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ABSTRACT
Industry increasingly focuses on data-driven digital twins of production lines, especially for plan-
ning, controlling and optimising applications. However, the lack of open data on manufacturing 
systems presents a challenge to the development of new data-driven strategies. To fill this gap, the 
paper aim to introduce a strategy for generating random production lines and simulating their 
behaviour, thus enabling the generation of synthetic data. So far, such data can be recorded in 
event logs or machine status format, with the latter adopted for the use cases. To do so, the 
production lines are modelled using complex network concepts, with the system’s behaviour 
simulated via an algorithm in Python. Three use cases were assessed, in order to present possible 
applications. Firstly, the stabilisation of working, starved and blocked machines was investigated 
until a steady state was reached. The system behaviour was then investigated for different model 
parameters and simulation intervals. Finally, the production bottleneck behaviour (a phenomenon 
that can harm the production capacity of manufacturing systems) was statistically studied and 
described. The authors anticipate that this artificial and parametric data benchmark will enable the 
development of data-driven techniques without prior need for a real dataset.
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1. Introduction

Recently, Industry 4.0 (I4.0) has influenced the devel-
opment of new manufacturing execution systems 
(MESs), such as digital twins (DT) (Jaskó et al. 2020). 
A new era of smart manufacturing systems based on 
cyber-physical systems is disruptive to a variety of 
aspects of traditional manufacturing companies 
(Almada-Lobo 2015). In a highly digitalised, globalised 
and volatile disrupted environment, manufacturing 
companies are seeking to become more competitive 
(Mourtzis 2021). DTs may be considered an important 
tool in addressing this challenge, as they can precisely 
represent systems changes over time.

A DT is a virtual model, synchronised to a physical 
system through real-time data, thus allowing the 
simulation and analysis of performance, behaviour 
and potential outcomes (Segovia and Garcia-Alfaro  
2022). The importance of DTs makes it essential to 
generate open datasets relating to manufacturing 

processes and to make them accessible to developers, 
researchers and students.

However, accessing manufacturing data is very diffi-
cult in the real world (Liu and Deng 2008). In other cases, 
shop floor sensors can be imprecise, representing 5–10% 
error levels (J. Li et al. 2009). This means the development 
of data-driven technologies is constrained by limited 
access to real databases within quality standards (Libes, 
Lechevalier, and Jain 2017). Accordingly, some authors 
regard the creation of representative benchmarks for 
processing data as one of the most important challenges 
in this research field (Aalst et al. 2011).

Data benchmarks consist of sample datasets and 
representative quality criteria for comparing tools 
and algorithms (Der Aalst Wil 2012b). These datasets 
can originate from different sources which come 
with associated pros and cons. The open datasets 
from real world processes TFIPM are available but 
do not usually describe production processes or 
have all the information anonymised. Another 

CONTACT Paulo Victor Lopes victorf.lopesbr@gmail.com Computer Science Division, Aeronautics Institute of Technology (ITA), Sao Jose dos Campos, 
Sao Paulo, Brazil

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 
https://doi.org/10.1080/0951192X.2024.2322981

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted 
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2024.2322981&domain=pdf&date_stamp=2024-03-12


strategy for data generation is to use lab-scale phy-
sical models for data generation. This enables the 
development of essential technologies but requires 
a lot of human resources to implement (Lugaresi, 
Valerio Alba, and Matta 2021). Thus, using simula-
tion in virtual environments is a promising way to 
make up for the lack of data access on production 
lines or in manufacturing systems (Libes, 
Lechevalier, and Jain 2017).

Simulation modelling is a popular technique for 
evaluating the design, operation and performance of 
complex systems (Friederich et al. 2022). It enables 
the modelling of current system behaviour and pre-
diction of future behaviour in order to support deci-
sions. However, these models are usually designed 
manually by simulation experts as it is a time- 
consuming task (Skoogh, Perera, and Johansson  
2012). The present authors would argue that the 
time spent modelling these systems prevents devel-
opers, researchers and students from other fields 
(such as artificial intelligence, process mining and 
production systems, engineering) from generating 
their own data and scaling up their studies of digital 
twins. This gap constitutes the research problem that 
this paper aims to help to solve. Thus, the following 
question arises: ‘How can artificial manufacturing sys-
tems be generated and simulated at scale?’

To answer the research question, the authors set 
up three requirements to ensure the solution’s usabil-
ity. Firstly, the data needs to match the digital twins’ 
data requirements, as detailed in sec:DT. Secondly, 
the process must be easy to run and user-friendly in 
a development environment. Finally, the strategy 
must be general enough to provide data representing 
not only the behaviour of a single system but of 
multiple systems with the same basic characteristics.

Consequently, the general objective of this paper is 
to develop a strategy to automatically generate pro-
duction line layouts and simulate their behaviour. The 
authors’ vision is to generate useful data for digital 
twins and enable the testing, validation and proto-
typing of data-driven algorithms. This general objec-
tive is divided into five specific aims:

(1) Conception of a flexible model for the genera-
tion of complex networks that can represent 
production systems in the most fundamental 
way; the Manufacturing Network Random 
Model (MN-RM);

(2) Development of a throughput simulation system 
capable of performing the basic operating 
dynamics of a manufacturing system; the 
Complex Manufacturing Throughput Simulation 
(CLEMATIS);

(3) Run an experimental use case with a huge 
number of systems: analyse the dynamic beha-
viour of the proposed network generation 
model under simulation;

(4) Run a theoretical use case from the perspective of 
complex networks: study the underlying mechan-
isms affecting the state of the network; and,

(5) Run a practical use case consisting of 
a probabilistic, experimental approach with prac-
tical applications: the Bottleneck Distribution 
Analysis.

To address the gap in benchmarking of manufactur-
ing systems’ open datasets, a twofold strategy is pro-
posed. Firstly, a network generation algorithm 
capable of generating randomised networks to repre-
sent a wide range of manufacturing systems. And 
secondly, a simulation strategy to simulate the net-
works that were generated. The most significant con-
tribution of this research lies in the novel generation 
of manufacturing data. This can be a valuable 
resource for those lacking enough data to develop 
data-driven digital twins.

