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The Chiral Ring of D = 4, = 1 SYM with Exceptional
Gauge Groups

Martin Cederwall* and Gabriele Ferretti

The Cachazo–Douglas–Seiberg–Witten conjecture, concerning the algebraic
structure of the chiral ring in = 1, D = 4 supersymmetric Yang–Mills
theory, is proven for exceptional gauge groups. This completes the proof of
the conjecture.

1. Introduction

Four-dimensional  = 1 supersymmetric pure Yang-Mills the-
ories display a rich variety of phenomena of interest to physics.
For any finite-dimensional, compact, simple Lie algebra1 𝔤, the
dynamical fields consist of a gluon Aa

𝜇
and a gluino 𝜆a

𝛼
combined

into an anticommuting chiral superfield Wa
𝛼
, where 𝛼 = 1, 2 is

the 𝔰𝔩(2) index and a the adjoint index of 𝔤.
The theory is asymptotically free and possesses a discrete chi-

ral symmetry ℤ2g∨ , g
∨ being the dual Coxeter number of 𝔤. This

symmetry is the left-over of the axialU(1) symmetry not explicitly
broken by the ABJ anomaly. The theory is also strongly believed
to be confining and gapped with a number of supersymmetric
vacua equal to g∨.
It is of interest to consider the particularly well behaved ring of

gauge invariant chiral superfields, consisting of all the gauge in-
variant local operators constructed out ofWa

𝛼
(but notW†a

𝛼̇
), mod-

ulo identification by operators containing the terms fbc
aWb

𝛼
Wc

𝛽
for

any 𝛼, 𝛽 and a, with fbc
a the structure constants of 𝔤. The identifi-

cation is needed because such terms are descendants in the chiral
ring, i.e., can be written as {Q̄𝛼̇ ,Φ𝛼̇} for some gauge invariant op-
eratorΦ𝛼̇ and thus do not contribute to the correlation functions.
The most obvious element of the chiral ring is the invariant

S = 1
2
W𝛼aW𝛼a ≡ Wa

1W2a, which is non-zero by virtue of the anti-
commuting nature of Wa

𝛼
. The overall normalization of S is not

relevant for this work. The classical chiral ring is constructed sim-
ply by treatingWa

1 andW
a
2 as classical Grassmann numbers.
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The conjecture put forward in
ref. [1] by Cachazo, Douglas, Seiberg
and Witten (hereafter CDSW), is that the
classical chiral ring is generated by S
alone, together with the relation Sg∨ = 0
(but Sg∨−1 ≠ 0). This is important to
physics because instanton corrections
would then deform the classical chiral

ring to Sg∨ = Λ3g∨ , whereΛ is the non-perturbative (holomorphic)
scale. Factorization of chiral operators then implies that S itself
acquires a vacuum expectation value, breaking the ℤ2g∨ discrete
chiral symmetry to ℤ2, thus giving rise to the g∨ vacua men-
tioned above.
The CDSW conjecture is a precisely formulated statement

about Lie algebras that can be investigated independently of the
currently incomplete understanding of the dynamics of quan-
tum gauge theories. It has been proven for 𝔤 = An ≡ 𝔰𝔲(n + 1)
already in ref. [1], for the remaining classical Lie algebras 𝔤 =
Bn, Cn, Dn ≡ 𝔰𝔬(2n + 1), 𝔰𝔭(2n), 𝔰𝔬(2n) in ref. [2] and for 𝔤 = G2
in ref. [3]. The first part of the conjecture, namely that the ring is
generated by S alone, has been shown for all 𝔤 in ref. [4].
In this note we show that the CDSW conjecture holds for all

the exceptional Lie algebras 𝔤 = G2, F4, E6, E7, E8, thus complet-
ing the proof. (For completeness, this also includes the previous
results of refs. [3] and [4].)

