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Shedding light on liquid chromophores using machine learning

ERIC LINDGREN
Department of Physics

Chalmers University of Technology

Abstract

Chromophores are a class of molecules with widespread use in nature. Chlorophyll in
plants contain chromophoresmakingphotosynthesis possible and the retinalmolecules
in our eyes have chromophoresmaking the world around us visible. Chromophores are
also fundamental for developing a wide range of technologies crucial for a transition to
a sustainable society, including organic electronics, solvent-free dyes and systems for
storing solar energy in the form of heat. While chromophores have beenwidely studied
experimentally, we still lack a sufficient understanding of their structure and dynamics
on the atomic scale. This thesis outlines a simulation framework that links electronic
structure calculations via molecular dynamics simulations to experiments, with a spe-
cific focus on neutron scattering. The key ingredient of this work are machine-learned
forcefields, allowing simulationswith the accuracyof quantummechanical calculations
for large systems of chromophores, bridging the gap between theoretical simulations
and experimental findings.

Keywords: chromophores, machine learning, machine learned force fields, molecular
dynamics, neutron scattering
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1
Introduction

Datorer är coolt

Nicklas, 2022

There is something mesmerizing about colors. Their alluring appeal has tantalized
mankind throughout history, up to and including the modern materials scientist. This
is not without reason. A colorful substance is not only pretty to look at, but poten-
tially promises interesting optical properties. One class of organic molecules that live
up to this promise are chromophores. Translated from ancient Greek, “chromophore”
means “color-bearer”, which reflects their role as the parts ofmolecules that are respon-
sible for giving them color. Two famous examples of chromophores that can be found
in nature include chlorophyll, which enables photosynthesis in plants, and 𝛽-carotene
which makes autumn leaves, carrots and pumpkins appear orange. In recent years,
chromophores have been studied as candidates for many applications that are impor-
tant for a transition to amore sustainable society, including solar cells [1–3], dyes [4–6],
organic light-emitting diodes [7–9], organic semiconductors [10–12] and solar thermal
storage systems [13–18]. Common to all of these applications is the desire to control the
optical properties of the chromophore systems. In this thesis, we will dive head-first
into how computer simulations can shed light on the structure and dynamics of chro-
mophores, which may hold the key for controlling their optical properties.
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Chapter 1. Introduction

(a)The conjugated system of 𝛽-carotene (b) Inter- and intramolecular bonds

Figure 1.1: Schematics of conjugated systems and bonds in and between molecules. a)The con-
jugated system of a 𝛽-carotenemolecule formed by overlapping 𝜋-orbitals, marked in red. Elec-
trons are free to delocalize along the length of the conjugated system. b) A sketch of strong in-
termolecular bonds, typically covalent bonds, andweak intramolecular bonds between two pery-
lene monomers.

1.1 Controlling the optical properties of
chromophores

Chromophores owe their colorfulness to them containing conjugated systems. A conju-
gated system is a long chain of atoms over which electrons are free to move (Fig. 1.1a).
Specifically, the 𝑝-orbitals of the carbon atoms overlap forming 𝜋-bonds, which allows
electrons to delocalize and move along the length of the conjugated carbon chain [19,
Chapter 7]. The size (or extent) of the conjugated system affects which energy, and thus
wavelength, of incoming light is required for an electron-hole pair to become excited,
causing light of that wavelength to be absorbed. A helpful picture could be that of an
antenna, where a longer chain would lead to longer wavelengths to be absorbed. The
wavelengths that are not absorbed get reflected, making the chromophore appear col-
ored.

Ingeneral, additional properties other than the lengthof the conjugated carbon chain
affect the optical properties of systemsof chromophores. Thepropertymost relevant for
the types of chromophores studied in this thesis is their tendency to assemble into larger
groupings of molecules [20–22]. These are known as supramolecular aggregates, as
they are formed through interaction betweenmolecules, so-called intermolecular bonds
(Fig. 1.1b). Intermolecular bonds are typically relatively weak compared to the covalent
bonds within the individual molecules (intramolecular bonds), being mediated by elec-
trostatic Coulomb interaction or van-der-Waals forces [23]. Supramolecular aggregates
impact the optical properties in twoways. First, the size of the resulting supramolecular
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1.2. Characterizing structure and dynamics with molecular dynamics andmachine learning

aggregates impacthow light scatters in the sample [24]. Second, the conjugated systems
of neighboringmolecules can interactwith eachother, leading todistinct changes in the
optical spectra of the aggregate system compared to the individualmolecules [25]. Con-
trolling the tendency of chromophores to self-assemble into supramolecular aggregates
allow for control of their optical properties, which would be useful in a broad range of
applications.

There are two primary approaches for controlling the self-assembly in chromophores.
The first is side-group engineering; by appending side-chains of different length onto
a core conjugated structure, the formation of supramolecular aggregates can be con-
trolled [26–29]. The appended side-chains can also have the side-effect of modifying
the conjugated structure of the chromophore, which changes the optical response of
the individual monomers [30]. Examples of optical properties which can be impacted
through sidegroup engineering include luminescence [5], and the efficiency of triplet-
triplet annihilation up-conversion [31], a process that can increase the efficiency of solar
cells. The second approach for controlling the structure of chromophore aggregates is
mixing different types of chromophores [30, 32], which has the added benefit of reduc-
ing the need of solvating the chromophores in a potentially toxic solvent. Mixing have,
for instance, been used to increase the stability of chromophore photovoltaics [33], and
for increasing the efficiency of solar cells [34].

One specific application ofmixtures of chromophores that is of particular interest in
this thesis is that of glass forming systems. Recently, Hultmark and colleagues found
mixtures of perylene derivatives, a type of chromophore, to be ultra-strong glass form-
ers [35]. The authors attribute the strong glass-forming behavior of the perylene mix-
tures to a transition between two liquid phases. However, the detailed structure and
dynamics of these liquid phases are not understood on the atomistic level. Atomic un-
derstanding of the structural and dynamic processes in mixtures of chromophores is
vital to further developmixtures as a handle for controlling aggregate structure, and to
optimize their performance in applications.

1.2 Characterizing structure and dynamics with
molecular dynamics andmachine learning

One tool that can help shed light on the structure and dynamics in mixtures of liquid
chromophores are computer simulations. In particular, as we shall see in Chapter 3,
molecular dynamics (MD) simulations are well suited for this task, since each atom is
explicitly considered in the simulation. Using MD to study chromophores is not new;
MD simulations have been used to study everything from the self-assembly of chro-
mophores on substrates [36, 37], via the structure and dynamics of supramolecular sys-
tems [38, 39], to optical detection of proteins linked to Alzheimer’s disease [40]. How-
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Chapter 1. Introduction

ever, these simulations areoftenperformed in conjunctionwith experiments, andmore-
over typically consider relatively small or idealized systems. Such simulations are suited
for elucidating experimental results but do not necessarily paint a broader theoretical
picture.

We need to add a few more ingredients to the MD simulations if we are to reach the
lofty goal of a simulation protocol that can capture the structure and dynamics of chro-
mophore systems. MD simulations relies on accurately calculating the forces between
pairs of atoms. Conventionally, these forces are obtained from a force field (FF), which
are functions fitted to a broad range ofmaterials. More accurate forces can be obtained
from other means, for instance from electronic-structure calculations such as density-
functional theory (DFT), but the computational cost of these typically scales strongly
with the number of electrons in the system, which limits their use to small systems, typ-
ically involvinghundredsor thousandsof atoms. Onepotential solution to this trade-off
between accuracy and computational feasibility that has emerged during the last couple
of years are machine-learned force field (ML-FF). As we shall see in Chapter 4, by train-
ing amachine learning (ML)model to predict forces calculatedwithDFT, one canobtain
a ML-FF that provides near DFT accuracy at the speed of a conventional FF.

Once one has performed an accurate MD simulation, the results can be connected
to the observables from various experimental techniques. One such technique that is
well suited studying the structure and dynamics of organic systems, including chro-
mophores, is neutron scattering, which we will learn more about in Chapter 2 together
with the connection to MD simulations. In the context of this thesis, one can thus see
ML as a bridge for connecting simulations and experiments, by enabling highly accu-
rateMD simulations that can be used to predict neutron scattering experiments, which
in turn can improve our understanding of the structure and dynamics of liquid chro-
mophores.

1.3 Research questions
In this thesis, I aim to develop a simulation framework combiningmolecular dynamics
(MD) andmachine-learned force fields (ML-FFs) for studying the structure and dynam-
ics of chromophores, and connecting these results to experimental observables, bridg-
ing the gap between simulations and experiments. I will in particular study a class of
chromophores, namely perylene (C20H12) and derivatives thereof, as a prototypical sys-
tem, but the approach should be readily extendable to other systems. Iwill consider two
research questions:

• Towhat extent can thedeveloped simulationprotocol capture the structure and
dynamics of aggregates of perylene derivatives?
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1.4. Structure of the thesis

• How well can neutron scattering experiments be predicted using the simula-
tion protocol?

1.4 Structure of the thesis
This thesis consists of three main chapters, a summary of the included papers, and a
summary and outlook. Thefirst chapter concerns neutron scattering experiments, with
an emphasis on the theory and the quantities that are observable in computer simu-
lations, such as the dynamic structure factor. This is followed by the second chapter,
focusing on MD simulations and how they can be used to predict neutron scattering
experiments. The third chapter details the theory of ML-FFs with a specific focus on
the neuroevolution potential (NEP) framework, how such models are constructed and
how they can be used to run MD simulations with the accuracy of an electronic struc-
ture method such as DFT. This is followed by a short summary of the three papers that
are the foundation of this thesis, after which the thesis is concluded by a summary and
outlook.
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2
Neutron Scattering

I’m afraid neutrons will not be of any use to any one.

Sir James Chadwick,
discoverer of the neutron

Neutron scattering is one of the most important experimental techniques for study-
ing the structure and dynamics of chromophores, as neutrons are excellent probes for
organicmatter. Producing neutrons requires large facilities, such as nuclear reactors or
spallation sources, and, hence, these are only available in a handful of locations globally.
See Fig. 2.1 for three of these locations; the TUDelft experimental reactor in the Nether-
lands, the PSI/SINQ site in Switzerland, and the European Spallation Source (ESS) cur-
rently under construction in Lund, Sweden.

In neutron scattering, the neutron scatters off of the atomic nucleus. The amount
withwhicheachatomic isotope scattersneutrons varies greatly across theperiodic table,
which increases the contrast between different atomic species. Hydrogen, in particular,
scatters neutrons strongly, which makes neutrons well-suited for studying hydrogen-
rich organic matter, such as chromophores. Neutrons additionally transfer relatively
small amounts of kinetic energy to the sample under study, typically in the meV range,
which is comparable with the energy scales associated with molecular motion such as
rotations. However, like most experimental techniques, neutron scattering measure-
ments needs to be paired with simulations in order to explain and elucidate the results.
As we shall see at the end of this chapter, the connection between neutron scattering
and MD simulations is straightforward, which further makes neutron scattering par-
ticularly interesting in the context of this thesis.

In this chapter we will follow Squires [41, Chapters 1, 2 and 4] in deriving some key
results in neutron scattering theory, starting from the double differential cross section,
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Chapter 2. Neutron Scattering

(a) TU Delft (b) SINQ

(c) ESS (under construction)

Figure 2.1: Three of the handful of neutron scattering facilities globally. From left to right: the
TU Delft experimental reactor in the Netherlands, the SINQ beamline in Switzerland, and the
ESS beamline in Lund, Sweden.

namely the expressions for coherent and incoherent scattering, the dynamic structure
factor, and how the dynamic structure factor can be related to observables inMD simu-
lations.

2.1 Basic scattering theory of neutrons
The quantity measured in neutron scattering is the scattered intensity from each mea-
sured neutron, 𝐼 (𝑞𝑞𝑞, 𝜔), where 𝑞𝑞𝑞 is the momentum transfer to the sample, and 𝜔 is the
angular frequency of the excitation gained by the sample. Conceptually, this can be re-
formulated as 𝐼 (𝜃, 𝜕𝐸′), where 𝜃 is the change in angle of the incoming neutron wave
and 𝜕𝐸 is the energy transferred to the sample from the neutron, which leads to the in-
terpretation of 𝐼 (𝜃, 𝜕𝐸′) as the measured intensity of neutrons that change direction by
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2.1. Basic scattering theory of neutrons

an angle 𝜃 and transfer energy 𝜕𝐸′ to the sample. If 𝜕𝐸′ = 0, the process is called elastic
neutron scattering, and if 𝜕𝐸′ ≠ 0 it is called inelastic neutron scattering. Broadly speak-
ing, neutron scattering techniques that utilize elastic scattering are used to study the
structure of materials, whilst inelastic techniques are used to study their dynamics.

