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Abstract

In this study, an optimisation model is developed for two-stage energy management of a
residential building to minimise energy cost under monthly power-based tariffs for peak
demand and time-variable electricity prices. The expected peak demand is determined in
the first stage, and then the energy management system minimizes energy costs during the
second stage. The second stage’s optimisation problem is solved in a rolling time window,
facilitating real-time operation of flexible energy sources in the building. This includes opti-
mal charging and discharging of the battery energy system, electric vehicle battery charging,
heating system operation, and determining the optimal start times for washing machines
and dishwashers, all close to real-time. The proposed approach enables users to predict and
manage peak demand in daily operation, staying below the predetermined value through a
close to real-time energy management system. The effectiveness of this two-stage approach
in demand-side management for residential buildings is demonstrated through a realistic

Grant/Award Number: FLEXIGRID (864048)

case study.

1 | INTRODUCTION

The energy systems ate undergoing rapid changes in technol-
ogy and operation, such as the growing electrification of the
heating and the transport sectors and the shift from a highly
centralised to a more decentralised energy system with high pen-
etration of renewable energy sources (RES). These changes are
the key measures for decarbonizing the energy systems, and thus
considered as the most contributing factors in the transition
towards sustainable energy systems [1].

1.1 | Motivation

Electrification of the heating and transportation can lead to
increased peak in electric power demand, which is undesired for
the power grid [2]. This is expected to cause congestion in the
grid in short-term and create the need for grid reinforcement in
long-term [2]. Grid operators typically have to make substantial

investments into new infrastructure to support the peak growth
B3].

Dimensioning of the distribution network is based on the
peak demand, though the consumers are mainly charged for
the delivered energy [4]. Therefore, there is a growing trend to
charge the consumers partly depending on the peak demand
using power-based tariffs for a cost reflective distribution
pricing [4].

Besides the benefits of RES in energy decarbonization, large-
scale penetration of these sources can cause crucial operational
issues for power systems, such as supply-demand imbalances
[5-7].

Using the flexibility at the demand-side is a sustainable and
practical solution for the challenges caused by the increas-
ing electrification and penetration of RES. Flexibility provision
from multi-energy systems, where different energy vectors such
as gas, electricity and heat are integrated, becomes more effec-
tive despite the planning challenges caused by the uncertainty in
the underlying energy vectors [8].
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1.2 | Research objectives

This paper aims to shed light on the economic value and the
potential role of energy management systems (EMS) in reduc-
ing the peak and the energy cost at residential buildings. The
building EMS is an intelligent automation system that pro-
vides decision support for the consumers in order to manage
the energy and peak power consumption. To achieve this, the
EMS sends control commands to the energy sources over the
home-area network (HAN) [9, 10]. Without an EMS it would
be particularly difficult to manage the peak demand, because the
overall peak depends on the coincidence of the consumption of
many devices in a building [11].

This model is developed for a smart building with a photo-
voltaic (PV) installation coupled with a battery energy storage
(BES). The main energy intensive appliances in the building
are the electric vehicles (EVs) and the heat pumps (HPs). The
controllable household appliances are washing machines (WM)
and dishwashers (DW). The heating demand in the building is
served by the district heating (DH) network and HPs. The pro-
posed building EMS model enables automated response to price
signals or critical events from the utility company.

1.3 | Literature review

The energy management problem has been extensively stud-
ied in the literature, mainly as a day-ahead scheduling problem.
The day-ahead consumption scheduling for controllable energy
sources such as an electric water heater and an EV at a smart
household is performed using an optimisation-based EMS in
[12]. The results showed significant benefits for the end-users,
who were able to reduce energy cost by around 30%, thanks to
the proposed intelligent algorithm that controlled the devices
and determined the sales to the grid. A home EMS is mod-
elled in [10], which allows the end-users to participate in
demand response (DR) programs. The EMS schedules the opet-
ation of the household appliances and BES as well as the EV
charging, considering the uncertainty in supply, demand, and
electricity prices.

Apart from the day-ahead scheduling, there is also research
that focuses on model predictive control (MPC) [13], also
known as receding or rolling horizon (RH) control, which utilise
feedback in an iterative process that adjusts and improves the
control output multiple times within the (typically daily) time
horizon. Ref. [13] proposes a MPC controller with a discrete
two level control signal for operating the heating, ventilation,
and air-conditioning (HVAC) system of a building equipped
with PVs.

Reducing the peak consumption is also considered in the
energy management models through peak power tariffs or
penalties. Such a penalty, in addition to a real-time energy pric-
ing scheme, was considered in scheduling implemented by the
home EMS developed in [9]. The proposed EMS controls the
energy resources in a residential building, including the lifestyle-
related operational dependencies of the appliances as a set of
constraints in its integrated optimisation model. As a result, the

load is shifted from peak pricing periods to off-peak pricing
time slots. Wang et al. proposed a multi-objective optimisation
model for a multiple home EMS in [14]. The three objective
functions are the energy cost minimisation, minimisation of
peak-to-average ratio (PAR) of the load profile, and maximisa-
tion of the consumer satisfaction. Thus, the objectives of the
consumer and the grid are both incorporated in this model.
Qayyum et al. [15] formulated the operation of a home EMS
with two objective functions with the aim to minimise both the
maximum peak load and the total cost. Mainly, when studies
seek to reduce peak power costs, the peak demand is minimised
in the short-term, with the assumption that the consumer will
be charged with respect to the daily peak demand. However, this
approach is sub-optimal, as in reality, households are billed for
their monthly peak consumption.

