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Electron Transport and Collective Modes in Fermi and non-Fermi Liquids
Eric Nilsson
Department of Physics
Chalmers University of Technology

Abstract
Today’s novel materials can display many interesting phases. Two-dimensional
materials with strong electron-electron interactions allow the electrons to enter
a hydrodynamic regime at intermediate temperatures. This thesis presents a
method for an exact description of the quasiparticle distribution in terms of
kinetic theory, valid beyond the asymptotic low-temperature regime used in
perturbative approaches. This is used to obtain of the full mode spectrum of
the interacting electron gas. At low temperatures, the existence of long-lived
modes of odd parity hint at the existence of a new transport regime in between
the limits of ballistic and hydrodynamic flow. The method is also used to
determine the shear viscosity of the electron liquid beyond the low temperature
limit.

If the coupling becomes strong enough, it invalidates the quasiparticle pic-
ture, which undermines many established methods within many-body physics.
This happens in the strange metal phase of high-temperature superconductors,
where the holographic duality – providing a description of a strongly coupled
theory in terms of a weakly coupled gravitational theory – serves as one of the
few ways to study the strongly coupled physics.

Recent experiments on strange metals show an incoherent plasmon at small
momenta, in qualitative agreement with previous holographic models of bulk
plasmons. However, the relevant experiments also couple to collective surface
excitations, which hitherto has not been considered. This thesis also presents a
model for surface plasmon polaritons using the holographic duality, improving
the theoretical description of plasmons in strongly correlated materials.
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Chapter 1

Introduction

This thesis covers two different regimes of condensed matter systems. On one
side, there are systems with well-defined quasiparticles: At low temperatures,
the primary excitations responsible for the dynamics of the system are those
close to the Fermi surface [1]. This is the basis of Landau’s Fermi liquid the-
ory [2], which stands as of the most successful theories in physics in the last
century.

Although Fermi liquid theory is almost 70 years old, there are still new
insights to be gained. Due to the complexity of the governing equations, there
is a general notion that “Fermi liquid theory is too hard to solve”, and the rise
of two-dimensional materials in the last decades has not made the situation
any easier. Compared to their three-dimensional counterparts, the lower carrier
densities in two dimensions imply a Fermi temperature TF on the order of 100 K
rather than 105 K [3]. This means that low-temperature expansions in T/TF

— successful in three dimensions — become much more limited in the two-
dimensional world. With many interesting physical phenomena near TF , such
as hydrodynamic behavior of the electrons, there is a need for new methods
that can tackle a full solution to the governing equations. This is one of the
aspects that we will explore in this thesis.

On the other side, there exists systems with inter-particle correlations so
strong, that the quasiparticle lifetime is incredibly short. This can imply a
mean free path shorter than the de Broglie wavelength, which is incompatible
with the Heisenberg uncertainty relation, and make the quasiparticle concept
lose its meaning. The system instead behaves as a strongly correlated electron
“soup” [4], and exemplifies non-Fermi liquid physics. The strong correlations
are problematic for perturbative approaches; for instance, in charge-neutral
graphene, the effective coupling constant used in series expansions can exceed
unity [5]. Additionally, brute-force simulations of the interacting electrons are
greatly hindered by the NP-hard “fermion sign problem” [6] that ruins the con-
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Introduction

vergence of the numerical Quantum Monte Carlo algorithms [7], although some
progress has been made on this front in models of quantum critical systems [8].

Since much of the powerful many-body methods rely on the aforementioned
quasiparticle concept, an alternative description is needed. Through the use
of the holographic duality, that we discuss in Chapter 3, a strongly coupled
theory admits a dual description in terms of a weakly coupled theory in a
higher dimension. The price one pays for the exchange of coupling strengths
is the inclusion of gravitational fields in the weakly coupled theory. While
Einstein’s equations are not trivial, the holographic duality serves as one of
the few ways to “solve” a strongly coupled theory, as it is able to generate all
n-point correlation functions of the theory with little effort.

The conjectured holographic duality is most precise when applied to systems
that at first glance bear little resemblance to those of condensed matter physics.
However, the phenomena of interest are explained in terms the low-energy,
emergent IR behavior of the theory, and just like many roads lead to Rome,
many different UV theories share the same IR fix point. The holographic duality
can therefore provide crucial insight through the universal features of strongly
correlated systems. Nonetheless, key features of condensed matter systems,
such as their thermodynamic properties, the effects of the lattice, and the long-
ranged Coulomb interaction, need to be incorporated within the holographic
framework in order to make a serious attempt at explaining any experimental
data. Many of these effects have been successfully implemented at this point,
and in this thesis, we focus on the Coulomb interaction in particular, and discuss
the collective modes it gives rise to.

In the end, no realistic system is a perfect Fermi or non-Fermi liquid. Some
systems are closer to one end than another, but only through the exploration
of physics at both ends might we be able to understand nature.

What are Quasiparticles?
An intuitive description of a quasiparticle is given in Ref. [9]: Consider a horse
galloping across a dusty plain. As the horse moves, it spurs up a cloud of
dust, and we label the combined object of horse and dust cloud as a quasihorse.
This quasihorse has different properties than the “naked” horse (e.g., a different
mass), and is partly hidden from the environment by the dust cloud. In much
the same way, an electron travelling through a material interacts with the sur-
rounding medium, giving it an effective mass m∗ different from its bare mass,
and a finite lifetime τqp. The validity of the quasiparticle description hinges
on Eqpτqp ≫ ℏ, where Eqp the quasiparticle energy [1]. This is satisfied for
excitations within a thin shell (of width ∼ T/TF ) near the Fermi surface, which
constrains the low-energy dynamics to excitations with momenta close to the
Fermi momentum, kF . Furthermore, the Coulomb interaction is weakened by
the charges in the surrounding medium, just like how the dust cloud hides the
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horse. These ideas therefore allow the many-body problem of O(1023) interact-
ing electrons to be recast into that of weakly interacting quasielectrons near the
Fermi surface. This describes the behavior of most metals at low temperatures,
so notwithstanding the long-ranged nature of the Coulomb interaction, many
metals can be considered as weakly correlated systems [10].

The Collisionless-to-Hydrodynamic Crossover
Particularly interesting are materials where electron-electron interactions are
dominant. These have become experimentally realizeable due to the develop-
ment of new fabrication techniques. By layering an electron gas on top of doped
material (using so-called modulation doping), the charge carriers become spa-
tially separated from the defects [11]. In effect, this produces very clean materi-
als for which impurity scattering is relevant only at the lowest of temperatures.
If the electrons are interacting only amongst themselves, the momentum and
energy conservation at the microscopic level translates to the macroscopic level.
In this case, the collective behavior of the electrons is like that of a liquid,
controlled by hydrodynamics.

A hydrodynamic regime dramatically alters the behavior of the system:
With momentum globally conserved, the static conductivity is in principle infi-
nite, where one can imagine the electron fluid flowing around the impurities. In
a realistic setting, the electrons flow through a channel or wire of finite width,
where momentum is lost due the interactions with the boundaries. The resis-
tivity is therefore determined by the drag along the edges, controlled by the
shear viscosity, a property of the fluid itself. This is a markedly different from
the typical case of ballistic flow, where the resistivity is (among other things)
determined by the scattering off impurities and phonons — a property of the
environment through which the electrons flow [12]. Hydrodynamic behavior
has been reported in mono- [13–18] and bilayer [19] graphene, (Al,Ga)As het-
erostructures [3, 20–22], GaAs quantum wells [23, 24], PdCoO2 [25] and in Weyl
semimetals [26]. Aspects of hydrodynamics, such as shocks or turbulence, could
be used in future electronic devices, and through the viscosity, the resistance in
nanostructures could go below previously thought fundamental limits [12].

While momentum and energy are only approximately conserved in a realis-
tic setting, hydrodynamic effects become visible when electron-electron interac-
tions provides the dominant equilibration mechanism for the electron gas [27].
As the rate such interactions generally scales as T 2/TF , the following picture
emerges: The temperature must be high enough for electron-electron scattering
to dominate the temperature-independent impurity scattering, yet low enough
for phonon scattering to be subdominant. Within such a temperature win-
dow of electron-electron interaction-dominated transport, the electron fluid can
undergo a transition into a hydrodynamic regime, as depicted in Fig. 1.1. If
probed at length scales smaller than the characteristic length scale ℓee ∼ TF /T

2
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Figure 1.1: Di�erent transport regimes of clean, two-dimensional materials.
At low temperatures, impurity scattering dominates; at high temperatures,
phonons dominate. In the intermediate regime, dominant electron-electron in-
teractions allow for a crossover between a collisionless and a hydrodynamic
regime.

of electron-electron interactions, the system is in a collisionless regime, where
excitations are not able to relax e�ciently. Conversely, at length scales larger
than ¸ee, the system relaxes quickly, with dynamics dominated by the modes
of the (approximately) conserved quantities; energy, momentum, and particle
number. Higher temperatures therefore facilitate the transition into the hy-
drodynamic regime [10]. The restriction to two dimensions is therefore crucial
in making T/TF large before phonons take over, or worse, before the material
melts.

Near the Fermi temperature, where hydrodynamic behavior is pronounced,
there is a significant brocading of the Fermi surface, lessening the e�ects of Pauli
blocking. The system is therefore neither in the regime where low-temperature
approximations are valid, nor is it behaving classically as it does at higher tem-
peratures. There is therefore a need for a complete mathematical description
of interacting electrons, valid at all temperatures. This is addressed in paper
II, where we present the a method for an exact solution to the kinetic equation
describing the two-dimensional electron gas. In paper I, we apply the method
to the calculation of the shear viscosity of the electron liquid, valid at all tem-
peratures. An introduction to the papers and a brief highlight of the results are
presented in Chapter 2.