Figure 2.2: Scattering of a neutronwith incomingwave vector𝑘𝑘𝑘 and energy 𝐸 into solid angle 𝜕Ω
when hitting a target, with the final neutron having wave vector 𝑘′𝑘′𝑘′ and energy between 𝐸′ and
𝐸′ + 𝜕𝐸′.

Formally, the intensity measured in a neutron scattering experiment is directly re-
lated to the partial differential cross section,

No. neutrons scattered per time into

𝜕2𝜎
𝜕Ω𝜕𝐸′ = 1

Φ
solid angle 𝜕Ωwith final energy between 𝐸′ and 𝐸′ + 𝜕𝐸′

𝜕Ω𝜕𝐸′
(2.1)

with Φ being the flux of the incoming neutron beam, i.e., the number of neutrons per
unit area and second, and 𝜎 denoting the cross section. Now, let the incoming neutron
have wave vector 𝑘𝑘𝑘 and energy 𝐸, and wave vector 𝑘′𝑘′𝑘′ and energy 𝐸′ after the scattering
event. Furthermore, denote the initial state of the scattering system 𝜆, and the final
state as 𝜆′. This is the situation described in Fig. 2.2. With these definitions one can,
after a relatively lengthy derivation, whichwe skip here in the interest of time and space,
express Eq. 2.1 explicitly,

𝜕2𝜎
𝜕Ω𝜕𝐸′ = |𝑘′|

|𝑘|
1

2𝜋ℏ ∑
𝑗𝑗′

𝑏𝑗𝑏𝑗′ ∫
∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗′(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡 (2.2)

where the double sum runs over all pairs of scattering nuclei with position𝑅𝑅𝑅𝑗 and scatter-
ing length 𝑏𝑗 . Note that𝑅𝑅𝑅𝑗(𝑡) is the time-dependent position operator in the Heisenberg
picture, defined as

𝑅𝑅𝑅𝑗(𝑡) = exp (𝑖𝐻 𝑡/ℏ) 𝑅𝑅𝑅𝑗 exp (−𝑖𝐻 𝑡/ℏ) , 𝑅𝑅𝑅𝑗(0) = 𝑅𝑅𝑅𝑗 . (2.3)
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Chapter 2. Neutron Scattering

𝑞𝑞𝑞 = 𝑘𝑘𝑘 − 𝑘′𝑘′𝑘′ is the change in momentum for the scattered neutron, and ℏ𝜔 = 𝐸 − 𝐸′ is
the change in the kinetic energy of the neutron. ⟨...⟩ denotes a thermal average over all
initial system states 𝜆, which are assumed to follow a Boltzmann distribution. That is,
the thermal average of an operator𝐴 for a systemwith Hamiltonian𝐻 is defined as

⟨𝐴⟩ = ∑
𝜆
𝑝𝜆 ⟨𝜆|𝐴|𝜆⟩ , 𝑝𝜆 = 1

𝑍 𝑒−𝛽𝐸𝜆 , 𝑍 = ∑
𝜆
𝑒−𝛽𝐸𝜆 , 𝛽 = 1

𝑘𝐵𝑇
. (2.4)

I would like to highlight two key steps in the derivation of Eq. 2.2. First, the starting
point for the derivation is to express the number of neutrons scattered into solid angle
𝜕Ω per unit time in terms of the transition rate of the neutron and sample system tran-
sition from state |𝑘𝑘𝑘, 𝜆⟩ to |𝑘𝑘𝑘′, 𝜆′⟩, where 𝑘𝑘𝑘′ is in 𝜕Ω. This transition rate can be expressed
using Fermi’s golden rule,

Γ𝜆→𝜆′ = 2𝜋
ℏ 𝜌𝑘𝑘𝑘′ |⟨𝑘𝑘𝑘, 𝜆|𝑉 |𝑘𝑘𝑘′, 𝜆′⟩|2 . (2.5)

Here, 𝜌𝑘𝑘𝑘′ is the density of neutrons with momentum 𝑘𝑘𝑘′ in 𝜕Ω. 𝑉 is the scattering po-
tential, which leads us to the next step I would like to highlight. A common choice of 𝑉 ,
which has been used in deriving Eq. 2.2, is the Fermi pseudopotential,

𝑉 (𝑟𝑟𝑟) = 2𝜋ℏ2
𝑚 𝑏𝛿(𝑟𝑟𝑟), (2.6)

here expressed for a single nucleus with mass 𝑚 centered at the origin. 𝑏 is the scatter-
ing length, and can be interpreted as the strength of the scattering potential; a larger
value of 𝑏means amore repulsive potential. The scattering length is different for differ-
ent isotopes and is in general a complex number, with the imaginary part representing
neutron absorption. For most nuclei the imaginary part is small, and hence 𝑏 has been
assumed to be real in the derivation of Eq. 2.2.

2.2 Coherent and incoherent neutron scattering
We split the sum over 𝑗, 𝑗′ in Eq. 2.2 into two terms, corresponding to 𝑗 ≠ 𝑗′ and 𝑗 = 𝑗′,

𝜕2𝜎
𝜕Ω𝜕𝐸′ = |𝑘′|

|𝑘|
1

2𝜋ℏ (∑
𝑗≠𝑗′

𝑏𝑗𝑏′𝑗 ∫
∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗′(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡

+∑
𝑗
𝑏2𝑗 ∫

∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡) .

(2.7)

Eachnuclei in the sample can possibly have a different scattering length 𝑏𝑗 that occurs
with abundance 𝑓𝑗 . However, amacroscopic sample consists of a large number of nuclei,
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2.3. Simulating neutron scattering via correlation functions

and thuswe can replace the factors 𝑏2𝑗 and 𝑏𝑗𝑏𝑗′ in Eq. 2.7with their averages, 𝑏2𝑗 and 𝑏𝑗𝑏𝑗′.
The average scattering lengths are

𝑏2𝑗 = ∑
𝑗
𝑓𝑗𝑏2𝑗 ≡ 𝑏2 and 𝑏𝑗𝑏𝑗′ = ∑

𝑗
𝑓𝑗𝑏𝑗 ∑

𝑗′
𝑓𝑗′𝑏𝑗′ ≡ 𝑏2. (2.8)

By adding and subtracting the missing term for 𝑗 = 𝑗′ in the first term in Eq. 2.7 we
arrive at

𝜕2𝜎
𝜕Ω𝜕𝐸′ =|𝑘

′|
|𝑘|

1
2𝜋ℏ𝑏

2∑
𝑗𝑗′

∫
∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗′(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡

+|𝑘
′|

|𝑘|
1

2𝜋ℏ (𝑏2 − 𝑏2)∑
𝑗
∫
∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡.

(2.9)

By introducing 𝜎coh = 4𝜋𝑏2 and 𝜎inc = 4𝜋 (𝑏2 − 𝑏2)we identify the two terms

( 𝜕2𝜎
𝜕Ω𝜕𝐸′)coh

=𝜎coh4𝜋
|𝑘′|
|𝑘|

1
2𝜋ℏ𝑏

2∑
𝑗𝑗′

∫
∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗′(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡

( 𝜕2𝜎
𝜕Ω𝜕𝐸′)inc

=𝜎inc4𝜋
|𝑘′|
|𝑘|

1
2𝜋ℏ (𝑏2 − 𝑏2)∑

𝑗
∫
∞

−∞
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ 𝑒−𝑖𝜔𝑡𝑑𝑡,

(2.10)

as the coherent and the incoherent partial neutron cross sections, respectively. The sum in
the incoherent cross section runs over each atom 𝑗, and, thus, the incoherent scattering
contains the scattered intensity from the individualnuclei. The coherent cross section, on
the other hand, describes the scattering contributions from all pairs of nuclei. Since the
scattered neutrons behave like waves, the coherent scattering can exhibit interference
effects, which manifest themselves as the peaks seen in a typical neutron diffraction
experiment.

In Fig. 2.3 the coherent and incoherent scattering lengths are plotted for the first 46
elements of the periodic table. This plot demonstrates why neutrons are well suited for
studying chromophores; elements that are abundant in chromophores, like hydrogen
(H) and carbon (C) have relatively large scattering lengths. This can be contrasted to the
case of other experimental techniques like X-rays, where the cross section scales with
the number of electrons bound to the atom.

2.3 Simulating neutron scattering via correlation
functions

Wecan furthermassage thecoherentand incoherent crosspartial cross sections inEq.2.10
into a form that makes them easily relatable to observables in MD simulations. Start-
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Figure 2.3: Incoherent and coherent scattering lengths for the first 46 elements in the periodic
table. Note the logarithmic scale, and the large incoherent scattering length of hydrogen (H).

ing from Eq. 2.10, we can move the sums inside the integral sign and define them as
the intermediate scattering function 𝐹(𝑞𝑞𝑞, 𝑡) for the coherent cross section, and the self
intermediate scattering function 𝐹𝑠(𝑞𝑞𝑞, 𝑡) for the incoherent cross section,

𝐹(𝑞𝑞𝑞, 𝑡) = 1
𝑁 ∑

𝑗𝑗′
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗′(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ and 𝐹𝑠(𝑞𝑞𝑞, 𝑡) = 1

𝑁 ∑
𝑗
⟨𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(0)𝑒𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)⟩ , (2.11)

with 𝑁 being the number of nuclei in the system. From 𝐹(𝑞𝑞𝑞, 𝑡), we can further define
the time-dependent pair-correlation function 𝐺(𝑟𝑟𝑟 , 𝑡) and the dynamic structure factor
𝑆(𝑞𝑞𝑞, 𝜔),

𝐺(𝑟𝑟𝑟 , 𝑡) = 1
(2𝜋)3 ∫𝐹(𝑞𝑞𝑞, 𝑡)𝑒−𝑖𝑞𝑞𝑞⋅𝑟𝑟𝑟𝑑𝑟𝑟𝑟 and 𝑆(𝑞𝑞𝑞, 𝜔) = 1

2𝜋ℏ ∫ 𝐹(𝑞𝑞𝑞, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡. (2.12)

Similarly, from 𝐹𝑠(𝑞𝑞𝑞, 𝑡)we get the self time-dependent pair-correlation function 𝐺𝑠(𝑟𝑟𝑟 , 𝑡)
and the incoherent dynamic structure factor 𝑆𝑖(𝑞𝑞𝑞, 𝜔) equivalently. We can now rewrite
the coherent and incoherent cross sections in terms of 𝑆(𝑞𝑞𝑞, 𝜔) and 𝑆𝑖(𝑞𝑞𝑞, 𝜔),

( 𝜕2𝜎
𝜕Ω𝜕𝐸′)coh

= 𝜎coh
4𝜋

|𝑘′|
|𝑘| 𝑁 𝑆(𝑞𝑞𝑞, 𝜔)

( 𝜕2𝜎
𝜕Ω𝜕𝐸′)inc

= 𝜎inc
4𝜋

|𝑘′|
|𝑘| 𝑁 𝑆𝑖(𝑞𝑞𝑞, 𝜔).

(2.13)

Eq. 2.13 is quite remarkable. If we can calculate 𝑆(𝑞𝑞𝑞, 𝜔) and 𝑆𝑖(𝑞𝑞𝑞, 𝜔) from anMD simula-
tion, then we could estimate the partial differential cross section, and by extension the
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intensity that one would measure in a neutron scattering experiment. The remaining
question is, how do we calculate 𝑆(𝑞𝑞𝑞, 𝜔)? Let 𝜌(𝑟𝑟𝑟 , 𝑡) be the particle density,

𝜌(𝑟𝑟𝑟 , 𝑡) = ∑
𝑗
𝛿(𝑟 − 𝑅𝑅𝑅𝑗(𝑡)), (2.14)

which we can Fourier transform in space to obtain 𝐹(𝑞𝑞𝑞, 𝑡) (Eq. 2.11),

𝜌(𝑞𝑞𝑞, 𝑡) = ∑
𝑗
𝑒−𝑖𝑞𝑞𝑞⋅𝑅𝑅𝑅𝑗(𝑡)

⇒ 𝐹(𝑞𝑞𝑞, 𝑡) = 1
𝑁 ⟨𝜌(𝑞𝑞𝑞, 0)𝜌(−𝑞𝑞𝑞, 𝑡)⟩

(2.15)

We can get the self intermediate scattering function, 𝐹𝑠(𝑞𝑞𝑞, 𝑡), by only considering the
terms in which 𝑗 = 𝑗′ in Eq. 2.15. From Eq. 2.12 we know that we can obtain 𝑆(𝑞𝑞𝑞, 𝜔)
and 𝑆𝑖(𝑞𝑞𝑞, 𝜔) by Fourier transforming 𝐹(𝑞𝑞𝑞, 𝑡) and 𝐹𝑠(𝑞𝑞𝑞, 𝑡) respectively in time. In a simu-
lation we know the positions of all atoms, and, thus, we can record 𝜌(𝑟𝑟𝑟 , 𝑡) throughout
the simulation (the “trajectory”). We can then after the fact compute the double Fourier
transform in time and space over this trajectory, and via Eq. 2.15 and Eq. 2.12 compute
𝑆(𝑞𝑞𝑞, 𝜔) and 𝑆𝑖(𝑞𝑞𝑞, 𝜔), and by extension the simulated intensity for a neutron scattering
experiment.

