
Deployment of Machine Learning Algorithms on Resource-Constrained
Hardware Platforms for Prosthetics

Downloaded from: https://research.chalmers.se, 2025-07-02 12:54 UTC

Citation for the original published paper (version of record):
Just, F., Ghinami, C., Zbinden, J. et al (2024). Deployment of Machine Learning Algorithms on
Resource-Constrained Hardware Platforms for
Prosthetics. IEEE Access, 12: 40439-40449. http://dx.doi.org/10.1109/ACCESS.2024.3371251

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



Received 4 December 2023, accepted 15 January 2024, date of publication 27 February 2024, date of current version 21 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3371251

Deployment of Machine Learning Algorithms on
Resource-Constrained Hardware Platforms
for Prosthetics
FABIAN JUST 1,2, (Member, IEEE), CHIARA GHINAMI1,
JAN ZBINDEN 1,2, (Graduate Student Member, IEEE),
AND MAX ORTIZ-CATALAN 1,3,4,5, (Senior Member, IEEE)
1Center for Bionics and Pain Research, 431 30 Mölndal, Sweden
2Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
3Bionics Institute, Melbourne, VIC 3002, Australia
4Medical Bionics Department, The University of Melbourne, Melbourne, VIC 3010, Australia
5Prometei Pain Rehabilitation Center, 21018 Vinnytsia, Ukraine

Corresponding author: Max Ortiz-Catalan (maxortizc@outlook.com)

The work of Fabian Just, Jan Zbinden, and Max Ortiz-Catalan was supported in part by the Promobilia Foundation; and in part by the
IngaBritt and Arne Lundbergs Foundation.

ABSTRACT Motion intent recognition for controlling prosthetic systems has long relied on machine learn-
ing algorithms. Artificial neural networks have shown great promise for solving such nonlinear classification
tasks, making them a viable method for this purpose. To bring these advanced methods and algorithms
beyond the confines of the laboratory and into the daily lives of prosthetic users, self-contained embedded
systems are essential. However, embedded systems face constraints in size, computational power, memory
footprint, and power consumption, as they must be non-intrusive and discreetly integrated into commercial
prosthetic components. One promising approach to tackle these challenges is to use network quantization,
which allows complying with limitations without significant loss in accuracy. Here, we compare network
quantization performance for self-contained systems using TensorFlow Lite and the recently developed
QKeras platform. Due to internal libraries, the use of TensorFlow Lite led to a 8 times higher flash
memory usage than that of the unquantized reference network, disadvantageous for self-contained prosthetic
systems. In response, we offer open-source code solutions that leverage the QKeras platform, effectively
reducing flash memory requirements by 24 times compared to Tensorflow Lite. Additionally, we conducted
a comprehensive comparison of state-of-the-art microcontrollers. Our results reveal that the adoption of new
architectures offers substantial reductions in inference time and power consumption. These improvements
pave the way for real-time decoding of motor intent using more advanced machine learning algorithms for
daily life usage, possibly enabling more reliable and precise control for prosthetic users.

INDEX TERMS Motion intent recognition, machine learning, neural networks, quantization, prosthetics,
classification, embedded systems, real-time, QKeras, TensorFlow.

I. INTRODUCTION
Laboratory experiments have shown promising strategies to
decode human motor intent to control bionic limbs [1], [2],
[3], [4], [5], [6]. Mostly, electromyography (EMG) record-
ings are used to relate the activity of muscles remnant from

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia .

amputation to a desired prosthesis joint actuation. Recent
improvements in computational hardware, especially the
computational power-to-size ratio, allowed for the acquisition
and processing of EMG signals to be made more portable
and reliable. This led several prosthetic control studies to be
carried out outside lab settings, as well as many commer-
cial applications like commercial prosthetics using advanced
myoelectric algorithms [7]. For computational hardware in

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 40439

https://orcid.org/0000-0002-9580-8189
https://orcid.org/0000-0001-9535-3746
https://orcid.org/0000-0002-6084-3865
https://orcid.org/0000-0002-3195-3168


F. Just et al.: Deployment of Machine Learning Algorithms

prosthetics, microcontrollers (MCU) are commonly favored
over other embedded systems like Field Programmable Gate
Arrays (FPGAs) or Application-Specific Integrated Circuits
(ASICs) as the go-to platform because they are less com-
plex to program and often feature extensive library and tool
support [8], [9], [10]. Previously, standard machine learning
algorithms like support vector machine (SVM) and linear
discriminant analysis (LDA) were used on the computational
hardware to decode motion intent [1]. Due to the availability
of bigger motion intent data sets and the need for higher
performance, the field shifted towards neural networks (NN),
especially deep neural networks [2]. Deep learning tech-
niques like deep neural networks enable more complex and
more accurate motion intent recognition [11].
However, the current state-of-the-art neural networks

imposes significant demands on memory, computation, and
energy [12], [13]. This presents a challenge for portable, self-
contained systems that operate all day with limited resources,
relying solely on low-power MCUs. To address this issue
and accommodate the limited computing capability and stor-
age capacity of MCU-class devices, recent advancements in
deep learning training methodologies have introduced novel
quantization methods. These methods aim to compress the
network’s weights or activations into 8-bit or smaller data
types while incurring minimal or even negligible accuracy
loss [14], [15], [16], [17]. By employing these quantiza-
tion techniques, known as network quantization, the memory
requirements of the models are significantly reduced com-
pared to their full precision counterparts.

Consequently, both industry and academia have been
actively engaged in developing hardware and software plat-
forms dedicated to the efficient execution of quantized neural
networks (QNNs) on MCU-class devices. This concerted
effort is driven by the recognition that QNNs offer a viable
solution to enable the deployment of neural networks on
resource-constrained systems, where memory, computation,
and energy efficiency are paramount considerations. One
of the most used platform for training and quantization is
TensorFlow Lite [18].

This paper compares the advantages of quantization faced
by self-contained systems when utilizing the TensorFlow
Lite and Qkeras platform. The latter was made possible
thanks to the proposed innovative deployment workflow tar-
geting the newly released QKeras platform. We present a
comprehensive QNN comparison tailored to Cortex-M-based
microcontrollers and benchmark microcontrollers featuring
DSP functionalities. The aim is to enhance the performance of
self-contained embedded systems and simultaneously reduc-
ing flash memory footprint. As the results, we present the
following key contributions in this paper:
1. We compared the quantization and deployment strategie

for Cortex-M-based microcontrollers in TensorFlow Lite
and QKeras. For the hardware targets, we measured infer-
ence time, energy consumption, and memory footprint.

2. We benchmarked different MCUs and compared the infer-
ence time of different data types

3. We show the potential of the newly released ARM
Cortex-M55 processor with and without ARM Helium
Vector Extension (VE)1 for the computing load, in terms
of inference time and memory footprint.

4. We provide open-source scripts2 to facilitate the integra-
tion of our findings and to increase the usability of the
novel QKeras platform with the CMSIS library (Common
Microcontroller Software Interface Standard) [19].

II. RELATED WORK
Various research efforts have targeted machine learning and
deep learning on resource-constrained devices and are pre-
sented in this section. Existing research can be grouped into
embedded hardware for motion intent and network quantiza-
tion methods.