2. The proof

For a given 𝔤, ∧𝔤 is a graded ring, generated by odd elements X =
XaTa ∈ 𝔤 at level 1. For ease of notation, we letW1 = X ,W2 = Y .
Let the graded ring B be defined as ∧𝔤∕⟨[X, X ]⟩, where the ideal
is generated by [X, X ] = P𝔤X2 = − 1

2g∨
fab

ef cdeX
aXbTc ∧ Td. When

we write Xn, this means “wedge product”, Xn = Xa1 …XanTa1
∧

… ∧ Tan
, which can then be projected on irreducible modules at

a given level.
The ring B has been studied and has many interesting

properties.[5] Its decomposition into irreducible 𝔤-modules {ri}
contains 2r distinct (i.e., different) modules,[6] where r = rank(𝔤).
They are in close correspondence to Abelian ideals in a Borel sub-
algebra of 𝔤.[7] In addition, the modules appearing at level n (i.e.,
in∧n𝔤) are precisely those having a value of the quadratic Casimir
operator C2 which is n times that of the adjoint. In the Appendix,
we list the ri’s by level for exceptional 𝔤. The method to compute
them we found most efficient was the sequential use of selection
by value of C2. The program LiE[8] has been helpful in the calcu-
lations.
We then consider the graded ring B × B, generated by X and

Y . In it, we will eventually divide out the ideal generated by [X, Y ],
and denote the result A = (B × B)∕⟨[X, Y ]⟩. In particular, we will
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verify the CDSW conjecture[1] that the subringA𝔤 of 𝔤-invariants,
the so-called classical chiral ring, is generated by the scalar prod-
uct S = C2(X, Y) (evaluated in some representation), and that fur-
thermore Sg∨−1 ≠ 0, Sg∨ = 0. We will do this by first examining
the subring (B × B)𝔤 of 𝔤-invariants in B × B, finding an explicit
set of generators for (B × B)𝔤 in terms of Casimirs of 𝔤. Our proof
completely ignores the 𝔰𝔩(2)-covariance ofA and 𝔰𝔩(2)-invariance
of A𝔤, which otherwise looks like an attractive starting point.
We now focus on the ring (B × B)𝔤, with the purpose of finding

its generators. One obvious generator is S.
Since all ri’s are distinct, and since non-self-conjugate ri’s are

accompanied by ri′ = r⋆i at the same level in B, all 𝔤-invariants
are on the “diagonal”, having bi-degree (n, n). We call this level
n in (B × B)𝔤. One may equip (B × B)𝔤 with a basis which is
adapted to the irreducible modules ri. Given a module ri at level
ni, form the element Xi = PiX

ni ∈ B by projection on ri in ∧ni𝔤.
All possible invariants are linear combinations of Si = (Xi, Y

⋆
i ) =

(Xi, Y
ni ) = (Xni , Y⋆

i ), where Y⋆
i = P⋆

i Y
ni is projected on r⋆i . The

pairing (⋅, ⋅) on B × B is defined with the Cartan–Killing met-
ric. Given elements 𝛼 = 1

n!
Xa1…anTa1

∧… ∧ Tan
and the same for

𝛽 in terms of Y , (𝛼, 𝛽) = 1
n!
Xa1…anYa1…an

by defining (Ta1
∧… ∧

Tan
, Tb1 ∧… ∧ Tbn ) = n!𝛿b1…bn

a1…an . Conversely, to an invariant T =
tb1…bn
a1…anX

a1 …XanYb1
…Ybn

we may associate an element in B:

XT = tb1…bn
a1…anX

a1 …XanTb1
∧… ∧ Tbn

. (1)

For example, XSn = (−1)
n(n−1)

2 Xn.

Lemma 1. The multiplication table of irreducible modules in B and
that of (B × B)𝔤 contain the same structure constants. Let XiXj =∑

k cij
kXk. Then, SiSj = (−1)ninj

∑
k cij

kSk.

Proof.

SiSj = (Xi, Y
ni )(Xj, Y

nj ) = (−1)ninj (XiXj, Y
ni+nj )

= (−1)ninj
∑
k

(cij
kXk, Y

nk ) = (−1)ninj
∑
k

cij
kSk . (2)

□

Corollary 1. Since (with suitable normalization) XS = X, Sn ≠ 0 for
all non-empty levels n in (B × B)𝔤. (XSni , Yi) ≠ 0. When expressed in
terms of XT ’s, where T’s are products of generators of (B × B)𝔤, every
irreducible component Xi has a non-vanishing coefficient for XSni .

