
Towards a GDPR-compliant cloud architecture with data privacy
controlled through sticky policies

Downloaded from: https://research.chalmers.se, 2024-04-20 07:29 UTC

Citation for the original published paper (version of record):
Cambronero, M., Martínez-Pietro, M., Llana Diaz, L. et al (2024). Towards a GDPR-compliant cloud
architecture with data privacy controlled through sticky policies. PeerJ Computer Science, In press.
http://dx.doi.org/10.7717/peerj-cs.1898

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Towards a GDPR-compliant cloud
architecture with data privacy controlled
through sticky policies
M. Emilia Cambronero1, Miguel A. Martínez1, Luis Llana2, Ricardo J.
Rodríguez3 and Alejandro Russo4

1 Albacete Research Institute of Informatics, Department of Computer Science, University of
Castilla-La Mancha, Albacete, Spain

2 Universidad Complutense de Madrid, Madrid, Spain
3 Aragón Institute of Engineering Research, Department of Computer Science and Systems
Engineering, University of Zaragoza, Zaragoza, Spain

4 Chalmers University of Technology, Göteborg, Sweden

ABSTRACT
Data privacy is one of the biggest challenges facing system architects at the system
design stage. Especially when certain laws, such as the General Data Protection
Regulation (GDPR), have to be complied with by cloud environments. In this article,
we want to help cloud providers comply with the GDPR by proposing a
GDPR-compliant cloud architecture. To do this, we use model-driven engineering
techniques to design cloud architecture and analyze cloud interactions. In particular,
we develop a complete framework, called MDCT, which includes a Unified Modeling
Language profile that allows us to define specific cloud scenarios and profile
validation to ensure that certain required properties are met. The validation process
is implemented through the Object Constraint Language (OCL) rules, which allow us
to describe the constraints in these models. To comply with many GDPR articles, the
proposed cloud architecture considers data privacy and data tracking, enabling safe
and secure data management and tracking in the context of the cloud. For this
purpose, sticky policies associated with the data are incorporated to define
permission for third parties to access the data and track instances of data access. As a
result, a cloud architecture designed with MDCT contains a set of OCL rules to
validate it as a GDPR-compliant cloud architecture. Our tool models key GDPR
points such as user consent/withdrawal, the purpose of access, and data transparency
and auditing, and considers data privacy and data tracking with the help of sticky
policies.

Subjects Security and Privacy, Software Engineering
Keywords General data protection regulation, Data privacy, Cloud computing, Sticky policies, Data
tracking, UnifiedModeling Language, UMLprofiling,Model validation, Object Constraint Language

INTRODUCTION
Data privacy was a major concern among scientists before the publication of the General
Data Protection Regulation (GDPR) (Myers & Liskov, 2000; Priscakova & Rabova, 2013).
In 2018, the legal text of the GDPR (General Data Protection Regulation (EU GDPR), 2016)
appeared, which is an extensive document with 99 articles. This regulation directly affects
all member states of the European Union (EU), and one of the main novelties with respect

How to cite this article Cambronero ME, Martínez MA, Llana L, Rodríguez RJ, Russo A. 2024. Towards a GDPR-compliant cloud
architecture with data privacy controlled through sticky policies. PeerJ Comput. Sci. 10:e1898 DOI 10.7717/peerj-cs.1898

Submitted 10 August 2023
Accepted 30 January 2024
Published 29 March 2024

Corresponding authors
M. Emilia Cambronero,
memilia.cambronero@uclm.es
Luis Llana, llana@ucm.es

Academic editor
Anwitaman Datta

Additional Information and
Declarations can be found on
page 40

DOI 10.7717/peerj-cs.1898

Copyright
2024 Cambronero et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1898
mailto:memilia.�cambronero@�uclm.�es
mailto:llana@�ucm.�es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1898
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

to previous data privacy legislation is that it also affects any non-EU organization that
handles the data of European citizens.

In 2021, the European Commission identified cloud computing as a key vulnerability
area (Euractiv, 2021). Thus, two codes of conduct for the cloud industry were approved,
and these were developed by industry leaders to provide a strategy for GDPR compliance
in cloud environments. These codes are focused on increasing trust and transparency in
the EU cloud computing market, increasing competition between cloud providers.

The first code of conduct covers Software as a Service (SaaS), and some of its main
providers include Alibaba Cloud, Cisco, Dropbox, Google Cloud, Microsoft, and IBM,
among others. The second code of conduct covers Infrastructure as a Service (IaaS), and its
predominant provider is Amazon Web Services (AWS). These large cloud players do
business in a large European cloud market that continues to grow. Therefore, it is vital for
cloud providers, both large and small, to update their procedures to comply with the
GDPR and be more competitive in this new scenario. In essence, understanding how cloud
providers comply with the GDPR represents a key challenge for established and newly
emerging providers (Barati et al., 2019). According to a study by Statista (2022), many
countries have made significant changes to cloud governance after the introduction of the
GDPR. For instance, around 63% of the French IT security practitioners estimate that their
organization will need major changes in cloud governance after the introduction of the
GDPR. This estimate is similar in other countries, such as Germany (57%) or the United
Kingdom (56%).

To help companies in this adaptation process, in this article, we use model-driven
engineering (MDE) (Davies et al., 2005; Meliá et al., 2016) to define a Unified Modeling
Language (UML) (Object Management Group (OMG), 2017) profile for a GDPR-
compliant cloud architecture by defining specific stereotypes for this purpose. Our
proposal is based on UML and UML profiling techniques, which are well-known software
development methodologies in software engineering. These techniques rely heavily on
stereotypes, which consist of defining domain-specific types of UML diagram elements.
These domain-specific types allow a software designer to create and use UML objects
relevant to the problem domain and its terminology (for instance, an actor in a use case
diagram or a component in a component diagram that already contain certain attributes,
functions, or names relevant to the problem domain). Examples of UML profiles are
MARTE (Object Management Group (OMG), 2011) (useful for analysis and modeling of
embedded and real-time systems), DAM (Bernardi, Merseguer & Petriu, 2011) (useful for
analysis and modeling of dependability attributes), or SecAM (Rodríguez, Merseguer &
Bernardi, 2010) (useful for analysis and modeling of security attributes).

Our profile covers both IaaS and SaaS, that is, the cloud infrastructure and the
interactions between the different GDPR roles in the cloud when a user stores their data in
it. GDPR defines as roles the data subject or user (who owns the data), the third parties
(who want access to the data), and the cloud provider (who oversees the user’s data). Thus,
UML component and sequence diagrams are designed to model the cloud infrastructure
and interactions, respectively. We have addressed the main features of the GDPR to ensure
the security of user data in our proposed architecture. Some of these features are the

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 2/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

purpose of accessing the data, transparency, audit processes (that is, where user data has
been and where it was taken from), and withdrawal of consent to the processing of user
data. The profile models are then validated by using Object Constraint Language (OCL)
(Warmer & Kleppe, 2003) rules to ensure that they comply with certain defined features
and constraints. In addition, the proposed cloud architecture allows data tracking and
guarantees the privacy of user data. In this regard, data privacy and tracking are controlled
using sticky policies (Pearson & Casassa-Mont, 2011) associated with the data. The sticky
policy allows us to define specific permissions for the data and captures the path followed
by data, among other parameters of interest for data tracking.

The UML profile and the OCL rules have been integrated into a complete framework
named Modeling Data Cloud Tracking (MDCT). In addition, we have also implemented a
software tool that supports MDCT. This tool is publicly available, and its source code has
been released under the GNU/GPLv3 license.

In summary, our novel approach allows cloud architectures to track data and guarantee
the privacy of user data, complying with many of the GDPR articles. To the best of our
knowledge, we are the first to combine model-driven engineering with sticky policies and
GDPR in a tool that helps software engineers to adapt GDPR to cloud architectures. In
particular, the contributions of this article are the following:

GDPR-compliant validated UML profile: We present a GDPR-compliant validated
UML profile for cloud architectures, incorporating UML-profiling techniques, UML
sequence and component diagrams, and OCL rules for validation. This profile facilitates
GDPR compliance to cloud providers. Our profile covers SaaS and IaaS by using UML
sequence and component diagrams to model the cloud infrastructure and cloud
interactions, respectively. Using the proposed models, cloud providers can provide a
data management service that complies with GDPR, and track the data in their systems.
Data privacy through sticky policies: Our proposal addresses data privacy by
introducing sticky policies, allowing third-party access control through precise data
permissions.
Comprehensive GDPR coverage:We address the main aspects of the GDPR, including
the purpose of data access, consent/withdrawal by the interested party, and
transparency and auditing. Additionally, the purpose for which the data is accessed
plays a very important role in its treatment. Therefore, in this work, we distinguish
between accessing the data for statistical1 or other purposes.
Robust data tracking mechanism:We implement data tracking, monitoring the data’s
journey and origins. A dedicated log in the controller (cloud provider) and a specific
attribute in the sticky policy record information on third-party access.
Strict OCL rules for validation: Additionally, we establish strict OCL rules to validate a
UML profile targeting cloud service providers. This innovative approach serves as a
cornerstone to ensure not only seamless functionality of cloud-based systems, but also
critical aspects such as privacy and data tracking. By meticulously defining and applying
these OCL rules, our framework sets a new standard for safeguarding sensitive
information and enabling effective data tracking in the dynamic cloud computing
landscape.

1 Note that “statistical” encompasses a
broad range of possible data operations
that controllers (cloud providers in this
case) themselves must specify. The rea-
son for not distinguishing them is that,
regardless of the sub-type of statistical
access, no individual can be identified
from the resulting data. In GDPR terms,
this process is called pseudonymization
and is mandatory for any statistical study
of personal data.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 3/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

In order to enhance readability, a list of acronyms is provided in Table 1. The structure
of this article is as follows: Related work is discussed in “Literature Review”. “Background”
introduces the key concepts necessary to understand the rest of this article, such as GDPR,
sticky policies, and UML diagrams and profiling. A running example illustrating and
motivating the article is presented in “Running Example”. The methodology employed in
our framework is detailed in “Methodology”, while “Modeling Data Tracking in Cloud
Systems” describes the UML profile within the MDCT framework. Some of the OCL rules
needed to validate the UML models are presented in “Validation and Threat Model”, and
the tool supporting our framework is introduced in “The MDCT Tool”. “Discussion”
discusses interesting considerations and common threats to validity. Finally, “Conclusions
and Future Work” concludes the article and outlines future lines of work.

Literature review
In this section, we delve into the existing literature. We categorize our discussion into three
main areas: works focused on modeling and validation of the GDPR and data privacy,
works dedicated to the GDPR and cloud computing, and works centered around data
tracking and the GDPR. Each subsection provides insights into relevant studies,

Table 1 List of acronyms.

GDPR General data protection regulation

EU European Union

DS Data subject (physical person who owns the data)

SP Sticky policy

TP Third party

SLA Service level agreement

CP Cloud provider

SSM Stateless storage machine

UML Unified Modeling Language

OMG Object management group

OCL Object constraint language

UML-SD UML sequence diagram

MDCT Modeling data cloud tracking

GestF Third-party business consultancy

SB Santander bank

ING Internationale Nederlanden Groep

OCL Object Constraint Language

L-(as in L1, L2, etc.) Location (for data storage)

O Owner(s) of the data (grant permissions over it)

P (as in PList) Principals (entities that access or own data)

N-(as in NL, NSP, etc.) New (used as prefix to indicate a modification of a previously referenced variable)

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 4/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

methodologies, and advancements in these specific domains, laying the foundations for
our novel contributions.

Modeling and validation of GDPR and data privacy
Regarding data privacy modeling, Basso et al. (2015) presents a UML profile for privacy-
aware applications to build UML models that specify privacy concepts and improve the
definition and application of privacy. Alshammari & Simpson (2018) also proposes a
profile (called APDL) for privacy-aware data to serve as an abstract model for personal
data life cycles. In particular, they distinguish between the operations that can be
performed on personal data during their lifecycle. While they suggest that the APDL
profile could be represented in terms of UML, it does not currently adhere to the UML
standard. Notably, these privacy data models do not explicitly consider the GDPR.

Some other works only focus on some specific aspects of the GDPR. For instance,
Mougiakou & Virvou (2017) propose a model that uses UML use case diagrams, a
combination of the GDPR, information privacy, and best practices to examine GDPR
requirements using an educational e-platform paradigm, called Law Courses.Matulevičius
et al. (2020) present a GDPR model and its supporting methods for managing regulatory
compliance in business processes. They use component diagrams to model the different
aspects of the GDPR, such as consent and data processing. However, they do not model
interactions between system roles or consider data tracking.

Likewise, Politou, Alepis & Patsakis (2018) assess the impact on personal data protection
and privacy of the right to withdraw consent and the right to be forgotten in the GDPR.
They consider some existing architectures and technologies to establish whether it is
feasible to implement technical practicalities and effectively integrate these new GDPR
requirements into current IT infrastructures.