A. EMBEDDED HARDWARE FOR MOTION INTENT
RECOGNITION (DEEP LEARNING)
While the field of deep learning has been growing in terms
of performance, network size, and training run time, the
development of embedded hardware to process deep learning
algorithms is struggling to keep up [20], [21]. As the demand
for higher performance grows, researchers are exploring and
investigating various options for implementation, including
field-programmable gate array (FPGA) devices on systems-
on-chip (SoCs) [22], [23], [24], [25], graphics processing
units (GPUs) [26], [27], [28], and neuromorphic chips and
processors [29], [30], [31].

However, when considering prosthetic devices that operate
on batteries, the power envelope becomes a crucial constraint.
FPGA SoCs and GPUs often exceed this power limitation,
making them less feasible for such applications. On the
one hand, neuromorphic technology offers the promise of
exceptionally low power consumption, but several challenges
still impede its rapid growth and widespread usage [32].
On the other hand, resource-constrained microcontrollers
(MCUs) offer software programmability, affordability, and
low power consumption. These unique attributesmakeMCUs
well-suited for the development of portable prosthetic sys-
tems that are designed for all-day use [33]. Table 1 showcases
numerous scientific papers that have utilizedMCUs for EMG
motion intent recognition.

The Cortex-M4 is the currently most used CPU in the field
(see Table 1). In [34], a Raspberry Pi board is used to process
the radial basis function (RBF) neural network classification
algorithm. Both [35] and [38] have the highest time values,
since they only reported their completion time including the
finished movement of the prosthetic system (see Table 1).
Our research gorup uses the Artificial LimbController (ALC)
embedded system [36]. The system draws different currents
depending on the operation mode, from idling (275 mW) to
streaming data (495 mW) [36].

1https://www.arm.com/technologies/helium
2https://github.com/fabianjust/QNN-MCU

40440 VOLUME 12, 2024



F. Just et al.: Deployment of Machine Learning Algorithms

FIGURE 1. Design loop for development, optimization, deployment, and evaluation of neural networks for embedded microcontroller (MCU) use.

TABLE 1. MCU performance: Technical overview of EMG motion intent
recognition systems. CT (completion time) includes the movement time of
the prosthetic system.

B. NETWORK QUANTIZATION
With the success of deep neural networks and their ever-
increasing sizes, the quantization of neural networks has
emerged as a fundamental technique to reduce model size
and memory footprints. Remarkable progress in this area has
led to quantized neural networks achieving similar levels of
accuracy as their full-precision counterparts [14], [15], [17].
In neural network quantization, three key components can
be targeted: weights, activations, and gradients [40]. In this
study, our focus is on quantizing weights and activations.

While various approaches have explored 4-bit [41], [42],
binary [43], [44], [45], [46], [47], and adaptive [48], [49]
quantization, our work centers on 8-bit quantization, which
is widely supported by most microcontrollers (MCUs). The
quantization of parameters offers the following advantages:
1. Smaller Model footprint: With 8-bit quantization, we can

reduce the model size by a factor of 4 (assuming an ini-
tial 32-bit model representation), with negligible accuracy
loss.

2. Less working memory and cache for activations: Interme-
diate computations are typically stored in a cache for reuse
by later layers of a deep network. Reducing the precision
at which this data is stored leads to less working memory
needed [41].

3. Faster computation: Most processors allow for faster pro-
cessing of 8-bit data compared to 32-bit data.

The parameters quantization can either be performed by
retraining the neural network model, a process that is called
Quantization-Aware Training [50], [51], or done without
re-training, a process that is often referred to as Post-Training
Quantization [42], [52], [53]. In this work, we use the

Quantization-Aware Training [40], [54] since it has proven
to achieve higher accuracy value [41].

III. METHOD
A. FRAMEWORKS
We tested and compared the newly released QKeras frame-
work [55] with the widely used TensorFlow Lite.
TensorFlow Lite is an open-source framework to enable

machine learning models on embedded systems. TensorFlow
Lite was designed to provide a unified ML framework,
addressing the multitude of embedded platforms and hard-
ware support [10]. Therefore, the TensorFlow library can
run with or without CMSIS support, so it is hardware
independent.

QKeras is a quantization extension to Keras. It allows
the developer to choose the quantizer and the quantizer’s
parameters for each network layer leading to a customized
deep quantized version of the Keras network [55], [56]. In our
study, the QKeras implementation always uses the CMSIS
support due to our developed support scripts.

B. TOOLCHAIN
As depicted in Fig.1, the initial phase involves the model
design by selecting the network type and structure for testing
purposes.

Subsequently, the model undergoes training and analysis
(referred to as model training and analysis) to assess the
baseline performancemetrics, namely accuracy and byte size.
At this stage, it is possible to examine the complexity of the
model by considering the fixed number of parameters and
estimated operations. The subsequent step entails optimizing
the model to achieve reduced memory usage and reduced
inference time (known as model optimization). By this point
in the development, the model has been quantized. It is
important to consider the hardware architecture of the target
device during the quantization process. For instance, current
MCU architectures cannot effectively utilize sub-int8 quan-
tization. It should be noted that optimizations made during
this phase permanently modify the neural network and have
the potential to impact its accuracy. Hence, by conducting
on-host evaluation, we can promptly evaluate the perfor-
mance of the quantized model. Once the model is optimized,
it’s ready to be deployed on the MCU. The implementation
on the MCU makes use of the CMSIS-NN library. This
library, comprising optimized kernels, is an open-source solu-
tion designed to optimize the performance and minimize

VOLUME 12, 2024 40441



F. Just et al.: Deployment of Machine Learning Algorithms

TABLE 2. 3 layer (1 hidden layer) neural network architecture used for
this study.

the memory usage of neural network applications on Arm
Cortex-M processors [13]. These optimized kernels do not
change the numerical representation itself but increase the
execution efficiency by leveraging target-specific features
like single instruction, multiple data units (SMID).

The concluding steps involve testing the deployed model
and evaluating its performance. Although the NN deployment
does not modify the NN itself, the accuracy on the MCU can
be altered by different underlying computations, potentially
leading to varied classifications [13]. For this reason, it must
be verified that the inference on the target hardware is iden-
tical to the inference on the host system (target evaluation,
see Fig. 1). Furthermore, the inference time and the energy
consumption are measured as part of the evaluation process.
The tests were conducted on two distinct MCUs, employing
different data types, and comparing the two implementa-
tions of the neural network, one utilizing TFLite on top of
CMSIS-NN and the other without it (QKeras). Subsequently,
the iterative development cycle recommences.

C. NETWORK AND EMG DATASET
A representative EMG dataset for motion intent with hand
gestures in float32 data format was used for this study [57].
To classify motion intent for prosthetics, a simple feed-
forward neural network (FFNN) with one hidden layer was
chosen. This choice is substantiated by several surveys [58],
[59] that highlight the widespread use of this model for
motion intent recognition. The dataset used is balanced, this
justifies the choice of the accuracy as ametric for theNN eval-
uation. In addition, the accuracy results as the most popular
metric according to recent surveys [58], [59]. The network
architecture is described in Table 2.

