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Abstract
Confined sites like ports, mines, and quarries present opportunities for early
deployment of automated vehicles (AVs), as they provide controlled environ-
ments with reduced safety risks from external factors. Effective coordination
of fully automated vehicles in such settings is crucial, as it can increase pro-
ductivity, improve safety, and possibly reduce the number of operating vehicles
needed.

Optimization-based control methods are useful for planning AV operations,
considering key operational constraints. However, these methods can be slow
for real-time applications due to the complexity of solving the optimization
problems involved, especially for coordinating multiple vehicles. This the-
sis introduces a method using optimization-based heuristics to simplify and
approximate these problems.

The method involves a two-stage optimization approach for AV coordina-
tion in confined sites. Specifically, the combinatorial part of the coordination
problem that is related to the occupancy orders of the conflict zones is formu-
lated as a Mixed Integer Quadratic Program (MIQP). In the second stage, the
optimal control commands for each vehicle are found under a fixed crossing
order by solving a Nonlinear Program (NLP). To improve the computational
demand we propose a decomposition strategy based on graph theory, where
the centralized NLP is decomposed into multiple, parallelly solvable NLPs.
Utilizing the Lagrange dual variables we propose a method that can further
decompose the NLP and can be used to find a trade-off between improved
computation time and optimality.

Finally, we adapted the optimization-based method to be able to handle
the scenarios when human-driven vehicles (HDVs) are present in the confined
site. Specifically, the heuristic predicts the HDV behavior using a model that
accounts for various human reactions. The NLP is modified to capture HDV
movements and establish safety constraints between AVs and HDVs. Through
closed-loop receding horizon control, we demonstrate how the occupancy order
for the zones can be dynamically adapted to current conditions and HDV
motion predictions. Furthermore, it is shown how the method can be used to
control the HDVs using the AVs to improve site productivity.

Keywords: Automated vehicles, cooperative systems, graph theory, mo-
tion control, multi-agent systems, optimal scheduling, optimal control.
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CHAPTER 1

Background and Outline

1.1 Introduction

Automated vehicles (AVs) represent a significant advancement in transporta-
tion technology. Defined by their capacity to operate without human input,
AVs offer numerous potential benefits, including improved traffic efficiency,
reduced emissions, and increased safety [1]. Traffic accidents, predominantly
caused by human error, could be significantly reduced through the deployment
of AVs [2]. Furthermore, AVs are expected to greatly enhance mobility for in-
dividuals who are unable to drive, such as the elderly or those with disabilities
[3].

The current state of automated vehicle technology is rapidly evolving with
ongoing research and development in multiple areas, such as perception, con-
trol, and verification. While these developments are promising, most current
AVs operate at Level 2 or 3 automation, indicating a need for occasional hu-
man intervention [4]. One of the persisting challenges in deploying AVs is
ensuring reliability and safety in diverse and unpredictable conditions [5], [6].

Confined sites like mines, quarries, and ports offer a unique and highly
suitable environment for the deployment of AVs. The primary advantage of
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Chapter 1 Background and Outline

Figure 1.1: Architecture of the confined site AV system.

these sites is that by construction, they are devoid of unpredictable agents
such as pedestrians, bicycles, human-driven vehicles, etc., typically found in
urban or public road settings. This aspect significantly reduces the complexity
the AVs must handle, making these sites ideal for early adoption and testing.

Similarly to public roads, the deployment of automated vehicles in confined
sites offers potential advantages. In particular, AVs can enhance the safety of
the site, as confined sites often involve hazardous tasks and harsh conditions
where human operators are at risk. In mines, for example, AVs can undertake
deep underground operations where the risk of incidents, such as gas explo-
sions or cave-ins, is high. Furthermore, the deployment of AVs could increase
operational efficiency since the vehicles can operate continuously without the
need for breaks.

In general, in confined sites, the main objective is defined by the site owner,
involving tasks like ore extraction or goods transportation over extended peri-
ods. This abstract mission necessitates strategic decisions regarding the num-
ber of vehicles required, the specific role of each vehicle, the efficient routing to
the destination, and the computation of motion profiles that enhance overall
performance, notably in terms of energy efficiency. Solving all these problems
simultaneously poses a considerable computational challenge, often leading to
large-scale problems that may be computationally intractable.

A common strategy for managing such large-scale problems is to decompose
the problem into multiple smaller and computationally tractable problems. An
architecture illustrating a proposed decomposition of a site control system is
depicted in Figure 1.1, which outlines a framework comprising four key com-
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1.2 Related work

ponents: Mission planner, Path planner, Coordination algorithm, and Vehicle
fleet. The Mission planner component determines the number of vehicles nec-
essary to complete the site mission and assigns each available vehicle a trans-
port mission. A transport mission is a vague description of what should be
achieved and which control points (loading/unloading zones, charging zones,
etc.) should be visited, for example, Vehicle 1 should load a specific amount
from mining point A, Vehicle 2 should charge at charging station C, etc. Sub-
sequently, the Path planner develops routes that respect these control points
and align with the road network. Using the road network, the Coordination
algorithm is tasked to compute the state and input trajectories for all vehicles
such that joint utilization of the control points and other inter-vehicle conflicts
are avoided. The assembled motion plans are communicated to the Vehicle
fleet, which executes them and provides feedback.

This thesis primarily focuses on the Coordination algorithm component. It
also investigates a closed-loop formulation of the proposed method for this
component, which includes developing a strategy for the Vehicle fleet compo-
nent and examining the interaction between the Vehicle fleet and the Coordi-
nation algorithm.

1.2 Related work
The coordination of automated vehicles, particularly on public roads, has
drawn significant interest from the research community [7], [8]. The main
challenge in the coordination scenarios is the computational complexity of
generating collision-free motion profiles and managing MUTually EXclusive
(MUTEX) zones, i.e., areas where vehicles share resources or where conflicts
may arise [9]. Each MUTEX zone implies that there should be an order
in which the vehicles use the zone. The combinatorial challenge of these
problems increases with the number of interacting vehicles and zones. Other
challenges involve communication limitations [10], architecture design choices,
and managing uncertainties like sensor and measurement perturbations.

An early proposal to solve the intersection coordination problem is presented
in [11], where a reservation request protocol is introduced to ensure a deadlock-
free crossing. However, the approach does not directly consider the vehicle
dynamics. Alternative approaches for obtaining the zone occupancy orders
are through mixed-integer optimization [12]–[14], scheduling [15]–[17] or tree-
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Chapter 1 Background and Outline

based search methods [18], [19]. In these approaches, once the occupancy
orders have been computed, i.e., the potential conflicts have been resolved,
there is a subsequent component that computes the vehicle motion profiles.

Recent advancements have introduced optimal control-based methodolo-
gies, utilizing Model Predictive Control (MPC) [20]–[22], direct optimal con-
trol [23]–[25] and trajectory optimization methods [26]–[28]. Alternatively,
consensus-based methods [29]–[31] have emerged as a solution to the problem
where AVs communicate and collaborate to make joint decisions. Each vehi-
cle shares information about its state (like position and speed) and intentions
with others, which is then used by all participating vehicles to collectively plan
their trajectories, ensuring efficient traffic flow and safety. The goal is to reach
a “consensus” on the best course of action for all vehicles, thereby optimizing
travel time, reducing congestion, and enhancing safety at intersections and
other traffic scenarios without the need for traditional traffic signals. This
cooperative strategy relies on real-time data exchange between vehicles.