Torre et al. (2019) share their experience in creating a UML representation of the GDPR.
In particular, they provide several tables with excerpts of the GDPR that are helpful for
developers and provide guidelines for creating automated methods to ensure GDPR
compliance. However, the authors only use UML package diagrams to design the UML
Class Model.

One of the main problems of the application of the GDPR in the field of Information
Technology is that it is defined by legal experts, not software or information engineers
(Tamburri, 2020). Therefore, many works in the literature are devoted to trying to help
software engineers in the implementation of the GDPR. Many of these works use modeling
techniques, which help with data management and allow software developers to have a
global vision of systems.

Tamburri (2020) offer a systematic synthesis and discussion of the GDPR by using a
mathematical analysis method known as Formal Concept Analysis. Likewise, Barati,
Theodorakopoulos & Rana (2020) have also formalized the rules and obligations of the
GDPR by using timed automata. They check whether the data flow in a business process
follows the GDPR guidelines. To do this, they use the UPPAAL tool (Larsen, Petterson &
Yi, 2023). Kammüller, Ogunyanwo & Probst (2019) propose a data label model for GDPR-
compliant IoT systems. They apply this model to ensure the protection of patient data in a

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 5/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

health-care system, labeling the data to cover the requirements of the GDPR and
presenting several use cases with the labeled data that can be transformed into a formal
specification of Object Z. While their label model shares some ideas with sticky policies, it
lacks expressive power and focuses on a more restricted problem, maintaining only the
owner and a list of authorized actors.

Vanezi et al. (2020) only focus on the purpose of data processing. They encode a formal
language syntax in a UML-based domain model and present a tool that takes a graphical
model definition and then translates it into formal language definitions. Kaneen & Petrakis
(2020) justify the advisability of GDPR compliance, which is verified in the system design
phase by analyzing dependencies between system entities and processes. The authors
suggest a series of questions that reflect the GDPR compliance requirements and design
class diagrams for these questions. They further generate a series of data reports intended
for regulators to evaluate system GDPR compliance during inspections.

In terms of the main differences between these related works and ours, we can highlight
the following. Firstly, we focus on GDPR compliance in cloud environments. Secondly, we
define a full UML profile to model all interactions in the cloud system and its
infrastructure, data tracking, and GDPR compliance, using UML-profile techniques.
Thirdly, as modeling techniques, we focus on UML, specifically sequence diagrams and
component diagrams, to model the interactions and infrastructure, respectively. Fourthly,
the profile models are validated by OCL to ensure compliance with certain restrictions.
Finally, we present a tool that supports the entire process.

Cloud and GDPR

Related works can be classified on whether it targets cloud users or providers. For cloud
users or consumers, Rios et al. (2019) introduce the DevOps framework. It includes privacy
and security controls to ensure transparency for users, third parties, and law enforcement
authorities. The framework is based on the risk-driven specification at the design time of
privacy and security objectives in the system’s service level agreement.

Other works also consider cloud providers. For instance, Pandit et al. (2018) define an
ontology to represent GDPR. Subsequently, Elluri & Joshi (2018) identify the GDPR
articles that affect the providers and consumers of cloud services. Then, they develop a
more detailed ontology for the obligations of cloud data providers and consumers. In
contrast, we have focused on tracking user data to ensure the rights of the data subject. For
this reason, we have also considered Chapter III of the GDPR (articles 12 to 23), which was
not contemplated in Elluri & Joshi (2018).

Razavisousan & Joshi (2021) develop a methodology called Textual Fuzzy Interpretive
Structural Modeling, which analyzes large textual data sets to identify driving and
dependent factors in the dataset. They identify the critical factors in the GDPR and
compare them with various Cloud Service privacy policies. Their results show different
factors that stand out in the GDPR and other privacy policies of publicly available services.
The authors state that this methodology can be used by both service providers and
consumers to analyze how closely a service’s privacy policy aligns with the GDPR. The

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 6/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

focus of their work is different from ours, as we propose a cloud architecture for cloud
providers which ensures GDPR compliance and includes privacy policies via sticky policies
associated with user data.

As for those works that are more oriented towards cloud providers, Georgiopoulou,
Makri & Lambrinoudakis (2020) identify the requirements and appropriate
countermeasures for GDPR compliance in cloud environments. They describe the GDPR-
related features, requirements, and measures that follow the cloud architecture. Shastri,
Wasserman & Chidambaram (2019) examine how the design, architecture, and operation
of modern cloud-scale systems conflict with the GDPR. They illustrate these conflicts
through what they call GDPR anti-patterns. They then present six system design and
operation anti-patterns, which are effective in their context but violate the GDPR rights
and receipts. They propose that cloud designers examine their systems for these
anti-patterns and remove them. This work focuses on studying and avoiding these specific
patterns, but they do not propose a GDPR-compliant cloud architecture for a cloud
provider.

Mohammadi et al. (2018) define a comprehensive architecture for runtime data
protection in the cloud. They identify five important actors and entities in the GDPR: data
subject, data controller, sensitive data, application, and infrastructure. They also derive
nine requirements from the architecture and use UML to design and validate this
architecture. This work is focused on data security rather than how data permissions are
granted by verifying third-party access. Unlike their work, we detail the interaction of
third-party software applications that want to access the data, and how their permissions
are checked.

Fan et al. (2019) and Chadwick et al. (2020) emphasize user-centered data sharing,
addressing data sharing agreements and employing privacy-preserving methods. While
these aspects are important in the context of GDPR, none of these works specifically
addresses GDPR compliance as we do in this work. Instead, our focus is on cloud providers
and GDPR, ensuring that data tracking and access are restricted to authorized entities.

Zhou, Barati & Shafiq (2023) propose a domain model of the accountability principle in
the GDPR. The authors use a blockchain-based technique to provide data immutability
and integrity for cloud providers’ data processing activities. In contrast, we provide a UML
profile focused on data tracking that ensures GDPR compliance by design.

In summary, none of the cited works model the cloud system using UML or incorporate
data tracking as we do in our work. Moreover, our primary focus is on aiding cloud
providers in designing GDPR-compliant cloud architectures.

Data tracking and GDPR
Gjermundrød, Dionysiou & Costa (2016) present a GDPR-compliant tool that covers data
transparency and treatability, called privacyTracker. They implement data portability and
the right to erasure as contained in the GDPR rights. This framework empowers
consumers with the appropriate controls to track the disclosure of data collected by
companies and assess the integrity of these multi-handled data. In this article, we not only

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 7/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

consider data tracking and the rights of data portability and the right to erasure but many
other GDPR rights too. All the GDPR articles considered in this work are summarized in
Table 2.

With regards to works that are more focused on data tracking and the GDPR, it is worth
mentioning the following. Barati et al. (2019), Barati & Rana (2020) focus on the issue of
GDPR compliance using Blockchain technology. The GDPR compliance of the operations
performed is verified using smart contracts. Their work is based on a voting mechanism of
the actors to reach a GDPR compliance verdict. If there is a violation, the actor who
committed it is informed. In our case, the service provider is responsible for guaranteeing
correct access to the data. Therefore, we have a log that saves all data accesses, and this log
contains the actions on the user’s data. In this way, users can be informed about the use of
their data (GDPR Articles 12, 13, and 14). Subsequently, Barati et al. (2020) propose three
smart contracts to support the automated verification of GDPR operations performed on
user data on smart devices. They present a formal model to support GDPR compliance for
these devices. The privacy requirements of such applications are related to the GDPR
obligations of the device.

Table 2 GDPR articles and recitals considered in this work.

GDPR Article description

Article 4 Definitions

Article 5 Principles relating to processing of personal data

Article 6 Lawfulness of processing

Article 7 Conditions for consent

Article 8 Conditions applicable to child’s consent in relation to information society services

Article 9 Processing of special categories of personal data

Article 12 Transparent information, communication, and modalities for the exercise of the rights of the data subject

Article 13 Information to be provided where personal data are collected from the data subject

Article 14 Information to be provided where personal data have not been obtained from the data subject

Article 15 Right of access by the data subject

Article 16 Right to rectification

Article 17 Right to erasure (“right to be forgotten”)

Article 21 Right to object

Article 22 Automated individual decision-making, including profiling

Article 24 Responsibility of the controller

Article 25 Data protection by design and by default

Article 28 Processor

Article 29 Processing under the authority of the controller or processor

Article 33 Notification of a personal data breach to the supervisory authority

Article 34 Communication of a personal data breach to the data subject

Article 55 Competence

Recital 44 Performance of a contract

Recital 109 Standard data protection clauses

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 8/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

GDPR-compliance assistant tools
Some tools help developers comply with the GDPR. GDPRValidator (Cambronero
et al., 2022) helps small and medium-sized enterprises that have migrated their services to
achieve GDPR compliance. PADRES (Pereira, Crocker & Leithardt, 2022) is a tool aimed at
web developers, which is organized by principles in the form of a checklist and
questionnaire. They also integrate other open-source tools to scan the web project.
RuleKeeper (Ferreira et al., 2023) is another tool to help web developers. In this tool, web
developers specify a GDPR manifest that is automatically incorporated in the web
application and is then enforced using static code analysis and runtime mechanisms. In
contrast, our tool is a modeling tool aimed at cloud providers to develop systems that
comply with GDPR by design.

BACKGROUND
This section covers some key concepts necessary to understand the rest of this article. We
first explain what the European General Data Protection Regulation is, and then we discuss
sticky policies. Finally, we briefly describe the Unified Modeling Language and the Object
Constraint Language.

The General Data Protection Regulation (GDPR)
The General Data Protection Regulation (GDPR) (General Data Protection Regulation (EU
GDPR), 2016) came into force on May 25, 2018, as a way to harmonize data protection
rules within EU member states. The GDPR was adopted in 2016 to replace the Data
Protection Directive, which was born in 1995 out of a need to align data protection
standards within its EU member states to facilitate internal and cross-border EU data
transfer.

The GDPR is a regulation, which means that it applies directly to its recipients, and no
further transpositions are required, as in the case of the Data Protection Directive. In
addition to equalizing the data protection rules, the GDPR was introduced to generate
greater legal certainty and eliminate potential obstacles to the free flow of personal data,
raising the bar for the privacy of the affected persons.

The GDPR applies to any processing of personal data (or personal data sets), whether
the processing is carried out, in whole or in part, by automated means (General Data
Protection Regulation (EU GDPR), 2016). Anyone who processes or controls the processing
of personal data is subject to the GDPR. There are different actors in the GDPR: data
subjects, who are the people whose data is processed (for example, customers or site
visitors); controllers, which can be a natural or legal person, public authority, agency, or
other body that determines the purposes and means of the processing of personal data; and
processors, who are a natural or legal person, public authority, agency, or other body that
processes personal data on behalf of the controller. The data can be processed within its
organization (that is, the controller and the processor are the same) or delegated to an
external organization.

Any individual benefits from the GDPR, which also provides specific protection to
minors. In contrast, legal entities do not benefit from protection under the GDPR,

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 9/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

regardless of their legal form. The GDPR applies when the processing of personal data
takes place within the EU or it involves data obtained form European citizens outside of
the EU.

There are various implications of the GDPR for organizations and entities (European
Comission, 2016). One of the most relevant implications is fair data processing, which
means that organizations and entities must process personal data in a legal, fair, and
transparent manner. In addition, they must demonstrate that they are GDPR-compliant
(accountability) and put in place the necessary technical and organizational measures to
guarantee the protection of personal data. The GDPR also establishes the purpose
limitation, which means that personal data is collected for specified, explicit, and legitimate
purposes and that no further processing is performed in a manner incompatible with those
purposes.

The GDPR incorporates a systems engineering approach called privacy by design. This
approach is based on seven fundamental principles that aim to proactively integrate data
protection into the design of new products and systems. These principles are as follows
(Langheinrich, 2001; Cavoukian, 2009): (i) proactive not reactive; preventive, not remedial;
(ii) privacy as the default setting; (iii) privacy embedded into the design; (iv) full
functionality—positive-sum, not zero-sum; (v) end-to-end security—full life-cycle
protection; (vi) visibility and transparency—keep it open; (vii) respect for user privacy—
keep it user-centric.

In the event of a data breach, organizations and entities under the GDPR must inform
the data protection authorities within the next 72 h after they become aware of the personal
data breach, and inform their users promptly. Infractions of different types (less serious or
serious) are applied to organizations and entities if the notification is not made on time or
the data breach was caused by the negligence of the controller or the processor of personal
data.

Another important aspect of the GDPR is the empowerment of data subjects with
certain rights to help data subjects in being assured of the protection and privacy of their
personal data (General Data Protection Regulation (EU GDPR), 2016). These data subject
rights are as follows: right to information, right of access, right to rectification, right to
erasure, right to restriction of processing, right to data portability, right to object, and the
right to avoid automated decision-making.

Sticky policies
A sticky policy defines a set of conditions and restrictions attached to data that describe
how the data should be treated or, where applicable, transmitted between parties (Pearson
& Casassa-Mont, 2011). The use of sticky policies facilitates compliance with, and the
application of, data policy requirements, since it allows strict control of the data life-cycle
in order to guarantee its privacy and the application of specific regulations on the use,
access, and disclosure of personal data.