D. EXPERIMENT DESIGN
The experimental design workflow is depicted in Fig. 2. The
comparison involves quantizing the float32 neural network to
integer (int) types using one-time TensorFlow Lite and one-
time QKeras.

As shown in Fig. 2, both experiment workflows initially
utilize the Keras and QKeras tool for Quantization-Aware
Training. In the first experiment, the trained Keras model is
then converted into a TFLite model. This conversion pro-
cess involves quantizing the model with int8 weights and
uint8 activations, while keeping biases as int32 data type
(mixed quantization). In TFLite, the neural network topology
is deployed as microcode, which is interpreted at runtime
rather than statically compiled. This process hinders compiler

FIGURE 2. Experiment design using the Tensorflow Lite and QKeras
platform for quantization of neural networks. Evaluation of the
quantization performance is done on three MCU boards representing the
neural interface market with usage of the CMSIS library.

optimizations and leads to increased memory usage [60].
TFLite can run with or without usage of the CMSIS-NN
library.

For the QKeras experiment workflow, we conducted tests
using QKeras for two homogeneous quantization methods:
int8 (q7) and int16 (q15). Following Quantization-Aware
Training, we manipulate the extracted parameters before
being used as input for the CMSIS-NN functions. The manip-
ulation is needed since the tensor layout differs between
the machine learning framework and the CMSIS-NN library.
The network parameters that the QKeras quantization pro-
duces are not integers, which is the format used by CMSIS.
Therefore, bias and weight need to be converted to integers.
Additionally, the layout of tensors follows a different conven-
tion in the QKeras compared to CMSIS-NN, so a reshape of
the NN parameters was necessary before using them.

Importantly, only the parameter values and the CMSIS
library significantly contribute to the flash memory foot-
print on the target hardware using QKeras compared to
TFLite, which by itself occupies a significant part of the flash
memory.

We tested the same implementation on three different hard-
ware targets:

1. The TM4C123GHPM, from Texas Instrument, based on
the Arm Cortex-M4 32-bit RISC core operating at up to
80 MHz used in the ALC developed by our group.

2. The STM32H7A3ZI from STMicroelectronics, based on
the high-performance Arm Cortex-M7 32-bit RISC core
operating at up to 280 MHz.

3. Corstone-300 (SSE-300) leverages Cortex-M55, Arm’s
most AI-capable Cortex-M processor and the first to fea-
ture Arm Helium vector processing technology. We tested
the performance using a virtual hardware target since it is
not released yet.

E. EXPERIMENT HARDWARE SETUP
Hardware tests were performed using the Keil MDK tool,
which comprises an Integrated Development Environment
called µ Vision specifically designed for Cortex-M devices,
along with the ARM compiler. The tests were conducted
with an operating frequency of 80 MHz. For each measure-
ment, both the model and parameters were stored in the flash

40442 VOLUME 12, 2024



F. Just et al.: Deployment of Machine Learning Algorithms

memory, and the armclang compiler was used. Due to limited
flash memory on TM4 using TensorFlow the Oz compiler
optimization had to be used. All other measurements were
carried out with the O2 compiler optimization.

Energy measurements were conducted using the ARM
ULINKplus debugger. This debugger serves as a debug
adapter that connects the PC’s USB port to the target system
through JTAG. It facilitates debugging, tracing, analysis, and
the measurement of program consumption on the target hard-
ware. Energymeasurements were not done with the SSE-300,
since it is only simulated and not released as hardware.

F. PRIMARY OUTCOME MEASURES
The three primary outcome measures of the study are infer-
ence time, flash memory footprint, and energy per inference,
which are measured using Keil and Python.
Inference time: Inference time is defined as the duration

required to execute a single motion intent classification on
the trained neural network.
Flash memory footprint: The flash memory footprint is

determined by the total memory required for the neural net-
work code, library size, and initial parameters necessary for
executing the motion intent classification.
Energy per inference: The energy per inference is calcu-

lated by multiplying the current consumed during classifi-
cation by the 3.3V supply voltage over the inference time.
Therefore,

Energy per inference =

inference
time∫

0

3.3V · current dt

G. SECONDARY OUTCOME MEASURES
Accuracy loss and MCU accuracy loss: The MCU accuracy
loss value is calculated by comparing the accuracy of the
on-host QNN to the MCU accuracy of the deployed QNN.

IV. RESULTS
A. NETWORK SIZE REDUCTION
With TFLite, 65% on-host network size reduction is obtained
(see Table 3). With QKeras, a network size reduction of
50% and 73% is achieved through int16 and int8 quantiza-
tion strategies, respectively. The QNN, when deployed using
CMSIS-NN, displays a decreased accuracy of less than 1%
for all implementations (‘‘Acc. loss’’ column in Table 3).
The accuracy drop after the deployment in QKeras is slightly
higher compared to when TFLite is used.

B. INFERENCE TIME
Using the CMSIS library in TensorFlow Lite results in
a threefold inference time improvement compared to the
hardware-independent solution with absence of CMSIS (see
Table 4 and Fig. 3). Furthermore, when comparing all these
results to our start scenario without quantization (none-
float32), all configurations utilizing the CMSIS library

TABLE 3. Memory footprint and accuracy loss of the network due to
quantization with TensorFlow Lite (mixed quantization) or QKeras
(q7,q15) Number of multiply-accumulates MACs = 9728 and
parameters=9928.

TABLE 4. Inference time [µs] of the neural network on TM4, STM32, and
SSE-300 Chips with various quantizations and CMSIS library usage. The
O2 optimization was employed to accommodate limited flash memory of
the MCU. SSE-300 was tested with and without Helium usage.

demonstrated a minimum doubling of the speed and, in some
cases, achieved up to three times faster inference time.

The new and, therefore, simulated Cortex-M55 proces-
sor (SSE-300) exhibits an inference time improvement of
approximately 2 to 3 times when operated with helium.
In general, SSE-300 with helium is double as fast as the
STM32 and 4 times faster than the TM4.

C. MEMORY FOOTPRINT
TFLite exhibits a substantial increase in flash memory con-
sumption independent of the usage of the CMSIS library,
as shown in Table 5 and Fig. 4. TFLite requires up to 24 times
more flash memory compared to the QKeras implementation.
The SSE-300 shows a 3% to 16% lower flash memory foot-
print than the TM4 or STM32 chip and the use of helium
reduces the SSE-300 footprint by 4% up to 9%.

D. POWER CONSUMPTION
The TM4 chip exhibits a current consumption that is up
to 106% higher than the STM32 chip, as depicted in
Table 6. The q15 quantization of the neural network on
both chips consumes the highest amount of current. In con-
trast, the unquantized float32 implementation consumes
approximately 3% to 6% less current than the q15 implemen-
tation. The q7 implementation demonstrates the lowest power

VOLUME 12, 2024 40443



F. Just et al.: Deployment of Machine Learning Algorithms

FIGURE 3. Inference time for the quantized networks in QKeras or TFlite
on a STM32 chip with and without CMSIS library.

