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Abstract—An error in the proof of the data-dependent tail
bounds on the generalization error presented in Hellstrom and
Durisi (2020) is identified, and a correction is proposed. Further-
more, we note that the absolute continuity requirements in Hell-
strom and Durisi (2020) need to be strengthened to avoid measur-
ability issues.

I. DATA-DEPENDENT BOUNDS IN [1, EQS. (26), (34), (95),
AND (98)]

In the proof of [1, Eq. (26)], we incorrectly claimed that [1,
Eq. (32)] implies [1, Eq. (26)]. The issue is that [1, Eq. (32)]
holds for a fixed \, whereas, for [1, Eq. (26)] to hold, [1, Eq. (32)]
needs to hold uniformly over all A € R.

This issue can be fixed as follows. Since gen(w, Z) is o /1/n-
sub-Gaussian for all w, we can apply [2, Thm. 2.6.(IV)] (with
A =1 — 1/n therein) to conclude that
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Taking the expectation with respect to Py, changing measure
to Pz, and rearranging terms, we obtain
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Proceeding as in [1, Cor. 2], with an additional use of Jensen’s
inequality, we find that, with probability at least 1 — ¢ under Pz,
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Similarly, proceeding as in the proof of [1, Eq. (34)], we find

that with probability at least 1 — ¢ under Py, >
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The issue reported in this note also affects the data-dependent
tail bounds for the random-subset setting reported in [1, Egs. (95)
and (98)] To fix it, we use that for any fixed (w, Z), the random
variable gen(w, z, S) is 1/1/n-sub-Gaussian and has zero mean
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under Ps. Applying [2, Thm. 2.6.(IV)] with A = 1 — 1/n we
obtain
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Taking the expectation with respect to Pz, changing measure

to PWZ , and rearranging terms, we conclude that
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Proceeding as in [1, Cor. 6], we finally conclude that with
probability at least 1 —  under P,
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Furthermore, with probability at least 1 — § under Py, ¢,
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To summarize, the data-dependent tail bounds reported in [1,
Egs. (26), (34), (95), and (95)] should be replaced with (3), (4),
(7) and (8) respectively.

Note that the data-independent tail bounds that we provide
in [1, Egs. (27), (35), (41), (42), (96), (99), (101), and (102)]
still hold verbatim, although their proofs need to be modified.
Specifically, for a fixed A, one needs to first replace the informa-
tion measure appearing in the bounds with its data-independent
relaxation. The desired bounds then follows by setting A equal
to a suitably chosen, data-independent constant. Consider for
example the data-independent bound [1, Eq. (27)]. To obtain it,
we first use [1, Eq. (33)] in [1, Eq. (32)], which results in
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The desired result follows by setting A = :I:\/@ , where a =
EY! D(Pyw |z || Pw)")/6"*+log } and b = o/ (2n), and then
replacing § with §/2.



II. ABSOLUTE CONTINUITY ASSUMPTION

In the statement of [1, Thm. 1], we assumed that Pz <
Py Pz. To avoid measurability issues, we should also assume
that PPz < Pz, implying that the supports of PPz and
Pz coincide. Similarly, in [1, Thm. 2], we should assume that
the supports of PW| 7P5Ps and P,z coincide.
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