Planckian Transport and Holography
The aforementioned hydrodynamic regime is enabled by strong electron-electron
interactions. When the interactions become even stronger, the destruction of
quasiparticles can lead to non-Fermi liquid behavior, the poster child of which is
the strange metal phase in cuprate and iron-based high-temperature supercon-
ductors (HTS). It is the normal phase out of which superconductivity emerges,
placed above the superconducting dome in the phase diagram [28], which is
illustrated in Fig. 1.2. Unlike conventional superconductors explained by BCS
theory [29], the mechanism underlying superconductivity in HTS is not under-
stood, which adds to the motivation of understanding the strange metal: Since
it competes with the superconducting phase, could understanding it hold the
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Figure 1.2: Schematic phase diagram of hole-doped high-temperature super-
conductors [28]. Above the superconducting dome (SC) sits the strange metal
phase.

key to unlocking even higher temperature superconductivity?
The prototypical example highlighting the strangeness of the strange metal

is the DC resistivity in a HTS at optimal doping1. In a normal metal, the
quasiparticle-based transport yields a resistivity with a nontrivial temperature
dependence, due to the interactions with other quasiparticles. For instance, bal-
listic electron-electron scattering gives a resistivity proportional to T 2, whereas
phonons give a T 5-dependence, that transitions to T -linear around the Debye
temperature. Eventually, the mean-free path of the electrons becomes com-
parable to the lattice spacing, causing the resistivity to saturate. This is the
so-called Mott-Ioffe-Regel (MIR) limit, and acts as an upper bound of the resis-
tivity. The situation is very different in a HTS like La2−xSrxCuO4 at optimal
doping. Here, the resistivity above the superconducting transition temperature
Tc increases linearly with temperature in an almost perfect straight line [30],
which signals that there is other physics at play [4]. Perhaps even more surpris-
ing is that the resistivity shoots right through the MIR limit and keeps growing
linearly, in principle until the material melts2. Quasiparticles cannot be the pri-
mary charge carriers above the MIR limit, and since the resistivity curve shows
no sign of changing passing through it, the same could also be true below the
MIR limit [31]. The simple behavior of the straight line would “need a power-
ful mechanism to protect it”, in the words of Nobel laureate Bob Laughlin [4].
Understanding this mechanism could allow for the engineering of materials that

1This is where the superconducting transition temperature Tc is the largest.
2Metals that violate the MIR limit are called bad metals in the regime above the limit.
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are superconducting at even higher temperatures, as the linear-in-T slope seems
to be related to Tc [31].

Measurements of the optical conductivity, σ(ω), reveals another surprising
feature [32]. Using the Drude formula of the conductivity to extract a relaxation
time τ (which admittedly might be inappropriate to do), one finds it to be very
small: In fact, it comes close to the Plackian timescale3 [33],

τpl = ℏ
kBT

(1.1)

where kB is Boltzmann’s constant and T the temperature. This acts as the
shortest possible time of heat loss in a quantum many-body system [34], and
is the elementary quantity of dimension time for a quantum system at finite
temperature. The Planckian timescale, that also can be inferred from the T -
linear resistivity [35], is associated with a highly entangled many-body state,
and signals that the charge carriers need not be interpreted as particles [31].

Intriguingly, τP is also the relaxation time of black holes, which in part
has motivated the effort of modeling strange metals using the holographic du-
ality [36]. As we will see in Chapter 3, the low-energy physics of the strongly
correlated theory is indeed captured by black hole dynamics in the gravitational
theory. Holographic models of strange metals are a promising candidate [37],
and recent models are able to feature both a T -linear resistivity and to repro-
duce certain aspects of the optical conductivity data [38]. It is however not
only the T -linear resistivity or optical conductivity that is a conundrum, but
rather the combination with other anomalous measurements, such as a Hall
angle cot ΘH ∼ T 2 [31]. Models that can capture all of the peculiar features
of strange metals are under intense pursuit. Whether the prevailing theory will
turn out to be a holographic model or something else (see, e.g., [39]), only time
will tell.

Collective Modes in Strange Metals
The story of experiments on strange metals with anomalous outcomes is long.
Of particular interest in this thesis is the density-density response, as measured
by momentum-resolved electron energy loss spectroscopy (M-EELS). It exhibits
a very broad plasmon peak that quickly fades into the background continuum at
non-zero momentum [40], to the extent that it is referred to as “incoherent” [41].
In Fermi liquid theory, the plasmon is infinitely long lived at zero momentum,
and only acquires a damping at momenta high enough to allow for a decay into
particle-hole pairs [1]. The plasmon of holographic models, on the other hand,
is damped throughout momentum space [42]. This is due to the dissipative

3Not to be confused with the Planck time tP =
√

ℏG/c5 ≈ 10−44 s obtained from the
units ℏ = c = G = 1.
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mechanisms of a black hole in the gravitational theory, and can be interpreted
in terms of a quantum critical sector in the strongly correlated theory [43].
The qualitative agreement motivates further research to formulate a realistic
prediction of the data, which is currently being pursued [44].

Various aspects of plasmons within holographic duality have been explored,
such as the effects of momentum relaxation [45], the layered nature of cuprate
HTS [46], or different gravitational backgrounds [43, 47]. However, experiments
using M-EELS, which inherently is a surface probe, also couple to surface plas-
mons [41, 48]. These have so far been unexplored in a holographic setting, and
are the topic of paper III and Chapter 3. We show how to set the boundary
conditions in the gravitational theory to be able to describe electromagnetic
scattering experiments on a strange metal, and use this to extract the surface
response.
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Chapter 2

Kinetic Theory of Electrons

In this chapter, we cover the mathematical preliminaries and selected results of
papers I and II. In Section 2.1, we discuss the kinetic equation that describes
the relaxation of the weakly perturbed quasielectron distribution toward local
equilibrium. Section 2.2 illustrates the method presented in Paper II of solving
the kinetic equation, whereas Section 2.3 is devoted to Paper I and the shear
viscosity of the electron liquid.

Kinetic theory is an old subject, and there exists a host of excellent resource
material that cover the topic in great detail; see, for instance, Refs. [49–52].

2.1 The Kinetic Equation
Many-body physics is notoriously hard. While we know the governing equation
— the Schrödinger equation — solving it for each of the particles in a piece of
material is impossible. This computational intractability can partly be reme-
died by taking a statistical view of the physics. We consider the quasiparticle
distribution function f(t; r,p), that acts as a probability distribution function
in phase space. For instance, the density of quasiparticles is given by

n(t; r) =
∫ dp

(2π)d
f(t; r,p), (2.1)

up to a spin degeneracy factor. The explicit dependence on both the position
r and momentum1 ℏp violates the uncertainty principle, but poses no difficulty
for phenomena on length- and time scales larger than those of the atomic con-
stituents [1]. One can therefore interpret f(t; r,p) as a “mesoscopic” occupation
function of the center of the quasiparticle wave packet [53].

1We let p denote the wave vector, so the momentum carried by a quasiparticle wave packet
is ℏp.
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Kinetic Theory of Electrons

The dynamics of the quasiparticle distribution is governed by the semiclas-
sical kinetic equation(

∂

∂t
+ v · ∂

∂r
− ∂U

∂r
· ∂

∂ℏp

)
f(t; r,p) = I[f(t; r,p)] (2.2)

where v = ℏp/m∗ is the quasiparticle velocity, m∗ the effective mass, and
F = −∂U/∂r the force from an external potential U(r). Leaving the time
derivative aside, the left-hand side takes the form of a classical Poisson bracket
{H, f} between a mean-field Hamiltonian H = ℏ2p2/2m∗ + U(r) and the dis-
tribution function, which we refer to as the streaming term. In the absence
of a right-hand side, Eq. (2.2) assumes the form of Hamilton’s equations of
motion, and indeed describes a continuity equation balancing the flow of prob-
ability through the volume element ddr ddp in phase space. This continuity is
broken by collisions with other quasiparticles, captured in the collision integral
I[f(t; p, r)], encoding the relaxation rate of the quasiparticles. Introducing the
shorthand f

(′)
i = f(t; r,p

(′)
i ), the collision integral reads

I[f(t; r,p1)] = −
∫ dp2 dp′

1 dp′
2

(2π)2d
W (p1p2|p′

1p′
2)

× [f1f2(1 ± f ′
1)(1 ± f ′

2) − f ′
1f

′
2(1 ± f1)(1 ± f2)] ,

(2.3)

where W (p1p2|p′
1p′

2) is a matrix element describing the scattering between
states of momenta p1,p2 and p′

1,p
′
2. The two terms describe the in- and out-flux

of particles scattering to/from the states with momentum p1 and p2, and the
upper (lower) sign corresponds to the equation describing bosonic (fermionic)
quasiparticles2.

For energy- and momentum-conserving interactions, the kinetic equation
admits the general solution

f(t; r,p) = 1
eβ(ε(p)−µ−ℏp·V ) ∓ 1

, (2.4)

where ε(p) is the quasiparticle dispersion, V (t, r) is a local velocity field, and in
general, the chemical potential µ(t, r) and inverse temperature β = 1/kBT (t, r)
can also be functions of space and time. By virtue of satisfying the property of
detailed balance,

f1f2

(1 ± f1)(1 ± f2) = f ′
1f

′
2

(1 ± f ′
1)(1 ± f ′

2) , (2.5)

the distribution in Eq. (2.4) is annihilated by the collision integral Eq. (2.3), so
the dynamics is controlled by the streaming term alone. Eq. (2.4) generalizes
the Fermi-Dirac or Bose-Einstein distributions, that have a vanishing streaming
term and therefore satisfy ∂tf = 0.