TABLE 5. Flash memory footprint [kB] of the neural network on TM4,
STM32, and SSE-300 chips with various quantizations and CMSIS library
usage. O2 optimization employed to accommodate limited flash memory
of the MCU.

consumption, consuming 14% to 17% less current compared
to q15.

The energy consumption per inference can be reduced
by implementing quantization on the TM4 chip, achieving
a reduction of 60%, and on the STM32 chip, achieving a
reduction of 64% (see Fig. 5). Moreover, upgrading the chip
architecture without applying quantization techniques leads
to a noticeable reduction in the energy per inference, ranging
from 71% to 73% (see Fig. 5). Notably, the combined utiliza-
tion of quantization and chip upgrades in this case can yield
an energy reduction of up to 90% per inference.

V. DISCUSSION
A. NETWORK SIZE REDUCTION
The quantization methods demonstrate an accuracy loss and
MCU accuracy loss of less than 1% while achieving a signif-
icant network size reduction of 50-74% for each approach.
This highlights the advantage of quantization in embed-
ded neural networks on resource-constrained systems, where
notable memory savings can be achieved without sacrific-
ing performance. Specifically, the observed accuracy drop is
more pronounced in QKeras compared to TFLite due to the
manipulation and conversion of parameters to integers [13],

FIGURE 4. Flash memory footprint [kB] for the quantized neural networks
with QKeras and TFLite on a STM32 chip with and without usage of the
CMSIS library (only TFLite).

TABLE 6. Current consumption running the neural network on the TM4
and STM32 chips [mA].

[61]. A shown reduction of the deployed accuracy is not a
feature of CMSIS-NN, but a random effect due to specific
kernel implementations and a consequence of the different
underlying computations [13], [61].

B. INFERENCE TIME
The considerable reductions in inference time, by a factor of
2 to 3, directly result from the quantization of the neural net-
work. TFLite leverages the CMSIS-NN library and exploits
the hardware optimizations provided by CMSIS functions.
Alternatively, it can operate independently of specific hard-
ware but with a higher inference time, even surpassing that
of the unquantized network. In the Cortex-M4 (TM4) and
Cortex-M7-based microcontroller (STM32), the q15 infer-
ence time is up to 7% faster than the q7 inference time. This
is due to the limitation of the microcontroller, as it can only
perform dual 16-bit multiply-accumulates and cannot paral-
lelize quad 8-bit signed multiply-accumulates. Consequently,
the q7 inference implementation requires the expansion of
q7 vectors into q15 vectors, making it slower than the q15
implementation.

C. MEMORY FOOTPRINT
The significant memory footprint of TensorFlow, which
is 7 times higher than the unquantized network condition
float32, predominantly stems from the TensorFlow library
itself, as evidenced by the neural network model occupying
only 13 KB (see Fig. 3). Flash memory consumption can
be reduced by removing unused operations from the library

40444 VOLUME 12, 2024



F. Just et al.: Deployment of Machine Learning Algorithms

FIGURE 5. Quantization and chip benefit effects on the primary outcome
measure energy per inference of float32 to q7 and q15 for the TM4 and
STM32 chip.

and incorporating only the operations required by the cur-
rent model. Notably, the utilization of QKeras together with
our support for the CMSIS library results in a remarkable
reduction in memory footprint. Thus, when memory foot-
print is a critical factor for the system, QKeras emerges as
the preferred software solution. For the SSE-300 chip with
and without helium, low-overhead branch instructions are
available leading to much lower memory consumption than
the STM32 and TM4 MCUs (see Table 5), improving even
more the reduction of flash memory for resource-constrained
embedded systems [62].

D. POWER CONSUMPTION
The q15 quantization leverages the SIMD architecture, SIMD
instructions are likely to consume more power compared to
the f32 scalar code. Since the 16-bit operations are more
efficient, we can see these advantages in Fig.5. With the int8
data type, operations are still performed with 32-bit registers,
but half of the register is unused since int8 data are half the
int16 size. In this case, the switching activity of the transistors
involved in the operations is lower, which leads to lower
power consumption.

In the context of prosthetics, minimizing power con-
sumption in self-contained prostheses is crucial to ensure
functionality and independence in everyday life. This sig-
nificance arises from the fact that active prosthetic users
typically engage with their prostheses for an average of
11 hours daily, with merely 7 minutes dedicated to actual
handmovement [63]. Even with periods of heightened energy
consumption during active usage, the prosthetic system
idles for a staggering 99% of the usage time, revealing an
immense potential for power consumption savings. There-
fore, by reducing the general power consumption through
chip upgrades and network quantization (Fig. 5), substantial
improvements in battery life can be achieved. Even more
power consumption reductions can be achieved by incorpo-
rating the sleep mode of chips in the code.

TABLE 7. 3 layer (1 hidden layer) neural network architecture used for
this study.

E. GENERAL DISCUSSION
Quantization of neural networks plays a vital role in enabling
resource-constrained embedded systems to effectively deploy
larger networks with increased depth, thereby maximizing
real-time classification accuracy. In scenarios where flash
memory is limited, the QKeras platform emerges as the
optimal software choice for network quantization. Therefore,
detailed guidelines and scripts are provided in the supple-
mentary material to facilitate the utilization of QKeras for
feedforward neural networks.

The newly released Cortex-M55 processor proved to have
the best flash memory footprint values in the simulation, due
to efficiently exploiting the capabilities of int8 data type, and
effectively handling ML workloads, due to the Helium vector
extension. However,M55’s performance should be also tested
on board in hardware as soon it is available for purchase to
have a correct comparison to the other MCU performances.

While this study focuses primarily on the quantization
method for network compression, it is important to note
that other compression techniques, such as pruning, are
commonly employed. Future research should explore the
effectiveness of these compression methods, which have
shown promise and are now supported by both TensorFlow
and QKeras frameworks.

VI. CONCLUSION
Quantization of neural networks with TensorFlow Lite leads
to a massive increase in flash memory consumption. This
poses a notable limitation for resource-constrained platforms,
such as prosthetics designed for all-day wearability. QKeras
with our CMSIS-NN support stands out by exclusively
utilizing CMSIS-NN functions for quantization, therefore,
delivering superior performance as TensorFlow Lite usable
for resource-constrained platforms.

For the prosthetics community, we have provided
open-source scripts and explanations to support the integra-
tion of QKeras and facilitate further development.3

APPENDIX A
Our integration begins with the definition and training of a
neural network via QKeras.

The first step entails establishing the network’s architecture
and configuring the desired quantization. Representatively as
in the paper, we use a three-layer feed-forward network as an
example (see Table 7).

Notably, QKeras inherently facilitates network quanti-
zation, and we elaborate on the process of reducing the

3https://github.com/fabianjust/QNN-MCU

VOLUME 12, 2024 40445



F. Just et al.: Deployment of Machine Learning Algorithms

LISTING 1.

network parameters down to the 8-bit precision. In Listing 1,
we reported the function that defines the NN model. For
sake of conciseness, we only reported the first NN layer.
The parameter nbits corresponds to the bitwidth, defining
the precision of the quantization. Additionally, within the
function quantized_bits() the secondary parameter represents
the number of bits allocated for the integer segment of the
quantified value. For this instance, we selected 1 bit for the
integer component, although alternative selections are viable.
It should be noted that the integer bit excludes the sign bit (1).
The count of unsigned bits equals the total quantized number
of bits minus the signed bit.

unsignedbit = nbits −signe dbit = 8 − 1 (1)

Furthermore, the fractional part of the fixed-point number
equals the unsigned bits minus the integer bits.

