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a b s t r a c t

Statistical analysis of extremes can be used to predict the probability of future extreme
events, such as large rainfalls or devastating windstorms. The quality of these forecasts
can be measured through scoring rules. Locally scale invariant scoring rules give
equal importance to the forecasts at different locations regardless of differences in the
prediction uncertainty. This is a useful feature when computing average scores but can
be an unnecessarily strict requirement when one is mostly concerned with extremes. We
propose the concept of local weight-scale invariance, describing scoring rules fulfilling
local scale invariance in a certain region of interest, and as a special case, local tail-
scale invariance for large events. Moreover, a new version of the weighted continuous
ranked probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this
property is developed and studied. The score is a suitable alternative for scoring extreme
value models over areas with a varying scale of extreme events, and we derive explicit
formulas of the score for the generalised extreme value distribution. The scoring rules are
compared through simulations, and their usage is illustrated by modelling extreme water
levels and annual maximum rainfall, and in an application to non-extreme forecasts for
the prediction of air pollution.

© 2024 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
o

1. Introduction

The main aim of the statistical analysis of extremes
n fields such as hydrology, meteorology, climate science,
nd finance is to forecast, or predict, the risk of the occur-
ence of future dangerous extreme events, such as huge
ainfall events or very large fluctuations in the prices of
financial portfolio. Typically, the forecast is in terms
f an estimated distribution, for example the estimated
istribution of the size of the largest event which will
ccur during some specified period of time. In this case,
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the forecast is said to be probabilistic. The forecast dis-
tribution is then often presented to decision makers in
a reduced form, perhaps as a predicted probability of
exceeding one or several high thresholds. In many cases,
there are several competing forecast distributions, and
a standard way of choosing between these competing
forecasts is to compute goodness-of-fit measures of the
distributions based on the existing data, and then use
the distribution that fits best. This approach is, for exam-
ple, broadly used in hydrology (Cugerone & De Michele,
2015). However, an alternative gaining increasing interest
is to base the selection on proper scoring rules (Zamo &
Naveau, 2018).

A scoring rule is a functional S(P, y) that takes in an
utcome y and a probabilistic forecast P, the predictive
istribution for the outcome. If the outcome Y ∼ Q is a
scale invariant scoring rules for evaluation of extreme value forecasts.
024.02.007.
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random variable with distribution Q, the score S(P, Y ) is
also a random variable, with the expected value denoted
by S(P,Q). To be able to make an earnest prediction, it
is preferred that the expected score is maximised under
the correct model, i.e. that S(Q,Q) ≥ S(P,Q), for all
predictive distributions P. In this case the score is said to
be proper (Gneiting & Raftery, 2007). If strict inequality
holds for all P ̸= Q, the scoring rule is strictly proper.

An example of a commonly used proper scoring rule is
the continuous ranked probability score (CRPS), which is
defined as

CRPS(P, y) = −

∫
R
(F (x) − 1(x ≥ y))2dx,

where F is the cumulative distribution function of the
forecast distribution P, and 1(·) is the indicator func-
tion. Another popular example is the logarithmic score
LS(P, y) = log f (y), where f is the density function of
P. Both of these scores are widely used in meteorology,
climate science, and finance (Haiden et al., 2019; Inge-
brigtsen et al., 2015; Opschoor et al., 2017). The choice
of scoring rule allows an evaluator to emphasise the de-
sired features of the prediction. For extreme events, one
typically is interested in the behaviour of the prediction in
the tail of the distribution. One way of doing this is simply
to multiply the proper score S0 with a weight function w

and form a new score S(P, y) = w(y)S0(P, y). However,
this score is not proper unless w(y) is constant (Gneiting
& Ranjan, 2011), and alternative ways of weighting should
be used. Several such proper weighted scores exist (see
e.g. Diks et al., 2011; Gneiting & Ranjan, 2011; Tödter &
Ahrens, 2012). A popular one is the threshold weighted
CRPS (wCRPS) by Gneiting and Ranjan (2011), where a
weight function is included in the kernel of the CRPS:

wCRPS(P, y) = −

∫
R

w(x)(F (x) − 1(x ≥ y))2dx.

Here w(x) is a non-negative function that can be chosen
to put more emphasis on large values. However, what
weight function to use is not obvious. The forecaster’s
dilemma, as presented by Lerch et al. (2017), describes the
problem that forecasters can be encouraged to exaggerate
their predictions, since the effect of missing a calamity is
worse than wrongfully predicting one. To avoid this, the
choice of the weight function should ideally be made by
the user of the forecasts rather than by the forecaster.

In the case of multiple observations, y = (y1, . . . , yn),
and a forecast P = (P1, . . . ,Pn), the joint score of the
forecast is defined as the average score,

S(P, y) =
1
n

n∑
i=1

S(Pi, yi),

nd this is used to inform the selection of prediction
ethod.
As recently shown by Bolin and Wallin (2023), many

ommon scoring rules, such as the CRPS, are scale depen-
ent in the sense that they put higher importance on fore-
asts with higher prediction uncertainty in the case when
he observations yi in the average score have varying
redictability. This is sometimes an undesirable property.
2

For example, if one wants to predict extreme rainfalls in
some spatial area where the scale of the events varies, in-
frastructure in the parts where the scale of events is small
and in parts where the scale is large will have adapted
to these differences, and accuracy is equally important
throughout the area. Bolin and Wallin (2023) introduced
the concept of local scale invariance to describe scoring
rules which do not have this feature, and showed that
the logarithmic score is an example of a score that is
both strictly proper and locally scale invariant. However,
the use of the logarithmic score requires computing the
probability density function of the predictive distribution,
which is not always easy to compute, or might not even
exist.

Even though local scale invariance is an important
property, it might be an unnecessarily strict requirement
if one is mostly concerned with extremes. In this work,
we therefore introduce a new concept—local weight-scale
invariance—to describe scoring rules which have the prop-
erty of local scale invariance for a certain region of in-
terest. As a special case, when the region of interest is
large events, we obtain the concept of local tail-scale
invariance. We develop and study a new version of the
wCRPS called the scaled wCRPS, or swCRPS, which is
locally weight-scale invariant. The generalised extreme
value (GEV) distribution is of special interest in extreme
value statistics, and we derive explicit formulas of swCRPS
for the GEV distribution. These scores are analysed in
terms of local scale invariance. We compare the swCRPS
and the censored likelihood score to the more common
logarithmic score, the CRPS, and the wCRPS in a simula-
tion study and in case studies where different models for
water levels in the Great Lakes, extreme rainfall events in
the northeastern U.S., and air pollution in the Piedmont
region in Italy are evaluated using the different scoring
rules.

The article is structured as follows: Section 2 gives
background on scoring rules, weighting of scores, and
local scale independence of scores. In Section 3, the scale
independence of weighted scores is discussed. Section 4
contains simulation studies, and Section 5 presents case
studies. Finally, a discussion and conclusions can be found
in Section 6. The derivation of explicit formulas for the
swCRPS for the GEV distribution, background on mod-
elling and scoring of extremes, and proofs of propositions
are included in the appendices of the article.

