
Thesis for The Degree of Doctor of Philosophy

An Empirical Investigation of
Microservices-based Software Architectures

from a Socio-Technical Perspective

Hamdy Michael Ayas

Department of Computer Science & Engineering
Chalmers University of Technology | University of Gothenburg

Gothenburg, Sweden, 2024

An Empirical Investigation of Microservices-based Software Archi-
tectures from a Socio-Technical Perspective

Hamdy Michael Ayas

© Hamdy Michael Ayas, 2024
except where otherwise stated.
All rights reserved.

ISBN 978-91-8103-032-7
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5490 .
ISSN 0346-718X

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2024.

“And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience...”

- C. P. Cavafy, “The City”

iv

Abstract

Background: As software systems grow, software organizations turn towards
Microservices-based Software Architectures (MSAs) seeking modularity, service
orientation, and cloud-based software delivery. Microservices are a way of
structuring software systems into loosely coupled pieces that: 1) are developed
and operated independently, 2) communicate and integrate with each other to
compose a system, and 3) each piece has its individual business domain and
resources. However, migrating towards microservices entails a lot of complexity.
The change that a microservices migration predisposes has a socio-technical
nature with changes in the technology, the organization, and software engineers.

Objective: Therefore, this thesis aims to draw a holistic framework describ-
ing the change that microservices introduce. Change that is introduced to the
software, the software developing organizations, and importantly, the human
practitioners developing the software. Specifically, the goal is to empirically
demonstrate the journey towards MSAs, along with the decision-making, the
technical artifacts change, and the practitioners’ roles, responsibilities, and
skills in microservices.

Method: The methodologies of this thesis are based on inductive reasoning
and use a combination of qualitative and quantitative methodologies. Grounded
Theory and Grounded Theory-based analysis are used on interview data, textual
data that engineers share in Q&A websites (i.e., StackOverflow), software
repositories, and job-ads. In addition, a survey and automated analysis of
StackOverflow data are also used.

Results: The main findings of this thesis are regarding the comprehensive
perspective on microservices migrations that take place in multiple dimen-
sions (business, technical, organizational), in multiple levels of abstraction
(architecture and system), and in multiple modes of change (technical and
systemic migrations). Specifically, 22 decisions and 53 solution outcomes are
identified in detail. This work does not only approach migrations as a technical
endeavor but also as an endeavor with a strong social and business aspect to it,
covering the basic elements of socio-technical systems as defined in literature.
Hence, the thesis presents taxonomies on the roles, responsibilities, and skills of
microservices practitioners. Specifically, 3 roles of microservices practitioners
are described in detail, along with 11 technical competences clusters, 5 families
of responsibilities, 8 themes of soft-skills, and 11 themes of hard-skills.

Conclusion: Microservice migration projects entail an inherent complexity
due to the different dimensions that the change takes place on, as well as
the distributed nature of microservices. This work helps to decompose this
complexity and carry a detailed understanding of microservices migrations to
future attempts. In addition, this thesis paves the way for preparing engineers
to work with MSAs.

Keywords

Microservices, Microservices migrations, Software architecture migrations,
Grounded Theory, StackOverflow Mining

Acknowledgment

First, I would like to express my deep appreciation to my supervisors Philipp
Leitner and Regina Hebig. Your input and insights have been invaluable in
shaping the research of this thesis. Even more importantly, your coaching
during these five years helped to develop my research acumen and I will be
forever grateful for that. Next, I would like to thank my examiner Miroslaw
Staron, for the great feedback and directions towards quality during my PhD
journey.

I would also like to extend my appreciation towards the opponent and
examination committee of this thesis, for joining me in the final stages of my
PhD, via reading and discussing my work.

Additionally, I would like to express my gratitude to Agneta, Christian,
Wolfgang, Nir, Clara and Jenny for their support in all PhD matters. It is a
priviledge to have university ordinances that ensure a supportive environment.

Next, I would like to thank Francisco and Hartmut for the joyfull col-
laboration we had. Special thanks go to current and past office mates and
friends, Joel, Linda, Razan, and Georgios, for the friendly and colorful working
atmosphere. I also thank Krishna, Ranim, Bea, Babu, Ricardo, Habib, Cristy,
Wardah, and all colleagues in the IDSE division for the nice time.

I am grateful to everyone I met during these 5 years, for making Gothenburg
feel like a home. You are all special and the best companions one could wish for.
A special place in my heart will always be occupied from my childhood friends,
Kyriakos Pe., Kyriakos Pa., Dimitris, Paris, George, Andreas A., Andreas S.,
Gabriel, and the rest of the gang back in Cyprus. Thank you for all the fun
summers and winters.

Most importantly I would like to thank my family: my grandparents -
Vasiliki and Kyriakos, my parents - Mohammad and Eleni, my beloved siblings
- Sandy and Malek as well as my beloved niece and nephew - Maria and Ali.
Last but not least, I would like to thank my lovely partner and life companion
Georgia, for always rooting for me. I am grateful that you are by my side when
powering through all kinds of waves, slopes, hills, mountains and cities in all
kinds of sunshine, rain, snow, winds and icy cold. You are all my roots, my
wings and my light.

vii

I would like to acknowledge the financial support that this research has
received from Vinnova (Sweden’s innovation agency) under the grant number
2018-05010. Additionally, I wish to thank all the anonymous reviewers that
provided constructive feedback to the research included in this thesis.

List of Publications

Appended publications

This thesis is based on the following publications:

[A] H. Michael Ayas, P. Leitner, R. Hebig “Facing the Giant: a Grounded
Theory Study of Decision-Making in Microservices Migrations”
International Conference on Empirical Software Engineering and Mea-
surement (ESEM2021), 2021.

[B] H. Michael Ayas, P. Leitner, R. Hebig “The Migration Journey Towards
Microservices”
International Conference on Product-Focused Software Process Improve-
ment (PROFES2021) 20(35), 2021.

[C] H. Michael Ayas, P. Leitner, R. Hebig “An Empirical Study of the
Systemic and Technical Migration Towards Microservices”
Empirical Software Engineering (EMSE), 28, 85 (2023).

[D] H. Michael Ayas, P. Leitner, R. Hebig “The perceived impact and
sequence of activities when transitioning to microservices”
IEEE International Conference on Service-Oriented System Engineering
(SOSE), 2023.

[E] H. Michael Ayas, H. Fischer, P. Leitner, F.G. de Oliveira Neto “An
Empirical Analysis of Microservices Systems Using Consumer-Driven
Contract Testing”
48th Euromicro Conference Series on Software Engineering and Advanced
Applications (SEAA), 2022

[F] H. Michael Ayas, R. Hebig, P. Leitner “An empirical investigation
on the competences and roles of practitioners in Microservices-based
Architectures”
To appear in The Journal of Systems & Software (JSS), 2024.

[G] H. Michael Ayas, R. Hebig, P. Leitner “The Roles, Responsibilities, and
Skills of Engineers in the Era of Microservices-Based Architectures”
International Conference on Cooperative and Human Aspects of Software
Engineering (CHASE 2024).

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] M. Mortada, H. Michael Ayas, R. Hebig “Why do software teams deviate
from scrum? reasons and implications”
International Conference on Software and Systems Processes (ICSSP2020),
2020.

Research Contribution

I (Hamdy Michael Ayas) was the main driver and contributor of papers A, B,
C, D, F, G as they are appended in this thesis (all appended papers except
Paper E). In Paper E I was the main driver, but contributed equally with the
second author. A summary of the contributions is presented in Table 1, based
on the Contributor Roles Taxonomy (CreditT) 1.

For Papers A, B, C, D, F, and G I was the main contributor in most
categories of the taxonomy, as shown in Table 1. Specifically, I significantly
contributed in the Conceptualization, Data Curation, Formal Analysis, Investi-
gation, Methodology, Software (when applicable), Validation, Visualization and
Writing of the original draft. I also facilitated the ways that co-authors (e.g.,
main and co-supervisor) contributed in the Formal Analysis (e.g., via data
analysis guides), to ensure enough rigor in the chosen (qualitative) research
methodologies. In addition, I facilitated the inclusion of co-authors’ expertise
in the Conceptualization of the topics discussed in this thesis, the Methodology
and some Data curation activities.

For Paper E, I contributed with the Conseptualization, Formal Analysis,
Investigation, Validation, Methodology, Software, Supervision, Visualization,
Writing of the original draft and Writing through review and editing. The work
of Paper E is based on a BSc thesis that I supervised, in which a partial re-
analysis of the existing data gathered and a partial re-writing of the publication
took place.

Role P
ap

er
A

P
ap

er
B

P
ap

er
C

P
ap

er
D

P
ap

er
E

P
ap

er
F

P
ap

er
G

Conceptualization X X X X X X X
Data Curation X X X X X X
Formal Analysis X X X X X X X
Funding acquisition
Investigation X X X X X X X
Methodology X X X X X X X
Project administration
Resources
Software X X X X
Supervision X
Validation X X X X X X X
Visualization X X X X X X X
Writing - original draft X X X X X X X
Writing - review & editing X

Table 1: The author’s individual contributions to the appended papers of the
thesis.

1https://casrai.org/credit/

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Theoretical Framework & Related Work 3

1.1.1 Benefits of Microservices 4
1.1.2 Microservices Migrations 4
1.1.3 Human Aspects in Software Architecture 6
1.1.4 Summary of Research Gap 7

1.2 Research Scope . 7
1.2.1 Research Objectives . 8
1.2.2 Research Questions . 9

1.3 Research Methodologies . 10
1.3.1 Interviews . 10
1.3.2 Survey . 12
1.3.3 StackOverflow Discussions 12
1.3.4 Mining StackOverflow Tags of User Profiles 13
1.3.5 Analyzing Open Source Microservices Systems 13
1.3.6 Mining Job Openings 14
1.3.7 Threats to Validity . 14

1.4 Contributions . 15
1.4.1 Contribution 1: Decision-Making Process 15
1.4.2 Contribution 2: Migration Journey towards Microservices 16
1.4.3 Contribution 3: The Constituent Elements of Migrations’