Due to the coupling of their multi-energy resources, the res-
idential buildings have recently being modelled as multi-energy
systems and, in this case, they are often referred as “energy
hubs” in the literature. In these systems, the management of the
resources is studied in an environment where different networks
and carriers can interact with each other. Su et al. [16] addressed
the problem of dynamic switching between natural gas and elec-
tricity for households with gas-electric heater and stove. Other
controllable sources in this paper are the air conditioning sys-
tem and the washing machine. The objective functions are the
minimisation of the total operating cost and the minimisation of
the emissions of the harmful gases. The users’ tolerance degree
of hot water temperature and room temperature are considered
as system constraints.

Day-ahead consumption scheduling of controllable house-
hold appliances such as electrical energy and thermal storage,
electric HP, boiler, and absorption chiller is formulated in [17]
by an energy hub model, considering electricity and natural gas
as inputs. The objective is to fulfill the daily cooling, heating
and electric demand of the building while maximising the profit,
considering the possibility of exchanging electrical energy with
the grid. The integration of the electricity and heat distribution
networks is modelled from the perspective of deregulated mar-
kets in [18] to evaluate the strategic behaviours of a profit-driven
energy hub in the electricity and heat matrket. Such models
can be used by the energy hub owners to determine the opti-
mal bidding strategies in the market and by the investors to
examine the profit of an energy hub under a given system
design. A probabilistic EMS for a renewable-based energy hub
is developed in [19] for a system with different energy con-
verters and storage units. The uncertainty associated with the
output power of the PV panels is modelled with the two-point
estimate method to reduce the computation burden. The opti-
mal investment and operation of a neatly zero energy building
is studied in [20]. Both the cost optimal sizing of the energy
technology and the technology type are considered, while mak-
ing investment decisions from the perspective of the building
owner’s perspective.

The majority of the studies on building energy management
use low time resolution of load and generation profiles, which
also yields a low-time resolution control. The time resolution,
also known as time granularity, is typically 1 h, which is not
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sufficient to capture the peak power patterns, as studies on
the impact of time resolution have shown [21]. Although the
iterative process of the RH approach brings the energy schedul-
ing closer to real-time control, the low time resolution of most
recent studies [13] that employ RH control, which typically use
houtly time discretization steps, makes them incompatible with
close to real-time control. Moreover, these studies do not con-
sider the effect of peak power, which is particularly challenging
to assess with moving time horizon.

Wang et al. (2022) [22] introduced a novel coupled air and
ground source HP system with energy storage, applied to a hotel
building. Their study focused on optimizing the system’s opera-
tion modes to maximize the COP and ensure soil heat balance.
They demonstrated significant improvements in heating capac-
ity and reductions in operational costs, highlighting the system’s
economic and environmental benefits in cold regions.

Seal et al. (2023) [23] presented a centralized model predic-
tive control (MPC) for home energy management, utilizing EVs
as mobile energy storage units. Their approach addresses the
uncertainty in EV availability and optimizes energy transactions
with the grid based on time-of-use rates, demonstrating notable
reductions in energy costs while maintaining thermal comfort.

Zou et al. (2023) [24] conducted a comprehensive review
on the integration of plug-in EVs in energy-flexible buildings.
They analyzed the impacts of surging EV charging demand
and explored collaborative management technologies between
EVs and building energy systems, emphasizing the importance
of co-management strategies for enhancing building energy
performance and accommodating increased EV penetration.

1.4 | Key features and contributions

This paper presents an energy scheduling model proposed for
a practical building EMS for residential customers. The pro-
posed model offers significant advances over most other EMS
models in the literature, as: (1) it combines the RH approach
with high time granularity thus enabling close to real-time con-
trol; (2) it considers both the heating and the electricity system
of the building and can therefore be applied for multi-energy
scheduling; (3) applies energy scheduling with a non-uniform
time horizon to account for realistic assessment of peak demand
costs. To the best of the authors’” knowledge, none of the previ-
ous studies have developed a building EMS that provides all the
above-mentioned advantages.

In contrast to most EMS models proposed in the litera-
ture, the focus of this paper is on close to real-time control
of the sources rather than the day-ahead load scheduling, Con-
trary to scheduling problems, the real-time operation control
requires solving optimisation problems iteratively, and deter-
mining the decision variables for the control intervals. The
specific contributions of this paper are:

(i) A two-stage optimisation model to minimise the energy
cost of the residential buildings, considering the peak
demand charges on the monthly bills is proposed. The
model is used to formulate a month-ahead optimisation

problem solved at the first stage and a day-ahead optimi-
sation problem solved at the second stage for real-time
energy scheduling;

(i) A mixed-integer linear programming (MILP) framework
is developed that incorporates both heating and electricity
system into the formulated optimisation problems. Thus,
the model can be used for multi-energy buildings to cap-
ture the interaction between the electricity and the DH
networks and unlock energy flexibility potential that can
significantly reduce the buildings’ cost.

(i) A building EMS is developed that employs the integrated
two-stage model to solve the formulated problems util-
ising a RH approach with high time resolution. This
approach enables close to real-time energy dispatch of the
controllable resources and loads.

(iv) A pragmatic case study based on a residential multi-
family building, which demonstrates and quantifies the
savings and peak reduction potential of implementing an
optimisation-based close-to-real-time EMS.