The QKeras functions can be used in order to compile the
model, fit it, and calculate the accuracy using the test set.

As explained in the paper, our contribution consisted in
manipulating the trained weights and exporting them so that
they could be included in the MCU code. The following
step is then saving the quantized parameters in a way that
is compatible with CMSIS. In order to do that, we changed
the QKeras function model_save_quantized_weight() (see
Listing 2). Specifically, the quantizer() outputs, as it usu-
ally returns a fixed-point quantized value, while in contrast
CMSIS only works with integer quantized values. In this
appendix we’ll take the int8 quantization as a reference.
In the function save_parameters() every parameter needs to
be multiplied by an integer value mul, which in our case can
be calculated as follows:

mul =
2unsignedbit

2integer
=

27

2
= 64 (2)

As an example, let’s consider a quantization to 8 bits of a non-
negative numbers, the lowest possible numberlowest = 0. The
smallest fixed-point number is numberfixedpoint = 1

/
28

=

1
/
256 = 0.00390625. As we cannot work with fixed-point

values when using CMSIS, we need the smallest num-
ber to be the smallest integer (aka. 1). To achieve this,
we multiply numberfixedpoint by mul, where mul equals to

2unsignedbit
/
2integer = 28. Or rewritten: numberinteger =

numberfixedpoint∗mul.
The last step to make QKeras parameters compatible with

CMSIS is to reshape the weights. The below code (Listing 3),
adapted from an example that achieves this for convolutional
layers,4 transforms the weights into a CMSIS compatible
format:

Now the parameters are ready to be used by CMSIS
functions.

We now explain the full implementation to run a quantized
network using CMSIS.

Below some additional considerations in case the provided
code is wished to be extended:
Notation: We will use the Q notation used by ARM to

represent a fixed-point number. This means that Qm.f is a
fixed-point number that has m bits in the integer part of the
value counting the sign bit, and f fractional bits.

In the CMSIS library, The data are assumed in dynamic
fixed-point format. For example, a q7_t input number can
be Q4.3, where the actual represented value is the int8 value
divided by 23, but it can be Q1.7 as well, where the actual
represented value is the int8 value divided by 27. As men-
tioned before, we’ll take the int8 configuration as a reference
example.

Let’s assume that we have the input data in the Q1.7 format
and theNN’s parameters in theQ2.6. The first fully connected
layer is taken as an example, where the output of the fully
connected layer in chosen to be in the Q2.6 format. The
definition of the ARM fully connected function is shown in
Listing4, we’ll later explain the usage of the parameters in
bold.

We specify for completeness that our parameters are in the
Q2.6 format because the value of ‘‘integer’’ in the QKeras
create_model() function was chosen to be 1, this means that
we have 2 bits in the integer part of the fixed-point number,
and one of the two is the signed bit.

The core operation of the fully connected is the matrix
multiplication between weight and input matrixes, the result
is then summed to the bias matrix (W∗I + B = OUT).

4https://developer.arm.com/documentation/102591/2208/Compare-the-
ML-framework-and-CMSIS-NN-data-layouts

40446 VOLUME 12, 2024



F. Just et al.: Deployment of Machine Learning Algorithms

LISTING 2.

LISTING 3.

LISTING 4.

In fixed-point, W∗I becomes Q2.6 ∗ Q1.7, then the result is
saved in a 32-bit accumulator, in the Q19.13 format.

The reason for this result is that in fixed-point multipli-
cation, the number of fractional bits have to be summed to
obtain the correct format. In this case, the result will have
6+7 fractional bits, and the rest of the 32-bit accumulator is
assigned to the integer part (32-13=19). This is the reason
why Q2.6 ∗ Q1.7 = Q19.13.

Before summing the bias (Q2.6) to the multiplication result
(Q19.13) these two addends need to be in the same format.

For this purpose, we have to use the bias_shift parameter
of the fully connected CMSIS function, bias_shift should be
7 since a right shift of 7 adjusts the difference between biases
and the multiplication result.

The output layer format is Q19.13 as well. Since we chose
a Q2.6 output format, a left shift of 7 is necessary for the
output. Thus, the value 7 has to be assigned to the out_shift
parameter of the fully connected CMSIS function.

These operations for the first layer become:

Q2.6 (W ) ∗Q1.7 (I) + Q2.6 ≪ 7 (B)

= Q19.13 ≫ 7(OUT)

The arm_fully_connected_q7() function doesn’t only
sum the bias to the multiplication result, it sums
NN_ROUND(out_shift) together with the bias, where
NN_ROUND(out_shift) equals 2out_shift−1. Even if the
function is meant to compensate for the error due to the n-bit
shifting of the output, it alters the bias values, and it could
introduce an error.

ACKNOWLEDGMENT
Max Ortiz-Catalan has been a consultant for an orthope-
dic implant company. Fabian Just, Chiara Ghinami, and Jan
Zbinden report no conflict of interest.
(Fabian Just and Chiara Ghinami contributed equally to

this work.)

VOLUME 12, 2024 40447



F. Just et al.: Deployment of Machine Learning Algorithms

REFERENCES
[1] M.Ortiz-Catalan, B. Håkansson, andR. Brånemark, ‘‘Real-time and simul-

taneous control of artificial limbs based on pattern recognition algorithms,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp. 756–764,
Jul. 2014, doi: 10.1109/TNSRE.2014.2305097.

[2] J. Zbinden, J. Molin, and M. Ortiz-Catalan, ‘‘Deep learning for enhanced
prosthetic control: Real-time motor intent decoding for simultaneous con-
trol of artificial limbs,’’ IEEE Trans. Neural Syst. Rehabil. Eng., doi:
10.1109/TNSRE.2024.3371896.

[3] J. Zbinden, P. Sassu, E. Mastinu, E. J. Earley, M. Munoz-Novoa,
R. Brånemark, and M. Ortiz-Catalan, ‘‘Improved control of a pros-
thetic limb by surgically creating electro-neuromuscular constructs with
implanted electrodes,’’ Sci. Translational Med., vol. 15, no. 704, Jul. 2023,
Art. no. eabq3665, doi: 10.1126/scitranslmed.abq3665.

[4] M. D. Paskett, M. R. Brinton, T. C. Hansen, J. A. George, T. S. Davis,
C. C. Duncan, and G. A. Clark, ‘‘Activities of daily living with bionic arm
improved by combination training and latching filter in prosthesis control
comparison,’’ J. Neuroeng. Rehabil., vol. 18, no. 1, pp. 1–18, Dec. 2021,
doi: 10.1186/s12984-021-00839-x.

[5] N. E. Krausz, D. Lamotte, I. Batzianoulis, L. J. Hargrove, S. Micera,
and A. Billard, ‘‘Intent prediction based on biomechanical coordination of
EMG and vision-filtered gaze for end-point control of an arm prosthesis,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 6, pp. 1471–1480,
Jun. 2020, doi: 10.1109/TNSRE.2020.2992885.

