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Shedding light on liquid chromophores using machine learning

ERIC LINDGREN
Department of Physics
Chalmers University of Technology

Abstract

Chromophores are a class of molecules with widespread use in nature. Chlorophyll in
plants contain chromophores making photosynthesis possible and the retinal molecules
in our eyes have chromophores making the world around us visible. Chromophores are
also fundamental for developing a wide range of technologies crucial for a transition to
a sustainable society, including organic electronics, solvent-free dyes and systems for
storing solar energy in the form of heat. While chromophores have been widely studied
experimentally, we still lack a sufficient understanding of their structure and dynamics
on the atomic scale. This thesis outlines a simulation framework that links electronic
structure calculations via molecular dynamics simulations to experiments, with a spe-
cific focus on neutron scattering. The key ingredient of this work are machine-learned
force fields, allowing simulations with the accuracy of quantum mechanical calculations
for large systems of chromophores, bridging the gap between theoretical simulations
and experimental findings.

Keywords: chromophores, machine learning, machine learned force fields, molecular
dynamics, neutron scattering
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Intfroduction

Datorer ir coolt

Nicklas, 2022

There is something mesmerizing about colors. Their alluring appeal has tantalized
mankind throughout history, up to and including the modern materials scientist. This
is not without reason. A colorful substance is not only pretty to look at, but poten-
tially promises interesting optical properties. One class of organic molecules that live
up to this promise are chromophores. Translated from ancient Greek, “chromophore”
means “color-bearer”, which reflects their role as the parts of molecules that are respon-
sible for giving them color. Two famous examples of chromophores that can be found
in nature include chlorophyll, which enables photosynthesis in plants, and f-carotene
which makes autumn leaves, carrots and pumpkins appear orange. In recent years,
chromophores have been studied as candidates for many applications that are impor-
tant for a transition to a more sustainable society, including solar cells [1-3], dyes [4-6],
organic light-emitting diodes [7-9], organic semiconductors [10-12] and solar thermal
storage systems [13—18]. Common to all of these applications is the desire to control the
optical properties of the chromophore systems. In this thesis, we will dive head-first
into how computer simulations can shed light on the structure and dynamics of chro-
mophores, which may hold the key for controlling their optical properties.




Chapter 1. Introduction

Intramolecular (strong)

Intermolecular (weak)

(a) The conjugated system of f-carotene (b) Inter- and intramolecular bonds

Figure 1.1: Schematics of conjugated systems and bonds in and between molecules. a) The con-
jugated system of a f-carotene molecule formed by overlapping 7-orbitals, marked in red. Elec-
trons are free to delocalize along the length of the conjugated system. b) A sketch of strong in-
termolecular bonds, typically covalent bonds, and weak intramolecular bonds between two pery-
lene monomers.

1.1 Controlling the optical properties of
chromophores

Chromophores owe their colorfulness to them containing conjugated systems. A conju-
gated system is a long chain of atoms over which electrons are free to move (Fig. 1.1a).
Specifically, the p-orbitals of the carbon atoms overlap forming 7-bonds, which allows
electrons to delocalize and move along the length of the conjugated carbon chain [19,
Chapter 7]. The size (or extent) of the conjugated system affects which energy, and thus
wavelength, of incoming light is required for an electron-hole pair to become excited,
causing light of that wavelength to be absorbed. A helpful picture could be that of an
antenna, where a longer chain would lead to longer wavelengths to be absorbed. The
wavelengths that are not absorbed get reflected, making the chromophore appear col-
ored.

In general, additional properties other than the length of the conjugated carbon chain
affect the optical properties of systems of chromophores. The property most relevant for
the types of chromophores studied in this thesis is their tendency to assemble into larger
groupings of molecules [20—22]. These are known as supramolecular aggregates, as
they are formed through interaction between molecules, so-called intermolecular bonds
(Fig. 1.1b). Intermolecular bonds are typically relatively weak compared to the covalent
bonds within the individual molecules (intramolecular bonds), being mediated by elec-
trostatic Coulomb interaction or van-der-Waals forces [23]. Supramolecular aggregates
impact the optical properties in two ways. First, the size of the resulting supramolecular
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aggregates impact howlight scatters in the sample [24]. Second, the conjugated systems
of neighboring molecules can interact with each other, leading to distinct changes in the
optical spectra of the aggregate system compared to the individual molecules [25]. Con-
trolling the tendency of chromophores to self-assemble into supramolecular aggregates
allow for control of their optical properties, which would be useful in a broad range of
applications.

There are two primary approaches for controlling the self-assembly in chromophores.
The first is side-group engineering; by appending side-chains of different length onto
a core conjugated structure, the formation of supramolecular aggregates can be con-
trolled [26—29]. The appended side-chains can also have the side-effect of modifying
the conjugated structure of the chromophore, which changes the optical response of
the individual monomers [30]. Examples of optical properties which can be impacted
through sidegroup engineering include luminescence [5], and the efficiency of triplet-
triplet annihilation up-conversion [31], a process that can increase the efficiency of solar
cells. The second approach for controlling the structure of chromophore aggregates is
mixing different types of chromophores [30, 32], which has the added benefit of reduc-
ing the need of solvating the chromophores in a potentially toxic solvent. Mixing have,
for instance, been used to increase the stability of chromophore photovoltaics [33], and
for increasing the efficiency of solar cells [34].

One specific application of mixtures of chromophores that is of particular interest in
this thesis is that of glass forming systems. Recently, Hultmark and colleagues found
mixtures of perylene derivatives, a type of chromophore, to be ultra-strong glass form-
ers [35]. The authors attribute the strong glass-forming behavior of the perylene mix-
tures to a transition between two liquid phases. However, the detailed structure and
dynamics of these liquid phases are not understood on the atomistic level. Atomic un-
derstanding of the structural and dynamic processes in mixtures of chromophores is
vital to further develop mixtures as a handle for controlling aggregate structure, and to
optimize their performance in applications.

1.2 Characterizing structure and dynamics with
molecular dynamics and machine learning

One tool that can help shed light on the structure and dynamics in mixtures of liquid
chromophores are computer simulations. In particular, as we shall see in Chapter 3,
molecular dynamics (MD) simulations are well suited for this task, since each atom is
explicitly considered in the simulation. Using MD to study chromophores is not new;
MD simulations have been used to study everything from the self-assembly of chro-
mophores on substrates [36, 37], via the structure and dynamics of supramolecular sys-
tems [38, 39], to optical detection of proteins linked to Alzheimer’s disease [40]. How-
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ever, these simulations are often performed in conjunction with experiments, and more-
over typically consider relatively small or idealized systems. Such simulations are suited
for elucidating experimental results but do not necessarily paint a broader theoretical
picture.

We need to add a few more ingredients to the MD simulations if we are to reach the
lofty goal of a simulation protocol that can capture the structure and dynamics of chro-
mophore systems. MD simulations relies on accurately calculating the forces between
pairs of atoms. Conventionally, these forces are obtained from a force field (FF), which
are functions fitted to a broad range of materials. More accurate forces can be obtained
from other means, for instance from electronic-structure calculations such as density-
functional theory (DFT), but the computational cost of these typically scales strongly
with the number of electrons in the system, which limits their use to small systems, typ-
ically involving hundreds or thousands of atoms. One potential solution to this trade-off
between accuracy and computational feasibility that has emerged during the last couple
of years are machine-learned force field (ML-FF). As we shall see in Chapter 4, by train-
ing a machine learning (ML) model to predict forces calculated with DFT, one can obtain
a ML-FF that provides near DFT accuracy at the speed of a conventional FF.

Once one has performed an accurate MD simulation, the results can be connected
to the observables from various experimental techniques. One such technique that is
well suited studying the structure and dynamics of organic systems, including chro-
mophores, is neutron scattering, which we will learn more about in Chapter 2 together
with the connection to MD simulations. In the context of this thesis, one can thus see
ML as a bridge for connecting simulations and experiments, by enabling highly accu-
rate MD simulations that can be used to predict neutron scattering experiments, which
in turn can improve our understanding of the structure and dynamics of liquid chro-
mophores.

1.3 Research questions

In this thesis, I aim to develop a simulation framework combining molecular dynamics
(MD) and machine-learned force fields (ML-FFs) for studying the structure and dynam-
ics of chromophores, and connecting these results to experimental observables, bridg-
ing the gap between simulations and experiments. I will in particular study a class of
chromophores, namely perylene (C,,H;,) and derivatives thereof, as a prototypical sys-
tem, but the approach should be readily extendable to other systems. I will consider two
research questions:

« Towhatextent can the developed simulation protocol capture the structure and
dynamics of aggregates of perylene derivatives?
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« How well can neutron scattering experiments be predicted using the simula-
tion protocol?

1.4 Structure of the thesis

This thesis consists of three main chapters, a summary of the included papers, and a
summary and outlook. The first chapter concerns neutron scattering experiments, with
an emphasis on the theory and the quantities that are observable in computer simu-
lations, such as the dynamic structure factor. This is followed by the second chapter,
focusing on MD simulations and how they can be used to predict neutron scattering
experiments. The third chapter details the theory of ML-FFs with a specific focus on
the neuroevolution potential (NEP) framework, how such models are constructed and
how they can be used to run MD simulations with the accuracy of an electronic struc-
ture method such as DFT. This is followed by a short summary of the three papers that
are the foundation of this thesis, after which the thesis is concluded by a summary and
outlook.