1.5 | Paper organisation

This paper is structured as follows: Section 2 gives an overview
of energy management in smart buildings. The methodology
is explained in Section 3. Section 4 introduces the test sys-
tem and the input data of the EMS. The results ate presented
and discussed in Section 5. The paper ends with Section 0,
which presents the main findings whilst indicating the future
extensions of this work.

2 | ENERGY MANAGEMENT IN
BUILDINGS

The building sector is a large energy consumer, and accounts
for the highest share of energy consumption among major eco-
nomic sectors. Specifically, it accounts for 33% of the global
and 40% of the European Union total energy consumption
[13]. This leads to high energy costs for the end-users, which
are related to the amount of energy consumed, the price, and
the time of the peak power consumption. Even without reduc-
ing the total amount of energy consumption or upgrading to
equipment and devices of higher energy efficiency, these costs
can significantly be reduced by changing the energy sched-
ule and altering the energy profile, that is, the amount and
time of energy consumption. In order to implement changes
in the energy profile without requiring too much effort from
the end-users, it is essential to use an advanced control system
that will deploy the demand-side energy flexibility schedule the
buildings’ energy sources by properly scheduling the buildings’
energy sources [25]. Buildings with automatic control systems
that offer the potential to modify their enetgy profile are called
energy flexible buildings.

The building operators and the residents of energy flexible
buildings can actively participate in DR, which is enabled by
the deployed automation system and advanced metering sys-
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tems in the buildings, as well as by two-way communication
interfaces for interactions among the energy sources, the build-
ing EMS, and the utility [9]. The level of engagement in DR
is also influenced by the physical characteristics of the build-
ing, its loads and energy sources, and the willingness of the
end-users [25]. Since the marginal cost of integrating RESs into
the building energy systems is decreasing, more and more end-
users are choosing to install RES in their residencies. Thus,
from passive consumers they become active prosumers, which
increases their potential to benefit from DR programs because
they can reduce their energy cost by propetly utilising their self-
generation energy sources [9]. At the same time, these programs
can benefit the energy company [9], while they can also be
designed to support the operation of the grid by maintaining the
balance between supply and demand and limit the peak demand
in grids with high penetration of RES [9].

The residential loads can be divided into controllable and
non-controllable loads from the energy management point of
view. The non-controllable loads refer to must-run appliances
over which the building EMS has no control [26]. The opera-
tion of non-controllable loads solely depends on the users’ will
[27], as it is strictly dominated by their comfort and their conve-
nience. In addition, this operation is mostly non-responsive to
price signals [25, 28]. In contrast to non-controllable loads, the
operation of controllable loads can be scheduled and controlled
in the allowable operation intervals [19, 28]. The integration
of the controllable loads into the building EMS leverages the
decision-making of the consumers and their participation in DR
programs [10].

Energy pricing plays an important role in consumption
management. It can considerably influence the consumption
pattern. They can be designed to support the system to achieve
reliability objectives [29]. Energy can be charged with fixed rates
or dynamic tariffs. Many energy providers around the world
have started to offer real-time pricing rates for energy, specif-
ically for the electricity. In the dynamic tariff price scheme, the
provider’s marginal costs are directly passed to the consumer
[11].

Energy billing is essential for the cost recovery of the sup-
plied service [29]. The final energy bill should cover all expenses
of the energy provider to deliver the service to the consumer
[29]. A typical energy bill is composed of different components.
It is composed of energy charge, capacity charge and an access
charge [9]. Some providers also charge the consumers for the
peak demand during the billing cycle.

The demand charge tariff is a peak-load-dependent tariff [9].
It can appear in energy bills in different forms. A possible con-
sequence of not charging consumers for the peak load is the
reduction in the business income of the utility companies. This
happens when the increase in the peak demand is accompanied
by the reduction in the total energy consumption [4].

Koski et al. [4] studied the case of Finland, in which the
distribution system operators (DSOs) can freely select the tar-
iff structure. The energy regulator monitors the market and
ensures that the DSOs’ total revenue is regulated to avoid mis-
using the state-controlled monopoly and to ensure equality
among end-users. The impact of using power-based tariffs on
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FIGURE 1 Energy hub representation of the building energy system.

the customers’ power usage was investigated in that study. The
power-based tariffs were compared with the energy-based tar-
iffs for the customers. The results revealed that the actions of
the consumers are not sufficient to compensate the peak power
increases in longer time. Based on the survey results, an auto-
mated system that does not affect the living comfort of the
users, even if controlled by a third party was a more acceptable
option for the customers.

Multi-carrier energy environments promote the evolution of
sustainable energy systems by facilitating the interaction among
electricity, heat, cooling, fuels, and transport at different levels
[30].

The concept of energy hub has been developed to study
multi-carrier energy environments [19]. It is defined as a vit-
tual box with different forms of energy carriers as inputs and
a set of energy demands as outputs, including several technolo-
gies to convert and store different forms of energy [31]. It is
the place where conversion, storage, production and consump-
tion of various energy carries take place [19]. An energy hub
is characterized by a set of formulations to model the dynamic
operation of electric and heat devices and relate the inputs and
outputs of the model [32]. Figure 1 illustrates the components
of the energy hub model used in this paper.

3 | METHODOLOGY

The energy management problem of residential buildings is for-
mulated as a two-stage problem, with the ultimate objective of
reducing the total energy cost. The problem is solved month-
ahead in the first stage, and the optimal values of the monthly
peak demand are used as inputs for the second stage.