Journey . 17
1.4.4 Contribution 4: Perceptions of the Impact and Sequence

of Activities in Microservices Migrations 18
1.4.5 Contribution 5: Empirical Analysis of Testing in MSAs 19
1.4.6 Contribution 6: The Roles and Technical Competences

in MSAs . 20

xiii

xiv CONTENTS

1.4.7 Contribution 7: The Responsibilities, Soft-skills, and
Hard-skills of Microservices Practitioners 21

1.4.8 Addressing the Research Objectives and Questions . . . 22

1.5 Discussion . 24

1.5.1 The Socio-Technical Perspective in MSAs 24

1.5.2 Software Architecture Perspective 25

1.5.3 Breaking Down the Complexity of MSA Migrations . . 27

1.5.4 Decision-Making in MSA Migrations 27

1.5.5 Implications on Software Engineering Teams that Migrate
to Microservices. 28

1.5.6 Future work . 29

1.6 Conclusion . 30

2 Paper A 33

2.1 Introduction . 34

2.2 Related Work . 35

2.3 Methodology . 37

2.3.1 Interviews analysis . 38

2.3.2 Threats to Validity . 39

2.4 Results . 41

2.4.1 Decisions on Creating Engagement 42

2.4.1.1 Technical Feasibility and Exploration of Oppor-
tunities. 42

2.4.1.2 Constructing the migration’s business case. . . 44

2.4.2 Decisions on the Technical Dimension 46

2.4.3 Decisions on the Organizational Dimension 50

2.5 Discussion . 52

2.6 Conclusion . 54

3 Paper B 57

3.1 Introduction . 58

3.2 Related Work . 59

3.3 Methodology . 60

3.3.1 Participants . 61

3.3.2 Protocol . 62

3.3.3 Analysis . 63

3.4 Results . 63

3.4.1 Architectural-level migration journey 64

3.4.2 System-level migration journey 66

3.5 Discussion . 68

3.5.1 Changing modes and the reoccurring phases of migrations 69

3.5.2 Implications for engineering teams 70

3.5.3 Threats to Validity . 70

3.6 Conclusion . 71

CONTENTS xv

4 Paper C 73

4.1 Introduction . 74

4.2 Related Work . 75

4.2.1 Benefits of Microservices 76

4.2.2 Migrating Towards Microservices 76

4.2.3 Architectural Migration 77

4.2.4 Tools and Technology 77

4.3 Methodology . 78

4.3.1 Interviews . 78

4.3.1.1 Participants 79

4.3.1.2 Protocol . 80

4.3.1.3 Analysis . 81

4.3.2 Posts from StackOverflow 82

4.3.2.1 Data gathering 83

4.3.2.2 Data Pre-Processing and Analysis 84

4.3.2.3 Resulting changes to initial theory 85

4.4 Results . 85

4.4.1 Overview of Migration Journey 86

4.4.2 Systemic migration . 87

4.4.2.1 Clarify the migration drivers 88

4.4.2.2 Define the criteria for decomposition 90

4.4.2.3 Build a shell API 92

4.4.2.4 Design a service cut 94

4.4.2.5 Setup continuous extraction 96

4.4.2.6 Setup independent deployment and integration 98

4.4.3 Technical migration . 101

4.4.3.1 Understand and analyze system 102

4.4.3.2 Prepare the backend for decomposition 104

4.4.3.3 Split the data and Data migration 106

4.4.3.4 Decompose the frontend 108

4.4.3.5 Set up DevOps capabilities 110

4.4.3.6 Configure communication and orchestration ca-
pabilities . 112

4.4.3.7 Setup monitoring, logging and authentication
mechanisms . 114

4.4.3.8 Handle reused artifacts 116

4.5 Discussion . 117

4.5.1 Theoretical relevance and future work 118

4.5.1.1 Systemic migration 118

4.5.1.2 Technical migration 119

4.5.2 Modes of change and the reoccurring phases of migrations121

4.5.3 Implications for engineering teams 121

4.5.4 Answering the Research Questions 122

4.6 Threats to validity . 123

4.7 Conclusion . 124

xvi CONTENTS

5 Paper D 127
5.1 Introduction . 128
5.2 Related Work . 129
5.3 Methodology . 129

5.3.1 Threats to Validity . 131
5.4 Results . 132

5.4.1 Sequence of migration activities 132
5.4.2 Perceived impact of Microservices-based Architecture . 133

5.5 Discussion . 136
5.5.1 Theoretical relevance of findings 136
5.5.2 Practical relevance of findings 136
5.5.3 Future work . 137

5.6 Conclusion . 137

6 Paper E 139
6.1 Introduction . 140
6.2 Related Work . 141
6.3 Research Methodology . 142

6.3.1 Data Source and Data Collection 143
6.3.2 Pre-processing and Cleaning the Data 143
6.3.3 Data Analysis . 144

6.3.3.1 Extracting Metadata and Test-related Files . . 144
6.3.3.2 Categorizing and Aggregating Tests 145

6.4 Results . 145
6.4.1 RQ1: Testing Architecture of Microservices-based Systems145

6.4.1.1 Unit Test . 147
6.4.1.2 Integration Test Based on CDC 147
6.4.1.3 Component Test 147
6.4.1.4 System Test 148

6.4.2 RQ2: Alignment With Guidelines and Best Practices . . 148
6.4.2.1 Project P1 . 148
6.4.2.2 Project P2 . 150
6.4.2.3 Project P3 . 150
6.4.2.4 Project P4 . 151

6.5 Discussion . 151
6.5.1 Threats to Validity . 152

6.6 Conclusions . 153

7 Paper F 155
7.1 Introduction . 156
7.2 Background and Related Work 158

7.2.1 Microservices Based Architectures 158
7.2.2 Designing and developing microservices-based software . 158
7.2.3 Understanding the profiles and evolution of software

engineers . 159
7.2.4 Understanding the profiles and evolution of microservices

practitioners . 160

CONTENTS xvii

7.3 Methodology . 161
7.3.1 Data Gathering . 162
7.3.2 Data Processing . 163
7.3.3 Data Analysis . 166

7.4 Results . 168
7.4.1 RQ1: Technical competences clusters 168

7.4.1.1 Web Technologies competences collection . . . 169
7.4.1.2 DevOps competences clusters 171
7.4.1.3 Data Technologies competences clusters 172
7.4.1.4 Stand-alone competences clusters 173

7.4.2 RQ2: Technical Competences in practitioners profiles . 175
7.4.2.1 Association score distribution 175
7.4.2.2 Profiles associating with only one collection of

competences 177
7.4.2.3 Relationships between collections of competences177

7.4.3 RQ3: Roles of engineers in developing MSAs 178
7.4.3.1 Web-based software engineers 179
7.4.3.2 DevOps engineers 181
7.4.3.3 Data engineers 181
7.4.3.4 Practitioners that specialize in their primary

collection of competences 182
7.4.4 RQ4: Characteristics of roles in MSA 183

7.4.4.1 Characteristics of Web-based software engineers 183
7.4.4.2 Characteristics of DevOps engineers 184
7.4.4.3 Characteristics of Data engineers 185

7.5 Discussion . 186
7.5.1 Implications for practice and research 186

7.6 Threats to validity . 190
7.7 Conclusion . 191

8 Paper G 193
8.1 Introduction . 194
8.2 Related work . 195

8.2.1 Microservices-based Architectures 195
8.2.2 Human-centric challenges in adopting microservices . . 196
8.2.3 Analyzing skills in Software Engineering sub-domains . 196

8.3 Methodology . 197
8.3.1 Data gathering . 198
8.3.2 Data Sampling . 198
8.3.3 Data Analysis . 199
8.3.4 Threats to validity . 200

8.3.4.1 External validity 200
8.3.4.2 Internal validity 200

8.4 Results . 201
8.4.1 The roles and responsibilities of microservices practition-

ers (RQ1) . 201
8.4.2 The soft skills of microservices practitioners (RQ2) . . . 205

xviii CONTENTS

8.4.3 The hard skills of microservices practitioners (RQ3) . . 208
8.5 Discussion . 211

8.5.1 Future work . 214
8.6 Conclusion . 214

Bibliography 217

Chapter 1

Introduction

As software becomes an integral part of organizations’ value delivery, software
applications grow in size, number of features, development teams, services deliv-
ered, and complexity. Software organizations turn towards Microservices-based
Software Architectures (MSAs), as they seek modularity, service orientation,
and interconnected cloud-based software delivery [1]. MSAs is a paradigm of
structuring systems and their development at a large scale, complementing
agile methodologies of software development [2]. Specifically, MSAs facilitate
software development agility, by scoping the work of DevOps teams in the
boundaries of independent and self-sufficient microservices [3]. One of the
central ideas of MSAs is that of disentangling the delivery of an entire software
system, from the delivery of any of its individual components [4]. Hence, organi-
zations in many industries are increasingly adopting microservices technologies
to structure their software [1, 5].

Microservices are a way of structuring software systems into loosely coupled
pieces of software that: 1) are developed and operated independently, 2) com-
municate and integrate with each other to compose a complete system, and 3)
each piece has its own individual business domain and resources. Microservices
are an incarnation of Service-Oriented Architectures (SOA) [2] and by adopting
microservices, organizations can manage the complexity of their software [6]
and deploy individual, vertically cut pieces of software autonomously and
independently [7,8]. One of the principal premises of engineering software using
microservices is that the process of engineering is centered around Domain-
Driven Design and Development (DDD), which means that business function
and business value delivery are at the core of the engineering process [4].

However, implementing MSAs is not an easy task and there are several
technical challenges along the way [9]. Microservices are not necessarily suitable
for every type of system, or they are not necessarily the solution to existing
problems that systems face. There are cases where the use of MSAs had
negative effects and were reverted (e.g., back to a monolith) [10]. In addition,
MSAs can be used in new software systems, but very often, an existing system
needs to be migrated to an MSA [6] and there is plenty that we do not know,
specifically about migrations towards microservices. Hence, there is a need to

1

2 CHAPTER 1. INTRODUCTION

study the process of migrating and essentially re-engineering the architecture
of software [11].

However, re-architecting is a complicated, time-consuming, and often messy
process, with a lot of technical change required entailing several potential
technical choices. There are more aspects (than just the source code) that
change during migrations, such as integration and deployment methods, testing,
and many more [12–15]. In addition, migration processes are often taking years
to complete, making it hard to keep track of the process. Migrations are often
unstructured and take place in ad-hoc manners (they are not systematic or
methodical, but rather take place on a trial and error basis) [16]. They are also
not well known since they are not always systematically recorded [6]. There
is knowledge from practice and academia on how to technically enact MSA
migrations, but many migrations are rarely aggregated to show engineers a
more generic view of change, and thus, engineers often learn along the way.

Furthermore, re-architecting is also complex, since the technical changes are
only one part of the undertaken change in migrations, accompanied by social
changes and decisions that are not only technical but rather human-centric. For
example, applying automated software decomposition tools on source code [17]
does not mean that the system is migrated to an MSA. Architectural migrations
are heavy in decision-making [18], either at an individual-level, team-level, or
organizational-level (i.e., company-wide) [19]. Migrations predispose changes to
the profiles (technical or non-technical) of practitioners and engineers involved,
with new demands and topics of operation that need to be accounted for [12].
Hence, the evolution of the structures that a microservices migration predisposes
has a socio-technical nature, comprising a technical, an organizational, and a
social aspect [20]. The socio-technical concerns of such migrations matter at
all levels of abstraction in a system (e.g., classes, modules, services, etc.) and
influence each other. On the one hand, there are small, simple development
details that can influence grand design choices. On the other hand, there
are grand design choices that can influence development in small, simple
development details.

This thesis is unraveling the way towards MSAs and draws a holistic frame-
work of understanding, about the change that microservices introduce. Change
that is introduced to the software, the software developing organizations, and
very importantly, the human practitioners developing the software. Conse-
quently, this thesis entails research that is grounded on these three dimensions.
Specifically, the goal is to empirically demonstrate the journey towards mi-
croservices, along with the decision-making, the technical artifacts change, and
the practitioners’ roles, responsibilities, and skills in microservices. Ultimately,
the thesis aims to establish microservices migration processes that balance
between technological change, organizational change and at the same time
maintain human attributes as a core characteristic of migration processes. The
thesis is structured in eight chapters from which this introductory chapter is
the synopsis of the thesis. In Section 1.1 the theoretical framework and related
work are discussed, describing the foundations of this work and putting the
thesis in the context of related research. Section 1.2 describes the scope of the
thesis, providing the objectives and Research Questions (RQs) addressed in the

1.1. THEORETICAL FRAMEWORK & RELATED WORK 3

thesis. Section 1.3 includes a detailed overview of the Research methodologies,
including a summary of the data gathering, processing, and analysis conducted.
Section 1.4 presents the contributions of each individual appended paper, along
with answers to the RQs. Section 1.5 contains the Discussion, with implica-
tions of this thesis’ results, discussions on how the results address the research
objectives, as well as the results’ relevance to practice and research community.
Finally, Section 1.6 draws the Conclusions of the thesis. In the remaining of
the thesis, chapters 2 - 8 correspond to the appended publications of the thesis
(Papers A - G).