2Typically, the term collective excitations is used to describe bosons in this context,
whereas quasiparticles are only of fermionic nature. For ease of discussion, we here use
“quasiparticle” for both.
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The Kinetic Equation

Limitations of the Semiclassical Description
While the streaming term {H, f} remains the same as in a purely classical de-
scription, the semiclassical label makes itself apparent from the blocking factors
(1 ± f) in the collision integral, which are of quantum origin. Eq. (2.2) can
therefore be seen as a classical Boltzmann equation with a select set of impor-
tant quantum effects built in, namely those of the constraints on the scattering
phase space. While the above formulation can seem quite phenomenological
— we are starting from an equation of motion, not an action principle — a
rigorous derivation of a quantum kinetic equation can be made by starting from
the Keldysh effective action [54]. Here, one performs a Wigner transformation
to allow for a quantum mechanical representation of phase space [55, 56]. After
an approximation of having well-defined quasiparticles3, Eq. (2.2) emerges as
a lowest-order gradient expansion of the underlying quantum theory [56]. In
these steps, the memory effects (i.e., where the collision integral involves an
integral over time, and there is no conservation of energy due to δEδt ≥ ℏ) of
the quantum theory are erased, limiting our discussion to timescales above the
saturation of the time-energy uncertainty relation.

One could ask whether the present description of a quasiparticle distribu-
tion function is limited to low temperatures, as the quasiparticle lifetime τqp
decreases with increased temperature (due to an increased collision rate), and
the quasiparticle concept requires Eqpτqp ≫ ℏ [57]. As we show in paper II,
the spectrum of lifetimes we compute do indeed reach their minimum values
at for T ≈ TF where the thermal and quantum effects become comparable,
but still satisfy the aforementioned inequality. Above the Fermi temperature,
the gas transitions into a non-degenerate regime, with a typical inter-particle
spacing much larger than the the thermal wavelength λT =

√
2πℏ2/m∗kBT . In

the collision integral, the blocking factors (1 ± f) vanish, and the background
solution Eq. (2.4) takes on a Maxwell-Boltzmann form. The semiclassical ki-
netic equation therefore reduces to the classical Boltzmann equation, effectively
describing a gas of wave packets of size λT .

Coupled Systems
Aside from the aforementioned limitations, we have an exact description of the
physics governing the gas of interacting electrons. It is however highly non-
trivial to solve the non-linear integro-differential kinetic equation, made further
complicated by the fact that condensed matter systems in general contain sev-
eral species of quasiparticles. Each species obey their own kinetic equation, that

3In the so-called quasiparticle approximation, the spectral function A = −2 Im GR (GR be-
ing the retarded Green’s function) is taken as a delta function, A ≈ 2πδ(ϵ − [ε(p) + U − µ]).
Even for strong interactions, where the quasiparticle approximation would be poor, an anal-
ogous equation can still be derived using a semiclassical approximation [55].
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Kinetic Theory of Electrons

couple through the collision integral as [10];

∂tf
(i) − {H(i), f (i)} = I(i)[{f (j)}], (2.6)

where f (i) (H(i)) is the distribution (Hamiltonian) of the ith species of quasi-
particles. For example, the electrons in a typical metal will not only collide
with other electrons, but also interact with holes, phonons and impurities. Due
to the increased complexity, coupled systems are often studied in the relaxation
time approximation; I(i)[f (i), f (j)] ≈ −f (i)/τij , where the collision integral is
replaced with a single relaxation time τij capturing the interactions between
species i and j. By Matthiessen’s rule, the total relaxation time of species i,

1
τ (i) = 1

τii
+
∑
j ̸=i

1
τij
, (2.7)

receives contributions from scattering off of both the same (τii) and different
(τij) quasiparticle species. The dynamics are however dominated by the fastest
relaxing channel, so if τii ≪ τij , an approximate description is obtained by
decoupling the ith equation from the rest. For example, impurity scattering
provides the dominant pathway of momentum relaxation for electrons at low
temperatures4, which is why (non-superconducting) materials have a residual
zero-temperature resistivity ρ(T = 0) ≈ m∗/ne2τimp. In this thesis, we focus
on systems with dominant electron-electron interactions, and therefore restrict
the kinetic equation to a single species of electron quasiparticles living in two
dimensions.

The Linearized Kinetic Equation
In order for something interesting to happen to the system, it must be perturbed
from its equilibrium in Eq. (2.4). This can be done through a temperature or
velocity gradient, an external force, or a voltage (affecting the chemical poten-
tial). This shifts the distribution of quasiparticles as f = f0 + δf , where f0 is
the background distribution in Eq. (2.4), and we parameterize

δf = f0(1 − f0)χ(t; r,p). (2.8)

In this way, χ(t; r,p) can be thought of as a perturbation to the dimensionless
quasiparticle energy5. Within linear response theory, we assert the dependence

χ(t; r,p) = χ(p)e−iωt+iq·r, β(t, r) = β + δβe−iωt+iq·r, (2.9)
4Impurity scattering is typically independent of temperature, whereas electron-electron and

electron-phonon scattering is proportional to T 2 and T 5 at low temperatures, respectively [58].
We are also neglecting the Kondo effect, which can cause a small uptick in the resistivity at
the very lowest temperatures.

5f0(1 − f0) = (−kBT ∂f0
∂ε

), so the time- and spatial derivatives act on β(ε − µ) − χ(p);
see Eq. (2.12).
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Eigenmodes of the Electron-Electron Collision Integral

and so on for F ,V and µ. The streaming term, acting on the equilibrium
distribution Eq. (2.4), contributes to linear order in perturbations with

{H, f0} =
(

−∂f0

∂ε

)[
ε− µ

T
v · ∇T +m∗vT Qv + v · (∇µ− F )

]
, (2.10)

whereQij = ∂(iVj) is the so-called rate-of-strain tensor6 [52], we assume ε = ε(p)
and take V = 0 on average (or perform a Galilean transformation to make it
so). Finally, by defining the collision operator

L[χ(t; r,p)] = −I[δf(t; r,p)]
f0(1 − f0) , (2.11)

we arrive at a general form of the linearized kinetic equation

β
(
v · F −m∗vT Qv

)
+ (∂t + v · ∇) (β(ε− µ) − χ) = L[χ], (2.12)

which is the equation of interest in the following sections.

2.2 Eigenmodes of the Electron-Electron
Collision Integral

Before applying Eq. (2.12) to the discussion of transport properties of the elec-
tron gas in Section 2.1, we investigate the properties of the collision operator
L itself. In the absence of external forces, and with the temperature, chemical
potential and fluid velocity kept fixed, the linearized kinetic equation takes the
form of an eigenvalue problem,

L[χ(p)] = γχ(p), (2.13)

where γ is the decay rate7. L is a positive semi-definite Hermitian operator
(see paper II), so the eigenvalues γ that describe the relaxation of the electrons
toward local equilibrium are real and bounded from below; γ ≥ 0. The lower
limit is saturated for the so-called zero modes (γ = 0), that correspond to the
conservation of particle number, momentum and energy.

The computation of the decay rate of the electron liquid dates back to the
60s, where it was inferred from transport coefficients obtained within Fermi
liquid theory in the zero-temperature limit. This gives the now well-known re-
sult γee ∼ T 2 in three dimensions [59–61]. In two dimensions, the constrained
phase space leads to a logarithmic enhancement due to small angle scatter-
ing, and a decay rate γee ∼ T 2 lnT at low temperatures [62–65]8. Diagram-
matic approaches that determine the decay rate via the electron self-energy,

6X(αβ) ≡ 1
2 (Xαβ + Xβα).

7That is, a purely decaying perturbation with ω = −iγ and q = 0.
8The restriction to one spatial dimension has even more radical consequences, and leads

to the Tomonaga-Luttinger liquid [66].
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γee ∼ − Im Σ, as employed in Refs. [64, 65], are however limited to the fastest de-
cay channel. This works well when the entire spectrum of decay rates generated
by Eq. (2.13) is of a similar timescale, but as shown at the end of this section,
this is not the case in two dimensions. Furthermore, the low Fermi temperature
of two-dimensional materials also limits the viability of low-temperature expan-
sions with T/TF ≪ 1. As the kinetic description in itself can be extended to
arbitrary temperatures, we now turn to an outline of the mathematical meth-
ods used in papers I and II to solve Eq. (2.13). For a further discussion on the
method and its numerical implementation, see Appendices C and D in paper
II.

Solving the Linearized Kinetic Equation
The crucial step for turning the kinetic equation into a concrete mathemati-
cal problem is the introduction of an inner product naturally induced by the
collision integral;

⟨χ′|χ⟩ = λ2
T

∫ d2p

(2π)2 χ̄
′(p)f0(p)(1 − f0(p))χ(p). (2.14)

Matrix elements of the linearized collision integral operator with respect to this
inner product then read

⟨ψ|L|χ⟩ = λ2
T

4

∫ dp1 dp2 dp′
1 dp′

2
(2π)8 W121′2′F121′2′

[∑
i

′
ψ(pi)

][∑
i

′
χ(pi)

]
,

(2.15)
where the scattering matrix element W121′2′ = W (p1p2|p′

1p′
2) enforces momen-

tum and energy conservation, F121′2 = f0(p1)f0(p2)(1 − f0(p′
1))(1 − f0(p′

2)) is
the product of Fermi factors, and

∑′
i xi = x1 + x2 − x′

1 − x′
2. We now assume

that the material has a parabolic band dispersion ε(p) = ℏ2p2/2m∗, where
m∗ is the effective mass. This means that the Fermi surface is a circle, so the
perturbation χ may be expanded into angular harmonics as

χ(p) =
∑
m

χ(p)eimθ, (2.16)

with θ the polar angle on the Fermi surface. Fig. 2.1 shows the first few Fermi
surface deformations for constant χ(p), which can be though of as a rigid
shift in the chemical potential9. The angular mode number m dictates the
behavior of the deformations under parity: modes with m even are parity-even,
whereas modes with m odd are parity-odd. Modes of different angular mode

9The figures in Fig. 2.1 are drawn at zero temperature (when the Fermi-Dirac distribution
is a step function), or alternatively, for a constant perturbation χ(p). Momentum-dependence
in χ(p) captures the softening of the Fermi surface at finite temperature, blurring the edges
in the figures.
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Eigenmodes of the Electron-Electron Collision Integral

Figure 2.1: An expansion of the Fermi surface deformation χ(p) into angular
harmonics labeled by a mode number m. The black circle is the Fermi energy
for electrons with a parabolic dispersion ε(p) = ℏ2p2/2m∗.

numbers m are orthogonal with respect to the inner product, so the blocks
L(m) = ⟨ψeimθ|L|χeimθ⟩ of the full matrix can be treated separately. In the
language of Eq. (2.16), the zero modes of particle number and energy conser-
vation live in the m = 0 sector and correspond to χ(p) ∼ 1 and χ(p) ∼ p2,
respectively, whereas the two conserved components of the total momentum are
linear combinations of χ(p) ∼ pe±iθ.