While it may be reasonable for confined sites to assume the absence of un-
controlled agents like Human-Driven Vehicles (HDVs), some site owners may
specifically demand the coexistence of AVs and HDVs on their sites. For pub-
lic roads, it is believed that the road will be shared between the AVs and
HDVs for a substantial period [1]. The mixed-traffic coordination of vehicles,
i.e., coordination of AVs and HDVs, on the other hand, has received less at-
tention from the research community and currently is a popular topic, [32].
The authors of [11] extended their reservation request protocol to incorpo-
rate and control HDVs, where the route of the HDVs is required to be known
[33]. The coordination of mixed traffic in intersections has been investigated
in [34], [35], where [34] plans the vehicle maneuvers based on a probabilistic,
multi-modal prediction with a decision tree representation, and [35] proposes
a sensitivity-based heuristic for dynamically changing the occupancy order
for an intersection scenario between one AV and HDV. In [36], reinforcement
learning is used for cooperative behavior planning for mixed-traffic coordina-
tion at intersections.

The coordination of mixed traffic has also been investigated for merging sce-
narios. The authors in [37] propose a hierarchical control framework where a
high-level controller determines the merging sequence while a lower-level con-
troller based on trajectory optimization is tasked with computing the motion
profiles of the vehicles. The paper considers all possible triplet combinations of
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1.3 Research gaps

AVs and HDVs. However, it only focuses on the low-level control part, mean-
ing that the triplet computation and its recomputation are excluded from the
analysis. In [38], a safety-critical decentralized approach based on Control
Barrier Functions and Control Lyapunov Functions is proposed for the merg-
ing scenarios in a mixed-traffic environment. The approach, depending on the
position of the HDV, either uses a free-flow model or a car-following model
for estimating the motion of the HDV and is capable of switching between
the models. The paper relies on a specific instance of the driver reaction
parameters. Other research efforts in this field have utilized the Social Value
Orientation (SVO) [39], [40], to quantify the human drivers’ behavior and pre-
dict how the human drivers will interact and cooperate with other vehicles.
The framework presented in [39] is implemented in a receding horizon control
manner for robustness against stochastic human driving behavior. However,
this paper considers only the interaction between one AV and HDV. The au-
thors in [41] propose a robust mixed-traffic platoon control framework using
tube MPC to account for the uncertainties of the HDVs. However, the ap-
proach is bounded by the use of linear models.

1.3 Research gaps
Coordination of AVs in confined sites has some distinct differences compared
to public road scenarios. Specifically, as the road network is known, it is pos-
sible to plan the motion of the vehicles from the start of a transport mission
to its end. Planning the motion over long horizons is particularly beneficial in
terms of energy efficiency [42]. Furthermore, confined areas have additional
MUTEX zones besides intersections, as mentioned earlier. A consequence of
long-horizon planning is that a vehicle can experience multiple combinations
of the MUTEX zones along its route. The authors in [43] and [44] propose
approaches to multiple intersection coordination. However, they consider a
“cut-out” around the intersections with vehicles arriving at speed in compari-
son to the desired full route motion planning that considers all MUTEX zones
at the planning stage.

In the context of autonomous mining, a dynamic fleet planning method
has been proposed in [45] employing a modified genetic algorithm to resolve
conflicts and minimize delays and waiting times. However, the method does
not fully consider vehicle dynamics and necessitates predetermined standstill
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Chapter 1 Background and Outline

locations and times, potentially leading to suboptimal behavior.
The coordination of vehicles in valet parking and the coordination of in-

dustrial robots share several characteristics with confined site scenarios, with
both involving a restricted area where vehicles navigate through various MU-
TEX zones, [46]–[51]. In these applications, vehicles typically operate at lower
speeds, aiding in safety assurance and the modeled dynamics. Conversely, in
confined sites, higher vehicle speeds are preferred to enhance productivity.
In addition, the valet parking applications have laxer energy efficiency and
productivity goals.

In light of these research gaps, this thesis explores the following research
questions:

• RQ1: How can the vehicle coordination problem in confined sites be
formulated as an optimization problem that is not bounded by a specific
choice of model, constraints, and objective function?

• RQ2: How can the specific confined site application be exploited with
decomposition schemes to decouple or distribute most of the computa-
tions when solving the optimization problem formulated in RQ1?

• RQ3: How can the proposed optimization-based approach formulated
in RQ1 be adapted to include human-driven vehicles that have various
operating behaviors?

1.4 Contributions
This thesis focuses on developing an optimization-based method for the ve-
hicle coordination problem in confined sites. As such, the mission and path
planning components are outside the scope of this thesis. We assume that the
number of vehicles, their starting and end destinations, and their paths in the
confined site are computed. Furthermore, communication delays between the
components are left outside the scope of this thesis.

The main contributions of this thesis are:

• A two-stage centralized optimization-based approach for the vehicle co-
ordination problem in confined sites. The proposed approach provides a
high-level motion plan for the vehicles and is not dependent on a specific
choice of vehicle model, constraints, and objective function.

8
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• A decomposition strategy that identifies subproblems from the original
coordination problem. These subproblems can be solved in parallel to
ease the computational demand of the approach.

• Integrating the charging process and charging zone occupancy constraints
in the problem for electric vehicles. The approach can be extended to
other dwelling zones, such as loading and unloading.

• A receding horizon closed-loop formulation of the problem capable of
satisfying the occupancy constraints under perturbations such as model
mismatch, sensor, and measurement noise.

• Adapting the proposed approach to scenarios where human-driven ve-
hicles are present on the site and interact with the automated vehicles.

1.5 Outline
This thesis is divided into two parts, where Part I provides a context and
background for the papers that are appended in Part II. Part I consists of five
chapters, where Chapter 1 introduces the topic and contribution of the thesis.
Chapter 2 formulates the motion models and provides fundamental concepts
in optimal control, numerical optimization, and graph theory. The confined
site coordination problem is defined in Chapter 3 as well as the optimization-
based approach that is utilized. Chapter 4 provides a summary of the included
papers in Part II. Finally, Chapter 5 presents some concluding remarks as well
as suggestions for future research directions.
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CHAPTER 2

Preliminaries

This chapter gives an overview of some of the concepts used in the thesis.
In particular, Section 2.1 introduces optimal control and concepts such as
direct optimal control, model predictive control, and mixed-integer problems.
Section 2.2 provides fundamentals related to graph theory and different types
of graphs relevant to this thesis.

2.1 Optimal Control

Optimal control theory is a mathematical framework aimed at finding control
policies that optimize a certain performance criterion for dynamical systems.
An Optimal Control Problem typically involves a dynamical system described
by differential equations, a performance index (objective function) to be op-
timized, and constraints on the controls and states.
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In specific, we focus on OCPs of the type

min
u(t)

V (x(tf )) +
∫ tf

t0

l (x(t), u(t)) dt (2.1a)

s.t initial states x0 = x̂0 (2.1b)
system dynamics ẋ(t) = f (x(t), u(t)) (2.1c)
state and input constraints h (x(t), u(t)) ≤ 0, (2.1d)

where x(t), u(t) denote the state and control input trajectories, with t0 indi-
cating the initial time and tf the final time, V is the terminal cost, l is the
stage cost, x0 is the initial state, and f is the system dynamics, and h are the
state and input constraint functions. The solution of OCP (2.1) is the control
policy u∗(t).