Neutfron Scattering

I'm afraid neutrons will not be of any use to any one.

Sir James Chadwick,
discoverer of the neutron

Neutron scattering is one of the most important experimental techniques for study-
ing the structure and dynamics of chromophores, as neutrons are excellent probes for
organic matter. Producing neutrons requires large facilities, such as nuclear reactors or
spallation sources, and, hence, these are only available in a handful of locations globally.
See Fig. 2.1 for three of these locations; the TU Delft experimental reactor in the Nether-
lands, the PSI/SINQ site in Switzerland, and the European Spallation Source (ESS) cur-
rently under construction in Lund, Sweden.

In neutron scattering, the neutron scatters off of the atomic nucleus. The amount
with which each atomicisotope scatters neutrons varies greatly across the periodic table,
which increases the contrast between different atomic species. Hydrogen, in particular,
scatters neutrons strongly, which makes neutrons well-suited for studying hydrogen-
rich organic matter, such as chromophores. Neutrons additionally transfer relatively
small amounts of kinetic energy to the sample under study, typically in the meV range,
which is comparable with the energy scales associated with molecular motion such as
rotations. However, like most experimental techniques, neutron scattering measure-
ments needs to be paired with simulations in order to explain and elucidate the results.
As we shall see at the end of this chapter, the connection between neutron scattering
and MD simulations is straightforward, which further makes neutron scattering par-
ticularly interesting in the context of this thesis.

In this chapter we will follow Squires [41, Chapters 1, 2 and 4] in deriving some key
results in neutron scattering theory, starting from the double differential cross section,
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(c) ESS (under construction)

Figure 2.1: Three of the handful of neutron scattering facilities globally. From left to right: the
TU Delft experimental reactor in the Netherlands, the SINQ beamline in Switzerland, and the
ESS beamline in Lund, Sweden.

namely the expressions for coherent and incoherent scattering, the dynamic structure
factor, and how the dynamic structure factor can be related to observables in MD simu-
lations.

2.1 Basic scattering theory of neutrons

The quantity measured in neutron scattering is the scattered intensity from each mea-
sured neutron, I1(q, w), where q is the momentum transfer to the sample, and w is the
angular frequency of the excitation gained by the sample. Conceptually, this can be re-
formulated as I(0, 9E”), where 0 is the change in angle of the incoming neutron wave
and OE is the energy transferred to the sample from the neutron, which leads to the in-
terpretation of I(6, 9E”) as the measured intensity of neutrons that change direction by
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an angle 0 and transfer energy 9E’ to the sample. If 9E” = 0, the process is called elastic
neutron scattering, and if 0F” # 0 it is called inelastic neutron scattering. Broadly speak-
ing, neutron scattering techniques that utilize elastic scattering are used to study the
structure of materials, whilst inelastic techniques are used to study their dynamics.

E.k

Figure 2.2: Scattering of a neutron with incoming wave vector k and energy E into solid angle oQ
when hitting a target, with the final neutron having wave vector k” and energy between E’ and
E' +oF'.

Formally, the intensity measured in a neutron scattering experiment is directly re-
lated to the partial differential cross section,

No. neutrons scattered per time into
0 1 solid angle 9Q with final energy between E” and E’ + oF’ (2.1)
OQIE’ @ OQIE’

with @ being the flux of the incoming neutron beam, i.e., the number of neutrons per
unit area and second, and o denoting the cross section. Now, let the incoming neutron
have wave vector k and energy E, and wave vector k” and energy E” after the scattering
event. Furthermore, denote the initial state of the scattering system A, and the final
state as A’. This is the situation described in Fig. 2.2. With these definitions one can,
after arelatively lengthy derivation, which we skip here in the interest of time and space,
express Eq. 2.1 explicitly,

o _ k'] 1 o ‘R (0) igR,(t)\ —iwt
900F = W% ;b]bf J_Oo <e q°K; elq J >€ ot gy (2.2)

where the double sum runs over all pairs of scattering nuclei with position R; and scatter-
ing length b;. Note that R;(t) is the time-dependent position operator in the Heisenberg
picture, defined as

R](t) = exp (lHt/h) R] €xp (—lHt/h) , R](O) = R] (2.3)
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q = k — k’ is the change in momentum for the scattered neutron, and Aiw = E — E’ is
the change in the kinetic energy of the neutron. (...) denotes a thermal average over all
initial system states A, which are assumed to follow a Boltzmann distribution. That is,
the thermal average of an operator A for a system with Hamiltonian H is defined as

1 _ _
(A) = ;m AN, py = ~e PE, 7 = ;e PEr, p= (2.4)

1
kgT’

I would like to highlight two key steps in the derivation of Eq. 2.2. First, the starting
point for the derivation is to express the number of neutrons scattered into solid angle
0Q per unit time in terms of the transition rate of the neutron and sample system tran-

sition from state |k, A) to |k’, A”), where k’ is in 9Q. This transition rate can be expressed
using Fermi’s golden rule,

2 ’ ’
Dpos = i e AVIE 21 -5)

Here, pg: is the density of neutrons with momentum k’ in 9Q. V is the scattering po-
tential, which leads us to the next step I would like to highlight. A common choice of V,
which has been used in deriving Eq. 2.2, is the Fermi pseudopotential,

2
V() = %bé(r), 2.6)

here expressed for a single nucleus with mass m centered at the origin. b is the scatter-
ing length, and can be interpreted as the strength of the scattering potential; a larger
value of b means a more repulsive potential. The scattering length is different for differ-
ent isotopes and is in general a complex number, with the imaginary part representing
neutron absorption. For most nuclei the imaginary part is small, and hence b has been
assumed to be real in the derivation of Eq. 2.2.

2.2 Coherent and incoherent neutron scattering

We split the sum over j, j* in Eq. 2.2 into two terms, corresponding toj # j* and j = j’,

?c K| 1 ro —ig R (0) g RO\ —i
S el B b:b’ ig-R;/(0) ,iq-R;(1)\ ,—icot gy
OQOE’ |k| orh (]; J7] o <€ J e J >€

(2.7)

+ Z bf J < ¢~ 14R;(0) eiq-Rj(t)> oot dt) ‘
j —00

Each nuclei in the sample can possibly have a different scattering length b; that occurs
with abundance f;. However, a macroscopic sample consists of a large number of nuclei,

10
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and thus we can replace the factors bJ2 and b;b in Eq. 2.7 with their averages, b]2 and b;b;:.
The average scattering lengths are

— — -2
2 _ E 2 _ E E —
j j 7

By adding and subtracting the missing term for j = j’ in the first term in Eq. 2.7 we
arrive at

do K| 1 -2 Joo —ig-R. ia-R: —
1 b iq-R+(0) ig-R:(t) lwtdt
9Q0E  |k| 27h ; . (Tt Dt O)e

oo (2.9)

k'] 1 <_ —2) J —ig-R.(0) ig-R. —

+ 21 2 (p2_p iq-R;(0) ,iq-R;(t) it
k| 27h ZJ: _w<e H0eT0) e
_2 — 2
By introducing oo, = 47b and oy, = 47 <b2 -b )We identify the two terms
o ) :Ucoh M 1 Ez ZJ’ <e_i‘I'Rj’ (O)ei‘I'Rj(t)> it gy
OOOE" ) o, 4 |k| 27h T oo

(2.10)

92 o |k’| — 2 o . . )
( o ) _Yinc [* | 1 <b2 iy ) Z J <e—zq-Rj(0)ezq-Rj(t)> e—la)tdt,
OQOE’ ).  4m |k| 27k T

as the coherent and the incoherent partial neutron cross sections, respectively. The sum in
the incoherent cross section runs over each atom j, and, thus, the incoherent scattering
contains the scattered intensity from the individual nuclei. The coherent cross section, on
the other hand, describes the scattering contributions from all pairs of nuclei. Since the
scattered neutrons behave like waves, the coherent scattering can exhibit interference
effects, which manifest themselves as the peaks seen in a typical neutron diffraction
experiment.

In Fig. 2.3 the coherent and incoherent scattering lengths are plotted for the first 46
elements of the periodic table. This plot demonstrates why neutrons are well suited for
studying chromophores; elements that are abundant in chromophores, like hydrogen
(H) and carbon (C) have relatively large scattering lengths. This can be contrasted to the
case of other experimental techniques like X-rays, where the cross section scales with
the number of electrons bound to the atom.