The remainder of this paper is organised as follows. 
Section 2.1 presents the theoretical background to 
digital twins and synthetic data generation. 
Section 3 describes the approach used to solve the 
first and second objectives (complex-network model-
ling and simulation system development). Section 4 
summarises the findings of the designed model’s 
execution, characterisation and use cases; these are 
the third, fourth and fifth objectives. In Section 5 the 
results are presented and future research directions 
are proposed. Finally, Section 6 presents a summary 
of the paper’s achievements and research findings.

2. Literature review

A manufacturing process is defined as the use of one 
or more physical mechanisms to transform the shape 
or properties of a material (Chryssolouris 2006). 
Simply put, MES connects elements for sensing, deci-
sion-making and acting (Beregi et al. 2021). The MESs 
represented in a wide range of processes may be 
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considered complex manufacturing networks (Zhan, 
Qingbo, and Tingxin 2014). In Industry 4.0, a smart 
manufacturing system (SMS) is a complex physical 
system that can be broken down into multiple digital 
models. This concept evolves simulation and model-
ling capabilities, interoperability, IoT sensors, tools 
and computing infrastructure (Leng et al. 2021).

The production system behaviours and properties 
can be recorded in event logs, or machine status or 
health monitoring databases (T. Li et al. 2017). These 
databases can be used to synchronise executable 
models and real systems (Friederich et al. 2022). The 
models in question are called digital twins. This con-
text leads to an increased demand for large amounts 
of data (Cochran, Kinard, and Bi 2016).

When the digital twin concept is implemented, it 
becomes a system with a business life cycle. The key 
stages in a system’s life cycle are: concept, develop-
ment, production, utilisation, support and retirement 
(Freund 2005). A digital twin relies on data synchro-
nisation. Thus, it would require at least dummy data 
from its concept stage to understand what kind of 
analysis would be feasible and beneficial. However, 
collecting real data in all these stages is no trivial 
activity and requires a lot of resources.

Synthetic data generation is a useful and effective 
way of obtaining data. Some researchers fill this gap 
by generating data with lab-scale models or simula-
tion models (Friederich et al. 2022; Libes, Lechevalier, 
and Jain 2017; Lugaresi, Valerio Alba, and Matta 2021). 
However, there is still a need for solutions to deal with 
specific system characteristics. The proposed alterna-
tive is to approach manufacturing systems as complex 
networks and use a graph generation strategy to 
enable system creation at scale. The following sec-
tions give a literature overview of the topics of digital 
twins data synchronization and synthetic data 
generation.

2.1. Digital twins data synchronisation

Industry is increasingly focused on digital shadows 
and twins of production lines, especially in plan-
ning, controlling and optimising applications (Shao  
2021). Digital twins are suitably accurate and execu-
table virtual models of physical things or systems 
(Wright and Davidson 2020). Similarly, shop floor 
operations can be described using simulation mod-
els. These are ranked among the top three tools for 

manufacturing system decision support (Skoogh, 
Johansson, and Stahre 2012). By integrating both 
concepts into a manufacturing system context, 
a simulation model may be used as the basic digital 
model for the development of a digital twin 
(Lugaresi and Matta 2018; Shao et al. 2019; 
Kumbhar, Ng, and; Buggineni 2023).

An entity-based reference model for this represen-
tation is presented in ISO 23,247–2:2021: Automation 
systems and integration – Digital twin framework for 
manufacturing (ISO 2020). Multiple different digital 
twins can be generated for one or more physical 
objects, based on the defined system requirements. 
The twinned object is used as a basis for creating 
a digital twin. In principle, the development of 
a digital twin based on a physical object could be 
data-driven or a manual process. The latter would be 
considered a kind of manual reverse engineering pro-
cess (Tekinerdogan and Verdouw 2020).

The geometric, physical, behavioural and colla-
borative models are descriptive in nature, whereas 
the decision-making model is an intelligent, data- 
driven model (Semeraro et al. 2019). Thus, the digital 
twins are used to estimate the physical system’s 
response before it is triggered by an unexpected 
event (Schleich et al. 2017). The data that supports 
the modelling of smart factories may be categorised 
as state data, event data, or condition-monitoring 
data. All three are in a time-series format and thus 
each record consists of an observation and 
a timestamp (ts) (Friederich et al. 2021). The data 
categories are detailed below:

(1) State data: records of the operational states of 
the system’s individual assets as working, 
starved, blocked and so on (Friederich et al.  
2021);

(2) Event data: records of event information gen-
erated by the system assets (timestamps, activ-
ity IDs and workpiece/order IDs) (Lugaresi and 
Matta 2021); and

(3) Condition-monitoring data: records of relevant 
sensor data in time-series format (Friederich 
et al. 2022). In this paper, this category is 
regarded as a simply random seed that gener-
ates failures during the simulation.

It is possible to distinguish three levels of abstraction 
in the digital twin: (1) components, (2) systems and (3) 

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 3



systems of systems. In this context, components are 
bearings, systems are gearboxes and engines, while 
systems of systems are shop floors. Developing 
a digital twin requires the use of: (1) a physical entity, 
(2) a digital model of that entity, (3) a data extraction 
and communication protocol between the cyber and 
physical systems and (4) data analytics techniques 
(van Dinter, Tekinerdogan, and Raymon 2022). The 
data-driven and manual reverse engineering pro-
cesses offer distinct advantages in developing digital 
twins for manufacturing systems.

Data-driven methods can yield cost-effectiveness 
by using existing data and reducing efforts during 
a development phase. While manual reverse engi-
neering allows for more precise models, it requires 
more resources in the development phase. However, 
to select the appropriate process, it is necessary to 
consider such factors as the data availability and qual-
ity, desired level of detail, project timeline and budget 
constraints. In this paper, data is generated by the 
CLEMATIS simulation strategy, which represents the 
behaviour of the systems generated by MN-RM. This 
strategy can generate artificial dataset benchmarks 
from basic input parameters, with low computational 
costs and just a few input parameters.