2.4 Takeaways
In this chapter we have seen that the partial differential cross section, which is directly
related to the intensity one measures in a neutron scattering experiment, can be com-
puted from the time dependent particle density. That is, if we know the positions of all
atoms in a system as a function of time, then we could compute what their correspond-
ing neutron scattering spectra would look like. Note however that the simulation and
experiment will probably not match exactly, as we have used a number of assumptions
in the derivations in this chapter. First, the partial differential cross section is related to
the intensity, but there are other factors such as the resolution function of the specific
instrument that determines exactly how these two relate, which we have not discussed
in this chapter. Second, in deriving the expressions for the partial differential cross sec-
tionwehave used Fermi’sGolden rule and the Fermi pseudopotential, which are approx-
imative expressions. However, this approach is exact enough for our purposes, and we
will see in the next chapter how we can use molecular dynamics simulations to obtain
the time dependent particle density for molecular systems.
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In the previous chapter we equipped ourselves with knowledge of how themeasured
intensity in a neutron scattering experiment directly corresponds to the time-varying
particle density, which fully describes the structure and dynamics of, e.g., a system of
chromophores. We now turn to how we can obtain the time-varying particle density
using molecular dynamics (MD) simulations, which in essence allows the prediction of
neutron scattering experiments. We begin the chapter by discussing the basics of MD,
where we will focus on how to extract measurable quantities from the simulations. MD
simulationswill, thereafter, be applied to studying the structure anddynamics for some
prototypical chromophore systems.
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Chapter 3. Molecular Dynamics

3.1 Modeling dynamics in an atomic system
MD is a simulation technique in which the position and velocity of each atom in the
system is evolved in time. The propagation in time is done incrementally, increasing
by a small amount of time called the time step, Δ𝑡. From one time step to the next, the
position and velocity of each atom is updated in accordancewith the forces acting on the
atom from all other atoms. Typically, an MD simulation is on the order of 1 ps to 1 µs,
with a typical time step on the order of 1 fs. A simulation thus consists of many small
steps in which the position of each atom is updated.

The positions of the atoms aremonitored, and from themovements of the atoms one
can extract estimates from physical quantities such as temperature, pressure, density,
and so forth. Since each atom has to be considered individually, a typical MD simula-
tion can atmost have a system size of up to hundreds of thousands ormillions of atoms,
which is faroff fromthe∼ 1023 atoms inamacroscopic sample thatonewouldencounter
in an experiment. MDsimulations are oftenperformed in a simulationboxwith volume
𝑉 that has so-called periodic boundary conditions (PBC) in order to compensate for this
limitation. UnderPBC, the atoms crossing the boundary of the simulationboxwill reap-
pear at the other side of the box, which in effect approximates an infinite system if the
simulation box is large enough. See Fig. 3.1a for a schematic visualization of PBC, and
Fig. 3.1b for an example of a simulation box.

To be more precise, in a MD simulation we work directly with the positions of the
individual atoms, denoted 𝑟𝑟𝑟 𝑖 for atom 𝑖. Note that this means that we operate within
the Born-Oppenheimer approximation, in the sense that we consider the movement of
the electrons in the system to be averaged out, leaving us free to consider the position
of the nuclei as 𝑟𝑟𝑟 𝑖. The movements of these atoms are governed by Newton’s equations of
motion [42, Chapter 3],

𝑚𝑖 ̈𝑟𝑟𝑟 𝑖 = 𝑓𝑓𝑓 𝑖 and 𝑓𝑓𝑓 𝑖 = −∇𝑟𝑟𝑟 𝑖𝜙(𝑟𝑟𝑟1, ..., 𝑟𝑟𝑟 𝑖, ..., 𝑟𝑟𝑟𝑁 ), (3.1)

where𝑚𝑖 is themass of atom 𝑖, 𝜙(...) is the potentialwhich is a function of all the𝑁 atoms
in the system, and 𝑓𝑓𝑓 𝑖 is the total force acting on atom 𝑖 from all other atoms.

Eq. 3.1 is a second-order differential equation, the solutions 𝑟𝑟𝑟 𝑖(𝑡) of which yield the
trajectory for atom 𝑖. This equation can be solved using an iterative scheme known as the
Velocity-Verlet algorithm [43], which comprises two steps. First, given a current time 𝑡, the
velocity at half a time step in the future, 𝑣𝑣𝑣(𝑡 + 1

2Δ𝑡) is estimated from the acceleration,
and thus the force 𝑓𝑓𝑓 𝑖(𝑡), at time 𝑡,

𝑣𝑣𝑣 (𝑡 + 1
2Δ𝑡) = 𝑣𝑣𝑣(𝑡) + Δ𝑡

2 𝑎𝑎𝑎(𝑡). (3.2)

From this estimate of the velocities, the positions at a time step in the future can be
computed,

𝑟𝑟𝑟 (𝑡 + Δ𝑡) = 𝑟𝑟𝑟(𝑡) + Δ𝑡𝑣𝑣𝑣 (𝑡 + Δ𝑡
2 ) = 𝑟𝑟𝑟(𝑡) + Δ𝑡𝑣𝑣𝑣(𝑡) + Δ𝑡2

2 𝑎𝑎𝑎(𝑡). (3.3)
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3.2. Extracting information frommolecular dynamics simulations

(a) Schematic of PBC (b) A realistic simulation box

Figure 3.1: a) Illustration of Periodic Boundary Conditions (PBC). Atoms and interactions be-
tween them are allowed to cross the boundary of the simulation box, represented by the black
square, and interact with the images of the atoms of the other end of the cell. As long as the box
is sufficiently large such that an atom will not interact with itself, this scheme effectively rep-
resents an infinite system. b) A realistic MD simulation box of crystalline benzene containing
roughly 60 000 atoms.

Second, the positions 𝑟𝑟𝑟(𝑡 + Δ𝑡) can be used to compute the forces and thus the accelera-
tion at time 𝑡 + Δ𝑡, which in turn gives the velocities at time 𝑡 + Δ𝑡,

𝑣𝑣𝑣 (𝑡 + Δ𝑡) = 𝑣𝑣𝑣 (𝑡 + 1
2Δ𝑡) +

Δ𝑡
2 𝑎𝑎𝑎 (𝑡 + Δ𝑡) = 𝑣𝑣𝑣(𝑡) + Δ𝑡 𝑎𝑎𝑎(𝑡) + 𝑎𝑎𝑎(𝑡 + Δ𝑡)

2 . (3.4)

The computationally expensive step in this scheme is the evaluation of the acceleration
𝑎𝑎𝑎 (𝑡 + Δ𝑡), which involves computation of the forces. We will return to how to obtain
these forces in the next chapter, using so-called force fields or interatomic potentials to
calculate the forces between all the atoms in the system.

3.2 Extracting information frommolecular dynamics
simulations

We now turn to how we extract estimates of quantities of interest from the trajectory
of positions 𝑟𝑟𝑟 𝑖(𝑡) and velocities 𝑣𝑣𝑣 𝑖(𝑡) that we obtain from the Velocity-Verlet scheme in
Eq. 3.2, Eq. 3.3 and Eq. 3.4. For a system of 𝑁 atoms, the instantaneous state can be
described by 3𝑁 position and 3𝑁 velocity components, which can be collected into a

17



Chapter 3. Molecular Dynamics

6𝑁 -dimensional vector ΓΓΓ. ΓΓΓ is a point in the phase space of the system, with each point
in phase space representing a different configuration of positions and velocities of the
atoms. ΓΓΓ is time-dependent,ΓΓΓ(𝑡), and thus the instantaneous value of any observable𝐴
at time 𝑡 is 𝐴(ΓΓΓ(𝑡)). 𝐴(𝑡) could for instance be the density 𝜌(𝑡), which is directly a func-
tion of the positions 𝑟𝑟𝑟 𝑖(𝑡) that are included inΓΓΓ(𝑡). Within this formulation, an estimate
for𝐴 can be extracted by averaging the instantaneous values𝐴 (ΓΓΓ(𝑡)) in time over the𝑁𝑡
time steps of the simulation

𝐴estimate ≈ ⟨𝐴 (ΓΓΓ(𝑡))⟩𝑡 = 1
𝑁𝑡

𝑁𝑡
∑
𝑖=1

𝐴 (ΓΓΓ(𝑡𝑖)) . (3.5)

𝑁𝑡 has to be sufficiently large such that the estimate𝐴estimate is converged to a sufficient
degree. If the number of steps𝑁𝑡 becomes infinite, it is possible that the simulationwill
have visited every possible configurationΓΓΓ in phase space. If that is the case, the system
is so-called ergodic, and wemay replace the time-average in Eq. 3.5 by an ensemble aver-
age [42, Chapter 2],

⟨𝐴 (ΓΓΓ(𝑡))⟩𝑡 ⟺ ⟨𝐴⟩ensemble ⇒
𝐴estimate = ⟨𝐴⟩ensemble = ∑

ΓΓΓ
𝐴(ΓΓΓ)𝜌ensemble(ΓΓΓ). (3.6)

The ensemble average is a weighted average over all configurations in phase space ΓΓΓ by
the probability of observing that configuration, denoted 𝜌ensemble(ΓΓΓ). However, since
the positions and velocities for each atom in the system can be changed continuously
there are an infinite number of possible states ΓΓΓ, which means that the sum over ΓΓΓ in
Eq. 3.6 is actually an integral,

⟨𝐴⟩ensemble = ∫ΓΓΓ𝐴(Γ
ΓΓ) ̃𝜌ensemble(ΓΓΓ)𝑑ΓΓΓ. (3.7)

Note that ̃𝜌ensemble(ΓΓΓ) is now a probability distribution, and thus the probability of ob-
serving a specific configuration ΓΓΓ is ̃𝜌ensemble(ΓΓΓ)𝑑ΓΓΓ.

To formulate ̃𝜌ensemble(ΓΓΓ), we need to take a quick detour into statistical mechanics.
The probability distribution for the possible accessible states ΓΓΓ depends on which ther-
modynamic ensemble the simulation is conducted in. The thermodynamic ensemble is de-
termined bywhichmacroscopic variables are kept constant. So far, we have not allowed
the number of particles or the simulation box in the MD simulation to change, which
means that the states (ΓΓΓ) we are considering all keep 𝑁 and 𝑉 constant. Furthermore,
Newton’s equations ofmotion thatwe introduced inEq. 3.1 in the previous section fulfill
conservation of energy,meaning that the total energy𝐸 as a sumof potential energy and
kinetic energy in the system is constant. This is known as themicro-canonical or𝑁𝑉𝐸 en-
semble [42, Chapter 2], and the states in phase space (ΓΓΓ) thus lies on an isosurfacewhere
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3.2. Extracting information frommolecular dynamics simulations

𝑁 , 𝑉 and 𝐸 are all constant. One central assumption in statistical mechanics is that all
accessible states are equally probable [44]. The probability distribution ̃𝜌𝑁𝑉𝐸(ΓΓΓ) is thus
a uniform distribution,

̃𝜌𝑁𝑉𝐸(ΓΓΓ) = 1
𝑍𝑁𝑉𝐸

, (3.8)

where𝑍𝑁𝑉𝐸 is called the partition function and is in this case equal to the number of states
in ΓΓΓ that keep𝑁 and 𝑉 constant, and have energy 𝐸.

