), and 0.79 (CNN-SE) 

(see Fig. 6d). Like the previous conditions, the deep neural 

networks generally performed better, especially during 

simultaneous movements. E.g., 1DoF completion rate was 

similar for all networks, but 2DoF and 3DoF completion rate 

increased by 25% and 50%, respectively (see Fig. 6e-h) 

 

IV. DISCUSSION 

In this study, we investigated four neural network 

architectures in real-time to determine their capability of 

decoding motor intention, with the aim of finding an algorithm 

that could ultimately lead to more functional control of a 

prosthetic limb. 

The Motion Test results with able-bodied participants 

controlling simultaneous gross hand movements showed that 

deep neural networks outperformed shallow networks, 

particularly when performing simultaneous movements. The 

deep neural networks generally surpassed the FFNN1 in 

completion rate, completion time, EMR, and F1-Score. This 

could be attributed to the fact that deep networks have a higher 

capacity to learn complex representations of the input data, 

enabling them to effectively capture the dependencies between 

multiple movements. The one-layer network struggled to learn 

these dependencies, resulting in more reliable predictions for 

sequential, and only partially correct predictions for 

simultaneous movements. This is most apparent when 

comparing the changes in EMR and F1-Scores: the deep neural 

networks led to a 10% increase in EMR (only counting 

movements as correct when they were predicted exactly as 

prompted) compared to the shallow network, while the F1 score 

(taking partially correct simultaneous movements into account) 

increased by just a few percent. A possible explanation of the 

specific preference of the shallow network to predict individual 

over simultaneous movements could be due to its lack of depth 

(prohibiting it to learn hierarchical representations) and the 

lower number of learnable parameters (possibly leading to 

overfitting on the simultaneous movements). Increasing the 

number of neurons, and thereby the number of learnable 

parameters, was found to increase myoelectric decoding 

performance of shallow networks, however with diminishing 

returns for networks with over 32 neurons and no performance 

gains for networks with over 128 neurons [8]. In the same study, 

it was shown that networks with additional hidden layers 

outperform single-layer networks. This suggests that in our 

case, hierarchical learning had a stronger contribution on 

decoding performance for more complex tasks than the number 

of learnable parameters. Nevertheless, it is still possible that a 

shallow network with a more complex architectures than simply 

Fig. 6. Motion test outcomes of a participant with amputation (n = 1) controlling thumb flexion/extension, index flexion/extension, and middle/ring/little finger 

flexion/extension movements (n = 12 movements, 3 trials). (a)  Motion test completion rate for simultaneous gross movements. (b) Completion time of Motion 

Test. (c) Exact-match-ratio and (d) F1-score for all degrees of freedom during the motion test. (e-f) Show all metrics split up per degree of freedom (1DoF n = 6 
movements, 2DoF n = 4 movements, and 3DoF n= 2 movements). The network architectures were tested in the following order: TCN, FFNN6, FFNN1, CNN-

SE. 
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a fully connected layer could display high motor intent 

decoding performance, even for complex tasks, and should 

therefore be considered for future work. 

When able-bodied participants were tasked with controlling 

simultaneous finger movements, the deep neural networks also 

achieved higher Motion Test scores compared to the shallow 

network. Predicting finger movements from muscles using 

surface electrodes requires decoding signals with lower 

amplitude and more crosstalk than those from larger muscle 

groups – making it a more complex task than decoding gross 

movements. The greater difference in scores between the 

shallow and deep network architectures in the finger compared 

to the gross movement condition suggests that deep neural 

networks are remarkably more beneficial for more complex 

tasks. 

Similar trends were observed when conducting the same 

experiments with a participant with amputation. However, this 

participant achieved higher scores in finger movements 

compared to gross movements. This outcome, despite being the 

opposite of the outcome of the able-bodied group, was not 

entirely unexpected. Already during the recording of the ground 

truth data, the participant reported difficulties in reliably 

producing several of the simultaneous gross movements with 

their phantom hand. Indeed, decoding simultaneous movements 

during the Motion Test was not reliable and lead to the 
participant being frustrated. Consequently, simultaneous 

movement scores were substantially lower compared to the 

individual movement scores.  The lower performance of the 

CNN-SE, which in all other cases performed best, could be 

explained by the fact that it was tested as the last of the four 

conditions and the participant lost focus due to long 

experiments demanding movements they could not produce. 

Contrastingly, the participant demonstrated better control of 

their phantom fingers, producing reliable and repeatable signals 

for both individual and simultaneous finger movements. 