2.3 Simulating neutron scattering via correlation
functions

We can further massage the coherent and incoherent cross partial cross sections in Eq. 2.10
into a form that makes them easily relatable to observables in MD simulations. Start-

11
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Figure 2.3: Incoherent and coherent scattering lengths for the first 46 elements in the periodic
table. Note the logarithmic scale, and the large incoherent scattering length of hydrogen (H).

ing from Eq. 2.10, we can move the sums inside the integral sign and define them as
the intermediate scattering function F(q, t) for the coherent cross section, and the self
intermediate scattering function Fy(q, t) for the incoherent cross section,

F(q,t) = % ; <e—iq-Rj/(0)eiq-Rj(t)> and F(g.t) = % ; <e—iq-Rj(0)eiq-Rj(t)>’ (2.11)
with N being the number of nuclei in the system. From F(q,t), we can further define
the time-dependent pair-correlation function G(r,t) and the dynamic structure factor

5(q, w),
1
(2m)3

Similarly, from F(g, t) we get the self time-dependent pair-correlation function G(r, t)
and the incoherent dynamic structure factor S;(q, ) equivalently. We can now rewrite
the coherent and incoherent cross sections in terms of S(q, w) and Si(q, w),

2 K’
( 7o ) = MuNS(q,w)
coh

G(r,t) = JF (g.t)e™"dr and S(q,0) = ﬁ J F(g,t)e " “dt. (2.12)

9Q0E" 4 K] o)
2 K :
9 o) - ﬂuNSi(q, ).
0Q0E inc 4r |k|

Eq. 2.13 is quite remarkable. If we can calculate S(q, w) and S;(q, ») from an MD simula-
tion, then we could estimate the partial differential cross section, and by extension the

12
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intensity that one would measure in a neutron scattering experiment. The remaining
question is, how do we calculate S(q, w)? Let p(r,t) be the particle density,

p(r.t) =) 8(r — R;(®)). (2.14)
J

which we can Fourier transform in space to obtain F(g, t) (EqQ. 2.11),

plg.t) =Y e IR
1j (2.15)
= F(q.t) = N (p(q.0)p(—q.1))

We can get the self intermediate scattering function, Fy(q,t), by only considering the
terms in which j = j” in Eq. 2.15. From Eq. 2.12 we know that we can obtain S(q, w)
and S;(q, w) by Fourier transforming F(q,t) and Fy(q,t) respectively in time. In a simu-
lation we know the positions of all atoms, and, thus, we can record p(r,t) throughout
the simulation (the “trajectory”). We can then after the fact compute the double Fourier
transform in time and space over this trajectory, and via Eq. 2.15 and Eq. 2.12 compute
S(q, w) and S;(q, ), and by extension the simulated intensity for a neutron scattering
experiment.

2.4 Takeaways

In this chapter we have seen that the partial differential cross section, which is directly
related to the intensity one measures in a neutron scattering experiment, can be com-
puted from the time dependent particle density. That is, if we know the positions of all
atoms in a system as a function of time, then we could compute what their correspond-
ing neutron scattering spectra would look like. Note however that the simulation and
experiment will probably not match exactly, as we have used a number of assumptions
in the derivations in this chapter. First, the partial differential cross section is related to
the intensity, but there are other factors such as the resolution function of the specific
instrument that determines exactly how these two relate, which we have not discussed
in this chapter. Second, in deriving the expressions for the partial differential cross sec-
tion we have used Fermi’s Golden rule and the Fermi pseudopotential, which are approx-
imative expressions. However, this approach is exact enough for our purposes, and we
will see in the next chapter how we can use molecular dynamics simulations to obtain
the time dependent particle density for molecular systems.

13






Molecular Dynamics

Thermodynamics is something you can dwell on when you
retire

An unnamed previous
PhD student at the division

Phonons go brrrr

Petter

Sluta prata om fononer Petter

Pernilla, 2024

In the previous chapter we equipped ourselves with knowledge of how the measured
intensity in a neutron scattering experiment directly corresponds to the time-varying
particle density, which fully describes the structure and dynamics of, e.g., a system of
chromophores. We now turn to how we can obtain the time-varying particle density
using molecular dynamics (MD) simulations, which in essence allows the prediction of
neutron scattering experiments. We begin the chapter by discussing the basics of MD,
where we will focus on how to extract measurable quantities from the simulations. MD
simulations will, thereafter, be applied to studying the structure and dynamics for some
prototypical chromophore systems.
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Chapter 3. Molecular Dynamics

3.1 Modeling dynamics in an atomic system

MD is a simulation technique in which the position and velocity of each atom in the
system is evolved in time. The propagation in time is done incrementally, increasing
by a small amount of time called the time step, At. From one time step to the next, the
position and velocity of each atom is updated in accordance with the forces acting on the
atom from all other atoms. Typically, an MD simulation is on the order of 1 ps to 1 s,
with a typical time step on the order of 1fs. A simulation thus consists of many small
steps in which the position of each atom is updated.

The positions of the atoms are monitored, and from the movements of the atoms one
can extract estimates from physical quantities such as temperature, pressure, density,
and so forth. Since each atom has to be considered individually, a typical MD simula-
tion can at most have a system size of up to hundreds of thousands or millions of atoms,
which s far off from the ~ 1023 atoms in a macroscopic sample that one would encounter
in an experiment. MD simulations are often performed in a simulation box with volume
V that has so-called periodic boundary conditions (PBC) in order to compensate for this
limitation. Under PBC, the atoms crossing the boundary of the simulation box will reap-
pear at the other side of the box, which in effect approximates an infinite system if the
simulation box is large enough. See Fig. 3.1a for a schematic visualization of PBC, and
Fig. 3.1b for an example of a simulation box.

To be more precise, in a MD simulation we work directly with the positions of the
individual atoms, denoted r; for atom i. Note that this means that we operate within
the Born-Oppenheimer approximation, in the sense that we consider the movement of
the electrons in the system to be averaged out, leaving us free to consider the position
of the nuclei as r;. The movements of these atoms are governed by Newton’s equations of
motion [42, Chapter 3],

mii‘i = fi and fi = —Vrigb(rl, v, ...,rN), (3.1
where m; is the mass of atom i, ¢(...) is the potential which is a function of all the N atoms
in the system, and f; is the total force acting on atom i from all other atoms.

Eq. 3.1is a second-order differential equation, the solutions r;(¢) of which yield the
trajectory for atom i. This equation can be solved using an iterative scheme known as the
Velocity-Verlet algorithm [43], which comprises two steps. First, given a current time ¢, the
velocity at half a time step in the future, v(t + %At) is estimated from the acceleration,
and thus the force f;(t), at timet,

v (t + %At) =v(t) + %a(t). (3.2)

From this estimate of the velocities, the positions at a time step in the future can be
computed,

r(t+ At) =rt) + Atv (t + %) =r() + Atv(t) + A%za(t). (3.3)
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| |
| |
| |
(a) Schematic of PBC (b) A realistic simulation box

Figure 3.1: a) Illustration of Periodic Boundary Conditions (PBC). Atoms and interactions be-
tween them are allowed to cross the boundary of the simulation box, represented by the black
square, and interact with the images of the atoms of the other end of the cell. As long as the box
is sufficiently large such that an atom will not interact with itself, this scheme effectively rep-
resents an infinite system. b) A realistic MD simulation box of crystalline benzene containing
roughly 60 000 atoms.

Second, the positions r(t + At) can be used to compute the forces and thus the accelera-
tion at time t + At, which in turn gives the velocities at time ¢ + At,

a(t) +a(t + At)

1 At
v(t+ At) :v<t+ EAt) + ?a (t+ At) =v(t) + At (3.4)
The computationally expensive step in this scheme is the evaluation of the acceleration
a (t + At), which involves computation of the forces. We will return to how to obtain
these forces in the next chapter, using so-called force fields or interatomic potentials to
calculate the forces between all the atoms in the system.

3.2 Extracting information from molecular dynamics
simulations

We now turn to how we extract estimates of quantities of interest from the trajectory
of positions r;(t) and velocities v;(¢) that we obtain from the Velocity-Verlet scheme in
Eq. 3.2, Eq. 3.3 and Eq. 3.4. For a system of N atoms, the instantaneous state can be
described by 3N position and 3N velocity components, which can be collected into a
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6N-dimensional vector I'. T is a point in the phase space of the system, with each point
in phase space representing a different configuration of positions and velocities of the
atoms. T is time-dependent, I'(t), and thus the instantaneous value of any observable A
at time t is A(T'(¢)). A(t) could for instance be the density p(t), which is directly a func-
tion of the positionsr;(¢) that are included inI'(¢). Within this formulation, an estimate
for A can be extracted by averaging the instantaneous values A (['(¢)) in time over the N;
time steps of the simulation

N,
Aestimate = (AT®)); = i Z AT®)). 3.5
i=1

N; has to be sufficiently large such that the estimate Aegimare 1S converged to a sufficient
degree. If the number of steps N; becomes infinite, it is possible that the simulation will
have visited every possible configurationT in phase space. If that is the case, the system
is so-called ergodic, and we may replace the time-average in Eq. 3.5 by an ensemble aver-
age [42, Chapter 2],

<A (r(t)»t = <A>ensemble =
Aestimate = <A>ensemble = Z A(r)Pensemble(r)- (3.6)
T

The ensemble average is a weighted average over all configurations in phase space I by
the probability of observing that configuration, denoted pepsempie(I). However, since
the positions and velocities for each atom in the system can be changed continuously
there are an infinite number of possible states ', which means that the sum overT in
Eq. 3.6 is actually an integral,

<A>ensemble = J; A(r)ﬁensemble(r)dr- (3.7)

Note that pepsemple(T) is now a probability distribution, and thus the probability of ob-
serving a specific configurationT' is pepsempbleT)dT -

To formulate fepgemple(I), We need to take a quick detour into statistical mechanics.
The probability distribution for the possible accessible states I' depends on which ther-
modynamic ensemble the simulation is conducted in. The thermodynamic ensemble is de-
termined by which macroscopic variables are kept constant. So far, we have not allowed
the number of particles or the simulation box in the MD simulation to change, which
means that the states (I') we are considering all keep N and V constant. Furthermore,
Newton'’s equations of motion that we introduced in Eq. 3.1in the previous section fulfill
conservation of energy, meaning that the total energy E as a sum of potential energy and
kinetic energy in the system is constant. This is known as the micro-canonical or NVE en-
semble [42, Chapter 2], and the states in phase space (T') thus lies on an isosurface where
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3.2. Extracting information from molecular dynamics simulations

N,V and E are all constant. One central assumption in statistical mechanics is that all
accessible states are equally probable [44]. The probability distribution gy g(T) is thus

a uniform distribution,
1

Znve
where Zyy g is called the partition function and is in this case equal to the number of states
inT that keep N and V constant, and have energy E.