[6] N. Y. Sattar, Z. Kausar, S. A. Usama, U. Farooq, and U. S. Khan, ‘‘EMG
based control of transhumeral prosthesis using machine learning algo-
rithms,’’ Int. J. Control, Autom. Syst., vol. 19, no. 10, pp. 3522–3532,
Oct. 2021, doi: 10.1007/s12555-019-1058-5.

[7] A. M. Simon, K. L. Turner, L. A. Miller, L. J. Hargrove, and T. A. Kuiken,
‘‘Pattern recognition and direct control home use of a multi-articulating
hand prosthesis,’’ in Proc. IEEE Int. Conf. Rehabil. Robot., Jun. 2019,
pp. 386–391, doi: 10.1109/ICORR.2019.8779539.

[8] W. J. Dally, Y. Turakhia, and S. Han, ‘‘Domain-specific hardware accel-
erators,’’ Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020, doi:
10.1145/3361682.

[9] H. Han and J. Siebert, ‘‘TinyML: A systematic review and synthesis of
existing research,’’ in Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC),
Feb. 2022, pp. 269–274, doi: 10.1109/ICAIIC54071.2022.9722636.

[10] I. L. Orăşan, C. Seiculescu, and C. D. Căleanu, ‘‘A brief review of deep
neural network implementations for ARM cortex-M processor,’’ Electron-
ics, vol. 11, no. 16, p. 2545, Aug. 2022, doi: 10.3390/electronics11162545.

[11] L. Zhang, G. Liu, B. Han, Z. Wang, and T. Zhang, ‘‘SEMG based human
motion intention recognition,’’ J. Robot., vol. 2019, pp. 1–12, Aug. 2019,
doi: 10.1155/2019/3679174.

[12] E. Strubell, A. Ganesh, and A. McCallum, ‘‘Energy and policy considera-
tions for modern deep learning research,’’ in Proc. 34th AAAI Conf. Artif.
Intell., vol. 1, 2020, pp. 1393–13696, doi: 10.1609/aaai.v34i09.7123.

[13] L. Heim, A. Biri, Z. Qu, and L. Thiele, ‘‘Measuring what really matters:
Optimizing neural networks for TinyML,’’ 2021, arXiv:2104.10645.

[14] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
in Proc. Int. Conf. Learn. Represent., Feb. 2016, pp. 1–14.

[15] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713, doi:
10.1109/CVPR.2018.00286.

[16] I. Hubara, M. Courbariaux, and D. Soudry, ‘‘Quantized neural networks:
Training neural networks with low precision weights and activations,’’
J. Mach. Learn. Res., vol. 18, pp. 1–30, Jan. 2018.

[17] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, ‘‘Fixed point quantization
of deep convolutional networks,’’ in Proc. 33rd Int. Conf. Mach. Learn.
(ICML), Nov. 2016, pp. 4166–4175.

[18] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T.Wang, and P. Warden, ‘‘Ten-
sorFlow lite micro: Embedded machine learning on TinyML systems,’’
2020, arXiv:2010.08678.

[19] F. Just. (2023). QNN MCU. [Online]. Available: https://github.com
/fabianjust/QNN-MCU

[20] M. R. Azghadi, C. Lammie, J. K. Eshraghian, M. Payvand, E. Donati,
B. Linares-Barranco, and G. Indiveri, ‘‘Hardware implementation of deep
network accelerators towards healthcare and biomedical applications,’’
IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 6, pp. 1138–1159,
Dec. 2020, doi: 10.1109/TBCAS.2020.3036081.

[21] D. Zhang, S. Mishra, E. Brynjolfsson, J. Etchemendy, D. Ganguli,
B. Grosz, T. Lyons, J. Manyika, J. C. Niebles, M. Sellitto, Y. Shoham,
J. Clark, and R. Perrault, ‘‘2021 AI Index Report,’’ AI Index Steer.
Committee, Stanford Univ. Human-Centered Artif. Intell. Inst.,
Stanford, CA, USA, Tech. Rep., 2021, pp. 1–222. [Online]. Available:
https://aiindex.stanford.edu/report/, doi: 10.48550/arXiv.2103.06312.

[22] W. Jiang, X. Ye, R. Chen, F. Su, M. Lin, Y. Ma, Y. Zhu, and S. Huang,
‘‘Wearable on-device deep learning system for hand gesture recogni-
tion based on FPGA accelerator,’’ Math. Biosci. Eng., vol. 18, no. 1,
pp. 132–153, 2021, doi: 10.3934/mbe.2021007.

[23] L. Cerina, G. Franco, P. Cancian, and M. D. Santambrogio, ‘‘Robust-
ness of surface EMG classifiers with fixed-point decomposition on
reconfigurable architecture,’’ in Proc. IEEE Int. Parallel Distrib. Pro-
cess. Symp. Workshops (IPDPSW), May 2018, pp. 146–153, doi:
10.1109/IPDPSW.2018.00030.

[24] H. Wöhrle, M. Tabie, S. Kim, F. Kirchner, and E. Kirchner, ‘‘A hybrid
FPGA-based system for EEG- and EMG-based online movement predic-
tion,’’ Sensors, vol. 17, no. 7, p. 1552, Jul. 2017, doi: 10.3390/s17071552.

[25] A. Boschmann, A. Agne, L. Witschen, G. Thombansen, F. Kraus, and
M. Platzner, ‘‘FPGA-based acceleration of high density myoelectric signal
processing,’’ in Proc. Int. Conf. ReConFigurable Comput. FPGAs (ReCon-
Fig), Dec. 2015, pp. 1–8, doi: 10.1109/ReConFig.2015.7393312.

[26] Z. Yang, A. B. Clark, D. Chappell, and N. Rojas, ‘‘Instinctive
real-time sEMG-based control of prosthetic hand with reduced
data acquisition and embedded deep learning training,’’ in Proc.
Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 5666–5672, doi:
10.1109/ICRA46639.2022.9811741.

[27] A. T. Nguyen, M. W. Drealan, D. Khue Luu, M. Jiang, J. Xu, J. Cheng,
Q. Zhao, E. W. Keefer, and Z. Yang, ‘‘A portable, self-contained neuro-
prosthetic hand with deep learning-based finger control,’’ J. Neural Eng.,
vol. 18, no. 5, Oct. 2021, Art. no. 056051, doi: 10.1088/1741-2552/ac2a8d.

[28] S. Tam, M. Boukadoum, A. Campeau-Lecours, and B. Gosselin, ‘‘A fully
embedded adaptive real-time hand gesture classifier leveraging HD-sEMG
and deep learning,’’ IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 2,
pp. 232–243, Apr. 2020, doi: 10.1109/TBCAS.2019.2955641.

[29] A. Vitale, E. Donati, R. Germann, and M. Magno, ‘‘Neuromorphic edge
computing for biomedical applications: Gesture classification using EMG
signals,’’ IEEE Sensors J., vol. 22, no. 20, pp. 19490–19499, Oct. 2022,
doi: 10.1109/JSEN.2022.3194678.