2. Background

In this section we provide more background informa-
tion about the CRPS and its weighted variants, provide
details about scale dependence of scoring rules, and in-
troduce some commonly used models for annual flow and
precipitation maxima. In the following, EP[g(X)] denotes
the expectation of g(X) when X ∼ P is a random variable
with distribution P, and EP,Q[g(X, Y )] denotes the expec-
tation of g(X, Y ) for independent random variables X ∼ P
and Y ∼ Q.
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2.1. The CRPS and weighted scoring rules for extremes

A different representation of CRPS, obtained by Baring-
aus and Franz (2004), is

CRPS(P, y) =
1
2
EP,P[|X − X ′

|] − EP[|X − y|], (1)

where X, X ′ are independent random variables with the
same distribution P and finite first moment. This expres-
sion can be derived by noting that

|X − Y | =

∫
R
1{X ≤ u ≤ Y } + 1{Y ≤ u ≤ X}du

in Eq. (1), using Fubini’s theorem to compute E|X − Y |

in terms of the distribution functions F and G of X and
Y , respectively, and finally setting G(x) = 1{x ≥ y}.
his representation is useful in cases where a closed-form
xpression for F does not exist, which might be the case
hen using ensemble forecasts in weather prediction, or
hen evaluating the predictive performance of compli-
ated hierarchical models. In these cases, the expected
alues can be approximated through Monte Carlo simu-
ation from the predictive distribution. Zamo and Naveau
2018) compared different estimators of CRPS and made
recommendation on how to choose the most accurate
ne based on the ensemble type available.
Similarly for the wCRPS, one can show that

wCRPS(P, y) =
1
2
EP,P[gw(X, X ′)] − EP[gw(X, y)], (2)

where gw(x, x′) :=
⏐⏐∫ x

x′ w(t)dt
⏐⏐, provided the expectations

above are finite. If one is interested only in the upper-
tail behaviour, one might choose the indicator weight
function

wu(x) := 1(x ≥ u), (3)

for some real u. Instead of choosing the weight function
as the indicator function wu, one might want to consider
some other variation to incorporate the whole dataset
instead of just the extremes. For example, Thorarinsdottir
and Schuhen (2018) suggested w2(y) = 1 + 1wu(y)
and w3(y) = 1 + wu(y)u as alternatives, where u was
chosen as the 97.5% observed quantile. In an example
in Subsection 6.3 of Thorarinsdottir and Schuhen (2018),
the best choice was to use w2 as a weight function in
the wCRPS. All these weight functions can be written as
w(y) = a + bwu(y), where a, b, u are constants and result
in a weighted sum of the wCRPS with threshold weight
function and the CRPS.

Brehmer and Strokorb (2019) and Taillardat et al.
(2022) show that expected scores are not suitable for
scoring max-functionals, that is, functionals determined
by the behaviour of the distribution at +∞. An example
is the so-called extreme value index. They then argue
that this means that using expected scores may be
unsuitable for extremes. However, standard practical use
of extreme value statistics is not only concerned with
the prediction of tail functionals. If one is interested in
predicting maxima, e.g. yearly maxima of daily rainfall,
one obtains a sample of earlier yearly maxima, fits some

distribution, perhaps a GEV distribution, to this sample,

3

and uses the fitted distribution for prediction. This is
completely parallel to fitting a normal distribution to a
sample and using the fitted distribution for prediction.
The understanding and use of expected scoring rules are
the same for the two cases. If one instead is interested
in predicting occurrences and sizes of excesses of a high
threshold, one obtains a sample of such excesses and uses
the sample for prediction. Again this is completely parallel
to using a fitted normal distribution for prediction. Thus,
we believe that there is still value in using expected
scoring rules for extremes, as long as one is not solely
interested in max-functionals such as the extreme value
index.

Taillardat et al. (2022) also suggested treating observed
scores as random variables and using qq- and pp-plots
and Cramer–von Mises statistics to compare scores. This
seems like a useful idea, both for scoring extremes and
for scoring non-extreme values, although it is not entirely
clear how to use this to obtain generally applicable rules
for ranking models.

2.2. Local scale invariance and kernel scores

As mentioned above, the CPRS is a scale-dependent
scoring rule. Bolin and Wallin (2023) argued that this can
sometimes lead to wrong conclusions, e.g., if one uses
predictions from different spatial locations, such as in the
extreme rainfall analysis discussed in the introduction. In
this section, we make this notion of scale dependence
more specific and discuss kernel scores.

For θ = (µ, σ ) ∈ R × R+ and a given probability
measure Q, let Qθ denote a location-scale transform of
this measure. That is, if Z ∼ Q, then µ + σZ ∼ Qθ .
Note that Q(0,1) = Q. Now consider a small location-scale
misspecification of θ that is proportional to σ , i.e., Qθ+kσ r ,
where r = (r1, r2) is a two-dimensional unit vector
representing the direction of perturbation, and k ∈ R is a
constant. For example, a model with the correct location,
µ, but a perturbation of the scale parameter σ+kσ , can be
written as Qθ+kσ r with r = (0, 1). The idea of local scale
invariance is that, for small perturbations, the difference
between the score for the perturbed model and the true
model should not depend on the scale. We make this
precise in the following definition.

In the definition, and below, for a scoring rule S we
use the notation PS for the set of probability measures
on (Ω,F), such that if P ∈ PS and Q ∈ PS , then
|S(P,Q)| < ∞. Further, for a set of probability measures
Q0, we write Q = {Qθ : Q ∈ Q0, θ ∈ R × R+

} for the set
of probability measures in PS , which can be obtained as
location-scale transforms of measures in Q0. If the scoring
ule S is proper and twice differentiable with respect to θ ,
a second-order Taylor expansion yields that

S(Qθ,Qθ) − S(Qθ+kσ r ,Qθ) = k2σ 2rT s(Qθ)r + o(k2), (4)

s k ↘ 0. Since S is proper, the score S(Qθ+kσ r ,Qθ) has a
maximum at k = 0. Hence, ∇θS(Qθ,Q)|Q=Qθ

= 0, and the
first-order term of the Taylor expansion vanishes. Here,
the function s(Qθ) :=

1
2∇

2
θ S(Qθ,Q)|Q=Qθ

is called the scale
function of the scoring rule S.
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Definition 2.1 (Bolin & Wallin, 2023). Let S be a proper
scoring rule with respect to some class of probability
measures P on (R,B(R)), and assume that Q0 is a set
f probability measures such that Q ⊆ P ∩ PS . If s(Qθ)

exists for all Q ∈ Q0, θ = (µ, σ ) ∈ R × R+, and satisfies
(Qθ) ≡

1
σ2 s(Q(0,1)) we say that S is locally scale invariant

n Q.

Bolin and Wallin (2023) showed that the CRPS has
cale function s(Qθ) = σ s(Q(0,1)) for θ = (µ, σ ), which
eans that the difference in Eq. (4) scales linearly with
. The log-score on the other hand has a scale function
(Qθ) =

1
σ2 HQ for a matrix HQ that is independent of

. The factor σ 2 therefore cancels in Eq. (4) so that the
xpression is independent of the scale.
A scoring rule that can be written as

ker
g (P, y) :=

1
2
EP,P[g(X, X ′)] − EP[g(X, y)], (5)

where g is a non-negative continuous negative definite
kernel, is called a kernel score (Dawid, 2007). In order to
construct locally scale invariant scoring rules, Bolin and
Wallin (2023) introduced a generalisation of this class
of scoring rules, the generalised kernel scores, which are
proper scoring rules defined as

Shg (P, y) := h(EP,P[g(X, X ′)]) + 2h′(EP,P[g(X, X ′)])

× (EP[g(X, y)] − EP,P[g(X, X ′)]), (6)

where h is any monotonically decreasing, convex, and
differentiable function on R+. For the particular choice
h(x) = −

1
2 log(x) and g(x, y) = |x − y| in Eq. (6), one

btains the scoring rule SCRPS(P, y)+ 1, where the SCRPS
s the scaled CRPS scoring rule

SCRPS(P, y) := −
EP[|X − y|]

EP,P[|X − X ′|]

−
1
2
log(EP,P[|X − X ′

|]), (7)

which was shown to be locally scale invariant by Bolin
and Wallin (2023). Another way of deriving this scoring
rule is to use the fact that for any negative proper scor-
ing rule S(P, x) on a set of probability measures P , the
transformed score

StransS (P, y) :=
S(P, y)

|S(P,P)|
− log(|S(P,P)|) (8)

s also a proper scoring rule on P (Bolin & Wallin, 2023).