If one now allows the total energy of the system E to change by allowing the system
to exchange energy with a heat bath at a constant temperature T, we arrive at the canon-
ical or NVT ensemble. The accessible states (I') now have the same number of particles
and the same volume as for the micro-canonical ensemble, but the energy of each state
Er may be different. The probability distribution in this case gy () is known as the
Boltzmann distribution [44],

pnve®) = (3.8)

Spe /T Zyyr

pnvrT) = (3.9)
Similarly, by additionally allowing the simulation box volume V to change we arrive at
the isothermal-isobaric or NPT ensemble, which has the following probability distribu-
tion [42],

e(—Er+PV)/kBT e(_EF+PV)/kBT

Yo o(—Ers+PV) JkgT’ ZNPT

pnprT) = : (3.10)
where P is the pressure, and is kept constant. For completeness, if one further allows
the number of particles N to vary, one arrives at the grand canonical ensemble.

There exists a multitude of different thermodynamic ensembles that one can sample,
but these three, the NVE, NVT and NPT ensembles are the most common in the con-
text of MD simulations. Of these, the NPT ensemble is the one that most closely match
experimental conditions, since experiments are typically conducted at constant temper-
ature and pressure. Recall, however, that the equations of motion that we outlined in
the previous chapter only enable sampling in the NVE ensemble. In order to sample
the NVT or NPT ensemble, we thus need to modify the equations of motion in order
to keep the temperature and pressure constant, respectively. This can be done by intro-
ducing a thermostat for controlling the temperature, and a barostat for controlling the
pressure in the simulation. One example of a commonly used thermostat is the canon-
ical velocity rescaling thermostat proposed by Bussi et al. [45], and a popular barostat
is the Parinello-Rahman barostat in which the simulation box is allowed to change size
and shape to match the target pressure P [46]. There exists a large body of literature
on different thermostats and barostats in addition to these, with different benefits and
drawbacks, but common to all of them is that they directly influence the dynamics of
the atoms in the simulation in order to keep the temperature and the pressure fixed, re-
spectively. This can lead to artifacts, and hence in situations when one is interested in
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the unaltered dynamics of a system the MD simulation is often conducted in the NVE
ensemble which obeys Newton’s equations of motion directly.

Equipped with the knowledge of what an ensemble average is, we can return to the
scattering function defined in the previous chapter (Eq. 2.11). There, we saw that the
intermediate scattering function F(q, t) was proportional to the thermal average of the
Fourier transform of the time-dependent particle density p(q, t), which in turn was re-
lated to the partial differential cross section via a Fourier transform (see Eq. 2.12 and
Eq. 2.13)

p(r.t) = ), 8(r — R;(t)),
J

1
Flg.t) = 5 (p(g.0)p(=4. 1)), (.10
oo coh |K'| J »
= —_— 0 — lo)i’d .
~ (aQaE'>Coh s | ) (P@ PG Dthermar e dt

The thermal average defined in Eq. 2.4 is the same as an ensemble average conducted in
the NVT ensemble, as can be seen from Eq. 3.9. Through ergodicity, we can rewrite the
thermal average as a time average, to arrive at

oo Ocoh |k/| J —iot’
= — - 0 q,O p(—q, t’ dar’. .
(aQaE' >coh 8rh |k| < ( ) ( )>t ¢ (.12)

Eq. 3.12 states that if we conduct an MD simulation in the NVT ensemble, and the as-
sumption of ergodicity holds, then we can compute the coherent partial differential
cross section from the Fourier transform of the time average of the correlation of the
particle density p(q,t). We can similarly obtain the incoherent partial differential cross
section.

The restriction to the NVT ensemble for the MD simulation is only illusory. In the
thermodynamic limit, N — oo, a thermal average of a function A in the NVE ensemble
is identical to one in the NVT ensemble if the temperature T is chosen such that E =
(E)NvT, since E and f = 1/kgT are conjugate variables [42]. For this to hold, the function
A should be a sum of single particle functions, which is true for the particle density
p(r,t). Note, however, that the fluctuations of the property A is different between NVE
and NVT, even if the average is the same, which may lead to certain properties that
are derived from the fluctuations being different. Taken together, since the scattered
intensity in a neutron scattering experiment is proportional to the partial differential
cross section, this means that we can use MD in either the NVT or NVE ensembles to
simulate neutron scattering experiments.
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3.3. Studying liquid chromophores with molecular dynamics

3.3 Studying liquid chromophores with molecular
dynamics

a) (1) Perylene (2) Perylene-ethyl (3) Perylenediimide c)

Aggregated

Figure 3.2: The three molecules (a) and the two structural models (b) that we studied in paper I1I,
together with schematic visualizations of the two correlation functions that were calculated (c-
d). The same-time normal vector correlation function in panel (c) describes the degree to which
neighboring molecules are aligned, and the normal vector autocorrelation function (d) describes
the movement of a single molecule as a function of time.

We will now focus on how to apply MD simulations for analyzing the structure and
dynamics of systems of liquid chromophores. There are many possible observables that
one can choose to study during an MD simulation, and one such observable that we stud-
ied in paper I are correlation functions. In this paper, we studied three different proto-
type systems consisting of ~1500 molecules of the same species. The three molecules
were perylene, perylene-ethyl and perylenediimide. In particular we were interested
in the stability of supramolecular aggregates of these molecules and changes in their
dynamics as a function of temperature, in order to gain insight into which molecular
mechanics affect aggregate stability. To this end, we conducted MD simulations at tem-
peratures in the range 200 K to 600 K. At each temperature and molecule, a simulations
were carried out starting from two different structural models — an aggregate struc-
ture and a disordered structure. The molecules and structural models are visualized in
Fig. 3.2a and b, respectively.

From each simulation, we compute two normal vector correlation functions, defined
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as

N
N(r) = Z Z 8(r —ripn(t) - ;1)

i=1 j#i

J(@) = @A) At + 1))y

(3.13)

where n;(t) is the normal vector of molecule i at time ¢ and r;; is the pairwise distance vec-
tor between molecules i and j. The normal vector is defined as pointing out of plane of
the molecule, and is schematically visualized together with N(r) and J(r) in Fig. 3.2¢-d.
N(r) is called the same-time normal vector correlation function, and describes the aver-
age relative orientation of molecules at a distance r. Typically, at large distances r, N(r)
is averaged over many molecules and approaches a limiting value that we call Nj;,. If
the neighboring molecules are oriented in the same direction Nj;, = 1, otherwise Nj;,
is small. J(r)is the normal-vector auto-correlation function, and describes how the ori-
entation of a molecule changes as a function of time. J(r) exhibits a double-exponential
decay, and decays more quickly the more rapidly the molecules change their orientation.
By fitting a double exponential function J(z),

J(1) = Ay exp(—t/11) + Ay exp(—t/1y), (3.14)

one can extract the typical timescales of the motion of the molecules, 7; and 7,. The
larger of these, 75, corresponds to reorientation of the molecules, which is the type of
large-scale molecular motion we are interested in. By studying the temperature depen-
dence of Nj;;, and 7,, we can gain insight into the stability of the aggregate structure,
and its dynamics.

In Fig. 3.3a we can see that the average orientation Nj;,, has a strong temperature
dependence for perylene and perylene-ethyl for the aggregate structure. For low tem-
peratures, Nji, is large which indicates that the molecules are oriented in the same
direction and remain in the aggregate structure, but at 400 K Nj;,,, decays quickly, in-
dicating that the system transitions into a disordered structure. From these observa-
tions we may draw the conclusion that the aggregate structure is stable for temperatures
<400 K for perylene and perylene-ethyl, at least on the timescale of 10 ns MD simula-
tions. Perylenediimide, on the other hand, does not exhibit such a strong temperature
dependence, as it remains in the aggregate structure throughout the temperature range.
This can possibly be attributed to the larger and bulkier size of perylenediimide, which
leads to stronger intermolecular interactions between neighboring molecules.

Turning to the speed of molecular reorientation as described by the reorientation
time 7, in Fig. 3.3band Eq. 3.14, we observe that it also increases by several orders of mag-
nitude for perylene and perylene-ethyl as temperature is increased, from 7, = 10 ns to
75 = 10 ps, whilst the dynamics remain on the order of 10 ns for perylenediimide. Note
that this effectis independent of the structural model, as both aggregate and disordered
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Figure 3.3: Nj;, (@) and 7, (b) as a function of temperature for the three different molecular sys-
tems. Both Ny, and 7, exhibit a clear temperature dependence for the smaller perylene deriva-
tives, perylene (1) and perylene-ethyl (2), with the aggregate structure becoming unstable at
400 K. Perylenediimide (3) remains in the aggregate structure regardless of temperature, which
can be attributed to the stronger intermolecular interactions between the bulkier perylenedi-
imide molecules.

systems exhibit a similar temperature dependence. The rapid increase in 7, by several
orders of magnitude is reminiscent of glass transitions, which are characterized by the
large-scale dynamics in the system becoming slower with decreasing temperature [47].