2.2. Synthetic data generation

Real manufacturing data is not trivial to collect (Liu 
and Deng 2008), can present elevated error levels (J. Li 
et al. 2009) and access is often limited (Libes, 
Lechevalier, and Jain 2017). This situation constraints 
the development of new data-driven technologies for 
manufacturing, such as digital twins. In the research 
field of data-driven digital twins, some researchers 
filled this data gap with lab-scale representations 
(Friederich et al. 2022; Lugaresi, Valerio Alba, and 
Matta 2021) Also, simulations in virtual environments 
are a promising way of compensating for a lack of 
data (Libes, Lechevalier, and Jain 2017). But even so, 
building these representations can take huge effort 
and is a time-consuming task (Skoogh, Perera, and 
Johansson 2012).

The benefits of process modelling and simulating 
manufacturing systems is already well described in 
the literature (Brinksmeier et al. 2006; Tönshoff et al.  
1992). For example, applying process simulations can 
reduce production time and costs (Mohan et al. 1998). 
Software such as FEDES (Finite Element Data 

Exchange System) uses simulated manufacturing pro-
cess chains, including aeronautical engine compo-
nents (Afazov 2013), to propose a methodology for 
sequentially simulating each step in a manufacturing 
process (Paralikas, Salonitis, and Chryssolouris 2013). 
Furthermore, the application of modelling and simu-
lation techniques can assist with the decision-making 
during process planning (Rodrguez et al. 2015).

DT models are increasingly being used to improve 
the performance of complex manufacturing systems 
and can significantly enhance decision-making to 
mitigate the consequences of known bottlenecks 
(Latsou, Farsi, and Ahmet Erkoyuncu 2023). DT is 
based on data acquisition and processing and simula-
tion plays a crucial role by enabling real-time commu-
nication. However, the complexity of industrial data 
poses some challenges (Stavropoulos and Mourtzis  
2022). In the factory of the future, simulation may be 
a proven enabler throughout the manufacturing life 
cycle. Indeed, its integration with emerging technol-
ogies (in the form of digital twins) is one of the great-
est challenges of the Fourth Industrial Revolution 
(Mourtzis 2020).

Although digital twins constitute a digital technol-
ogy, various results validation steps (including expert 
insight) are required before deployment in a real- 
world environment (Mahesh, Ng, and Bandaru 2023). 
This means synthetic data is still valuable for various 
purposes (such as model validation, evaluation, data 
augmentation, input for artificial intelligence algo-
rithms, and so on) (Chan, Rabaev, and Pratama 2022; 
Pires dos Santos et al. 2019; Smith and Dickinson  
2022). For example, synthetic data and expert insights 
were used to validate DT models in high-risk, less 
digitised industries (Weerapura et al. 2023). This 
increased need for data occasioned several assess-
ments. These addressed the issues and requirements 
surrounding the construction of synthetic data gen-
erators to provide data for scientists working in 
advanced manufacturing (Buggineni 2023; Libes, 
Lechevalier, and Jain 2017). However, none of the 
assessments found a strategy for generating para-
metric production lines and simulating data produc-
tion at scale.

There has been an effort to generalise the under-
standing of manufacturing systems flexibility 
(Alexopoulos et al. 2007). Indeed, complex network 
techniques are suitable for dealing with the compli-
cated relationships within production-line processes 
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(Li et al. 2017a). The science of complex network arose 
from the necessity to understand the relationships 
between entities that traditional statistics and data 
analytics cannot handle (Wasserman and Faust  
1994). Graph theory has also been widely applied to 
the modelling of real-world complex systems 
(Duchemin and De Castro 2023). However, due to 
the high dimensionality of graphs, it has been neces-
sary to assume some structure to the data in order to 
extract useful information. Thus, random graph gen-
eration models were introduced to enable the study 
of specific network properties (Channarond 2015), 
such as the Erdös-Renyi model, scale-free networks 
(Barabási 2009), small-world networks (Watts and 
Strogatz 1998) and so on.

In the context of digital twins, data availability 
remains a significant challenge in contemporary 
scientific research. Balancing theoretical advance-
ments with practical applications is crucial. Synthetic 
data offers a valuable solution by supporting theore-
tical understanding, model validation and automatic 
simulation model generation, plus other research 
domains. This perspective underscores the comple-
mentary role of real-world and synthetic data in driv-
ing progress and innovation within the field of digital 
twins. It allows research development without the 
limitations and consequences of a real-world 
application.

3. Methodology

In an effort to provide synthetic datasets for research-
ers and developers, the methodology is divided into 
two main functions. The first is the Manufacturing 
Network Random Model (MN-RM) which represents 

an algorithm for graph generation. These graphs are 
used as input to the Complex Manufacturing 
Throughput Simulation (CLEMATIS) script. The second 
function, CLEMATIS, is a complex network strategy for 
simulation. Thus, it become possible to generate data-
bases from a series of initial parameters. Figure 1 shows 
how the methodology pipeline is organised.

We argue that the statistical study of topological 
properties, node assignment strategy and system 
behaviour are the first steps in validating MN-RM 
and CLEMATIS strategies. Consequently, three basic 
characteristics are assessed in this paper: a) the sys-
tem stabilisation, b) the impact of the failure rate on 
system function and c) the probabilistic distribution 
of bottleneck steps. To do this, the authors initially 
propose a continuous version of the CLEMATIS strat-
egy that records machine state data. This simplifica-
tion enables testing of the previous characteristics for 
long runs and an elevated number of machines or 
production steps.

The related code was structured using the Python 
programming language and igraph library (Csardi and 
Nepusz 2006) for the visual representation of graphs. 
All the libraries and programs are open source and 
free. The code used to implement this strategy is 
available in a GitHub repository.1 The concepts neces-
sary to understand the theory behind this implemen-
tation will be explained in the following subsections.