. Scaled weighted scoring rules

In this section we introduce the concept of local
eight- and tail-scale invariance as less restrictive al-
ernatives to local scale invariance. We then survey and
iscuss the use of the scaled wCRPS to score extremes and
erive its scaling properties. In the final subsection, we
ropose alternative combined scoring rules for extremes,
oncentrating on a scoring rule based on the logarithmic
core.
 w

4

3.1. Local weight-scale invariance

When scoring extremes, we are mostly interested in
the tail properties of the distributions, and in other cases,
the interest might be on some specific range of values
that is not necessarily extreme. Therefore, it might not
be all that important to have full local scale invariance
as long as this property holds in the region of interest.
To make this precise, recall that Q is a family of location-
scale transformations of probability measures in Q0. Let
w be some weight function representing the region of
interest as {x : w(x) > 0}, such that PQ(w(X) > 0) > 0
or all Q ∈ Q0, and let Qw be the conditional distribution
f Xw

= X |w(X) > 0 if X ∼ Q. If X has density
(·), then Xw has density fw(·) = f (·)/PQ(w(X) > 0). A
ocation-scale transformation (a+bX)w of Xw has density
w((· − a)/b)/b, which means that if Xw

∈ Q0, then
e have (a + bX)w ∈ Q. In other words, the condi-
ional distributions of location-scale transformations are
lso location-scale transformations. Let Qw denote the
et of all these conditional distributions corresponding to

∈ Q. We assume for simplicity that the conditional
istributions of the measures in Q0 are in Q0, so that
w

⊂ Q.
As we are interested in the region {x : w(x) > 0},

e define the concept of weight-scale invariance by con-
idering the scaling properties of S when restricted to
w .

efinition 3.1. Let S be a proper scoring rule with respect
o some class of probability measures P on (R,B(R)), and
ssume that Q0 is a set of probability measures such that
⊆ P ∩ PS . Suppose that w is a weight function, and let

w
⊂ Q be the set of conditional probability measures,

s defined above. We say that S is a locally weight-scale
nvariant scoring rule with respect to a w on Q if S is
ocally scale invariant on Qw .

emark 3.2. Clearly, if S is locally scale invariant, it is
lso locally weight-scale invariant. However, as shown
elow, there are scoring rules that are locally weight-scale
nvariant but not locally scale invariant.

Recall that the scoring rule S is locally scale invariant
f its scale function satisfies s(Qθ) =

1
σ2 s(Q(0,1)). Consid-

ring the restriction of S to Qw , we have that S is locally
eight-scale invariant if s(Qw

θ ) = σ−2s(Qw
(0,1)).

emark 3.3. If the interest is focused on the region w(·) >
, we could simply use S restricted to Qw as a scoring
ule, which means that we only consider the score based
n the conditional distributions. However, this disregards
he probability of w(·) > 0, which may be important in
ther situations. This probability is typically dependent on
he scale, and local weight-scale invariance can thus be
hought of as relaxation of local scale invariance where
he scale dependence of the probability of w(·) > 0 is
gnored.

In the special case where the weight function is the
ndicator weight function wu we refer to local weight-
cale invariance as local tail-scale invariance. Specifically,
e have the following definition.
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Definition 3.4. Let wu be the indicator weight function in
q. (3). Under the same assumptions as in Definition 3.1,
e say that S is a locally tail-scale invariant scoring rule
n Q if for each θ, there exists uθ ∈ supp(Q(0,1)) ∩ supp
Qθ), such that S is locally scale invariant on Qwu for every
≥ uθ . Similarly, we say that S is locally lower-tail-scale

nvariant on Q if S is locally scale invariant on Q1−wu for
very u ≤ uθ .

.2. Scaled weighted CRPS

For any kernel score we can use the construction in
q. (6) for generalised kernel scores to construct a cor-
esponding scaled version by using h(x) = −

1
2 log(x) as

done for the SCRPS. By the following proposition, this can
be done for the wCRPS.

Proposition 3.5. The wCRPS as defined in Eq. (2) is a kernel
score.

This proposition was shown previously by Allen et al.
(2022), and for completeness, a proof is given in Ap-
pendix C. Thus, by this proposition combined with the
construction in Eq. (6), the scoring rule defined as

swCRPS(P, y) := −
EP[gw(X, y)]

EP,P[gw(X, X ′)]

−
1
2
log(EP,P[gw(X, X ′)]) (9)

is proper, and can be a suitable alternative for evaluating
extremes. As for the SCRPS, an alternative definition of
the swCRPS would be to use Eq. (8) on the wCRPS. This
definition was proposed by Vandeskog et al. (2022), and
since the wCRPS is a kernel score, the two definitions in
fact coincide, up to an additive constant.

No matter which of the arguments we use to define
the swCRPS, it is not guaranteed that it is locally scale
invariant. We now derive to what extent the swCRPS is
scale invariant. The following assumption will be used on
the distributions we consider.

Assumption 3.6. The Borel probability measure Q on
R has density exp(Ψ ) with respect to Lebesgue measure
or some twice-differentiable function Ψ , such that the
expectations EQ[Ψ ′(X)], EQ[Ψ ′′(X)] and EQ[(Ψ ′(X))2] are
finite.

Under this assumption, we have the following result
for the wCRPS and the swCRPS, which is proven in Ap-
pendix C.

Proposition 3.7. Let Q be a set of location-scale trans-
formed probability measures Qθ satisfying Assumption 3.6.
Then the following holds:

(i) The wCRPS with indicator weight function wu is nei-
ther locally scale invariant nor locally tail-scale in-
variant on Q.

(ii) The swCRPS as defined in Eq. (9) with indicator weight
function wu is locally tail-scale invariant but not lo-
cally scale invariant on Q.
5

Other versions of the CRPS—the rCRPS and the rSCPRS,
as introduced by Bolin and Wallin (2023)—are defined by
inserting the kernel function

gc(x, y) =

{
|x − y|, |x − y| < c
0, otherwise

nto the definition kernel scores in Eq. (5) and into Eq. (9).
hey showed that neither of these scores is locally scale
nvariant. However, one can show their local weight-scale
nvariance.

roposition 3.8.

(i) The rCRPS is not locally weight-scale invariant with
respect to wu(y) = 1{|y| < u} for any u > 0.

(ii) The rSCRPS is locally weight-scale invariant with re-
spect to wu for u ≤

c
2 .

The steps taken above by using the construction in
Eq. (6) to create the swCRPS can be done on the more gen-
eral threshold weighted kernel score proposed by Allen
et al. (2022) and defined as

twSρ(P, y; v) =
1
2
EP,P[ρ(v(X), v(X ′))]

− EP[ρ(v(X), v(y)] +
1
2
ρ(v(y), v(y)),

where ρ is a continuous negative-definite kernel, and
v(x)−v(x′) =

∫ x
x′ w(t)dt is a measurable chaining function.

This results in a scaled score

stwSρ(P, y; v) = −
EP[ρ(v(X), v(y)]

EP,P[ρ(v(X), v(X ′))]

−
1
2
log(EP,P[ρ(v(X), v(X ′))]).

However, we focus on the more specific swCRPS to keep
the exposition reasonably short, and leave further inves-
tigations of these scaled scores for future research.

As mentioned above, one main benefit of kernel scores
is that the expected values can be computed with Monte
Carlo methods without knowing the true distribution.
However, under an assumed model distribution, the ker-
nel scores can often be computed analytically. This is
in particular the case for the generalised extreme value
(GEV) distribution, as shown in Appendix A.