The inner product allows for a basis of orthogonal polynomials {Tn(p)} to
be generated (e.g., by a Gram-Schmidt procedure), whereby the perturbations
can be expanded as χ(p) =

∑N
n Tn(p) up to an upper basis dimension N . From

the collision operator matrix elements ⟨Tn|L(m)|Tn′⟩, one obtains a spectrum of
N eigenvalues γ(1)

m ≤ · · · ≤ γ
(N)
m . Since L is a positive semi-definite Hermitian

operator just like a Hamiltonian, the Rayleigh-Ritz principle guarantees that
the eigenvalues converge from above as the basis dimension N is increased [67].
A lowest order, constant basis polynomial T1(p) corresponds to a rigid defor-
mation of the Fermi surface. Higher order (momentum-dependent) polynomials
incorporate the effects of finite energy transfer, and have a larger influence at
higher temperatures as the broadening of the Fermi surface increases.

The numerical challenge of solving the linearized kinetic equation lies in the
evaluation of the matrix elements ⟨Tn|L(m)|Tn′⟩, which are multidimensional
integrals that at low temperatures feature highly peaked integrands due to the
Fermi factors in the collision integral. To this end, the adaptive Divonne algo-
rithm within the Cuba library is used, as it allows for a Monte Carlo sampling of
the integrand to be biased in the peaked regions [68]. Through this mathemat-
ical formulation, a complete characterization of the eigenmode spectrum can
be obtained, as was done in Ref. [69] for a constant interaction matrix element
as a proof of principle. In the following subsection, we discuss a more realistic
Coulomb interaction, and its ramifications on the mode spectrum.
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= +

Figure 2.2: Direct and exchange-channel diagrams for the Coulomb interaction
⟨p1p2|V |p′

1p′
2⟩ (top). The RPA approximation of the Coulomb interaction is

the sum over all “ring”-diagrams (bottom). In the static limit ω ≪ qvF , it takes
the form of the Thomas-Fermi screened interaction in Eq. (2.19).

The Screened Coulomb Interaction
The scattering element in Eq. (2.15) is within a Golden-Rule approximation
given by

W (p′
1,p

′
2|p1p2) = 2π

ℏ
|⟨p1p2|V |p′

1p′
2⟩|2 (2π)2δ

(∑
i

′
pi

)
δ

(∑
i

′
εi

)
, (2.17)

where the delta functions ensure conservation of momentum and energy. In
papers I and II, we consider a screened Coulomb interaction, acting through
both direct and exchange channels10

|⟨p1p2|V |p′
1p′

2⟩|2 = V 2(p′
1 − p1) + V 2(p′

1 − p2)︸ ︷︷ ︸
direct

−V (p′
1 − p1)V (p′

1 − p2)︸ ︷︷ ︸
exchange

,

(2.18)

V (q) = 2πe2

q + kTF
, (2.19)

where kTF = 2m∗e2/ℏ2 is the Thomas-Fermi wave vector. The contributing
diagrams are shown in Fig. 2.2. This potential is obtained from the static
(ω ≪ qvF ) limit of the dielectric function ε(ω, q) computed within the random
phase approximation (RPA) as V (q) = V0(q)/ε(ω = 0, q), where V0(q) is the
bare Coulomb interaction. This relates the Thomas-Fermi wave vector to the
RPA density parameter rs as kTF = 2rs

√
πn, where n = 2TF /Tλ

2
T is the density

of the electron gas. The parameter rs can be though of as the radius of the
10This is essentially Møller scattering, so the s-channel process is forbidden as there is no

photon carrying charge 2e.
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volume containing on average one electron, where a larger value implies stronger
correlations between the electrons due to the decreased screening [54]. While
the RPA expansion is only strictly valid for rs < 1, it empirically works well for
most metals, where rs ∼ 3 − 6 [70].

The most pertinent critique of the choice of interaction element is the neglect
of a finite energy transfer ω, that can be important at large temperatures. As
is the case for the shear viscosity of the electron liquid discussed in Section 2.3,
only the first few basis polynomials enter, i.e., it is primarily determined by
processes with small energy transfer. Generalizing Eq. (2.19) to include the
finite-temperature Lindhard function Π(ω, q;T ) would involve an additional in-
tegral at every point of the integrand [66], slowing down the computations.
Finally, the Golden rule expression in Eq. (2.17) is a first-order Born approx-
imation, estimating the transition T -matrix as T ≈ V , which is valid as long
as the scattering potential V is weak [71]. Higher order effects are however
partly incorporated due to the RPA origin of the screened Coulomb interaction
(see Fig. 2.2).

Mode Spectrum

We here present a brief synopsis of the results in paper II, which details the full
spectrum of modes obtained from the eigenvalue problem in Eq. (2.13). These
determine the behavior of the electron gas, impacting the transport charac-
teristics via Eq. (2.12). Fig. 2.3(a) shows the eight lowest-lying decay rates
γ

(n)
m , n = 1, . . . 8, for 0 ≤ m ≤ 20, of the collision operator at low temperatures,
T = 0.001TF . Note that the zero modes corresponding to the underlying sym-
metries of particle number, energy and momentum conservation — the two
lowest modes for m = 0 and the lowest mode for m = 1 — have γm = 0 and
are therefore not seen in Fig. 2.3.

By evaluating ⟨ψ⋆|L|ψ⋆⟩ for a lowest order basis element ψ⋆, we are able to
analytically compute γm=2 for all rs, as is detailed in Appendix A in Paper II.
This allows us to further parametrize all of the lowest-lying even modes at low
temperatures as

γm even ≈ 2π
3ℏ

T 2

TF
r2

s

[
log
(

1 +
√

2
rs

)
−

√
2√

2 + rs

]
lnmϕ
ln 2ϕ (2.20)

for rs ≳ 1, where the fit parameter ϕ in part absorbs the small error in using
a lowest order basis polynomial. We plot Eq. (2.20) in Fig. 2.3 as a dashed
gray line, where ϕ = 1.23. Intriguingly, this gives a logarithmic scaling in the
angular mode number m (up to m ≲

√
TF /T ), instead of being logarithmic in

temperature as in self-energy calculations [64], that are oblivious to the symme-
tries of different Fermi surface deformations. On the contrary, the lowest-lying
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Figure 2.3: (a) Hierarchy of eigenmodes of the collision operator Eq. (2.15)
at low temperature, T = 0.001TF . There is a separation by several orders of
magnitude between the lowest-lying parity-odd modes and the rest. The dashed
gray and solid black line correspond to Eq. (2.20) and Eq. (2.21), respectively.
(b) Temperature scaling exponents α for the lowest-lying modes with angular
modes numbers 2 ≤ m ≤ 20. Even modes are shown in blue and odd modes
in orange. Lighter colors indicate higher values of m. In both figures, the
interaction strength is given by rs = 1.

odd modes are approximately given by

γm odd = 4π3TF

15ℏ |V |2
(
T

TF

)α

m4, (2.21)

where |V |2 is the Coulomb matrix element evaluated at a small momentum
transfer q ≈ 0.15kF and the scaling exponent α, shown in Fig. 2.3(b), asymp-
totes to 4 in the low-temperature limit. As is apparent from the Fig. 2.3(a),
there exists set of long-lived modes — enhanced by a factor (T/TF )2 — that
correspond to parity-odd deformations of the Fermi surface. This striking sepa-
ration has been dubbed the “odd-even effect” and is argued to give rise to a new
transport regime in between the limits of ballistic and hydrodynamic flow [72,
73]. Here, the effective theory would be hydrodynamics, extended to to also
include the long-lived, “non-hydro”, odd modes. Such extensions of hydrody-
namics is known as “hydro+” in the QCD community [74], or “quasihydro”
within holography [75]. The regime, which has been called the “tomographic”
regime [73], is predicted to harbor novel charge-neutral modes [76] and give rise
to a fractional-power flow profile [73].
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Shear Viscosity of the Electron Gas

Figure 2.4: The electron fluid flowing through a channel of width W . The
length scale set by electron-electron scattering (blue) is ¸ee, whereas the length
scale set by scattering o� impurities or disorder (red) is ¸d. If ¸ee π W π ¸d,
the fluid enters a hydrodynamic regime, where the resistivity is set by the shear
viscosity.

Figure 2.3(b) shows the temperature scaling exponent – for the lowest-lying
even and odd modes, and highlights that the separation of long-lived, odd modes
extends up to T ¥ 0.1TF . As shown in paper II, the magnitude of the separation
is controlled by the interaction strength rs, and can therefore be tuned in an
experimental setting by chaining the doping. A complete analysis of the depen-
dence on the interaction strength rs, angular mode number m and temperature
T/TF is presented Paper II.

2.3 Shear Viscosity of the Electron Gas
With the ability to completely characterize the behavior of the collision operator
L, the extension to the full linearized kinetic equation in Eq. (2.12) is simply
that of a linear algebra problem. A host of transport coe�cients are available
for analysis, and here we focus on the shear viscosity that quantifies the di�usion
of momentum, which is the topic of Paper I [77].