If one now allows the total energy of the system 𝐸 to change by allowing the system
to exchange energy with a heat bath at a constant temperature 𝑇 , we arrive at the canon-
ical or 𝑁𝑉𝑇 ensemble. The accessible states (ΓΓΓ) now have the same number of particles
and the same volume as for the micro-canonical ensemble, but the energy of each state
𝐸ΓΓΓ may be different. The probability distribution in this case ̃𝜌𝑁𝑉𝑇 (ΓΓΓ) is known as the
Boltzmann distribution [44],

̃𝜌𝑁𝑉𝑇 (ΓΓΓ) = 𝑒−𝐸ΓΓΓ/𝑘𝐵𝑇
∑Γ′Γ′Γ′ 𝑒−𝐸Γ′Γ′Γ′/𝑘𝐵𝑇

= 𝑒−𝐸ΓΓΓ/𝑘𝐵𝑇
𝑍𝑁𝑉𝑇

. (3.9)

Similarly, by additionally allowing the simulation box volume 𝑉 to change we arrive at
the isothermal-isobaric or 𝑁𝑃𝑇 ensemble, which has the following probability distribu-
tion [42],

̃𝜌𝑁𝑃𝑇 (ΓΓΓ) = 𝑒(−𝐸ΓΓΓ+𝑃𝑉 )/𝑘𝐵𝑇
∑Γ′Γ′Γ′ 𝑒(−𝐸Γ′Γ′Γ′+𝑃𝑉 )/𝑘𝐵𝑇

, = 𝑒(−𝐸ΓΓΓ+𝑃𝑉 )/𝑘𝐵𝑇
𝑍𝑁𝑃𝑇

, (3.10)

where 𝑃 is the pressure, and is kept constant. For completeness, if one further allows
the number of particles𝑁 to vary, one arrives at the grand canonical ensemble.

There exists a multitude of different thermodynamic ensembles that one can sample,
but these three, the 𝑁𝑉𝐸, 𝑁𝑉𝑇 and 𝑁𝑃𝑇 ensembles are the most common in the con-
text of MD simulations. Of these, the𝑁𝑃𝑇 ensemble is the one that most closely match
experimental conditions, since experiments are typically conducted at constant temper-
ature and pressure. Recall, however, that the equations of motion that we outlined in
the previous chapter only enable sampling in the 𝑁𝑉𝐸 ensemble. In order to sample
the 𝑁𝑉𝑇 or 𝑁𝑃𝑇 ensemble, we thus need to modify the equations of motion in order
to keep the temperature and pressure constant, respectively. This can be done by intro-
ducing a thermostat for controlling the temperature, and a barostat for controlling the
pressure in the simulation. One example of a commonly used thermostat is the canon-
ical velocity rescaling thermostat proposed by Bussi et al. [45], and a popular barostat
is the Parinello-Rahman barostat in which the simulation box is allowed to change size
and shape to match the target pressure 𝑃 [46]. There exists a large body of literature
on different thermostats and barostats in addition to these, with different benefits and
drawbacks, but common to all of them is that they directly influence the dynamics of
the atoms in the simulation in order to keep the temperature and the pressure fixed, re-
spectively. This can lead to artifacts, and hence in situations when one is interested in
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Chapter 3. Molecular Dynamics

the unaltered dynamics of a system the MD simulation is often conducted in the 𝑁𝑉𝐸
ensemble which obeys Newton’s equations of motion directly.

Equipped with the knowledge of what an ensemble average is, we can return to the
scattering function defined in the previous chapter (Eq. 2.11). There, we saw that the
intermediate scattering function 𝐹(𝑞𝑞𝑞, 𝑡) was proportional to the thermal average of the
Fourier transform of the time-dependent particle density 𝜌(𝑞𝑞𝑞, 𝑡), which in turn was re-
lated to the partial differential cross section via a Fourier transform (see Eq. 2.12 and
Eq. 2.13)

𝜌(𝑟𝑟𝑟 , 𝑡) = ∑
𝑗
𝛿(𝑟 − 𝑅𝑅𝑅𝑗(𝑡)),

𝐹 (𝑞𝑞𝑞, 𝑡) = 1
𝑁 ⟨𝜌(𝑞𝑞𝑞, 0)𝜌(−𝑞𝑞𝑞, 𝑡)⟩ ,

⇒ ( 𝜕2𝜎
𝜕Ω𝜕𝐸′)coh

= 𝜎coh
8𝜋ℏ

|𝑘′|
|𝑘| ∫ ⟨𝜌(𝑞𝑞𝑞, 0)𝜌(−𝑞𝑞𝑞, 𝑡)⟩thermal 𝑒−𝑖𝜔𝑡𝑑𝑡.

(3.11)

The thermal average defined in Eq. 2.4 is the same as an ensemble average conducted in
the𝑁𝑉𝑇 ensemble, as can be seen from Eq. 3.9. Through ergodicity, we can rewrite the
thermal average as a time average, to arrive at

⇒ ( 𝜕2𝜎
𝜕Ω𝜕𝐸′)coh

= 𝜎coh
8𝜋ℏ

|𝑘′|
|𝑘| ∫ ⟨𝜌(𝑞𝑞𝑞, 0)𝜌(−𝑞𝑞𝑞, 𝑡′)⟩𝑡 𝑒−𝑖𝜔𝑡

′𝑑𝑡′. (3.12)

Eq. 3.12 states that if we conduct an MD simulation in the 𝑁𝑉𝑇 ensemble, and the as-
sumption of ergodicity holds, then we can compute the coherent partial differential
cross section from the Fourier transform of the time average of the correlation of the
particle density 𝜌(𝑞𝑞𝑞, 𝑡). We can similarly obtain the incoherent partial differential cross
section.

The restriction to the 𝑁𝑉𝑇 ensemble for the MD simulation is only illusory. In the
thermodynamic limit,𝑁 → ∞, a thermal average of a function𝐴 in the𝑁𝑉𝐸 ensemble
is identical to one in the 𝑁𝑉𝑇 ensemble if the temperature 𝑇 is chosen such that 𝐸 =
⟨𝐸⟩𝑁𝑉𝑇 , since 𝐸 and 𝛽 = 1/𝑘𝐵𝑇 are conjugate variables [42]. For this to hold, the function
𝐴 should be a sum of single particle functions, which is true for the particle density
𝜌(𝑟𝑟𝑟 , 𝑡). Note, however, that the fluctuations of the property𝐴 is different between𝑁𝑉𝐸
and 𝑁𝑉𝑇 , even if the average is the same, which may lead to certain properties that
are derived from the fluctuations being different. Taken together, since the scattered
intensity in a neutron scattering experiment is proportional to the partial differential
cross section, this means that we can use MD in either the 𝑁𝑉𝑇 or 𝑁𝑉𝐸 ensembles to
simulate neutron scattering experiments.
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3.3. Studying liquid chromophores with molecular dynamics

3.3 Studying liquid chromophores with molecular
dynamics

Figure 3.2:The threemolecules (a) and the two structuralmodels (b) that we studied in paper III,
together with schematic visualizations of the two correlation functions that were calculated (c-
d). The same-time normal vector correlation function in panel (c) describes the degree to which
neighboringmolecules are aligned, and thenormal vector autocorrelation function (d) describes
the movement of a single molecule as a function of time.

We will now focus on how to apply MD simulations for analyzing the structure and
dynamics of systems of liquid chromophores. There aremany possible observables that
one can choose to studyduringanMDsimulation, andone suchobservable thatwe stud-
ied in paper I are correlation functions. In this paper, we studied three different proto-
type systems consisting of ∼1500 molecules of the same species. The three molecules
were perylene, perylene-ethyl and perylenediimide. In particular we were interested
in the stability of supramolecular aggregates of these molecules and changes in their
dynamics as a function of temperature, in order to gain insight into which molecular
mechanics affect aggregate stability. To this end, we conductedMD simulations at tem-
peratures in the range 200K to 600K. At each temperature andmolecule, a simulations
were carried out starting from two different structural models — an aggregate struc-
ture and a disordered structure. The molecules and structural models are visualized in
Fig. 3.2a and b, respectively.

From each simulation, we compute two normal vector correlation functions, defined

21



Chapter 3. Molecular Dynamics

as

𝑁(𝑟) = ⟨
𝑁
∑
𝑖=1

∑
𝑗≠𝑖

𝛿(𝑟𝑟𝑟 − 𝑟𝑟𝑟 𝑖𝑗)𝑛̂𝑛̂𝑛̂𝑖(𝑡) ⋅ 𝑛̂𝑛̂𝑛̂𝑗(𝑡)⟩
𝑡

𝐽 (𝜏 ) = ⟨𝑛̂𝑛̂𝑛̂𝑖(𝑡) ⋅ 𝑛̂𝑛̂𝑛̂𝑖(𝑡 + 𝜏)⟩𝑖,𝑡 ,
(3.13)

where𝑛𝑛𝑛𝑖(𝑡) is the normal vector ofmolecule 𝑖 at time 𝑡 and 𝑟𝑟𝑟 𝑖𝑗 is the pairwise distance vec-
tor between molecules 𝑖 and 𝑗. The normal vector is defined as pointing out of plane of
themolecule, and is schematically visualized together with𝑁(𝑟) and 𝐽 (𝜏 ) in Fig. 3.2c-d.
𝑁(𝑟) is called the same-time normal vector correlation function, and describes the aver-
age relative orientation of molecules at a distance 𝑟 . Typically, at large distances 𝑟 ,𝑁(𝑟)
is averaged over many molecules and approaches a limiting value that we call 𝑁lim. If
the neighboring molecules are oriented in the same direction 𝑁lim ≃ 1, otherwise 𝑁lim
is small. 𝐽 (𝜏 ) is the normal-vector auto-correlation function, and describes how the ori-
entation of amolecule changes as a function of time. 𝐽 (𝜏 ) exhibits a double-exponential
decay, anddecaysmore quickly themore rapidly themolecules change their orientation.
By fitting a double exponential function 𝐽 (𝜏 ),

𝐽 (𝜏 ) = 𝐴1 exp(−𝑡/𝜏1) + 𝐴2 exp(−𝑡/𝜏2), (3.14)

one can extract the typical timescales of the motion of the molecules, 𝜏1 and 𝜏2. The
larger of these, 𝜏2, corresponds to reorientation of the molecules, which is the type of
large-scale molecular motion we are interested in. By studying the temperature depen-
dence of 𝑁lim and 𝜏2, we can gain insight into the stability of the aggregate structure,
and its dynamics.

In Fig. 3.3a we can see that the average orientation 𝑁lim has a strong temperature
dependence for perylene and perylene-ethyl for the aggregate structure. For low tem-
peratures, 𝑁lim is large which indicates that the molecules are oriented in the same
direction and remain in the aggregate structure, but at 400K 𝑁lim decays quickly, in-
dicating that the system transitions into a disordered structure. From these observa-
tionswemaydraw the conclusion that the aggregate structure is stable for temperatures
<400K for perylene and perylene-ethyl, at least on the timescale of 10 ns MD simula-
tions. Perylenediimide, on the other hand, does not exhibit such a strong temperature
dependence, as it remains in the aggregate structure throughout the temperature range.
This can possibly be attributed to the larger and bulkier size of perylenediimide, which
leads to stronger intermolecular interactions between neighboring molecules.

Turning to the speed of molecular reorientation as described by the reorientation
time 𝜏2 inFig. 3.3b andEq. 3.14,weobserve that it also increasesby several orders ofmag-
nitude for perylene and perylene-ethyl as temperature is increased, from 𝜏2 ≈ 10 ns to
𝜏2 ≈ 10 ps, whilst the dynamics remain on the order of 10 ns for perylenediimide. Note
that this effect is independent of the structuralmodel, as both aggregate anddisordered
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Figure 3.3: 𝑁lim (a) and 𝜏2 (b) as a function of temperature for the three different molecular sys-
tems. Both 𝑁lim and 𝜏2 exhibit a clear temperature dependence for the smaller perylene deriva-
tives, perylene (1) and perylene-ethyl (2), with the aggregate structure becoming unstable at
400K. Perylenediimide (3) remains in the aggregate structure regardless of temperature, which
can be attributed to the stronger intermolecular interactions between the bulkier perylenedi-
imide molecules.

systems exhibit a similar temperature dependence. The rapid increase in 𝜏2 by several
orders of magnitude is reminiscent of glass transitions, which are characterized by the
large-scale dynamics in the system becoming slower with decreasing temperature [47].