Sticky policies enhance data owners’ control over their data. In particular, machine-
readable policies are directly attached to the data, and they are called sticky since they
travel along with the data as it travels across multiple administrative domains. These

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 10/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

policies make it possible to regulate how data can be accessed and used throughout its life
cycle, helping to ensure that access control decisions and policy applications can be carried
out in a distributed manner.

This paradigm was initially proposed by Karjoth, Schunter & Waidner (2002) to
formalize applicable regulations and associate them with collected data, thereby
supporting the identification of applicable regulations and privacy expectations for all
personal data in a company. Pearson and Mont were early adopters of sticky policies in the
context of the EnCoRe project (Pearson & Casassa-Mont, 2011), which provided
mechanisms for users to define and change consent policies, as well as to enforce these
policies throughout the entire data life-cycle.

Among other things, a sticky policy can define who owns the data, the content of the
data (it may be encrypted), the use to be made of the data (e.g., for statistical analysis,
transaction processing, targeted marketing), who can access the data, the maximum
duration of the data, as well as other specific obligations and restrictions for the parties
involved.

Unified Modeling Language (UML) sequence diagrams and combined
fragments, UML profiles, and the object constraint language (OCL)
The Unified Modeling Language (UML) (Object Management Group (OMG), 2017) is a
modeling graphical language commonly used in the industry for specification, design,
visualization, and documentation of software systems. UML includes several diagram
notations for modeling different aspects of software systems, addressing its structural,
behavioral, and deployment aspects.

A UML sequence diagram (UML-SD) is a behavioral diagram of the software system
that illustrates the sequence of messages passed between system participants (users or
system elements) in an interaction. Therefore, a sequence diagram consists of a group of
entities or roles that interact in a system, represented by vertical lifelines, and horizontal
arrows that represent the messages that they exchange during the interaction over time. In
a UML sequence diagram, a lifeline represents an individual participant, object, or entity
involved in an interaction or collaboration. It is depicted as a vertical dotted line, headed by
a rectangle or cube with the name of the object it represents, and it is used to show the
chronological order of interactions between objects in the system.

In a UML-SD, a combined fragment reflects one or more aspects of interaction (called
interaction operands) controlled by an interaction operator. The combined fragments are
represented by a rectangle and contain the conditional structures that affect the flow of
messages (the interaction operands). A combined fragment separates the contained
interaction operands with a dashed horizontal line between each operator.

The combined fragment type is determined by the interaction operator. For instance,
the operator loop allows the software designers to express interaction loops, while the
operator alt allows them to express alternative flows of messages. The operator opt allows
the modeling of an if-then structure. Finally, a combined fragment can also contain nested
combined fragments or interaction uses (operator ref), whose main goal is to reference

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 11/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

other interactions in a UML sequence diagram, and they make it possible to simplify large
and complex sequence diagrams.

UML can be adapted for analysis purposes through profiles, by using a UML tool called
UML profiling. A UML profile is an extension of the UML standard language with specific
elements that correspond to the same domain. For instance, the MARTE (Object
Management Group (OMG), 2011) profile has enabled UML to specify and analyze
embedded and real-time systems. Likewise, the performance and schedulability sub-
profiles of MARTE have proved useful for the modeling and analysis of a wide range of
application domains, apart from real-time systems.

The Object Constraint Language (OCL) is part of the UML set of modeling notations
(Warmer & Kleppe, 2003). OCL provides a precise textual language for model validation by
expressing constraints that cannot be shown diagrammatically in UML. For instance, OCL
constraints can be used to specify that a certain attribute must be unique within a class, or
that a method must only be called if a particular precondition is met.

By using OCL, software developers can describe constraints and expressions on UML
models that must hold on to the UML model elements. In practice, OCL constraints are
often used to complement the UML modeling process, as they can help identify potential
bugs early in the development cycle. When validating a UML model using OCL, it is
possible to catch errors or inconsistencies in the model and correct them before the
implementation phase begins, thus improving the quality of the resulting software system.
Hence, OCL is a powerful tool for validating UML models and ensuring their correctness
and completeness (Oestereich, 2002; Völter et al., 2006).

Stateless machines
Stateless machines (Sbarski & Kroonenburg, 2017; Villamizar et al., 2016) are software
components or systems that operate without maintaining session state information for
individual users or clients. They rely on external sources to obtain necessary state
information and comply with rigorous security measures to ensure data reliability and
integrity. In short, when a state machine is launched, it loads data from a data store, and
computes some results which are then stored or sent back to the data processing pipeline.
Lambdas AWS (https://aws.amazon.com/lambda/) is an example of such a computational
model.

Stateless machines play a crucial role in contemporary software design, providing
several advantages in scalability, fault tolerance, performance, and streamlining system
deployment and maintenance. In the context of GDPR compliance, they help improve
security by mitigating the risks associated with data leakage and unauthorized access that
can arise from storing user session data. Its importance is particularly pronounced in
distributed and cloud-based systems, where reliability and efficiency are paramount
attributes. Maintaining meticulous design principles and implementing robust security
practices is imperative to ensuring the trustworthiness of external state information.
Stateless machines present compelling benefits particularly in industries where secure data
management is of utmost importance, such as banking.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 12/44

https://aws.amazon.com/lambda/
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

RUNNING EXAMPLE
In this section, a running example is presented to illustrate the usefulness of our proposed
GDPR-compliant cloud architecture. It consists of a business consultancy that runs several
applications in the cloud for which it must read and write a variety of sensitive data in the
context of GDPR. Note that special attention is paid to the sticky policies associated with
this data and how to set the corresponding sticky policy when new data is generated, as a
result of combining or aggregating data, to ensure the privacy of the new data. We also
address data tracking. For this purpose, a specific field of the sticky policy, called
accessHistory, is defined to keep track of who is accessing the data and for what purpose.

The roles that interact in the cloud system are the following: the owner of the data or
user; the cloud provider, which acts as the data controller; the business consultancy (called
GestF), which is a third party that wishes to access the user data to perform certain
operations on them; and a processor (named SSMProcessor), which represents a stateless
storage machine in the cloud, where the processing is performed on behalf of a controller.
In this example, GestF can access the data for two different purposes: to provide customers
with tax returns (tax purposes), or to calculate certain population statistics (statistical
purposes).

Figure 1 shows the interactions between roles in the cloud using a part of our UML
profile, which is described in more detail in “Modeling Data Tracking in Cloud Systems”.
The first two messages, namely SPDataSubject (SP refers to Sticky Policy) and SLA (Service
Level Agreement), correspond to the contracts signed between the owner of the data (data
subject (DS)) and the controller (cloud provider), and between the controller and the
processor (SSMProcessor), respectively, according to GDPR, Article 28, Recitals 44 and
109. The message sendDatamodels the sending of data from the user to the controller and
from the controller to the processor. It also specifies the data retention period (in this case,
180 days). The message info models the fact that the data controller must inform the user
about who is responsible for processing its data, and the retention time once the contracts
are signed, according to the GDPR. Therefore, during these 180 days (time ≤ 180 days
condition), GestF can express its desire to access this data (alt[GestF wants to access Data]),
but GestF needs the data owner’s consent for data access. The messages consent,
askAuthentication, and GestF are used for this purpose. In the event that the interested
party or user consents to data access (alt[User consents]), the message ok is sent, and
GestF’s access to information is added in the controller log (AccessLog), via the adding
access information in AccessLog action. The permission message is then sent.

Once GestF has permission to access the data, it can access it for the two different
purposes mentioned: statistical or tax. The main difference between these purposes focuses
on the resulting privacy restrictions (sticky policy) for the new data obtained from the
calculations performed, which generally involve a combination of different data. For tax
purposes, the resulting data owners are all the owners of each combined set of data, while
the permissions are limited to the most restrictive for each of them.

Note that we use a special type of purpose called statistical. In this case, the results of
computing the data with this purpose turn out to be new data where no individual can be

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 13/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

identified. In order to enforce this type of computation, our architecture considers trusted
statelessmachines that guarantee that such statistics are generated using privacy-enhanced
technology, such as differential privacy or k-anonymity. In other words, we call trusted
stateless machines to those stateless machines that leak information in a controlled
manner. In this architecture, we have considered that providers offer their services through
stateless machines, which do not store user-session information. These kinds of machines
are usually less costly than using a stateful one for a similar purpose as the maintaining
entities do not have to manage the resident memory. This presents an interesting offer for

:CloudProvider
(ControllerCP):Data Subject :GestF

(Third Party)

sendData(DataSubject,180days)

sendData(DataSubject, 180days)

SPDataSubject SLA

info(180days,CloudProvider,SSMProcessor)

consent(DataSubject, [taxes, statistical], read)

askAuthentication

GestF

consent(GestF, [taxes, statistical], read)

permission([taxes, statistical], read)adding access
information

in AccessLog

ok(GestF,[taxes,statistical], read)

writeData(DSTaxes, 30 days)

readData

accessinformation

calculating DSTaxes
&DSTaxesSP in not

reliable machine

:SSMProcessor

[purpose==statistical]
readData

calculating
averageSalary in
trusted machine writeData(averageSalary, 30 days)

updating accessHistory of
SPDataSubject

alt [purpose==taxes]

alt [User consents]

alt [GestF wants to access Data]

time<=180days]

Figure 1 Running example: UML sequence diagram representing the interaction of GestF in the
cloud. Full-size DOI: 10.7717/peerj-cs.1898/fig-1

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 14/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

providers as, in the case they want to store session information, they must do so through
software cookies, which are regulated in the GDPR. In this case, GestF reads the data of the
interested party and calculates the average of the salaries of the employees, which is
aggregated data (we assume that the data about the other employees have been previously
read). This calculation is performed on a trusted machine, which our cloud architecture
provides specifically for this purpose. The sticky policy of the data obtained will be
different from that obtained for non-statistical purposes since the person who generates
the data is the data owner, as explained in “Final Sticky Policies”.

If the purpose is not statistical, unreliable cloud machines (regular machines) are used.
If GestF accesses the cloud to calculate the user’s taxes (alt[purpose==taxes]), it reads its
data and performs the tax calculation on a regular machine. To do this, it combines GestF
data with the user data and writes the new data (taxes) to the storage machine for 30 days
(readData and writeData messages). The resulting sticky policy for these newly obtained
data is explained in “Final Sticky Policies”.

Initial sticky policies
We consider five main fields in the sticky policies: permission, owner, purpose, controller,
and accessHistory. The permission field defines the access to the data. Permissions are
defined as DC labels (Stefan et al., 2012), which are tuples hS, Ii where S and I are
conjunctive normal forms on entities without negative literals. S specifies the entities
whose consent is required to access the data, while I specifies the entities that have created
the data and may modify it. A more detailed explanation is given in “Combination and
Data Aggregation”.

The owner field defines the owner of the data, while the purpose field defines a list of
possible access purposes (in this running example, statistical or tax purposes, as explained
above). The controller defines the data controller according to the GDPR, in this case it will
be the cloud provider. Finally, the accessHistory field allows us to track this data, that is,
save all the entities that have accessed the data and the purpose of the access.

The sticky policies for the different data used in this example are as follows. For the data
of the interested party, data subject (DS) or user:

DS_SP = {

{permission: hDS,DSi},
{owner: DS},

{purpose: taxes, statistical},

{controller: ControllerCP},

{accessHistory:

[(SB, statistical, read),

(ING, statistical, read)]}

}

Therefore, DS is the only one that can grant access to the data and can also write the
data. The owner of this data is theDS. The list of purposes has two types: statistical and tax.
Finally, the accessHistory field allows us to track this data. We assume two new entities

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 15/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

(SB and ING), representing banks. These entities are allowed to read the data for statistical
purposes.

As can be seen, GestF does not have permission to access the DS data in the initial sticky
policy, so it needs to request consent from the controller, who in turn will ask the data
subject (DS) for consent. As shown in Fig. 1, consent is given to GestF to read the data from
DS, who first reads the data. Therefore, the access history in the DS data must be updated
to reflect this access:

DS_SP = {

{permission: hDS,DSi},
{owner: DS},

{purpose: taxes, statistical},

{controller: ControllerCP},

{accessHistory:

[(SB, statistical, read),

(ING, statistical, read),

(GestF, taxes, read),

(GestF, statistical, read)]}

}

Likewise, GestF data has the following sticky policy:
GestFDataSP = {

{permission: hGestF,GestFi},
{owner: GestF},

{purpose: taxes, statistical},

{controller: ControllerCP},

{accessHistory: []}

}

This sticky policy means that GestFmust grant access to the data and can write its data,
the owner is GestF, and the list of purposes has both types: statistical and tax purposes.
Unlike before, the accessHistory field is empty, which means that no one has accessed
GestF’s data yet. Eventually, GestF calculates the DS’ taxes and stores them for 30 days
(writeData(DataSubjectTaxes, 30 days) message). This creates new data whose sticky
policy is a combination of data from GestF and data from DS.