To appreciate the importance of the shear viscosity, consider the flow of
an (electron) liquid through a channel of width W , as is illustrated in Fig. 2.4.
Electron-electron scattering sets a momentum-conserving length scale ¸ee = v·ee,
whereas impurity or disorder scattering sets a momentum-relaxing length scale
¸d. When ¸d π ¸ee π W , the finite size of the channel plays no role, and the
fluid is in a ballistic regime. Here, one can imagine the electrons as pinballs in
a pinball machine hitting against bumpers (the impurities) that relaxes the mo-
mentum of the electrons. The resistivity, related to the momentum dissipation
of the charge-carrying electrons, is therefore governed by the rate of impurity
scattering.

On the other hand, if ¸ee π W π ¸d, hydrodynamic flow is achieved as
the momentum-conserving electron-electron interactions allow the electrons to
reach local equilibrium. Here, momentum is conserved everywhere except at
the boundaries, which causes a parabolic flow profile. The fluid e�ectively
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Figure 2.5: A fluid (blue) between two plates (gray) experiencing shear stress.
By applying a force F to the upper plate, the fluid develops a velocity gradient
Vx(y). The shear viscosity is the proportionality constant between the force
(per unit area) and the gradient of the fluid velocity, e�ectively determining the
rate of momentum loss. Image adapted from [49].

flows around the impurities, and the electric resistivity is instead determined
by strength of the coupling to the boundary, where momentum is lost. The
extent of this momentum relaxation is quantified by the shear viscosity — a
property of the electron fluid itself, and not the medium through which it flows.
The stronger the interactions between the particles, the lower the resistance, as
an even smaller ¸ee means that the electrons do not “find” the edges as easily.

Shear Viscosity from the Kinetic Equation
To determine the shear response, consider the gedankenexperiment of applying
a force along one of the edges of the channel through which the fluid flows [49].
This causes a spatially varying velocity profile perpendicular to the direction of
the force, as illustrated in Fig. 2.5. This gradient is captured mathematically
by non-vanishing stress tensor ‡ij = ≠nm

ú ÈvivjÍ, which can be decomposed
into a symmetric traceless matrix and a trace,

‡ij = ÷

3
ˆVi

ˆxj

+ ˆVj

ˆxi

≠ 2
d

Ò · V ”ij

4
+ (’Ò · V ≠ P )”ij . (2.22)

Here, d is the number of spatial dimensions, P is the pressure, and the coe�-
cients ÷ and ’ are the shear and bulk viscosities, respectively. By perturbing
the system within linear response with a wave vector perpendicular to the fluid
velocity (Ò · V = 0), the shear viscosity is obtained as the proportionality
coe�cient between the tensors ‡ij = 2÷Qij . Explicitly,

÷ = ≠ nm
ú

2Qxy

ÈvxvyÍ = ≠ m
ú

2Qxy

⁄ d2p

(2fi)2 vxvy”f(p), (2.23)

which involves an inversion of Eq. (2.12) to solve for ”f(p). Expressed in the
basis {|nmÍ = |Tne

im◊Í} generated by the inner product Eq. (2.14), the dimen-
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Figure 2.6: (a) Static shear viscosity for three different interaction strengths,
rs = 0.5, 1 and 3. The shear viscosity attains a minimum at temperatures near
the Fermi temperature TF . (b) Frequency dependent shear viscosity at three
different temperatures for rs = 1. The real parts are shown in red and the
imaginary parts in blue. Lighter colors indicate a higher temperature.

sionless shear viscosity is obtained as

η

ℏn
= T

TF
⟨vxvy|(L − iω + iv · q)−1|vxvy⟩. (2.24)

Due to the orthogonality of angular harmonics,

|vxvy⟩ = λ2
T

2

∫ dp

(2π)2 v
2 sin 2θχ(p)eimθ ∼ δm,2, (2.25)

which means that η(ω, q = 0) is entirely determined by dynamics of the quadrupole
m = 2 mode11.

In Fig. 2.6(a), we plot the static shear viscosity at three different interaction
strengths, rs = 0.5, 1 and 3. It is related to the shear relaxation time τη as
η = Pτη, which means that τη ≈ τm=2, and not τee as obtained by e.g., self-
energy calculations. The pressure asymptotes to the constant value P = nEF /2
at low temperatures and the ideal gas pressure P = (T/TF )nEF at high tem-
peratures, which together with{

τm=2 ∼ (TF /T )2, T ≪ TF ,

τm=2 ∼ (TF /T )−1, T ≫ TF ,
(2.26)

leads to a diverging shear viscosity at both low and high temperatures. In par-
ticular, the viscosity attains a minimum at intermediate temperatures, which

11The term iv · q is not a diagonal matrix in m-space, which implies a coupling to modes
of other m at finite q.
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is of particular interest as the famous Kovtun-Son-Starinets (KSS) bound (ob-
tained from holography — see Chapter 3) postulates that η/s ≥ ℏ/4π, where s
is the entropy density. For the non-relativistic case at hand, a saturation of this
bound would imply EF ≪ ℏγ, invalidating the quasiparticle description. The
electron liquid would then enter a regime with such strong correlations that it
is more aptly described by the methods presented in Chapter 3. For the two-
dimensional electron liquid interacting through a screened Coulomb interaction
discussed here, we find that the minimum is larger than the KSS bound by at
least a factor of 50, and the quasiparticle description remains valid.

At finite frequency, the shear viscosity can be expressed as a complex-valued
function, η̃(ω) = η(ω) − iωτηη(ω), where η(ω) assumes the form

η(ω) = Pτη

1 + (ωτη)2 . (2.27)

The pressure of the non-interacting electron gas is given by

P = −nεF

(
T

TF

)2
Li2(−eβµ) (2.28)

where Li2 is the polylogarithm. The real and imaginary parts of the complex
shear viscosity η̃(ω) is shown in Fig. 2.6(b) for three different temperatures
with the interaction strength rs = 1. At low temperatures, the shear viscosity
diverges at small frequencies, signaling that the system behaves hydodynami-
cally only for ω → 0. For temperatures near TF , on the other hand, there is a
significant broadening of the response function. This highlights that the hydro-
dynamic behavior η ∼ Pτη, that holds for ωτη ≪ 1, extends up to a sizeable
fraction of the Fermi energy. This is the hydrodynamic regime, as depicted in
Fig. 1.1, enabled by the strong electron-electron correlations near TF .

This ends the discussion of kinetic theory and hydrodynamics, and in the
next chapter, we move on to systems with even stronger correlations, where the
quasiparticle picture fails.
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Chapter 3

Holographic Models of Collective
Charge Oscillations

In this chapter, we leave the realm of quasiparticle-based descriptions of trans-
port in metals, and turn to the holographic duality and how it can be used to
probe the physics of strongly correlated condensed matter systems. We focus
on the description of collective charge oscillations known as plasmons, and in
particular, surface plasmon polaritons, which is the topic of paper III.

A detailed discussion on the use of holographic methods in strongly corre-
lated systems can be found in the large body of introductory literature, for ex-
ample, Refs. [37, 78–80]. This chapter uses natural units, where c = ℏ = kB = 1.

3.1 The Holographic Duality
At its core, holography is a duality between a quantum field theory (QFT),
and a gravitational theory living in a higher dimension. Originally, the duality
started out as the “AdS/CFT correspondence”, in arguably the most influential
paper in theoretical physics in the last 30 years [81]. In Maldacena’s original
formulation, he argued that N = 4 Super Yang-Mills theory admits a dual
description as supergravity on AdS5 × S5. In the limit of infinite ’t Hooft
coupling λN2 in the gauge theory, where λ is the coupling constant and N is
the rank of the gauge group, the duality reduces to that between a conformal
quantum field theory (CFT) and a classical gravity theory [79]. The latter
should describe a spacetime that asymptotes to anti-de Sitter (AdS) space, a
solution to Einstein’s equations with a negative cosmological constant.

AdS space exhibits the peculiar property that light-like paths reach spatial
infinity in a finite time, and accordingly, the boundary of the space plays an
important role. While AdS is the Lorentzian equivalent of a hyperbolic manifold,
we can imagine a spherical volume, where the boundary is at a radius that
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corresponds to the radial AdS coordinate being at infinity. One then interprets
the dual CFT as living on the lower-dimensional boundary, whereas the gravity
theory in AdS is said to be in “the bulk”. The extra dimension can intuitively be
though of as an energy coordinate, where the asymptotic AdS at radial infinity
describes the high-energy (UV) content of the boundary theory, whereas the
low-energy (IR) physics is controlled by the physics in the deep interior of the
bulk. Refinements of the duality showed that the boundary theory only needs
to be conformal at high energies, where a finite temperature black hole in the
bulk breaks the scale invariance at lower energies. This means that black holes
— that relax on a Planckian timescale — determines the IR behavior of the dual
theory, which is one attractive feature of using the duality to describe strange
metal physics, as hinted at in the introduction.

The emergence of more general dualities led the framework to become known
also as “gauge/gravity duality”, dropping the explicit reference to conformal
symmetries [78]. This is not a perfect label either, as one can obtain gravity
on the boundary as well [82, 83]. We therefore designate the machinery as
simply ‘the holographic duality’, referring to how D-dimensional information
can be completely encapsulated in a (D− 1)–dimensional object, like in a holo-
gram. Today, holographic theories can capture many of the essential features
of condensed matter systems, such as compressible matter at finite density [79],
breaking of translational symmetry [84, 85], Fermi surfaces [86–88], and long-
range Coulomb interactions [42, 43, 46, 89].