Direct Optimal Control
An approach to solve the OCP (2.1) and obtain u∗(t) is to solve a discretized,
finite-dimension problem whose optimal solution approximates u∗(t). This
method is known as Direct Optimal Control and is also known as the “first
discretize, then optimize” approach. A parametrized approximation of the
control input trajectory is usually searched for the discretized problem. A
standard input parametrization choice is a piecewise constant input on a uni-
form time grid t0, t1, . . . , tMk

, where Mk is the number of grid elements. This
in essence leads to u(t) = u(k), t ∈ [tk, tk+1[, with u = (u0, . . . , uMk−1 and
tk = k∆t. The input discretization can be related to x(t) by for example
multiple shooting [52], which in essence leads to finding x = (x1, . . . , xMk

)
such that

xk+1 − Fk(xk, uk) = 0, k = 0, . . . , Mk − 1, (2.2)

where x0 = x̂0 and Fk(xk, uk) denotes the numerical solution to (2.1c) at
tk+1, when x(tk) = xk and u(t) = u(k), t ∈ [tk, tk+1[. Numerical integration
is necessary to express the stage cost (2.1a) and the dynamics (2.1c) in the
discretized problem. Numerical integrators can be either explicit or implicit,
and there are many different methods available, the most common of which
are Euler methods, Runge-Kutta methods, and collocation methods [53]. Re-
gardless of which numerical integrator is chosen, a discretized version of OCP
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(2.1) is:

min
x(k),u(k)

V (xMk
) +

Mk−1∑
k=0

lk (x(k), u(k)) (2.3a)

s.t initial states x0 = x̂0 (2.3b)
system dynamics xk+1 − Fk(xk, uk) = 0, k = 0, . . . , Mk − 1

(2.3c)
state and input constraints h (x(k), u(k)) ≤ 0, (2.3d)

where lk (x(k), u(k)) is the numerical integration of l (x(t), u(t)) over [tk, tk+1[.
When the optimization problem (2.3) has a nonlinear objective function and
nonlinear constraints, it is classified as a Nonlinear Program. A special case
is quadratic positive-definite l, linear f , and affine h, making the problem a
convex Quadratic Program. Details of algorithms for solving NLPs and QPs
can be found in [54].

Model Predictive Control
Once we have computed a solution to an optimization problem such as (2.3)
we might try to control the real process with the obtained trajectory. This
approach is known as open-loop control. However, this approach often leads
to poor performance, as the real process will typically not coincide with the
model that is used in the optimization problem. Furthermore, additional
process and measurement disturbances and uncertainties will further influence
the mismatch between the real process and the modeled problem. Closed-
loop control or feedback is often used to cope with model mismatches and
disturbances. A practical realization of optimal control that includes feedback
is MPC.

By solving the optimization problem (2.3a) an MPC uses the model (2.3c)
to obtain a prediction of the optimal action u∗ over a future time window.
However, since this prediction is inaccurate due to the model mismatch and
process noise, only the first part of u∗ is applied. Subsequently, the system
response is evaluated, and the process is repeated. This introduces feedback
and allows MPC to compensate for the mismatches and perturbations. The
time window is commonly known as the prediction horizon. The length of the
prediction horizon, denoted as MMPC, remains constant, allowing its endpoint
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Figure 2.1: Illustration of the receding horizon principle.

to progress with the real-time process. Due to this movement of the prediction
horizon, MPC is also known as receding horizon control.

The implementation of MPC can, in discrete time, roughly be formulated
as follows:

1. At time t(k), observe the current state of the system x̂.

2. Solve an open-loop optimization problem such as (2.3a) starting at the
state x̂(k) for the optimal control input u∗.

3. Implement the first control action u∗
0 at the real process.

4. Wait until t(k) + ∆t and then repeat the procedure, where ∆t is known
as the sample time.

Figure 2.1 illustrates the operational concept of MPC. Further details on MPC
variants and the theory behind stability and feasibility can be found in [55].

Mixed-Integer Problems
A Mixed-Integer Problem is a problem with both real and integer decision
variables. A general form of an MIP where the integer variables are binary
can be stated as
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2.2 Graph Theory

min
x,b

f (x, b) (2.4a)

s.t g (x, b) = 0 (2.4b)
h (x, b) ≤ 0 (2.4c)
b ∈ {0, 1}nb , (2.4d)

where x ∈ Rn denotes the vector of continuous variables and b denotes the vec-
tor of binary variables, with n, nb being the number of continuous and binary
variables, respectively. The objective function is denoted as f , g is the vector
of equality constraints, and h is the vector of inequality constraints. If f, g, h

are twice differentiable in x and b, we speak of a Mixed-Integer Non-Linear
Program. Generally, MINLPs are very hard to solve due to the combinatorial
nature of the binary variables.

A popular approach for solving MIPs is the Branch and Bound method.
It involves dividing the problem into smaller subproblems, bounding their
potential solutions, and intelligently exploring the solution space to converge
toward the global optimum. The method consists of key components like node
selection, branching, and bounding, and it is characterized by its ability to
efficiently explore large solution spaces, making it a fundamental technique
in solving complex optimization problems. Numerous variants of the Branch
and Bound method exist, primarily distinguished by their search strategies.
Nevertheless, this fundamental procedure remains the core of numerous widely
used solvers for mixed-integer problems.

2.2 Graph Theory
Graph theory is a fundamental field of mathematics and computer science,
focusing on the study of graphs—mathematical structures used to model pair-
wise relations between objects [56], [57]. A graph G = (V, E) is composed of
vertices V (also called nodes) and edges E (links or lines) that connect pairs of
vertices. Graph theory has applications in various areas, including computer
networks, social networks, biology (to model and study relationships between
genes, proteins, etc.), transportation networks, and many more.

In general, graphs can be directed or undirected, where a directed graph is
a graph where the edges have a direction, indicating a one-way relationship
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Figure 2.2: Examples of an undirected multigraph and a weighted directed graph.

between two vertices. In undirected graphs, the edges do not have a direction,
and the relationship between two vertices is considered bidirectional. Further-
more, the undirected and directed graphs can be multigraphs where the graph
contains multiple edges (also known as parallel edges) between the same set
of vertices, and they can be weighted graphs where each edge is assigned a
weight or cost. Figure 2.2 depicts an undirected multigraph and a directed
weighted graph.

An adjacency matrix Aadj is a square matrix used to represent a finite graph.
The matrix elements indicate whether pairs of vertices are adjacent or not in
the graph. For undirected graphs, the adjacency matrix is an n × n matrix,
where Aadj[i, j] = 1 if there is an edge between vertex i and vertex j, and
Aadj[i, j] = 0 otherwise. For a weighted graph, instead of 1, Aadj[i, j] would
represent the weight of the edge between vertices i and j. For directed graphs,
the adjacency matrix is not necessarily symmetric. That is, Aadj[i, j] can be
different than Aadj[j, i], reflecting the direction of edges. The adjacency matrix
is useful for analyzing graph properties and implementing graph algorithms
in computer programs.

Beyond the traditional adjacency matrices and linear interactions, graph
theory expands to include bond, dual, and nonlinear graphs offering differ-
ent ways to model complex systems. Bond graphs provide a framework for
depicting energy flow in mechanical, electrical, and hydraulic systems by rep-
resenting energy components as edges in a graph, capturing system dynamics
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effectively. This method is particularly useful for modeling systems with non-
linear dynamics, focusing on energy transfer mechanisms. Dual graphs offer
a perspective where the roles of nodes and edges are inverted, facilitating the
analysis of spatial relationships and network topology. This concept is valu-
able in geographical mapping and optimizing network structures, providing
alternative analytical approaches. Nonlinear graphs extend the application of
graph theory to model complex relationships that are not linear, crucial for
fields like neural networks and biological systems.
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CHAPTER 3

Confined Site Vehicle Coordination

This section discusses the modeling aspects of the coordination problem, fo-
cusing on the vehicle motion models and conditions for collision avoidance.
Furthermore, it defines the high-level vehicle coordination problem as an Op-
timal Control Problem and outlines the heuristic strategy employed in the
included papers. Finally, the low-level receding horizon controller is defined,
and the closed-loop framework is presented.