3.3. Local weight-scale invariance of the censored likelihood
score

It follows from the definition that a sum of two proper
scores is also proper, more generally that a weighted sum
of several proper scores is proper, and additionally that if
at least one of the summands is strictly proper, then the
sum is also strictly proper. This can be used to propose
alternative scores which may be less likely to suffer the
problems of overweighting heavy tails, as discussed above
for the quantile scores (see also, e.g., Lerch et al., 2017).

If one is interested in good predictions of values ex-
ceeding some threshold u, there are two complementary
questions: (a) how well does a method predict the sizes
of the excesses which occur, and (b) does the method give

good prediction of the probability of exceedance? Here
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(a) can be approached by scoring only the values of the
excesses which actually occur, using the conditional dis-
tribution of these, f (x)/(1 − F (u)). Question (b) is instead
binary prediction problem, and one can use any of the
any scoring rules for such problems. Further, it seems

easonable to use related scoring rules for (a) and (b).
Diks et al. (2011) uses this idea to combine the loga-

ithmic score for excesses:

(P, y) = 1{y > u} log(f (y)/(1 − F (u)),

here f and F respectively denote the density and cumu-
ative distribution functions corresponding to P, with the
inary logarithmic scoring rule for the exceedance of the
hreshold u,

(P, y) = 1{y ≤ u} log(F (u)) + 1{y > u} log(1 − F (u)),

o obtain the so-called censored likelihood score:

LSu(P, y) = 1{y ≤ u} log(F (u)) + 1{y > u} log(f (y)). (10)

This is a proper scoring rule and is studied in simulations
and application in the next two sections. We also have the
following result, proven in Appendix C.

Proposition 3.9. Let Q be a set of location-scale trans-
formed probability measures Qθ satisfying Assumption 3.6.
Then the censored likelihood score in Eq. (10) is locally
tail-scale invariant on Q, but in general not locally scale
nvariant.

The above type of weighted scoring rule was gener-
lised in Holzmann and Klar (2017) as follows. First, let
w represent the re-normalised density of p with respect
o weight function w, i.e.

w(y) =
w(y)p(y)∫

R w(t)p(t)dt
.

f S0 is a proper scoring rule, then

owS(P, y; w) = w(y)S0(Pw, y), (11)

here Pw is the distribution with density pw , is a proper
coring rule. This is called an outcome weighted scoring
ule by Allen et al. (2022).

Next, for a strictly proper scoring rule s(α, z) for the
uccess probability α ∈ (0, 1) of a binary outcome variable
∈ {0, 1}, the score

s(P, y; w) = w(y)s
(∫

R
p(t)w(t)dt, 1

)
+ (1 − w(y))s

(∫
R
p(t)w(t)dt, 0

)
(12)

s said to be a localising proper weighted scoring rule for
he density forecast p. Finally, adding Eqs. (11) and (12)
ields a proper scoring rule:

(P, y, w) = Ss(P, y; w) + owS(P, y; w). (13)

ith S0 and s as log scores, the score Ŝ as defined in
q. (13) becomes a censored likelihood with a general
eight function w instead of the weight function wu

efined in Eq. (3).

6

Table 1
Forecasting models for benchmarking, taken from Tail-
lardat et al. (2022). The true model is Y |Z d

= Exp(Z),
where Z d

= Gamma(ξ−1, ξ−1), 1 > ξ > 0.
Forecast Density

Ideal, Pideal fExp(Z)
Climatological, Pclim fGP(1,ξ )
τ -Informed, Pτ τ fExp(Z) + (1 − τ )fGP(1,ξ )
Extremist, Pextr fExp(Z/ν), ν > 1

Proposition 3.10. Given that λ(x : w(x) = 1) > 0, where
λ is the Lebesgue measure, the general censored likelihood
score

CLog(P, y; w) = w(y) log
(∫

R
p(t)w(t)dt

)
+ (1 − w(y)) log

(
1 −

∫
R
p(t)w(t)dt

)
+ w(y) log(pw(y))

s locally weight-scale invariant with respect to the indicator
eight w̃(x) = 1{w(x) = 1}.

roposition 3.11. Suppose that S0 and S1 are locally
eight-scale invariant with respect to w. Then:

(i) If w is an indicator weight function, then owS as
defined in Eq. (11) is locally weight-scale invariant
with respect to w.

(ii) S0 + S1 is locally weight-scale invariant with respect
to w.

. Simulation studies

This section contains two examples with simulated
ata, which illustrate the effect of scale dependence for
xtremes using the wCRPS and the swCRPS.

.1. Benchmark example

We start by comparing the predictive ability of the
RPS against the SCRPS in terms of tail regimes. A compar-
son using the CRPS was previously done using a bench-
ark example in Taillardat et al. (2022). They considered

he hierarchical model

Z d
= Gamma(ξ−1, ξ−1)

Y |Z d
= Exp(Z)

where 1 > ξ > 0, Gamma(α, β) denotes a gamma dis-
tribution with shape parameter α and rate parameter β ,
and Exp(δ) denotes an exponential distribution with scale
parameter δ. Using this as the true model, four forecasting
models are compared. The ideal model is an exponential
model using observed values of Z . The extremist model
instead underestimates the scale parameter of the expo-
nential distribution, assuming it to be Z/ν, where ν > 1.
The climatological model has no information about Z but
instead uses the unconditional and distributionally equiv-
alent generalised Pareto distribution, GP(1, ξ ), with scale

parameter one and shape parameter ξ . And finally, the
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Table 2
Ratio of the mean CPRS and mean SCRPS with respect to the corresponding means for the ideal forecast
for two different choices of ξ . The mean was taken over 106 independently simulated observations.
Forecast ξ = 0.25 ξ = 0.50

CRPS SCRPS CRPS SCRPS

Ideal, Pideal 100% 100% 100% 100%
Extremist, ν = 1.1 100.48% 100.41% 100.47% 100.39%
0.75-Informed 100.89% 101.28% 102.14% 104.26%
0.5-Informed 103.56% 103.76% 108.47% 109.93%
Extremist, ν = 1.4 106.67% 104.62% 106.64% 104.35%
0.25-Informed 108.02% 107.20% 119.00% 116.31%
Climatological, GP(1, ξ ) 114.27% 113.67% 133.72% 131.58%
Extremist, ν = 1.8 122.87% 112.69% 122.83% 111.94%
Fig. 1. Benchmark model simulation showing power of a two-sided pairwise t-test when scoring 1000 independently simulated stationary time
series of length 1000 from the ideal model Y |Z ∼ Exp(Z), Z ∼ Gamma(ξ−1, ξ−1) using the extremist model with parameter ν ∈ (1.001, 2) and shape
arameters ξ = 0.25 (left) and ξ = 0.5 (right).
-informed model is a mixture distribution between the
deal and climatological model distributions. The models
re listed in Table 1.
The CRPS for the extreme forecast and the τ -informed

forecast are

CRPS(Pextr , y) = −y −
2ν
δ

exp
(

−
δy
ν

)
+

3ν
2δ

(14)

nd

RPS(Pτ , y) = − y −
τ 2

2δ
−

2τ
δ

[exp(−δy) − 1]

+
2(1 − τ )
1 − ξ

[
1 − (1 + ξy)

ξ−1
ξ

]
−

(1 − τ )2

2 − ξ
−

2τ (1 − τ ) exp
(

δ
ξ

)
ξ

1
ξ δ

ξ−1
ξ

× Γu

(
ξ − 1

ξ
,
δ

ξ

)
,

(15)

espectively, as shown by Taillardat et al. (2022). Here,
u(a, τ ) =

∫
∞

τ
ta−1e−tdt denotes the upper incomplete

amma function. From the CRPS of Eq. (14) and (15), one
an compute the SCRPS by first noting that