Final sticky policies
The final sticky policies obtained for the new data generated because of the behavior shown
in Fig. 1 depend on purpose of the access (note that the controller remains the same):

� Statistical purpose. In this scenario, GestF executes a statistical application in the cloud to
compute the average salary for its employees (in this example, DS and DS1). As GestF
already possesses statistical access to DS’s data, the controller is not required to seek the
user’s permission for access. The application runs on a trustedmachine, as detailed earlier.
Following the computation, the anonymized aggregated data is generated and written to

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 16/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

the storage machine (writeData(averageSalary, 30 days) message) with the ensuing sticky
policy:

averageSalarySP={

{permission: hGestF,GestFi},
{owner: GestF},

{purpose: statistical},

{controller: ControllerCP},

{accessHistory: []}

As can be seen, the sticky policy of the new data is different since we consider that in the
statistical case the owner of the new combined data is the one who generates this new data
(in this case, GestF), and then decides on its permissions. Here, the purpose is statistical
only, and the accessHistory only considers the access of GestF, since this data will be used
solely in the interest of GestF.

� Tax purpose. In this case, the GestF is running a tax application on a regular cloud
machine and combining its data with the data from DS (SPGestF t DS SP) to calculate
the DS’s taxes (DSTaxesSP), where the operator t is ^ for the entities required to give
consent for read operations, and t is _ for write operations. So, the new sticky policy for
the new data (tax data) is as follows:

DSTaxesSP=

{permission: hDS ^GestF,DS _ GestFi},
{owner: DS ^ GestF},

{purpose:taxes, statistical},

{controller: ControllerCP},

{accessHistory: []}

Note that, for tax purposes, each field is generated according to the following rules:

– The permission field is obtained from the most restrictive combination of the
permissions of GestF and DS. That is, the DS_SP permissions are hDS, DSi, while the
Gest SP permissions are hGestF, GestFi. Therefore, the resulting permission is: hDS, DSi
t h GestF, GestFi = hDS ^ GestF, DS _ GestFi.
– The owner field contains all the owners of the combined data; in this case, DS and
GestF.

– The accessHistory is empty because it is new data, and no one has requested access to it
yet.

METHODOLOGY
This section presents the methodology followed by our proposed Modeling Data Cloud
Tracking (MDCT) framework. The main objective of our framework is to define
recommendations that allow cloud providers to create a stateless computing architecture
in the cloud that complies with the GDPR and guarantees the privacy of cloud users. For

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 17/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

this purpose, we focus on designing a GDPR-compliant cloud architecture that uses sticky
policies to ensure data privacy. In addition, the use of sticky policies allows our framework
to track user data throughout their entire life-cycle.

Figure 2 describes the different phases of our framework, which are as follows:

Phase 1. Modeling phase. The UML profile, named Model4_DataCTrack, is modeled to
design the proposed GDPR-compliant cloud stateless computing architecture. For this
purpose, we have had the support of expert GDPR consultants. Model4_DataCTrack uses
two types of UML diagrams, namely sequence and component diagrams, which allow us to
define the interaction between the roles in the system and the cloud architecture
infrastructure, respectively. We consider several parameterized sequence diagrams that
define the behavior of GDPR roles and third parties when accessing and managing
sensitive data in the cloud. Next, the specific configuration of the cloud infrastructure is
established by setting the corresponding parameters in the component diagram. This
infrastructure considers the sticky policies associated with the data to ensure data privacy.
Then, UML profiling techniques (Malavolta, Muccini & Sebastiani, 2015) are also used to
model the specific stereotypes needed. The GDPR articles considered are specifically
indicated in the description of the models. More details on this matter are given in
“Modeling Data Tracking in Cloud Systems”.

Phase 2. Validation phase. The model generated must comply with certain properties that
are validated in this phase. In this regard, we define a set of OCL (Object Management
Group (OMG), 2014) rules, which allows us to detect errors and warnings in the model. For
instance, if the action to perform on the data is not of the allowed action type, an error is
detected. If errors are detected, they must be corrected, and we return to the previous phase
(Phase 1. Modeling phase) to correct them. After that, the model must be validated again.

MModelingng pphase

Profile for Data Management in
Stateless Machines to Ensure Data

Privacy

GDPR & Data S�cky Policies

Interac�ons in the Cloud

UML Sequence Diagram & Profile Techniques

Cloud Infrastructure to
Ensure Privacy

UML Component Diagram & Profile Techniques

GDPR-Compliant Cloud Architecture
for Data Management, Ensuring Data Privacy

for GDPR compliance & Data Tracking

Profile Valida�on

Design Restric�ons & OCL Rules

1

Checking Models
Consistency

MMDCT Tool

RRecommendationon pphaseVValidationon pphase2 3

Figure 2 Modeling data cloud tracking (MDCT) framework proposal.
Full-size DOI: 10.7717/peerj-cs.1898/fig-2

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 18/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-2
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

The validation of our profile model is described in detail in “Validation and Threat
Model”.

Phase 3. Recommendation phase. After model validation, this phase allows cloud providers
to finalize a stateless computing architecture configuration in the cloud. This configuration
is GDPR-compliant, ensures user privacy, and allows data tracking.

MODELING DATA TRACKING IN CLOUD SYSTEMS
This section resulting describes Model4_DataCTrack and its validation in detail. We first
look at the interaction model, showing the UML sequence diagrams that allow us to model
the interaction between the different roles in the system. We then introduce the rules for
generating the new sticky policy for new data and for the aggregation or combination of
this data, when data has been accessed for statistical or other purposes, respectively.
Finally, we present the profile stereotypes and system infrastructure using UML
component diagrams.

In what follows, we adhere to terminology expressed in Article 4 GDPR “Definitions”
(General Data Protection Regulation (EU GDPR), 2016) for the main definitions and
concepts used in our model. The specific articles and recitals of the GDPR considered for
this work are summarized in Table 2. We explicitly mention them in the description of our
profile.

Interaction model
This section describes the UML sequence diagrams that model the interaction between the
different roles in our proposed stateless cloud architecture. Regarding the roles, we have
defined the following: the user (also called data subject), the ControllerCP2 (controller), the
stateless computer applications (StatelessAppTP3), which want access to the data, and
finally, the SSMProcessor4 (processor), which is the machine on which the data is stored.

User data is considered sensitive information to be stored and processed in the system.
Therefore, ControllerCP is responsible for implementing appropriate technical and
organizational measures to guarantee and be able to demonstrate secure access to data
(Art. 24 and 25 GDPR (General Data Protection Regulation (EU GDPR), 2016)). It is then
responsible for monitoring the application of GDPR to protect the fundamental rights and
freedoms of natural users with respect to data processing, and for facilitating the free flow
of sensitive data within the EU. The SSMProcessor is responsible for data processing
(Article 28 GDPR; General Data Protection Regulation (EU GDPR), 2016). In this cloud
environment, the stateless storage machine acts as the data processor, as it stores the data
and is responsible for data processing. In accordance with Article 29 GDPR (General Data
Protection Regulation (EU GDPR), 2016), the processor and any person acting under the
authority of the controller or the processor, who has access to personal data, shall not
process this data except on the instructions of the controller, unless required by the law of
the Union or Member State.

Figures 3–6 show the interaction between the different roles using UML sequence
diagrams.

2 CP is the abbreviation for Cloud
Provider.

3 TP is the abbreviation for Third Party.

4 SSM stands for Stateless Storage
Machine.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 19/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

Figure 3 shows the main sequence diagram, in which we capture the interactions of the
different roles when a user interacts with the cloud system and sends personal data to it. As
personal data, we also consider data of special categories (Article 9 GDPR (General Data
Protection Regulation (EU GDPR), 2016)) or children’s data5. However, in the proposed
architecture we do not consider personal data relating to criminal convictions and offenses

:ControllerCP:User :StatelessAppCTP :SSMProcessor

sendData(Data,maxTime)

:StatelessAppCTP

the TP wants to access Data]

the ControllerCP wants to subscribe to notification of breaches]

the User wants to remove Data]

the User wants information about the data management]

the User wants to rectify Data]

ref

ref

ref

accessing_Data

subscription

infoDataUser

newRestrictions(Data, newSP)

saving new SP in log
update(Data,machines,newSP)

rectifyData(Data, newData) newData(Data,machines,newData)

removeData(Data))

break
eraseData(Data,machines)

removeSPinLogsearching
Data

Ubication

sendData(Data,maxTime)

SP SLA

info(maxTime,ControllerCP,recipients)

removing Data & Copies

eraseData(Data, machines)

the User wants to add new restrictions]

saving controller
in SP

removing SP in Log

alt [MessageType

loop time<=maxTime]

sd main

Figure 3 Main SD: main interaction diagram in the cloud.
Full-size DOI: 10.7717/peerj-cs.1898/fig-3

5 It is important to remark that the treat-
ment of data belonging to minors only
differs from other categories of data in
the collection process. In these cases,
controllers must make the information
about the processing more accessible and
clear, and require the consent of the
certified legal guardians of the individual.
This is specified in Article 8 and recital
38 GDPR (General Data Protection
Regulation (EU GDPR), 2016).

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 20/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-3
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

(Article 10 GDPR (General Data Protection Regulation (EU GDPR), 2016)). Initially, the
user signs a contract (represented by the Sticky Policy (SP) message) with the controller to
establish it as the controller of data processing and guarantee the principles relating to the
processing of personal data (Article 5 GDPR (General Data Protection Regulation

:ControllerCP

accessinformation
updating SP in log

alt [User consents]

:SSMProcessor
:User

ok(tp, purpose, ActionType)

:StatelessAppCTP

consent(Data, purpose, action)

askAuthentication
tp

readData

writeData(content, 0)

TP wants to combine and has
permission for reading and writing]

writeData(newData, maxTime)

main

permission(purpose,ActionType)

consent(tp, purpose, action)

adding access information
in AccessLog

calculating aggregated newData
and newSP in trustedM

updating
accessHistory of SP

writeData(newData, maxTime)combining Data and calculating
newData and newSP

TP wants to write and has
permission for writing]

readData

readData

checking tp
permissions

ref

alt[purpose==statistical]

alt [TP wants to read and
has permission for reading]

loop [tp has permission or User consents]

alt [tp has not permission for data accessing]

Figure 4 Accessing_Data SD: third parties accessing data.
Full-size DOI: 10.7717/peerj-cs.1898/fig-4

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 21/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-4
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

(EU GDPR), 2016)). This contract defines the fields of the sticky policy for the data, that is,
the permissions, the owner, the purpose, the controller, and the accessHistory, with this
last field being empty at the beginning.

:SSMProcessor:User :ControllerCP :StatelessAppCTP

subscribe(Data,machines,breaches,MaxSubscriptionTime=maxTime)

notify(Data, machines, breaches)

InformBreaches, <72 hoursinformBreaches

timeoutSuscription

check
changes

alt [breaches]

opt [controller wants to know the breaches]

Figure 5 Subscription SD: controller subscription to be notified when data changes.
Full-size DOI: 10.7717/peerj-cs.1898/fig-5

:ControllerCP

counterUser++
& checkUserId

counterUser==0

askDataInformation(User)

:SSMProcessor:User :StatelessAppCTP

reportDataManagement generateReport,
<30days

informationNotForFree(price)

wantToAccess

counterUser ==1]

reportDataManagementforFree generateReport, <30days

opt [User wantToAccess]

alt [User verified and counterUser >1]

loop

Figure 6 InfoDataUser SD: user asks about the management of its data.
Full-size DOI: 10.7717/peerj-cs.1898/fig-6

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 22/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-5
http://dx.doi.org/10.7717/peerj-cs.1898/fig-6
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

The controller and the processor then also sign a Service Level Agreement (SLA
message), which allows the specific storage machine to be set as the data processor and
thus process personal data on behalf of the controller. This contract defines the maximum
time during which data is stored on a machine and the third parties that can access data
using the processingDuration, and recipients, respectively (see the class diagram in
Appendix A). Hence, data will be stored and processed on that machine. These contracts
are defined according to Article 13.2 GDPR (General Data Protection Regulation (EU
GDPR), 2016). The GDPR specifies that the processing of data by a processor shall be
governed by a contract (Article 28.3, Recital 44 and 109 GDPR (General Data Protection
Regulation (EU GDPR), 2016)), where the processing period (maxTime parameter) is
established, which is based on the defined processingDuration. After that, the user can
transfer its data to the controller (sendData message).

Note that the associated sticky policy is a property of the data (see the class diagram in
Appendix A), and from that moment on, the controller oversees and is responsible for
controlling the processing of the data. The saving controller in SP action allows the
controller to save its identity in the sticky policy by using the controller property. Then,
considering Article 13.1 GDPR (General Data Protection Regulation (EU GDPR), 2016)
(“the controller shall provide the data subject with some information”), the controller
informs the user (infomessage) about the period for which data will be stored (maxTime),
the third parties recipients, the identity, and the contact details of the controller
(ControllerCP). Article 14 GDPR (General Data Protection Regulation (EU GDPR), 2016)
defines what the controller must do when personal data has not been obtained from the
data subject (for instance, from a different company). In this scenario, the data controller
must inform the user and provide the same guarantees as before. Therefore, once the user
is informed, the controller can store the user data on the storage machine (sendData
message).

