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Discussion of “Marked Spatial Point Processes:
Current State and Extensions to Point

Processes on Linear Networks”
Mari Myllymäki, Tuomas Rajala, and Aila Särkkä

We congratulate the authors for their comprehensive review of the statistical summary
characteristics for marked spatial point processes. These characteristics are valuable for
understanding spatial dependencies between points, marks, and points and marks. It is
essential that summary characteristics are developed and made available for more general
marks, such as object-valued marks, and for non-Euclidean spaces, such as linear networks.

To add to the already impressive list of summary characteristics, we would like to men-
tion the work Rajala and Illian (2012), where they studied indices for patterns with a high
component count (e.g. rainforest data), including the mingling function mentioned here.
There are also some third-order point process characteristics available for multitype point
processes (Ayala and Simó 2020; Comas et al. 2010). Moreover, the authors call for char-
acteristics to inspect local behaviour of marks. We note that the mark sum measures, as
considered in Illian et al. (2008) and Myllymäki (2009), may be viewed as simple local
characterisations of the potentially spatially varying mark distribution.

Marked summary characteristics play a pivotal role in the preliminary data analysis of
marked point patterns. To interpret the information contained in a chosen characteristic,
it is necessary to compare the empirical characteristic to its counterpart under a specific
hypothesis, such as random labelling or random superposition as considered by the authors.
In addition to the analysis performedby the authors, formal statistical tests, e.g. the traditional
deviation tests (Diggle 2013; Myllymäki et al. 2015) and the global envelope tests, which
aid in interpreting the test results through a graphical interpretation (Myllymäki et al. 2017;
Myllymäki and Mrkvička 2023), can be performed. Here, when testing hypotheses with
complex statistical characteristics, it is worth bearing in mind that even the very simplest
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characteristics, such as the cross-K function, might require a surprisingly large amount of
data (e.g. hundreds of points per component) to provide sufficient statistical power, especially
in real-world systems of weak interactions such as diverse plant communities (Rajala et al.
2019).

Sometimes summary characteristics combined with a formal test of a particular hypothe-
sis provide a sufficient answer to the scientific question at hand. In practice however, if some
correlation between the marks is detected, it is often important to proceed from exploratory
analysis to modelling the interaction using marked point process models. In the second part
of our comment, Sect. 1, we will discuss and provide some examples of such models in the
traditional Euclidean space. Even though a reasonably large amount of models can be found
formarked spatial point patterns in the literature, it appears that applications of marked point
processes on linear networks are still rare. While some marking models might generalise to
linear networks rather straightforwardly, others might face significant challenges, e.g. when
defining for Markov processes a reasonable neighbourhood relation that depends not only
on distance between points but also on marks.

1. MARKED POINT PROCESS MODELS

If a random superposition of two or more components of the point process is a reasonable
assumption, each component can be modelled separately using unmarked point processes.
Furthermore, under the random labelling assumption, the unmarked point pattern could be
modelled first and then, the mark for each point could be drawn from a mark distribution
independent of the points and of other marks. We note that the random labeling hypothesis
and model are valid alternatives both for qualitative and quantitative marks (e.g. Grabarnik
et al. 2011). Some examples of models are given below for the cases of qualitative and
quantitative marks where there may be correlations between the marks or between the
marks and points.

We would like to emphasise that marks can be either observed properties of the studied
objects, such as the species or height of a tree, or other type of measurements made at
the object locations such as concentration of some important substance in the soil (e.g.
Stoyan and Penttinen 2000; Diggle et al. 2010). Furthermore, the marks can sometimes be
constructed from the point pattern such as distance to the nearest neighbouring point (see
e.g. Konstantinou et al. 2023).

1.1. QUALITATIVE MARKS

The two model classes that have frequently been used for multitype point patterns are
the Cox and Markov point processes. The log Gaussian Cox processes (Møller et al. 1998),
in particular, have gained popularity. These processes are advantageous when dealing with
small-scale clustering of points that cannot be accounted for by the available spatial covari-
ates. When it comes to multitype point patterns, the latent multivariate Gaussian field that
describes the intensity is divided into random fields that are common to all point types and
random fields that are type-specific (Waagepetersen et al. 2016). Another variant of the Cox
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process is the random set generated Cox process, which has been employed with set-marks
(Penttinen and Niemi 2007; Myllymäki and Penttinen 2010).