In the original AdS/CFT formulation, the duality was formulated from a
so-called top-down perspective, where one starts from a theory of quantum
gravity and reduces it to a classical action. However, as the emergent infrared
physics we are concerned with does not depend on the ultraviolet details, one
can equally well start from a reasonable bulk action that includes the essential
elements we are interested in. This is called a “bottom-up” approach and is the
one we use in this thesis. Many of the most used holographic bottom-up models
do in fact appear from consistent truncations of a full string theory.

The duality is made concrete in terms of a holographic dictionary that maps
objects in the boundary theory to ones in the bulk. This can be made quite
long depending on the content of the theory, so we focus in the following on the
key entries relevant for this thesis.

The Dictionary
The boundary quantum field theory is described by the partition function

ZQFT[h(x)] ≡
∫

DΦ ei
∫

dd+1x [L+h(x)O(x)], (3.1)

where Φ denotes all degrees of freedom in the theory and L is the Lagrangian.
The partition function acts as a generating functional via the inclusion of the
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source h(x) to the operator O(x), so that n-point functions ⟨OO . . .⟩ are ob-
tained through successive functional derivatives of the partition function with re-
spect to h(x). The essence of the holographic duality is captured in the Gubser-
Klebanov-Polyakov-Witten (GKPW) formula [90, 91], which is the equality be-
tween the partition functions

ZQFT[h(x)] = ZGrav[h(x)], (3.2)

where ZGrav is the partition function of the bulk gravitational theory,

ZGrav[h(x)] ≡
∫ ϕ→h

Dϕ eiSGrav[ϕ] ≈ eiSGrav[ϕ∗] (3.3)

where ϕ denotes the degrees of freedom in the bulk theory. In the limit of large
’t Hooft coupling λN2 in the field theory, stringy gravity in the bulk reduces
to classical gravity [79]. This corresponds to the saddle point approximation
of the partition function, where the path integral is evaluated on the solutions
to the bulk equations of motion, ϕ∗, as indicated in Eq. (3.3). On this side
of the duality, h(x) is the value of the bulk field ϕ dual to the operator O at
the boundary of AdS space, here schematically represented as ϕ → h. The
dictionary entries relevant for this thesis1 are that a bulk U(1) gauge field Aµ

corresponds to a conserved U(1) current J µ on the boundary (a topic which we
will return to in Section 3.2), and the bulk metric gµν is dual to the boundary
stress-energy tensor T µν .

When combined with the saddle point approximation in the bulk, the GKPW
formula Eq. (3.2) imply that n-point functions in the boundary theory to be
obtained in terms of the solutions to the bulk equations of motion as

⟨O(x1) . . .O(xn)⟩ = δnSGrav[ϕ∗]
δh(x1) . . . δh(xn) , (3.4)

where the solutions ϕ∗ are subject to the boundary conditions
limr→∞ ϕ(x, r) = h(x). The problem of computing n-point functions in the
strongly coupled field theory has therefore been reduced to that of solving Ein-
stein’s equations in the dual bulk theory.

We saw in Section 2.3 that the stress tensor encodes the shear viscosity.
By using Eq. (3.4), Kovtun, Son, and Starinets obtained the shear viscosity
in a holographic theory from the two-point function ⟨TxyTxy⟩, which led them
to conjecture the lower bound η/s ≥ ℏ/4π [92]. The bound is saturated for
any theory with a gravity dual — that is, for a boundary theory with corre-
lations strong enough that the bulk is described purely by classical gravity, as
in Eq. (3.3). Such a minimum viscosity is a telltale sign of strongly correlated

1It is in general not trivial to identify which field corresponds to what operator, but they
must share symmetry properties, which greatly restricts the number of possible options.
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physics, and has been observed in the quark-gluon plasma created by colliding
nuclei at high energies [93]. We saw in Fig. 2.5 that the shear viscosity reached
its minimum near TF , where the electron-electron interactions became dominant
enough for the electron fluid to enter a hydrodynamic regime. One could then
ask if the strange metal, with its absence of quasiparticles and arguably even
stronger correlations, is also described by hydrodynamics. Experimental evi-
dence of hydrodynamic behavior in strange metals, such as a turbulent electron
flow, would be a smoking gun for holography providing the proper framework
for understanding these materials.

The Reissner-Nordström Background
The workhorse for most holographic applications to condensed matter problems
is the Reissner-Nordström (RN) model, being the simplest black hole solution
that is able to capture electromagnetic phenomena. It is obtained from the
Einstein-Maxwell bulk action

SEM = 1
2κ2

∫
dd+2x

√
−g (R− 2Λ) − 1

4g2
F

∫
dd+2x

√
−g FµνF

µν , (3.5)

where d denotes the number of spatial dimensions in the boundary theory,
κ2 = 8πG is Einstein’s gravitational constant, gF the coupling constant of the
bulk U(1) gauge field and Λ = −d(d + 1)/2L2 is the negative cosmological
constant needed to make spacetime asymptotically AdS. The theory admits
charged black hole background solutions of the form

ds2 = L2

ζ2

(
−f(ζ) dt2 + dx2

i + 1
f(ζ) dζ2

)
. (3.6)

Here, the metric is expressed in Poincaré coordinates, where ζ = L2/r is an
inverted radial coordinate, such that the boundary at spatial infinity is located
at ζ = 0. For the gauge field, we consider solutions of the form A = a(ζ) dt,
whereby the emblackening factor and background gauge potential can be ex-
pressed as

f(ζ) = 1 −Mζd+1 +Q2ζ2d, a(ζ) = µ(1 − ζd−1), (3.7)

where µ is the chemical potential of the boundary theory2, we have set L = 1,
and without loss of generality fixed the black hole horizon at ζh = 1. The black
hole has a mass M and charge Q related to the chemical potential as

M = 1 +Q2, Q =

√
d

2(d− 1)
κ

gF
µ, (3.8)

2This follows from the holographic dictionary; with the boundary and bulk gauge fields
identified across the boundary, At(ζ → 0) = At, we get AtJ t = µρ, where ρ is the density.
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and a (Hawking) temperature and entropy density [37]

T = 1
4π

(
1 + d− dκ2µ2

2g2
F

)
, s = 2π

κ2 . (3.9)

According to the holographic dictionary, this is also the temperature and en-
tropy density of the boundary theory. The characteristics of the model is con-
trolled by the dimensionless ratio µ/T . At µ/T = 0, the black hole is charge
neutral, and the boundary theory is at zero density; as µ/T → ∞, one describes
an extremal black hole whose mass is entirely given by its charge and a the-
ory at zero temperature. Crucially, a non-zero value of µ/T provides a dual
field theory at finite density, and is therefore the backbone of most holographic
models of condensed matter systems [37].

The RN model is somewhat pathological, as indicated by the non-vanishing
ground state entropy s as T → 0. This can be remedied by studying more
complicated Einstein-Maxwell-Dilaton (EMD) models that feature an additional
scalar field. The background geometry is then characterized by the dynamical
critical and hyperscaling-violating exponents z and θ, and has a ground state
entropy density s ∼ T (d−θ)/z. This allows theories with z → ∞, θ → −∞ with
z/θ fixed to achieve an entropy with and expected temperature dependence
[79]. The effect of such geometries on the plasmon response was studied in
Ref. [43]. While the lineshape is slightly affected, the general conclusions at the
level of qualitative statements do not change. For simplicity, we stick to the RN
model, knowing that it can easily be extended at any point in order to fix the
thermodynamics of the boundary theory.

Finally, there is a choice to be made between two and three spatial dimen-
sions d for the boundary theory, which on the bulk side means either AdS4 or
AdS5. Most often, the simpler AdS4 suffices, or is more relevant (for instance,
most of the conduction in cuprate high-temperature superconductors happens
along the copper oxide planes). In Section 3.3, we want to study phenom-
ena that require the full, dynamic Maxwell equations in three dimensions, and
therefore proceed with AdS5.

Linearized Equations of Motion
To compute n-point correlators of the boundary theory, we use the Green-Kubo
formalism, treating the system within linear response. Perturbing the bulk fields
as gµν → gµν +δgµν , Aµ → Aµ +δAµ around the background in Eq. (3.6), gives
the linearized Einstein and Maxwell equations

δGµν + Λδgµν = κ2δTµν , ∇µδF
µν = 0, (3.10)

where the stress-energy tensor Tµν = −g−2
F (FµρF

ρν + gµνFρσF
ρσ/(d+ 2)). As

we saw in Eq. (3.4), the challenge of holography lies in the solving these equa-
tions. The coupled ordinary differential equations in Eq. (3.10) are not as
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innocuous as they seem, as the spacetime geometry makes them singular at
both the horizon and boundary, and they are plagued by the gauge invariance
of the fields. This can be dealt with by tricks used in numerical relativity [94].
Instead of imposing, for instance, the de Donder and Lorenz gauge choices3,

τµ = ∇ν

(
δgµν − 1

2gµνδg
ρ

ρ

)
= 0, ϑ = ∇µδAµ = 0, (3.11)

a priori, one can instead shift the linearized equations as
δGµν → δGµν − ∇(µτν),

δ(∇µF
µν) → δ(∇µF

µν) + ∇νϑ.
(3.12)

Referred to as the “de Turck trick” [94], this shift makes the equations elliptic
and the boundary value problem well-posed [95]. Furthermore, one avoids the
spurious pure gauge modes that arise from fixing a gauge at the start4.