[30] E. Ceolini, C. Frenkel, S. B. Shrestha, G. Taverni, L. Khacef,
M. Payvand, and E. Donati, ‘‘Hand-gesture recognition based on EMG
and event-based camera sensor fusion: A benchmark in neuromorphic
computing,’’ Frontiers Neurosci., vol. 14, pp. 1–15, Aug. 2020, doi:
10.3389/fnins.2020.00637.

[31] E. Donati, M. Payvand, N. Risi, R. Krause, and G. Indiveri, ‘‘Discrimina-
tion of EMG signals using a neuromorphic implementation of a spiking
neural network,’’ IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 5,
pp. 795–803, Oct. 2019, doi: 10.1109/TBCAS.2019.2925454.

[32] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, ‘‘Opportunities for neuromorphic computing algorithms and appli-
cations,’’ Nature Comput. Sci., vol. 2, no. 1, pp. 10–19, Jan. 2022, doi:
10.1038/s43588-021-00184-y.

[33] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, ‘‘PULP-NN:
Accelerating quantized neural networks on parallel ultra-low-power RISC-
V processors,’’ Phil. Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 378,
no. 2164, Feb. 2020, Art. no. 20190155, doi: 10.1098/rsta.2019.0155.

[34] S. Raurale, J. McAllister, and J. M. del Rincon, ‘‘EMG wrist-hand
motion recognition system for real-time embedded platform,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 1523–1527.

[35] S. Pancholi and A. M. Joshi, ‘‘Electromyography-based hand gesture
recognition system for upper limb amputees,’’ IEEE Sensors Lett., vol. 3,
no. 3, pp. 1–4, Mar. 2019, doi: 10.1109/LSENS.2019.2898257.

[36] E. Mastinu, P. Doguet, Y. Botquin, B. Håkansson, and M. Ortiz-Catalan,
‘‘Embedded system for prosthetic control using implanted neuromus-
cular interfaces accessed via an osseointegrated implant,’’ IEEE Trans.
Biomed. Circuits Syst., vol. 11, no. 4, pp. 867–877, Aug. 2017, doi:
10.1109/TBCAS.2017.2694710.

[37] X. Liu, J. Sacks, M. Zhang, A. G. Richardson, T. H. Lucas, and
J. Van der Spiegel, ‘‘The virtual trackpad: An electromyography-based,
wireless, real-time, low-power, embedded hand-gesture-recognition sys-
tem using an event-driven artificial neural network,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 64, no. 11, pp. 1257–1261, Nov. 2017, doi:
10.1109/TCSII.2016.2635674.

40448 VOLUME 12, 2024

http://dx.doi.org/10.1109/TNSRE.2014.2305097
http://dx.doi.org/10.1109/TNSRE.2024.3371896
http://dx.doi.org/10.1126/scitranslmed.abq3665
http://dx.doi.org/10.1186/s12984-021-00839-x
http://dx.doi.org/10.1109/TNSRE.2020.2992885
http://dx.doi.org/10.1007/s12555-019-1058-5
http://dx.doi.org/10.1109/ICORR.2019.8779539
http://dx.doi.org/10.1145/3361682
http://dx.doi.org/10.1109/ICAIIC54071.2022.9722636
http://dx.doi.org/10.3390/electronics11162545
http://dx.doi.org/10.1155/2019/3679174
http://dx.doi.org/10.1609/aaai.v34i09.7123
http://dx.doi.org/10.1109/CVPR.2018.00286
http://dx.doi.org/10.1109/TBCAS.2020.3036081
http://dx.doi.org/10.48550/arXiv.2103.06312
http://dx.doi.org/10.3934/mbe.2021007
http://dx.doi.org/10.1109/IPDPSW.2018.00030
http://dx.doi.org/10.3390/s17071552
http://dx.doi.org/10.1109/ReConFig.2015.7393312
http://dx.doi.org/10.1109/ICRA46639.2022.9811741
http://dx.doi.org/10.1088/1741-2552/ac2a8d
http://dx.doi.org/10.1109/TBCAS.2019.2955641
http://dx.doi.org/10.1109/JSEN.2022.3194678
http://dx.doi.org/10.3389/fnins.2020.00637
http://dx.doi.org/10.1109/TBCAS.2019.2925454
http://dx.doi.org/10.1038/s43588-021-00184-y
http://dx.doi.org/10.1098/rsta.2019.0155
http://dx.doi.org/10.1109/LSENS.2019.2898257
http://dx.doi.org/10.1109/TBCAS.2017.2694710
http://dx.doi.org/10.1109/TCSII.2016.2635674


F. Just et al.: Deployment of Machine Learning Algorithms

[38] K. Xu, W. Guo, L. Hua, X. Sheng, and X. Zhu, ‘‘A prosthetic arm based
on EMG pattern recognition,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics
(ROBIO), Dec. 2016, pp. 1179–1184, doi: 10.1109/ROBIO.2016.7866485.

[39] J. Liu, F. Zhang, and H. H. Huang, ‘‘An open and configurable embedded
system for EMG pattern recognition implementation for artificial arms,’’
in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2014,
pp. 4095–4098, doi: 10.1109/EMBC.2014.6944524.

[40] Y. Guo, ‘‘A survey on methods and theories of quantized neural networks,’’
2018, arXiv:1808.04752.

[41] R. Krishnamoorthi, ‘‘Quantizing deep convolutional networks for efficient
inference: A whitepaper,’’ 2018, arXiv:1806.08342.

[42] R. Banner, Y. Nahshan, and D. Soudry, ‘‘Post training 4-bit quantization of
convolutional networks for rapid-deployment,’’ in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), vol. 32, 2019, pp. 1–9.

[43] Z. Cai, X. He, J. Sun, and N. Vasconcelos, ‘‘Deep learning with low
precision by half-wave Gaussian quantization,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5406–5414, doi:
10.1109/CVPR.2017.574.

[44] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Low precision stor-
age for deep learning,’’ in Proc. ICLR, vol. 5, 2015, pp. 1–10, doi:
10.48550/arXiv.1511.00363.

[45] M. Courbariaux, Y. Bengio, and J. P. David, ‘‘BinaryConnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
Adv. Neural Inf. Process. Syst., Jan. 2015, pp. 3123–3131.

[46] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu, ‘‘Regularizing acti-
vation distribution for training binarized deep networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 11400–11409, doi: 10.1109/CVPR.2019.01167.

[47] Y. Guo, A. Yao, H. Zhao, and Y. Chen, ‘‘Network sketching: Exploit-
ing binary structure in deep CNNs,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4040–4048, doi:
10.1109/CVPR.2017.430.

[48] Y. Zhou, S. M. Moosavi-Dezfooli, N. M. Cheung, and P. Frossard, ‘‘Adap-
tive quantization for deep neural network,’’ in Proc. 32nd AAAI Conf. Artif.
Intell. AAAI, 2018, pp. 4596–4604, doi: 10.1609/aaai.v32i1.11623.

[49] S. Khoram and J. Li, ‘‘Adaptive quantization of neural networks,’’ in Proc.
Int. Conf. Learn. Represent., 2018, pp. 1–13.