3.1. Random production line generator (MN-RM)

The MN-RM is presented as a solution for generating 
random production lines. To enable the study of the 
rich set of phenomena experienced in manufacturing 
systems, complex network concepts are applied to 

Figure 1. Methodology pipeline from the user inputs to the use cases.
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generate random systems. In this context, the produc-
tion line can be represented as a graph network, with 
the machines being the nodes and directed edges 
representing the flow of materials in the process. 
The establishment of a fully connected network is 
achieved through a two-fold strategy. Each produc-
tion step is initially assigned to a specific machine and 
then a random allocation of machines is carried out. 
This results in each machine being linked to all 
machines in the subsequent production step.

The proposed model generates networks based on 
two parameters: the total number of nodes (the total 
number of machines in the process), defined by n and 
the number of production steps, defined by s> 0. 
A production step is a point in the process with one 
or more identical machines and each machine per-
forming exactly the same task: receiving raw materials 
in one state and transforming them in a subsequent 
state. Consequently, machines within the same pro-
duction step are interchangeable and do not have 
edges between them.

The production steps are placed in ascending 
order, beginning with step 0 and ending with step 
s � 1. Every node from production step i, where 
0< i< s � 1, can receive materials from every node 
in the preceding production step i � 1 and can supply 
materials for every node in the succeeding production 
step i þ 1. Hence, the nodes in step i are fully con-
nected with those in step i � 1 and i þ 1.

Moreover, for the network to be connected from 
start to finish, the number of nodes n needs to be 
equal to, or greater than, the number of production 
steps s. If n ¼ s, every production step will have 
a single node and the manufacturing process will be 
serial, with each machine feeding the next. On the 
other hand, if n> s, some production steps will have 
more than one node. In this case, the model genera-
tor will first place one node in each production step, 
to guarantee that no production step is disconnected. 
It will then place the remaining nodes randomly, 
following a uniform distribution. The Figure 2 shows 
an example of a network generated by the model.

Once the number of nodes and number of 
production steps have defined the whole topol-
ogy of the network, the parameter alpha is calcu-
lated as 

α ¼
s
n
; (1) 

To control their relationship. At least one node needs 
to be placed in each production step, so the number 
of nodes is always equal to or greater than the num-
ber of production steps. Consequently, α is in the 
interval ð0; 1�: values close to 0 being a production 
line with parallel nodes and 1 being one with serial 
nodes.

The algorithm will accept as input a number of 
machines greater than the number of production 
steps. The parameters are arbitrarily defined by the 
user and, once defined, are fixed throughout the 
simulation. All nodes share the same parameters. 
This paper focuses on analysing the topology of the 
network, so the effect of these parameter variations 
was not assessed. Thus, the only parameters affecting 
network structure are the number of steps and num-
ber of machines.

Other important parameters for the functioning 
of the networks are the production rate of the 
nodes, their failure rate and their buffer size. The 
production rate is the amount of material a node 
can output in a single iteration. The failure rate is 
the probability of a node failing in any given itera-
tion (and encompassing all the real-world phenom-
ena that might make a machine unavailable). 
Lastly, the buffer size is the maximum quantity of 
material a machine can have in its processing 
queue.

Figure 2. Example of a production network with 20 nodes and 
10 production steps.
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3.2. Virtual production line simulator (CLEMATIS)

This section aims to present, define and justify the 
CLEMATIS simulation strategy. According to Shannon 
(Shannon 1975) simulation is ‘the process of design-
ing a model of a real system and conducting experi-
ments with this model for the purpose either of 
understanding the behaviour of the system or of 
evaluating various strategies (within the limits 
imposed by a criterion or set of criteria) for the opera-
tion of the system’. Compared to other methods of 
production analysis, such as queuing theory or static 
capacity calculations, this tool mimics the dynamics of 
manufacturing systems and thus offers a great advan-
tage (Skoogh, Johansson, and Stahre 2012).

There are different strategies for virtual simulation 
and they can be divided into numerical, script pro-
gramming languages and commercial software with 
a graphical user interface. The numerical approaches 
are made using matrix or graph operations (a com-
mon strategy is the use of Petri Nets) (Villani 2004). 
Some examples are also available in (Haustermann, 
Wagner, and Moldt 2011). Regarding simulation using 
pre-built packages in scripting programming lan-
guages, the most common strategies are SimSharp 
for C#, SimJulia for Julia, Simmer for R and Simpy for 
Python (Lünsdorf and Scherfke 2002). Regarding soft-
ware with a graphical user interface to allow detailed 
simulation of systems, the following can be high-
lighted: Rowkwel Arena (Lugaresi and Matta 2020), 
Visual Components, Enterprise Dynamics, Flexsim 
(Krenczyk 2014) and Siemens Tecnomatix Plant 
Simulation (Milde and Reinhart 2019).

These different simulation strategies have their 
pros and cons. While mathematical operations are 
much faster and have greater freedom, the complex-
ity of the concepts can make their implementation 
harder. Although commercial software is much easier 
to understand, it is computationally heavier and 
usually offers constrained communication protocols 
with other platforms. Models based on pre-built 
scripts in open-source programming languages are 
an intermediate approach, lying between these pre-
vious two. Even so, there are still lower-level lan-
guages (C, C #) and higher-level ones suitable for 
data science applications (Julia, R, Python). In this 
context, the Python language and low-level mathe-
matical implementation were chosen for their speed, 
ease of communication with other platforms and 

compatibility with statistical and process-mining 
packages. The purpose of this choice was to facilitate 
the first implementation’s passage through the bar-
rier and make the work easier for subsequent users.

The main class of CLEMATIS is divided into two 
code blocks. The first creates the following arrays: 
production rates, buffers and states. It then organises 
the list of all system nodes according to their topol-
ogy (production order) and creates the system time 
variable. From that, the second block is a for loop that 
goes through all productive nodes of each iteration. 
In these iterations, the state of the node is checked 
and, if the node is working, the entity in its buffer can 
be processed and delivered to the buffer of the next 
production step. The number of iterations is defined 
by the user at the beginning of the execution.