Subsequently, the controller enters a loop to handle the messages received in the system
until the time to store the data expires (time ≤ maxTime condition) or the user orders the
deletion of its data. For this purpose, a loop combined fragment is used to model the
repetition of the interactions within it. Note that this combined fragment is inside a
sequence diagram fragment called sd main. This is an interaction use in UML and allows us
to reference it from other diagrams by simply using the label ref together with the name of
the fragment (e.g., ref main in this case). Therefore, note that the sd main combined
fragment can also end when the deletion of the data is ordered by the user, after which the
data controller orders the processor to erase the data subject data and any of its copies
(message eraseData), in accordance with Article 28.3.g GDPR (General Data Protection
Regulation (EU GDPR), 2016). If this happens, the processor acts by removing Data &
copies (at the bottom of this main SD-diagram) and the controller acts by removing SP in
Log and removing the corresponding data from the log (self-message removeDatainLog).

The alt combined fragment inside the loop allows us to model the occurrence of
different events that can occur in the system. The first event (first part of the alt combined
fragment) occurs when the user wants to add new restrictions to its data policy (the user
wants to add new restrictions condition). This event allows the user (data subject), for

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 23/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

instance, to withdraw consent to third parties at any moment, that is, to change their access
permissions in accordance with Article 7.3 GDPR (General Data Protection Regulation
(EU GDPR), 2016). The message newRestrictions containing its data (Data) and the new
restrictions (newSP) is set. The newSP parameter is of type StickyPolicy, and describes a list
of third parties with their associated permissions (permission field) as an array of elements
of type PermissionPerTP, which are (S, I) pairs, where both S and I are a list of lists of TPs
(Third Parties, defined by StatelessAppCTP), and S defines who is authorized to grant
permissions for data access, and I the third parties with writing permission over the data
(see “Combination and Data Aggregation” and Appendix A). The controller then saves
these new constraints to the log (saving new SP in log action). Therefore, these new data
restrictions must be updated on all the machines that store the data. To do this, the update
message is sent to the SSMProcessor roles with the Data,machines, and newSP parameters,
to specify the data, the machines where these are stored, and the new sticky policy,
respectively.

The second event (second part of the alt combined fragment) corresponds to the user’s
right to rectify inaccurate personal data via the data controller without undue delay, Article
16 GDPR (General Data Protection Regulation (EU GDPR), 2016) (the User wants to rectify
Data condition). The user sends the message rectifyData to the ControllerCP, with two
parameters, namely Data and newData, corresponding to the old and new data,
respectively. The data must be updated on all the machines where it is stored. To do this, a
new message is sent to all the storage machines (SSMProcessor) that contain the data to
inform them about the data rectification (message newData), with these three parameters:
Data, machines, and newData.

Article 17 GDPR (General Data Protection Regulation (EU GDPR), 2016) regulates the
user’s right to delete its data (the User wants to remove Data condition of the alt).
Therefore, the third event (third part of the alt combined fragment) occurs when the user
orders the removal of its data, sending the message removeData, which contains the data
(Data) to be removed. After that, the controller searches for all the possible machines in
the log that store the data to erase them (Seaching Data Ubications action) and updates the
log by deleting all entries with the deleted information (represented by the recursive self-
message removeSPinLog). After that, an eraseData message is sent to the corresponding
processors, with the Data and machines parameters, to indicate the data to be deleted and
the SSMProcessors that store it, respectively. Note that these interactions are within a break
combined fragment, which allows us to model that once the data has been eliminated, the
execution leaves the loop7. Let us remark that the user is the only entity authorized to
eliminate its data, so we do not consider a special type of permission for this purpose.

Another possible event occurs when a StatelessAppCTP, that is, a third-party (TP), wants
to access the user’s data (the TP wants to access Data condition; fourth part of the alt
combined fragment). As Fig. 3 shows, the interaction use called accessing_Data is executed.
This interaction use shows the implementation of the interactions between the roles from the
system to access the user’s data (see Fig. 4). As can be seen in this figure, the TP that wanted
to access the data must request the user’s consent by sending a consent message to the
controller, as per Article 6 GDPR (General Data Protection Regulation (EU GDPR), 2016).

7 As explained above, the execution of the
loop can end for two reasons: the time for
storing the data has elapsed or the user’s
data has been deleted at the request of the
user.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 24/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

The parameters of the consent message are the data to be accessed (Data), the purpose for
which the TP wants to access the user’s data (purpose), and the action to be performed on
them (action, of ActionType type, see Fig. 4). In response to this message, the controller
requests the TP to identify itself with the askAuthentificationmessage. Then, the TP sends
its identity in the tp message. Once the controller receives the identification of the TP, it
verifies its permissions in the SP associated with this data. If the TP has no permission to
access the data, the controller sends a consent message to the user. Now, the user has the
right to object (Article 21 GDPR (General Data Protection Regulation (EU GDPR), 2016)).
This behavior is represented in the second part of the alt [User consents] and equates to
doing nothing. This situation also covers Article 22 GDPR (General Data Protection
Regulation (EU GDPR), 2016) (that is, the user has the right not to be subject to decisions
coming only from automatization—including profiling). Otherwise, the condition [User
consents] is fulfilled, and the ok message is sent with three parameters: tp, purpose and
ActionType, corresponding to the identification of the TP, the purpose for which the data is
accessed, and the type of permission to access, respectively. Then, the controller updates its
log, adding the information about this new access (adding access information in AccessLog
action), including a new record on it, and sends the permission to the TP (permission
message), in accordance with Article 7 GDPR (General Data Protection Regulation (EU
GDPR), 2016). Therefore, the loop combined fragment is executed if the condition [tp has
permission or User consents] is fulfilled, that is, the TP had permission or the user has
accepted. This structure is used to model the repetition of TP operations (read, write, and
combine) on the specified data.

TP operations are of ActionType type (see the figures in Appendix A), i.e., the TP can
read data (readDatamessage) or write data (writeDatamessage) (see Fig. 4). However, the
TP can also combine several sets of read data. Then, the corresponding part of the alt
combined fragment will be executed, depending on the action that the TP wishes to
perform:

� If the TP wants to read, the first part of alt ([TP wants to read and has permission for
reading] condition) is executed. If the TP wants to read, and since it has obtained
consent, then the readData message is sent to the SSMProcessor to read the data.

� If the TP wants to write, the second part of alt is executed ([TP wants to write and has
permission for writing] condition). In this case, the writeData message, which has the
new data content as parameter (content parameter), is sent from the TP to the
SSMProcessor to write the data and it allows the TP to overwrite the data with that
content. The maxTime is 0 since the storage time is unchanged.

� Finally, if TP wants to combine several data, the third part of alt is executed ([TP wants
to combine and has permission for reading and writing] condition). In this case, the alt
[purpose==statistical] allows us to model the two different behaviors depending on the
purpose of access.

1. If the purpose contributes to statistics on customers or the population (statistical
purpose), the first part of alt (condition [purpose==statistical]) is executed. In this

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 25/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

case, a readData message is used to read the data. Then, the TP acts by calculating
aggregated newData and newSP in trustedM. This action allows the TP to perform a
statistical operation on the data8, which are being held on a trusted machine dedicated
to this purpose in our cloud architecture. Later, a writeDatamessage allows the TP to
write the new data in the storage (newData parameter for maxTime period, which is
aggregated data). In this case, the new data is owned by the TP, which makes
decisions on it.

2. If the purpose is not statistical (for instance, tax returns), once the TP has read the data
(readData message), it acts by combining Data and calculating newData and newSP.
This action is run on a non-reliable cloud machine. Later, a writeData message allows
the TP to write the new data (newData parameter for maxTime period of time).
Finally, the interaction use main is executed to manage the newly generated data.

“Combination and Data Aggregation” explains in detail how the new SP is generated
(calculating newSP) when data aggregation or combination of the data is performed.

Then, the accessHistory field of the new SP is adapted to include the data access
information (updating accessHistory of SP action). The controller acts by updating SP in log
to modify the corresponding SP in the log, in the accessHistory field. Finally, in accordance
with Article 12 GDPR, the user is informed of the data accessed through the message
accessinformation.

The following event in Fig. 3 occurs when the controller (ControlerCP) wants to know
about changes to the user’s data, modeled by the fifth part of the alt structure (the
ControllerCP wants to subscribe to notification of breaches condition; Article 34 GDPR).
Thus, the controller subscribes to receive notifications when data breaches occur. For this
purpose, the interaction use (subscription ref frame) is executed.

Figure 5 shows this interaction use. The controller can subscribe to notification of any
changes detected by the processor through the use of the subscribe message, which allows
control of data changes at any time. This message has four parameters: Data, the machines
the controller wants to control (machines parameter), the violations detected (breaches
parameter), and the maximum subscription time (MaxSubscriptionTime parameter). This
maximum time is set by the GDPR at 72 h, in accordance with Article 33, in which the data
controller must notify the violation of personal data to the competent supervisory
authority in accordance with Article 55, unless it is unlikely that the violation of personal
data poses a risk to rights and freedoms of data subjects. The breaches parameter is an array
of (Data, TP, actionType, newData, newlocation). In the event of a breach (alt [breaches]),
the controller receives a notification message (notify message). This message has three
parameters: Data, machines and breaches. Subsequently, the controller checks whether
changes to the data have been logged in the log (check changes action), and has 72 h to
inform the user, represented by the informBreaches message. If during the maximum
subscription time (MaxSubscriptionTime) any changes or breaches are not detected, the
timeoutSuscription message is sent to the controller from the processor. This process
allows the controller to audit any changes that occur by verifying the information included
in its log.

8 We assume that the TP has previously
read the other data.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 26/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

The last event occurs when the user requests information about the handling of its data,
in accordance with Article 15 GDPR. This corresponds to the last part of the alt in Fig. 3
(the User wants information about the data management condition). In this case, the
interaction use called infoDataUser is executed (see Fig. 6). According to the GDPR, the
first time the user requests information about the processing of its data, it will be provided
free of charge. However, if further copies are requested, a reasonable fee reflecting
administrative costs should be required. We model this behavior as follows. First, a counter
named counterUser is defined and initialized to zero. Then, a loop structure is included to
model the possible repetitive behavior of the user when requesting this information. The
message askDataInformation from the user to the controller models this request. The
controller then performs the counterUser++ & checkUserId action to increase the value of
counterUser and search for this user’s information. Subsequently, the alt combined
fragment with the User verified and counterUser > 1 condition allows the execution of the
first part to inform the user that they have to pay a fee, represented by the
informationNotForFree message with the parameter price. Therefore, the user can decide
whether to pay and receive the information (wantToAccess message). In this case, the opt
[User wantToAccess] is executed and the controller generates the report in less than 30 days
(generateReport, <30 days action), and sends the reportDataManagement message to the
user. However, if this is the first time the user has requested the information (counterUser
== 1 condition), the controller generates the report within those 30 days and sends the
information for free, with the reportDataManagementforFree message to the user.

Combination and data aggregation
At this point, we provide details about the rules applied in the data combination operation,
which are inspired by the ideas presented in Stefan et al. (2012). Permissions are DC labels:
tuples of the form hS, Ii, where S and I are conjunctive normal forms on entities without
negative literals. S represents entities whose permission is required to grant access to the
data, while I represents the entities that have full access to the data. DC labels have a can-
flow-to relation v defined as:

S1 ! S2; I1 ! I2
hS1; I1i v hS2; I2i

There are two operations defined on DC labels:

� hS1; I1i t hS2; I2i ¼ hS1 ^ S2; I1 _ I2i
� hS1; I1i u hS2; I2i ¼ hS1 _ S2; I1 ^ I2i

If we consider D to be the set of DC labels, then the pair (D ;v) forms a lattice:

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 27/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

when combining two DC labels, for instance DC1 and DC2, we must keep the less
restrictive DC label stronger than both: SP1 t SP2. For the sake of simplicity, we consider
the combination of only two different data. However, it can easily be extended to combine
more data. Then, we can define the combination operator of two DC labels c : D � D 7!D ,
defined as cðDC1;DC2Þ ¼ SP1 t SP2. We obtain DC1 v cðDC1;DC2Þ and
DC2 v cðDC1;DC2Þ. Let us illustrate this with an example.
Example 5.1. Suppose DS1 has all the data to complete her tax form. DS1’s data has also
included the data for her husband, DS2. Hence, the sticky policy for the data is the
following:

SPtax={
{permission: hDS1 ^ DS2,DS1 _ DS2i},
{owner: DS1 ^ DS2},
{purpose: taxes},

{controller: cloud provider},

{accessHistory: H}
}

DS1 has a tax agent GestF who prepares the tax form. Since GestF needs to access DS1’s
data, this agent must request access to read the data and then create a new document
combining DS1’s data and its own data. The resulting sticky policy is:

SPtax={
{permission: hDS1 ^ DS2,DS1 _ DS2i},
{owner: DS1 ^ DS2},
{purpose: taxes},