In short, this study exemplifies how MD simulations can be used to study liquid chro-
mophores. However, MD simulations are limited by simulation length, which is par-
ticularly impactful in the study of glassy systems. The MD simulations conducted in
this study had a simulation length of 10ns. For comparison, when glass transitions
and glassy systems are studied experimentally, one typically denotes the glass transi-
tion temperature as the temperature at which the dynamics in the system are on the
order of the timescale of the experiment, 100s. Because of this limitation, MD simu-
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lations are all but guaranteed to overestimate the glass transition temperature, as the
dynamics may appear frozen on the timescale of simulation but may be non-glassy at
experimental conditions. With that being said, the role of simulations is not to serve as
a substitute for experiments, but rather as a compliment, as one can in detail study the
behavior of the system at an atomic or molecular level.

3.4 Takeaways

In this chapter, we have seen how MD simulations are performed and how they can be
used to estimate various physical quantities. We have also seen that they have a clearlink
to the measured intensity in neutron scattering experiments via the time-dependent
particle density (Eq. 3.12), which we can use to predict experimental neutron scattering
results. Finally, we took an example from paper I in which we applied MD simulations
to a system of perylene derivatives, and showed that it is indeed a useful technique for
studying the structure and dynamics of liquid chromophores. However, the keen-eyed
reader might have spotted one key ingredient in this simulation soup that I have system-
atically ignored, namely, the question of how one obtains the forces f; acting on atom i
that are required to solve the equations of motions in MD simulations (Eq. 3.1). The next
chapter of this thesis will be fully dedicated to exploring this question.
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We have now arrived at the final, and possibly most important, piece of the puzzle
that we need to solve in order to accurately simulate neutron scattering experiments
with MD simulations, namely how one obtains the forces between atoms. The quality of
the simulation depends on the quality of these forces, as they determine the dynamics.
If the forces are inaccurate, so will the MD simulation be, and by extension, predicted
observables such as neutron scattering spectra. We will begin this chapter by briefly dis-
cussing the two traditional methods that have been used for obtaining forces, which are
DFT, the slow but accurate, and heuristic force fields (FFs), the fast but inaccurate. We
will then dive headfirst into the world of machine-learned force fields (ML-FFs), which
promise to combine the speed of heuristic FFs with the accuracy of DFT.
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Chapter 4. Machine-learned Force Fields

4.1 Electronic-structure methods and classical force
fields

The goal of an FF is to provide a set of forces for a given configuration of atoms. Atomic
systems behave according to the laws of quantum mechanics, and subsequently all the
nuclei and electrons in the system obey the many-body Schridinger equation [48, Chap-
ter 3],

HY = E¥Y

A 1

BN B B
2 i 2M |r _RI| (4.1)
Sl 1 1 ﬂ
24 Ini—rl 23R =Ry

where we have used atomic units (e = 4rey, = h = 1) for readability. Lower-case in-
dices run over electrons and uppercase indices run over nuclei, which have mass M;
and atomic number Z;. r; denotes the position of electron i and R; is the position of
nucleus J. Solving Eq. 4.1 would give us a complete description of the system at the
current moment in time, including all the forces between the atoms, which we need in
order to propagate an MD simulation. However, the many-body Schréodinger equation
is only analytically solvable in the simplest of cases involving a single electron, and nu-
merically only for moderately sized or high-symmetry systems [49]. One major hurdle
in solving Eq. 4.1 are the terms involving pairs of particles, denoted by the sums over
i #j,i,I,and T # J, which scale exponentially in complexity as the number of parti-
cles in the system increases. DFT proposes to solve this problem by reformulating the
Schrodinger equation. First, the slow-moving nuclei are assumed to be stationary rel-
ative to the electrons, which is known as the Born-Oppenheimer approximation [50].
Second, the fully-interacting electrons are replaced by N fictitious non-interacting elec-
trons that still have the same ground-state density n(r) through the Kohn-Sham (KS)
equations ([49, 511),

vz
(-5 + wlnl)) ) = g,

2
wlnl() = v0) + [ @ G nlr ')| + v [nl(r)

SEy[n] (4.2)
on(r)

ve[n(r) =
N

n@) = Y gl
j=1
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¢;(r) is the KS orbital for state j of the non-interacting system, with associated energy ¢;,
and [n] denotes that a quantity is a functional of the electron density n(r). A key feature
of the KS equations is that the ground state density n(r) is a function of {¢;(r)};, which in
turn also depends on the density. The equations thus have to be solved self-consistently,
by iteratively solving for and updating the density n(r) until it has converged. Once the
ground state density n(r) has been obtained one can compute relevant physical proper-
ties such as the forces between the nuclei. Note that the external potential v(r) includes
the Coulomb interaction from the nuclei acting on the electrons.

The KS equations are formally exact, and could be solved perfectly if the exchange-
correlation energy functional E,.[n] and it’s associated potential v,.[n](r) was known. Un-
fortunately, E,.[n] is in general unknown, leaving users of DFT with no other choice but
to rely on approximations for E,.[n]. There exists a plethora of DFT functionals, and de-
pending on the choice of functional a DFT calculation can yield different results. As
such, DFT calculations are inherently dependent on the choice of functional.

The KS equations (Eq. 4.2) are significantly easier to solve computationally than the
many-body Schrodinger equation (Eq. 4.1), but the KS equations still scale poorly with
the number of electrons in the system. In practice, DFT is often not used for systems
with more than hundreds or possibly thousands of atoms, which is short of the tens of
thousands to millions of atoms that are typically studied in MD simulations. Heuris-
tic FFs takes a more computationally efficient but potentially less accurate approach by
foregoing the Schrodinger equation entirely. Instead, one deals with an expansion of
the system energy in terms depending on the positions Y of the atoms in the system

[42],
V() = Z Vi) + ), D Varr)+ ), D D Valrirjri) + (4.3)

i j>i i > k>j>i

where the first term, V;, corresponds to interactions of all N atoms with an external po-
tential, the second term with V, corresponds to interactions between pairs of particles,
the third sum to interactions between triplets and so forth. Including more terms in
Eq. 4.3 gives in general a more accurate but less computationally efficient model. Trun-
cating the expansion at the V, term gives a class of potentials known as pair potentials,
the most well-known of which is the Lennard-Jones potential [42],

12 6
V@) =) 4e <3> —(3) . (4.4)

i j>i Tij Tij

The Lennard-Jones potential involves two parameters, € and o, which control the shape
of the potential. These parameters are adjusted such that the potential gives reasonable
estimates for various physical properties such as, e.g., the density of the system under
study when used in an MD simulation, which yields a potential that is tailored for a
specific system. This is a common strategy for heuristic FFs in general, where the main
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difference between different potentials is the type of interactions considered and the
number of free parameters available in the model. Once optimized, heuristic FFs such
as the Lennard-Jones potential can be readily evaluated for the large number of atoms
in typical MD simulations, but at the cost of not being as accurate as DFT calculations.

4.2 Machine-learned force fields and neural network
potentials
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Figure 4.1: Calculation of a) the binding energy between two benzene molecules as a function of
distance, and b) the change in potential energy as the unit cell of crystalline benzene is scaled,
using three different methods; a Lennard-Jones potential, NEP which is an ML-FF, and DFT
using the CX functional. Panel ¢) compares the computational cost of evaluating the energies
with each method. The ML-FF, NEP, accurately captures the target curves from DFT, while still
having the same low computational cost as the Lennard-Jones potential.

Machine-learned force fields (ML-FFs) take a similar approach as heuristic force fields
(FFs), with the difference being that ML-FFs typically have a larges number of parame-
ters which makes them very flexible and thus possibly more accurate. Here we will give
a brief overview of ML-FFs; a more comprehensive review can for instance be found in
reference [52].
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An ML-FF is often trained to reproduce energies and forces from a training dataset
of atomic configurations with reference energies and forces from DFT, with the aim of
obtaining a model that is as accurate as DFT but has similar computational cost as a
heuristic FF. This is demonstrated in Fig. 4.1, where the binding energy between two
benzene molecules as a function of separation (Fig. 4.1a) and the change in potential en-
ergy as the axes of the unit cell of crystalline benzene are scaled (Fig. 4.1b), have been
computed using a Lennard-Jones potential, an ML-FF called NEP that we will discuss
in detail in Sect. 4.3, and DFT. The computational cost of evaluating the energies with
each method are given in Fig. 4.1c, with DFT being about five orders of magnitude slower
than the FFs. Both the Lennard-Jones potential and the NEP model predict the binding
energy accurately, but the Lennard-Jones potential fails for the more complex case of
predicting the energy-volume curve. The NEP model on the other hand accurately cap-
tures the energy-volume curve, whilst retaining the high computational performance
the Lennard-Jones potential.

Like with heuristic FFs, there exists a large number of different types of ML-FFs based
on different functional forms. These can be divided into two main categories, namely
kernel-based methods and neural-network based methods.

42.1 Kernel-based methods

Kernel-based methods typically employ a probabilistic approach, with the assumption
that the energy E as a function of the positions of N atoms takes the form of a gaussian
process (GP) [53, Chapter 2],

E(q) ~ €9 (m(q).k(q.q"))
m(q) = E[E(q)] (4.5)
k(g.q") = E[(E(q) — m(q)) (E(q") —m(q"))].