1.1 Theoretical Framework & Related Work

Microservices are a way of structuring systems into loosely coupled pieces
that are developed and operated independently, each with its own individual
domains and resources. These individual pieces communicate with each other
to compose a complete system through decentralized continuous delivery [6]. A
system based on microservices is therefore composed as a set of small services,
individually running in their own process, and communicating with lightweight
mechanisms [4]. Hence, microservices have fine-grained interfaces (e.g., API
endpoints) of independently deployable services [6, 21].

MSAs have certain characteristics. In principle, microservices are often
small individual pieces of functionality and therefore they are often deployed in
containers or even as functions-as-a-service [22]. Furthermore, business-driven
development practices are critical to accompany agile practices that are often
adopted by software development teams [2,4]. In addition, microservices follow
cloud-native application design principles [6]. Such principles allow them to be
technology-independent and thus, have a polyglot nature (i.e., each microservice
can be written in its own programming language). Additionally, microservices
are characterized by their persistence strategies, especially in managing their
own state [4] and having (in principle) their own database [23].

Often MSAs are described as an incarnation of Service Oriented Architec-
tures (SOA) that aim to address the need for more flexible, loosely coupled
compositions of services [21]. The difference between microservices and SOA is
not necessarily in their architectural style but rather in the implementation
of the architecture. Specifically, microservices embrace, leverage, and add on
principles and patterns from SOA (loose coupling, service contracts, etc.) [2].

In microservices, Domain Driven Decomposition/Design (DDD) is key [4].
DDD is the business-centric or feature-centric design and development of
software. In addition, microservices are about separating functionality based
on different criteria rather than just functional concerns (horizontal splitting
of backend, frontend, and data layers). For example, microservices can be
structured in a system based on the number of features that are provided to the
end users, the number of developers, and the number of users that use parts
of a software system (vertical splitting) [22]. This way a MSA can facilitate
organizations to achieve improved scalability, maintainability, and reduced time
to market [4, 9].

4 CHAPTER 1. INTRODUCTION

This section discusses related work on the topics that this thesis is developed
on. Related work on microservices migrations is followed by summarizing
seminal work on human-aspects in software engineering.

1.1.1 Benefits of Microservices

The basic architecture of software contains software implementing the applica-
tions’ logic (e.g., backend), potentially a data source (e.g., database, sensors,
etc.), and an interface of interactions with consumers of the software (e.g.,
frontend, information exports, etc.). As software requirements grow, software
evolves and grows with new features as well as modifications and maintenance
of existing features. In fact, software often grows in size and complexity so
much, that value delivery through software becomes slow and costly. That
is because systems are often fixated on sub-optimal (seemingly) irreversible
design choices, or accumulate technical debt making them unmaintainable [24].
However, continuous value delivery to customers is important, and technical
debt needs to be repaid eventually to evolve software systems. Organizations
need software systems to maintain their capacity to change fast with the devel-
opment of new features, updating existing features, and combining features to
deliver new digital services [19]. Consequently, as software systems evolve and
scale faster than their underlying structures, software architecture transitions
to modern, cutting-edge paradigms of development are becoming more and
more common [25,26].

Releasing new features and maintaining existing software becomes challeng-
ing as software systems grow large. Technical dept gets accumulated that binds
organizations to design choices that have points of no return and digital services
that cannot be modernized easily or fast [27]. This difficulty of modernizing
digital services is a challenge of organizational agility [2] and can also lead to
obsolescence in products that are offered by organizations [28]. Hence, software
systems need to be structured more meticulously and MSAs are a way to do
so [9].

Microservices have many advantages. First, microservices are about focusing
on one thing and doing it well [9]. Also, microservices enable faster releases of
functionality and independent scaling and maintenance [6,27]. The polyglot
nature of MSAs enables technology diversity and faster adoption of different
technologies, depending on the requirements at hand [2]. Additionally, an
MSA enables the separation of parts with high-security requirements design
and allows multiple points of failure to achieve resilience [29]. Some of the
effects of microservices are a response to business change, enabling different
workloads for cost improvements, higher value delivery, organizational agility,
and decentralized governance [13].

1.1.2 Microservices Migrations

As software systems grow large, both in size and complexity, it becomes difficult
to update them and thus, they need to be re-structured [30]. That is because
software systems often need to change fast with the development of new features,

1.1. THEORETICAL FRAMEWORK & RELATED WORK 5

updating of existing ones, and combining/aggregating applications or digital
services [11]. Such a re-structuring includes the evolution of monoliths to
Service-Oriented-Architectures (SOA) and even further to microservices [2].
Monolithic software systems are tightly coupled pieces of software that have
challenges in maintaining them effectively and updating them fast. SOAs are
a step towards organizing software with separation of concerns, functional
and non-functional requirements, and providing information as services [31].
MSAs go a step further and they are a way of structuring systems into loosely
coupled pieces that are developed and operated independently, each with its
domains and resources [2]. These individual pieces communicate with each
other to compose a complete system [4]. Existing research investigates how to
use business logic, domain, and existing solutions [13,16], but there is further
room for engineering requirements that are specific to microservices migrations.

Migration projects are not simple, since migrating a system towards mi-
croservices (e.g., from a monolithic architecture) is a long endeavor with many
things to consider and an inherent complexity [13]. Hence, there is a need to
empirically investigate the details of migrations comprehensively from different
points of view [30]. Existing formal models can give guidance on how to track
and split technical artifacts of the system [18, 32]. However, there are not
many empirical investigations on the process of designing microservices-based
architectures. Empirical evidence on migration projects can bring light to
such practices as well as prepare practitioners for the expected migration
journey and what activities such a journey entails [33]. Hence, studying and
understanding how companies make their transitions towards MSAs can also
provide a detailed theoretical basis to researchers on the different aspects of
migrations [29]. Research and best practices stemming from industry provide
some approaches on migrations, covering many aspects [13, 23]. There are
different ways to split the software and transform a system into microservices
technically. Figure 1.1 showcases the landscape on which such approaches exist.

Figure 1.1: Categorization of microservices decomposition approaches

There are on the one hand manual approaches that deal with isolating
through manual code analysis specific parts of the software to deconstruct
services [13]. Such approaches have a high awareness of context and include

6 CHAPTER 1. INTRODUCTION

extensive human input. Manual approaches that are driven by the business
side adopt loyally Domain Driven Design (DDD) in the decomposition process,
meaning that the bounded contexts between services are determined based
on business function. For example, the business scope of a specific feature is
driving the isolation of its service from the rest of the system. In repetition,
this results in a solely business-driven split. Moreover, manual approaches
that are driven by technology are more specific on the technologies used to
decompose the software. For example, the Strangler Fig Pattern is about
setting up an interface around the monolith and decomposing it by extracting
one independent service at a time, that communicates with the monolith’s
interface.

On the other hand, there are automated approaches that take the source
code and indicate potential splits. Specifically, there is static code analysis
which is splitting by analyzing source code like class dependencies [34]. Another
way is meta-data aided, which is through analyzing more abstract input data
like UML, Use Cases, interfaces, commits, etc. [35]. Also, microservices can
be split using workload-data-aided approaches [36]. Such approaches analyze
measurements of operational data on a module on function level to define
granularity. Furthermore, there are Dynamic Microservices Decomposition
approaches. They are permanently changing services based on workload for
example or other dimensions to re-calculate the best-fitting decomposition.

1.1.3 Human Aspects in Software Architecture

Engineering software entails substantial decision-making. Hence, considering
human aspects and behaviors at the core of software engineering can help in
enabling the full utilization of engineers’ creative and mental capacity [37].
Currently, decisions for architectural designs, technical components, and de-
velopment processes are highly intuitive and based on previous experiences
of engineers [38]. The implications of decision-making are extensively studied
in many other fields but moderately studied in software engineering [39]. In
addition, decision-making is especially challenging when it takes place in groups
since it is not common to have structured decision-making in groups [40].
Specifically, a central challenge of decision-making is to have well-structured
problems that are well-defined beforehand [41]. Then, according to Zannier
et al. (2007), it is more likely that engineers have a better understanding of
the constituent elements of a problem and more likely to organize a rational
process for addressing the problems at hand. Therefore, as decisions impact
the evolution of the underlying structures of software, there is value in making
decision-making processes explicit and transparent.

Moreover, MSAs call for a different tech stack than other architectures to
deliver and operate software applications. For example, the tech stack of MSAs
includes several auxiliary artifacts about testing, logging, and monitoring [12].
Therefore, MSAs are generating a wave of change in the development mindset
of practitioners. Consequently, starting to define the specific roles and compe-
tences of engineers in them can be beneficial. Especially since the increased
cognitive load put on microservices architects as well as the increased effort of

1.2. RESEARCH SCOPE 7

designing, testing, and maintaining software in MSA is reported [2].

Fields that predispose a paradigm shift in development are re-defining the
key roles and responsibilities of engineers [42]. Similarly, existing research
has been investigating the characteristics of software engineering profiles, for
example through programming language affinity [43] or personal traits [44].
Different ways to investigate and derive different technical roles of practitioners
can be from their contributions in GitHub [45] or the skills that organizations are
looking for in engineers during recruitement [46]. Moreover, existing research
identifies detailed descriptions of the skills of practitioners in different software
engineering sub-domains [47–50], but less so in microservices. Hence, there is a
need to investigate further the skills of practitioners working with MSAs.

1.1.4 Summary of Research Gap

Existing research focuses largely on isolated technical aspects. Moreover,
existing solutions (e.g., through program decomposition) often do not address
the decision-making of engineers in migrations or the change of auxiliary
technical artifacts (e.g., testing artifacts). Hence, this can lead to ad-hoc,
disconnected processes from the rest of the organization or intended practices.
For example, testing in microservices entails more complexity than testing in
other architectures and thus, it is challenging to conceptualize how testing
architecture changes with the introduction of MSAs.

Migrations entail decisions for bigger changes than just a systems’ upgrades.
They are transformative on organizations as a whole [3], and little research com-
plements the technical aspects of microservices with the crucial non-technical
aspects of microservices migrations. Hence, there is a lack of approaches pro-
viding details on the operational choices that software development teams and
organizations make in migrations [12].

Even more importantly, there is a lack of empirical evidence on the practi-
tioners’ perceptions, competences, and skills. Specifically, even though there is
an emergence of empirical studies capturing the perceptions of practitioners,
there are calls for more empirical evidence on how practitioners experience
microservices migrations. In addition, the tech stack of MSAs is dense and
diverse and often new for practitioners. Capturing and organizing all the
different types of technical competences and skills is challenging, but essential
to scope the development of engineers with the required technical demands.
Moreover, the responsibilities and soft-skills of microservices practitioners are
under-investigated and they are equally important with the technical skills.