The last statement, which will be important for the proof,
amounts to the fact that any projection operator Pi on an ri has a
non-vanishing trace with the identity.
With the input from the Appendix, we can form the partition

function of the ring (B × B)𝔤, which also counts the number of
irreducible modules bn at each level n in B, and investigate for
patterns. We write the partition function as

ZB(t) =
N∑
n=0

bnt
n , (3)

where N is the highest level in B. One striking property is that
the first occurrence of bn > 1 is at a level which is one less than
the order of the next (after C2) Casimir operator of 𝔤. (That is, if

this happens at all. In very simple cases, like G2, the ring may
end before that level is reached. Then, bn = 1, n = 0,… , N.) This
observation goes much further. Let us define a ring C with gen-
erators at level n only if n + 1 ∈ Γ, where Γ is the set of integers
m for which Cm is a Casimir of 𝔤 (see the Appendix). Let there be
no relations in C. Then C has the partition function2

ZC(t) =
∏
n+1∈Γ

(1 − tn)−1 =
∞∑
n=0

cnt
n . (4)

We notice, by direct comparison of the two partition functions,
that they agree up to level g∨ − 1 for all exceptional 𝔤, i.e., bn = cn
for n ≤ g∨ − 1 and bn < cn for n ≥ g∨. Analogous comparisons
can be made for classical matrix algebras. There, we have veri-
fied the same behaviour up to rank 10, which convinces us that
it holds in general, although we have no proof.
For example, we have for 𝔤 = E6,

ZB(t) = 1 + t + t2 + t3 + 2t4 + 3t5 + 3t6 + 4t7 + 6t8 + 7t9 + 8t10

+ 10t11 + 7t12 + 4t13 + 2t14 + 2t15 + 2t16 ,

ZC(t) =
∏

n+1∈{2,5,6,8,9,12}
(1 − tn)−1 (5)

= 1 + t + t2 + t3 + 2t4 + 3t5 + 3t6 + 4t7 + 6t8 + 7t9 + 8t10

+ 10t11 + 13t12 + 15t13 + 17t14 + 21t15 + 26t16 +O(t17) ,

showing agreement up to level g∨ − 1 = 11.
Having observed that the partition functions agree up to level

g∨ − 1, we will proceed to show that the rings themselves agree
to that level. Finding a concrete expression for the generators of
(B × B)𝔤 will allow us to state that (B × B)𝔤 ≃ C∕J where the ideal
is empty below level g∨.
How can invariants be constructed? Let 𝜉 and 𝜂 be X and Y in

some (any) representation R with representation matrices ta, i.e.,
the matrices 𝜉 = Xata, 𝜂 = Yata. Since 𝜉2 = 0 = 𝜂2 (with matrix
multiplication),3 all invariants can be written as traces of alternat-
ing 𝜉’s and 𝜂’s: tr(𝜉𝜂𝜉𝜂… 𝜉𝜂), and products of such expressions.
It is not yet obvious from such expressions when new indepen-
dent invariants occur. The identities 𝜉2 = 𝜂2 = 0 can be used to
rewrite tr((𝜉𝜂)n) = tr(𝜉, 𝜂, [𝜉, 𝜂]n−1), where [𝜉, 𝜂] = 𝜉𝜂 + 𝜂𝜉. Due to
the Jacobi identities (or by just evaluating the matrix products)
[𝜉, [𝜉, 𝜂]] = 0 = [[𝜉, 𝜂], 𝜂]. This implies that tr(𝜉, 𝜂, [𝜉, 𝜂]n−1) is sym-
metric in all its n + 1 entries. We are looking for invariants in the
totally symmetric product of a number of adjoint elements. Such
invariants are built from Casimir operators.
Using the Casimir operators of 𝔤, we can construct the gener-

ators of (B × B)𝔤 as

S(n) = Cn+1(X, Y, [X, Y ],… , [X, Y ]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n−1

)} , (6)