{controller: cloud provider},

{accessHistory: H [[(GestF,taxes,read)]}
}

The resulting tax form has the following sticky policy
SPtaxform={
{permission: hDS1 ^ DS2 ^ GestF,
DS1 _ DS2 _ GestFi},
{owner: DS1 ^ DS2 ^ GestF},
{purpose: taxes},

{controller: cloud provider},

{accessHistory: []}

}

However, when aggregating data, the aggregating entity must request permission from
all the entities required by the DC label of each aggregated set of data. The entity then
creates new data owned by the entity, aggregating the data. The historical field of the
aggregated data should reflect this access. For instance:
Example 5.2. Suppose that SB (Santander Bank) wants to average the taxes paid by their
clients. There are two clients,DS1 andDS2, whose tax data have the following sticky policy:

SPDS1={
{permission: hDS1 ^ DS2 _ GestFi},

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 28/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

{owner: DS1 ^ GestF},
{purpose: taxes},

{controller: cloud provider},

{accessHistory: H1}

}

SPDS2={
{permission: hDS1,DS2i},
{owner: DS2},
{purpose: taxes},

{controller: cloud provider},

{accessHistory: H2}

}

Thus SB needs to ask DS1 and GestF for permission to access DS1’s tax form and only
DS2 for DS2’s tax form. The resulting sticky policies are:

SPDS1 = {

{permission: hDS1 ^ GestF,DS1 _ GestFi},
{owner: DS1 ^ GestF},
{purpose: taxes, satistical}, \

{controller: cloud provider},

{accessHistory: H1 [[(SB,statistical,read)]}
}

SPDS2= {

{permission: hDS2,DS2i},
{owner: DS2},
{purpose: taxes, statistical},

{controller: cloud provider},

{accessHistory: H2 [[(SB, statistical, read)]}
}

We can observe that SB has readDS1’s andDS2’s data for statistical purposes. The sticky
policy of the aggregated data (the average) is:

SPavg={
{permission: hSB,SBi},
{owner: SB},
{purpose: statistical},

{controller: cloud provider},

{accessHistory: []}

}

Architectural model
For simplicity, in this section, we only present a summary of the model that defines the
proposed cloud infrastructure. The complete detailed description is available in
Appendix A. In previous works (Bernal et al., 2019; Cambronero et al., 2021), we have
presented some aspects of the cloud infrastructure, but without considering data storage

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 29/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

and management. In contrast, in this work, we focus on this aspect of the cloud, defining a
GDPR-compliant architecture to manage the data of users who access the cloud. Hence,
our architecture provides data privacy management, GDPR compliance, and data tracking.
In particular, data privacy management and data tracking are provided through the use of
sticky policies (see “Sticky Policies”). Similarly, GDPR compliance is validated using OCL
rules (see “Validation of the Model4 DataCTrack Models”).

Figure 7 shows the stereotypes defined to model the main components of the cloud
infrastructure. First, by extending the Component metaclass, the Infrastructure stereotype
represents the cloud infrastructure together with the complementary services offered by
the cloud provider. The stereotypes DataCenter, Rack, Machine, Hardware, and
StatelessAppCTP also extend the Component metaclass. In this way, the cloud
infrastructure consists of a set of data centers, which in turn are composed of a collection of
racks (Rack). A rack belongs to two subtypes (StorageRack or ComputingRack), depending
on the type of machine (Machine stereotype) it contains. In particular, the machine can be
a stateless storage machine (SSMProcessor stereotype) or a stateless computing machine
(StatelessComputationMachine stereotype), respectively. Therefore, a storage rack will be
made up of several (storage) machines, and a computing rack by one or more computing
machines. Note that a computing machine has two subtypes: it can either be a TrustedSCM
or an UntrustedSCM. Trusted machines are served by controllers in our cloud architecture
with the special purpose of statistical use (defined in “Running Example”) and store read-
only data, whereas untrusted machines are accessible to anyone and can be used for other
purposes, such as taxes or insurance calculation. The Hardware stereotype represents the
components that any machine will have, and has three sub-stereotypes: CPU,Memory, and
Storage. Finally, the StatelessAppCTP stereotype represents third-party applications
seeking to access the data.

Figure 7 Model4_DataCTrack profile: cloud-GDPR infrastructure stereotypes.
Full-size DOI: 10.7717/peerj-cs.1898/fig-7

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 30/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-7
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

As mentioned, the cloud infrastructure is made up of several data centers, many of
which have similar or identical configurations, as they are typically purchased in bulk. For
this reason, the relationships between components are defined as associations between
stereotypes. In Appendix A, these associations are illustrated graphically; they are also
discussed in detail.

The definition of the stereotypes used for the interaction (Interaction Model) appears in
Fig. 8. The User, ControllerCP, StatelessAppCTP, and SSMProcessor stereotypes extend the
Lifeline metaclass. Also, there are the roles that interact in the cloud architecture (see Figs.
3–6). The stereotype User represents the data subject or user. The cloud service provider

Figure 8 Model4_DataCTrack profile: interaction stereotypes.
Full-size DOI: 10.7717/peerj-cs.1898/fig-8

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 31/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898/fig-8
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

(ControllerCP) represents the user’s data controller, as explained earlier. The different
third-party applications that access the data make up the StatelessAppCTP stereotype. And
finally, the machines (SSMProcessor stereotype) represent the entities which will storage
and process of the data, thereby becoming the data processors. Next, the StickyPolicy,Data,
SLA, and AccessLog stereotypes extend the metaclass Component. These stereotypes
represent the system components used for data representation and control. Finally, all the
messages exchanged in the interaction extend the Message metaclass.

Appendix A shows the attributes and relationships between interaction stereotypes as
associations of stereotypes. In this appendix, these attributes and relationships are fully
described.

We should point out that the controller uses the log (AccessLog stereotype) to store
information about all the data accesses and changes to the SP associated with the data,
which is made up of several fields of different types, as described in Appendix A. Table 3
summarizes this controller log structure. As can be seen, for each data access the following
information is stored in a log record: TP, the third party accessing the data, of type
StatelessAppCTP, tp for short; L1, the initial data Location (storage machine) of type
Storage; SP1, the initial data Sticky Policy, of type Sticky Policy; O, the list of entities (third
parties or users) granting permission to access the data, of type PList; Action, the action
performed on the data, of type ActionType; NL, the New Location of the data, of type
Storage; and finally, NSP, of Sticky Policy type, which stores the New Sticky Policy, in case
of changes to the initial sticky policy.

VALIDATION AND THREAT MODEL
This section first outlines the procedure for validating the models generated using our tool
and then describes the threat model of our approach.

Validation of the Model4_DataCTrack models
To facilitate the validation process, we have established a set of OCL rules (Object
Management Group (OMG), 2014), which can be found in Appendix B, encompassing the
complete collection of OCL rules.

These rules have been categorized into two distinct groups. The first group, known as
the structural rules, primarily focuses on the conventional relationships between
stereotypes and their corresponding properties. Appendix A provides a comprehensive
description of these constraints. Table 4 presents the most noteworthy examples.

Rule STR-1 validates that the set of data included in an instance of the upDatemessage
(self.data) is present in all machines to which the message is destined. This is
accomplished by verifying that the list of data sets stored in each machine (m.storage.

Table 3 Controller log Accesslog structure.

TP L1 SP1 O Action NL NSP

tp Storage SP PList[1..*] ActionType Storage SP

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 32/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

data) includes the data from the message, for all machines in the destination machines
list of this message (self.machines).
Rule STR-2 checks whether the new processor mentioned in any AccessLog of the
controller, where the data has been copied to, is also under the Service Level Agreement
(SLA) with the controller of this data. To achieve this, the controller’s log list (self.
accesslog) is examined to validate the existence of an SLA in the controller’s SLA list
(self.sla) that is included in the SLA list of the newLocation machine in the log (log.
newLocation.sla).
Rule STR-3 ensures that the data introduced in any instance of a rectify message does
not violate the data accuracy principle of the General Data Protection Regulation
(GDPR) by containing empty fields. For this purpose, it is verified that all fields in the
newData attribute of the message (self.newData) have a size (number of characters in
the string) greater than 0.
The second group comprises rules that pertain to the specific restrictions imposed by
the GDPR. Given the significance of these rules in the context of this article, we will now
give a more detailed explanation of the rules that we consider most relevant. Refer to
Table 5 for a summary of these rules.
Rule GDPR-1 verifies that every machine in the list of machines to which an update
message is intended has been assessed as compliant with GDPR standards by an
authoritative GDPR entity. In other words, it ensures that the GDPRCompliance
attribute for all these machines is set to true.
Rule GDPR-2 validates that within the accessHistory list of a given StickyPolicy, none of
the recorded accesses have an associated purpose that is not included in the allowed set
of purposes specified by the purpose attribute of that policy.

Table 4 Subset of OCL Rules defined for structural consistency.

Attributes Value

Rule STR-1 all_machines_must_contain_data_to_update

Severity ERROR

Context upDate

Specification self.machines->forAll(m | m.storage.data->

includes(self.data))

Rule STR-2 newLocation_machine_must_be_under_sla_with_controller

Severity ERROR

Context ControllerCP

Specification self.accesslog ->

forAll(log | self.sla->

exists(sla | log.newLocation.sla

-> includes(sla)))

Rule STR-3 no_empty_rectify_fields

Severity ERROR

Context rectifyData

Specification self.newData->forAll(f | f.value.size() > 0)

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 33/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

Rule GDPR-3 ensures that all third parties listed in the accessHistory field of a
StickyPolicy possess the appropriate permissions defined for them within the permission
list of that policy. Specifically, it examines the I field of the sticky policy’s permission
field.
Rule GDPR-4 raises an error if a specific data access recorded in the controller’s log
(AccessLog) does not have the corresponding access included in the accessHistory of the

Table 5 Subset of OCL rules derived from GDPR.

Attributes Value

Rule GDPR-1 upDate_destinantion_machines_comply_with_GDPR

Severity ERROR

Context upDate

Specification self.machines -> forAll(m | m.GDPRCompliance=true)

Rule GDPR-2 allowed_access_purpose

Severity ERROR

Context StickyPolicy

Specification self.accessHistory->

forAll(his | his.purpose->

forAll(p | self.purpose->includes(p)))

Rule GDPR-3 tp_in_history_given_permissions

Severity ERROR

Context AccessLog

Specification self.accessHistory ->

forAll(his | AccessLog.allInstances ->

exists(log | log.tp = his.tp

and log.action = his.actionPerformed))

Rule GDPR-4 log_access_match_sp_access

Severity ERROR

Context AccessLog

Specification AccessLog.allInstances() ->

forAll(log | log.sp.accessHistory ->

exists(access | access.tp = log.tp and

access.actionPerformed=log.action))

Rule GDPR-5 no_access_permission_given_without_user_consent

Severity ERROR

Context permission

Specification permission.allInstances() ->

forAll(ok.allInstances() ->

exists(okmsg|self.purpose ->

forAll(p | okmsg.purpose -> includes(p)) and

okmsg.permissionType = self.permissionType) and

consentInfo.allInstances() ->

exists(consentmsg | self.purpose ->

forAll(p | consentmsg.purpose->includes(p)) and

consentmsg.action = self.permissionType and

consentmsg.tp = StatelessAppCTP.allInstances()->

select(tp | tp.base_Lifeline.coveredBy ->

includes(self.base_Message.receiveEvent))))

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 34/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

associated StickyPolicy. This rule examines the accessHistory list of the StickyPolicy to
verify whether the access has been included.
Rule GDPR-5 checks that a third party cannot obtain permission to access the data
without obtaining prior consent from the corresponding data subjects. This implies that
the preceding consentInfo and ok messages have been sent with the same purpose and
permission.

Threat model
In this section, we describe the threat model of a system to which our profile applies to
provide a basis for understanding the potential risks and the corresponding safeguards to
ensure the security of the described system.

Adversaries may attempt to gain illicit access to user data stored in the cloud. In this
sense, strong authentication mechanisms must be employed, along with the need to obtain
explicit consent from data subjects each time access is requested. Another critical threat
involves data manipulation, where adversaries seek to manipulate user data within cloud
infrastructure. Implementing strict controls and obtaining consent from data subjects
whenever data is subject to modification can help overcome this threat.

Unauthorized disclosure of sensitive user information to third parties caused by privacy
breaches is another possible threat. Mitigation strategies include strict compliance with
GDPR guidelines, implementing sticky policies for fine-grained access control, and
encrypting sensitive data to safeguard privacy. In this regard, policy abuse is another
privacy threat, requiring regular policy reviews, enforcement of access control, and
continuous monitoring of policy violations. Likewise, inadequate logging and monitoring
practices make it difficult to detect and respond to security incidents. Comprehensive
logging mechanisms, real-time monitoring tools, and the establishment of incident
response procedures are needed to adequately address security incidents.

Unauthorized access through compromised third parties is another concern. This can
be overcome by regularly auditing third-party entities and their permissions, along with
enforcing strict access controls. Finally, inadequate management of user consent can lead
to unauthorized data processing. Implementing robust consent mechanisms, regular
updates to consent preferences, and ensuring compliance with GDPR guidelines can help
overcome this issue.

