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Road surface characterization using a 77-81 GHz
polarimetric radar

Vessen Vassilev

Abstract—Various road surfaces are studied through mono-
static polarimetric-radar measurements at 77-81 GHz in real
traffic conditions. Dry asphalt of different roughness is compared
to wet asphalt and gravel in terms of their entropy and the
balance between surface, volume and double bounce scattering.
It is shown that asphalt surfaces of different roughness are distin-
guishable. Wet surface is clearly detectable through its reduced
entropy, a result of enhanced surface scattering. Measurements of
pavement and gravel surfaces are also presented and compared
to asphalt. The ultimate goal of this study is to relate friction
to the polarimetric parameters measured in real time while the
vehicle is in motion. Ice and snow covered road surfaces are of
particular interest, but are not covered in this paper.

Index Terms—Radar polarimetry, Ice, road surface identifica-
tion, target entropy

I. INTRODUCTION

A sensor capable of analysing properties of the road surface
in front of a moving vehicle can assist the driver or the

control system of the car in detecting sections of the road
with reduced friction. Of particular interest are formations such
as thin (black) ice, which are indistinguishable visually. Mm-
wavelengths (30-300 GHz) are attractive for traffic safety re-
lated applications due to their short wavelengths, which allow
building compact antennas in combination with availability
of technology and frequency spectrum. Mm-wave radars are
already commonly used in modern cars to analyse the traffic
surrounding and can potentially be adapted to distinguish
between dry/icy or wet road surfaces.

A method of surface classification is presented in [1]
where a bistatic radar at 20-24 GHz is used to collect and
analyse polarimetric data from surfaces of different roughness.
The polarimetric scattering matrix is analysed using Stokes
parameters to extract information about the surface properties.

Previous studies to detect ice formations on road surfaces
include a 61 GHz bistatic polarimetric radar sensor capable
of distinguishing various types of surfaces under a moving
vehicle as presented in [2], and a 24 GHz monostatic sensor
[3], [4] both measuring backscattering coefficients for vertical,
horizontal and cross polarizations.

Modeling and measurements at 94 GHz of the dielectric
constant and polarimetric backscatter responses of dry, ice and
water covered asphalt surfaces are presented in [5], [6].

In the studies above, the surfaces are characterized through
their polarimetric backscatter coefficients or their ratios and
thus do not consider the random nature of the road surfaces
as distributed target.
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For a sensor mounted on a moving vehicle every measure-
ment is performed on a different section of the surface. Due to
the random nature of road surfaces a single measurement is not
sufficient to extract reliable information about the properties of
the surface. Therefore, a statistical approach has to be adopted.
Such a method has been developed for synthetic aperture
radar (SAR) observations [7] and has been used to classify
surfaces of various types: identify frozen areas [8] and measure
roughness of road surfaces from airborne observations [9].

To analyse the surfaces, in this work we use polarimetric
attributes such as target entropy (TE), which is a measure
of target disorder, and the balance between surface/volume
scattering (also called auxiliary angle).

In our previous work [10] it was shown that polarimetric
attributes such as entropy and polarimetric pedestal can be
used to detect whether a surface is dry, wet or ice covered. A
laboratory network analyser was used to perform a number
of monostatic measurements in W-band (75-110 GHz), on
a surface in different states and in controlled laboratory
environment. The polarimetric attributes are derived from the
eigenvalues of the averaged coherence/covariance matrix. It
was shown that ice covered surface features higher entropy,
while wet surface shows decreased entropy compared to the
surface in dry condition.

A similar work is presented in [11] where entropy, auxiliary
angle α and anisotropy are used to identify the road surface
condition. The auxiliary angle contains additional information
not present in the entropy and thus helps resolve surfaces of
different properties, but with similar entropy.

To be able to measure the polarimetric attributes of road
surfaces from a vehicle in motion and in real time, we
developed a compact polarimetric FMCW radar based on a
commercial chipset for the 77-81 GHz band. We used the radar
to collect data from typical road surfaces in real traffic con-
ditions. Dry asphalt of different roughness, gravel, pavement
and wet asphalt surface are measured and mapped through
their entropy and auxiliary angle α. So far icy and snow
covered surfaces are not characterized in real traffic, however
the ultimate goal of this work is to relate the polarimetric
attributes of various surfaces to their friction properties, and
possibly detect extreme low-friction conditions such ”black
ice”.