Pextr,Pextr [|X − X ′
|] =

ν

δ
,

Pτ ,Pτ [|X − X ′
|] = 2

(
τ

−
τ 2

+
1 − τ

−
(1 − τ )2
δ 2δ 1 − ξ 2 − ξ

7

−

2τ (1 − τ ) exp
(

δ
ξ

)
ξ

1
ξ δ

ξ−1
ξ

Γu

(
ξ − 1

ξ
,
δ

ξ

)⎞⎠ ,

and EPclim,Pclim [|X − X ′
|] =

2
(2−ξ )(1−ξ ) , and then using Eq. (7)

to compute the SCRPS.
We simulate 106 observations of the model for two

choices of ξ : ξ = 0.25 and ξ = 0.5. The higher ξ is,
the lower the variability in Z and thus the scale of Y |Z .
Comparing the ratio of the mean scores of the different
models to the corresponding means for the ideal model
for the CRPS and SCRPS creates an ordering of the models,
as seen in Table 2. Both scores order as expected within
the τ -informed models and within the extremist models,
with decreasing τ and increasing ν, respectively. How-
ever, the ordering within the two models depends on the
choice of scoring rule. Hence, by choosing the scoring rule,
one makes an implicit choice regarding which aspects of
the model are important. For example, for ξ = 0.25,
the climatological forecast is worse than the extremist
forecast with ν = 1.8 according to the CRPS but better
according to the SCRPS, probably due to how the CRPS
penalises the forecasts with larger uncertainty more than
the SCPRS does, while the SCRPS prefers the models with
the same relative error over the climatological model.

The sensitivity and power of the respective scores are
also of interest for different values of ν. For a score S, the
extreme model is compared against the ideal model on
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Fig. 2. Simulated mean (top) and standard deviation (bottom) of the score difference S(Qθ,Qθ) − S(P,Qθ) using the wCRPS (left) and swCRPS (right)
or two predictions of a random variable X ∼ Qθ = GEV(µ = 0, σ , γ = 0.12), with P = GEV(µ = 0, 1.5σ , γ = 0.12), as functions of the scale
arameter σ for different thresholds q(p), chosen as the pth quantile from Q. Threshold q(0) results in the unweighted scores, CRPS and SCRPS.
simulated dataset with 1000 observations using a two-
ided pairwise t-test. This is repeated 1000 times with
ifferent simulated datasets. The SCRPS better identifies
he ideal model from the extremist model, as seen in
ig. 1, with higher power when comparing the ideal and
he extremist model. Moreover, the power of the SCRPS
oes not change for increased values of ξ , whereas the
ower of the CRPS decreases.

.2. Score dependence on scale and threshold

For an observation from X ∼ Qθ = GEV(µ = 0, σ , γ =

.12), let us consider the effect of choosing a wrong model
y computing the expected score difference S(Qθ,Qθ) −

(P,Qθ) where P = GEV(µ = 0, 1.5σ , γ = 0.12). Here, the
alue γ = 0.12 of the shape parameter is chosen to mimic
he behaviour of the extreme rainfall events studied in
ection 5. The mean and standard deviation of the score
ifference are computed from 50,000 simulated observa-
ions of X . For the weighted scores, the thresholds q(p)
re obtained as the pth quantiles of Qθ , that is q(p) =

+
σ
γ

(
(− log p)−γ

− 1
)
for p > 0, and q(0) represents

the unweighted scores. Fig. 2 shows that for the wCRPS,
differences increase with increased σ , whereas they re-
main stable for the swCRPS. The behaviour is similar for
8

each choice of threshold. Variability increases with scale
for the wCRPS but it remains constant for the swCRPS.
Thus the local tail-scale invariance affects not only the
mean score but also the score variance. The fact that the
mean and variance of scores remain the same for different
scales simplifies understanding and use of empirical dis-
tributions of scores from predictions with different scales.
It can also help scoring scaled locations simultaneously, as
seen in the following section.

4.3. Scaling effect on expected scores

As mentioned above, one often evaluates forecasts at
multiple locations though average scores. If the individual
scores are proper, their average is also a proper score.
However, if the distributions at these locations have dif-
ferent scales, the use of a scale-dependent scoring rule
leads to an implicit ranking of the importance of the
different locations, in the sense that some locations might
be more important to predict well to get a high average
score.

As an example, consider two observations following
GEV distributions that differ only in scale, Xi ∼ Qθi =
GEV(0, σi, 0.12), i = 1, 2, with σ1 = 1.5 and σ2 = 3.
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Fig. 3. Simulated expected score S(P,Q) using the wCRPS and swCRPS for a pair (X1, X2) of random variables with Xi ∼ GEV(µi, σi, γ ) as functions of
i , i = 1, 2, using a prediction that has the correct location parameters, µi , and scale parameters σ̂i = kiσi , i = 1, 2. For the true model, µ1 = µ2 = 0,

γ = 0.12, σ1 = 1.5, and σ2 = 3. The weight function was chosen as the 0.90 quantile for each score.
Using the predictions Pi = GEV(0, σ̂i, 0.12), where σ̂i is
an estimated scale parameter, the observations are scored
using the scoring rule S(P, y) =

1
2 (S1(P1, y1) + S2(P2, y2)),

here S1 and S2 are either wCRPSs, or else swCRPSs
ith indicator weight functions wq1 and wq2 for the two
bservations. Here, q1 and q2 are chosen as the 90th
uantiles of Qθ1 and Qθ2 , respectively. The expected score
as computed as the mean of 100,000 simulations.
Fig. 3 shows that the expected average score S(P,Q)

with σ̂i = kiσi for the wCRPS is more sensitive to changes
in k2 than in k1, meaning that it is more important to
have a good prediction for X2. For the swCRPS, the scores
re on the other hand quite symmetrical in k1, k2, so the
redictions P1,P2 are scored more equally. Fig. 3 further
hows that the swCRPS is close to being locally scale
nvariant, whereas the wCRPS is not. Finally, note that the
ymmetry in k1, k2 for all considered values indicates that
he score difference does not depend on the scale even
or large model misspecifications, which is not guaranteed
o hold by the definition of local scale invariance. This is
ot uncommon, and for example also holds for Gaussian
istributions, as can be seen in Bolin and Wallin (2023,
igure 1).

. Case studies

This section uses data on water levels, precipitation,
nd air pollution to compare scoring rules in practice.
he models used were fitted by maximising the log like-
ihood in the first two case studies and through the INLA
pproach (Rue et al., 2009) in the final study.

.1. Extreme water levels

In this section, we consider data containing annual
aximal water levels at five representative stations in

he Great Lakes system: Lake St. Clair, Lake Michigan–
uron, Lake Ontario, Lake Superior, and Lake Erie. The
ataset is provided by NOAA and dates from 1918 to 2020.
ith different sizes and depths of the lakes, the data
iffer in scale, making it interesting to see the effect of
isspecifications when using the wCRPS and swCRPS.
9

First, a stationary GEV model was fitted to the five
representative stations, assuming that the behaviour of
the lake-wide average water levels has not changed dur-
ing the observed time series. The estimated parameters
are listed in Table 3. The shape parameter at all loca-
tions is negative, suggesting that the annual maxima fol-
low a Weibull distribution. The density functions of the
estimated GEV distributions are shown in Fig. D.10 in
the appendix. Next, the PGEVλ model, with a trend in
λ and temperature as covariate, was fitted to each of
the stations. For further information on the PGEV model,
see Olafsdottir et al. (2021). The temperature used was a
LOWESS smoothing of the yearly average Northern Hemi-
spheric temperature, obtained from NOAA (NOAA Na-
tional Centers for Environmental Information, 2019). The
fit suggested that Lake Michigan–Huron and Lake Superior
did not have a trend in the expected number of extreme
water levels, λ, but trends existed at the other three
stations, Lake St. Clair, Lake Ontario, and Lake Erie, using
significance level α = 0.05. From the Lake System profile,
the stationarity might be explained by flow from Lake
Michigan, Lake Huron, and Lake Superior to the other
lakes. The number of dams in the Great Lakes exceeds
7000, so the effect of them on the data is hard to visualise.