1.2 Research Scope

The main objective of this thesis is to bring structure to the often time-
consuming, and challenging process of changing the software architecture
towards microservices. In doing so, the aim is to maintain in the process the
human aspects, since people are an integral part of shaping MSAs. Therefore,
the goal is to empirically define the journey toward microservices, in light of

8 CHAPTER 1. INTRODUCTION

the technological change, the organizational change, and the human attributes
that comprise the core of migration processes.

To address the challenges described and the research gap, this thesis has
5 general research objectives, that are further broken down into 7 Research
Questions.

1.2.1 Research Objectives

The following research objectives are covered in this thesis.

Research Objective 1 (Obj-1): Understand the decision-making pro-
cess of migrations towards MSAs Migrating the software architecture
towards microservices entails several decisions that influence the resulting
change. Such decisions include not only technical choices but also choices
regarding how to re-engineer the software system at hand. Obj-1 aims to
provide a holistic understanding of the decisions that microservices migrations
entail. Therefore, the goal is to present the process in which decisions are made
by engineers to migrate their software architecture.

Research Objective 2 (Obj-2): Chart the migration journey towards
MSAs Migrations towards MSAs are long endeavors that can entail many
different activities. Obj-2 aims to chart the different activities of organizations
that change their software architecture to microservices. Therefore, the goal
is to decompose the migration journey into the different phases and activities
that exist in such a journey, along with the potential modes of change that
migrating organizations go through.

Research Objective 3 (Obj-3): Solution outcomes and changes in
testing artifacts during microservices migrations During the journey
towards MSAs, engineers end up with different solutions that implement
their new architecture. In addition, testing in MSAs differs from previous
architectures. Obj-3 aims to first aggregate (technical) solution outcomes of
engineers in MSAs. In addition, Obj-3 targets to capture changes that appear
in software artifacts, specifically testing artifacts. Therefore, the goal is to
provide a set of solution outcomes from the work of practitioners, as well as
the testing architecture that microservices have.

Research Objective 4 (Obj-4): Understand the organizational as-
pects of microservices migrations Migrations to MSAs are not only
comprised of technical changes that take place but also changes that alter the
enterprise in which the software operates. Therefore, Obj-4 aims to demon-
strate the organizational change that comes with microservices and showcase
the impact of MSAs on how organizations operate.

Research Objective 5 (Obj-5): Understand the human aspects of
MSAs Microservices are designed and developed first and foremost by human

1.2. RESEARCH SCOPE 9

engineers. Therefore, the human dimension of MSAs cannot be omitted, and
the characteristics of microservices practitioners are investigated along the
technical and organizational characteristics of MSAs. Obj-5 aims to gain an in-
depth understanding of the roles, competences, responsibilities, technical skills,
and interpersonal skills of engineers in MSAs. The goal is to complement the
body of research on microservices with empirical evidence on human-aspects, to
firstly understand the practitioners and secondly support them in their journey
towards mastering microservices.

1.2.2 Research Questions

To achieve these objectives, a set of Research Questions (RQs) are presented
below.

RQ1: What is the decision-making process of organizations during a migration
towards microservices?

This research direction empirically showcases decision-making and
the typical options that organizations can choose in the decisions
of migrations, addressing Obj-1. Hence, RQ1 empirically derives
the decisions that organizations make during a migration towards
microservices and when these decisions are made.

RQ2: What is the migration journey that companies go through when transi-
tioning towards microservices?

This research question aims to address the gap in the empirical
understanding of migrations from the engineers’ perspective, ad-
dressing Obj-2. RQ2 investigates what different levels can the
migration journey take place, how these different levels are struc-
tured, and what is the sequence of basic migration activities.

RQ3: What are the constituent elements of migration journeys that companies
go through when transitioning towards microservices (from high level patterns
to detailed solutions)?

This research question addresses Obj-2 and Obj-3, by pinpointing
in detail the different activities that take place at different levels
of abstraction across the organization. Specifically, activities and
common solutions are identified on the technical and systemic level
of migrations.

RQ4: What is the architecture of testing artifacts in microservices?

RQ4 demonstrates the testing architecture of software systems
based on microservices. In addition, this research direction provides
empirical evidence on how microservices testing can differ from
conventional testing best practices, addressing Obj-3.

RQ5: What is the impact of MSAs on the organizational structures of migrating
enterprises?

10 CHAPTER 1. INTRODUCTION

This research question unravels with empirical evidence the change
that happens in an organization that undertakes a microservices
migration, addressing Obj-4. Hence, the impact of MSAs on the
enterprise is captured and presented.

RQ6: What are the roles and responsibilities of practitioners working with
microservices?

RQ6 taps into the identification of the typical technical roles that
microservices practitioners have, along with their responsibilities.
The research direction of this RQ is a first step towards empirically
understanding the human-aspect in MSAs and addressing Obj-5.

RQ7: What are the technical competences, hard-skills, and sof-skills of mi-
croservices practitioners?

RQ7 organizes the competences and skills that microservices engi-
neers have. Specifically, this RQ addresses Obj-5 by demonstrating
both the technical skills that MSAs require, as well as the interper-
sonal and soft skills that are introduced with MSAs.

1.3 Research Methodologies

In this research, a combination of qualitative and quantitative methodologies
have been used. The epistemological philosophy of the conducted research
is predominantly based on inductive reasoning. Specifically, observations of
the world are collected in the form of interviews, StackOverflow discussions
and user tags, a survey, and job-ads posted online. The data are analyzed to
recognize and identify patterns in microservices migrations and MSAs, drawing
general conclusions from those patterns, and developing theories based on those
patterns. As shown in Figure 1.2, every RQ is answered with at least one
methodology, from at least one of the appended papers. The methodologies
used are mainly Grounded Theory (GT) and thematic analysis using techniques
from GT as described in literature on using GT in software engineering [51].
Additionally, a survey is conducted, along with a quantitative analysis of
StackOverflow profile tags, and job-ads.

1.3.1 Interviews

The step of interview conducting and analysis is predominantly based on GT.
During the interviews, the aim was to capture descriptions and contextual
information about the overall perception and experiences of the interviewees’
microservices migration journeys, capturing specifically the decisions during
microservices migrations. Specifically, a GT study (the constructivist variance
of GT, as defined by Stol et al. (2016)) with interviews was conducted for
paper A [51]. The starting point was an initial research question that evolved
throughout the development of paper A, as suggested in the literature for
conducting studies based on constructivist GT [52]. The initial research

1.3. RESEARCH METHODOLOGIES 11

Figure 1.2: Overview of Research Objectives, Research Questions, methodolo-
gies and corresponding papers

question was further specified and broken down into what could be addressed
based on the data analysis of paper A. A semi-structured interview guide was
used to conduct the interviews, which we constructed based on the initial
research questions. However, participants were given significant freedom in
describing their migration experiences. The data collection included interviews
with 19 participants, from 16 organizations operating in different industries.
Furthermore, an additional qualitative analysis took place on the same interview-
based dataset. The same interviewing data gathering step provided data for the
thematic analysis of paper B, where the migration journey towards microservices
is empirically derived. The derived journey of paper B was provided as input
to paper C.

The data processing of papers A, B, and C is transcribing each interview and
formatting the transcripts for analysis (i.e., formatting in documents suitable
for coding and keeping a record of codes). In the case of papers B and C, a

12 CHAPTER 1. INTRODUCTION

pre-processing step took place to include data that were excluded in paper A.
Specifically, a manual selection took place, excluding the parts of interviews
that had to do with decision-making, keeping only the parts that described the
migration journey.

The analysis of paper A includes initial coding where all the transcripts
are analyzed, and interesting bits are highlighted. Then, focused coding
is conducted where decision-making-related information is selected. Finally,
theoretical coding aggregates and organizes all the captured information into a
decision-making process. Furthermore, an additional qualitative analysis took
place on the same interview-based dataset. The additional analysis step led to
the results of paper B and the input or starting point of paper C. Specifically,
the focused coding of paper A excluded a lot of information about the overall
migration journey (since it was focused on the decision-making process). Hence,
papers B and C capture the information on the overall migration journey of the
interviewees and their microservices migrating organizations. Then thematic
analysis techniques are used to draw a theory of the overall migration journey.

1.3.2 Survey

Moreover, in paper D a survey is conducted, gathering the perspectives of
practitioners that worked with microservices. The survey’s closed questions
complement the open-ended questions of the previous methodology steps. 54
different engineers responded to the survey, revealing their perceptions on the
impact of microservices as well as the sequence of microservices migrations
activities. The raw survey responses were collected and formatted in a data
format (CSV) to enable their analysis. The analysis of the survey for paper D
captured the perceived impact and the sequence of activities of microservices
migrations. The survey included questions about a set of impact areas and
microservices migration activities, asking respondents to sequence them.

1.3.3 StackOverflow Discussions

This part of the methodology is a purely manual analysis of posts mined from
StackOverflow, again using techniques from GT, as described in literature [51,
52]. StackOverflow is often the place that software engineers turn to, for sharing
issues and challenges they face, along with potential solutions to their technical
work issues [53]. Therefore, discussions arise in this Q&A forum containing a
lot of details regarding engineers’ concerns. Developers use posts from such
websites to gather information, get ideas for solutions, and discuss their design
decisions to validate them [54]. More importantly, software engineers share
issues and challenges they face [55], along with potential solutions to their
particular technical issues. The content that is shared among developers often
includes information on the ways that they work, think, and tackle different
issues [56].

This thesis derives from (sometimes lengthy) discussions of software en-
gineers in StackOverflow detailed solutions in migration activities towards
microservices. The data collection takes place by querying StackExchange, to

1.3. RESEARCH METHODOLOGIES 13

gather questions that engineers posted as well as answers to those questions.
Specifically, paper C makes use of StackExchange Data Explorer (SEDE), to
gather discussions related to microservices migrations. Therefore, the queries
in SEDE gather questions that have combinations of keywords such as “mi-
croservices” with keywords such as “monolith”, “migration”, and “transition”.
These questions are filtered to include those that are discussed by at least
one more peer engineer and have a positive total voting score. Then, the
discussions of these questions are gathered and all the data are analyzed in
detail manually. The analysis of the 215 gathered posts is qualitative and based
on GT techniques. The purpose of this analysis is twofold. On the one hand,
to evaluate the already developed theory from paper B and on the other hand,
to extend the theory with detailed solutions as presented in paper C.

1.3.4 Mining StackOverflow Tags of User Profiles

In paper F an automated Python script gathers the tags associated with
StackOverflow user profiles. Specifically, the script uses the StackExchange
API to first gather the profiles of users who had posts about microservices
transitions. Then, the script gathers the tags that are associated with those
profiles. Paper F includes a fairly elaborate processing of the user-tags gathered.
Specifically, inclusion and exclusion criteria are applied to achieve a trade-off
between the feasibility of analysis, data completeness, and contextually sense-
making results. First, the tags co-occurrence matrix is derived, indicating every
pair of tags that appear together.

Paper F starts the analysis by applying the Louvain clustering method,
decomposing the co-occurrence matrix into competences clusters. Subsequently,
a manual analysis step is conducted on the derived clusters, capturing the
themes of clusters and collections of clusters. Hence, the topics and technical
areas that practitioners have competences in are identified. Finally, an anal-
ysis step is calculating the association score of user-profiles with the derived
competences clusters, indicating the roles that microservices engineers have
across different competences.