2 Note that due to the shift in degree by one unit, C ≄ U(𝔤)𝔤 as a
graded ring.

3 But remember that the ideal generated by [X, Y ] is not yet divided out,
so 𝜉𝜂 + 𝜂𝜉 ≠ 0.
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where [X, Y ]a = fbc
aXbYc and Cm are Casimir operators of 𝔤. The

expressions should be evaluated in some representation. Due to
symmetry of the Casimir, at most one “naked” X and one Y can
be among its entries. There is no way of rewriting S(n) using the
identities for invariance. This is since the Jacobi identities im-
ply [X, [X, Y ]] = 0 = [[X, Y ], Y ]. It is then also clear from invariance
that Cn([X, Y ],… , [X, Y ]) = 0, so the naked X and Y are needed.
There is an arbitrariness in defining each higher Casimir in that
one may add some product of lower ones. One possible canoni-
cal choice is that contractions with lower Casimirs vanish. This is
however irrelevant in our case; the multi-trace terms added give
zero in equation (6), since the naked X and Y would be needed
in every factor. There is of course an arbitrariness in defining
the generator at a given level by addition of some constant times
products of lower generators. This is unconnected to the choice
of representatives for the Casimir invariants, which provide a
canonical choice. We also note that if one tries to form an invari-
ant at a level n where there is no Casimir Cn+1, the single trace
tr(𝜉, 𝜂, [𝜉, 𝜂]n−1) is expressible as a sumof products of lower traces,
and vanishes identically. The absence of possible further genera-
tors of (B × B)𝔤 establishes that (B × B)𝔤 = C∕J, where the ideal J
is empty below level g∨.
We can thus state:

Proposition 1. The subring of 𝔤-invariants in B × B, (B × B)𝔤, is
generated by the set

{S(n) = Cn+1(X, Y, [X, Y ],… , [X, Y ]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n−1

) : n + 1 ∈ Γ} . (7)

The first relations between products of S(n)’s appear at level g
∨.

When we form the ring A𝔤, it will be (B × B)𝔤∕I for some ideal
I. We see that the generators S(n), n > 1 belong to I. Conversely,
any element in I will consist of terms, each containing a trace
with at least one [𝜉, 𝜂], which again is expressible using S(n), n > 1.
So, I is generated by all generators of (B × B)𝔤 except S.

Corollary 2. A𝔤 is generated by S, and Sg∨−1 ≠ 0 in A𝔤.

However, we still need to check that the relations in (B × B)𝔤

involve Sg∨ in a way that implies that it vanishes in A𝔤. This is the
final step in the proof of the CDSW conjecture for exceptional 𝔤.

Proposition 2. Sg∨ = 0 in A𝔤.

Proof. We will use Lemma 1 to show that Sg∨ = 0 for the ex-
ceptional algebras G2, F4, E6, E7 and E8. In each of the five cases,
remarkably enough, there is a single irreducible module r0 in B
at level g∨ − 1 which does not propagate to level g∨, i.e., XX0 = 0.
These “local endpoints” of B are indicated in red and underlined
in the tables of the Appendix. By Lemma 1, SS0 = 0. ForG2 there
is a single module at level 3 and none at level 4, so the statement
S4 = 0 holds already in (B × B)𝔤. In all other cases, S0, suitably
normalized, can be expressed as Sg∨−1 + S′, where S′ is some lin-
ear combination of invariants at level g∨ − 1, all of which con-
tain at least one S(n), n > 1. This follows from Corollary 1. Thus,
0 = SS0 = Sg∨ + SS′ in (B × B)𝔤. In A𝔤, S′ = 0, so Sg∨ = 0. □

This completes the proof of the different parts of the CDSW
conjecture, and we can state

Theorem 1. The CDSW conjecture holds for exceptional Lie algebras.

3. Final Remarks

To conclude: The explicit form of the generators enabled us to
identify the generators of (B × B)𝔤 with Casimir operators. This,
and thus the generation of A𝔤 by S (shown by Kumar in ref. [4]),
holds for any simple 𝔤. The absence of relations below level g∨ is
obtained by a counting argument for the exceptional Lie algebras.
The observation that Sg∨−1 ≠ 0 in A𝔤 then follows. Our proof of
Sg∨ = 0 for the exceptional algebras uses more detailed informa-
tion of the representation content of the rings.
We have focussed on the exceptional Lie algebras. All state-

ments about B, B × B and (B × B)𝔤 should hold equally for the
classical matrix algebras. In particular, Lemma 1 holds, and Prop.
1 holds with the same proof, if universal countings of bn up to
level g∨ are established. We conjecture that the proof of Prop. 2
holds for classical matrix algebras of types A, B and D with the
following local endpoints r0 at level g

∨ − 1:

Algebra g∨ r0

A1 2 (2)