THE MDCT TOOL
This section presents the computer-aided design tool that supports our framework,
making it easy to use our modeling framework. The tool, which has the same name as the
framework, focuses on the modeling of cloud systems and supports Model4_DataCTrack
for the management of sensitive data in the context of GDPR. MDCT has been developed
by extending Papyrus UML (Lanusse et al., 2009), which is an Eclipse-based graphical
editing tool for UML2. MDCT contains a modeling part, in which the UML profile can be
used to define a specific GDPR-compliant cloud architecture, as defined in “Modeling Data
Tracking in Cloud Systems”. For this purpose, the graphical interface provides all of the
stereotypes and data types used for the proposed infrastructure and interaction (as shown

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 35/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

in Figs. 7, 8, and the figures in Appendix A), allowing the tool user (cloud providers) to
provide different values for some of its parameters. All these elements are available through
custom palettes to make it easy to design MDCT models with just drag and drop. MDCT
also implements the validation of the model restrictions set using OCL rules, as detailed in
“Validation and Threat Model”. Finally, our tool includes an example, in which the
infrastructure and the interaction of a basic cloud architecture are modeled. This example
can be loaded and extended to avoid starting from scratch. It is available at https://zenodo.
org/doi/10.5281/zenodo.10380128.

Figure 9 displays a screenshot of the graphical interface of the MDCT tool, featuring
four highlighted sections. The first section is dedicated to the selection of a wizard, allowing
users to choose from example models of a GDPR-compliant architecture. Users can also
access these examples through the main menu by selecting . This
wizard enables users to load predefined profile models instead of designing them from
scratch. Once the models are loaded, they are presented in the diagram editor (box 2 in
Fig. 9), showcasing the cloud infrastructure diagram. In this diagram, users can select any
element and modify its attributes using the profile tab in the (box 3).
Additionally, users can easily add new elements by dragging them into the diagram
through the customized M4DCT diagram palette (box 4). This process can also be
executed by incorporating the appropriate component, lifeline, or message and applying
the desired stereotype in the profile tab of the .

In addition, Fig. 10 displays a screenshot illustrating how data tracking is managed in
the MDCT tool. This example is derived from the running example presented in “Running

1 Example select wizard

4 MDCTinfrastructure
diagram custom palette

2 Base infrastructure diagram

3 Profile properties view

Figure 9 Tool interface and base MDCT example opening wizard. Full-size DOI: 10.7717/peerj-cs.1898/fig-9

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 36/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
https://zenodo.org/doi/10.5281/zenodo.10380128
https://zenodo.org/doi/10.5281/zenodo.10380128
http://dx.doi.org/10.7717/peerj-cs.1898/fig-9
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

Example”. In this instance, the initial sticky policy (accessHistory: [(SB, statistical, read),
(ING, statistical, read), (GestF, taxes, read), (GestF, statistical, read)]) indicates that SB and
ING read the data for statistical purposes, followed by GestF performing read access for
both tax and statistical purposes. This entire process is recorded in the accessHistory field,
enabling the tracking of data as it contains comprehensive information about all data
access instances.

The accessHistory field of the sticky policy allows tracking of all data accesses. In this
case, all these read accesses have been saved to it, as depicted in the DataSubjectSP
accessHistory field at the bottom of Fig. 10. Notably, these third parties must have
permission to execute these accesses, a requirement checked by using Rule 6 (see Table 5).
The accessHistory field of data in the sticky policy provides information about the third
party’s read permission. In this case, the permission field has the same value for S and I,
specifically hDS, DSi, signifying that only DS (the data subject) can give consent to access
the data and has permission to write.

DISCUSSION
In this section, we discuss the main considerations in our framework and the threats to its
validity.

Considerations
Below is a list of some important considerations concerning our framework that we would
like to highlight:

Figure 10 A brief example of how traceability is portrayed in MDCT. Full-size DOI: 10.7717/peerj-cs.1898/fig-10

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 37/44

http://dx.doi.org/10.7717/peerj-cs.1898/fig-10
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

1) Support. The support of two experts in the GDPR has allowed us to design and develop
our modeling framework.

2) Types of machines according to the purpose of data access. In our cloud architecture,
we consider that the cloud provider offers two types of machines to process the data,
depending on the purpose for which the data is accessed. The two types of purposes we
consider are statistical and non-statistical. When the access is for statistical purposes,
the processing is carried out on trusted machines, and the processor in charge of the
treatment will be the owner of the new data. In this case, only third parties to whom the
owner authorizes access to the data may access the data. These trusted machines are
read-only, and when several of these data are combined for that statistical purpose, the
new data will be aggregated data. However, when the purpose of access is not statistical,
the processing is carried out on unreliable machines, and if several data sources are
combined, the owners of the combined data will be the owners of the original data while
the access permissions will be the most restrictive (see “Combination and Data
Aggregation”).

3) EU or non-EU members. We propose a controlled cloud architecture in which the
cloud provider works with machines that may or may not be in members of the EU, but
all of them ensure an adequate level of protection according to the GDPR, Article 45.
For this purpose, we have included the GDPRCompliance field in the SSMProcessor
stereotype (see Appendix A). The value of this field is checked by OCL to ensure that
machines acting as processors are GDPR compliant.

4) Consent. In our architecture, when a third party wants to access the data and does not
have permission to do so, the user’s consent must be requested to authorize such access,
as can be seen in Fig. 4. In this case, if the user consents to access, this third party will be
included in the list of permissions on that data (indicating the type of permission
granted) and will thus have access to the data.

5) Supervisory authorities. In this article, we do not explicitly model the supervisory
authority as a role in the system as we consider it to be an element outside our cloud
architecture. However, interactions with this supervisory authority are easy to include.

Validity threats

� Internal validity. A potential threat to internal validity is that we have interpreted the
text of the GDPR provisions to create a cloud architecture. However, this is
recommended for any company that operates in the cloud, whether inside or outside the
EU, when these are companies that offer goods or services to people in the EU. In our
case, this phase was carried out in collaboration with people with a good knowledge of
the field (the authors of this work, who are experts in the GDPR) to minimize the threat
posed by such a subjective interpretation. Of course, we cannot rule out subjectivity, but
we do provide our interpretation accurately and explicitly. Furthermore, our model is
publicly available.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 38/44

http://dx.doi.org/10.7717/peerj-cs.1898/supp-1
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

� External validity. Our framework focuses on defining and validating a GDPR-
compliant cloud architecture, which has been designed with input from legal experts in
data protection. Therefore, this allows us a certain degree of confidence in the
generalization of our results. However, future studies exemplifying our model in
different cloud domains with their corresponding legal aspects will be critical in deciding
the completeness and applicability of our framework in real-world scenarios.

The validation process allows us to verify inappropriate access or breaches of customer
data confidentiality. Thus, we can conclude that certain recommendations be given to the
entity responsible for data security (the controller) to define its architecture in the cloud. In
this case, the data controller is the cloud provider, who is responsible for the data of the
cloud’s customers and for third party access.

CONCLUSIONS AND FUTURE WORK
This article introduces the MDCT computer-aided design framework. This framework is
made up of a UML profile as a means to model and validate a GDPR-compliant cloud
architecture (which is recommended for cloud providers offering services in the EU), a set
of OCL rules to validate the models, and a Papyrus-based tool. The UML profile introduces
the cloud infrastructure and the interactions between the different roles in the context of
the GDPR. The profile models key GDPR considerations such as user consent/withdrawal,
the purpose of access, and data transparency and auditing. In addition, it also considers
data privacy and data tracking. Data privacy is included through sticky policies associated
with the data, allowing us to define data permissions, the data owner, the controller, and
the purpose.

In this work, we have considered the purpose of access to be statistical or non-statistical.
The cloud provider offers trusted machines to process the data in the case of statistical
purposes. Thus, various data can be added to a new set of data, whose owner will be the
entity that performs the data aggregation, and its permissions will be decided by the owner.
For other purposes, the data processing takes place on non-reliable machines, and the
combination of data generates new data, whose owners are the owners of all the individual
data, and the permissions of the sticky policy are the most restrictive. Data tracking is
made possible by adding a new field to the sticky policy associated with the data, which
allows us to record which third parties access the data and for what purpose. Furthermore,
our framework allows us to model complex cloud scenarios, representing the underlying
cloud infrastructure and the third parties that access the data. It also incorporates OCL
rules to validate important restrictions and features in accordance with the GDPR, data
privacy, and data tracking.

For future work, we have several lines of research planned. We intend to enrich the
profile by including other GDPR features, such as interaction with supervisory authorities.
We also intend to translate our models into real cloud infrastructures, such as Amazon
Web Services or Microsoft Azure. For this purpose, we pretend to use some novel
technologies, such as Infrastructure as Code (Artac et al., 2017). Furthermore, we plan to
broaden the spectrum of possible cloud configurations by considering different hardware

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 39/44

http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

configurations and not just using different types of physical machines, depending on the
purpose of data access.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Spanish Ministry of Science and Innovation (co-financed
by European Union FEDER funds) projects “FAME (Metodologías Avanzadas para
Arquitecturas, Diseño y Pruebas de Sistemas Software)”, reference PID2021-122215NB-
C32; and the Region of Madrid (grants FORTE-CM, S2018/TCS-4314 and PR65/19-
22452). The research of Ricardo J. Rodríguez was supported by the Aragonese Government
under Programa de Proyectos Estratégicos de Grupos de Investigación (DisCo research
group, ref. T21-23R). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Spanish Ministry of Science and Innovation (co-financed by European Union FEDER
funds) Projects “FAME (Metodologías Avanzadas para Arquitecturas, Diseño y Pruebas de
Sistemas Software)”: PID2021-122215NB-C32.
Region of Madrid: FORTE-CM, S2018/TCS-4314 and PR65/19-22452.
Aragonese Government under Programa de Proyectos Estratégicos de Grupos de
Investigación: T21-23R.

Competing Interests
M. Emilia Cambronero is an Academic Editor for PeerJ.

Author Contributions
� M. Emilia Cambronero conceived and designed the experiments, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

� Miguel A. Martínez conceived and designed the experiments, performed the
experiments, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

� Luis Llana performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, theorical development, and approved the final draft.

� Ricardo J. Rodríguez analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

� Alejandro Russo analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, theoretical development, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The latest version of the source code of the tool is available at GitHub and Zenodo:
- https://github.com/uclm-es-Model4-DataCTrack/MDCT_Tool.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 40/44

https://github.com/uclm-es-Model4-DataCTrack/MDCT_Tool
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

- Miguel Ángel Martínez Atienza. (2023). LuisLlana/MDCT_Tool: peerj (peerj).
Zenodo. https://doi.org/10.5281/zenodo.10380129.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1898#supplemental-information.

REFERENCES
Alshammari M, Simpson A. 2018. A UML profile for privacy-aware data lifecycle models. In:

Katsikas SK, Cuppens F, Cuppens N, Lambrinoudakis C, Kalloniatis C, Mylopoulos J, Antón A,
Gritzalis S, eds. Computer Security. Cham: Springer International Publishing, 189–209.

Artac M, Borovsak T, Nitto ED, Guerriero M, Tamburri DA. 2017. DevOps: introducing
infrastructure-as-code. In: Uchitel S, Orso A, Robillard MP, eds. Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20–28, 2017—Companion Volume. New York: ACM, 497–498.

Barati M, Rana O. 2020. Tracking GDPR compliance in cloud-based service delivery. IEEE
Transactions on Services Computing 15(3):1 DOI 10.1109/TSC.2020.2999559.

Barati M, Rana O, Petri I, Theodorakopoulos G. 2020. GDPR compliance verification in internet
of things. IEEE Access 8:119697–119709 DOI 10.1109/ACCESS.2020.3005509.

Barati M, Rana O, Theodorakopoulos G, Burnap P. 2019. Privacy-aware cloud ecosystems and
GDPR compliance. In: 2019 7th International Conference on Future Internet of Things and Cloud
(FiCloud). 117–124.

Barati M, Theodorakopoulos G, Rana O. 2020. Automating GDPR compliance verification for
cloud-hosted services. In: 2020 International Symposium on Networks, Computers and
Communications (ISNCC). 1–6.

Basso T, Montecchi L, Moraes R, Jino M, Bondavalli A. 2015. Towards a UML profile for
privacy-aware applications. In: 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing. Piscataway: IEEE, 371–378.

Bernal A, Cambronero ME, Valero V, Nuñez A, Cañizares PC. 2019. A framework for modeling
cloud infrastructures and user interactions. IEEE Access 7:43269–43285
DOI 10.1109/ACCESS.2019.2907180.

Bernardi S, Merseguer J, Petriu D. 2011. A dependability profile within MARTE. Journal of
Software and Systems Modeling 10(3):313–336 DOI 10.1007/s10270-009-0128-1.

Cambronero ME, Bernal A, Valero V, Cañizares PC, Núñez A. 2021. Profiling SLAs for cloud
system infrastructures and user interactions. PeerJ Computer Science 7(6):e513
DOI 10.7717/peerj-cs.513.