In stage two, a close to real-time EMS is developed for a
multi-family residential building, This model is proposed for
an energy flexible smart building, and the control commands
for the loads are determined in a rolling time window to opti-
mise the operation of the loads in real-time. The building is
equipped with PV system and BES, which is used to maximise
the self consumption of the solar power. The heating system,
EV charging and the operation of WMs and DWs are controlled
in this model.
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PAR is used to evaluate the performance of the demand
response programs. PAR is calculated for the consumption
profile modified by the proposed EMS as well as for the
consumption profile that is not modified. Comparison of
power PAR before and after implementing the month-ahead
scheduling reflects how energy flexibility could reduce the
peak power.

3.1 | Stage one: Month-ahead scheduling
In this stage, the optimal peak demand for the coming month
is determined with a linear programming model. The peak
demand is calculated and recorded as the moving average of
the power consumption over a specific period [9]. It is the maxi-
mum value of the measurements of average power consumption
over a specific time interval (e.g. 15 min, 30 min or 1 h). It is
assumed that the utility company charges consumers with cal-
endar month billing cycle, and the consumers are charged for
the monthly peak load with power-based tariffs. Therefore, it is
essential to obtain this value and avoid violating it during the
whole month. The calculated peak is used in the second stage as
a parameter in the model, and the building EMS will ensure that
the average consumption power does not exceed this threshold.
The objective function in this stage (1) is to minimise the
monthly electricity cost (MEC). In this model, the consumers
are charged for the peak electric demand, not for the peak
consumption from the district heating network. MEC is com-
posed of the peak-load-dependent costs and energy costs for
electricity. Constraint (2) ensures that p;,. is equal to the peak
consumption during the scheduling horizon (77). The duration
of time intervals is T hours.

Minimize. MEC = )" [p(t) - At) - T+ patn * Apeu]» M
teT

P(f) < pA/[ﬂX’ VieT. (2)

Several techniques are proposed in the literature to char-
acterise the energy flexibility potential of buildings. The two
techniques generally used to estimate the flexibility potential
employ the building simulation tools and models based on the
experimental data [25]. For instance, Junker at al. [25] proposed
a model to characterise the energy flexibility of buildings with
a dynamic function that can describe to what extent a building
can respond to grid requests for the flexibility. A flexibility index
is used in this model.

The flexibility of the load is specified by the direction (upward
or downward), size (kWh and kW) and time [29]. Charactet-
isation and quantification of power-related flexibility in the
building is beyond the scope of this paper, and thus it is assumed
that the flexibility of the demand is already estimated and it is
considered as input to the model. The variations of the load ate
bounded by an upper and a lower limit in this model. 7, and
Iy in constraint (3) are, respectively, the lower and upper limits
that represent the range for variations of the load around the
forecasted demand (Pr;). Constraint (4) ensures that the energy
consumption during a set of time periods remains the same and
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the load is only shifted to other petiods. 7, which is subset of 7'
denotes the set of time periods that belong to block 4, in which
the energy consumption should remain same.
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3.2 | Stage two: Real-time energy
management

A real-time rolling horizon energy management model is pro-
posed in stage two to control the consumption of controllable
energy sources in the building. The input information is petiod-
ically updated for the online optimal energy/power control of
the energy sources [33]. The control variables are determined
by repeatedly solving a MILP problem over a moving window
[34]. The rolling horizon approach mimics the environment in
which the users can change their requirements on a daily basis.
The EMS is designed to operate continuously in the building,
and ensures that the optimal peak demand calculated in the first
stage is not violated.

Figure 2 shows the main inputs and outputs of the proposed
building EMS. The control commands are the the decision vari-
ables of the optimization problems solved in each iteration.
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They are determined for the next time interval in each itera-
tion, and can be sent to the loads and appliances in the building.
Although the decision variables are determined for the next 24
h in each iteration of the problem, only the decisions for the
next time interval are considered as the control commands.

The control commands can activate, de-activate or delay the
function of the controllable building appliances and energy
sources, switch between different sources and specify opera-
tion set-points. The control commands transmitted to the EV
charger determine the charging current. Control signals can set
the BES to charging, discharging, or rest mode (open-circuit),
while the BES power set-points during charging and discharg-
ing mode ate also transmitted. Another control signal triggers
the switch between HP and DH to serve the heat demand. The
EMS also decides the optimal time to start uninterruptible loads
like WM and DW. Therefore, it can send control commands that
delay the operation of these loads.

The EMS operates based on the inputs from the users. As
the acceptance of a building EMS depends on the satisfaction
of the users, it is essential to consider the preferences of the
users as inputs to the model. For instance, the users determine
when to have the dishes or the clothes washed and what washing
program to choose. For the case of EV charging, the departure
time of the EV and the expected state of charge are the main
inputs given by the users when the vehicle is plugged in.

The objective function is minimising the energy cost in a
rolling time window, considering the energy prices and the opet-
ational limits of the loads. In this model, the users should be
allowed to alter their preferences in real-time over the oper-
ation. The cost function for each iteration / is presented in
(5). Besides the enetgy cost for electticity (denoted by 4), the
objective function of stage two also includes the cost of heat-
ing energy delivered to the building from the DH network (this
cost is denoted by ¢). The power-based network tariff is not
included in this cost function, because the user is charged for
the peak power in the monthly basis and it is important not to
violate the peak power determined in stage one. Equation (6)
ensures that the load always remains below the peak power
determined in stage one. In stage two, the length of time inter-
val T depends on the frequency of the update of the control
commands. In stage one, the choice of T depends on how the
power-based network tariff is applied. For example, if the users
are charged for the peak demand considering the houtly average
power measurements, then 7 in the first stage is 1 h.