3.1 Motion Models

For the vehicle coordination task, it is sufficient to only consider the longitu-
dinal dynamics as it is often assumed that the given path is known and that
the vehicles follow the assigned path perfectly.
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General Form
The vehicle motion along the path can, without restriction from the above-
mentioned assumption, be described as

ṗi(t) = vi(t) (3.1)
ẋi(t) = fi(pi(t), xi(t), ui(t)) (3.2)

0 ≤ hi(pi(t), xi(t), ui(t)). (3.3)

where pi(t) ∈ R is vehicle i’s position, xi(t) ∈ Rni is the vehicle’s state,
ui(t) ∈ Rmi is the control input, with i ∈ {1, . . . , NAV} where NAV is the
total number of AVs. The state is subdivided as xi(t) = (vi(t), zi(t)), with
the speed along the path vi(t) ∈ R and zi(t) ∈ Rni−1 collecting possible other
states. The functions fi and hi, both assumed smooth, describe the dynamics
and constraints that capture, e.g., actuator and state limitations.

Remark 1. Note that the remaining possible states zi(t) directly depend on
the choice of a vehicle model. For example, if the vehicle is modeled as a
triple integrator ...

x (t) = u(t), the remaining vehicle states are zi(t) = ai(t),
with ai(t) being the acceleration. The state variables are thus pi(t), xi(t) =
(vi(t), ai(t)).

General Form in Space
For confined site optimization, it is beneficial to optimize the trajectories of
the vehicles over their full paths, as the time it takes a vehicle to traverse a
path is dependent on the solution and not known a-priori. Consequently, it
is inappropriate to plan the vehicle’s motion with time as the independent
variable. The motion model (3.1) can be reformulated in the spatial domain
using that dpi

dt = vi(t) and dt = dpi/vi(t):

dti

dpi
= 1

vi(pi)
(3.4)

dxi

dpi
= 1

vi(pi)
fi(pi, xi(pi), ui(pi)) (3.5)

0 ≤ h(pi, xi, ui). (3.6)

This leads to that position is now the independent variable and that travel
time ti is a state variable.
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3.1 Motion Models

Remark 2. Note that equation (3.4) imposes that the velocity must be strictly
positive.

Human-driven vehicle models
Similarly to the AVs, for confined sites, it can be assumed that the routes of
human-driven vehicles are known since they can be required to follow certain
pre-defined routes. It is thus possible to formulate the motion of the HDVs
along the path with the position as an independent variable. However, HDVs
have an uncertain motion profile due to the human factor. Accounting for the
uncertainty, the HDV motion along the path can be formulated as

dtj

dpj
= 1

vj(pj , qj(pj)) (3.7)

dxj

dpj
= 1

vj(pj , qj(pj))fi(pj , xj(pj), uj(pj), qj(pj)) (3.8)

0 ≤ h(pj , xj , uj , qj(pj)), (3.9)

where qj is the system parameter uncertainty, which describes the human
factor, and j ∈ 1, . . . NHDV where NHDV is the total number of HDVs.

Car-following model

The model defined with (3.7)-(3.9) represents the motion of the HDV in free-
flow, i.e., when there are no other interacting vehicles that would influence
the motion of the HDV. However, in special cases when there is a vehicle in
front of the HDV, the motion of the HDV can be defined using a car-following
model

dtj

dpj
= 1

vj(pj , xlead
i (pi))

(3.10)

dxj

dpj
= 1

vj(pj , xlead
i (pi))

fi(pj , xj(pj), uj(pj), xlead
i (pi)) (3.11)

0 ≤ h(pj , xj , uj , xlead
i (pi)), (3.12)

where xlead
i (pi) is the lead vehicle’s states. Consequently, when the HDV

operates behind an AV, it is no longer uncertain since its motion depends on
the lead AV.
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Figure 3.1: Narrow road and intersection-like MUTEX zones.

3.2 Collision Avoidance Conditions
The collision avoidance conditions should ensure a conflict-free occupancy of
the MUTEX zones. The mutual exclusion condition depends on the type of
zone. There are multiple types of MUTEX zones that the vehicles encounter
during their operation, like intersections, narrow roads, dwelling zones, etc.
Furthermore, the vehicles can have multiple combinations of different MUTEX
zones for one operating mission.

A MUTEX zone is defined by the entry and exit position [pin
i , pout

i ] on the
path of each vehicle. From the known positions, the entry and exit times of
Vehicle i are obtained from (3.4) and are tin

i = ti(pin
i ) and tout

i = ti(pout
i ),

respectively.

Narrow roads and intersection-like zones
In the narrow road MUTEX zones, Figure 3.1-(a), meeting oncoming vehicles
is not possible. From a safety perspective, this translates to “reserving” the
zone for one or more vehicles coming from the same direction. The vehicles
coming from the opposite direction are not allowed to occupy the zone until
it is vacated. The intersection-like MUTEX zone, Figure 3.1-(b) is similar to
the narrow road regarding its safety requirement, i.e., Vehicle a cannot enter
the MUTEX zone before Vehicle b exits the MUTEX zone, or vice-versa.

Let I = {I1, I2, ..., Irtot} denote the set of all intersections and narrow roads
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Figure 3.2: Merge-split MUTEX zone.

in the confined area, with rtot being the total number of intersections and
narrow roads, and Qr = {qr,1, qr,2, ..., qr,l} denote the set of vehicles that cross
an intersection or narrow road Ir. A sufficient condition for collision avoidance
for the r-th intersection or narrow road MUTEX zone can be formulated as

tout
i ≤ tin

i+1 or tout
i+1 ≤ tin

i , i ∈ I[1,|Qr|−1], (3.13)

where t is determined from (3.4).

Merge-splits

In the merge-split zone depicted in Figure 3.2, two vehicles coming from differ-
ent roads but moving in the same direction of travel join together on a common
patch of road. After some distance, the roads separate. For this type of MU-
TEX zone, let MS = {MS1, MS2, ..., MSwtot} denote a set of all merge-split
zones, with wtot being the total number of merge-split zones in the site and
Zw = {zw,1, zw,2, ..., zw,h} denote the set of vehicles that cross the merge-split
zone MSw. For efficiency, it is desirable to have several vehicles in the zone
simultaneously instead of blocking the whole zone. This requires imposing
rear-end collision constraints once the vehicles have entered the merge-split
zone. The collision avoidance requirement for the w-th merge-split zone is
described with the following constraints:
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tki
i + ∆t ≤ ti+1(pki

i − pin
i + pin

i+1 − c), kin
i ≤ ki ≤ kout

i (3.14a)
or

t
ki+1
i+1 + ∆t ≤ ti(pki+1

i+1 − pin
i+1 + pin

i − c), kin
i+1 ≤ ki+1 ≤ kout

i+1, (3.14b)
i ∈ I[1,|Zw|−1],

where ki is an index of the position vector psw,i
.

The constraints (3.14) ensures that while in the MUTEX zone, the vehicles
must be separated by at least a time-period ∆t and a distance c, depending
on if vehicle i is in front of vehicle i + 1 or vice versa. This is equivalent to
the standard offset and time-headway formulation often used in automotive
adaptive cruise controllers [58].