Finally, the singular nature of the equations can be dealt with through the
use of a pseudospectral algorithm [96]. Here, the derivative operators are dis-
cretized into dense matrices on a Chebyshev-Lobatto grid,

ζℓ = 1
2

(
1 − cos

[
π
ℓ− 1
N − 1

])
, ℓ = 1, . . . , N, (3.13)

and the fluctuations {δgµµ, δAµ} are expanded in a series of (the cardinal func-
tions of) Chebyshev polynomials. This brings the system of equations to a
linear problem on the form LpqΦq = 0, where Lpq is the discretized differen-
tial operator and Φq contains the fluctuations at all gridpoints. As the grid
is determined by the zeros of these polynomials, the solutions are prevented
from diverging at the endpoints. The pseudospectral algorithm also exhibits
exponential convergence with respect to the grid size N (compared to e.g., a
Runge-Kutta algorithm, that requires tiny step sizes at the singular endpoints),
and is powerful enough as to solve even 2 + 1-dimensional PDEs [97, 98]. Fi-
nally, the mapping onto a matrix problem makes it easy to impose the boundary
conditions by changing the rows of Lpq corresponding to the endpoints ζ = 0
and ζ = 1. For a discussion on the application of pseudospectral methods in
holography, see Refs. [99, 100], and for the specific equations relevant in this
thesis, see appendix A in paper III.

Boundary Green’s Functions
With the linearized equations of motion solved, we now turn to the application
of Eq. (3.4) in order to determine the boundary n-point functions. From the

3One could also use gauge-invariant variables, but while the construction such variables is
not particularly difficult, re-writing the equations of motion in terms of them poses a much
larger challenge.

4This method effectively gives the pure gauge modes a kinetic term, putting them on the
same footing as the physical modes.
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viewpoint of linear response theory, the boundary operator O in the generating
functional is the response to the source h, which in the case at hand is to
be interpreted as the boundary values for the bulk fields Aµ and gµν . As an
example, we consider here the Maxwell part of the bulk action. From the
equations of motion, one infers that the near-boundary expansion of the gauge-
field5 is

Aµ = a(0)
µ + a(1)

µ ζd−1 + . . . , (3.14)

where a(0)
µ and a(1)

µ are the integration constants of the two linearly independent
solutions to the bulk equations on motion, that need to be fixed by boundary
conditions. The first one, a(0)

µ , is fixed by the boundary condition “ϕ → h”. The
gauge field Aµ in the bulk is dual to the current operator J µ on the boundary,
whose source is a boundary gauge field Aµ, and is thus identified with a(0)

µ , the
boundary value of Aµ. The second one, a(1)

µ , becomes related to the first by
demanding infalling boundary conditions6 at the black hole horizon. This is the
key in the computation of the boundary correlation functions: it is effectively
the black hole that sets the relation between the source and the response, thus
determining all of the n-point functions ⟨OO . . .⟩ on the boundary. Infalling
boundary conditions respect causality in the bulk, which indeed is also the case
on the boundary, where one obtains the retarded Green’s function GR(x− y)7.

Equation (3.4) now necessitates the evaluation of the on-shell action. Upon
partial integration, the bulk term containing the equations of motion vanishes,
leaving a boundary term at spatial infinity,

S∗ = −1
2

∮
∂AdS

√
−γ dd+1xAµnνF

νµ, (3.15)

where γµν is the induced boundary metric and nν is an outward pointing unit
normal on the boundary; nµnνg

µν = 1. Using the near-boundary expansion
in Eq. (3.14), the integrand can be re-written as a(0)

µ ηµνa
(1)
ν , where the sub-

leading component is picked up by the radial derivative in nζF
ζµ. The varia-

tional derivative of the on-shell action in Eq. (3.15) with respect to the source
Aµ = a

(0)
µ then leads to the identification ⟨J µ⟩ = (d− 1)ηµνa

(1)
ν of the bound-

ary current in terms of the sub-leading component of the near-boundary ex-
pansion. If we for simplicity take the response to only depend on relative
time and spatial coordinates, the source-response relation can be written as
J µ(ω,k) = Πµν(ω,k)Aν(ω,k) in Fourier space. The application of Eq. (3.4)

5We here disregard terms ∼ ζ2 ln ζ that appear in AdS5. These are renormalized away
anyway (see paper III), and would thus unnecessarily complicate the current discussion.

6These are automatically imposed by switching to infalling Eddington-Finkelstein coordi-
nates with a new time coordinate v related to the old as dv = dt − dζ/f(ζ).

7Outgoing boundary conditions at the black hole horizon would instead give the advanced
Green’s function on the boundary.
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then implies that the Green’s function Πµν(ω,k) is obtained by two variational
derivatives with respect to the source, which gives Πµν ∼ a

(1)
µ /a

(0)
ν .

From this approach to holography, one only obtains the source-operator
term AµJ µ, so the boundary gauge field Aµ is not dynamical. By performing
a gauge transformation Aµ → Aµ + ∇µθ in Eq. (3.15) and partially integrating,
one concludes that ∇µJ µ = 0 in order for the boundary theory to be invariant
under gauge transformations in the bulk. The boundary current is therefore
the conserved current under a global U(1). Much of the early work in holog-
raphy was done in this way, which means that seminal papers on holographic
superconductors [101] did in fact not describe superconductors, which posses a
local U(1) symmetry, but rather superfluids [102]. Only recently has a proper
model of a holographic superconductor appeared [103], that imposes so-called
dynamical boundary conditions that make the boundary theory contain a U(1)
gauge theory. These boundary conditions, and the phenomena they give rise
to, are the topic of the next section.

3.2 Dynamical Boundary Conditions
In the above, we have described how the current responds to an external
gauge field. This is perfectly fine if one wishes to compute the conductivity
σ(ω,k) = Πxx(ω,k)/iω, but it does not correspond to dynamical electromag-
netism in the boundary theory. For that to be the case, the boundary gauge field
Aµ should evolve according to Maxwell’s equations. In this section, we discuss
how to adjust the boundary conditions in the Maxwell sector of a holographic
theory to achieve precisely this. Modified boundary conditions has been used
to study the collective excitations known as plasmons [42–47, 104–107], mag-
netohydrodynamics [108, 109], and even dynamical gravity in the boundary
theory [83].

In the process of doing linear response, we can view the boundary action
as being perturbed as S = S0 + δS[Aµ], where the latter is the source-response
term we obtained in Eq. (3.15). S0 is the action of the strongly correlated
theory, which exhibits some complicated dependence on Aµ that we do not
know about. To implement dynamical electromagnetism on the boundary, we
assert that the boundary action also contains the term

SEM =
∫

dd+1x

(
− 1

4e2 FµνFµν + J µAµ

)
, (3.16)

where F = dA. By integrating out the gauge field, one obtains

SEM = e2

2

∫
dd+1xJ µVµνJ ν , (3.17)

30



Dynamical Boundary Conditions

where the photon propagator Vµν = [ηµνk
2 − (1 − ξ)kµkν ]/k4 in momentum

space, kµ is the 4-momentum, and ξ is a gauge fixing parameter [110]. Adding an
expression of this type as a boundary term in the holographic theory is known as
a double-trace deformation8 and does not modify the bulk equations of motion.
Following the identification of the radial coordinate as the energy scale, such a
procedure can be interpreted as a relevant UV deformation that induces a flow
towards a new IR fix point [37]. This keeps the identification of the operator
J µ in terms of the subleading component in the near-boundary expansion the
same, but changes the two-point function and the boundary conditions for the
dual bulk field.

By still identifying the boundary gauge field Aµ with the leading coefficient
a

(0)
µ as before, the modified boundary action can be written as

S∗ = 1
2

∫
dd+1x

(
Aµ + e2VµνJ ν

)
J µ. (3.18)

Thus, while the near-boundary expansion is the same as before — the bulk
equations of motion has not changed — the source term is now given by
sµ = a

(0)
µ + e2VµνJ ν . Linear response theory now says that J µ = χµνsν , where

χµν is the Green’s function in the presence of the modified boundary conditions.
Since both the current and boundary gauge field are unchanged, J µ = ΠµνAν

still holds, and by equating the two expressions, we find that

χµν =
(
δσ

ν + e2ΠρσVνρ

)−1 Πµσ. (3.19)

In particular, the density-density response function becomes

⟨ρρ⟩ = χtt = Πtt

1 − e2

k2 Πtt
. (3.20)

This form of the response function looks similar to that of the RPA, but note
that Πµν is very different from its typical designation in condensed matter
physics as the free electron Green’s function. Here, it is instead the Green’s
function for a collective oscillation in a strongly correlated system [111].

Bulk Plasmons
In order to extract the response function χµν ∼ a

(1)
µ /sν , one fixes a component

of sµ, and sets the rest to zero, which means that the boundary conditions
for the bulk gauge field are a mix of Dirichlet and Neumann; so-called Robin
boundary conditions. The implications of these boundary conditions can be

8For a general non-Abelian gauge theory, the operator O (here O = J µ) involves a trace
over the gauge group. The addition of a term ∼ O2 is therefore a “double-trace” deformation.
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understood by considering the situation when all components of the source sµ

are equal to zero. This implies that

□Aµ + ∂µ∂νAν − e2J µ = 0, (3.21)

which is nothing else than Maxwell’s equations in the boundary theory. A
non-zero value of sµ implies a right-hand side to this equation, so by taking
the standpoint that the deformed theory obeys Maxwell’s equations, the right-
hand side must be interpreted as an external current J µ

ext. Eq. (3.21) then
describes the evolution of the gauge field for a system with a total current
J µ

tot = J µ + J µ
ext. The process of fixing a component of sµ for the extraction

of the response function can therefore be interpreted as applying an external
current to the system, where χµν details how both the dynamical gauge field
Aµ and the internal current J µ responds.

Non-trivial solutions to Eq. (3.21) in the absence of an external current are
either photons, for which the current J µ is zero, or plasmons. The latter are
longitudinally polarized, collective modes that can appear when the electro-
magnetic wave travels through a polarizable medium9. Plasmons are formed by
fluctuations in the charge density of a material, which causes a non-zero electric
field given by the polarization. In order to distinguish them from other types
of plasmons we will discuss later, we refer to these as bulk plasmons.