—1+7T
Mininize Y, [p0) - i0) - T +g0) - ) - 7],
=i
Viel
1) L s v+ eT,Vi€e L. 6)

The electric power and heat flow balance equations are,
respectively, presented by (7) and (8). The electrical load,
which consists of the non-flexible load PZ.NF (?), the electrical
consumption p!(#), p(#), and pfﬂ)(l) cotresponding to smart
appliances, EVs, and HPs, respectively, as well as the charging

BES power pz(/’ (#) can be supplied at each iteration / by the
power injected from the grid, the PV panel, and the BES, which
are denoted as p;(7), PZ.PL (¢), and pl.D D), respectively.

20y =P =P+ Y 0+ Y )
Ya Vo (7)
+ P+ ) - pP ), VreT\Viel.

The heating system is also composed of DH network and
heat pumps. The control commands for the inverter-based air-
source HP and DH network determine how the heating demand
can be served optimally from the two resources. The heat
demand (D/””" ) is composed of the domestic hot water demand
(DHW) and space heating demand (Dﬂ)), which is supplied by
the DH network and the heat pump (8). The DH is modeled
with a constant efficiency (nD 4 ']) in (9).

e+ ey =D,  VreTNieI, ()

@ =gy, VreT Viel ©)

The variable efficiency model of HPs proposed in [20] is used
for the air-source HPs. COP is the conversion efficiency of elec-
tricity into heat [20]. Equation (10) shows that the COP depends
on the heat source temperature (6), which is the outdoor air
temperature for air-source heat pumps, and the supply temper-
ature (07?7, The supply temperature (6”77%) for the domestic
hot water can be considered constant, but for the space heat-
ing it depends on the outdoor temperature, characterised by the
heating curve of the HP. Thus, the value of COP varies for the
space heating and the domestic hot water consumption. The
coefficients &, &1, and 4, are obtained by fitting the manufac-
turers’ data with a polynomial function. The average COP when
delivered to a storage tank is the weighted average of the COP
for the domestic hot water and space heating (11). The relation
between the heat generated from the HP and the electricity con-
sumed is expressed in (12). In this model, equation (12) utilizes
the definition of COPZ.HP (¢) from Equation (11), which calcu-
lates the COP as a weighted average reflecting both domestic
hot water and space heating demands. This approach is cho-
sen over the fundamental temperatute-based COP formula in
Equation (10) to provide a more realistic representation of the
heat pump’s efficiency in varying operational scenarios within
the building;
COPI (¢) = ko + &y - 0777 (1) — 0™ (1)) +

7

(10)
ky- @0y —8 ), VreTViel,
1 . .
coPP ¢y = (DM @) - corP ™ 1)+
0= 5 (D" @) - Cop™ @)

)

DIV ¢ty coP™ (1)), VreT,Viel,
@ =p"e)-cor@,  VreT\Niel. (12

Charging of the EV battery is considered as a controllable
demand in this model. The chatging does not necessarily begin
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FIGURE 3 An overview of the controllable loads at the HSB LL.

when the EV arrives. Although in the rolling hotizon optimiza-
tion the time span during each iteration covers the whole set of
periods, the decision variables of the upcoming time period are
only sent to the devices as control commands. The variations
of the SoC in each iteration and each time period for EV » is
shown in (13). The user determines the departure time and the
expected energy level at the departure time. The SoC variable
is limited by the battery capacity. EV » is plugged in during 77,

and its’ charging efficiency is shown by 7>,

SoC! (1) = 5oC) (t — 1) + p(t) - " - 1,

(13)
VieI,VveV,VreT".

The SoC of the BES at the end of period # (50C;(#)) depends
on the initial energy level of the battery ($oC;(0)) and the
charging/discharging power (pla’ ®)/p; e (#)). Equations (14)
and (15), respectively, describe this relatlon for the first period in
each iteration and the remaining periods, considering the charg-
ing and discharging efficiency of the battery ", n”%). The
decision commands atre applied to the BES only for the first
time period in each iteration. Therefore, SoC;(0) in each itera-
tion is equal to the SoC of the battery at the first time period of
the previous iteration (16).

. ] l_)r/] 7
$oCi(2) = SoCi(0) + - (ﬁ?”ow“—pf )
ne (14)

Viel,r=i

Py
SoCi(t) = SuCi(t =) + T - (p?’(f) =L : )>,

7 Deh

15
Vie I,Vt> i,

, $0C(0) /=1
$0Cy (0) = , ) .. (16
5‘0C(l'=l'/_1)(l‘ =17 — 1) VZ # 0

<k L

} |
MF " j lJ“ m‘u\ aiw

H
m HIH '“ P”\\ h & Lp f‘; | ‘u"‘\‘}‘
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FIGURE 4 Forecasted demand of the building consumption during
December 2018.
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FIGURE 5 Time blocks for flexibility during weekend and weekdays.

Equations (17) and (18) limit the minimum and maximum
power in the charging and discharging modes, respectively.
Equation (19) is used to avoid solutions that yield simultaneous
charging and discharging of the ES system.