Dwelling zones
Dwelling zones such as charging stations and loading and unloading stations
are also zones that are characteristic for confined sites. In these zones, the
vehicles are absorbed for some time while they perform an action such as
charging or loading and unloading goods or materials. The mission planner
components assigns a vehicle to visit a dwelling zone. The zones consist of a
road patch that leads to the charger/loading/unloading location and a road
patch after the charger/loading/unloading location until a merge point with
the remainder of the road. When a vehicle visits a dwelling station, it is
required to make a full stop at the charger/loading/unloading location, and
after some time, tabsorb

i the vehicle leaves the station with an increased state
of charge or increased/decreased vehicle mass. The advantage of utilizing a
spatial model is that time is a state variable. To account for the absorption
time, we can modify the time state constraint by adding the duration of
the charging/loading/unloading process. Essentially, the time state after the
charger/loading/unloading location is:

tDZ+1
i = tDZ+1

i + tabsorb
i , (3.15)

where DZ is the position of the charger/loading/unloading location. Note
that the charging/loading/unloading time is communicated and decided by
the mission planner component. The increase in the state of charge or in-
crease/decrease of vehicle mass depends directly on the charging/loading/
unloading time and the capacity of the charging/loading/unloading stations.
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Figure 3.3: Charging station MUTEX dwelling zone.

In the case when two or more vehicles are assigned to the dwelling zone,
the algorithm needs to enforce rear-end constraints for collision avoidance.
We formalize the constraints by first defining a set of all dwelling zones as
DZ = {DZ1, DZ2, ..., DZetot}, with etot being the total number of dwelling
zones in the site. Furthermore, let Ge = {ge,1, ge,2, . . . , ge,y} denote the set
of vehicles that utilize the dwelling zone DZe. The collision avoidance con-
straints for the e-th dwelling zone are thus stated as

tki
i + ∆t ≤ ti+1(pki

i − pin
i + pin

i+1 − c), kin
i ≤ ki < kDZ

i (3.16a)
vki

i = vi, ki = kDZ
i (3.16b)

tki
i = tki

i + tabsorb
i , ki = kDZ

i + 1 (3.16c)
tki
i + ∆t ≤ ti+1(pki

i − pin
i + pin

i+1 − c), kDZ
i + 1 ≤ ki ≤ kout

i (3.16d)
or

t
ki+1
i+1 + ∆t ≤ ti(pki+1

i+1 − pin
i+1 + pin

i − c), kin
i+1 ≤ ki+1 < kDZ

i+1 (3.16e)

v
ki+1
i+1 = vi+1, ki+1 = kDZ

i+1 (3.16f)

t
ki+1
i+1 = t

ki+1
i+1 + tabsorb

i , ki+1 = kDZ
i+1 + 1 (3.16g)

t
ki+1
i+1 + ∆t ≤ ti(pki+1

i+1 − pin
i+1 + pin

i − c), kDZ
i+1 + 1 ≤ ki+1 ≤ kout

i+1, (3.16h)
i ∈ I[1,|Ge|−1],

where kDZ
i is the index where the vehicle position is at the location of the

charger or loading/unloading station and vi is the lower bound on the velocity.

Remark 3. The vehicles are required to make a full stop at the location of the
charger or loading/unloading station, however, as noted by Remark 2, this is
restricted when using a model in the spatial domain. This restriction imposes
that the low-level controller must take the vehicles to a full stop and form
a queue where the preceding vehicles wait behind the vehicle that utilizes the
charger/loading/unloading station at a sufficient distance.
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MUTEX zones with HDVs
When an AV has a MUTEX zone with an HDV, it primarily needs to account
for the variety of reactions and motion profiles the human-driven vehicle can
have due to its uncertain system model (3.7), (3.8). We consider the two ex-
treme cases of human driving, i.e., conservative and aggressive driving. From
the HDV system model we can obtain upper and lower bounds for the entry
and exit times, where the upper bound (tin

j , t
out
j ), i.e., higher entry and exit

times, corresponds to a conservative driver and the lower entry and exit times
(tin

j , tout
j ) correspond to an aggressive driver.

The AV safety constraints must consider the entry and exit times range.
Consequently, we can reformulate the constraints in (3.13) as

tout
i ≤ tin

i+1 or t
out
i+1 ≤ tin

i , i ∈ I[1,|Qr|−1]. (3.17)

and (3.14) as

tki
i + ∆t ≤ ti+1(pki

i − pin
i + pin

i+1 − c), kin
i ≤ ki ≤ kout

i (3.18a)
or

t
ki+1
i+1 + ∆t ≤ ti(pki+1

i+1 − pin
i+1 + pin

i − c), kin
i+1 ≤ ki+1 ≤ kout

i+1 (3.18b)
i ∈ I[1,|Zw|−1],

and (3.16) as

tki
i + ∆t ≤ ti+1(pki

i − pin
i + pin

i+1 − c), kin
i ≤ ki < kDZ

i (3.19a)
vki

i = vi, ki = kDZ
i (3.19b)

tki
i = tki

i + tabsorb
i , ki = kDZ

i + 1 (3.19c)
tki
i + ∆t ≤ ti+1(pki

i − pin
i + pin

i+1 − c), kDZ
i + 1 ≤ ki ≤ kout

i (3.19d)
or

t
ki+1
i+1 + ∆t ≤ ti(pki+1

i+1 − pin
i+1 + pin

i − c), kin
i+1 ≤ ki+1 < kDZ

i+1 (3.19e)

v
ki+1
i+1 = vi+1, ki+1 = kDZ

i+1 (3.19f)

t
ki+1
i+1 = t

ki+1
i+1 + tabsorb

i , ki+1 = kDZ
i+1 + 1 (3.19g)

t
ki+1
i+1 + ∆t ≤ ti(pki+1

i+1 − pin
i+1 + pin

i − c), kDZ
i+1 + 1 ≤ ki+1 ≤ kout

i+1, (3.19h)
i ∈ I[1,|Ge|−1],
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3.3 General Optimal Vehicle Coordination Problem

where the vehicle with index i + 1 in (3.17), (3.18) and (3.19) corresponds to
an HDV.

Remark 4. Note that each MUTEX zone implies a crossing order that in
this paper is denoted as OI , OMS , ODZ , where OI =

{
OI

1 , . . . , OI
rtot

}
is the

collection of all crossing order sets for all intersections and narrow roads and
OMS =

{
OMS

1 , . . . , OMS
wtot

}
is the collection of all crossing order sets for the

merge-split zones, and ODZ =
{

ODZ
1 , . . . , ODZ

etot

}
collects all crossing order

sets for the dwelling zones.

3.3 General Optimal Vehicle Coordination Problem
With the defined motion models and constraints, we can now assemble the
vehicle coordination problem as an OCP. The optimal coordination of NAV
fully automated vehicles in confined sites is the solution to the following OCP,
given the initial state X0 = {x1,0, ..., xNAV,0}

min
xi,ui,OI ,OMS ,ODZ

NAV∑
i=1

Ji (xi, ui) (3.20a)

s.t. initial states xi,0 = x̂i,0, ∀i (3.20b)
system dynamics (3.4), (3.5) ∀i, (3.20c)
state and input constraints (3.6), ∀i, (3.20d)
safety constraints with AVs (3.13), (3.14), (3.16) ∀i,

(3.20e)
safety constraints with HDVs (3.17), (3.18), (3.19) ∀i.

(3.20f)

The solution of (3.20) provides the state and input trajectories X ∗ ={
x∗

1, ..., x∗
NAV

}
, U∗ =

{
u∗

1, ..., u∗
NAV

}
.

Remark 5. The cost function of the OCP (3.20) can take different forms
and could depend on the vehicle type and the goal of the specific site. The
framework itself is not constrained by a specific choice of a cost function. For
coordination problems, some common choices are minimizing the deviation
from the reference velocity and minimizing end time, both of which are related
to productivity. Furthermore, for electric vehicles, it is beneficial to improve
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Chapter 3 Confined Site Vehicle Coordination

energy efficiency by minimizing the consumed energy. Minimizing the squares
of the vehicle’s acceleration and jerk is typically related to improved comfort
and reduction of component wear.