This manuscript is organised as follows. Section II presents
the method of calculating the polarimetric attributes. A brief
description of radar sensor is presented in section III. The
results of the measurements are found in IV where the surfaces
are compared in terms of their entropy and the dominant
scattering mechanism (the Auxiliary angle α). This section
also presents details on the measurement procedure and a few
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examples of irregularities on the surfaces and how they in-
evitably affect the polarimetric attributes. Section V discusses
how surfaces that produce similar polarimetric attributes can
be distinguished.

The measurement results are summarized in section VI
together with some conclusions on the identifiability of the
surfaces.

II. METHOD

Even though asphalt is a surface with uniform properties,
it represents a random distributed target and can exhibit large
variations from one illumination area to another. A statistical
approach is needed in order to extract useful information
about the properties of the surface. Target entropy (TE) and
auxiliary angle α [7] are two polarimetric attributes, which are
calculated after decomposition of the coherence matrix.

The input for the calculation of the coherence matrix is the
measured scattering matrix, which is defined as:[

SV V SV H

SHV SHH

]
(1)

Where the first index indicates the polarization of the trans-
mitter and the second the polarization orientation of the
receiver. The reciprocity theorem of backscattering states that
SHV = SV H [12]. The coherence matrix T can be represented
as the product of the coherence vector k with its transposed
complex conjugate [7] and contains 3x3 elements:

T = kk† (2)

where the coherence vector k is given by:

k =

SHH + SV V

SHH − SV V

2SHV

 (3)

To calculate the eigenvalues and eigenvectors of the coher-
ence matrix a minimum of 3 measurements are needed. For
a set of N number of measurements, the measurement matrix
M consists of N columns of the measured coherence vector
in the presence of noise.

M =

 | | .. |
k1 k2 .. kN

| | .. |

 (4)

The coherence matrix T̂ is obtained by multiplying the mea-
surement M matrix with its transposed complex conjugate
(denoted as †) and dividing by the number of measurements.

T̂ =
MM†

N
(5)

The coherence matrix can be represented through its eigen-
values and eigenvectors.

T̂ = λ1

[
e1.e

†
1

]
+ λ2

[
e2.e

†
2

]
+ λ3

[
e3.e

†
3

]
(6)

Where ei are the 3 elements column eigen-vectors and λi are
the corresponding eigenvalues.

A. Entropy

Entropy is a measure of the randomness of the scattering
process and has a value of 0 for a single non-random target
and 1 for a highly random distributed target where several
scattering mechanisms are involved. After decomposition of
the coherence matrix, as shown in eq. (6) the entropy is
calculated from the 3 eigenvalues [7] as shown in eq. (7) and
(8).

H = −
3∑

i=1

Pi. log3(Pi) (7)

where Pi has a meaning of probability and represents the rel-
ative importance of the corresponding eigenvalue with respect
to the total scattered power. Pi is given by:

Pi =
λi

λ1 + λ2 + λ3
(8)

The physical interpretation of the eigenvalues can be found
in [13] and suggests that λ3 depends on the cross polarization
return, which associates this eigenvalue with diffuse scattering.
Scattering resulting from odd and even number of reflections
is represented by λ1 and λ2, respectively.

B. Auxiliary angle α

To characterize the surfaces the α-Entropy space, as de-
scribed in [7] can be used. The mean polarimetric scattering
angle α is one of the parameters defining the orientation of a
polarization ellipse in the H/V plane. It is calculated, as shown
in eq. (9), from the first element of each of the eigenvectors
from eq. (6).

α =

3∑
i=1

Pi.acos(|ei1|) (9)

In the context of polarimetric measurements α indicates the
dominant scattering mechanism as follows:

• α = 00 surface scattering only
• α = 450 dipole/volume scattering
• α = 900 double bounce scattering
It should be considered that α and entropy are not inde-

pendent as they are both related to the probabilities from eq.
8. The region of possible α values in the following figures is
confined by the dotted lines.