Cambronero M, Martínez MA, de la Vara JL, Cebrián D, Valero V. 2022. GDPRValidator: a tool
to enable companies using cloud services to be GDPR compliant. PeerJ Computer Science 8(5):
e1171 DOI 10.7717/peerj-cs.1171.

Cavoukian A. 2009. Privacy by design—the 7 foundational principles. Tech report, Information
and privacy commissioner of Ontario, Canada. Available at https://privacy.ucsc.edu/resources/
privacy-by-design—foundational-principles.pdf.

Chadwick DW, Fan W, Costantino G, De Lemos R, Di Cerbo F, Herwono I, Manea M, Mori P,
Sajjad A, Wang X-S. 2020. A cloud-edge based data security architecture for sharing and

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 41/44

https://doi.org/10.5281/zenodo.10380129
http://dx.doi.org/10.7717/peerj-cs.1898#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1898#supplemental-information
http://dx.doi.org/10.1109/TSC.2020.2999559
http://dx.doi.org/10.1109/ACCESS.2020.3005509
http://dx.doi.org/10.1109/ACCESS.2019.2907180
http://dx.doi.org/10.1007/s10270-009-0128-1
http://dx.doi.org/10.7717/peerj-cs.513
http://dx.doi.org/10.7717/peerj-cs.1171
https://privacy.ucsc.edu/resources/privacy-by-design---foundational-principles.pdf
https://privacy.ucsc.edu/resources/privacy-by-design---foundational-principles.pdf
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

analysing cyber threat information. Future Generation Computer Systems 102(2):710–722
DOI 10.1016/j.future.2019.06.026.

Davies J, Crichton C, Crichton E, Neilson D, Sørensen IH. 2005. Formality, evolution, and
model-driven software engineering. Electronic Notes in Theoretical Computer Science 130:39–55
DOI 10.1016/j.entcs.2005.03.004.

Elluri L, Joshi KP. 2018. A knowledge representation of cloud data controls for EU GDPR
compliance. In: 2018 IEEE World Congress on Services (SERVICES). Piscataway: IEEE, 45–46.

Euractiv. 2021. Cloud development in Europe passes by GDPR compliance. Available at https://
www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-
compliance/ (accessed 26 March 2022).

European Comission. 2016. Rules for business and organisations. Available at https://ec.europa.eu/
info/law/law-topic/data-protection/reform/rules-business-and-organisations_en (accessed 26
March 2022).

Fan W, Ziembicka J, de Lemos R, Chadwick D, Di Cerbo F, Sajjad A, Wang X-S, Herwono I.
2019. Enabling privacy-preserving sharing of cyber threat information in the cloud. In: 2019 6th
IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th
IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). Piscataway:
IEEE, 74–80.

Ferreira M, Brito T, Santos JF, Santos N. 2023. RuleKeeper: GDPR-aware personal data
compliance for web frameworks. In: 2023 IEEE Symposium on Security and Privacy (SP).
Piscataway: IEEE, 2817–2834.

General Data Protection Regulation (EU GDPR). 2016. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation). Available at https://eur-lex.
europa.eu/eli/reg/2016/679/oj.

Georgiopoulou Z, Makri E-L, Lambrinoudakis C. 2020. GDPRcompliance: proposed technical
and organizational measures for cloud providers. In: Computer Security. Cham: Springer
International Publishing, 181–194.

Gjermundrød H, Dionysiou I, Costa K. 2016. PrivacyTracker: a privacy-by-design GDPR-
compliant framework with verifiable data traceability controls. Berlin, Heidelberg: Springer-
Verlag, 3–15.

Kammüller F, Ogunyanwo OO, Probst CW. 2019. Designing data protection for GDPR
compliance into IoT healthcare systems. CoRR DOI 10.48550/arXiv.1901.02426.

Kaneen CK, Petrakis EG. 2020. Towards evaluating GDPR compliance in IoT applications.
Procedia Computer Science 176(2):2989–2998 DOI 10.1016/j.procs.2020.09.204.

Karjoth G, Schunter M, Waidner M. 2002. Privacy-enabled services for enterprises. In:
Proceedings. 13th International Workshop on Database and Expert Systems Applications.
Piscataway: IEEE, 483–487.

Langheinrich M. 2001. Privacy by design—principles of privacy-aware ubiquitous systems. In:
Abowd GD, Brumitt B, Shafer S, eds. Ubicomp 2001: Ubiquitous Computing. Berlin, Heidelberg:
Springer, 273–291.

Lanusse A, Tanguy Y, Espinoza H, Mraidha C, Gerard S, Tessier P, Schnekenburger R, Dubois
H, Terrier F. 2009. Papyrus UML: an open source toolset for MDA. In: Fifth European
Conference on Model-Driven Architecture Foundations and Applications (ECMDA-FA’09). 1–4.

Larsen KG, Petterson P, Yi W. 2023. UPPAAL. Available at https://uppaal.org/ (accessed 17 July
2023).

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 42/44

http://dx.doi.org/10.1016/j.future.2019.06.026
http://dx.doi.org/10.1016/j.entcs.2005.03.004
https://www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-compliance/
https://www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-compliance/
https://www.euractiv.com/section/data-protection/news/cloud-development-in-europe-passes-by-gdpr-compliance/
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/10.48550/arXiv.1901.02426
http://dx.doi.org/10.1016/j.procs.2020.09.204
https://uppaal.org/
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

Malavolta I, Muccini H, Sebastiani M. 2015. Automatically bridging UML profiles to MOF
metamodels. In: 2015 41st Euromicro Conference on Software Engineering and Advanced
Applications. Piscataway: IEEE, 259–266.

Matulevičius R, Tom J, Kala K, Sing E. 2020. A method for managing GDPR compliance in
business processes. In: Herbaut N, La Rosa M, eds. Advanced Information Systems Engineering.
Cham: Springer International Publishing, 100–112.

Meliá S, Cachero C, Hermida JM, Aparicio E. 2016. Comparison of a textual versus a graphical
notation for the maintainability of MDE domain models: an empirical pilot study. Software
Quality Journal 24(3):709–735 DOI 10.1007/s11219-015-9299-x.

Mohammadi NG, Mann ZÁ, Metzger A, Heisel M, Greig J. 2018. Towards an end-to-end
architecture for run-time data protection in the cloud. In: Bures T, Angelis L, eds. 44th
Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018, Prague,
Czech Republic, August 29–31, 2018. Piscataway: IEEE Computer Society, 514–518.

Mougiakou E, Virvou M. 2017. Based on GDPR privacy in UML: case of e-learning program. In:
2017 8th International Conference on Information, Intelligence, Systems Applications (IISA).
Piscataway: IEEE, 1–8.

Myers AC, Liskov B. 2000. Protecting privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodology (TOSEM) 9(4):410–442
DOI 10.1145/363516.363526.

Oestereich B. 2002. Developing software with UML: object-oriented analysis and design in practice.
Boston: Addison-Wesley Professional.

Object Management Group (OMG). 2011. About the UML profile for MARTE specification
version 1.1. Available at https://www.omg.org/spec/MARTE/About-MARTE/ (accessed 26 March
2022).

Object Management Group (OMG). 2014. Object constraint language (OCL) v2.4. Available at
http://www.omg.org/spec/OCL/2.4 (accessed 22 March 2022).

Object Management Group (OMG). 2017. UML specification version 2.5.1. Available at http://
www.omg.org/spec/UML/2.5.1 (accessed 26 March 2022).

Pandit HJ, Fatema K, O’Sullivan D, Lewis D. 2018. GDPRtEXT-GDPR as a linked data resource.
In: European Semantic Web Conference. Cham: Springer, 481–495.

Pearson S, Casassa-Mont M. 2011. Sticky policies: an approach for managing privacy across
multiple parties. Computer 44(9):60–68 DOI 10.1109/MC.2011.225.

Pereira F, Crocker P, Leithardt VR. 2022. PADRES: tool for privacy, data regulation and security.
SoftwareX 17(7):100895 DOI 10.1016/j.softx.2021.100895.

Politou E, Alepis E, Patsakis C. 2018. Forgetting personal data and revoking consent under the
GDPR: challenges and proposed solutions. Journal of Cybersecurity 4(1):1
DOI 10.1093/cybsec/tyy001.

Priscakova Z, Rabova I. 2013. Model of solutions for data security in cloud computing. CoRR
DOI 10.48550/arXiv.1307.3766.

Razavisousan R, Joshi KP. 2021. Analyzing GDPR compliance in cloud services’ privacy policies
using textual fuzzy interpretive structural modeling (TFISM). In: Carminati B, Chang CK,
Daminai E, Deng S, Tan W, Wang Z, Ward R, Zhang J, eds. IEEE International Conference on
Services Computing, SCC, Chicago, IL, USA. Piscataway: IEEE, 89–98.

Rios E, Iturbe E, Larrucea X, Rak M, Mallouli W, Dominiak J, Muntés-Mulero V, Matthews P,
Moctezuma L. 2019. Service level agreement-based GDPR compliance and security assurance in
(multi)cloud-based systems. IET Software 13(3):213–222 DOI 10.1049/iet-sen.2018.5293.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 43/44

http://dx.doi.org/10.1007/s11219-015-9299-x
http://dx.doi.org/10.1145/363516.363526
https://www.omg.org/spec/MARTE/About-MARTE/
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1
http://dx.doi.org/10.1109/MC.2011.225
http://dx.doi.org/10.1016/j.softx.2021.100895
http://dx.doi.org/10.1093/cybsec/tyy001
http://dx.doi.org/10.48550/arXiv.1307.3766
http://dx.doi.org/10.1049/iet-sen.2018.5293
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

Rodríguez RJ, Merseguer J, Bernardi S. 2010. Modelling and analysing resilience as a security
issue within UML. In: Proceedings of the 2nd International Workshop on Software Engineering
for Resilient Systems (SERENE). London, United Kingdom: ACM, 42–51.

Sbarski P, Kroonenburg S. 2017. Serverless architectures on AWS: with examples using Aws
Lambda. New York: Simon and Schuster.

Shastri S, Wasserman M, Chidambaram V. 2019. GDPR anti-patterns: how design and operation
of modern cloud-scale systems conflict with GDPR. CoRR DOI 10.48550/arXiv.1911.00498.

Statista. 2022. Share of organizations that will make significant changes in cloud governance after
the introduction of the GDPR as of 2019, by country. Available at https://www.statista.com/
statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/ (accessed 26 March 2022).

Stefan D, Russo A, Mazières D, Mitchell JC. 2012. Disjunction category labels. In: Laud P, ed.
Information Security Technology for Applications. Berlin, Heidelberg: Springer, 223–239.

Tamburri DA. 2020.Design principles for the general data protection regulation (GDPR): a formal
concept analysis and its evaluation. Information Systems 91(6):101469
DOI 10.1016/j.is.2019.101469.

Torre D, Soltana G, Sabetzadeh M, Briand LC, Auffinger Y, Goes P. 2019. Using models to
enable compliance checking against the GDPR: an experience report. In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems (MODELS).
Piscataway: IEEE, 1–11.

Vanezi E, Kapitsaki GM, Kouzapas D, Philippou A, Papadopoulos GA. 2020. DiálogoP—a
language and a graphical tool for formally defining GDPR purposes. In: Dalpiaz F, Zdravkovic J,
Loucopoulos P, eds. Research Challenges in Information Science. Cham: Springer International
Publishing, 569–575.

Villamizar M, Garcés O, Ochoa L, Castro H, Salamanca L, Verano M, Casallas R, Gil S, Valencia
C, Zambrano A, Lang M. 2016. Infrastructure cost comparison of running web applications in
the cloud using AWS lambda and monolithic and microservice architectures. In: 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid).
Piscataway: IEEE, 179–182.

Völter M, Stahl T, Bettin J, Haase A, Helsen S. 2006. Model-driven software development:
technology, engineering, management. Hoboken: John Wiley & Sons, Inc.

Warmer J, Kleppe A. 2003. The object constraint language: getting your models ready for MDA.
Boston: Addison Wesley.

Zhou C, Barati M, Shafiq O. 2023. A compliance-based architecture for supporting GDPR
accountability in cloud computing. Future Generation Computer Systems 145(3):104–120
DOI 10.1016/j.future.2023.03.021.

Cambronero et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1898 44/44

http://dx.doi.org/10.48550/arXiv.1911.00498
https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/
https://www.statista.com/statistics/1063528/worldwide-cloud-governance-changes-due-to-gdpr/
http://dx.doi.org/10.1016/j.is.2019.101469
http://dx.doi.org/10.1016/j.future.2023.03.021
http://dx.doi.org/10.7717/peerj-cs.1898
https://peerj.com/computer-science/

	Towards a GDPR-compliant cloud architecture with data privacy controlled through sticky policies
	Introduction
	Background
	Running example
	Methodology
	Modeling data tracking in cloud systems
	Validation and threat model
	The mdct tool
	Discussion
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