Remark 6. Note in particular that this involves finding the crossing orders
OI , OMS , ODZ which makes the problem combinatorial and expensive to
solve. The reason is that different crossing orders correspond to different state
and input trajectories. The solution space rapidly grows with the number of
vehicles and MUTEX zones.

Remark 7. OCP (3.20) can be stated as a mixed integer nonlinear program,
where the crossing order corresponds to the “integer part” and the state and
control trajectories correspond to the “NLP part”.

3.4 A two-stage optimization-based heuristic
Due to the combinatorial nature of the OCP (3.20), finding a solution can, in
the worst case, require a full exploration of the solution space. In most practi-
cal cases, directly solving (3.20) is not a reasonable, viable option. Therefore,
a common approach is to rely on heuristics to decompose and approximate
the problem.

The heuristic approach taken in this thesis is to split the OCP into two
stages, wherein the first stage we obtain the crossing order sets, followed by
solving an NLP for the state and input trajectories, using the obtained crossing
order. The heuristic utilizes the formulation of OCP (3.20) as a MINLP. We
can, therefore, state the OCP (3.20) in the general form as

min
W,b

J(W) (3.21a)

s.t. g(W) = 0 (3.21b)
h(W) ≤ 0 (3.21c)
c(W, b) ≤ 0, (3.21d)

where W = {X , U} is a set containing the state and input variables, J(W) =∑NAV
i=1 Ji (wi), g(W), h(W) gather all equality and inequality constraints, and

c(W, b) = cw(W)+Cb are the integer constraints for the combinatorial part of
the problem with C being a matrix that captures the influence of the integer
variables.
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3.4 A two-stage optimization-based heuristic

Practical reformulation of the collision avoidance conditions
A common way to handle constraints such as (3.13), (3.14), (3.16), (3.17),
(3.18) and (3.19) is to introduce auxiliary binary variables and use the “big-
M” technique [59]. For example, an equivalent representation to the constraint
(3.13), is

tout
i − tin

i+1 ≤ bi,i+1M, (3.22a)
tout
i+1 − tin

i ≤ (1 − bi,i+1)M. (3.22b)

where bi,i+1 ∈ {0, 1} , i ∈ I[1,|Qr|−1] and M a sufficiently large positive num-
ber. In the case where bi,i+1 = 0, the vehicle i + 1 is constrained to cross the
MUTEX zone after the vehicle i, with the opposite being true if bi,i+1 = 1. We
collect all integer variables for all MUTEX zones in bMUTEX ∈ Zrtot+wtot+etot

2 .

MIQP-based crossing order heuristic
One approach of obtaining the crossing order sets is through an approximation
of the MINLP (3.21). In this thesis, we propose a Mixed Integer Quadratic
Program that is assembled as a quadratic approximation of (3.21). The way
the quadratic approximation is formed is similar to how the QP sub-problems
are formed in Sequential Quadratic Programming methods [54]. In essence,
we can reformulate (3.21) as

min
∆W,b

1
2

[
∆W

b

]T

H(W, λ, µ)
[
∆W

b

]
+

▽WJ(W)T

[
∆W

b

]
+ J(W∗∗) (3.23a)

s.t. g(W∗∗) + ▽Wg(W∗∗)T

[
∆W

b

]
= 0 (3.23b)

h(W∗∗) + ▽Wh(W∗∗)T

[
∆W

b

]
≤ 0 (3.23c)

cw(W∗∗) + ▽Wcw(W∗∗)T

[
∆W

b

]
+ Cb ≤ 0, (3.23d)

where H(W, λ, µ) = blkdiag
(

{Hi}NAV
i=1 , 0ntot,ntot

)
is a block diagonal ma-

trix with positive definite Hi(wi, λi, µi) = ▽2
wi

L(wi, λi, µi) = ▽2
wi

Ji(wi) −
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Chapter 3 Confined Site Vehicle Coordination

▽2
wi

λT
i g(wi) − ▽2

wi
µT

i h(wi), where λi, µi are the dual variables, b = [bMUTEX;
bHDV] is a vector comprised of binary variables related to the safety con-
straints and binary variables related to if a car-following model should be
used for the HDV motion profile, and 0ntot,ntot zeros of appropriate size for
the integer variables, ntot = rtot + wtot + etot + hdvtot being the total amount
of MUTEX zones and total amount of binary variables used for the HDVs,
and ∆W = W − W∗∗, with a solution guess W∗∗. The MIQP problem (3.23)
can be compactly written as

min
W,b

1
2

[
W
b

]T

H
[
W
b

]
+ JT

[
W
b

]
+ α (3.24a)

s.t. Aeq

[
W
b

]
= beq (3.24b)

Aineq

[
W
b

]
≤ bineq, (3.24c)

where J now contains all the first order terms, α contains the linear terms and
where the constraints (3.23b)-(3.23d) are grouped into equality constraints
Aeq, beq and inequality constraints Aineq, bineq, respectively. The solution to
the MIQP problem provides crossing orders ÔI , ÔMS , ÔDZ that is obtained
from the values of the integer variables b and are optimal for the approximated
problem.

Remark 8. The crossing orders obtained from the MIQP (3.24) are optimal
solutions for the given problem. However, as the MIQP is an approximation of
the MINLP, the crossing orders resulting from the MIQP could be sub-optimal
for the MINLP.

As mentioned, the HDV switches to a car-following model if there is an AV
ahead of it in the merge-split zones. In the MIQP (3.24), the relation captured
with the binary variables determines if this condition is satisfied and if the
car-following model should be used. The car-following model is activated if
any of the merge-split constraints are violated by the uncertain free flow HDV
model, i.e., if the time-headway between the lead AV and the following HDV
is less than a defined threshold. When these conditions are fulfilled, the HDV
should switch to a car-following model in the merge-split zone.

Remark 9. We make the simplification that the dual variables (λi, µi) are

30



3.4 A two-stage optimization-based heuristic

Figure 3.4: Illustration of the two-stage heuristic used for the vehicle coordination
problem.

equal to zero. This results in that Hi only includes the second order expansion
of the cost function, i.e., Hi(wi) = ▽2

wi
Ji(wi).

Remark 10. In practice, there is no restriction on the solution guess W∗∗

as long as it is a feasible solution. A solid solution guess can be obtained,
for example, by solving the optimization problem (3.20) without safety con-
straints (3.20e), (3.20f), or through a forward simulation of the vehicles with,
for example, a simple feedback controller. It is also important to note that
the heuristic is more sensitive to poor solution guesses if the vehicles have
limited control authority, for example, if the vehicles are in close proximity to
a MUTEX zone.

Fixed-order NLP
With the obtained crossing order sets from the MIQP (3.24), the OCP (3.20)
is reduced to an NLP since all other integer solutions are removed. Obtaining
the optimal state and control trajectories is thus found through solving the
fixed-order coordination problem

min
xi,ui

J(W) (3.25a)

s.t (3.20b) − (3.20f), ∀i (3.25b)
b = b∗. (3.25c)

Furthermore, using the values of the binary variables bHDV, it can be deter-
mined if, in a merge-split MUTEX zone, there are conditions for the HDV to
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Chapter 3 Confined Site Vehicle Coordination

switch to the car-following model. In the cases where those conditions are sat-
isfied, the motion of the HDV during the merge-split zone in the fixed-order
NLP is defined using the car-following model. This allows for the NLP to
have more accurate estimates of the HDV motion and to utilize the partial
controllability of the HDV by adjusting the motion of the lead AV.