In aGibbs process (a special case ofMarkov processes), a potential function describes the
interaction between the points. In the multitype case, a potential function is defined for each
type of points to model the interaction within the type as well as the interactions between
the types. Simple pairwise interaction models for multitype forest data were presented, for
example, in Ogata and Tanemura (1985); Goulard et al. (1996); Reich et al. (2009); Stoyan
and Penttinen (2000). However, pairwise interaction models are typically not suitable for
clustered patterns; for clustered patterns, otherMarkov processes, such as Geyer’s saturation
process or the area-interaction process, have been used. The saturation process is similar
to the well known Strauss process, a pairwise-interacting process with a weight on the
number of close-by neighbours any point has. In the Strauss model, a positive weight leads
to realisations with all points collapsed together, but the saturation process avoids this by
setting additionally an upper limit to the neighbour-counts. In the area-interaction process,
each point is replaced by a disc and the strength of interaction ismeasured by the area covered
by the discs. Multitype versions of the saturation process have been suggested in Eckel et al.
(2009), Lee et al. (2017) and Rajala et al. (2018), and of the area-interaction model e.g. in
Picard et al. (2009). In Rajala et al. (2018), for example, first order non-stationarity, within-
type point-to-point interactions and cross-type point-to-point interactions were all modelled
simultaneously.

Sometimes, there can be a hierarchical structure between the different types of points.
For example in forestry, large trees affect the locations of small trees but not vice versa.
Different summary characteristics may not be able to give information on the hierarchy
but it can be included in the modelling approach. Hierarchical multitype Gibbs models with
non-symmetric interaction between different types of points were introduced byHögmander
and Särkkä (1999) and Grabarnik and Särkkä (2009).

1.2. QUANTITATIVE MARKS

If the marks are correlated but independent of point locations, they may be described
through geostatisticalmarking (Mase 1996; Schlather et al. 2004). Here, themarks are drawn
from a random field {U (s)} that is independent of the point process X̆ : the marks are simply
m(xi ) = U (xi ) for all xi ∈ X̆ . Due to the independence of X̆ and marks, the marks are a
representative sample from {U (s)} and properties of {U (s)} can be deduced from the marks
using standard geostatistical techniques (e.g. Chilés and Delfiner 1999). Ho and Stoyan
(2008); Myllymäki and Penttinen (2009) and Diggle et al. (2010) proposed marked point
processmodels with intensity-dependent marks in a similar ’marking’manner: All proposed
models assumed a log Gaussian Cox process as the unmarked point process X̆ , having the
random intensity �(s) = exp{Z(s)} for s ∈ R

d and a stationary Gaussian random field
{Z(s)}. The mark of point x ∈ X̆ was then considered to stem from the conditional mark
distribution ofm(x) given�(x) (or Z(x)), either themean (Ho andStoyan 2008;Diggle et al.
2010) or both the mean and the variance of the distribution (Myllymäki and Penttinen 2009)
depending on�(x). Illian et al. (2012) further used similar types of models for two different
quantitative marks, and Malinowski et al. (2015) presented a generalisation based on a
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bivariate Gaussian random field, with one of the two components driving the intensity and
the other used to construct the marks. As an alternative to conditional marking, Myllymäki
(2009) suggested using point process transformations such as thinning to generate intensity-
dependent marks.

Pairwise Gibbs point processes have also been used as a model for point patterns with
continuous marks. Ogata and Tanemura (1985) were among the first to suggest suchmodels.
They included the marks in the model by dividing the distance between two points by some
function of the marks connected to the points. A similar type of construction can be found in
Reich et al. (2009). A generalisation of the Strauss process, called Strauss disc process, was
given in Goulard et al. (1996). Each point is replaced by a disc, where the size of the disc
describes the size of the object at that point, e.g. a diameter of a tree. Two points interact
with constant strength if the discs connected to them overlap. Møller and Waagepetersen
(2004) introduced a model similar to the Strauss disc model, where the interaction is not
constant but depends on the area of overlap between two discs. Marked generalisations
of the area-interaction processes, such as the quermass-interaction process, have also been
introduced (Kendall et al. 1999).
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