In short, this study exemplifies howMD simulations can be used to study liquid chro-
mophores. However, MD simulations are limited by simulation length, which is par-
ticularly impactful in the study of glassy systems. The MD simulations conducted in
this study had a simulation length of 10 ns. For comparison, when glass transitions
and glassy systems are studied experimentally, one typically denotes the glass transi-
tion temperature as the temperature at which the dynamics in the system are on the
order of the timescale of the experiment, 100 s. Because of this limitation, MD simu-
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Chapter 3. Molecular Dynamics

lations are all but guaranteed to overestimate the glass transition temperature, as the
dynamics may appear frozen on the timescale of simulation but may be non-glassy at
experimental conditions. With that being said, the role of simulations is not to serve as
a substitute for experiments, but rather as a compliment, as one can in detail study the
behavior of the system at an atomic or molecular level.

3.4 Takeaways
In this chapter, we have seen how MD simulations are performed and how they can be
used to estimate variousphysical quantities. Wehavealso seen that theyhavea clear link
to the measured intensity in neutron scattering experiments via the time-dependent
particle density (Eq. 3.12), which we can use to predict experimental neutron scattering
results. Finally, we took an example from paper I in which we applied MD simulations
to a system of perylene derivatives, and showed that it is indeed a useful technique for
studying the structure and dynamics of liquid chromophores. However, the keen-eyed
readermight have spotted one key ingredient in this simulation soup that I have system-
atically ignored, namely, the question of how one obtains the forces 𝑓𝑓𝑓 𝑖 acting on atom 𝑖
that are required to solve the equations ofmotions inMDsimulations (Eq. 3.1). Thenext
chapter of this thesis will be fully dedicated to exploring this question.
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4
Machine-learned Force Fields

My job is to predict DFT, not reality.

Fredrik, 2022

I will primarily use unnecessarily complicated and highly
inefficient but really huge neural network models to burn a lot
of computer time.

Paul, 2024

We have now arrived at the final, and possibly most important, piece of the puzzle
that we need to solve in order to accurately simulate neutron scattering experiments
withMD simulations, namely how one obtains the forces between atoms. The quality of
the simulation depends on the quality of these forces, as they determine the dynamics.
If the forces are inaccurate, so will the MD simulation be, and by extension, predicted
observables such as neutron scattering spectra. Wewill begin this chapter by briefly dis-
cussing the two traditionalmethods that have been used for obtaining forces, which are
DFT, the slow but accurate, and heuristic force fields (FFs), the fast but inaccurate. We
will then dive headfirst into the world of machine-learned force fields (ML-FFs), which
promise to combine the speed of heuristic FFs with the accuracy of DFT.
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Chapter 4. Machine-learned Force Fields

4.1 Electronic-structure methods and classical force
fields

The goal of an FF is to provide a set of forces for a given configuration of atoms. Atomic
systems behave according to the laws of quantummechanics, and subsequently all the
nuclei and electrons in the system obey the many-body Schrödinger equation [48, Chap-
ter 3],

𝐻̂Ψ = 𝐸Ψ
𝐻̂ = − 1

2 ∑𝑖
∇2𝑖 −∑

𝐼
1

2𝑀𝐼
∇2𝐼 −∑

𝑖,𝐼
𝑍𝐼

|𝑟𝑟𝑟 𝑖 −𝑅𝑅𝑅𝐼 |

+ 1
2 ∑𝑖≠𝑗

1
|𝑟𝑟𝑟 𝑖 − 𝑟𝑟𝑟 𝑗 |

+ 1
2 ∑𝐼≠𝐽

𝑍𝐼𝑍𝐽
|𝑅𝑅𝑅𝐼 −𝑅𝑅𝑅𝐽 |

,
(4.1)

where we have used atomic units (𝑒 = 4𝜋𝜖0 = ℏ = 1) for readability. Lower-case in-
dices run over electrons and uppercase indices run over nuclei, which have mass 𝑀𝐼
and atomic number 𝑍𝐼 . 𝑟𝑟𝑟 𝑖 denotes the position of electron 𝑖 and 𝑅𝑅𝑅𝐽 is the position of
nucleus 𝐽 . Solving Eq. 4.1 would give us a complete description of the system at the
current moment in time, including all the forces between the atoms, which we need in
order to propagate an MD simulation. However, the many-body Schrödinger equation
is only analytically solvable in the simplest of cases involving a single electron, and nu-
merically only for moderately sized or high-symmetry systems [49]. One major hurdle
in solving Eq. 4.1 are the terms involving pairs of particles, denoted by the sums over
𝑖 ≠ 𝑗, 𝑖, 𝐼 , and 𝐼 ≠ 𝐽 , which scale exponentially in complexity as the number of parti-
cles in the system increases. DFT proposes to solve this problem by reformulating the
Schrödinger equation. First, the slow-moving nuclei are assumed to be stationary rel-
ative to the electrons, which is known as the Born-Oppenheimer approximation [50].
Second, the fully-interacting electrons are replaced by𝑁 fictitious non-interacting elec-
trons that still have the same ground-state density 𝑛(𝑟𝑟𝑟) through the Kohn-Sham (KS)
equations ([49, 51]),

(−∇
2
2 + 𝑣𝑠[𝑛](𝑟𝑟𝑟)) 𝜑𝑗(𝑟𝑟𝑟) = 𝜖𝑗𝜑𝑗(𝑟𝑟𝑟)

𝑣𝑠[𝑛](𝑟𝑟𝑟) = 𝑣(𝑟𝑟𝑟) + ∫ 𝑑3𝑟 ′ 𝑛(𝑟′𝑟 ′𝑟 ′)
|𝑟𝑟𝑟 − 𝑟 ′𝑟 ′𝑟 ′| + 𝑣𝑥𝑐[𝑛](𝑟𝑟𝑟)

𝑣𝑥𝑐[𝑛](𝑟𝑟𝑟) =
𝛿𝐸𝑥𝑐[𝑛]
𝛿𝑛(𝑟𝑟𝑟)

𝑛(𝑟𝑟𝑟) =
𝑁
∑
𝑗=1

|𝜑𝑗(𝑟𝑟𝑟)|2.

(4.2)
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4.1. Electronic-structure methods and classical force fields

𝜑𝑗(𝑟𝑟𝑟) is theKS orbital for state 𝑗 of the non-interacting system,with associated energy 𝜖𝑗 ,
and [𝑛] denotes that a quantity is a functional of the electron density 𝑛(𝑟𝑟𝑟). A key feature
of theKS equations is that the ground state density 𝑛(𝑟𝑟𝑟) is a function of {𝜑𝑗(𝑟𝑟𝑟)}𝑗 , which in
turn also depends on the density. The equations thus have to be solved self-consistently,
by iteratively solving for and updating the density 𝑛(𝑟𝑟𝑟) until it has converged. Once the
ground state density 𝑛(𝑟𝑟𝑟) has been obtained one can compute relevant physical proper-
ties such as the forces between the nuclei. Note that the external potential 𝑣(𝑟𝑟𝑟) includes
the Coulomb interaction from the nuclei acting on the electrons.

The KS equations are formally exact, and could be solved perfectly if the exchange-
correlation energy functional 𝐸𝑥𝑐[𝑛] and it’s associated potential 𝑣𝑥𝑐[𝑛](𝑟𝑟𝑟)was known. Un-
fortunately, 𝐸𝑥𝑐[𝑛] is in general unknown, leaving users of DFTwith no other choice but
to rely on approximations for 𝐸𝑥𝑐[𝑛]. There exists a plethora of DFT functionals, and de-
pending on the choice of functional a DFT calculation can yield different results. As
such, DFT calculations are inherently dependent on the choice of functional.

The KS equations (Eq. 4.2) are significantly easier to solve computationally than the
many-body Schrödinger equation (Eq. 4.1), but the KS equations still scale poorly with
the number of electrons in the system. In practice, DFT is often not used for systems
with more than hundreds or possibly thousands of atoms, which is short of the tens of
thousands to millions of atoms that are typically studied in MD simulations. Heuris-
tic FFs takes a more computationally efficient but potentially less accurate approach by
foregoing the Schrödinger equation entirely. Instead, one deals with an expansion of
the system energy in terms depending on the positions 𝑟𝑟𝑟𝑁𝑖 of the atoms in the system
[42],

𝑉 (𝑟𝑟𝑟 𝑖) = ∑
𝑖
𝑉1(𝑟𝑟𝑟 𝑖) +∑

𝑖
∑
𝑗>𝑖

𝑉2(𝑟𝑟𝑟 𝑖, 𝑟𝑟𝑟 𝑗) +∑
𝑖
∑
𝑗>𝑖

∑
𝑘>𝑗>𝑖

𝑉2(𝑟𝑟𝑟 𝑖, 𝑟𝑟𝑟 𝑗 , 𝑟𝑟𝑟𝑘) + ... (4.3)

where the first term, 𝑉1, corresponds to interactions of all𝑁 atoms with an external po-
tential, the second term with 𝑉2 corresponds to interactions between pairs of particles,
the third sum to interactions between triplets and so forth. Including more terms in
Eq. 4.3 gives in general a more accurate but less computationally efficient model. Trun-
cating the expansion at the 𝑉2 term gives a class of potentials known as pair potentials,
the most well-known of which is the Lennard-Jones potential [42],

𝑉 𝐿𝐽 (𝑟𝑟𝑟 𝑖) = ∑
𝑖
∑
𝑗>𝑖

4𝜖 [( 𝜎𝑟𝑖𝑗
)
12

− ( 𝜎𝑟𝑖𝑗
)
6
] . (4.4)

The Lennard-Jones potential involves two parameters, 𝜖 and 𝜎 , which control the shape
of the potential. These parameters are adjusted such that the potential gives reasonable
estimates for various physical properties such as, e.g., the density of the system under
study when used in an MD simulation, which yields a potential that is tailored for a
specific system. This is a common strategy for heuristic FFs in general, where the main
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Chapter 4. Machine-learned Force Fields

difference between different potentials is the type of interactions considered and the
number of free parameters available in the model. Once optimized, heuristic FFs such
as the Lennard-Jones potential can be readily evaluated for the large number of atoms
in typical MD simulations, but at the cost of not being as accurate as DFT calculations.

4.2 Machine-learned force fields and neural network
potentials
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Figure 4.1: Calculation of a) the binding energy between two benzenemolecules as a function of
distance, and b) the change in potential energy as the unit cell of crystalline benzene is scaled,
using three different methods; a Lennard-Jones potential, NEP which is an ML-FF, and DFT
using the CX functional. Panel c) compares the computational cost of evaluating the energies
with eachmethod. TheML-FF, NEP, accurately captures the target curves fromDFT, while still
having the same low computational cost as the Lennard-Jones potential.

Machine-learned forcefields (ML-FFs) take a similar approachasheuristic forcefields
(FFs), with the difference being that ML-FFs typically have a larges number of parame-
ters whichmakes them very flexible and thus possibly more accurate. Here we will give
a brief overview of ML-FFs; a more comprehensive review can for instance be found in
reference [52].
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4.2. Machine-learned force fields and neural network potentials

An ML-FF is often trained to reproduce energies and forces from a training dataset
of atomic configurations with reference energies and forces from DFT, with the aim of
obtaining a model that is as accurate as DFT but has similar computational cost as a
heuristic FF. This is demonstrated in Fig. 4.1, where the binding energy between two
benzenemolecules as a function of separation (Fig. 4.1a) and the change in potential en-
ergy as the axes of the unit cell of crystalline benzene are scaled (Fig. 4.1b), have been
computed using a Lennard-Jones potential, an ML-FF called NEP that we will discuss
in detail in Sect. 4.3, and DFT. The computational cost of evaluating the energies with
eachmethodaregiven inFig. 4.1c,withDFTbeingaboutfiveordersofmagnitude slower
than the FFs. Both the Lennard-Jones potential and the NEPmodel predict the binding
energy accurately, but the Lennard-Jones potential fails for the more complex case of
predicting the energy-volume curve. The NEP model on the other hand accurately cap-
tures the energy-volume curve, whilst retaining the high computational performance
the Lennard-Jones potential.

Likewith heuristic FFs, there exists a large number of different types ofML-FFs based
on different functional forms. These can be divided into two main categories, namely
kernel-basedmethods and neural-network basedmethods.