B 50 < 570 < B 00),
a7
YielVteT,
B 0y < 970 < BP0,
(18)
VieIlVteT,
)+ PP <1, VieIVreT. 19)

In this model, the shiftable non-interruptible appliances are
the WMs and the DWs. The operation of WM and DW is
modeled with uninterruptible sequence phases [15]. The con-
sumption profile of one complete operation cycle of appliance
a is considered as input to the model. The EMS starts deter-
mining the optimal start time of the WM or the DW as soon
as the user puts the clothes or the dishes inside the machine
and presses the start button. At the beginning of each iteration,
various scenarios for the consumption of appliance « can occur
depending on the number of time periods allowed by the user.
5! is a dynamic set which changes in each iteration, and repre-
sents the scenarios that might occur. In each iteration only one
scenario will be selected. Equations (20) and (21) impose these
conditions on the model.

JAGKES g;xs, @) -P'(), VieLVteT,Va€ A, 20)

Z xi@)=1, VieINVteT,Va€E A. 1

The time intervals for energy management in the two stages
could differ: in the first stage, typically longer intervals are used
to match the electricity company’s peak pricing patterns, while
in the second stage, shorter intervals are used for more pre-
cise real-time optimization. However, these intervals could be

85U8017 SUOWIWIOD BA1E81D) 8|qeotidde ay) Aq peuisnob a2 seoile O '8sn JO So|n. o} Akeiq i 8UlJuO A8]1A UO (SUOPUOO-PUE-SLUIBIW0D A8 | ImAReiq| Ul |Uo//Sdny) SUONIPUOD Pue SWIS | 81 89S * [1202/70/ST] Uo A%iqiauliuo Ae|im ‘ABojouyoe | JO Aisealun sewieyd Aq z2£2T Ze /60T 0T/10p/uoo A 1m Al jpulU0'Yoeesa 1B //:SdNy Wo. pepeojumod ‘t ‘vZ02 ‘SOEETS0Z



8of14 FOTOUHI GHAZVINI ET AL.
* ‘ ‘ ‘ ‘ ———
30 -Wsekday
e 20—
I LD ol
3 0
gm”‘||‘|I‘|‘|‘|‘|n|||| |"“I'I‘I‘I"I'I|I|I‘IH
& 2 i
6 7 B ‘3 10 1 12 \3 14 15 16 17 18 \9 20 21 22 23 24
Hours
FIGURE 6  Flexibility of the power profile of the building.
019~ T T T T T u
| hA
018 | N ‘ ) 4
. J‘ ’ W ” ‘ ’ f
017 - ‘ ‘ -
" (A
‘ { ' M | /\ |
~0.16 U 1 | j |
§ l ‘ \ \ [ \ /7, ‘ l ‘ I ,-J l [ I
o5 ‘ U \ J J VoA U \/ \ \ { W r,' \ AV j’ a
& o144 { \|U | "‘ | [ ‘ i
Py ][ J VY I
013 | " ! ’ /
0.12 - \ \ [ -
011 I 1 L I 1 I 1 Lo 1
Dec 01 Dec 04 Dec 07 Dec 10 Dec 13 Dec 16 Dec 19 Dec 22 Dec 25 Dec 28 Dec 31
Days 2018
FIGURE 7 Time variable electricity price for one month ahead.
20 T T T T 7
18- — PV generation 4
‘ — Consumption
16 |
14 ]
ol
s i 0 |
g2 [ ﬂﬂ' b |
g It U m!
510 M Mﬂﬂwﬁ*h .“M ‘W MV ’L y‘ U o \“‘) J\
e g [\ w‘ ls ! l o
: SSTLL W
. “prrn o )
\ |
}“ “F
2[ I i
4 | | Bt e | 1
7:00{Dec 11 13:00 19:00 1:00 (Dec 12) 7:00 13:00 19:00 1:00 (Dec 13) 7:00
Time
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adjusted to be equal if such alignment better suits the energy
management objectives.

4 | CASE STUDIES

The proposed two-stage energy management model is tested
using the HSB Living Lab [35] data for December 2018 and
the price data of Nordpool [36]. HSB Living Lab is a multi-
family residential building of 29 apartments with the total usable
floor area of 1,720 m? [35, 37]. This smart building is a unique
testbed for sustainable living solutions, where the living lab
approach focuses on applying innovation in human-centered
systems. There is an 18 kWp PV system in the building coupled
with a 7.2 kWh battery. The battery can be charged from the

PVs and the AC grid. The PV and battery energy storage system
is connected to the AC grid via a converter [38]. An overview
of the controllable loads at the HSB Living Lab is shown in
Figure 3.

In stage 1, the forecast of the total electricity load and the
expected flexibility characteristics of the demand is used to
calculate the optimal monthly peak.

The forecasted demand for electricity in 15 min time res-
olution for December 2018 is shown in Figure 4. Since the
development of forecast algorithms was not in the scope of this
paper, the historical consumption of the building used.

In the first stage of the model, the optimal peak value is
calculated. For this problem, the flexibility potential of the
demand is required. The flexibility characteristics of the demand
is represented by two set of graphs.
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Figure 5 shows the time blocks for load shifting for weekdays
and weekends in December. The demand can shift in such a way
that the total energy consumption remains constant in each of
the blocks.