1.3.5 Analyzing Open Source Microservices Systems

Paper E mines GitHub to gather repositories that have a relatively mature
microservices-based architecture. Specifically, the focus of the search in paper
E is on software systems that use specific technologies, namely frameworks
for Consumer-Driven Contract testing (CDC). Hence, the search identified
technology traces of Pact and Spring Cloud Contracts (SCC) in reposito-
ries. Thereafter, the gathered repositories were filtered to include as close to
real-world software as possible, removing software applications that were not
authored by an organization. Consequently, the analysis of paper E includes 16
repositories of 22 microservices that compose 4 different systems. In addition,
the analysis records the testing artifacts of those repositories, by categorizing
and aggregating the tests of the microservices gathered. The analysis of Paper
E then provides an overview of the testing architecture in MSAs, as well as

14 CHAPTER 1. INTRODUCTION

the comparison of the testing architecture with conventional best practices for
testing.

1.3.6 Mining Job Openings

Finally, paper G aims to demonstrate an aggregated view of the roles, re-
sponsibilities, technical skills, and soft skills that the industry requires from
microservices practitioners. To do so, job-ads are gathered, sampled, and
analyzed. First, a pilot step takes place where 25 job-ads are gathered with
purposive sampling and then analyzed. Then, an automated script is used to
gather the most recent job-ads advertised in GlassDoor. Specifically, the script
gathers up to 30 job-ads a day from each of the selected countries. In paper G,
the automatically mined data of job-postings follow the inclusion criteria to
include job-ads from English-speaking countries across all continents.

The gathered data are sampled and analyzed using techniques from GT.
Specifically, stratified sampling is conducted to include a representative set of
job-ads in the analysis, from all the countries of origin. Specifically, a selection
is made using random sampling, proportional to the number of job-ads gathered
for each country. In addition, Paper G uses a mixed methods analysis. The
method includes on the one hand a manual analysis step using GT techniques
to derive responsibilities and skills. On the other hand, quantitative analysis
indicates the set of skills (both soft and hard skills) that job-ads require.

1.3.7 Threats to Validity

The research methodologies of the thesis inherit some threats that should be
taken into consideration.

Internal Validity First, a threat to internal validity comes from the pre-
exposure to existing literature and practices in MSAs. Specifically, existing
knowledge on MSAs at the time of designing and conducting the research may
have biased the design of interviews and data gathering from StackOverflow.
In addition, it cannot be claimed for the resulted taxonomies, processes, and
lists of activities to be exhaustive, since they are limited from the data gath-
ered. Furthermore, the contents shared by the interviewees, the StackOverflow
community, and job-ads represent the perception of the data-source, and it
is arguable to what extent perceptions align to the reality. To mitigate these
threats, data gathering is designed on the one hand to be as non-intrusive and
as broad as possible. On the other hand, meta-data that indicated the validity
of gathered content was used (e.g., including StackOverflow discussions that
have an overall positive reaction score from other practitioners).

External Validity In terms of external validity, it cannot be guaranteed that
the data populations of this thesis represent the entire software industry. For
example, interviewees are sampled using a voluntary procedure, StackOverflow
data represent only the parts of the software industry that are active in Q&A
communities, and the gathered job-ads represent the market of the period

16 CHAPTER 1. INTRODUCTION

when the interviewees mentioned that they had to decide between different
alternatives. The second way was when interviewees seemed unsure about
a choice they had made and discussed the rationale behind it or chose two
options simultaneously. The third way was when we identified different courses
of action taken from different interviewees for the same task at hand. Decisions
in all different dimensions were influential for the overall course of the migra-
tion. Therefore, there is evidence of decisions influencing decisions of other
dimensions.

In paper A, the decision-making processes that happen on all levels of a
microservices migration project are charted holistically including 22 decision
points. This helps us understand the architectural design decisions in microser-
vices migrations and how they tackle surfacing challenges (business, technical,
and organizational). Also, it enables us to aggregate the migration journey and
provide a framework for navigating this changing journey. A strong emphasis
is given to the multidimensional nature of migrations towards microservices,
considering the business and organizational side, as well as the technical side.
In paper A’s theory, we present 3 main dimensions: the business, technical,
and organizational dimensions.

In the business dimension, the developed theory reports the need to first
create engagement across the organization for migrating to an MSA. Specifically,
engineers who know the need for migrating have to propagate this knowledge
to other key stakeholders and engage them. It is not possible to just pull the
plug and change the system at once. The identified decisions were first, on how
to assess feasibility and explore potential opportunities. These decisions feed
information into the development of a business case that drives the development
of a new architecture.

The second dimension is about decisions on technical aspects. Specifically,
in this dimension we chart different choices that engineers have to make
when migrating. On the one hand, some of those choices are about grand
design decisions of the migration like what splitting strategy to use or at what
granularity should splitting stop. On the other hand, choices made in this
dimension are very specific technical details like how to reuse and how to expose
code.

Finally, a decision-making process is reported on the organizational dimen-
sion. In the third dimension, engineers were often involved in decisions that are
regarding the organization and structures of the company. One theme in this
dimension is decisions on the way the organization’s operations change. An-
other theme is regarding rethinking the structure of the software development
organization. Finally, some engineers had to work on deciding how knowledge
is shared across teams.

1.4.2 Contribution 2: Migration Journey towards Mi-
croservices

The second contribution of this thesis is an iterative process for microservices
migrations, presented in paper B and paper C. This contribution showcases that
migration projects are continuous improvement initiatives instead of one-off

1.4. CONTRIBUTIONS 17

projects. The findings of the studies deriving the migration journey organize
different aspects that describe past migrations and present them in a continuous
endeavor that takes place in iterations. Understanding the progress of migration
projects in the aggregated process can help engineers gain awareness of the
progress of different modes of change. Also, the charted migration journey
showcases the different paces in different modes of change.

For example, paper B presents two main modes of change during a migration.
The first mode is on changes in the software architecture and thus, it is about
long-term changes and architectural design decisions - this mode is mapped to
the systemic migration of paper C. The second mode is about specific system
updates that are more operational, taking place in smaller sprints (software
system-level migration) - this mode is mapped to the technical migration of
paper C. In these modes of change that we identified, there are re-occurring
phases. The phase of making design decisions is about the design activities
that take place at the start of a migration sprint (architectural or system-level).
Then, the phase of altering the system is about the implementation activities
that actively modify the software application, on the different modes of change.
Finally, the phase of implementing additional technical artifacts is about the
development or modification of software or other artifacts that are needed
along with microservices.

Building on the modes of change and the migration phases, the analysis of
an additional dataset confirms the initial theory and modifies it accordingly.
Specifically, the aggregated migration journeys of 16 organizations are com-
plemented through the analysis of 215 posts from StackOverflow, that discuss
microservices migrations. The analysis of StackOverflow discussions captures
the content that is shared among developers, often including information on
the ways that they work, think, and tackle different issues regarding their
microservices migrations. StackOverflow is often the place that software engi-
neers turn to when they face challenges in their work [53]. The StackExchange
data explorer 1 is used to collect what developers discuss when transitioning
to microservices. The two modes of change are updated into the systemic
migration on the one hand and the technical migration on the other hand. In
addition, the additional dataset directed a different distinction between the
phases, resulting in the merging of two of them. A more general Planning
phase of each migration iteration is followed by an Execution phase that is
followed by a phase for Setting up supporting artifacts. The phase of setting
up supporting artifacts is a stage in the migration where the development
and operations are configured to support effectively the new paradigm that
microservices bring.

1.4.3 Contribution 3: The Constituent Elements of Mi-
grations’ Journey

In the third contribution of this thesis, paper C further develops and extends the
theory on how migration journeys take place and describes the parallel modes

1https://data.stackexchange.com/

18 CHAPTER 1. INTRODUCTION

of change in more detail. The two parallel migrations intend to demonstrate
the way in which organizations execute overall systemic changes and specific
technical changes. These modes of change explain in detail specific activities
that take place during migration iterations. Moreover, the detailed analysis of
StackOverflow discussions defines the constituent elements of the migration
process, across different levels of abstraction. Specifically, 14 activities are
identified in total that all together have 53 different solution outcomes.

The systemic migration is on a broad and slow-paced scope, taking place on
the global software architecture transition that is required when an organization
commits to an MSA migration. The long-term vision of the systemic migration
concerns mostly structural, organizational, and business aspects. For example,
an activity in the planning phase is about clarifying drivers for migrating, which
requires business-oriented input. Another example is that in the execution
phase, the activity of designing a service cut concerns a structural change and
the activity of setting up continuous extraction is about organizational change
to facilitate the decomposition of the system.

The scope of technical migration is narrow and fast-paced, focusing on the
technical realization of a migration towards MSA. Specifically, the short-term
scoped technical migration concerns technical design decisions that are critical
for the migration, but are very specific and far from the broader picture of
the architecture. For example, splitting up the data is an activity that could
be deemed irrelevant in the grand scheme of things, but it is still crucial in
migrating the software to a new architecture. Another example is the activity
of setting up monitoring, logging, and authentication, which is not crucial for
the value-adding changes of the system, but the absence of such solutions might
be highly costly.

The analysis of the 16 migration cases results in a pragmatic view of
migrations towards microservices. The migration journey is what the software
development organization and the engineers go through to achieve a relatively
mature state of their microservices architecture. The suggested process iterates
until the architecture, system, and work of engineers reach a final, stable
state. During this journey, software development organizations came across
several activities, tasks, and solutions that are identified, categorized, and listed.
Existing research provides patterns that direct organizations on how to migrate
towards MSAs, but the results of paper C show how activities of migrations
connect and how they materialize into solution outcomes. Such findings
contribute to forming abstract patterns into actionable practical activities with
concrete solution outcomes.

1.4.4 Contribution 4: Perceptions of the Impact and Se-
quence of Activities in Microservices Migrations

This thesis contributes also with an investigation on the perceived impact
and sequence of activities in transitions towards MSAs through Paper D. A
survey study is conducted that enriches the charted migration journey of
organizations towards MSAs, by providing a better understanding of how
microservices migrations are carried out. Specifically, the findings from the

1.4. CONTRIBUTIONS 19

survey demonstrate a common chronological order of migration activities that
potentially exists, based on the perceptions of practitioners. In addition, this
contribution highlights specific areas where practitioners perceive the impact
of the migration process to be significant.

The analysis of 54 survey respondents (microservices practitioners) firstly
empirically reveals the sequence of 6 migration activities. Specifically, prac-
titioners expressed the tendency to perform database refactoring, DevOps
infrastructure setting up, and back-end refactoring earlier than front-end refac-
toring, microservices communications setting up, and teams reorganization or
splitting. The concluded order indicates an apparent prioritization of the first
3 activities. Hence, practitioners perceive the database, DevOps infrastructure,
and back-end as being more important or more feasible to start with during a
microservices migration.

Moreover, the analysis of the survey respondents demonstrates the perceived
impact of microservices migrations, across 7 impact areas, as well as business
and operational improvements. The 7 impact areas were presented in the survey
and practitioners ranked them in comparison to each other. The responses
demonstrate first that practitioners perceive a positive impact of MSAs in
respect to aligning teams’ structures with profitable value propositions, as well
as testing process improvements. Furthermore, a moderate impact is expressed
on having less dependencies between teams and improving the overall agile
development process of teams. Surprisingly, more practitioners expressed that
MSAs impact in structuring teams based on system parts (service ownership
based on functional concerns), rather than structuring teams based on features
(service ownership based on end-to-end features). Respondents indicate that
MSAs do not necessarily alter the alignment between software and business.
However, respondents agree that several business and operational improvements
have resulted from MSAs. For example, 67% of respondents agreed that MSAs
enabled improved quality in the experience delivered by their software. In
addition, more than 50% of the respondents indicated that MSAs improved
scalability and maintainability of their software.