[50] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, ‘‘Degree-quant:
Quantization-aware training for graph neural networks,’’ in Proc. 9th Int.
Conf. Learn. Represent. (ICLR), 2021, pp. 1–22.

[51] H. D. Nguyen, A. Alexandridis, and A. Mouchtaris, ‘‘Quantization aware
training with absolute-cosine regularization for automatic speech recog-
nition,’’ in Proc. Annu. Conf. Int. Speech Commun. Assoc. Interspeech,
Oct. 2020, pp. 3366–3370, doi: 10.21437/interspeech.2020-1991.

[52] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and
K. Keutzer, ‘‘ZeroQ: A novel zero shot quantization framework,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13166–13175, doi: 10.1109/CVPR42600.2020.01318.

[53] J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Georgiadis, and
J. H. Hassoun, ‘‘Post-training piecewise linear quantization for deep neural
networks,’’ in Proc. 16th Eur. Conf. Comput. Vis. (ECCV), Glasgow, U.K.:
Springer, Aug. 2020, pp. 69–86.

[54] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
‘‘A survey of quantization methods for efficient neural network inference,’’
in Low-Power Computer Vision. London, U.K.: Chapman & Hall, 2022,
pp. 291–326.

[55] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
‘‘Minimum energy quantized neural networks,’’ in Proc. 51st Asilo-
mar Conf. Signals, Syst., Comput., Oct. 2017, pp. 1921–1925, doi:
10.1109/ACSSC.2017.8335699.

[56] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadiuba, T. K. Aarrestad,
V. Loncar, M. Pierini, A. A. Pol, and S. Summers, ‘‘Automatic hetero-
geneous quantization of deep neural networks for low-latency inference
on the edge for particle detectors,’’ Nature Mach. Intell., vol. 3, no. 8,
pp. 675–686, Jun. 2021, doi: 10.1038/s42256-021-00356-5.

[57] S. Lobov, N. Krilova, I. Kastalskiy, V. Kazantsev, and V. Makarov.
(2019). EMG Data for Gestures Data Set. UCI Mach. Learing Reposi-
tory. [Online]. Available: https://archive.ics.uci.edu/ml/machine-learning-
databases/00481/

[58] A. Jaramillo-Yánez, M. E. Benalcázar, and E. Mena-Maldonado, ‘‘Real-
time hand gesture recognition using surface electromyography and
machine learning: A systematic literature review,’’ Sensors, vol. 20, no. 9,
p. 2467, Apr. 2020, doi: 10.3390/s20092467.

[59] M. Fabietti, M. Mahmud, and A. Lotfi, ‘‘On-chip machine learning for
portable systems: Application to electroencephalography-based brain–
computer interfaces,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2021, pp. 1–8, doi: 10.1109/IJCNN52387.2021.9533413.

[60] P.-E. Novac, G. Boukli Hacene, A. Pegatoquet, B. Miramond, and
V. Gripon, ‘‘Quantization and deployment of deep neural networks on
microcontrollers,’’ Sensors, vol. 21, no. 9, p. 2984, Apr. 2021, doi:
10.3390/s21092984.

[61] L. Lai, N. Suda, and V. Chandra, ‘‘CMSIS-NN: Efficient neural network
kernels for arm Cortex-M CPUs,’’ 2018, arXiv:1801.06601.

[62] A. Skillman and T. Edsö, ‘‘A technical overview of cortex-M55
and ethos-u55: Arm’s most capable processors for endpoint AI,’’ in
Proc. IEEE Hot Chips 32 Symp. (HCS), Aug. 2020, pp. 1–20, doi:
10.1109/HCS49909.2020.9220415.

[63] E. J. Earley, J. Zbinden, M. Munoz-Novoa, E. Mastinu, A. Smiles,
and M. Ortiz-Catalan, ‘‘Competitive motivation increased home use and
improved prosthesis self-perception after cybathlon 2020 for neuromuscu-
loskeletal prosthesis user,’’ J. Neuroeng. Rehabil., vol. 19, no. 1, pp. 1–11,
Dec. 2022, doi: 10.1186/s12984-022-01024-4.

FABIAN JUST (Member, IEEE) received the
M.Sc. degree in electrical engineering from
Purdue University, IN, USA, in 2013, the
M.Sc. degree in control engineering from
Ruhr-University Bochum, Germany, in 2014, and
the Ph.D. degree in rehabilitation robotics from
ETH Zürich, Switzerland, in 2020. He is currently
a Postdoctoral Researcher with the Center for
Bionics and Pain Research, specializing in pros-
thetic and exoskeleton control. As the Founding

Head-of-Discipline and an Advisory Board Member of the CYBATHLON,
he fosters inclusion for people with disabilities.

CHIARA GHINAMI received the M.S. degree
in embedded systems engineering from Cagliari
University, in 2023. She is currently pursuing
the Ph.D. degree in electronic engineering with
RWTH University, Aachen, Germany. In July
2022, she joined the CBPR Research Laboratory,
where she carried out the master’s thesis on the
deployment of neural networks on constrained
hardware devices. She is currently working on
hardware security for embedded systems.

JAN ZBINDEN (Graduate Student Member,
IEEE) received the B.Sc. degree in mechanical
engineering and the M.Sc. degree in mechanical
engineering (robotics and rehabilitation engineer-
ing) from ETH Zürich, Switzerland, in 2017 and
2018, respectively. He is currently pursuing the
Ph.D. degree in electrical engineering with the
Chalmers University of Technology, Sweden, and
the Center for Bionics and Pain Research, Sweden.
His research interests include prosthetic control
and prosthetic embodiment.

MAX ORTIZ-CATALAN (Senior Member, IEEE)
is currently the Head of neural prosthetic research
with the Bionics Institute, Melbourne, Australia,
and an Honorary Principal Fellow with The Uni-
versity ofMelbourne, Melbourne. He has authored
over 100 scientific publications and has been a
guest speaker at over 100 international conferences
and universities worldwide. Several documen-
taries and over 100 popular science articles in over
a dozen languages have featured his work, for

which he has received several honors for innovation and scientific excellence.

VOLUME 12, 2024 40449

http://dx.doi.org/10.1109/ROBIO.2016.7866485
http://dx.doi.org/10.1109/EMBC.2014.6944524
http://dx.doi.org/10.1109/CVPR.2017.574
http://dx.doi.org/10.48550/arXiv.1511.00363
http://dx.doi.org/10.1109/CVPR.2019.01167
http://dx.doi.org/10.1109/CVPR.2017.430
http://dx.doi.org/10.1609/aaai.v32i1.11623
http://dx.doi.org/10.21437/interspeech.2020-1991
http://dx.doi.org/10.1109/CVPR42600.2020.01318
http://dx.doi.org/10.1109/ACSSC.2017.8335699
http://dx.doi.org/10.1038/s42256-021-00356-5
http://dx.doi.org/10.3390/s20092467
http://dx.doi.org/10.1109/IJCNN52387.2021.9533413
http://dx.doi.org/10.3390/s21092984
http://dx.doi.org/10.1109/HCS49909.2020.9220415
http://dx.doi.org/10.1186/s12984-022-01024-4