Ar , r ≥ 2 r + 1 (r + 1, 0… 0)⊕ (0… 0, r + 1)

B3 5 (104)

D4 6
(
2022

)
𝔰𝔬(d) =

{
Dr , d = 2r
Br , d = 2r + 1

d ≥ 9 d − 2 (d − 6, 020… 0)

This is experimentally observed for ranks up to 10, but it
should be possible to give a universal proof. For the algebras Cr ,
g∨ = r + 1, and br+1 = cr+1 − 1 (the difference by 1 is also experi-
mental observation), but there is no local endpoint of B at level r.
Still, there will obviously be one relation between the elements of
C at level r + 1, and one needs to find an alternative method for
proving that the linear combination set to 0 has a non-vanishing
coefficient for Sr+1. This has effectively been done in ref. [2].

Appendix: The Content of 𝔤-Modules in B for
Exceptional 𝔤

The irreducible modules are labeled by their highest weights,
which are expressed in terms of their coefficients in the basis
of fundamental weights. The “ordering” is that of the respective
Dynkin diagram. When occasionally a two-digit coefficient ap-
pears, it is placed within parentheses. The non-propagatingmod-
ules r0 at level g

∨ − 1 are indicated in red and underlined.

A.1. G2

g∨ = 4, Γ = {2, 6}.

level irreducible modules bn

0 (00) 1

1 (10) 1

2 (03) 1

3 (04) 1

(There is a misprint for the level 3 module in ref. [3].)

Fortschr. Phys. 2024, 2400027 2400027 (3 of 5) © 2024 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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A.2. F4

g∨ = 9, Γ = {2, 6, 8, 12}.

level irreducible modules bn

0 (0000) 1

1 (1000) 1

2 (0100) 1

3 (0020) 1

4 (0021) 1

5 (0030) (0103) 2

6 (0112) (1005) 2

7 (0007) (0202) (1014) 3

8 (0300) (0016) (1104) 3

9 (0106) 1

A.3. E6

g∨ = 12, Γ = {2, 5, 6, 8, 9, 12}.

level irreducible modules bn

0
(
00

0
000

)
1

1
(
00

1
000

)
1

2
(
00

0
100

)
1

3
(
01

0
010

)
1

4
(
02

0
001

) (
10

0
020

)
2

5
(
00

0
030

) (
03

0
000

) (
11

0
011

)
3

6
(
01

0
021

) (
12

0
010

) (
20

0
102

)
3

7
(
02

0
020

) (
10

0
112

) (
21

0
101

) (
30

1
003

)
4

8
(
00

0
203

) (
30

0
200

) (
11

0
111

) (
20

1
013

) (
31

1
002

) (
40

0
004

)
6

9
(
01

0
202

) (
20

0
210

) (
10

1
104

) (
40

1
101

) (
21

1
012

) (
30

0
014

) (
41

0
003

)
7

10
(
01

2
005

) (
50

2
010

) (
10

0
301

) (
30

1
111

) (
11

1
103

) (
20

0
105

) (
50

0
102

) (
31

0
013

)
8

11
( 0
00400

) (
02

2
0 04

) (
40

2
020

) (
00

3
006

) (
60

3
000

) (
11

1
006

) (
60

1
011

) (
21

0
104

)
(
40

0
112

) (
20

1
202

) 10

12
(
02

0
007

) (
70

0
020

) (
12

1
005

) (
50

1
021

) (
10

2
007

) (
70

2
001

) (
30

0
203

)
7

13
(
03

0
006

) (
60

0
030

) (
01

1
008

) (
80

1
010

)
4

14
(
00

0
109

) (
90

0
100

)
2

15
(
00

0
01(10)

) (
(10)1

0
000

)
2

16
(
(12)0

0
000

) (
00

0
00(12)

)
2

A.4. E7

g∨ = 18, Γ = {2, 6, 8, 10, 12, 14, 18}.

level irreducible modules bn

0
(
000

0
000

)
1

1
(
000

0
001

)
1

2
(
000

0
010

)
1

3
(
000

0
100

)
1

4
(
001

1
000

)
1

5
(
002

0
000

) (
010

2
000

)
2

6
(
011

1
000

) (
100

3
000

)
2

7
(
020

0
100
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