The bulk plasmon, in its nature as a self-sustained excitation, shows up as a
pole in the response function χµν . Figure 3.1(a) shows the imaginary part of the
density-density response function χtt computed within the holographic model at
T = 0.02µ. The exact bulk plasmon dispersion, shown in panel (b), is obtained
by solving a secular equation, i.e., finding the ω(k) for which there exists a
non-trivial solution when all sources are set to zero. Both panels highlight
the existence of a gapped mode, dispersing quadtratically with the momentum.
This is similar to the plasmon in condensed matter textbooks [1, 66], but it
differs greatly in the imaginary part, where there is finite damping even at
zero momentum [42]. Typically, a finite linewidth is only achieved at momenta
high enough to allow a decay into particle-hole pairs: the so-called Lindhard
continuum. Here, the decay has been argued to be due a “quantum critical
continuum” instead [43].

The plasmons response in strange metals have been investigated experimen-
tally using both optics [112] and M-EELS [40, 113], which show a plasmon at
k = 0 that is overdamped10. While experimental agreement should not be ex-
pected for such a simple model as the one presented here, where effects such

9The fact that Aµ has gained an extra degree of freedom, as if it were massive, can be
interpreted as the Goldstone boson of the spontaneously broken Galilean symmetry being
eaten by the photon.

10A reconciliation of the different data created some argument [114, 115], but appears to
have been settled [41]. The consensus seems to be that the there exists a broad, “incoherent”,
plasmon near k = 0, that decays very rapidly at larger momenta.
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Figure 3.1: (a) Imaginary part of the density-density correlator − Imχtt(ω,k)
obtained in a holographic RN model with modified boundary conditions at a
temperature T = 0.02µ. The function has been normalized to its peak value
for each value of k for visibility, and lighter colors indicate a larger value. (b)
Exact dispersion ω∗(k) of the holographic bulk plasmon. The real part has the
plasma frequency ωp = ω∗(k = 0) subtracted for clarity. The imaginary part
shows the significant damping of the plasmon even at k = 0.

as those of the lattice or the layered nature of the materials clearly is miss-
ing, it is remarkable how the dynamics of the black hole provides a mechanism
that allows for a large damping even at zero momentum. A simple idea for
a layered model was proposed in [46], which shows an acoustic plasmon mode
similar to those seen in experiments using angle-resolved photon emission spec-
troscopy [116], that also are of an incoherent nature.

Out of the experimental techniques that can probe the plasmon response,
it is arguably M-EELS that provides the most information, as it measures it
throughout frequency and momentum space at meV precision [117]. However,
M-EELS is inherently a surface probe, and measures both the surface and bulk
response of the material [48]. A complete description of strange metal plasmons
using holographic models therefore requires the incorpration of the surface re-
sponse as well, which is the topic of the next section.

3.3 Holographic Surface Plasmon Polaritons
The key idea presented in the previous section is that by setting all sources sµ to
zero, we are demanding that the boundary theory satisfies Maxwell’s equations,
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with zero external current. This allows us to do more than just computing
the n-point functions of the theory, and to consider other problems involving
electromagnetism in a medium with strong correlations.

In addition to the bulk plasmon discussed in the previous section, there is
also the possibility of exciting a collective electromagnetic mode that travels
along the surface of a metal [118]. This is a surface plasmon polariton (SPP),
where the appended ‘polariton’ refers to the fact that the induced wave also cou-
ples to the electromagnetic field outside of the metal. In the long-wavelength
limit, the wave acquires a quasi-static character, where it is referred to only
as ‘surface plasmon’. The nature of SPPs are closely related to the dielectric
function ε(ω,k) of the metal; for instance, the optical response will be propor-
tional to Im(ε(ω) + 1)−1 [118]. Since the dielectric function also controls the
behavior of the bulk plasmon, which behaves anomalously in strange metals,
there is reason to believe that the same is true also for SPPs.

An important difference between SPPs and bulk plasmons is in the formula-
tion of the typical setup. A bulk plasmon can be excited by inducing a pertur-
bation of the electron density, where the resonance behavior is described by the
density-density response function, shown in Fig. 3.1. As discussed in Section 3.1,
the holographic framework is well-equipped for calculating Green’s functions in
the boundary theory, making the description of the bulk plasmon as a pole in
the density-density correlator χtt = ⟨ρρ⟩ straight-forward. SPPs, on the other
hand, need to be excited by a very particular incoming electromagnetic wave
and are not as easily formulated in terms of a Green’s function.

In order to model SPPs, we consider a situation of an electromagnetic wave
impinging on the surface of a strange metal, and use the reflection coefficient
r (the ratio of the reflected and incoming waves’ amplitudes) as the analogous
response function for surface excitations [119]. In the non-retarded limit, rele-
vant for the electrons in M-EELS experiments, it turns into the surface response
function11,

r
ω≪ck→ g(ω, q) =

∫ 0

−∞

∫ 0

−∞
dz dz′χ(ω, k; z, z′)e|k|ze|k|z′

, (3.22)

which is closely related to the quantity measured in M-EELS experiments [48].
In the local k → 0 limit, the surface response function reduces to the result
Im g → Im(ε(ω) + 1)−1 obtained in optics.

The evaluation of the reflection coefficient involves either one of the displace-
ment and magnetic fields, D and H, which are related to the electric field E and
magnetic flux density B as

D = E + P, H = B − M. (3.23)

11This is true for a p-polarized incoming wave [119].
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Figure 3.2: Absolute value of the reflection coefficient r as a function of the
frequency ω and in-plane momentum k of the incoming electromagnetic wave,
determined in a holographic RN model at T = 0.02µ. The SPP is tangent to
the light-line ω = k at small momenta, and settles at a finite frequency in the
k → ∞ limit.

In paper III, we show how the polarization P and magnetization M can be
obtained in holographic models. This allows us to compute the reflection coef-
ficient, and also provides access to the full permittivity (or dielectric function)
εij(ω,k) and permeability µ(ω,k) of a holographic strange metal, via the consti-
tutive relations D = εE and B = µH. Figure 3.2 shows the reflection coefficient
r as a function of frequency ω and in-plane momentum k along the surface of
the material. The SPP is tangent to the light-line ω = k for small momenta,
and transitions into the electrostatic surface plasmon at a fix frequency ωsp as
k → ∞.

Although the model presented in paper III, just like the bulk plasmon re-
sponse discussed in the previous section, is too simplistic for a qualitative com-
parison with experimental data, it shows that a more complicated setup like
that of an electromagnetic wave impinging on the surface material can in fact
be formulated within the holographic framework. Together with the charac-
terization of the dielectric function and the permeability, we can capture all of
the electromagnetic properties of a strongly correlated system. By combining
this work with the other studies on holographic plasmons, future research could
provide a quantitative prediction of the plasmon response in strange metals.
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Chapter 4

Summary and Outlook

The description of condensed matter systems is a daunting task. In this thesis,
we have approached the problem from two very different viewpoints — one
firmly rooted in Landau’s quasiparticle description, and one that utilizes the
exotic physics of black holes and the holographic duality.

The evolution of two-dimensional materials, combined with the develop-
ments in fabrication techniques, has enabled a hydrodynamic regime of electron
transport to be experimentally realizable. This regime sits outside the realm of
validity for typical perturbative approaches, and in this work, we have detailed
a complete description of the interacting electrons in two-dimensional materi-
als, that allows for a characterization of the electron liquid at all temperatures.
Through the mathematical method presented in Chapter 2, there exists a host of
response coefficients beyond the shear viscosity of paper I amenable to analysis,
and all rely upon the solution to the electron-electron collision integral that we
discuss in paper II. A logical next step is the inclusion of momentum dependence
in the shear viscosity, as it controls signatures of hydrodynamics seen in exper-
iments. Furthermore, due to the anomalously long-lived odd-parity modes seen
in Fig. 2.3, it is particularly interesting to further investigate excitations that
couple to the parity-odd modes, such as the momentum dependent part of the
shear viscosity or the density-density response function. The full spectrum of
modes obtained in paper II will also be important for thermal transport, which
is sensitive to the higher-lying modes that cannot be obtained in self-energy
calculations. Finally, further work could also extend the screened Coulomb
interaction considered in Papers I and II to a more general interaction, that
might be of importance in accurately describing the behavior near the Fermi
temperature.

The intriguing behavior of strange metals has led to an interest in describing
strongly correlated condensed matter systems using the holographic duality. In
this process, essential features of real-world materials must be incorporated,
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and we have in this thesis discussed one of them: the long-range Coulomb
interaction. It gives rise to the collective modes known as plasmons, and at this
point, the effect of many of the alluded features on the plasmon response have
been considered in isolation [43–46, 105–108]. The field is therefore ripe for the
construction of a model that combines all of the important aspects, in order to
connect to the hitherto unexplained experimental data. We have contributed
to this pursuit in the description of the surface response, which plays a role
in the M-EELS experiments that provide a description of collective electronic
excitations throughout momentum space.

Further holographic models of collective modes could investigate the so-
called “Pines’ demon”, which was recently discovered in Sr2RuO4 [120], 67 years
after its prediction by David Pines [121]. It is the charge-neutral out-of-phase
superposition of two plasmon modes for two charge carrier species, and was
found to exhibit a momentum dependence unexplained by current theory. Two
charge carrier species can easily be implemented within a holographic model by
including an additional gauge field, where the dynamical boundary conditions
presented here will be key in obtaining the demon mode.

Finally, although certain aspects of Fermi surfaces have been incorporated
into the holographic framework [86], it was recently argued that a key symmetry
was missing, causing the Fermi surfaces of holography to not obey Luttinger’s
theorem [122]. Combining the proposed solution to this problem in [122] with
a model of Coulomb interactions could perhaps be used to model a strongly
correlated version of the Fermi surface deformations discussed in Chapter 2. As
stated in the introduction, only through the exploration of physics at both ends
of the ‘Fermi liquid spectrum’ might we be able to explain the phenomena in
real systems, that feature elements of both Fermi liquid and non-Fermi liquid
physics.
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