NOAA, Great Lakes Environmental Research Laboratory
(2015) noted that ‘‘since September 2014, all of the Great
Lakes have been above their monthly average levels for
the first time since the late 1990s’’. However, they came
to the same conclusion, that Lake Superior, Lake Michigan,
and Lake Huron will probably remain stationary around
the mean levels, while there might be non-stationarity in
the remaining lakes in the Great Lakes system.

The above parameter estimates are used through simu-
lation to compare the effect of parameter misspecification
on the mean and standard deviation of the score differ-
ences. Further, since the stationary stations (Lake Superior
and Lake Michigan–Huron) are also the ones that differ
most in scale, these are used in the simulation study to
compare how often one misspecified model is preferred
over another equally misspecified model using different
scores.
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Table 3
Parameter estimates (standard deviations) using stationary GEV distribution.
Station µ σ γ Station id

St. Clair 175.108 (0.038) 0.349 (0.027) −0.285 (0.065) 1
Michigan–Huron 176.469 (0.044) 0.395 (0.033) −0.283 (0.082) 2
Ontario 74.990 (0.034) 0.322 (0.024) −0.285 (0.053) 3
Superior 183.524 (0.019) 0.175 (0.014) −0.404 (0.063) 4
Erie 174.280 (0.038) 0.355 (0.027) −0.348 (0.060) 5
Fig. 4. Mean and standard deviations of score differences, ∆i , at stations i ∈ {1, 2, 3, 4, 5} with k = 1.5, using different types of CRPSs on simulated
ata using the estimated parameters from the stations listed in Table 3.
a
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.1.1. Simulation
Using the estimated parameters from Table 3, we sim-

late observations from the five different stations. For
ach station, 1000 independent stationary time series of
ength 100 are simulated. These time series have been
cored for two models. The first model uses the true pa-
ameters µ, σ , and γ from the simulation, and the second
odel uses the true location and shape parameters µ and
, but perturbs the scale parameter by a factor k = 1.5.
he scale parameter of the second model therefore be-
omes 1.5σ . We see that for the parameters from station
(Lake Superior), both the mean score difference and its
ariation are smaller than for the other stations when
sing the wCRPS (Fig. 4). This difference between stations
isappears when instead using the swCRPS on the same
ata.
10
For a given perturbation factor k, the score difference
t station i is defined as ∆i := Sσi − Skσi where Sσ̂ is the
core using estimated scale parameter σ̂ , and σi is the true
cale parameter at station i (i.e., the parameter that was
sed when simulating the data). The factor k describes
he estimated scale parameter’s error relative to the true
cale parameter. For scale invariant scores, the expected
ifference will only depend on the perturbation factor and
ot on the scale itself.
Assume that we want to compare two model predic-

ions, each for two locations: Lake Michigan–Huron with
2 = 0.395, and Lake Superior with σ4 = 0.175. Denote
he models A and B, where
odel A: σ̂2 = σ2, σ̂4 = kσ4

Model B: σ̃2 = kσ2, σ̃4 = σ4

and k > 0 is a perturbation factor.
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Fig. 5. Proportion of times model A was preferred over model B when simulating time series of length 100 when using the wCRPS and swCRPS,
ith individual shape parameter (left) and joint shape parameter (right). The score threshold is chosen as the p% quantile.
Fig. 6. Estimated scale parameter from a PGEV model with trend in the frequency parameter λ for stations in the northeastern U.S.
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We want to compare the score SA := Sσ̂2 + Sσ̂4 against
B := Sσ̃2 + Sσ̃4 . However, SA − SB = ∆2 − ∆4, so
t suffices to compare the differences ∆i at the stations.
or this, 1000 time series of length 100 were simulated
sing the estimated parameters of Lake Superior and Lake
ichigan–Huron. The perturbation factor was fixed at k =

.5. Fig. 5 shows how often model A was preferred over
odel B using different scores. Since the models both
ave one correct scale parameter and the same propor-
ional error in the other parameter, models A and B should
e chosen with equal probability if not influenced by
cale. This corresponds to choosing A over B 50% of the
ime. Using the wCRPS gives a high bias toward model
, while the swCRPS yields a more fair comparison of
odels A and B, as expected. The deviation from the 0.5

ine for large thresholds for the swCRPS is due to the
ifference in shape parameters at the simulated stations.
f we assume that the shape parameters are the same for

he two stations, this deviation disappears. z

11
.2. Extreme rainfall events and climate change

In this section we use the scoring rules introduced
bove to compare five models of extreme rainfall in the
ortheastern United States. The dataset is a part of NOAA
tlas 14 Volume 10, part 3 (NOAA’s National Weather
ervice, 2019) and contains the annual maximum rain
rom 685 stations in the northeast with time series rang-
ng from approximately 1900 to 2014. Only stations with
t least 60 years of data are used. We call this dataset
E-data. The estimated scale parameters differ between
tations (Fig. 6), meaning that the stations with higher
cale parameters will be given greater weight if a scale-
ependent scoring rule such as the CRPS or wCRPS is
sed.

.2.1. Model and inference details
We compared four models of annual maximal rain-

all: (i) Gumbel, a GEV distribution with shape parameter
ero; (ii) GEV, a GEV distribution with shape parameter
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Table 4
Mean scores for four different models for NE-data, with means obtained as the mean of the mean scores at the individual stations. The scores where
t-tests showed significance between the PGEVλ and GEVµ are shown in bold.

LS CRPS SCRPS LSq wCRPS swCRPS

90% 99% 90% 99% 90% 99%

Gumbel −1.148 −0.483 −1.048 −0.427 −0.0903 −0.0865 −0.010178 −0.1556 −1.531
GEV −1.129 −0.481 −0.966 −0.419 −0.0856 −0.0860 −0.010201 −0.0795 0.893
GEVµ −1.108 −0.473 −0.958 −0.415 −0.0850 −0.0857 −0.010199 −0.0644 0.906
PGEVλ −1.107 −0.472 −0.956 −0.414 −0.0847 −0.0854 −0.010195 −0.0603 0.901
different from zero; (iii) GEVµ, a GEV distribution with
rend in the location parameter, i.e. µ(t) = µ0 + µ1t;
nd (iv) PGEVλ, a PGEV distribution with trend in the
requency parameter, i.e. ln λ(t) = λ0 + λ1t . For both
EVµ and PGEVλ, the covariate t is a LOWESS smoothing
f the yearly average Northern Hemispheric tempera-
ure, obtained from NOAA (NOAA National Centers for
nvironmental Information, 2019).
The parameters of the GEV and the PGEV models are

stimated by maximising the log likelihood. Both models
ssume a single regional shape parameter and station-
ise location and scale parameters. The estimated scale
arameter varies over space, motivating the use of lo-
ally (tail-) scale invariant scores. The thresholds for the
eighted scores are determined empirically from the time
eries as the pth quantile.
Besides overall mean scores, we also consider the dis-

ribution of the scores. For station i, with Ni observations
y = (y1, . . . , yNi ), the mean score is

Si(P, y) =
1
Ni

Ni∑
j=1

S(Pij, yj).

where Pij is a predictive distribution for observation j at
station i. Let ∆i(P,Q) = Si(P, y) − Si(Q, y) denote the
station-wise score difference between two predictions P
and Q at station i. A positive difference means that pre-
diction P scored better, and a negative difference means
that prediction Q scored better. The standard way to
evaluate whether P is a better model than Q for time
series is to perform a Diebold–Mariano test (Diebold &
Mariano, 1995) on the difference of this kind, that takes
into account correlation in the data. However, for the
station-wise differences, the spatial correlation is low, and
we therefore perform pairwise t-tests of equal predictive
performance to compare two models.

