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The latest advancements in artificial intelligence and machine learning have enabled addressing com-
plex challenges in high-dimensional control and decision-making. Deep Reinforcement Learning (DRL),
merging deep learning with reinforcement learning, is able to execute highly intricate cognitive tasks at a
superhuman level capabilities.

DRL has found application in fluid mechanics, notably in Active Flow Control (AFC) [1], aimed
at mitigating adverse effects or amplifying desirable flow features. The optimization of AFC strategies
through conventional methods often entails highly nonlinear problem-solving and the design of numerous
parameters. In contrast, DRL excels in learning complex AFC strategies, fully harnessing actuator capa-
bilities. Rooted in the reinforcement learning paradigm, DRL navigates the state-action-reward sequence,
presenting a robust tool for executing closed-loop feedback control.

Over the last few years, numerous endeavors documented in the literature have aimed to leverage DRL
within Computational Fluid Dynamics (CFD), leading to the development of different coupled DRL-CFD
frameworks (e.g., Refs. [2, 3]). However, most of these initiatives primarily center on a non-intrusive
implementation of the algorithm in which the CFD solver is approached as a black box, with the DRL agent
communicating information to and from it in an offline manner. Typically, such frameworks necessitate
the CFD simulation to be stopped after each DRL (control) time step to communicate information (state-
action-reward sequence) with the DRL program and restart the CFD after receiving a new action.

While these frameworks have been demonstrated to be effective and are able to perform complicated
control tasks, their efficiencies pose a notable bottleneck, hindering their practical utilization within
engineering applications. The frequent interruptions in the CFD simulations slow down the DRL-CFD
framework significantly and demand remarkable I/O operations.

The focus of the current work is on extending the capabilities of the DRL algorithm for practical CFD
applications through introducing an intrusive DRL-CFD algorithm in which the DRL agent is embed-
ded within the general open-source CFD solver OpenFOAM. The implementation allows for executing
complete DRL episodes seamlessly, eliminating the need for any extra I/O requirement. Moreover, the
parallelization is enabled on both ends of the framework, i.e., DRL and CFD. Essentially, this setup
enables not only each CFD simulation to utilize parallel processing through classical domain decom-
position techniques, but also allows the DRL algorithm to interact simultaneously with multiple CFD
environments.

To evaluate and verify the performance of the developed algorithm, the widely known test case of active
flow control of vortex shedding behind a 2D cylinder is revisited. The actuator is a pair of synthetic jets on
top and bottom of the cylinder. The reward function is defined as the reduction of drag and the absolute
value of lift. Thereby, the DRL agent (which is a deep neural network here) learns to minimize the drag and
lift coefficients by applying the optimum jet flow at each time step. The DRL agent was trained through a
total of 500 CFD simulations. For the sake of comparison, the DRL-CFD framework is also implemented
in a non-intrusive manner in which the CFD solver is treated as a black box. Figure 1 compares the
variation of drag and lift coefficients of the cylinder for intrusive, non-intrusive, and baseline (no active
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Figure 1: Variation of (a) drag and (b) lift coefficients for the intrusive, non-intrusive, and baseline (uncon-
trolled) cases.

flow control) cases. The intrusive DRL-CFD is able to maximize the reward function by minimizing the
drag and lift coefficient while presenting results that match the non-intrusive framework.
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