1.4.5 Contribution 5: Empirical Analysis of Testing in
MSAs

The fifth contribution of the thesis is through an empirical investigation of
testing in MSAs. Specifically, Paper E provides an overview of the testing
architecture of microservices software. The testing architecture is devised
from the analysis and categorization of artifacts in GitHub repositories of
microservices software. In addition, an analysis is conducted to assess how
the testing architecture aligns with testing guidelines and specifically the test
pyramid. The focus is on microservices systems that adopt consumer-driven
contract testing (CDC) since such systems are suitable due to adopting several
principles of MSAs. CDC is a way of safeguarding the integration of several
microservices and this contribution provides evidence and observations to the
body of knowledge on how CDC is being used in practice.

The derived testing architecture from analyzing the mined microservices

20 CHAPTER 1. INTRODUCTION

classifies tests as unit, integration, component, and system tests. The identified
testing types include the testing artifacts that are used in the studied system, the
relations between those artifacts, and the tools or frameworks that implement
testing designs. One finding of the analysis is that mocking artifacts appear in
all testing types. Furthermore, it is apparent that component and integration
tests are often used interchangeably, and component tests cover integration,
even though they do not always target the interaction between microservices.

Moreover, the analysis is extended with a comparison of the identified
testing artifacts to testing guidelines. Specifically, the number of test cases
of each test type is aggregated, and the proportion of tests is compared with
the test pyramid. The size of the system plays a role in the alignment of
the test artifacts with the test pyramid. Specifically, in smaller systems, the
pyramid shape is not very distinctive, whereas in larger systems the pyramid
appears more distinctly. Nevertheless, the distinction between integration and
component tests is not clear in most microservices, indicating the need to
introduce a different categorization of testing in MSAs.

1.4.6 Contribution 6: The Roles and Technical Compe-
tences in MSAs

This thesis contributes further with the identification of the roles and technical
competences of practitioners working with MSAs in Paper F. Specifically, a
large-scale StackOverflow analysis investigates the different existing types of
profiles that work with MSAs. First, this contribution proposes a taxonomy
that articulates the technical characteristics of software engineers working with
microservices. Then, the profiles are stratified on the derived taxonomy, and
their primary and complementary competences are identified, demonstrating an
overview of what technical competences engineers working with microservices
typically have. The findings from analyzing StackOverflow profiles and tags
indicate the job competences of microservices engineers, potentially helping
developers on what technologies are important in the context of MSAs.

The technical competences taxonomy of microservices practitioners groups
in competences collections the 11 identified technical competences clusters.
The 11 technical competences clusters are automatically identified (from the
Leuvain clustering algorithm) and their contextual themes, as well as their
grouping, are determined through manual analysis. The taxonomy entails
the 3 overarching competences collections of Web Technologies, DevOps, and
Data Technologies, organizing 8 competences clusters. In addition, there
are 4 stand-alone competences clusters. The competences collection of Web
Technologies has competences in API development and service integration,
full-stack development, front-end development, and security and networking.
In addition, DevOps has version control and quality assurance, as well as
monitoring and CI/CD. The Data Technologies competences collection has
data analytics and engineering, as well as data management. The remaining
competences clusters are stand-alone, and they are about programming, data
structures and algorithms, mobile development, and Microsoft-specific cloud
services.

1.4. CONTRIBUTIONS 21

Moreover, in this contribution the association of how profiles of microser-
vices practitioners with the 3 overarching competences collections is calculated.
The analysis indicates that the majority of microservices practitioners have
competence in Web technologies and DevOps, whereas almost half have com-
petences with Data technologies. In addition, Web technologies are more often
the primary competence of practitioners, complemented by DevOps and/or
Data technologies. Specifically, most microservices practitioners with web
technologies competences have some DevOps competences as well.

Furthermore, the roles of microservices practitioners are described and
characterized. The roles are defined as Web-based software engineers, DevOps
engineers, and Data engineers. The tags associated with practitioners indicate
the primary and complementary competences. Microservices practitioners seem
to either have a predominant specialization or a comprehensive technical skillset
with multiple competences. Specifically, competences clusters such as API
development and service integration, monitoring and CI/CD, or data analytics
and engineering tend to call for exclusive specialty, whereas other competences
clusters tend to more often be complemented by other competences with high
association.

1.4.7 Contribution 7: The Responsibilities, Soft-skills,
and Hard-skills of Microservices Practitioners

Finally, the last contribution of the thesis is a comprehensive overview of the
responsibilities of microservices practitioners, as well as the skills (both soft
skills and hard skills) that practitioners need for MSAs. Specifically, Paper
G gathers and analyzes public job-ads. The job-ads analysis confirms and
extends the roles of microservices practitioners. Moreover, the responsibilities of
microservices practitioners are identified, focusing either on the product artifact,
or the software development organization, which seems to be highly human-
centric. The separation of responsibilities provides an initial understanding
of the different aspects that describe microservices practitioners, allowing
the investigation of those aspects separately. Additionally, the findings from
analyzing job-ads provide details on the skills of microservices practitioners.

In this contribution a taxonomy of 21 responsibilities, organized into 5 fami-
lies of responsibilities is identified. Human-centric families of responsibilities are
found in Software process and team development, Professional services delivery,
and Governance of software engineering. The human-centric responsibilities
are concerned with the software development organization in relation to the
software engineering team or customers. The fact that all but a few job-adds of
microservices practitioners include human-centric responsibilities, indicates the
increasing importance of human-centered responsibilities and skills in MSAs.
Other families of responsibilities are software development support and infras-
tructure and software product delivery. These responsibilities are concerned
with the software product in relation to the engineering team or customers.

The skills taxonomy of microservices practitioners entails 8 soft-skills, 11
hard-skills, and the relationships of hard- and soft- skills. From those skills, the
5 most demanded soft-skills are Articulation and transferability of knowledge,

22 CHAPTER 1. INTRODUCTION

Stakeholder management, Problem-solving, Communication, presentation and
negotiation, and Leadership. In addition, the 5 most demanded hard-skills
are Quality assurance, Cloud Infrastructure, Data Management, APIs and
event-driven architectures, and CI/CD engineering. Furthermore, a calculation
estimates how many more soft-skills on average job-ads have when a particular
hard-skill is included. This reveals which hard-skills tend to occur alongside
more soft-skills on average, indicating that human aspects play a role in utilizing
some hard-skills in practice.

1.4.8 Addressing the Research Objectives and Questions

The findings from the seven contributions presented compose the answers to
the thesis’ RQs.

Answering Research Question 1: The decision-making process of orga-
nizations during a microservices migration is the process of deliberation for
business, technical, and organizational decisions. The identified decision-making
process entails 22 decision points, along with the point in the migration that
decisions are made. Additionally, the alternative options of the decisions are
aggregated from the interviews.

Answering Research Question 2: The migration journey that companies
go through when transitioning to microservices is the iterative process of
continuously improving the architecture. The journey takes place in two modes
of change, a short-term technical mode and a long-term systemic mode. In
addition, the iterative process has the phases of planning, implementation, and
setting up supporting artifacts, in which the change takes place.

Answering Research Question 3: The constituent elements of migration
journeys are migration activities, as well as solution outcomes that result from
these activities. Specifically, 14 migration activities and 53 solution outcomes
are presented. In addition, a subset of the identified migration activities are
ordered chronologically.

Answering Research Question 4: The testing architecture of applications
that use MSAs covers unit, integration, component, and system-level testing,
with mocking being used at all levels. In addition, the boundaries between
integration and component testing seem to be unclear in practice and service-
level tests become more prominent.

Answering Research Question 5: The impact of MSAs on the organi-
zational structures of migrating enterprises is the business and operational
improvements that microservices introduce (according to impact factors investi-
gated). In addition, microservices migrations call for changes in organizational
aspects such as organizational structures and processes, as derived from the
systemic mode of change in the migration journey.

1.4. CONTRIBUTIONS 23

Answering Research Question 6: The roles of practitioners working with
microservices are Web-based software engineer, DevOps engineer, and Data
engineer, as derived from the topics that practitioners show proficiency in
StackOverflow. The responsibilities of microservices practitioners are on the
one hand human-centric, regarding the software engineering organization and
governance. On the other hand, responsibilities are regarding the software
artifacts produced for teams or customers.

Answering Research Question 7: The technical competences and hard-
skills of microservices practitioners are centered around the roles described in
RQ6. Some examples are API design and development, quality assurance, and
infrastructure configuration. Important soft-skills of microservices practitioners
are around the articulation and transferability of knowledge, stakeholders man-
agement, problem-solving, and communication, presentation, and negotiation.

A B C D E F G

RO1: Decision-making in
software architecture

migrations to microservices

RO2: Chart migration journey
of organizations

RO3: Map technical
migration, solutions, and

changes in artifacts

RO4: Understand the
organizational aspects of
microservices migrations

Decision-making
process during

migrations

Long and short
term migration

journey

Systemic and
Technical migration

journey

Solution
outcomes of
migrations

Sequence of
migration
activities

Architecture of
testing artifacts
in microservices

Competences of
microservices
practitioners

Human-centered
responsibilities

and skills

Decisions on
organizational

change

Impact of MSAs
on organizations

operations

RO5: Understand the human
aspects of the change in

practitioners

Roles of
microservices
practitioners

Technical
responsibilities

and skills

Contributions Papers

Figure 1.4: Overview of contributions per research objective

As presented in Figure 1.4, the contributions of each paper help to address
the research objectives of the thesis, as they are described in Section 1.2.1. This
takes place by answering the research questions described in Section 1.2.2. For
example, Obj-1 (understanding the decision-making process of microservices
migrations) is addressed by answering the equivalent RQ1 through contribution
1 which provides a comprehensive decision-making process.

Moreover, Obj-2 (charting the migration journey) is addressed through RQ2
and RQ3, via contributions 2, 3, and 4. Specifically, contribution 2 indicates
the long-term and short-term mode of change in a microservices migration. In
addition, contribution 3 distinguishes and details the overall systemic change
that takes place from the technical change that takes place during the journey to
microservices. Finally, contribution 4 adds the aspect of sequence to migration
activities.

The objective Obj-3 (aggregating technical migration solutions and changes
in artifacts) is addressed through RQ3 and RQ4. Firstly, contribution 3

24 CHAPTER 1. INTRODUCTION

aggregates the solution outcomes that engineers result to during their migrations
to microservices. Then, contribution 5 describes in detail how testing takes
shape in MSAs. In addition, a comparison is conducted in contribution 5,
between testing in microservices software applications and general testing
guidelines.

Furthermore, Obj-4 (organizational aspects of microservices migrations) is
addressed from contribution 1, 4, 6, and 7, answering RQ1, RQ5, and RQ6.
Specifically, contribution 1 provides the organizational decision-making process
taking place in migrations. In addition, contribution 4 indicates the impact of
MSAs on an organization’s operations and business. As an in-depth analysis of
the roles that microservices practitioners have, the results of contribution 6 is
input to organizational structures based on the profiles of engineers. Finally,
contribution 7 enriches the input to organizational structures with details on
the responsibilities that roles have, as well as extended descriptions of identified
roles.