III. POLARIMETRIC RADAR

The radar sensor, shown in Fig. 1, is based on AWR
1843 chipset from TI, it uses 2 transmitters and 2 receivers
to measure the [S] scattering matrix (1). A conical horn
antenna is followed by a waveguide polarization filter, which
separate/combine the H and V components into orthogonal
rectangular waveguides connected to the corresponding trans-
mitter/receiver.

The horn antenna is integrated with a Teflon lens, the output
beam-waist of the horn and the lens is located at 50 cm from
the aperture, with a beam-waist diameter of 47 mm.

The [S] matrix is measured in two frames: in the first frame
the H transmitter is active and in the second the V, H and V



3

Fig. 1. A picture of the polarimetric radar sensor.

TABLE I
FRAME CONFIGURATION

Number Samples Sampling Time/ Slope BW Max
of frames in 1 frame freq, MHz frame, us MHz/usec GHz Range, m

2 64 5 46 140 1.8 4.2

receivers are receiving in both frames. The frame configuration
is summarized in Table I. The radar board sends data to a
computer through a UART interface, where a python script
performs the estimation of the polarimetric attributes in real
time.

When pointed to a spherical calibration target the cross-pol
component SHV is 20 dB lower than the co-pol components
SHH and SV V . This cross-pol component is contributed by
the hardware and in particular in the horn/lens as measure-
ments of the polarization filter shows polarization isolation
better than -37dB across the band. The response of each
transmitter/receiver combination is calibrated using the same
spherical calibration target. The co-pol components are aligned
in magnitude and range, while the cross-pol component is
aligned only in range.

IV. MEASUREMENTS

A dedicated firmware was constructed that can handle
polarimetric measurements in real time. However, the firmware
of the radar is constructed in a way that can not handle phase
offsets due to Doppler effect. Therefore, to avoid phase offsets
between frames due to motion, the radar is looking sideways
at a distance of about 2.3m from the surface as shown in Fig.
2.

As seen from Table I it takes 2 frames of 46 us to measure
the [S] matrix (1), which is sent to a computer every 25 ms.

A video camera takes images to relate the radar mea-
surements to the type of the surface under test. During the
measurements the car is moving at a speed in the range of
25-50km/h. The speed does not affect the measurement, but
at speeds below a certain threshold the entropy starts to drop
because the surface is not sampled independently. This speed
depends on the size of the radar beam at the plane where
it meets the surface. Fig. 2 illustrates the measurement setup

and the beam size and location. The beam intersection with
the surface at a range of 2.3 m is an ellipse with major/minor
diameters of 232/176 mm. Fig. 3 shows a picture of the radar
mounted on the vehicle.

Fig. 2. Illustration of the radar placement and its beam geometry. The insert
shows the cross section of the beam with the surface.

Fig. 3. The radar mounted on a vehicle.

An example of the magnitudes of the 3 scattering parameters
is shown in Fig. 4 for the case of a dry asphalt surface. The
response from surface is visible at ranges from 2.1 to 2.4m.

Fig. 4. Magnitude of scattering parameters of 1 frame. The surface covers
range from 2.1 to 2.4 m.

The entropy and α are then calculated for each range cell. A
sequence of measured entropy averaged over the range where
the surface is visible is shown in Fig. 5. In this measurement
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Fig. 5. Transition from dry asphalt of normal roughness to rough and back
to normal again.

the vehicle is transiting from a surface with normal roughness
to a rough surface (at around 18s after start) and back to a
section of normal roughness (at 58s after start). The rougher
section of the surface shows reduced entropy. This is expected
observation as the higher roughness enhances the surface
reflection, so the dominant surface-scattering becomes even
higher. From Fig. 5 it is obvious that the measured entropy
features large variations. These variations in most cases can
be associated with structures on the road surface. Since we
use a video camera to film the surface, some of the entropy
variations from Fig. 5 are identified with the images shown
in Fig. 6. The drop in entropy at 11s after the start is due
to a water drainage structure where the grooves of the metal
cover on top of the catch basin enhance the dominant surface
scattering resulting in drop of the entropy. The peaks at 17s
and 36s are result of the radar beam pointing to road marking
lines. These lines are much smoother than the asphalt resulting
in decreased surface reflection and enhanced volume and dou-
ble bounce scatterings in other words increased entropy. The
entropy drop at 67s is associated with a patched area on the
surface. It is not clear how this particular patch influences the
balance between the surface scattering and volume scattering,
but the effect of it is still measurable.