4.2.1 Kernel-basedmethods
Kernel-based methods typically employ a probabilistic approach, with the assumption
that the energy 𝐸 as a function of the positions of𝑁 atoms takes the form of a gaussian
process (GP) [53, Chapter 2],

𝐸(𝑞𝑞𝑞) ∼ 𝒢𝒫 (𝑚(𝑞𝑞𝑞), 𝑘(𝑞𝑞𝑞, 𝑞′𝑞′𝑞′))
𝑚(𝑞𝑞𝑞) = 𝔼 [𝐸(𝑞𝑞𝑞)]

𝑘(𝑞𝑞𝑞, 𝑞′𝑞′𝑞′) = 𝔼 [(𝐸(𝑞𝑞𝑞) − 𝑚(𝑞𝑞𝑞)) (𝐸(𝑞′𝑞′𝑞′) − 𝑚(𝑞′𝑞′𝑞′))] .
(4.5)

By modeling the potential energy as a GP we restrict the potential energy function 𝐸(𝑞𝑞𝑞)
to belong to a family of functions inwhich all the points are jointly Gaussian distributed.
TheGP is fully determinedby itsmean function𝑚(𝑞𝑞𝑞) and its covariance function 𝑘(𝑞𝑞𝑞, 𝑞′𝑞′𝑞′),
with the vector 𝑞𝑞𝑞 ∈ 𝑅3𝑁 representing a specific configuration of the 𝑁 atoms in the
system. The covariance function can be interpreted as encoding the similarity between
two configurations 𝑞𝑞𝑞 and 𝑞′𝑞′𝑞′.

In less formal terms, by modeling the potential energy surface as a GP we constrain
it to be smoothly varying as the positions of the atoms represented by the vector 𝑞𝑞𝑞 are
changed,witheachconfigurationhavinganassociatedpredictedmeanenergy𝐸(𝑞𝑞𝑞)with
standarddeviation𝜎𝐸(𝑞𝑞𝑞). This leadsus to themainbenefitofGP-basedmethods: theun-
certainty in the predictions can readily be extracted as the predicted variance 𝜎𝐸(𝑞𝑞𝑞). By
monitoring the uncertainty during aMD simulation, configurations of atoms forwhich
the model gives an inaccurate prediction can be identified. These uncertain structures
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can then be included in the training dataset to improve the model, which is known as
active learning [54, 55]. Thedisadvantageof kernel-basedmethods is that they are compu-
tationally expensive to evaluate, with the cost of evaluating the model scaling as 𝒪(𝑛3),
where 𝑛 are the number of data points in the training dataset, although some strategies
exist for partially mitigating this limitation [56].

A specific example of a GP-based ML-FF is the Gradient-Domain Machine-Learning
model (GDML, [57]), which is trained to predict the forces𝐹𝐹𝐹(𝑞𝑞𝑞), with the potentialmodel
being obtained by integration, 𝐸(𝑞𝑞𝑞) = ∫𝑞𝑞𝑞0 𝐹𝐹𝐹(𝑞′𝑞′𝑞′)𝑑𝑞′𝑞′𝑞′. sGDML is an extension of GDML
in which relevant symmetries are incorporated to improve the efficiency of the model
[58]. Another example of a kernel-based method is the Gaussian Approximation Poten-
tial (GAP) [59],

4.2.2 Neural network-basedmethods
Popularized by Behler and Parrinello [60, 61], a neural network (NN) potential denoted
𝑈 with weights 𝑤𝑤𝑤 can be used to predict the energies for each atom 𝑖 in a system of 𝑁
atoms, and can be written as follows,

𝐸𝑖 = 𝑈 (𝑤𝑤𝑤,𝑞𝑞𝑞({𝑟𝑟𝑟 𝑖𝑗}))
→ 𝐹𝐹𝐹 𝑖 = ∇𝑟𝑟𝑟 𝑖𝑈 (𝑤𝑤𝑤,𝑞𝑞𝑞({𝑟𝑟𝑟 𝑖𝑗})).

(4.6)

𝐸𝑖 and 𝐹𝐹𝐹 𝑖 is the per-atom potential energy and the forces acting on atom 𝑖 respectively.
The per-atom potential energies are summed up to yield 𝐸 = ∑𝑁

𝑖 𝐸𝑖, as only the total
potential energy for a structure is defined, and 𝑈 can thus be seen as a model for the
potential energy surface of the system. The forces 𝐹𝐹𝐹 𝑖 are obtained as the gradient of 𝑈
with respect to the coordinates of atom 𝑖, 𝑟𝑟𝑟 𝑖.

Uncertainty estimates cannotbeas easily extracted fromNN-basedas fromGP-based
ML-FFs, but they are generallymore computationally efficient. Oneway to estimate the
uncertainty for NN ML-FFs is to train an ensemble of models and use each model to
compute the forces. This gives a distribution of force predictions over the ensemble,
which can be used to estimate the uncertainty [62].

Other examples of neural network-based methods include Deep Potential (DP) [63],
Embedded AtomNeural Network (EANN) [64], ANI-1 [65], SchNet [66], and NEP which
we will return to in Sect. 4.3.

4.2.3 Using descriptors to represent atomic structures
Bothkernel-basedandneural network-basedML-FFsdonot typically have theCartesian
coordinates of a set of atoms, {𝑟𝑟𝑟 𝑖}, as input, but rather a so-called descriptor vector 𝑞𝑞𝑞({𝑟𝑟𝑟 𝑖𝑗}).
This is a function of the relative positions of atom 𝑖 and all neighboring atoms 𝑗, and
can be thought of as a chemical fingerprint describing the environment around atom
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𝑖. The reason for introducing this seemingly cumbersome descriptor vector is that it
guarantees that the model fulfills certain symmetries dictated by physics.

First of all, there are a set of invariances, transformations of the atomic system that
should not change the predicted energies of forces. These include invariance under
translations and rotations of the system, and permutations of atoms with the same ele-
ment [67]. Recently, equivarianceshave additionally started to be incorporated inML-FFs
[68, 69]. An equivariant transformation can, for instance, be a rotation; when the input
structure is rotatedby a certain amount, the output forces should be rotated accordingly.
Specifically, both descriptors and themodel are designed to transformequivariantly un-
der SO(3) rotations of the input. These are often implemented using equivariant graph
neural networks [70].

Understanding the descriptor vector is key to understanding the success of ML-FFs
in recent years [71]. AnMLmodel in general, and a neural network in particular, is just a
“dumb”mathematical function that takes numbers as input and blindly outputs (or “pre-
dicts”) other numbers. During training, the parameters of this function are adjusted
such that it bestmimics the examples of inputs and corresponding target outputs in the
training data set. I want to stress that themodelmimics the training data; saying that an
ML “model learns” is to someextent amisnomer. Crucially, thismeans that anML-FFon
its own does not know anything about physics. Furthermore, asMLmodels typically in-
volvemany parameters interacting non-linearly, it is often difficult to know beforehand
what the output will be for a specific input, a problem that becomes exponentially more
difficult as the size of themodel increases. Taken together, thismeans that anMLmodel
canproduceunexpectedoutputswhenpresentedwithan input that is different fromthe
examples in the training data set, a problem that is known as out-of-distribution pre-
diction and is widely researched in the ML literature [72]. A famous recent example of,
at least in part, out-of-distribution predictions are the hallucinations of large-language
models like ChatGPT [73], leading to possibly non-factual responses [74, 75]. AnML-FF
can to some extent be protected from the issues of out-of-distribution prediction by in-
corporating a descriptor vector that ensures that the input to the ML-FF is physically
meaningful. An added benefit of using a descriptor is that the model automatically ful-
fills the relevant symmetries, which means that these do not need to be “learnt” during
training. However, even with a descriptor vector an ML-FF still suffers from the issues
of out-of-distribution predictions, for instance if structures encountered during simu-
lations are vastly different from the ones in the training data set. Like with any other
ML model, ML-FFs can be hardened against this problem by ensuring that the train-
ing data set samples the chemical space of interest well, for example by using entropy-
maximized datasets [76], but in practice one can never guarantee the robustness of the
predictions of the ML-FF.

The points discussed in this section are the general considerations that go into craft-
ing a physically accurate descriptor, the exact implementation of which can change for
different ML-FFs. Examples of often-used descriptors are atom-centered symmetry
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functions (ACSF) [60, 61], smooth overlap of atomic orbitals (SOAP) [77], spherical har-
monics [78] and the many-body tensor representation [79]. In the next section, we will
take a look at a specific implementation of an NN-based ML-FF, and discuss its associ-
ated descriptor vector in detail.

4.3 Neuroevolution potentials
Wewill now turn to a specific type of neural network-basedmachine-learned potential,
namely the neuroevolution potential (NEP) developed and implemented in the GPUMD
package by Zheyong Fan to which I am a contributing developer, presented in paper I.
In this section, we will describe NEPmodels in detail, starting with the formalism.

4.3.1 The NEP formalism
Similarly to the Behler-Parinello NN-ML-FFs described in Eq. 4.6, in NEP the energy
of atom 𝑖, 𝐸𝑖, is predicted as a function of a descriptor vector with 𝑁des components,
denoted 𝑞𝑞𝑞𝑖. The NN consists of a single fully connected hidden layer, and the predicted
energy takes the form

𝐸𝑖 = 𝑈 (𝑤𝑤𝑤,𝑞𝑞𝑞) =
𝑁neu

∑
𝜇=1

𝑤 (1)𝜇 tanh(
𝑁des

∑
𝜈=1

𝑤 (0)𝜇𝜈 𝑞𝑖𝜈 − 𝑏(0)𝜇 ) − 𝑏(1). (4.7)

𝑤𝑤𝑤 (0) and 𝑏𝑏𝑏(0) are the weight matrix from the input descriptor vector to the hidden layer,
and 𝑤𝑤𝑤 (1) and 𝑏(1) the weights and bias term from the hidden layer to the single output
neuron. The activation function for the hidden layer is tanh.

Note that the parameters for the model in Eq. 4.7, which for historical reasons is
known as a NEP3 model, are shared between all atoms in the system. This has the cru-
cial benefit that the model does not increase in size as the number of atoms in the sim-
ulated system increases, which could otherwise lead to amodel that is computationally
impossible to evaluate for themillions of atoms in anMDsimulation. However, sharing
weights between all atoms in a system can lead to a insufficiently flexible model, espe-
cially in systems with many different atomic species and thus a potentially large input
space of possible descriptor vectors 𝑞𝑞𝑞. NEP4 increases the flexibility of NEP models by
having an individual network for each atomic species 𝛼 in the system, 𝑈 (𝑤𝑤𝑤𝛼 , 𝑞𝑞𝑞) [80],
yielding a possibly more accurate model.

The descriptor vector 𝑞𝑞𝑞 takes the same shape for both NEP3 and NEP4, and is com-
prised of a radial part and an angular part (Fig. 4.2a). The radial part has 𝑛Rmax + 1 com-
ponents and is defined as

𝑞𝑖𝑛 = ∑
𝑗≠𝑖

𝑔𝑛(𝑟𝑖𝑗). (4.8)
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Figure 4.2: a) Schematic of radial (green) and angular (red) descriptor components. b) Visual-
ization of three radial and angular descriptor components. Note that the peak position of de-
scriptor component 𝑛 varies. c) principal component analysis (PCA) plot of the two principal
descriptor components for ∼ 900 structures of crystalline benzene, colored by atomic species.

The summation runs over all neighboring atoms 𝑗 to atom 𝑖, where 𝑟𝑖𝑗 is the distance
between them. The contribution from each neighbor, 𝑔𝑛(𝑟𝑖𝑗), is in turn computed from
𝑁R
bas + 1 basis functions,

𝑔𝑛(𝑟𝑖𝑗) =
𝑁 R
bas

∑
𝑘=0

𝑐𝑖𝑗𝑛𝑘𝑓𝑘(𝑟𝑖𝑗)

𝑓𝑘(𝑟𝑖𝑗) = 1
2 [𝑇𝑘 (2 (

𝑟𝑖𝑗
𝑟R𝑐 − 1)

2
− 1) + 1] 𝑓𝑐(𝑟𝑖𝑗)

(4.9)

where 𝑇𝑘(...) is the 𝑘th-order Chebyshev polynomial of the first kind. 𝑓𝑐(𝑟𝑖𝑗) is a cutoff
function that ensures that the contribution 𝑔𝑛(𝑟𝑖𝑗) from atom 𝑗 decreases smoothly to
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zero as the distance 𝑟𝑖𝑗 approaches the radial cutoff distance 𝑟R𝑐 , and is defined as

𝑓𝑐(𝑟𝑖𝑗) = {
1
2 [1 + cos (𝜋 𝑟𝑖𝑗

𝑟R𝑐 )] , 𝑟𝑖𝑗 ≤ 𝑟R𝑐
0, 𝑟𝑖𝑗 > 𝑟R𝑐 .