The experiments conducted in this study confirm previous 

results [12], [15], [37] that representation learning (as used in 

the TCN and CNN-SE) can extract features at least as well as 

engineered features (used in the FFNN6). Contrary to our 

expectations, representation learning did not lead to a 

distinctive performance improvement compared to the four  

engineered Hudgins features [34] used in this study and 

employed on our embedded system [33] used by patients who 

received a neuromusculoskeletal interface in daily life [29], 

[38], [39].  Thus, future experiments with larger ground truth 

dataset (to avoid potential overfitting and improve feature 

learning) and more complex tasks (decoding more intricate 

movements could potentially benefit from networks with a 

higher number of learnable parameters) will be required to 

determine if the added complexity of a network architecture 

capable of representation learning is justified. Particularly when 

deploying algorithms in self-contained prosthetic systems [29], 

[38] that must run on resource-constrained system [33], the 

considerably higher memory footprint and computational cost 

of a complex deep neural network might not be a worthwhile 

trad-off for a slightly better performance. 

Surface EMG is known to be susceptible to motion artifacts 

and electromagnetic interference, which are problems less 

frequently found with implanted electrodes, thus making the 

latter more reliable for prosthetic control in daily life [38]. 

Implanted electrodes can provide access to myoelectric sites 

that are not accessible from the surface of the skin, such as 

deeper muscles or reinnervated free muscle grafts [29], [39] and 

thus facilitate the motor decoding task. In this regard, it could 

be argued that more electrodes are generally preferred, and thus 

the use of high-density arrays [40] could improve our results. 

However, one must consider where such arrays are placed as 

natively innervated muscles will not necessarily deliver more 

information, and mixed- or hyper-reinnervated muscles 

probably require implanted solutions to overcome the 

exponential complications, e.g. electrode lift-off, of having 

several surface electrodes. 

The main limitation of this study is that only one participant 

with amputation participated in our experiments. Additionally, 

we did not assess how much human learning affected the 

motion intent decoding performance. During human-in-the-

loop experiments, and also during daily prosthetic use, people 

learn to adapt their muscle contractions and thereby their 

myoelectric signals to the network they use - which can greatly 

affect the control performance. Randomizing the network order 

reduced the confounding effect of learning in our study. 

However, the learning effect is potentially still strong enough 

for us to refrain on speculating on the contribution of the 

different deep network architectures, given their similar 
performances. More rigorous analysis of network architectures 

to, for example, evaluate if certain architectures facilitate 

human learning and thereby would lead to improved 

performance over time is thus needed. Approaches like 

incremental learning [41] or reinforcement learning [42], [43] 

which incorporating the human actively during training the 

network could further improve performance:  the network 

training would reflect the real-use environment more closely 

and incorporates human learning to fine-tune the network to 

individual preferences. An additional limitation is, that this 

study focused on decoding motion intent, without assessing 

controllability (how well a prosthesis can be controlled) or 

functionality (how much a prosthesis enhances function for 

daily life activities). Both are important metrics to consider 

when translating prosthetic technology from the laboratory to 

home-use. To improve controllability and possibly 

functionality, the networks can be fine-tuned (e.g., individual 

thresholds for each class or manual adjustment of the bias in the 

final network layer) and be supplemented by post-processing 

algorithms [44], [45]. 

The broader implications of our findings have significant 

potential to improve the field of prosthetic control and impact 

the lives of individuals with limb loss. By identifying effective 

neural network architectures for decoding motor intention, we 

can develop more advanced and user-friendly prosthetic 

devices that can restore a higher level of functionality for users. 

This, in turn, could lead to better integration of prosthetic limbs 

into daily life activities, enhancing the independence and 

overall quality of life for individuals with amputations. 

Furthermore, the insights gained from our study regarding the 

benefits of deep neural networks for decoding complex motor 

tasks might also have applications in other areas, such as 

rehabilitation robotics or brain-computer interfaces, where 
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accurate decoding of motor intent is crucial for effective 

human-machine interaction. 

V. CONCLUSION 

In this study, we established that deep learning architectures 

generally provide superior performance in decoding motor 

intent compared to shallow networks for both able-bodied 

participants and an individual with an amputation. We observed 

the biggest performances differences between deep and shallow 

networks during the complex task of decoding simultaneous 

movements. However, there are certain conditions, i.e. 

individual 1 DoF movements, where the shallow network 

performs equivalently if not better than deep networks. Our 

findings indicate that representation learning can effectively 

extract underlying motor control information from EMG 

signals to decode motor intent in real-time. By adopting deep 

neural networks as an alternative to shallow networks, a more 

reliable and precise control of a prosthesis could be achieved. 

Ultimately, this enhanced control has the potential to help 

restore some of the lost functionality resulting from amputation, 

and thus significantly improving the quality of life for affected 

individuals. 

APPENDIX 

A1 Table Overview of Motion Test result of able-bodied 

participants controlling 3 degrees of freedom gross movements. 

 

A2 Table Overview of Motion Test result of able-bodied 

participants controlling 3 degrees of freedom finger 

movements. 

 

A3 Table Overview of Motion Test result of the participant 

with amputation controlling 3 degrees of freedom gross 

movements. 

 

A4 Table Overview of Motion Test result of the participant 

with amputation controlling 3 degrees of freedom finger 

movements. The best performances per metric are highlighted 

as bold text. 

 

A5 Offline study to determine number of feed forward layers. 

 

A6 Table Overview of offline F1-scores depending on the 

number of network layers. 
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