Fig. 6. Examples of some of the irregularities responsible for the variations
of the entropy from Fig. 5 including: metal cover, marking lines and patches.

In real measurement scenario these irregularities will exist,

Fig. 7. Asphalt of normal roughness in dry and wet condition. The dry surface
is measured over a 99s interval, the wet surface patch is measured over 16s.

therefore in the following measurements they are not filtered
resulting in spread of the values of the measured α and
entropy.

A. Asphalt surface dry and wet

In this section an asphalt surface of normal roughness is
measured in dry state and after spraying a thin layer of water
over a certain area of the surface. Fig. 7 compares the result
on an α-Entropy plot as explained in section II. Presence of
water on the surface enhances the surface reflection, which
makes the dominant surface scattering even stronger, resulting
in reduced entropy and α value. The clouds of ponts are well
separated and identifiable.

B. Dry asphalt surfaces of different roughness

In this section we compare 3 dry asphalt surfaces of
different roughness to see how the surface roughness affects
the polarimetric parameters.

• Normal: this is a surface with roughness, which is typical
for the majority of public roads. We assume surface, RMS
value ≈ 0.9mm.

• Rough: we do not know the value of roughness for this
surface but it appears unusually rough which is not found
normally on public roads. We assume this surface has
been treated with Asphalt Removal Cold Milling Machine
and its roughness is expected to be in the range of 3-6
mm.

• Smooth, that would be typical for new asphalt surface.
We can observe that rough surface has less entropy, while

smooth surface features higher entropy. This is expected as
surface-scattering dominate in all surfaces. Rougher surface
has higher surface reflection, so the dominant scattering is
further enhanced by the increased roughness moving the rough
surface towards less entropy and lower α. Smooth asphalt, on
the other hand, has less contribution from surface scattering
and thus higher levels of volume and dihedral scattering,
resulting in higher entropy and α values.
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Fig. 8. α, entropy plot for dry surfaces of different roughness

C. Gravel

A section of a gravel surface is measured and compared to
a dry asphalt of normal roughness as shown in in Fig. 9. The
gravel shows higher entropy and α compared to asphalt of
normal roughness, but there is a considerable overlap between
the 2 ”clouds”. The centre of the gravel cloud sits in between
the normal and smooth asphalt surfaces. The spread of the
points results in considerable overlap between these 3 surfaces
and their identification will require additional processing steps,
which are discussed in the following section.

Fig. 9. Gravel and asphalt of normal roughness.

TABLE II
MEAN VALUE AND STANDARD DEVIATION OF ENTROPY AND α FOR 40

FRAMES (1S).

Surface Asphalt Asphalt Asphalt Asphalt Gravel Pavement
Condition Rough Normal Smooth Normal Wet
Entropy 0.54 0.74 0.84 0.47 0.8 0.58

σ(Entropy) .043 0.04 .031 .031 .036 .014
α 30 38 43 23.1 41 27.8

σ(α) 5.1 3.2 3.2 2.37 3.1 1.65

D. Pavement

A section of pavement shown in Fig. 10 was measured and
compared to asphalt. The pavement shows reduced entropy
and α compared to the surrounding asphalt surface and.

Fig. 10. Pavement and asphalt of normal roughness measured over 9s interval
each.

A summary of the measured expected values and standard
deviation of entropy and α are summarized in Table II.

V. RESOLVING SURFACES WITH SIMILAR ENTROPY AND α

We have seen from the previous section that some surfaces
produce similar α/entropy values, as in the case of gravel and
asphalt, from Fig. 9. The probability density functions (PDFs)
of these 2 surfaces are shown in Fig. 11 for the same data as
presented in Fig. 9.

Fig. 11. α, entropy plot of gravel and asphalt and their corresponding PDFs.
To the left: 10 frames (0.25s), to the right 40 frames (1s) per measurement.
The contours in the PDF are located at σ and 2σ.