(4.10)

𝑛Rmax, 𝑁R
bas, and 𝑟R𝑐 are hyperparameters that are set before training. A key feature of

the NEP formalism is that the coefficients 𝑐𝑖𝑗𝑛𝑘 in the radial basis expansion are free pa-
rameters that are optimized in conjunction with the weights𝑤𝑤𝑤 and biases 𝑏𝑏𝑏 of the NN.
These coefficients depend on the species of atom 𝑖 and 𝑗, which allows NEP to tailor the
message 𝑔𝑛(𝑟𝑖𝑗) from each neighbor, increasing the flexibility of the model.

The angular descriptor vector are similarly defined as

𝑞𝑖𝑛𝑙 =
2𝑙 + 1
4𝜋 ∑

𝑗≠𝑖
∑
𝑘≠𝑖

𝑔𝑛(𝑟𝑖𝑗)𝑔𝑛(𝑟𝑖𝑘)𝑃𝑙 (cos 𝜃𝑖𝑗𝑘) (4.11)

with 0 < 𝑛 < 𝑛𝐴max and 1 ≤ 𝑙 ≤ 𝑙3bmax as hyperparameters that control the size of the
basis expansion. 𝑃𝑙(...) is the Legendre polynomial of order 𝑙, and 𝜃𝑖𝑗𝑘 is the angle formed
between the two pairs of atoms, 𝑖𝑗 and 𝑖𝑘. This expression is a three-body descriptor as
it involves three atoms; the central atom 𝑖 and two neighboring atoms 𝑗 and 𝑘. Higher
order terms, such as four-bodyorfive-body interactions, canadditionally be included in
theNEP formalism, butwewill not describe those indetail here as thenotationbecomes
rather cumbersome. Please see paper I for details.

The radial and angular components of the descriptor vectors for a benzene molecule
are visualized as a function of interatomic distance 𝑟𝑖𝑗 in Fig. 4.2b. Thepeaks of the basis
functions are in different positions for different descriptor components, which can be
interpreted as the different components probing different regions of the chemical envi-
ronment. Typically, a NEPmodel encounters a large number of chemical environments
with their own descriptor vectors. This is visualized as a PCA plot in Fig. 4.2c, where the
descriptors for∼900 structures of crystalline benzene are plotted. Although the descrip-
tors for the atoms of the same species fall into similar regions, the descriptors still vary
dramatically within these regions.

The descriptor vector as defined fulfills the invariance requirements we discussed in
the previous section. Invariance under translation and rotation of the system is fulfilled
as the descriptors only depend on the relative distance 𝑟𝑖𝑗 betweenpairs of atoms, aswell
as theangle 𝜃𝑖𝑗𝑘 between triplets of atoms. Furthermore, invarianceunderpermutations
of atoms of the same species is guaranteed by the summation over neighbors in Eq. 4.8
and Eq. 4.11.

It is straightforward to compute the partial force acting on atom 𝑖using the chain rule,

34



4.3. Neuroevolution potentials

as both the expressions for the model and the descriptor vector are entirely analytical,

𝜕𝐸𝑖
𝜕𝑟𝑟𝑟 𝑖𝑗

=
𝑛Rmax

∑
𝑛=0

𝜕𝐸𝑖
𝜕𝑞𝑖𝑛

𝜕𝑞𝑖𝑛
𝜕𝑟𝑟𝑟 𝑖𝑗

+
𝑛Amax

∑
𝑛=0

𝑙3bmax

∑
𝑙=1

𝜕𝐸𝑖
𝜕𝑞𝑖𝑛𝑙

𝜕𝑞𝑖𝑛𝑙
𝜕𝑟𝑟𝑟 𝑖𝑗

+
𝑛Amax

∑
𝑛=0

𝑙4bmax

∑
𝑙=1

𝜕𝐸𝑖
𝜕𝑞𝑖𝑛𝑙𝑙 𝑙

𝜕𝑞𝑖𝑛𝑙𝑙 𝑙
𝜕𝑟𝑟𝑟 𝑖𝑗

+
𝑛Amax

∑
𝑛=0

𝑙5bmax

∑
𝑙=1

𝜕𝐸𝑖
𝜕𝑞𝑖𝑛𝑙𝑙 𝑙 𝑙

𝜕𝑞𝑖𝑛𝑙𝑙 𝑙 𝑙
𝜕𝑟𝑟𝑟 𝑖𝑗

,
(4.12)

where we have additionally included the four- and five-body angular descriptors. Note
that the derivative is taken with regard to the distance vector between atoms 𝑖 and 𝑗, 𝑟𝑟𝑟 𝑖𝑗 .
We can now construct the force acting on atom 𝑖 from atom 𝑗 to respect Newton’s third
law, 𝐹𝐹𝐹 𝑖𝑗 = −𝐹𝐹𝐹 𝑗𝑖, as 𝐹𝐹𝐹 𝑖𝑗 = 𝜕𝐸𝑖/𝜕𝑟𝑟𝑟 𝑖𝑗 − 𝜕𝐸𝑖/𝜕𝑟𝑟𝑟 𝑗𝑖. The total force acting on atom 𝑖 from all
neighboring atoms can be obtained by direct summation,

𝐹𝐹𝐹 𝑖 = ∑
𝑖≠𝑗

𝐹𝐹𝐹 𝑖𝑗 . (4.13)

The per-atom virial, from which properties such as stress and heat-current can be de-
rived, can also be defined in terms of the partial force,

𝑊𝑊𝑊 𝑖 = ∑
𝑗≠𝑖

𝑟𝑟𝑟 𝑖𝑗 ⊗
𝜕𝑈𝑗
𝜕𝑟𝑟𝑟 𝑗𝑖

. (4.14)

Theseanalytical expressions for theenergies, forcesandvirials are computationally cheap
to evaluate, and since Eq. 4.7, Eq. 4.13 and Eq. 4.14 can be evaluated for all atoms in the
system in parallel the NEP formalism can be very efficiently implemented on graphics
processing units (GPUs).

4.3.2 Training a NEP

NEPs are trained byminimizing the following loss function, where the first three terms
are the root mean squared error (RMSE) loss with regards to energy, forces and virials
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respectively,

𝐿(𝑧𝑧𝑧) = 𝜆𝑒 ( 1
𝑁str

𝑁str

∑
𝑛=1

(𝐸NEP(𝑛, 𝑧𝑧𝑧) − 𝐸tar)2)
1/2

+ 𝜆𝑓 ( 1
3𝑁

𝑁
∑
𝑖=1

(𝐹NEP𝑖 (𝑧𝑧𝑧) − 𝐹 tar𝑖 )2)
1/2

+ 𝜆𝑣 ( 1
6𝑁str

𝑁str

∑
𝑛=1

∑
𝜇𝜈

(𝑊NEP𝜇𝜈 (𝑛, 𝑧𝑧𝑧) − 𝑊 tar𝜇𝜈 )
2)

1/2

+ 𝜆1 1
𝑁par

𝑁par

∑
𝑛=1

|𝑧𝑛| + 𝜆2 ( 1
𝑁par

𝑁par

∑
𝑛=1

𝑧2𝑛)
1/2

(4.15)

with 𝑧𝑧𝑧 denoting the trainable parameters of themodel,𝑁str the number of structures in
the current batch, and 𝑁 the total number of atoms in the current batch. Superscripts
NEP and tar represents predicted and target values, respectively. The last two terms,
weighted by factors 𝜆1 and 𝜆2, are𝐿1 and𝐿2-regularization terms,whichmakes Eq. 4.15
an elastic-net loss [81]. An elastic net combines the benefits of L1 (Lasso) and L2 (ridge)
regression, and yields a sparse model.

The loss inEq. 4.15 isminimized throughaseparablenatural evolutionstrategy (SNES)
[82], which is form of genetic optimization algorithm. The general idea of SNES is to
optimize a distribution for each parameter, instead of a single value as in most other
optimization techniques. This scheme is implemented as follows [83]. Let the parame-
ters 𝑧𝑧𝑧 be distributed according to a joint 𝑁par-dimensional Gaussian distribution, 𝑧𝑧𝑧 ∼
𝒩 (𝑚𝑚𝑚, 𝑠𝑠𝑠), where 𝑚𝑚𝑚 and 𝑠𝑠𝑠 is the mean and standard deviation vector respectively. This
parameter distribution is iteratively updated according to the natural gradient of the
fitness 𝐽 (𝑧𝑧𝑧),

𝐽 (𝑧𝑧𝑧) = 𝔼[−𝐿(𝑧𝑧𝑧)] = −∫𝐿(𝑧𝑧𝑧)𝑝(𝑧𝑧𝑧|𝑚𝑚𝑚, 𝑠𝑠𝑠)𝑑𝑧𝑧𝑧, (4.16)

which is the expected value of the loss functionunder the searchparameter distribution,
𝑝(𝑧𝑧𝑧|𝑚𝑚𝑚, 𝑠𝑠𝑠). Theminus sign inEq. 4.16 comes fromSNESbeing amaximizationprocedure,
but we want to minimize 𝐿(𝑧𝑧𝑧). First, 𝑁pop samples 𝑧𝑧𝑧𝑘 are drawn from the distribution,
𝑧𝑧𝑧𝑘 = 𝑚𝑚𝑚 + 𝑠𝑠𝑠 ⊙ 𝑟𝑟𝑟𝑘 where 𝑟𝑟𝑟𝑘 ∼ 𝒩 (0, 1), which each can be seen as an instance of the NEP
model. The symbol⊙ denotes the Hadamard (element-wise) product. Second, 𝐿(𝑧𝑧𝑧𝑘) is
evaluated for eachof the𝑁popmodels in the current generation, themodels are sorted in
ascendingorder of the loss score, and eachof themodels is assigneda value 𝑢𝑘 according
to its rank (see [84] for explicit values of 𝑢𝑘 ). Third, the natural gradient of the fitness
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Figure 4.3: An example of how the loss function in Eq. 4.15 (panels a-b) and themagnitude of the
weights in the hidden and output layers of the NN change (panels c-d) as a function of training
generation. Theeffect of the regularization can clearly be observed inmany of themodelweights
decreasing in magnitude as the training progresses, with start around 50 000 generations.

with regards to𝑚𝑚𝑚 and 𝑠𝑠𝑠 are computed,

∇𝑚𝑚𝑚𝐽 (𝑧𝑧𝑧) =
𝑁pop

∑
𝑘=1

𝑢𝑘𝑟𝑟𝑟𝑘

∇𝑠𝑠𝑠𝐽 (𝑧𝑧𝑧) =
𝑁pop

∑
𝑘=1

𝑢𝑘(𝑟𝑟𝑟𝑘 ⊙ 𝑟𝑟𝑟𝑘 − 1),
(4.17)

which, finally, are used to update the mean and standard deviations of the parameter
distribution,

𝑚𝑚𝑚 ← 𝑚𝑚𝑚 + 𝜂𝑚𝑚𝑚(𝑠𝑠𝑠 ⊙ ∇𝑚𝑚𝑚𝐽 (𝑧𝑧𝑧))
𝑠𝑠𝑠 ← 𝑠𝑠𝑠 ⊙ exp (𝜂𝑠𝑠𝑠2 ∇𝑠𝑠𝑠𝐽 (𝑧𝑧𝑧)).

(4.18)

𝜂𝑚𝑚𝑚 and 𝜂𝑠𝑠𝑠 are the equivalent of learning rates, and are set to 𝜂𝑚𝑚𝑚 = 1 and 𝜂𝑠𝑠𝑠 = (3 +
ln𝑁par)/5√𝑁par as suggested by [84].

Optimizing the loss functionusing thenatural gradient instead of, e.g., theEuclidian
gradient as in regular steepest descent optimization is beneficial, as the natural gradi-
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Figure 4.4:Theactive learning scheme often usedwhen trainingNEPmodels. The initial dataset
𝒟0 consists of rattled and strained structures, afterwhichanensemble ofmodels are trainedand
new structures are added to the training dataset for the next generation, 𝒟𝑖+1 through active
learning. This procedure is repeated until the force uncertainty 𝜎𝐹𝐹𝐹 𝑖 decreases below the force
RMSE of the model.

ent takes the curvature of the loss landscape into consideration. This feature, in conjunc-
tionwith the elastic-net regularization and the genetic form of the algorithm, leads to a
very efficient optimization scheme that yields both an accurate and sparse final model.
See Fig. 4.3 for an example of how the loss function and parameter distribution evolves
as training proceeds. As can be seen in Fig. 4.3b, many parameters in the trainedmodel
are small inmagnitude. Such sparsity is desirable as it decreases the effect of overfitting,
the effect where themodel parameters are adjusted too tightly to the training set. Over-
fitting can lead to themodel predicting unphysical forces when it encounters an atomic
configuration which was not in the training dataset, which in turn affects the accuracy
of the MD trajectory. A sparse model is less likely to predict wildly unphysical forces
when extrapolating to such structures.