By modeling the potential energy as a GP we restrict the potential energy function E(q)
to belong to a family of functions in which all the points are jointly Gaussian distributed.
The GPis fully determined by its mean function m(q) and its covariance function k(q,q"),
with the vector ¢ € R3N representing a specific configuration of the N atoms in the
system. The covariance function can be interpreted as encoding the similarity between
two configurations g and q’.

In less formal terms, by modeling the potential energy surface as a GP we constrain
it to be smoothly varying as the positions of the atoms represented by the vector q are
changed, with each configuration having an associated predicted mean energy E(q) with
standard deviation og(q). Thisleads us to the main benefit of GP-based methods: the un-
certainty in the predictions can readily be extracted as the predicted variance ox(q). By
monitoring the uncertainty during a MD simulation, configurations of atoms for which
the model gives an inaccurate prediction can be identified. These uncertain structures
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can then be included in the training dataset to improve the model, which is known as
active learning [54, 55]. The disadvantage of kernel-based methods is that they are compu-
tationally expensive to evaluate, with the cost of evaluating the model scaling as O(n%),
where n are the number of data points in the training dataset, although some strategies
exist for partially mitigating this limitation [56].

A specific example of a GP-based ML-FF is the Gradient-Domain Machine-Learning
model (GDML, [57]), which is trained to predict the forces F(q), with the potential model
being obtained by integration, E(q) = jg F(q")dq’. sGDML is an extension of GDML
in which relevant symmetries are incorporated to improve the efficiency of the model
[58]. Another example of a kernel-based method is the Gaussian Approximation Poten-
tial (GAP) [59],

422 Neural network-based methods

Popularized by Behler and Parrinello [60, 61], a neural network (NN) potential denoted
U with weights w can be used to predict the energies for each atom i in a system of N
atoms, and can be written as follows,

E =U(w,q(fr;})

o Fy =V, Ulwaq(iry). (46

E; and F; is the per-atom potential energy and the forces acting on atom i respectively.

The per-atom potential energies are summed up to yield E = Zf\[ E;, as only the total
potential energy for a structure is defined, and U can thus be seen as a model for the
potential energy surface of the system. The forces F; are obtained as the gradient of U
with respect to the coordinates of atom i, r;.

Uncertainty estimates cannot be as easily extracted from NN-based as from GP-based
ML-FFs, but they are generally more computationally efficient. One way to estimate the
uncertainty for NN ML-FFs is to train an ensemble of models and use each model to
compute the forces. This gives a distribution of force predictions over the ensemble,
which can be used to estimate the uncertainty [62].

Other examples of neural network-based methods include Deep Potential (DP) [63],
Embedded Atom Neural Network (EANN) [64], ANI-1[65], SchNet [66], and NEP which
we will return to in Sect. 4.3.

4.2.3 Using descriptors to represent atomic structures

Both kernel-based and neural network-based ML-FFs do not typically have the Cartesian
coordinates of a set of atoms, {r;}, as input, but rather a so-called descriptorvector q({r;;}).
This is a function of the relative positions of atom i and all neighboring atoms j, and
can be thought of as a chemical fingerprint describing the environment around atom
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i. The reason for introducing this seemingly cumbersome descriptor vector is that it
guarantees that the model fulfills certain symmetries dictated by physics.

First of all, there are a set of invariances, transformations of the atomic system that
should not change the predicted energies of forces. These include invariance under
translations and rotations of the system, and permutations of atoms with the same ele-
ment [67]. Recently, equivariances have additionally started to be incorporated in ML-FFs
[68, 69]. An equivariant transformation can, for instance, be a rotation; when the input
structure is rotated by a certain amount, the output forces should be rotated accordingly.
Specifically, both descriptors and the model are designed to transform equivariantly un-
der SO(3) rotations of the input. These are often implemented using equivariant graph
neural networks [70].

Understanding the descriptor vector is key to understanding the success of ML-FFs
in recent years [71]. An ML model in general, and a neural network in particular, is just a
“dumb” mathematical function that takes numbers as input and blindly outputs (or “pre-
dicts”) other numbers. During training, the parameters of this function are adjusted
such thatit best mimics the examples of inputs and corresponding target outputs in the
training data set. I want to stress that the model mimics the training data; saying that an
ML “modellearns” is to some extent a misnomer. Crucially, this means thatan ML-FF on
its own does not know anything about physics. Furthermore, as ML models typically in-
volve many parameters interacting non-linearly, it is often difficult to know beforehand
what the output will be for a specific input, a problem that becomes exponentially more
difficult as the size of the model increases. Taken together, this means thatan ML model
can produce unexpected outputs when presented with an input that is different from the
examples in the training data set, a problem that is known as out-of-distribution pre-
diction and is widely researched in the ML literature [72]. A famous recent example of,
atleastin part, out-of-distribution predictions are the hallucinations of large-language
models like ChatGPT [73], leading to possibly non-factual responses [74, 75]. An ML-FF
can to some extent be protected from the issues of out-of-distribution prediction by in-
corporating a descriptor vector that ensures that the input to the ML-FF is physically
meaningful. An added benefit of using a descriptor is that the model automatically ful-
fills the relevant symmetries, which means that these do not need to be “learnt” during
training. However, even with a descriptor vector an ML-FF still suffers from the issues
of out-of-distribution predictions, for instance if structures encountered during simu-
lations are vastly different from the ones in the training data set. Like with any other
ML model, ML-FFs can be hardened against this problem by ensuring that the train-
ing data set samples the chemical space of interest well, for example by using entropy-
maximized datasets [76], but in practice one can never guarantee the robustness of the
predictions of the ML-FF.

The points discussed in this section are the general considerations that go into craft-
ing a physically accurate descriptor, the exact implementation of which can change for
different ML-FFs. Examples of often-used descriptors are atom-centered symmetry
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functions (ACSF) [60, 61], smooth overlap of atomic orbitals (SOAP) [77], spherical har-
monics [78] and the many-body tensor representation [79]. In the next section, we will
take a look at a specific implementation of an NN-based ML-FF, and discuss its associ-
ated descriptor vector in detail.

4.3 Neuroevolution potentials

We will now turn to a specific type of neural network-based machine-learned potential,
namely the neuroevolution potential (NEP) developed and implemented in the GPUMD
package by Zheyong Fan to which I am a contributing developer, presented in paper I.
In this section, we will describe NEP models in detail, starting with the formalism.

43.1 The NEP formalism

Similarly to the Behler-Parinello NN-ML-FFs described in Eq. 4.6, in NEP the energy
of atom i, E;, is predicted as a function of a descriptor vector with Ny, components,
denoted g;. The NN consists of a single fully connected hidden layer, and the predicted
energy takes the form

neu

E=U(w,q) = Z w(l)tanh (Z w(g)qlv (0)> — b, (4.7)

w(® and b0 are the weight matrix from the input descriptor vector to the hidden layer,
and w» and b the weights and bias term from the hidden layer to the single output
neuron. The activation function for the hidden layer is tanh.

Note that the parameters for the model in Eq. 4.7, which for historical reasons is
known as a NEP3 model, are shared between all atoms in the system. This has the cru-
cial benefit that the model does not increase in size as the number of atoms in the sim-
ulated system increases, which could otherwise lead to a model that is computationally
impossible to evaluate for the millions of atoms in an MD simulation. However, sharing
weights between all atoms in a system can lead to a insufficiently flexible model, espe-
cially in systems with many different atomic species and thus a potentially large input
space of possible descriptor vectors q. NEP4 increases the flexibility of NEP models by
having an individual network for each atomic species « in the system, U (w%,q) [80],
yielding a possibly more accurate model.

The descriptor vector q takes the same shape for both NEP3 and NEP4, and is com-
prised of a radial part and an angular part (Fig. 4.2a). The radial part has nX ., + 1 com-
ponents and is defined as

g =Y giryp- (4.8)

J#i
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Figure 4.2: a) Schematic of radial (green) and angular (red) descriptor components. b) Visual-
ization of three radial and angular descriptor components. Note that the peak position of de-
scriptor component n varies. ¢) principal component analysis (PCA) plot of the two principal
descriptor components for ~ 900 structures of crystalline benzene, colored by atomic species.

The summation runs over all neighboring atoms j to atom i, where r; is the distance
between them. The contribution from each neighbor, g,(;;), is in turn computed from

NbRaS + 1 basis functions,

Noss
gn("ij) = Z C:fkfk(’”ij)
k=0 (4.9)

1 i\’
i) =S| T 2( RJ 1) — 1)+ 1 fe(ry)

ret —

where Ti(...) is the kth-order Chebyshev polynomial of the first kind. f.(r;;) is a cutoff
function that ensures that the contribution g,(r;;) from atom j decreases smoothly to
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zero as the distance r;; approaches the radial cutoff distance rR, and is defined as

r‘i.
[1 + cos <nr—§>] , 1 < rR
c

(4.10)
rl] > FCR.

fc(rij) =

O N

-

nk Nlis’ and rR are hyperparameters that are set before training. A key feature of

the NEP formalism is that the coefficients C;ljk in the radial basis expansion are free pa-
rameters that are optimized in conjunction with the weights w and biases b of the NN.
These coefficients depend on the species of atom i and j, which allows NEP to tailor the
message g, (r;;) from each neighbor, increasing the flexibility of the model.