The two-stage approximation approach that solves (3.20) is summarized in
Algorithm 1 and the process is illustrated through Figure 3.4 and the flow
chart in Figure 3.5.

Algorithm 1 Two-stage approximation algorithm

Input: NAV, I, Qr, MS, Zw, DZ, Ge, vehicle paths
Output: X ∗, U∗

1: ∀i: Obtain a solution guess by, e.g., solving NLP (3.20) w/o the safety
constraints (3.20e), (3.20f).

2: Calculate and form the terms H, J, α.
3: Solve the MIQP (3.24) to obtain b∗.
4: Solve the fixed-order NLP (3.25) using b = b∗ to obtain X ∗, U∗.

3.5 Receding horizon control

In a practical setting, the available measurements are typically uncertain,
there are additional external disturbances, and the motion model that is used
is not exact to the real process. For that reason, we need to introduce feed-
back to the control framework. A closed-loop formulation of the coordination
problem can be achieved by having a low-level controller that tracks the high-
level motion plan in a receding horizon fashion. The low-level controller in
this thesis is set up as a Model Predictive Controller that tracks the motion
plan in time and sends the actuation signals to the vehicles. A brief introduc-
tion is given in Section 2.1. We assume that the AVs and HDVs are equipped
with communication equipment, inertial measurement units, and RTK-GNSS
receivers. Figure 3.6 illustrates the proposed control structure.
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3.5 Receding horizon control

Figure 3.5: Flow chart illustrating the two-stage approach.

Robustness aspects
The high-level control formulation requires that the vehicle is at a prescribed
position at a given time. However, satisfaction of such constraints in practice
is difficult due to the presence of perturbations, such as measurement errors
and/or process noise. Consequently, the safety constraints are at risk of being
violated, leading to undesired occupancy of the MUTEX zones. Robust co-
ordination could be achieved through constraint tightening in the high-level
controller, similarly as done in [25]. In particular, we can replace constraints
(3.13) with

tout
i ≤ tin

i+1 + σr,1 or tout
i+1 ≤ tin

i + σr,2, i ∈ I[1,|Qr|−1], (3.26)

where σr,1 ≥ 0 and σr,2 ≥ 0 are slack variables.

Recomputation algorithm
The high-level optimization-based approach is invoked at the beginning of the
mission and when the plan needs to be recalculated due to changes, such as
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Chapter 3 Confined Site Vehicle Coordination

Figure 3.6: Schematic illustration of the proposed control structure. The low-level
controller (LLC) translates the motion plan to appropriate vehicle con-
trol actions.

vehicles deviating from the plan, a certain amount of time has elapsed, or a
new vehicle entering the confined area. A new vehicle can, for example, enter
the confined site optimization problem when more transportation resources
are required to accomplish the productivity goal. When the recomputation is
triggered, the initial step involves identifying environmental changes since the
last high-level algorithm iteration. This encompasses tracking zones traversed
by vehicles and identifying any new MUTEX zones. The responsibility for
this lies with the Path planner component, which is beyond the scope of this
thesis.

Remark 11. The HDV can have a large disparity between the entry and exit
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times due to the uncertain motion profile. However, through receding-horizon
optimization, the range of occupancy time is reduced with each recomputation
as the vehicle moves closer to the zone.

The high-level controller receives the number of vehicles, their paths, and
the MUTEX zones as input from the Path planner component. Each recom-
putation yields a potential new set of crossing orders for vehicles. There exists
a potential scenario where a crossing order is issued for a zone that vehicles
cannot adhere to, especially when one or more vehicles are close to the zone.
This situation can lead to an infeasible NLP problem as the control ability of
the vehicles is limited. To address this, if a vehicle is positioned at a prede-
fined distance before the MUTEX zone, the crossing order for that vehicle in
that zone remains fixed. Consequently, the vehicle is excluded from the MIQP
problem for that zone. Nonetheless, the safety constraints for other interact-
ing vehicles are maintained at the fixed-order NLP level. This approach allows
the occupancy order of other interacting vehicles to adapt if needed while en-
suring compliance with safety constraints involving the vehicles deemed too
close to the zone.

3.6 Summary
In this chapter, we introduced the system models and vehicle and MUTEX
zone constraints that define the vehicle coordination problem. Using the mod-
els and constraints, we introduced an optimal control formulation of the vehi-
cle coordination problem. The proposed OCP formulation is general, mean-
ing that it does not depend on a specific choice of objective function, vehicle
models, and constraints. We also introduced a two-stage optimization-based
heuristic that is used to solve the optimal vehicle coordination problem in
a practical setting. Furthermore, we stated a closed-loop formulation of the
problem through a receding horizon approach that tracks the state trajectories
resulting from the vehicle coordination problem. The appended papers elab-
orate on the two-stage heuristic, its use in mixed-traffic vehicle coordination,
and a decomposition strategy for the heuristic that can be used as a tunable
trade-off between solution optimality and computational demand.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers. The thesis author
was responsible for developing the problem formulation in collaboration with
the co-authors, implementing the algorithms, and authoring the papers. The
co-authors contributed with support to the analysis of the results and the
writing process.

4.1 Paper A
Stefan Kojchev, Robert Hult, Jonas Fredriksson, Maximilian Kneissl
A Two-Stage MIQP-Based Optimization Approach for Coordinating Au-
tomated Electric Vehicles in Confined Sites
IEEE Transactions on Intelligent Transportation Systems (2023)
©845 IEEE DOI: 10.1109/TITS.2023.3320168 .

This paper proposes a high-level optimization-based approach for the coor-
dination of automated vehicles in confined sites. The paper motivates why the
vehicle coordination problem is suitable to be formulated as an optimization
problem. However, the stated optimization problem is difficult to solve due to
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Chapter 4 Summary of included papers

its combinatorial nature that is related to the utilization of the site’s mutually
exclussive zones. To address this issue, we propose a two-stage optimization-
based heuristic. The first stage of the approach consists of defining and solving
a mixed integer quadratic program that obtains the occupancy orders for all
MUTEX zones between the vehicles. The subsequent component utilizes the
obtained occupancy orders and computes the optimal state and input tra-
jectories for the AVs by solving a nonlinear program. The paper focuses on
electric vehicles prioritizing energy efficiency. Furthermore, we include charg-
ing MUTEX zones and the charging process into the optimization algorithm.
We demonstrate the efficacy of our approach through simulation and compare
it with alternative optimization-based heuristics.

Research Objective: This work addressed RQ1 and proposed a method
not bounded by a specific choice of model, constraints, and objective func-
tion. The analysis focused on electric vehicles and the necessity to include the
charging process in the vehicle coordination problem. The method is a base
for the extensions proposed in Paper B and Paper C

4.2 Paper B
Stefan Kojchev, Robert Hult, Maximilian Kneissl, Jonas Fredriksson
A Computational Decomposition Strategy for Optimization-Based Co-
ordination of Automated Vehicles in Confined Sites
Under a second review in IEEE Transactions on Intelligent Transporta-
tion Systems (2023) .