However, the most efficient method for minimizing the risk of the model extrapolat-
ing to unknown structures is to have a comprehensive training set, so that as much of
the relevant configuration space is covered. To achieve this, the training dataset 𝒟𝑖 is
augmented using active learning, similar to what was touched upon in Sect. 4.2.1. Typi-
cally, an ensemble of𝑁ens = 5models is trained on various random subsets of the train-
ing dataset𝒟𝑖 through a process known as bagging [85]. Then, a short MD simulation is
run with one of the models, and for each atomic configuration the forces are predicted
with each of the 𝑁ens models. The uncertainty of each structure is then estimated as
the force on atom 𝑖 with the maximum standard deviation 𝜎𝐹𝐹𝐹 𝑖 over the ensemble mod-
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4.3. Neuroevolution potentials

els. After the simulation, the structures with the largest uncertainties are selected and
target energies, forces and virials are computed using DFT, after which they are added
to the dataset to yield an augmented dataset𝒟𝑖+1. Then a new ensemble of models can
be trained using𝒟𝑖+1. This procedure is then updated around 3-10 times, until the un-
certainty of the structures encountered during MD fall beneath the force RMSE over
the entire dataset, which can be seen as the noise in the predictions of the model. See
Fig. 4.4 for a schematic of this active learning scheme. The initial dataset, 𝒟0, is typ-
ically comprised of various rattled and strained structures, starting from a reference
structure via DFT.

4.3.3 NEP in practice
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Figure4.5: Benchmarks frompaper I comparingNEP to variousother state-of-the-artmodels as
of 2022, bothwhen running on a central processing unit (CPU) and on aGPU.The systemsunder
study are silicon (a), azobenzene (b) and carbon (c). Benchmarks a) and b) are performed on a
CPU, andbenchmark c) on aGPU.Accuracy asmeasuredby the forceRMSE is on the y-axis, with
speed in ms/atom/step. In all instances, NEP reaches state-of-the-art-accuracy, whilst often
being at least an order of magnitude faster. Reproduced with permission from the publisher.

The formalism and optimization procedure outlined in the two previous subsections
are key for the success of the NEP approach. In paper I we benchmark NEP against
several state-of-the-art methods as of 2022, including ACE [86–88], ANI [65], GAP [59],
sGDML [58], MTP [89, 90], DP [63, 91, 92] and REANN [93, 94]. Fig. 4.5 panels a) and b)
compareNEPmodels for silicon (Fig. 4.5a) andazobenzene (Fig. 4.5b) prototype systems
when the simulation is run on a CPU. NEP reaches state-of-the-art accuracy for both
datasets, whilst often being about an order ofmagnitude faster in inference speed than

39
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the competition, as measured in ms/atom/step. The inference speed of NEP increases
by another order of magnitude when inference is performed on GPUs, as illustrated for
a carbon dataset in Fig. 4.5c.

These benchmarks highlight the design principles of NEP, boosting computational
efficiency whilst retaining accuracy. The high computational efficiency is enabled by
GPUMDbeing implemented innativeC++/CUDAand runningprimarily onGPUs,with-
out almost any external dependencies. GPUMD is controlled via a text-based interface
using input files. The NEP models are also defined in a proprietary text-based format.
In paper IIwe present the CALORINE package, a Python toolbox forGPUMDsimulations
and NEP construction. CALORINE aims to simplify the user experience as well as make
developed NEP models transferable to other workflows implemented in Python, in or-
der tomake the NEP approach easily accessible for the broadermaterials research com-
munity.

4.4 Takeaways
In this chapter we have familiarized ourselves with the world of machine-learned force
fields (ML-FFs), machine learning models that enable large-scale MD simulations with
the accuracy of computationally much more expensive quantum mechanical methods,
such as DFT. We have specifically focused on the NEP approach, which provides very
computationally efficient ML-FFs with state-of-the-art accuracy. This is exactly what
we requested at the end of the last chapter (Chapter 3) as a necessity for running MD
simulations with the accuracy required to predict neutron scattering experiments de-
scribed in Chapter 2.
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5
Summary of papers

Paper I
Structural stability and dynamics of liquid chromophore aggregates

In paper I we take a deep-dive into the structural stability of supramolecular aggre-
gates of three perylene derivatives. By performing MD simulations using a classical
FF and calculating correlations functions between neighboringmoleculeswe study how
the structure and dynamics of these aggregates change as a function of temperature.
We find that the supramolecular aggregates are unstable for smaller perylene deriva-
tives, but that a larger derivative remains ordered even for high temperatures, which
we attribute to the increase in sterical forces between the bulkier molecules. Further-
more, we find all derivatives to be frozen into what we call an artificially glassy state for
low temperatures; on the timescale of theMDsimulation themolecules remainoriented
in their original direction. As the temperature is increased, the speed of the reorienta-
tion increases for the smaller perylene derivatives, regardless of if the system is ordered
into supramolecular aggregates or not. The larger derivative remains in the artificially
installed glassy state, which we yet again attribute to the larger sterical hindrances in
this system.
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Paper II
GPUMD: A package for constructing accurate machine-learned potentials and performing highly
efficient atomistic simulations

In paper II we present the GPUMDpackage, which is both a tool for creatingNEPswith
state-of-the-art accuracy aswell as performing highly efficientMD simulations, thanks
toGPUMDharnessing thepowerofmodernGPUs. NEPsareBehler-Parinello-styleneu-
ral network potentials, based on decomposing the total potential energy into per-atom
contributions 𝐸𝑖,

𝐸𝑖 = 𝑈 (𝑤𝑤𝑤,𝑞𝑞𝑞) =
𝑁𝑛𝑒𝑢
∑
𝜇=1

𝑤 (1)𝜇 tanh(
𝑁𝑑𝑒𝑠
∑
𝜈=1

𝑤 (0)𝜇𝜈 𝑞𝑖𝜈 − 𝑏(0)𝜇 ) − 𝑏(1). (5.1)

𝑤𝑤𝑤 (0) and 𝑏𝑏𝑏(0) are the weight matrix from the input descriptor vector to the hidden layer.
The hidden layer has a tanh activation function, and𝑤𝑤𝑤 (1) and 𝑏(1) are weights and bias
from the hidden layer to the single output node. Combining this functional form with
a loss function that combines predicted energies, forces, virials and both 𝐿1 and 𝐿2-
regularization, yields both a computationally efficient as well as a highly accurate im-
plementation. This allows NEP to achieve similar or better accuracy compared to other
common approaches, whilst being at least an order of magnitude faster. Additionally,
we demonstrate the capabilities of NEP models in a variety of applications, including
calculating lattice constants, tensile loading, quenching, andheat-capacity calculations.
An active learning scheme for generating a diverse dataset based on farthest-point sam-
pling is also presented.

42



Paper III
calorine: A Python package for constructing and sampling neuroevolution potential models

CALORINE is a Python toolbox that acts as an interface for users of GPUMD. The pack-
age includes convenience functions for setting up and runningMD simulations, as well
as training, analyzing, and modifying NEP models. In addition, CALORINE provides
two ASE calculators [95]. ASE is a popular framework for atomistic modeling within
the broader computationalmaterials community, and these calculators thusmakeNEP
models more widely accessible and interoperable with other workflows. The documen-
tation and tutorials for CALORINE can be found at the following URL: https://calorine.
materialsmodeling.org/.
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6
Conclusions and outlook

Experiment är inte fysik

Jakub, 2024

In the beginning of this thesis we set out to answer two main research questions,
namely

• To what extent can the developed simulation protocol capture the structure and
dynamics of aggregates of perylene derivatives?

• How well can neutron scattering experiments be predicted using the simulation
protocol?

The simulation protocol that I have presented in Chapter 3 and Chapter 4 is based on
running accurate MD simulations with NEPmodels, and extracting from the resulting
trajectory experimental observables, such as the dynamic structure factor measured in
neutron scattering experiments as described in Chapter 2. Although I have yet to com-
bine all three parts of the simulation protocol to comprehensively study a liquid chro-
mophore system, I have demonstrated the capability of each part of the protocol indi-
vidually throughout the thesis.

In Chapter 3, I presented paper I in which we use MD simulations with a classical
FF to study the aggregation behavior of large systems of perylene derivatives, a type of
chromophore. We found that the stability of the supramolecular aggregates are heavily
dependent on temperature, but also on the strength of intermolecular interactions as
demonstrated by themore bulky perylenediimidemolecule remaining aggregated even
at high temperatures. This clearly demonstrates the insights that can be gained from
large-scale MD simulations.
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In conclusion,MDsimulationswith a classical FF canbe used to describe the changes
in structure and dynamics of large systems of perylene derivatives.

Paper II presents the NEP formalism, which I describe in detail in Chapter 4. NEP
not only yields aprediction accuracy onparwith state-of-the-art approaches in thefield,
but it does so whilst being much more computationally efficient owing to the imple-
mentation within GPUMD efficiently harnessing the powers of modern GPUs. Compu-
tational efficiency is key, as it makes the long MD simulations necessary to accurately
describe the dynamics of chromophores feasible. Furthermore, thanks to the CALORINE
package described in paper III, creating specialized NEP models for different types of
chromophores such as perylene derivatives is straightforward. Hence, NEPmodels are
well suited for accurately modeling large systems of liquid chromophores, and we may
draw the following conclusion:

Using an ML-FF such as NEP is expected to increase the accuracy of simulations of
chromophores even further.

From these accurate MD simulations with NEPs I can then compute the dynamic
structure factor as described in Chapter 2, in order to predict neutron scattering ex-
periments for chromophore systems. However, this is still a work in progress, and we
may thus only answer the second research question tentatively.

Neutron scattering experiments should be able to be accurately predicted using the
simulation protocol.

6.1 Limitations
Studying chromophore systems computationally is challenging, and although the simu-
lation protocol described in this thesis is designedwith this inmind there are still some
inherent limitations to the methodology.

The main limitation is that of limited simulation length. Due to the time step in a
MD simulation typically being on the order of fs, total simulation times are limited to
at most 1 µs, even with a computationally efficient ML-FF such as NEP.This makes the
simulation protocol inherently unable to describe certain slow dynamic process, such
as the glass formation of certain chromophores as mentioned in [35] which takes place
on experimental time scales, on the order of 100 s.

Another limitation is the small system size in a MD simulation compared to experi-
ments. Even thoughPBCsareused tomimicaneffectively infinite system, large supramolec-
ular aggregates may simply not fit in a MD simulation.

A third limitation is the choice of training NEPs from reference data obtained from
DFT. DFT only gives approximate solutions to the Schrödinger equation as described
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in the beginning of Chapter 4, where crucially the choice of exchange-correlation func-
tional affects the results. This means that the developed NEP and subsequently the re-
sults of the MD simulation are conditional on the choice of functional.

Taken together, these limitationsmay seem crippling to an all-encompassing compu-
tational description of realistic systems of chromophores. However, that loses track of
the goal of developing the computational framework presented in this thesis. The goal
of the simulation protocol is not to replace experiments, but rather complement them
by aiding in interpreting the results. After all, experimental studies are the best probe
we scientists have for understanding the world around us. The role of computer simu-
lations and theory in this context is to improve the efficiency of experiments, and the
insight gained from them.

6.2 Outlook
As I have already alluded to, the next step is to put the whole simulation protocol into
practice by predicting the neutron scattering experiments for a chromophore system.
Onepossible challenge thatmay appear is faithfully reproducing the details of the exper-
imental setup. The full dynamic structure factor 𝑆(𝑞𝑞𝑞, 𝜔) is not measured immediately;
rather, the measured intensity is a function of the dynamic structure factor as well as
the experimental resolution function, among other things. This resolution function is
unique to each experimental setup, and will need to be reproduced in order to match
the results from that particular instrument.

Another extension to the simulation protocol could be to include predictions of other
experimental techniques. For example, Raman spectroscopy would be a good comple-
ment to neutron scattering, as Raman is sensitive to vibrations of higher energy such as
intramolecular bonds. PredictingRaman spectroscopy requires predicting the dynamic
susceptibility of a configuration of atoms. In a recent manuscript we extend the NEP
formalism to predict tensorial properties, such as the susceptibility [96].

Finally, I also aim to study the structure and dynamics of chromophore systems in
even greater detail. Mixtures of perylene derivatives and the glassy dynamics within
would be particularly interesting to study, and would be a good fit for an application of
the simulation protocol.
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