At this point, it is important to explain the three 
main data formats that can be recorded in 
a production line. The first is state data; this records 
the system’s operational states (working, turned off, 
starved or blocked) (Friederich et al. 2021). 
The second is the event log data; this records the 
start and end time of each activity, and can also 
include product identification and additional infor-
mation (Lugaresi and Matta 2021). The third is the 
condition monitoring data; this records relevant 
health data from a system (Friederich et al. 2022). 
CLEMATIS can be used to generate event logs or 
state data. However, in this paper, the analysis used 
only state databases. This was done to allow the 
cases to exploit the most fundamental static and 
dynamic properties of the model. The data collec-
tion strategy will be explained in the next 
paragraph.

During production, the service principle is first- 
come first-served. Then, every node in the system 
can be in three states: starved, blocked and work-
ing. Firstly, a node is starved if its buffer is empty 
and consequently, it does not have any material to 
process. Secondly, a node is blocked if all its suc-
ceeding nodes have their buffers full and are 
unable to receive new materials. Finally, a node 
that has material in its buffer and can feed at 
least one node in the next production step is said 
to be working.

Furthermore, the nodes in the first production step 
are assumed to have an infinite quantity of raw mate-
rials available to them and thus they cannot be 
starved. Also, once nodes in the final production 
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stage are completing products and not feeding any 
node in the network, there is no limit to their produc-
tion capacity. Thus, they cannot be in the blocked 
state.

In each iteration of the production process simula-
tion, the state of the nodes and quantity of material in 
their buffers is updated according to the topological 
order of the network. Additionally, in every iteration, 
a node that is working may experience failure accord-
ing to the probability defined by its failure rate. The 
failure rate requires a seed to generate random fail-
ures in the system.

4. Use cases and model characterisation

This section presents three use cases demonstrating 
model capabilities and characterisation techniques. 
The aim is to study the dynamic behaviour of the 
proposed model and how well it represents what is 
found in real-world production systems. We antici-
pate the unlocking of potential for theoretical, prac-
tical and experimental studies for digital twins and 
production line performance evaluation.

Three use cases are presented. The first consists of 
the production simulation characterisation over ran-
dom generated networks throughout a large number 
of iterations. It consists of an exploratory study of the 
network steady state, defined by the iteration num-
ber, following which the amount of starved, blocked 
and working nodes do not vary over time.

The second use case seeks to understand how the 
topology of the network affects its dynamic behaviour 
under simulation. Doing this means observing the 
distribution of working node changes with α. These 
results are then interpreted from the perspective of 
the Theory of Constraints (TOC), which defines 
a production bottleneck as ‘any resource whose capa-
city is equal to or less than the demand placed upon 
it’ (Goldratt and Cox 2016). In this case, this means the 
production bottleneck step is the one with fewer 
machines working.

The third use case relies on the TOC concepts that (i) 
every system has a constraint and (ii) that this con-
straint is an opportunity for improvement (Rahman  
1998). The TOC working principle is known as the 
Process of Ongoing Improvement (POOGI) and the 
first POOGI step is always to identify a system’s bottle-
neck (Wu, Zheng, and Shen 2020). Assuming this to be 
important, the purpose of this use case is to develop an 

analytical formulation of the probabilistic distribution 
of machines in the bottleneck step. The analytical 
results are then compared to the experimental results 
in order to validate the approach.

In the analyses, only the system’s asymptotic prop-
erties are considered. This means considering the state 
of the system after many iterations, when a proportion 
of the nodes in each state has already converged. The 
simulations are also repeated many times, with only 
the average node properties of each state being ana-
lysed. This means that specific instances of system 
state are not considered. Thus, as the number of itera-
tions increases, the choice of a specific seed does not 
change the asymptotic results.

The authors anticipate that these use cases will 
enable a basic understanding of how the framework 
can be executed and analysed. When the digital twin 
concepts are implemented, this analysis may be exe-
cuted, results compared and digital twin models vali-
dated. This comparison can be run as a model-based 
validation, properties test (Hua, Lazarova-Molnar, and 
Francis 2022) or time-series analysis (Lugaresi et al.  
2022).

4.1. Use case 1: experimental stability analysis

First, it is analysed how the distributions of nodes in 
the working, starved and blocked states change over 
time and whether the networks that are generated 
reach a steady state. We produced 30 samples of the 
network and ran each sample through 1000 itera-
tions, observing for each iteration the percentage of 

Figure 3. Percentage of nodes in the starved, blocked and work-
ing states with respect to the number of iterations.
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nodes in each state. The simulated networks have 
α ¼ 0:5, with n ¼ 500 machines distributed in 
s ¼ 250 production steps. The production rate and 
buffer size are unitary and the failure rate is 0.1.

The results are shown in Figure 3. It may be 
observed that all nodes start in the starved state, as 
no material has been produced yet and so the node 
buffers are empty. As the iterations progress, the 
fractions of nodes in the working and blocked states 
grow until they reach a steady state. For the working 
nodes, it is visible that after iteration 400 their quan-
tities remain stable, comprising fewer than 40% of all 
the nodes in the network. This behaviour shows that 
the networks have found stability, are able to leave 
the transient state and reach a steady state.

In practice, this state represents the stabilisation of 
a production line when productivity is constant. In 
this experiment, it is possible to understand this initial 
stage of production in large production lines. 
Furthermore, in future experiments, it might be pos-
sible to set a finite number of entities to be processed 
and then analyse the behaviour of the production line 
until its complete stop. This type of experiment may 
also be used as a basis for studying batch production 
or production stage scheduling.

4.2. Use case 2: complex network behaviour and 
topology

Once we have evidence that the system is stable, 
starts the investigation (in the steady state) on how 
the distribution of working nodes is affected by the 
network topology, as described by the parameter α. 
The experiments vary α starting from 0.025, indicating 
a network with most nodes in parallel and increasing 
its value until reach 1.0, a network with all nodes in 
series. This analysis should help us understand the 
role of the production network topology in the overall 
efficiency of the system, as inferred from the percen-
tage of working nodes.

We generate networks with n ¼ 500 nodes, varying 
the number of production steps in the range 
s 2 ½25; 500�, for networks with failure rates of 0.0 
and 0.1. All networks have production rates and buffer 
sizes of 1.0. 25 samples are generated for each 
configuration.