Figure 6 shows the upper and lower boundaries for load
shifting during the weekdays and weekends in December.

The forecast of the electricity price is required for one month
ahead. The price could be fixed or time variable, depending
on the end-users’ subscription. Figure 7 presents the electricity
price for one month ahead. The end-users’ prices are assumed
to be time variable in the case study.The retail price that the
customer pays follows the Nordpool prices plus a marked up
for VAT, taxes, base rate charge and the guarantee of origin [39,
40]. The power based network tariff for charging the customers’
peak consumption is determined in a way that the cost of peak
demand charges does not violate 30% of the energy cost. In
this case study, it is assumed that the customers are charged 16
Euros/kW.

Since the time intervals in stage 2 are 5 min, the resolution
of both forecasted data are in 5 min intervals. The scheduling
horizon in each iteration of the stage 2 problem is composed
of 24 h with 5 min time intervals. The development and imple-
mentation of forecast algorithms is not the focus of the paper.
Thus, historical data recorded by sensors and smart meters in
the building are used instead of actual forecasted values.

The proposed model is implemented for real-time optimal
control of an energy hub over 24 h, starting from 11 December

2018 at 7:00. The PV production and demand profile of the
nonflexible electric loads are shown in Figure 8. The resolution
of the data is 5 min. The heat demand in the building is shown
in Figure 9.

The data for two consecutive days are presented for schedul-
ing in stage 2. The reason is the rolling window of the real-time
scheduling and the need for the data for the next 24 h when
making the decisions for each time interval.

Figures 10 and 11, respectively, show the consumption
profiles of washing machines and dishwashers.

The characteristics of the the ES battery, EVs, wash-
ing machines and dishwashers are, respectively, depicted in
Tables 1-3. An ES system with 7.2 kWh exists in the building.
Four EVs are plugged in for several hours during the day. The
inhabitants use four washing machines and three dishwashers
and allow the EMS to delay the start time of the machine.

5 | RESULTS AND DISCUSSION

The optimisation problem for stage 1 is initially solved for the
whole month of December 2018. As a result of solving the
problem for this stage, the optimal value of the peak is deter-
mined for the scheduling horizon, considering the flexibility
potential in the building;

Figure 12 shows the scheduled consumption profile after
considering the flexibility of the demand. The optimal peak
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FIGURE 11 Consumption profile of dish washers [41].
TABLE 1 Characteristics of the ES unit.
Charging/discharging rate (kW /h) Capacity (kWh) Charging/discharging efficiency Initial SoC (kWh) Minimum energy
4.5 7.2 0.92 2 0.6
TABLE 2  EVs characteristics.
EV1 EV2 EV3 EV4
EV models Mitsubishi MiEV Renault Zoe Nissan Leaf Hyundai Ioniq Electric
Arrival SoC level (%) 19% 27% 31% 18%
Expected SoC level at departure (%) 86% 82% 80% 62%
Charge rate (kW /h) 3.0 3.2 6.6 4.0
Charge/discharge efficiency 0.92 0.92 0.89 0.93
EV battery capacity (kWh) 16 22 24 30
Arrival time 07:42 10:33 22:16 18:58
Departure time 12:20 17:15 06:45 01:05

TABLE 3  Flexibility provided by the washing machine and dishwasher.
Start time Requested end time Available time periods

WM 1 08:53 18:50 118

WM 2 17:36 22:35 58

WM 3 22:58 06:15 86

WM 4 20:02 00:05 47

DW1 23:39 006:55 86

DW 2 07:13 12:45 65

DW 3 12:36 20:45 96

TABLE 4  Comparison of the consumption profiles.

Consumption profiles Average PAR Variance

Scheduled demand 9.02 kW 1.85 5.77

Actual demand 9.02 kW 2.16 8.21

demand in the first iteration without considering the peak
demand tariff is 19.5 kW, and after considering the power-based
network tariff, it reduces to 16.7 kW. Considering the power-
based tariff in the monthly electricity bill results to reduction of
the peak demand for about 14%. As shown in the figure, the
peak has reduced and it is expected that the same peak will be
experienced several times during the month. This means that
optimised control of the demand limits the peak to 16.7 kW.

Table 4 shows the comparison between the scheduled and
the actual consumption profiles. As expected, the average value
of the scheduled demand does not change in stage 1, since the
demand is only shifted to other periods and there is no change in
the total energy consumption. In both cases the average demand
is 9.02 kW. Although the peak reduces in the scheduled demand,
the variance increases compared to the actual case. The variance
of the consumption power profile increases when the flexibility
in the building is used. The value of the peak demand in stage
1 problem could change by varying the value of power-based
network tariff.

85U8017 SUOWIWIOD BA1E81D) 8|qeotidde ay) Aq peuisnob a2 seoile O '8sn JO So|n. o} Akeiq i 8UlJuO A8]1A UO (SUOPUOO-PUE-SLUIBIW0D A8 | ImAReiq| Ul |Uo//Sdny) SUONIPUOD Pue SWIS | 81 89S * [1202/70/ST] Uo A%iqiauliuo Ae|im ‘ABojouyoe | JO Aisealun sewieyd Aq z2£2T Ze /60T 0T/10p/uoo A 1m Al jpulU0'Yoeesa 1B //:SdNy Wo. pepeojumod ‘t ‘vZ02 ‘SOEETS0Z



FOTOUHI GHAZVINI ET AL.