The variances of the station-wise average scores are
affected by the varying scale parameters in the data, but
also by the lengths of the time series, which are slightly
different for the different stations. However, since only
time series of length greater than 60 years are used, the
latter difference is small.

5.2.2. Results
As shown in Table 4, the PGEVλ model gives the high-

est overall mean scores, while the Gumbel model has
the lowest score, for all statistically significant scores.
Fig. 7 shows p-values from two-sided t-tests, where one
can note that all scoring rules reject the null hypothesis
except for very high thresholds, where only the LSq score
rejects.
12
Instead of only considering average scores, one can,
as suggested by Taillardat et al. (2022), also check for
the existence of trends by permuting covariates (in this
paper, temperature) and computing prediction scores for
the model which uses the permuted covariates instead of
the ordered ones. In the absence of trends, these predic-
tions should be similar to the ones which use the ordered
covariates. By plotting the ordered average station scores
from the original station data D1 = (ti, yi)ni=1 against the
ordered average scores obtained by using the permuted
covariates D2 = (tπ (i), yi)ni=1, one can see whether the
scores from D1 are larger, which would point at the exis-
tence of a trend, or whether they distribute evenly around
the 45 degree line, in which case a trend is unlikely. For
the PGEV model with trend in frequency, Fig. 8 suggests
the existence of a trend regardless of which scoring rule is
used. Here, the same conclusion is reached regardless of
the score chosen. In particular, the rankings of the models
do not change if we focus only on high values. Whether
this is the case is application-dependent, and Section 5.3
shows an example where the conclusions differ when
only focusing on high values.

5.3. Particle matter concentration

So far, the examples have focused on extremes, due to
the natural interest in predictions above a certain thresh-
old. However, there are many cases where there is a
reason to focus on specific regions which are not neces-
sarily extreme. For example, high concentrations of par-
ticle matter less than 10 nm in diameter (PM10) have
negative health impact. According to the WHO (Geneva:
World Health Association, 2021), daily PM10 should not
exceed 45 µg/m3. Moreover, based on studies on the
connection between long-term PM10 and non-accidental
mortality, the WHO found that the long-term level of
PM10 should not exceed 15 µg/m3. This is yet a recom-
mendation, but it might be of interest to evaluate how
well models can predict PM10, focusing on values above
15 µg/m3. The assumption is that PM10 concentrations
below 15 µg/m3 have less health implications, and thus
the prediction of lower values is not as important for the
model evaluation. As an illustration, we focus on con-
centrations above three distinct thresholds—15 µg/m3,
30 µg/m3, and 45 µg/m3—when comparing predictions
of PM10 concentrations in the Piedmont region in Italy.
We use data from Cameletti et al. (2013), containing ob-
servations for 182 days from October 2005 to March 2006

at 24 locations. The data are illustrated in Fig. 9.
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Fig. 7. P-values from t-test station-wise score differences ∆i(P,Q) for predictions P and Q, where (A) P = GEV , Q = GEVγ=0 , (B) P = PGEVλ ,
Q = GEVγ=0 , (C) P = PGEVλ , Q = GEV, and (D) P = PGEVλ , Q = GEVµ . The 0.05 level is marked with a red dashed line. Note that the y-scales are
different in the different plots.
Fig. 8. Sorted average station scores for a PGEV model with trend in λ plotted for the original dataset D1 against permuted dataset D2 . The colour
represents whether the points fall above (green) or below (orange) the diagonal. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Denoting the n = 4368 observations of log-PM10 by
yi, i = 1, . . . , n, Cameletti et al. (2013) proposed using a
model of the form

yi =

M∑
Wm(si, ti)βm + u(si, ti) + ei.
m=1

13
Here, Wm denotes covariates, βm regression coefficients,
and ei independent centred Gaussian variables represent-
ing measurement noise. Further, u(s, t) is a spatiotem-
poral Gaussian random field with a separable covariance
function.

Since separability is rarely a realistic assumption for
spatiotemporal statistical models, we compare the pre-



H.K. Olafsdottir, H. Rootzén and D. Bolin International Journal of Forecasting xxx (xxxx) xxx

a

m
b
a
a

Fig. 9. Position of the 24 stations in the Piedmont region along with observations of PM10 concentration on March 13, 2006 (right), and a histogram
showing the observations from the 24 stations at the 182 different dates (left).
Table 5
Mean scores from one-step-ahead cross-validation used to compare PM10 predictions in the Piedmont data for separable and non-separable space–
time models, as in Krainski (2023). The higher score is represented in bold. The thresholds used for the weighted scores are 15 µg/m3 , 30 µg/m3 ,
nd 45 µg/m3 .

CRPS SCRPS wCRPS swCRPS

15 µg/m3 30 µg/m3 45 µg/m3 15 µg/m3 30 µg/m3 45 µg/m3

Separable −0.2243 −0.5792 −0.1987 −0.1600 −0.1151 −0.5516 −0.4960 −0.1452
Non-separable −0.2232 −0.5750 −0.1983 −0.1590 −0.1590 −0.5863 −1.1672 −0.2162
dictions based on this model with those of a model where
u is replaced by a Gaussian random field with a non-
separable covariance function. Specifically, we use the
critical diffusion model of Lindgren et al. (2023), which is
a Gaussian random field defined as a solution to a stochas-
tic partial-differential equation (SPDE). Both models are
fitted to the data using the code provided by Krainski
(2023).

To compare the models in terms of predictive perfor-
ance, a one-step-ahead cross-validation was performed
y extending the cross-validation function of the R pack-
ge rSPDE (Bolin & Simas, 2023) to include the swCRPS
nd wCRPS, with the test set at fold i defined as all ob-

servations at time ti+1, and the test set as all observations
up to that time, for i = 1, . . . , 181. The predictions are
compared in terms of CRPS, SCRPS, wCRPS, and swCRPS.
The results of the best scores are shown in Table 5. In line
with the results found in Lindgren et al. (2023), the CRPS
and SCRPS indicate that the non-separable model has
better predictive performance than the separable model.
However, for the weighted scores, the wCRPS indicates
better performance of the non-separable model, while
14
the swCRPS indicates better performance of the separable
model. Thus, this application is an example of where the
choice of scoring rule affects the rankings. In particu-
lar, we see that the swCRPS indicates that the separable
model might be preferable when focusing on harmful
levels of PM10.

6. Conclusion and discussion

Desirable properties such as straightforward computa-
tion of scores by Monte Carlo approximation have made
the CRPS a popular alternative to the logarithmic score.
However, using the CRPS requires sacrificing the local
scale invariance of the logarithmic score. This can cause
different observations, say at different spatial locations,
not to be equally important for average scores. To account
for this, a common choice in the literature is to use so-
called skill scores (Sn −Srefn )/Srefn or (Sn −Srefn )/(Soptn −Srefn ),
where Srefn and Soptn are the scores for a reference method
and the hypothetical optimal score, respectively. How-
ever, these scores are often improper, even when they are

based on a proper scoring rule (Gneiting & Raftery, 2007).
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Bolin and Wallin (2023) addressed this issue by in-
roducing the SCRPS, a proper scoring rule which retains
ost of the desirable properties of the CRPS yet is also

ocally scale invariant. We extend this construction to the
eighted CRPS to obtain the swCRPS and investigate the
roperties of this score. We show that neither the wCRPS
or the swCRPS is scale invariant, but that the swCRPS is
ocally tail-scale invariant, meaning that, conditioned on
xceeding the threshold used in the weighting, the score
s locally scale invariant.