The results can be seen in Figure 4. It is possible to 
observe the same behaviour in both curves, repre-
sented by an asymmetrical V-shaped graph. When α 

is almost zero and the networks are close to becom-
ing totally parallel, the percentage of working nodes is 
relatively high. As α increases and the networks 
become more serialised, the percentage of working 
nodes decreases at a rapid pace, reaching a minimum 
when α is close to 0.2. After that, the percentage of 
working nodes starts increasing again, until it reaches 
the point where the network is totally serial, 
when α ¼ 1:0.

This behaviour indicates that our system is experi-
encing a phase transition, in which its working regime 
changes. In the first working regime, that goes from 
roughly α ¼ 0 to α ¼ 0:2. The smaller the α value, the 
higher the percentage of working machines. When α 
values are closer to 0.2, it is possible to see the lower 
ratios of working machines. However, once the point 
at which α ¼ 0:2, (which is called αcritical), the system 
shows the opposite behaviour; the more serial it is, 
the more efficient it gets. This is an interesting result 
which may have useful implications for real-life pro-
duction systems.

To interpret why the network experiences two 
working regimes for different ranges of α, two impor-
tant characteristics of the simulation model are high-
lighted. Firstly, it assumes the first production step in 
the network has an infinite quantity of raw materials 
available to it and thus cannot be starved. Secondly, it 
assumes that the last production step in the network 
has no restrictions on how much it can produce and 
thus cannot be blocked.

With these two conditions, the authors argue that 
when α! 0 and our network topology is a single pro-
duction step with a large number of nodes, the % working 

Figure 4. Percentage of working nodes with respect to α.
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value goes to 100%. This conclusion stems from the fact 
that if the network has only one production step, then this 
is simultaneously both the first and the last production 
step. Thus, the only possible state for its nodes is working. 
This situation is illustrated in Figure 5a.

At the other extreme of the spectrum, when 
α ¼ 1:0, the number of nodes is equal to the num-
ber of production steps. Consequently, every pro-
duction step will have a single node and the 
network will be totally serial, similar to a linked 
list. This scenario is illustrated in Figure 5b. 
Furthermore, in the situation where all nodes have 
a failure rate equal to zero and all nodes have the 
same production rate of one, consequently the 
materials produced at the first node will flow to 
the last one uninterrupted. No node will ever be 
starved or blocked. This is consistent with the results 
of the experiment illustrated in Figure 4.

We thus conclude that, if our failure rate is equal to 
zero for both α ¼ 0 and α ¼ 1, all nodes in the network 
will be working in steady space. In order to explain the 
behaviour of the intermediate values of α, the concept 
of a production bottleneck is introduced. This the point 
in the process with the minimum productivity, or mini-
mum production rate. It restricts the production of the 
whole process and, if its productivity increases, the 
overall productivity of the system will also increase.

For our network, the production capacity of each 
production step is the sum of the production rates of 
the nodes present in that production step. Assuming 
the production rate to be unitary for every node, the 
capacity of a production step is the number of nodes 
in that production step. Consequently, the bottleneck 
in our network is the production step with the smal-
lest number of nodes. This step will be called bottle-
neck step and it is illustrated in Figure 7.

Figure 5. (a) Totally parallel production network, α ¼ 0:0. (b) Totally serial production network, α ¼ 1:0.

Figure 6. Production network with 20 nodes and 8 production steps. Every node has a production rate of 1.0, so the production 
capacity in a production step is the sum of nodes in it. The bottleneck step is the production step with the smallest production capacity 
of the network.
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From this definition, it is possible to observe that all 
the production steps may have a maximum number 
of working nodes, which is equal to the number of 
nodes in the bottleneck step. If a production step 
comes before the bottleneck step and has more 
nodes than the bottleneck, then the excess nodes 
will be blocked because the bottleneck does not 
have enough capacity. For instance, production step 
3 in Figure 6 has a production capacity of 2.0, while 
the bottleneck has a production capacity of only 1.0. 
Consequently, production step 3 will always have one 
node blocked in the steady state. Similarly, if 
a production step comes after the bottleneck step 
and has more nodes than the bottleneck, the excess 
nodes will be starved. For example, the production 
step 5 in Figure 6 has a production capacity of 5.0 but 
the bottleneck can provide it with a production of 
only 1.0, so it will have 4 starved nodes in the steady 
state.

Knowing that the nodes are placed randomly in the 
network following a uniform distribution the network 
grows beyond a single production step, and 
a bottleneck will always be present. To further inves-
tigate this point, it was registered (for networks with α 
in the range ð0; 1:0�) the number of nodes in the 
bottleneck step and the average number of nodes 
per step. The curves are shown in Figure 7. For all 
values of α, except α ¼ 1:0, there is a bottleneck step. 
In other words, the average number of nodes in 
a production step is greater than the number of 
nodes in the bottleneck. Furthermore, it can be seen 
that the difference between the average number of 

nodes in a production step and the number of nodes 
in the bottleneck step decreases as α grows. This dif-
ference indicates the average number of idle nodes 
per step. This number is greater for networks with 
smaller values of α. The definition of idle nodes com-
prises all nodes that are not working.

We can calculate the total number of idle nodes in 
the network by multiplying the average number of 
idle nodes per step by the total number of steps in the 
network. After normalising this value, the percentage 
of working nodes is found by simply reducing it by 
one. The curve obtained this way is shown in Figure 8, 
plus the curve obtained by simulating the networks 
with a failure rate equal to zero.

We can see that both curves agree almost per-
fectly. This shows that our reasoning as to the 
mechanism that determines whether a node is work-
ing or not in the steady state is correct. Even more 
importantly, bottleneck analysis (as developed here) 
is an important discipline for production engineers 
and is relevant for understanding the production 
capacity of real-world manufacturing systems. Our 
model can successfully simulate the fundamental 
behaviours of such systems.

4.3. Use case 3: bottleneck distribution analysis

In this section, it is presented an hybrid use case 
comparing the theoretical, probabilistic distribution 
of bottlenecks and the experimental results observed. 
Our objective is to parameterise the number of 

Figure 7. Average number of nodes per production step and 
number of nodes in the bottleneck step with respect to α.