11 of 14

18—

Consumption (KW)

2
Dec 01 Dec 04 Dec 07 Dec 10 Dec 13 Dec

16 Dec 19 Dec 22 Dec 25 Dec 28 Dec 31

Days 2018

FIGURE 12

Scheduled demand using flexibility potential compated to actual demand.

H

e

[ Vv A
N
“mskw Vi

Peak limitation
Peak minimization

8
7:00 (Dec 11) 10:00 13:00 16:00 19:00
Time

FIGURE 13  Power purchase from the grid.

22:00 1:00 4:00 7:00 (Dec 12)

Power (kW)
>
5

‘\ﬂr,ﬁ‘ "
i
lu"

Peak limitation
Peak minimization

H m \

]
\ |“
H H

i !1}\\ \

0
7:00 (Dec 11)

19:00

22:00

1:00

4:00 700 (Dec 12)

Time

FIGURE 14  Consumption of the HPs.

The rolling horizon approach in stage 2 is solved for a
typical day (i.e. December 8th) during the same month. The
assumption here is that the peak is also not violated during the
past days (i.e. December 1 to December 7). The peak demand
value obtained in the first stage informs the customer that it
is not economically beneficial to try to reduce the demand
below this value, since it is highly probable to violate this value
during the remaining days of the calendar month. The distri-
bution company will anyway chatge the customer for the peak
value.

The rolling horizon model runs in real-time to determine
the control variables. The control commands are determined
for each time slot, while the problem is being solved iteratively
during the day. The loads are controlled in such a way
that the peak demand determined in the first stage is not
violated.

The electricity consumption profile is presented in Figure 13.
The consumption is controlled using the proposed strategy and
it is compared with the case that the EMS considers the peak
penalty in the objective function and thus leads to a minimised
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peak load. The results show that the 1.85 kW reduction in the
peak is unnecessary, since the peak would be higher in the next
days and the user will anyway be charged for that peak. Figure 14
shows the consumption of the HP units.

The two-stage optimization process proposed in this paper
offers a significant advancement over traditional continuous
peak demand optimization approaches. By calculating an opti-
mal peak demand in the first stage and using it as a fixed
constraint in the second stage’s real-time energy management,
we align the optimization with actual energy usage and billing
cycles. This strategy avoids the inefficiency of attempting to
reduce a peak demand that has already occurred eatlier in
the billing cycle, thus providing a more tailored and effective
energy management solution. The results from our case study
demonstrate this method’s superiority in practical scenarios,
making it a more user-friendly and cost-efficient alternative to
existing models.

6 | CONCLUSIONS

A two stage optimisation model is proposed in this paper to
manage the energy consumption in smart buildings and reduce
the monthly peak demand. The real-time pricing tariff and
power-based peak tariff are considered in the model. In the first
stage, the hourly flexibility of the demand is used to schedule
the expected consumption, considering the tatiff the peak con-
sumption. The optimal value of the peak demand is considered
in the second stage of the optimisation, and the model ensures
that this value is not violated during the month.

Although the month ahead scheduling guarantees lower peak
demand for the building, it can lead to an increase in the vari-
ance of the consumption profile. The demand vatiations ate
used to benefit from time variable electricity rates as well as
reducing the peak to avoid higher monthly charges for the peak
demand.

In future, considering a more advanced model for the flex-
ibility characterization of the customer for the month ahead
could increase the reliability of the decisions in the first stage.
In other words, the optimal peak demand obtained in the first
stage would be more realistic. This approach could be applied
to a community level, where an an aggregator or a retailer is
making decisions for a group of customerts.

NOMENCLATURE

Sets and indices

A/a Setand index of uninterruptible electric devices
B/b  Set and index of time blocks for demand flexibility
D/d  Setand index of the days in the calendar month
T/i Set and index of iterations of the rolling hori-
zon approach
T/t Setand index of time slots
T"  Set of time periods that electric vehicle » is connected

T, Set of time petiods in block &
V/v Setand index of electric vehicles

Parameters

n®  Charge efficiency of the ES/EV unit
n"?  Discharge efficiency of the ES/EV unit
A Electricity price [€ /kWh]
At Monthly power-based network tariff [€ /kW]
T Duration of time periods [h]
District heating energy price [$,/kWh]
COP"P" Coefficient of performance of the heat pump
D Heat demand of the building [kW]
P Forecasted PV production [kW]
Pp, Lower limit of consumption profile [kW/]
P Forecasted electricity consumption of the building

loads [kW]

A%} M Minimum,/maximum charging power of the ES/EV
battery [kW]

1[1);;/] /M Minimum/maximum discharging power of the
ES/EV battery [kW]

Pne(¢) Forecasted consumption of non-controllable load
(kW]
Py, Upper limit of consumption profile kW]
SoCM# Maximum allowed state of charge for the ES/EV
battery [kWh]
SoCM”  Minimum allowed state of charge for the ES/EV
battery [kWh]

Variables

MEC Monthly electricity cost [§]
g Heat delivered to the building from the district
heating network [kW]
p@) Electric power drawn from the grid [kW)]

7" Power consumption of appliance a kW]
pa’ Charging power of the battery [kW]
pD"/} Discharging power of the battery [kW]

Pia  Peak electric power drawn from the grid [kW]
SoC ES/EV, State of charge of the ES/EV battery [kWh]

x® Binary decision variable for the charging status of
the ES

xP% Binary decision variable for the discharging status
of the ES
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