Obj-5 (understanding the human-aspects of the change in practitioners)
is addressed with RQ6 and RQ7 through contributions 6 and 7. Specifically,
contribution 7 provides details on the competences that microservices practi-
tioners typically have. Furthermore, contribution 7 enriches the existing body
of knowledge about practitioners’ competences by distinctly identifying and
discussing the human-centered responsibilities and soft-skills that microservices
practitioners are required to have.

1.5 Discussion

This thesis gives a strong emphasis in microservices migrations as a socio-
technical endeavor. The first four contributions do not only approach migra-
tions as a technical endeavor, but also as an endeavor with a strong social,
organizational, and business aspect to it. Contribution 5 is unraveling the
underlying structures of testing artifacts. In addition, the last two contributions
investigate further the organizational aspect of MSAs, with a deep focus on
the human-aspects that MSAs predispose. Consequently, the thesis is covering
the basic elements of socio-technical systems as defined in literature [20].

1.5.1 The Socio-Technical Perspective in MSAs

Stakeholders sensing and comprehending the concerns of other stake-
holders, in the context of MSAs. As defined by Baxter and Sommerville
(2011), the sensitization and awareness aspect of socio-technical systems engi-
neering is regarding achieving awareness of the concerns that stakeholders have,
among other stakeholders. The established process, the organizational structure
and the technical infrastructure, along with the inherited human-driven com-
plexity in their relations [20, 37] is taken into account in the appended studies.
The contributions of papers A, D, F, and G form a starting point for creating
awareness in the context of MSAs. Specifically, the different dimensions of the
decision-making process identified are describing and bridging the business,

1.5. DISCUSSION 25

technical, and organizational decisions that take place in microservices migra-
tions. In addition, the perceived impact of microservices migration activities
indicates how the adoption of MSAs is perceived by stakeholders. Finally,
the competences and responsibilities of microservices practitioners indicate
explicitly the concerns of practitioners that hold specific roles.

Integrating the change process with the software engineering process
of adopting MSAs. Another aspect of socio-technical systems design is that
of constructive engagement which is regarding the integration of the systems
engineering process with the change process [20]. Paper B describes the change
process with modes of change and their phases, as described in the context of
a socio-technical system, in order to achieve a migration towards microservices.
In addition, the second and third contributions integrate the technical migration
process with the overal systemic migrtion process. The technical migration has
to do with the specifics of the technology through detailed solutions, whereas
the systemic migration addresses the overarching change taking place in a
broader context. The connection of the change process with the software
migration process is visible across this thesis in different forms. On the one
hand, software that evolves in large scale and complexity forces its underlying
technical structures to evolve as well and support it, as presented in papers
A, B, C, and D. On the other hand, the roles, responsibilities and skills of
practitioners are also altered with time, and their human-centered nature is
important to be considered, as presented in papers F and G.

The evolution of software and software engineers in MSAs. This
thesis present the evolution that MSAs introduce to the software architecture
and the practitioners. In terms of software architecture, the contributions
indicate how intentions for MSA migrations are propagated into activities of
engineers. The derived process of decision-making approaches change from the
perspective of intended deviations in the operational model of an organization,
through explicit decision-making. However, the study in testing architecture
reveals change through a perspective of unintended deviations from existing
guidelines (i.e., testing pyramid). In terms of the practitioners’ ecolution, the
contributions give a comprehensive overview of what practitioners need in
order to conduct their tasks. Specifically, the roles and technical competences
are defined in detail. Hence, training plans can take into consideration both
hard-skills and soft-skills that companies need from microservices practitioners.
Organizational and human-centric challenges are important for the adoption
of microservices [22,29]. Investigating the skills of microservices practitioners
introduces a structure on the different experts work and interactions. This thesis
extends indications of existing literature regarding organizational structures in
microservices.

1.5.2 Software Architecture Perspective

Software architectures entail different meanings for different stake-
holders at different points in time. A substantial part of this thesis

26 CHAPTER 1. INTRODUCTION

ultimately describes how organizations migrate towards a MSA. Both practice
and academia provide varied directions on what a software architecture is
exactly and thus, it is natural to end up with such a diverse set of aspects
that describe the change and migration of software architectures. Seminal
literature in the topic, indicated from early on how software architecture is
different for different people, with the different potential views of a system’s
architecture [57]. The evident multidimensionality of this work strengthens
this view on the topic of migrations to MSAs as well.

To complicate the scoping of the topic even further, software architectures
have different utilities at different points in time, as software evolves. This is
present in paper C, and there is related literature that supports these findings
as well [58]. Paper C, can indicate to practitioners what software architecture
is in different phases across time. At the start of development an architecture
can be described as an imaginary design, helping to form a plan. During the
development it can be viewed as a framework to share a common picture of
how the system is and execute the migration on the system. After development
is a navigation map to direct engineers on where each part of the supporting
structure is. In terms of theory, software architecture was initially perceived
as the formal structures that act as foundations of software systems. Hence,
software architectures started to be perceived as a representation of a software
system at a current state. However, the static nature of such an explanation
came quickly in conflict with the dynamic and iterative nature of engineering
software [59].

MSA migrations entail decisions and communication from engineers
all the way up to executives. The contributions of this thesis provide
links between narrow technical details with broad organizational structures.
Software architecture is used to communicate the constituent elements of a
software application in different levels of abstraction. Architectural representa-
tions of a software application compose the artifacts that describe the shared
understanding between stakeholders. However, as development evolves, there
can be a difference between the representation and the actual implementation.
This does not mean that there is no value in architectural representations, since
they can be used to navigate systems, but also have an overview of the big
picture [57]. Papers B and C build on these ideas and draw empirical results
along the lines of propagating the change on different levels of detail.

In addition, paper C goes even further on these concepts and demonstrates
the solution outcomes and different activities of the development of the archi-
tecture when migrating. Specifically, the contributions demonstrate showcases
that there are things that matter at all levels of detail and levels of abstractions.
Narrowly scoped technologies and tools influence large, systemic design choices
and vice versa - overarching design choices influence specific technical solutions.
Analyzing and altering the software architecture takes place on all levels, from
strategic to coding, as indicated also in paper A with the business aspect of
migrations.

1.5. DISCUSSION 27

1.5.3 Breaking Down the Complexity of MSA Migrations

Researchers should put more focus on the non-technical aspects of
migrations. MSA migrations contain many clusters of sub-topics, ranging
from changing source code, to modifying the business service delivery mode.
Literature and practice discuss software architecture migrations with the per-
spectives of source code decompositions, testing, integration and deployment
approaches [6, 12, 13, 16]. This diversity indicates the complexity that exists
when migrating towards a MSA, as do individual studies that investigate in-
stances of such migrations [14]. However, topics that do not have a technical
focus are not investigated extensively and yet, they are important. The results
of this thesis specify further the individual elements of MSA migrations and
break down the known complexity of such endeavours. Especially papers A,
B and C indicate the different aspects of MSA migrations and give details
on them. Researchers and practitioners can benefit from this research with
scoping migrations and linking them with the overall picture that the results
present. Moreover, the contributions from papers F and G are a starting point
in bridging the gap between the technical aspects and the human-aspects of
the practitioners’ work in MSAs.

Migration drivers, business and organizational needs, and human
factors need to be considered when planning migration processes.
The business drivers cannot be ignored when migrating, since they fuel the
actual change at scale and across the organization. Migrations of software
systems and technologies can happen to align the software architecture with the
overall service delivery strategy of organizations and thus, help achieve business
objectives [19]. Clarifying migration drivers complements current research that
describes the benefits of migrating towards microservices [33,60], or away from
microservices [10]. Benefits and drawbacks are technical, performance-oriented
or economic, with details on how to align different stakeholders.

Additionally, software architectures with modern, cutting edge technologies
can help establish socio-technical systems that contribute to the required orga-
nizational agility for being competitive in modern ever-changing economies [2].
The derived dimensions and modes of change in this thesis, provide a com-
prehensive view, adding to existing research ways to engineer a microservices
migration within the organization. Also, the findigs can help practitioners with
making choices that are not only driven by technical limitations, but also by
what the business/customers need, what the organization needs and what the
technology can facilitate. Hence, this research consists of a critical view on
when it is possible and useful to migrate and until which level of migration
completion.

1.5.4 Decision-Making in MSA Migrations

Future work should investigate individual and group decision-making
processes. It is well known that changing the software architecture is substan-
tial and can involve many decisions [58]. A decision-making process is therefore

28 CHAPTER 1. INTRODUCTION

important as also indicated by other studies [18] and paper A investigates
decision-making from many different organizations. Decision-making of soft-
ware engineers takes place in an individual level [38], in groups/teams or small
software organizations [40] and in large organizations that develop software [61].
Paper A takes a perspective of organizational decision-making, showcasing a
multidimensional approach that involved the perspective of business change, the
perspective of technical change and the perspective or structural change on the
organization. The results of paper A complements the existing state-of-the-art,
since according to Hassan et al. [16], existing research investigates migrations
as a technical endeavor that needs a technical solution, and paper A gives a
decision-making perspective. However, so far there is few studies investigating
individual or group decision-making in MSA migrations [18].

Decision-making processes are often implicit and can be extracted
from engineers descriptions of their work. Moreover, the derived decision-
making process in paper A showcases how future work can derive engineers’
decisions from qualitative data. On the one hand, all interviewees when asked
to describe their migration journeys, started by describing their course of action
(i.e., ”we first did ’a’ and then ’b’ and afterwards modified our approach...”
and so on). This provided evidence of a sequence that each case followed in
order to achieve the migration. On the other hand, more experienced engineers
described some prerequisites that needed to be in place on a company-wide
level, to facilitate the migration. In the same way, they also described other
things that change when a migration matures. Deriving the decision-making
processes of migration initiatives in software development organizations can
help to better understand such transitions and help achieve their realization
by design rather by coincidence.

1.5.5 Implications on Software Engineering Teams that
Migrate to Microservices.

Practitioners should take into account the diverse skillset required in
MSA migrations, when preparing to commit on a migration project.
The different modes of change presented as well as the different dimensions of
decision-making indicate the diverse skillset that is required by teams, especially
since microservices predispose designing the business and the software at the
same time [4]. Paper A showcases that the business aspect is critical in order
to fund a migration and usually the justification for migrating is not technical,
but business-driven. Additionally, both papers A and C touch upon the
overall changes that take place in the operational model of organizations that
migrate. Changes that require a strong understanding of how the organization
is structured and how it can potentially change. Therefore, it can be argued that
business-savvy software developers and programming-savvy business analysts
and system designers are needed in teams to accommodate all perspectives and
ways of thinking.

1.5. DISCUSSION 29

In MSAs, complexity is shifted from the software implementation
to the configuration and integration of services. On the one hand,
this is observed in paper B and C, where many additional technical tasks are
needed just for supporting microservices. Hence, a big proportion of migration
activities have to do with setting up the development process of microservices,
their deployment, testing and integration. On the other hand, since integration
of microservices plays such an important role for the development of the system,
the communication between microservices can contain sometimes more business
logic than the source code. An interesting result from this thesis is on the
perception that there is strong decoupling in microservices. The reality in
practice is that often a chain of microservices exists that brings coupling on
the configuration level rather than on the source code level.