Figure 8. Percentage of working nodes with respect to α, 
obtained using bottleneck analysis and experimentally through 
simulation.
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machines in the bottleneck stage, according to the 
model input variables. The analysis is divided into two 
stages. The first describes the analytical approach to 
developing probabilistic distribution equations, while 
the second presents the experimental results of 
implementing the model.

A summary of the first stage will be presented 
below. The process of assigning machines to produc-
tion steps was first modelled as a random allocation, 
similar to the balls and bins problem (Mitzenmacher, 
Richa, and Sitaraman 2001). However, the complex 
characteristics of the minimum anticipated value dis-
tribution of the number of machines in each produc-
tion step (Leadbetter, Lindgren, and Rootzén 2012) 
led to the use of a simplified approach to this pro-
blem. The upper limit of the lower tail of the Poisson 
cumulative distribution function is used as the num-
ber of machines assigned to the bottleneck step, with 
a probability equal to 1

s.
The second stage presents the experimental results 

of this approach. Thus, simplification could be seen to 
yield satisfactory results. It became clear that there is 
a critical alpha, in which the number of machines 
assigned to the bottleneck step becomes null or 
equal to one (in the case of CLEMATIS).

To initiate the first stage, it is necessary to declare 
the statistical variables of the problem. Thus, let Xi be 
the number of machines randomly assigned to step 
i ¼ 0; . . . ; s � 1 such that: 

Xs� 1

i¼0

Xi ¼ n: (2) 

Each network/production line can be constructed 
given a fixed α ¼ s

n, that represents the inverse of 
the Poisson rate parameter λ ¼ 1

α. The authors also 
assume independence between the variables repre-
senting the number of machines assigned to each 
step, Xi?Xj;"i�j and that Xi,PoissonðλÞ for "i. 
Hence, the probability mass function is given by: 

PðX ¼ kÞ ¼
λke� λ

k!
; (3) 

and the cumulative distribution function is: 

Pðx � kÞ ¼
0; if x � 0;
eλPk

i¼0
λi

i!; otherwise:

�

(4) 

We want to estimate Y , that is the number of 
machines located in the bottleneck step, where: 

Y ¼ minðX0; X2; . . . ; Xs� 1Þ: (5) 

This equation is studied in the field called ‘extreme 
value distribution theory’ (Leadbetter, Lindgren, and 
Rootzén 2012) and can be rewritten as: 

Y ¼ � maxð� X0; � X2; . . . ; � Xs� 1Þ: (6) 

At this point, it is important to note that the phenom-
enon is studied from the perspective of the distribu-
tion of attempts to assign machines to each step. This 
machine assignment process is described by 
a uniform probability distribution in the production 
steps, which leads us to assume the following 
relationship: 

PðXi � YÞ ¼
1
s
: (7) 

Thus, this relationship is assumed to represent the 
first quantile of the Poisson cumulative distribution 
function, which is related to the number of machines 
in the bottleneck step. Then, considering the R-th 
quantile equation of Y for R 2 ð0; 1Þ (Short 2013), 
obtained from the Poisson distribution: 

Qðλ; RÞ ¼ min k 2 N such that PðY � kÞ � R: (8) 

Consequently, considering R ¼ 1
s it is possible to 

rewrite the quantile function as: 

Qðλ; s� 1Þ ¼ min k 2 N such that PðY � kÞ � s� 1 (9) 

Finally, the objective becomes finding the value of k, 
which will be admitted and evaluated as equivalent to 
Y. This value can be found by the inverse of the 
survival function (Fs) (Virtanen et al. 2020) – consider-
ing Fsðk; λÞ ¼ 1 � CDFðk; λÞ, where CDF is the cumu-
lative density function of the Poisson distribution: 

PðXi � k; λÞ ¼ CDFðk; λÞ: (10) 

and, by substitution, letting k ¼ Y : 

s� 1 ¼ 1 � FsðY;
n
s
Þ (11) 

which leads us to the inverse survival function that 
will be applied to estimate the value of Y : 

Y ¼ Fs� 1ð1 � s� 1;
n
s
Þ: (12) 

An experiment was designed to validate the analyti-
cal results obtained through this quantile approach. 
For this experiment, each production network was 
built 50 times with 100, 1,000 and 10,000 nodes, 
varying the alpha values from 0.01 to 0.5, in steps of 
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0.02. The number of machines present in the bottle-
neck step of each network was then observed. Using 
the quantile approach, the average number of 
machines in the bottleneck step over the 50 repeti-
tions of each production network composition was 
compared with the analytical values obtained.

The results are presented in Figure 9, in which is 
visible the decay of the number of nodes in the bot-
tleneck step proportional to the alpha growth, or 
lambda decay. Moreover, the analytical result was 
close to the average throughout all the experiments 
that were conducted. It was therefore possible to 
model the machine distribution problem in the bot-
tleneck stage using the same parameters as for the 
MN-RM and CLEMATIS model.

5. Discussions and future research directions

There is a lack of research into evolution laws and 
performance evaluation for manufacturing networks 
(Li et al. 2017a). The parameterised probabilistic beha-
viour of MN-RM strategy was assessed in order to 
provide some examples of practical analysis. The 
minimum number of nodes assigned to a step was 
demonstrated analytically. The authors would argue 
that these analyses can be conducted with a wide 
variety of input parameter indicators. Hence, MN-RM 
can be used as a basis for statistical, probabilistic and 
multivariate analyses (Curry and Feldman 2010; 
Pansare, Yadav, and Nagare 2023). Furthermore, this 
generative model was developed using concepts 

from the research area of complex networks (Cohen 
and Havlin 2010). This allows analysis of these produc-
tion line mechanisms from the perspective of com-
plex networks (Becker, Meyer, and Windt 2014; Li et al.  
2017b).

To understand how the manufacturing system 
behaves for different topological characteristics, the vari-
able α was defined to control the network seriality. This 
means that α! 0 represents a totally parallel network 
and α ¼ 1:0 a totally serial network. These process 
architectures may be defined by different nomencla-
tures in the bibliography, an example being the 
Lasagna or Spaghetti Processes (Van der Aalst 2011).