The angular descriptor vector are similarly defined as

i _21+1

G =5 2 2. &(ignCre) Pt (cos by) (411

JFI k#i

with0 < n < nf,cand1 <1 < 130, as hyperparameters that control the size of the
basis expansion. P(...) is the Legendre polynomial of order [, and 6,y is the angle formed
between the two pairs of atoms, ij and ik. This expression is a three-body descriptor as
it involves three atoms; the central atom i and two neighboring atoms j and k. Higher
order terms, such as four-body or five-body interactions, can additionally be included in
the NEP formalism, but we will not describe those in detail here as the notation becomes
rather cumbersome. Please see paper I for details.

The radial and angular components of the descriptor vectors for a benzene molecule
are visualized as a function of interatomic distancer;; in Fig. 4.2b. The peaks of the basis
functions are in different positions for different descriptor components, which can be
interpreted as the different components probing different regions of the chemical envi-
ronment. Typically, a NEP model encounters a large number of chemical environments
with their own descriptor vectors. This is visualized as a PCA plot in Fig. 4.2c, where the
descriptors for ~900 structures of crystalline benzene are plotted. Although the descrip-
tors for the atoms of the same species fall into similar regions, the descriptors still vary
dramatically within these regions.

The descriptor vector as defined fulfills the invariance requirements we discussed in
the previous section. Invariance under translation and rotation of the system is fulfilled
as the descriptors only depend on the relative distance r;; between pairs of atoms, as well
asthe angle 6, between triplets of atoms. Furthermore, invariance under permutations
of atoms of the same species is guaranteed by the summation over neighbors in Eq. 4.8
and Eq. 4.11.

Itis straightforward to compute the partial force acting on atom i using the chain rule,
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as both the expressions for the model and the descriptor vector are entirely analytical,

R
8El~ Pmax aE a l nmax max aE aqnl

a5 G, arl] =0 =1 9qy or
ng‘nax max P ngax lr%)ax ) I (4.12)
oE; qnlll Z Z OE; 9y
n=0 |= 1361nm Iij 720 121 Oy OTij

where we have additionally included the four- and five-body angular descriptors. Note
that the derivative is taken with regard to the distance vector between atomsiand j, r;;.
We can now construct the force acting on atom i from atom j to respect Newton’s third
law, F;j = —Fj;, as F;j = 0E;/or;; — 9E;/orj;. The total force acting on atom i from all
neighboring atoms can be obtained by direct summation,

Fi = ZFU (413)

i#j

The per-atom virial, from which properties such as stress and heat-current can be de-
rived, can also be defined in terms of the partial force,

U,

Wi = Zrij ® ar— (414)

J#i Ji

These analytical expressions for the energies, forces and virials are computationally cheap
to evaluate, and since Eq. 4.7, Eq. 4.13 and Eq. 4.14 can be evaluated for all atoms in the
system in parallel the NEP formalism can be very efficiently implemented on graphics
processing units (GPUs).

4.3.2 Training a NEP

NEPs are trained by minimizing the following loss function, where the first three terms
are the root mean squared error (RMSE) loss with regards to energy, forces and virials
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respectively,

1/2

(ENEP(n’Z) _ Etar)2

1/2

N
+2f (% 2 (B @ - Ff”)z)

N 1/2 (4.15)
1 str 2
+ A, (WNEP(n,2) - W)
6NStI’ n=1 pv
Npar Npar 1z
1 2
+4 Z |znl + 22 N Zn
par n=1 par p=1

with z denoting the trainable parameters of the model, Ny, the number of structures in
the current batch, and N the total number of atoms in the current batch. Superscripts
NEP and tar represents predicted and target values, respectively. The last two terms,
weighted by factors A; and A,, are L1 and L2-regularization terms, which makes Eq. 4.15
an elastic-net loss [81]. An elastic net combines the benefits of L1 (Lasso) and L2 (ridge)
regression, and yields a sparse model.

Thelossin Eq. 4.15 is minimized through a separable natural evolution strategy (SNES)
[82], which is form of genetic optimization algorithm. The general idea of SNES is to
optimize a distribution for each parameter, instead of a single value as in most other
optimization techniques. This scheme is implemented as follows [83]. Let the parame-
ters z be distributed according to a joint N,,,,-dimensional Gaussian distribution, z ~
N (m,s), where m and s is the mean and standard deviation vector respectively. This
parameter distribution is iteratively updated according to the natural gradient of the

fitness J(z),
1@ = El-1G)] = - | L@pm. o)z, 416

which is the expected value of the loss function under the search parameter distribution,
p(zjm,s). The minus sign in Eq. 4.16 comes from SNES being a maximization procedure,
but we want to minimize L(z). First, N,op samples z are drawn from the distribution,
Zp =m+s Qrywherery ~ 4/(0,1), which each can be seen as an instance of the NEP
model. The symbol © denotes the Hadamard (element-wise) product. Second, L(zy) is
evaluated for each of the N,,, models in the current generation, the models are sorted in
ascending order of the loss score, and each of the models is assigned a value ;. according
to its rank (see [84] for explicit values of u). Third, the natural gradient of the fitness
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Figure 4.3: An example of how the loss function in Eq. 4.15 (panels a-b) and the magnitude of the
weights in the hidden and output layers of the NN change (panels c-d) as a function of training
generation. The effect of the regularization can clearly be observed in many of the model weights
decreasing in magnitude as the training progresses, with start around 50 000 generations.

with regards tom and s are computed,

NPOP

UmJ(@) = ) wry
k=1

(4.17)

NPOP

V(@) = ), ulre org— 1),
k=1

which, finally, are used to update the mean and standard deviations of the parameter
distribution,

m —m+ (s © Vm J(2))

s (4.18)
s —sOexp <%Vs](z)>.

nm and ns are the equivalent of learning rates, and are setton, = landn = (3 +

In Npar) /5 Npar as suggested by [84].
Optimizing the loss function using the natural gradient instead of, e.g., the Euclidian

gradient as in regular steepest descent optimization is beneficial, as the natural gradi-
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Figure 4.4: The active learning scheme often used when training NEP models. The initial dataset
9, consists of rattled and strained structures, after which an ensemble of models are trained and
new structures are added to the training dataset for the next generation, 9, through active
learning. This procedure is repeated until the force uncertainty of decreases below the force
RMSE of the model.

ent takes the curvature of the loss landscape into consideration. This feature, in conjunc-
tion with the elastic-net regularization and the genetic form of the algorithm, leads to a
very efficient optimization scheme that yields both an accurate and sparse final model.
See Fig. 4.3 for an example of how the loss function and parameter distribution evolves
as training proceeds. As can be seen in Fig. 4.3b, many parameters in the trained model
are small in magnitude. Such sparsity is desirable as it decreases the effect of overfitting,
the effect where the model parameters are adjusted too tightly to the training set. Over-
fitting can lead to the model predicting unphysical forces when it encounters an atomic
configuration which was not in the training dataset, which in turn affects the accuracy
of the MD trajectory. A sparse model is less likely to predict wildly unphysical forces
when extrapolating to such structures.

However, the most efficient method for minimizing the risk of the model extrapolat-
ing to unknown structures is to have a comprehensive training set, so that as much of
the relevant configuration space is covered. To achieve this, the training dataset Jj; is
augmented using active learning, similar to what was touched upon in Sect. 4.2.1. Typi-
cally, an ensemble of N.,; = 5 models is trained on various random subsets of the train-
ing dataset 9; through a process known as bagging [85]. Then, a short MD simulation is
run with one of the models, and for each atomic configuration the forces are predicted
with each of the N,,s models. The uncertainty of each structure is then estimated as
the force on atom i with the maximum standard deviation of, over the ensemble mod-
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els. After the simulation, the structures with the largest uncertainties are selected and
target energies, forces and virials are computed using DFT, after which they are added
to the dataset to yield an augmented dataset Z;, . Then a new ensemble of models can
be trained using 9;, ;. This procedure is then updated around 3-10 times, until the un-
certainty of the structures encountered during MD fall beneath the force RMSE over
the entire dataset, which can be seen as the noise in the predictions of the model. See
Fig. 4.4 for a schematic of this active learning scheme. The initial dataset, 9, is typ-
ically comprised of various rattled and strained structures, starting from a reference
structure via DFT.

4.3.3 NEPin practice
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Figure 4.5: Benchmarks from paper I comparing NEP to various other state-of-the-art models as
of 2022, both when running on a central processing unit (CPU) and on a GPU. The systems under
study are silicon (a), azobenzene (b) and carbon (c). Benchmarks a) and b) are performed on a
CPU, and benchmark c¢) ona GPU. Accuracy as measured by the force RMSE is on the y-axis, with
speed in ms/atom/step. In all instances, NEP reaches state-of-the-art-accuracy, whilst often

being at least an order of magnitude faster. Reproduced with permission from the publisher.

The formalism and optimization procedure outlined in the two previous subsections
are key for the success of the NEP approach. In paper I we benchmark NEP against
several state-of-the-art methods as of 2022, including ACE [86—88], ANI [65], GAP [59],
sGDML [58], MTP [89, 90], DP [63, 91, 92] and REANN [93, 94]. Fig. 4.5 panels a) and b)
compare NEP models for silicon (Fig. 4.5a) and azobenzene (Fig. 4.5b) prototype systems
when the simulation is run on a CPU. NEP reaches state-of-the-art accuracy for both
datasets, whilst often being about an order of magnitude faster in inference speed than
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the competition, as measured in ms/atom/step. The inference speed of NEP increases
by another order of magnitude when inference is performed on GPUs, as illustrated for
a carbon dataset in Fig. 4.5c.