In this paper, we present a computation decomposition approach for the
optimization-based heuristic presented in Paper A. The method reduces the
computational demand of the second step of the heuristic by decomposing the
nonlinear program into multiple smaller, parallelly solvable, NLPs. Leverag-
ing graph theory, the approach models the connections between the vehicles
through the mutually exclusive zones that they share. Utilizing the vehicle po-
sitions and the confined site road network the method identifies non-significant
MUTEX relations, i.e., MUTEX zones where there cannot be a conflict be-
tween the vehicles, and identifies independent subproblems. We show that the
results from our proposed method are equivalent to those obtained by solv-
ing the non-decomposed NLP. Furthermore, by utilizing the dual variables
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4.3 Paper C

connected to the MUTEX constraints, our approach can further subdivide
the problem. Specifically, the method can be used to balance optimality and
computational effort. We demonstrate how this method can be applied both
for creating initial motion plans and for updating existing ones. Simulation
examples highlight the computational advantages of our method compared to
the non-decomposed problem.

Research Objective: This work aimed to utilize the confined site appli-
cation to reduce the computational load associated with solving the vehicle
coordination problem. Specifically, it focused RQ2 and developed a strategy
to manage dynamic situations, such as the introduction of a new vehicle into
the coordination problem.

4.3 Paper C
Stefan Kojchev, Robert Hult, Maximilian Kneissl, Jonas Fredriksson
Optimization-Based Coordination of Automated and Human-Driven Ve-
hicles in Confined Sites
Submitted to IEEE Special Issue on Transactions on Control Systems
Technology (2023) .

This paper builds on the two-stage optimization-based heuristic from Paper
A by adding human-driven vehicles and applying the approach in a closed-loop
receding horizon framework. We propose a model for HDVs that accounts for
different driving styles and uncertainties. Furthermore, the method captures
the possibility for the HDV to operate in car-following mode, in particular
when there is a lead vehicle in the merge-split MUTEX zones. This situa-
tion offers an opportunity for the framework to influence the HDV’s motion
through the lead AV. In particular, the algorithm could control the HDV
motion for the benefit of the overall AV fleet. Additionally, the HDVs ex-
hibit more predictable motion in car-following mode, reducing uncertainty
about occupancy times in upcoming MUTEX. Closed-loop control is achieved
through a receding-horizon approach that tracks the high-level motion plan.
We demonstrate the efficacy of our methodology through simulation scenarios.
These simulations show our system’s ability to exert partial control over HDVs
and dynamically adjust the coordination strategy based on observed HDV mo-
tion profiles. This adaptability underlines the potential of our framework to
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improve the integration and management of mixed-traffic environments in-
volving both HDVs and AVs.

Research Objective: This study aims to integrate human-driven vehicles
into the coordination problem by modifying the methodology presented in Pa-
per A. The primary focus is on addressing RQ3 and on developing a receding
horizon closed-loop formulation.
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CHAPTER 5

Conclusion

In this chapter, the thesis is concluded by addressing the research goals and
possible directions for future research.

Concluding remarks

This thesis presented an optimization-based framework for coordinating au-
tomated vehicles in confined environments. The framework leverages the con-
fined site requirements and the presence of a communication and computation
center. Consequently, the coordination problem is formed and computed cen-
trally for all vehicles. However, this results in a complex and computationally
challenging problem, particularly due to the combinatorial aspects related
to occupancy constraints in MUTEX zones. To address this, we propose a
two-stage optimization-based heuristic where the combinatorial part of the
problem is considered by solving an MIQP formed as an approximation of the
coordination problem. The second stage uses an NLP to determine optimal
vehicle states and inputs, respecting the established occupancy order. Im-
portantly, the proposed framework is not dependent or bounded by a specific
choice of confined site layout, models, constraints, or objective functions and
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can be adapted to various confined site layouts and conditions.
Additionally, the heuristic is adapted for mixed-traffic situations with human-

driven vehicles. It incorporates a vehicle model to estimate the motion of the
HDV, accounting for driver reaction uncertainty. The framework effectively
utilizes these estimates to organize occupancy orders and influence HDV be-
havior, particularly when an automated vehicle leads an HDV. In such sce-
narios, a car-following model is employed, wherein the HDV motion responds
to the leading AV. We applied the optimization algorithms to closed-loop con-
trol through MPC, showcasing the framework’s ability to dynamically adjust
occupancy orders and motion profiles in response to the observed conditions
and estimation.

However, the computational demand of the framework remains a signifi-
cant challenge, especially for long optimization horizons. In particular, the
centralized NLP that computes the motion plan for all automated vehicles is
the predominant component in the computational demand of the approach.
This thesis addresses this challenge by proposing a decomposition strategy
that segments the centralized NLP into smaller, parallel-solvable NLPs. The
decomposition strategy is based on a graph-theoretical interpretation of the
coordination problem and utilizes the dual variables related to the MUTEX
constraints as graph weights. The approach can be used to determine the
trade-off between optimality and computation since as the problem is increas-
ingly decomposed, there is a corresponding decrease in the level of optimality
achieved.

Future work
In this section, several possible directions for future research are presented.

Safety guarantees

The presented work incorporates safety constraints and ensures inter-vehicle
collisions and undesired MUTEX zone occupancy, even in the presence of mea-
surement and sensor perturbances. Nevertheless, this approach depends on
models and assumptions that only partially reflect actual conditions. For the
presented algorithm and others similar to it to be implemented and delivered
to customers, they must consistently adhere to safety constraints and provide
guarantees. This issue is commonly addressed by integrating an additional
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component that monitors and, if required, overrides the decisions and actions
of the automated system. One proposed framework and approach is pre-
sented in [60], which proposes a safety monitoring strategy utilizing backward
reachability. An alternative approach involves forward reachability, ensuring
collision-free vehicle states by considering the projected movements of traffic
participants and environmental uncertainties [61]–[63]. Control Barrier Func-
tions (CBFs), as detailed in [64]–[66], are a prevalent method for ensuring the
safety of automated functions. However, the application of reachability-based
methods is constrained by their computational demands, while the challenge
for CBF-based methods lies in calculating barrier functions for general classes
of control systems.

Improved prediction of the HDV motion

In Paper C, a model for predicting human-driven vehicle motion in free flow
is presented. The presented model could be further extended by including the
driver reaction delay, for example as done in [67]. Additionally, alternative
methodologies for HDV motion prediction exist, with a comprehensive review
available in [68]. Recent advancements in learning-based techniques, as ex-
emplified in [69], [70], could also be employed for more accurate HDV action
estimation. Furthermore, in Paper C, the AVs robustly account for the uncer-
tain motion of HDVs, potentially leading to a more conservative motion profile
for the AVs. Alternatives to this approach include the scenario-based method
outlined in [71] or a stochastic model that incorporates fail-safe trajectories,
as suggested in [72].

Uncertain HDV path

In Paper C, it is assumed that the path of the HDV is predetermined. While
this assumption is viable for scenarios involving confined sites, situations,
where the HDV’s path is not explicitly known, are also relevant. Particularly
in environments with multiple road splits (forked roads), the HDV might
choose any available route. In such instances, the AVs must initially account
for all potential MUTEX zones that could be shared with the HDV. Through
successive recomputations of the framework, the path of the HDV becomes
more certain. The AVs can adapt to the HDV path by eliminating now-
irrelevant MUTEX zones.
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Experimental implementation and testing

A logical extension of the presented framework is its implementation and
testing in real-world experimental setups. With ongoing advancements in op-
timization solvers [73], the availability of a computational and communication
center on the site, and improved onboard computing capabilities, solving the
optimization problem within real-time computational constraints is becoming
more feasible. However, challenges that in this thesis have been omitted, such
as communication and actuation delays, could present a difficulty in the imple-
mentation of the framework [74]. Additionally, further practical improvements
are required especially on the computational demand of the NLP. Implement-
ing these improvements would allow for the implementation and assessment of
the algorithms from this thesis in practical test scenarios, potentially leading
to their future integration into commercial systems, and contributing to their
safety and energy efficiency.
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