Obviously increasing the number of frames used for the
estimation of α/entropy helps reduce the variance in the
measurement and reduces the region of overlapping between
the 2 PDFs. However, any remaining points falling in the
region of PDF overlap are ambiguous and can not be used for
identifying the surfaces. These points can be excluded through
the likelihood ratio test [14].

In this test the following binary classification problem can
be defined: a measurement belongs to surface (a) or surface
(b). If the PDFs of each surface are known, the likelihood of a
measurement to belong to surface (a) or (b) can be calculated.
For example, to identify a point to a surface (a) the likelihood
(a) evaluated at a point (entropy,α) needs to be higher than the
likelihood (b), evaluated at the same point, by a certain factor
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called likelihood ratio (LR). If a measurement does not fulfil
the condition of belonging to group (a) or (b) it is considered
as ambiguous and is removed. To compute the PDFs of the
surfaces, the asphalt/gravel measurements displayed in Fig. 11
are used as a training sequence.

After obtaining the two PDF through measurement of
known surfaces (training data set), the likelihood ratio test
is performed on a second data set containing both asphalt and
gravel (not the same surfaces as from Fig. 11). The data set
before and after applying the likelihood ratio test is shown in
Fig. 12 where it can be seen that the points that do not ”pass”
the LR condition are filtered out. The higher the LR is selected
the more confidence there will be in assigning a measurement
point to its corresponding surface. However, some points at
the extreme of the clouds are still erroneously classified. To
eliminate these remaining ‘false alarms’ the measurement time
needs to be increased.

Fig. 12. α, entropy plot of a second set of gravel/asphalt measurement. The
figure to the left shows the raw data together with the PDFs from the training
sequence in Fig. 11. To the right is the points after applying the likelihood ratio
test. One gravel measurement point, marked with (x) is erroneously identified
as asphalt. The likelihood ratio for this test is 3.

VI. CONCLUSION

This work addresses the feasibility of using polarimetric
radar sensor mounted on a vehicle in motion to characterize
properties of road surfaces relevant to traffic safety. Different
surfaces are measured and characterized in terms of their
entropy and dominant scattering mechanism (auxiliary angle
α). Each surface produces a cloud of points on the 2-D α
entropy plot. The spread of the cloud to a large extend is
due to irregularities present on the surface, such as marking
lines, patches, cracks etc. Other contributions for the variations
might be lying under the surface. For the measurements
presented in section IV the irregularities causing spread in
the values of α/entropy have not been filtered. One way to
make the cloud points more ”compact” is to increase in the
number of measurements used in the α/entropy estimation. In
the results from Fig. 7 to Fig. 9 a set of 40 measurements of
the [S]-matrix are used in the α/entropy estimation. With 25ms
to measure the [S]-matrix, the α/entropy values are updated
each second.

Rough asphalt features lower entropy and larger surface
scatter contribution (lower α) while smooth surface behaves
in the opposite direction: higher entropy larger volume scatter
contribution (higher α value). The 3 dry asphalt surfaces of
different roughness are distinguishable in Fig. 8 with some
points overlapping at the edges of the clouds.

Wet asphalt of normal roughness is clearly distinguishable
from dry asphalt of the same roughness with good separation
between the clouds (Fig. 7). However, rough asphalt and wet
asphalt of normal roughness are not separated so well and
there is an overlap between the clouds (see Fig. 7, 8) possibly
due to irregularities in both surfaces as discussed in section
IV. Even though we do not know the value of roughness, it
should be pointed out that the rough surface is of rather high
roughness, which is not found normally on public roads.

Gravel has higher entropy and α compared to dry asphalt of
normal roughness but their typical values are close and there
is a considerable overlap between the ”clouds” of gravel and
rough/smooth surfaces as seen in Fig. 8 and 9. Similarly, pave-
ment is sitting close to rough asphalt. To help distinguish such
surfaces, the following measures can be applied: increase the
number of frames for the calculation of the coherence matrix,
apply likelihood ratio test, use additional data from other types
of sensors to help eliminate the remaining ambiguous points.
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