Migrations to MSAs often take place in parallel with maintaining,
extending and growing the system under migration. Furthermore,
this work indicated how many of the investigated software development teams
that migrate do not consider the change of the system as their main value-
adding project. Rather, they view the migration project as a necessary sideline
activity and they focus on developing new features and value adding artifacts
at the same time. Hence, migrations take place in parallel with other activities
and thus, there is sometimes a pause and revisiting to the project, explaining
partly their often iterative nature. Even in cases where dedicated personnel or
teams take responsibility of the migration, there is a sense of parallelization
with further development of the system. This can indicate to practitioners how
broad the change can be in the organization. Specifically, the nature of the
change touches many different parts of the organization that needs a broad
synergy to make progress.

There is further need for future research to specify the scope of
the investigated change. We distinguish decomposition of services into
developing a shell API (similar to existing patterns [13,15]), designing service
cuts (relating to services designs [34,62]) and continuously re-extracting services
(relating to designing MSAs [18]). The developed process frames them into the
appropriate scope to investigate such topics in different stages of the migration.
Current research touches upon designing MSAs, and this work combines parts
of this knowledge in the systemic journey, putting the different activities in an
accumulated perspective. In this accumulation, researchers and practitioners
can obtain perspective about the proportion of these (seemingly important)
activities in the overall migration and investigate the design decisions that take
place. Related literature does not specify the scope of the investigated change
in relation to the overall change that takes place and the theories developed in
this thesis enables this.

1.5.6 Future work

This work paves the way towards understanding microservices migrations and
their underlying decisions. The insights generated for migrating MSAs can

30 CHAPTER 1. INTRODUCTION

be transferred also to other types of software architecture migrations. For
example, to software-based systems that start as ad-hoc solutions and grow in
scale. Such systems eventually need a rigid software architecture to support
them and thus they are transitioned to new structures. Consequently, future
work includes the investigation of other types of software architecture change
due to scaling requirements. Specifically, we can study further the process
of transitioning other cutting edge technologies into scalable architectures.
For example, investigating how the wave of AI applications is integrated and
deployed to existing systems that operate on a large scale. In addition, next
steps include to investigate further the evolution of specific elements of the
software architecture. For example, in future work it is intended to investigate
how data handling, logging and monitoring changes in MSAs.

Moreover, in the future there is a need to investigate in more detail decision-
making in designs for migrations and/or microservices architecture. While the
purpose of this work is to understand empirically the “as is” process, the results
could be seen as a first step towards providing decision support for software
architecture migrations, as done in other areas for software engineering (e.g.,
requirements engineering, COTS selection). For example, a migration towards
microservices can have many benefits to different stakeholders and future work
can aim to comprehensively present the value delivered to the organization
through all stakeholders.

Finally, more investigation is needed on the decision-making processes and
the approaches to resonate about alternative choices. Hence, the focus of future
work needs to not only provide knowledge about the outcome of decisions, but
also on identifying the reasoning behind those decisions. Future research can
also target the evaluation of such detailed decision-making processes. This
indicate towards further work that is needed on individual decision-making
and judgement.

1.6 Conclusion

As software systems grow large, both in size and complexity, it becomes difficult
to maintain and update them. Implementing a MSA is becoming popular in
different sectors for modernizing large or growing software systems. Existing
literature reports well the value to move towards microservices [6], but the
process to achieving a migration towards a MSA is not well known. Migrating
towards microservices and changing the software architecture is a highly complex
task that takes time [14,15]. Specifically, it is not always clear how aspects of
migrations connect to each other and how migration activities take place in
relation to one another [16]. However, such migration projects entail an inherent
complexity due to the different dimensions that the change takes place in, as
well as the distributed nature of microservices. In addition, migrations to MSAs
are often investigated with a focus on the technical change. The human-aspects
that are in interplay with MSAs require further investigation, as in other
sub-domains in software engineering [47–49]. The seven contributions of this
thesis cover the basic aspects of a socio-technical perspective to change, using

1.6. CONCLUSION 31

concepts from established literature on socio-technical systems engineering [20].
This thesis sees migrations in the light of multiple dimensions (business,

technical, organizational), on multiple levels of abstraction (architecture and
system) and in multiple modes of change (technical and systemic migrations).
The results can help in understanding microservices migrations and carrying
this understanding over to future migration attempts. Migrations of software
systems and technologies (e.g., towards microservices) happen on a multitude
of dimensions, due to the inherent complexity and the socio-technical nature of
organizations. Microservices migrations have a technical side that is extensively
investigated. However, there is also an organizational side that is very important,
especially since change across multiple parts of the organization is involved. The
organizational side can involve structural aspects, responsibilities or engineers
as well as operational/process aspects. Importantly, migrations also have a
business and domain-specific side that needs to be considered. Since many
critical decisions are taken in the business side, considering human factors is
also of great importance.

This thesis also has a strong focus on the human aspect of a migration,
through the engineers’ concerns, skills and their tasks, being a part of the
migration. Specifically, we investigate how software engineers and companies
go through a migration towards microservice-based-architecture. We obtain
an understanding on the different dynamics involved in their transformation.
Finally, both the journey and the decisions identified can help software devel-
opment organizations and engineering teams to anticipate what is up-coming
in their migrations. To achieve this goal, the empirical research conducted
attempts to derive inductively from engineers’ experiences the details of soft-
ware architecture migrations towards microservices. Additionally, techniques
from GT are applied to gather and analyze textual information that engineers
share in Q&A websites and specifically, in StackOverflow. Furthermore, a large
scale analysis is conducted on profiles of engineers and their associated tags
in StackOverflow. Finally, testing artifacrts of microservices repositories are
analyzed, as well as job-ads that target microservices practitioners.

The contribution of this thesis is threefold. Firstly, the thesis charts
how decision-making takes place in migrations towards microservices, via
a comprehensive decision-making process. Secondly, the overall journey of
migrating a software architecture towards microservices is derived, including
two modes of change that have several phases, activities and solution outcomes,
as well as how testing changes in MSAs. Thirdly, this thesis investigates the
organizational aspect of software development and sheds light on the roles,
responsibilities, and skills of microservices practitioners.

32 CHAPTER 1. INTRODUCTION

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Theoretical Framework & Related Work
	Benefits of Microservices
	Microservices Migrations
	Human Aspects in Software Architecture
	Summary of Research Gap

	Research Scope
	Research Objectives
	Research Questions

	Research Methodologies
	Interviews
	Survey
	StackOverflow Discussions
	Mining StackOverflow Tags of User Profiles
	Analyzing Open Source Microservices Systems
	Mining Job Openings
	Threats to Validity

	Contributions
	Contribution 1: Decision-Making Process
	Contribution 2: Migration Journey towards Microservices
	Contribution 3: The Constituent Elements of Migrations' Journey
	Contribution 4: Perceptions of the Impact and Sequence of Activities in Microservices Migrations
	Contribution 5: Empirical Analysis of Testing in MSAs
	Contribution 6: The Roles and Technical Competences in MSAs
	Contribution 7: The Responsibilities, Soft-skills, and Hard-skills of Microservices Practitioners
	Addressing the Research Objectives and Questions

	Discussion
	The Socio-Technical Perspective in MSAs
	Software Architecture Perspective
	Breaking Down the Complexity of MSA Migrations
	Decision-Making in MSA Migrations
	Implications on Software Engineering Teams that Migrate to Microservices.
	Future work

	Conclusion

	Paper A
	Introduction
	Related Work
	Methodology
	Interviews analysis
	Threats to Validity

	Results
	Decisions on Creating Engagement
	Technical Feasibility and Exploration of Opportunities.
	Constructing the migration's business case.

	Decisions on the Technical Dimension
	Decisions on the Organizational Dimension

	Discussion
	Conclusion

	Paper B
	Introduction
	Related Work
	Methodology
	Participants
	Protocol
	Analysis

	Results
	Architectural-level migration journey
	System-level migration journey

	Discussion
	Changing modes and the reoccurring phases of migrations
	Implications for engineering teams
	Threats to Validity

	Conclusion

	Paper C
	Introduction
	Related Work
	Benefits of Microservices
	Migrating Towards Microservices
	Architectural Migration
	Tools and Technology

	Methodology
	Interviews
	Participants
	Protocol
	Analysis

	Posts from StackOverflow
	Data gathering
	Data Pre-Processing and Analysis
	Resulting changes to initial theory

	Results
	Overview of Migration Journey
	Systemic migration
	Clarify the migration drivers
	Define the criteria for decomposition
	Build a shell API
	Design a service cut
	Setup continuous extraction
	Setup independent deployment and integration

	Technical migration
	Understand and analyze system
	Prepare the backend for decomposition
	Split the data and Data migration
	Decompose the frontend
	Set up DevOps capabilities
	Configure communication and orchestration capabilities
	Setup monitoring, logging and authentication mechanisms
	Handle reused artifacts

	Discussion
	Theoretical relevance and future work
	Systemic migration
	Technical migration

	Modes of change and the reoccurring phases of migrations
	Implications for engineering teams
	Answering the Research Questions

	Threats to validity
	Conclusion

	Paper D
	Introduction
	Related Work
	Methodology
	Threats to Validity

	Results
	Sequence of migration activities
	Perceived impact of Microservices-based Architecture

	Discussion
	Theoretical relevance of findings
	Practical relevance of findings
	Future work

	Conclusion

	Paper E
	Introduction
	Related Work
	Research Methodology
	Data Source and Data Collection
	Pre-processing and Cleaning the Data
	Data Analysis
	Extracting Metadata and Test-related Files
	Categorizing and Aggregating Tests

	Results
	RQ1: Testing Architecture of Microservices-based Systems
	Unit Test
	Integration Test Based on CDC
	Component Test
	System Test

	RQ2: Alignment With Guidelines and Best Practices
	Project P1
	Project P2
	Project P3
	Project P4

	Discussion
	Threats to Validity

	Conclusions

	Paper F
	Introduction
	Background and Related Work
	Microservices Based Architectures
	Designing and developing microservices-based software
	Understanding the profiles and evolution of software engineers
	Understanding the profiles and evolution of microservices practitioners

	Methodology
	Data Gathering
	Data Processing
	Data Analysis

	Results
	RQ1: Technical competences clusters
	Web Technologies competences collection
	DevOps competences clusters
	Data Technologies competences clusters
	Stand-alone competences clusters

	RQ2: Technical Competences in practitioners profiles
	Association score distribution
	Profiles associating with only one collection of competences
	Relationships between collections of competences

	RQ3: Roles of engineers in developing MSAs
	Web-based software engineers
	DevOps engineers
	Data engineers
	Practitioners that specialize in their primary collection of competences

	RQ4: Characteristics of roles in MSA
	Characteristics of Web-based software engineers
	Characteristics of DevOps engineers
	Characteristics of Data engineers

	Discussion
	Implications for practice and research

	Threats to validity
	Conclusion

	Paper G
	Introduction
	Related work
	Microservices-based Architectures
	Human-centric challenges in adopting microservices
	Analyzing skills in Software Engineering sub-domains

	Methodology
	Data gathering
	Data Sampling
	Data Analysis
	Threats to validity
	External validity
	Internal validity

	Results
	The roles and responsibilities of microservices practitioners (RQ1)
	The soft skills of microservices practitioners (RQ2)
	The hard skills of microservices practitioners (RQ3)

	Discussion
	Future work

	Conclusion

	Bibliography