These benchmarks highlight the design principles of NEP, boosting computational
efficiency whilst retaining accuracy. The high computational efficiency is enabled by
GPUMD being implemented in native C++/CUDA and running primarily on GPUs, with-
out almost any external dependencies. GPUMD is controlled via a text-based interface
using input files. The NEP models are also defined in a proprietary text-based format.
In paper II we present the CALORINE package, a Python toolbox for GPUMD simulations
and NEP construction. CALORINE aims to simplify the user experience as well as make
developed NEP models transferable to other workflows implemented in Python, in or-
der to make the NEP approach easily accessible for the broader materials research com-
munity.

4.4 Takeaways

In this chapter we have familiarized ourselves with the world of machine-learned force
fields (ML-FFs), machine learning models that enable large-scale MD simulations with
the accuracy of computationally much more expensive quantum mechanical methods,
such as DFT. We have specifically focused on the NEP approach, which provides very
computationally efficient ML-FFs with state-of-the-art accuracy. This is exactly what
we requested at the end of the last chapter (Chapter 3) as a necessity for running MD
simulations with the accuracy required to predict neutron scattering experiments de-
scribed in Chapter 2.
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Summary of papers

Paper |

Structural stability and dynamics of liquid chromophore aggregates

In paper I we take a deep-dive into the structural stability of supramolecular aggre-
gates of three perylene derivatives. By performing MD simulations using a classical
FF and calculating correlations functions between neighboring molecules we study how
the structure and dynamics of these aggregates change as a function of temperature.
We find that the supramolecular aggregates are unstable for smaller perylene deriva-
tives, but that a larger derivative remains ordered even for high temperatures, which
we attribute to the increase in sterical forces between the bulkier molecules. Further-
more, we find all derivatives to be frozen into what we call an artificially glassy state for
low temperatures; on the timescale of the MD simulation the molecules remain oriented
in their original direction. As the temperature is increased, the speed of the reorienta-
tion increases for the smaller perylene derivatives, regardless of if the system is ordered
into supramolecular aggregates or not. The larger derivative remains in the artificially
installed glassy state, which we yet again attribute to the larger sterical hindrances in
this system.
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Paper

GPUMD: A package for constructing accurate machine-learned potentials and performing highly
efficient atomistic simulations

In paper II we present the GPUMD package, which is both a tool for creating NEPs with
state-of-the-art accuracy as well as performing highly efficient MD simulations, thanks
to GPUMD harnessing the power of modern GPUs. NEPs are Behler-Parinello-style neu-
ral network potentials, based on decomposing the total potential energy into per-atom
contributions E;,

Nuey Nies
E=Umwg) =Y wtanh| Y wig b | - b®. (5.1)
p=1 v=1

w(® and b0 are the weight matrix from the input descriptor vector to the hidden layer.
The hidden layer has a tanh activation function, and w(*) and b(!) are weights and bias
from the hidden layer to the single output node. Combining this functional form with
a loss function that combines predicted energies, forces, virials and both L1 and L2-
regularization, yields both a computationally efficient as well as a highly accurate im-
plementation. This allows NEP to achieve similar or better accuracy compared to other
common approaches, whilst being at least an order of magnitude faster. Additionally,
we demonstrate the capabilities of NEP models in a variety of applications, including
calculating lattice constants, tensile loading, quenching, and heat-capacity calculations.
An active learning scheme for generating a diverse dataset based on farthest-point sam-
pling is also presented.
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Paper llI

calorine: A Python package for constructing and sampling neuroevolution potential models

CALORINE is a Python toolbox that acts as an interface for users of GpuMD. The pack-
age includes convenience functions for setting up and running MD simulations, as well
as training, analyzing, and modifying NEP models. In addition, CALORINE provides
two ASE calculators [95]. ASE is a popular framework for atomistic modeling within
the broader computational materials community, and these calculators thus make NEP
models more widely accessible and interoperable with other workflows. The documen-
tation and tutorials for CALORINE can be found at the following URL: https://calorine.
materialsmodeling.org/.
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Conclusions and outlook

Experiment dr inte fysik

Jakub, 2024

In the beginning of this thesis we set out to answer two main research questions,
namely

« To what extent can the developed simulation protocol capture the structure and
dynamics of aggregates of perylene derivatives?

« How well can neutron scattering experiments be predicted using the simulation
protocol?

The simulation protocol that I have presented in Chapter 3 and Chapter 4 is based on
running accurate MD simulations with NEP models, and extracting from the resulting
trajectory experimental observables, such as the dynamic structure factor measured in
neutron scattering experiments as described in Chapter 2. Although I have yet to com-
bine all three parts of the simulation protocol to comprehensively study a liquid chro-
mophore system, I have demonstrated the capability of each part of the protocol indi-
vidually throughout the thesis.

In Chapter 3, I presented paper I in which we use MD simulations with a classical
FF to study the aggregation behavior of large systems of perylene derivatives, a type of
chromophore. We found that the stability of the supramolecular aggregates are heavily
dependent on temperature, but also on the strength of intermolecular interactions as
demonstrated by the more bulky perylenediimide molecule remaining aggregated even
at high temperatures. This clearly demonstrates the insights that can be gained from
large-scale MD simulations.
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In conclusion, MD simulations with a classical FF can be used to describe the changes
in structure and dynamics of large systems of perylene derivatives.

Paper II presents the NEP formalism, which I describe in detail in Chapter 4. NEP
not onlyyields a prediction accuracy on par with state-of-the-art approachesin the field,
but it does so whilst being much more computationally efficient owing to the imple-
mentation within GPUMD efficiently harnessing the powers of modern GPUs. Compu-
tational efficiency is key, as it makes the long MD simulations necessary to accurately
describe the dynamics of chromophores feasible. Furthermore, thanks to the CALORINE
package described in paper III, creating specialized NEP models for different types of
chromophores such as perylene derivatives is straightforward. Hence, NEP models are
well suited for accurately modeling large systems of liquid chromophores, and we may
draw the following conclusion:

Using an ML-FF such as NEP is expected to increase the accuracy of simulations of
chromophores even further.

From these accurate MD simulations with NEPs I can then compute the dynamic
structure factor as described in Chapter 2, in order to predict neutron scattering ex-
periments for chromophore systems. However, this is still a work in progress, and we
may thus only answer the second research question tentatively.

Neutron scattering experiments should be able to be accurately predicted using the
simulation protocol.

6.1 Limitations

Studying chromophore systems computationally is challenging, and although the simu-
lation protocol described in this thesis is designed with this in mind there are still some
inherent limitations to the methodology.

The main limitation is that of limited simulation length. Due to the time step in a
MD simulation typically being on the order of fs, total simulation times are limited to
at most 1 us, even with a computationally efficient ML-FF such as NEP. This makes the
simulation protocol inherently unable to describe certain slow dynamic process, such
as the glass formation of certain chromophores as mentioned in [35] which takes place
on experimental time scales, on the order of 100 s.

Another limitation is the small system size in a MD simulation compared to experi-
ments. Even though PBCs are used to mimic an effectively infinite system, large supramolec-
ular aggregates may simply not fit in a MD simulation.

A third limitation is the choice of training NEPs from reference data obtained from
DFT. DFT only gives approximate solutions to the Schrodinger equation as described
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in the beginning of Chapter 4, where crucially the choice of exchange-correlation func-
tional affects the results. This means that the developed NEP and subsequently the re-
sults of the MD simulation are conditional on the choice of functional.

Taken together, these limitations may seem crippling to an all-encompassing compu-
tational description of realistic systems of chromophores. However, that loses track of
the goal of developing the computational framework presented in this thesis. The goal
of the simulation protocol is not to replace experiments, but rather complement them
by aiding in interpreting the results. After all, experimental studies are the best probe
we scientists have for understanding the world around us. The role of computer simu-
lations and theory in this context is to improve the efficiency of experiments, and the
insight gained from them.

6.2 Outlook

As I have already alluded to, the next step is to put the whole simulation protocol into
practice by predicting the neutron scattering experiments for a chromophore system.
One possible challenge that may appear is faithfully reproducing the details of the exper-
imental setup. The full dynamic structure factor S(q, ) is not measured immediately;
rather, the measured intensity is a function of the dynamic structure factor as well as
the experimental resolution function, among other things. This resolution function is
unique to each experimental setup, and will need to be reproduced in order to match
the results from that particular instrument.

Another extension to the simulation protocol could be to include predictions of other
experimental techniques. For example, Raman spectroscopy would be a good comple-
ment to neutron scattering, as Raman is sensitive to vibrations of higher energy such as
intramolecular bonds. Predicting Raman spectroscopy requires predicting the dynamic
susceptibility of a configuration of atoms. In a recent manuscript we extend the NEP
formalism to predict tensorial properties, such as the susceptibility [96].

Finally, I also aim to study the structure and dynamics of chromophore systems in
even greater detail. Mixtures of perylene derivatives and the glassy dynamics within
would be particularly interesting to study, and would be a good fit for an application of
the simulation protocol.
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