A subsequent step in this study was the develop-
ment of CLEMATIS, a module that provides network 
simulation and data generation capabilities. By 
executing this module, machine state data and 
event logs can be generated. The strategy was imple-
mented from scratch and followed the anticipated 
behaviour, as demonstrated by stability analysis. In 
the steady state, it was possible to observe the follow-
ing phenomenon: the percentage of working nodes 
starts relatively high, for small values of α and 
decreases until it reaches a critical value. At this 
point, the system undergoes a phase transition, chan-
ging its working regime. For values of α greater than 
the critical value, the percentage of working nodes 
increases until α reaches 1.0.

It is important to emphasise that this strategy is still in 
fundamental form. Thus, future research directions 
include three main pathways that are synchronised 
with the methodology pipeline, as shown in Figure 10. 
Each of the proposed objectives for this paper is linked to 
a particular future research direction. From the model 
input parameters to the use cases, there are opportu-
nities that will be explained in this section.

Firstly, improvement measures for the model imple-
mentation. These include the capability to input unba-
lanced parameters, implement a simulation strategy 
based on more libraries and improve user capabilities. 
This solution can promote more realistic behaviours, of 
the kind likely to be faced in production environments. 
To summarise, heterogeneous failure rates, production 
rates and buffer sizes can be implemented in order to 
exploit the model under harsher conditions. Synthetic 
data helps simulate various ‘what-if’ scenarios, thus aid-
ing assessment of the impact of parameter changes on 
production line performance without costly real-world 
adjustments. Finally, synthetic data supports training 

Figure 9. Number of machines in the bottleneck step, obtained 
using the statistical model and experimentally through 
simulation.
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and education by offering a safe environment for per-
sonnel to learn about manufacturing system behaviour 
and operations.

Secondly, implementing strategies for production line 
performance evaluation using these datasets as bench-
mark. There are three promising future research direc-
tions: (I) processing the data through artificial 
intelligence and machine learning for data-driven analy-
sis, such as studying bottlenecks in production systems 
(Subramaniyan et al. 2020, 2021). (II) simulation-based 
optimisation techniques (Swisher, Jacobson, and 
Yücesan 2003), such as ensuring the process of ongoing 
improvement in production lines (Wu, Zheng, and Shen  
2020). (III) these artificial databases can be used as 
benchmarks for process mining techniques (Der Aalst 
Wil 2012a; der Aalst et al. 2003; der Aalst, Wil, and 
Maruster 2004; Van der Aalst 2011).

Thirdly, use this strategy as an input for the develop-
ment, evaluation and validation of digital twins in a safe 
environment, as the data requirements are the same as 
those presented in 2.1. This model may be built accord-
ing to the reference framework for manufacturing digital 
twins presented in ISO 23,247–1 (ISO 2020). Optimising 
production planning, scheduling and routing problems 
are among the main applications for digital twins. Thus, 
these artificial databases enable implementations for 
resource (such as materials labour and equipment) opti-
misation, cycle-time reduction and inventory cost reduc-
tions (Shao and Helu 2020).

6. Conclusions

In the introduction, three solution requirements were 
set up and the authors argued that the requirements 
were satisfied. Firstly, the MN-RM strategy can 

generate a wide variety of production systems (repre-
sented by complex networks) and simulate them sim-
ply by using CLEMATIS. Secondly, this approach is 
easy to run and can be imported from GitHub and 
executed locally at low computational cost. The only 
requirement is that Python is installed on the compu-
ter device. Thirdly, the three use cases demonstrate 
how the analysis may be made at scale, by varying the 
input parameters.

In order to represent the production lines simply, 
the data generated needs to fit the digital twin 
requirements explained in 2.1. The authors propose 
a solution consisting of a two-step approach that can 
generate manufacturing systems and simulate them. 
The asymptotic behaviour of status machine data is 
studied. The first step is called MN-RM, a strategy that 
assigns a defined number of machines to a defined 
number of production steps according to a Poisson 
probability distribution. The second step is called 
CLEMATIS, a simulation strategy that represents the 
production in the production lines that were built in 
the previous step. The input parameters are the num-
ber of production steps, the number of machines and 
the number of products to be processed. After run-
ning the codes, the output can be an event log or 
a machine status database.

We observed that our proposed model allows 
the construction of a set of statistically parame-
terised complex layouts. Thus, it is possible to simu-
late these layouts and generate data to analyse 
their static and dynamic properties. There is evi-
dence that the proposed simulation is stable. This 
means that for a large number of iterations, the 
quantity of nodes in each state becomes constant, 
reaching a steady state. The experiments 

Figure 10. Future Research directions synchronised with the methodological pipeline.
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demonstrated that this behaviour can be explained 
using the very well-known concept of bottleneck 
analysis, which is often used to understand the 
productivity of real-world systems. This concept 
was validated by reproducing the results from the 
simulation using an analytical probabilistic 
approach. This is a good indication of our model’s 
ability to reproduce the behaviour of real manufac-
turing systems.

The data generated from CLEMATIS and MN-RM 
plays a pivotal role in digital twin application 
enhancement. Firstly, it can facilitate model cali-
bration and validation by comparing simulated 
data with real-world data, ensuring that digital 
twin models faithfully represent physical manufac-
turing systems. Secondly, it enables predictive 
analysis through machine-learning training, sup-
porting proactive decision-making and optimisa-
tion. Thirdly, it can be used for simplified real- 
time performance monitoring, where digital 
twins continuously align their simulated beha-
viour with live synthetic data for validation pur-
poses. Fourthly, synthetic data aids in simulating 
various ‘what-if’ scenarios and helps assess the 
impact of parameter changes on production line 
performance without costly real-world adjust-
ments. Finally, synthetic data supports training 
and education by offering a safe environment for 
personnel to learn about manufacturing system 
behaviour and operations. The authors argue 
that this foundational dataset generation strategy 
is indispensable for digital twins advancements, 
enabling them to faithfully mimic the system’s 
behaviour and performance in a safe and flexible 
environment.

Note

1. https://github.com/Victorf-lopes/clematis.git.
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