Through simulation studies we showed that for a num-
er of extreme value models, swCRPS works in a similar
ay as the SCRPS does for full datasets. In particular, the
ean and variability of score differences remain similar
hen scale parameters are changed, and average scores
ver random variables with different scales keep the rel-
tive error in scale parameter estimation approximately
qual. These properties can be important, for example
hen evaluating weather models that operate on dif-

erent scales at different spatial locations, such as tem-
erature, water levels, or rainfall amounts at different
easuring stations.
As an example, we used different scores to evalu-

te five models on annual maximum rainfall data in the
ortheastern USA. The comparison led to similar conclu-
ions for all scores, with the best tested model being a
GEV model with a temperature-wise trend in the fre-
uency parameter, meaning that for this case study, we
ome to the same conclusion when only considering the
ail of the distribution. This was not the case for the
article matter application, where focusing on high values
hanged the model ranking.
It should be noted that scale dependence can some-

imes be preferred, as mentioned by Bolin and Wallin
2023). In such situations, the wCRPS would likely be a
etter choice than the swCRPS. However, we believe that
uch situations are rare for typical applications in ex-
remes. Moreover, the LSq seems to have the best power,
s expected, but this score might not be possible to com-
ute for more complicated models. In such cases the
wCRPS can be a good alternative.
Issues regarding tail-weighted scores have been raised

s the forecaster’s dilemma (Lerch et al., 2017). The lack of
nformation from observations below a certain threshold
an unintentionally draw the score towards the wrong
odel based on the weight of the models’ tail behaviour.
his has been addressed by also including the unweighted
RPS by using a weight function of the form a + bwu(x)

(Thorarinsdottir & Schuhen, 2018). Another solution might
be simply not to choose an excessively high threshold u.

Weighted scores are not solely relevant for extremes
ut can be applied whenever predictions within a specific
egion are of higher importance, as seen for the PM10
oncentration model, where a Gaussian spatiotemporal
odel was used to predict the concentration of PM10

n the Piedmont region of Italy (Cameletti et al., 2013;
indgren et al., 2023). Moreover, the regions of interest
an be defined through weight functions other than the
ndicator weight function wu(y) = 1{y ≥ u}. The notation
f local weight-scale invariance extends the concept of
ocal tail-scale invariance to accommodate for local scale
nvariance within these types of regions.
 &
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Appendix A. Extreme value models and scoring rules

When considering block maxima data, such as an-
nual maxima of daily precipitation data, classical extreme
value theory (see e.g. Coles, 2001) shows that the gen-
eralised extreme value (GEV) distribution is a suitable
model for the data. Different variations of this approach
exist, as shown below.

A.1. Extreme value theory models

The GEV distribution has location, scale, and shape
parameters (µ, σ > 0, and γ respectively) and the dis-
ribution function

GEV(x) =

{
exp

(
− exp

(
−

x−µ

σ

))
if γ = 0,

exp
{
−

(
1 +

γ

σ
(x − µ)

)−1/γ
}

if γ ̸= 0.

In this model, one can introduce trends in the parameters,
for example to model climate change. Further, one can
use a re-parameterisation, PGEV, of the GEV distribution
in terms of parameters λ, σu, γ , u, with

µPGEV = u +
(λγ

− 1)σu

γ
, σPGEV = σuλ

γ , γPGEV = γ .

Here the parameter λ describes the frequency of ex-
ceedances of a high level u, and σPGEV is a scale parameter
of the distribution of sizes of excesses of u. A reason for
this re-parameterisation is that it gives a clearer physical
understanding of the behaviour of extreme events. The
distribution function of the PGEV can be written as

FPGEV(x) = exp

{
−λ

(
1 +

γ

σu
(x − u)

)−1/γ
}

.

For details and more information, see Olafsdottir et al.
(2021). For models without trends in parameters, the
PGEV distribution is the same as the GEV distribution.
However, the trends in λ for the PGEV model and in µ

for the GEV model behave differently.
When P is the GEV or PGEV distribution, and γ < 1,

he CRPS has a closed-form expression (see e.g. Friederichs
Thorarinsdottir, 2012),
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CRPS(P, y)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(y − µ +
σ
γ
)(2F (y) − 1)

+
σ
γ
(2γ Γ (1 − γ ) − 2Γl(1 − γ , − ln F (y)))

if γ ̸= 0,
(y − µ) + 2σEi(ln F (y)) − σ (C − ln 2)

if γ = 0,

where Γ (a) =
∫

∞

0 ta−1e−tdt is the gamma function,
Γl(a, τ ) =

∫ τ

0 ta−1e−tdt is the lower incomplete gamma
function, Ei(x) =

∫ x
−∞

et/tdt is the exponential inte-
gral, and C is the Euler–Masceroni constant. For γ ≥ 1,
the CRPS does not exist. In Appendix B we derive the
corresponding closed-form expressions for the wCRPS.

Through the following reformulation of Eq. (9),

swCRPS(P, y) =
wCRPS(P, y)

EP,P[gw(X, X ′)]

−
1
2
ln(EP,P[gw(X, X ′)]) −

1
2
,

we can also evaluate swCRPS(P, y) for the GEV distribu-
ion through the closed-form expression for the wCRPS in
ombination with the expression

P,P[gw(X, X ′)] = −2
(
q − µ +

σ

γ

)
F (q)(1 − F (q))

+ 2
σ

γ
[2γ Γl(1 − γ , −2 ln(F (q)))

− 2Γl(1 − γ , − ln(F (q)))] .

ee Appendix B for the derivation of these expressions.

ppendix B. Closed-form expressions for GEV scores

Let P be a distribution with CDF F and PDF f , and let
q be the indicator weight function as described in Eq. (3).
hen

P[gw(X, y)] =

∫
R
gw(x, y)f (x)dx

= (1 − wq(y))
∫

∞

q
(x − q)f (x)dx

+ wq(y)
(∫ q

−∞

(y − q)f (x)dx +

∫
∞

q
|x − y|f (x)dx

)
=

∫
∞

q
xf (x)dx − q(1 − F (q)) + wq(y)

×

(
y(2F (y) − 1) − q(2F (q) − 1) − 2

∫ y

q
xf (x)dx

)
,

and
EPP[gw(X, X ′)] =

∫
R

∫
R
gw(x, y)f (x)dxf (y)dy

= 4
∫

∞

q
xF (x)f (x)dx

− 2
∫

∞

xf (x)dx − 2qF (q)(1 − F (q)).

(B.1)
q

16
Using the formulation in Eq. (2), we have

wCRPS(P, y) =
1
2
EPPF [gw(X, X ′)] − EP[gw(X, y)]

= 2
∫

∞

q
xF (x)f (x)dx −

∫
∞

q
xf (x)dx − qF (q)(1 − F (q))

−

∫
∞

q
xf (x)dx + q(1 − F (q))

− wq(y)
(
y(2F (y) − 1) − q(2F (q) − 1) − 2

∫ y

q
xf (x)dx

)
= −2

∫
∞

q∨y
xf (x)dx + 2

∫
∞

q
xF (x)f (x)dx

− (q ∨ y)(2F (q ∨ y)) − 1) + qF (q)2.

(B.2)

The expressions in Eq. (B.1) and (B.2) can be rewrit-
ten in terms of quantiles of the distribution F , since we
have

∫
∞

a xf (x)dx =
∫ 1
F (a) F

−1(t)dt and
∫

∞

a xF (x)f (x)dx =∫ 1
F (a) F

−1(t)tdt . This gives

EPP[gw(X, X ′)] = 4
∫ 1

F (q)
F−1(t)tdt

− 2
∫ 1

F (q)
F−1(t)dt − 2qF (q)(1 − F (q)).

and

wCRPS(P, y) = −2
∫ 1

F (q∨y)
F−1(t)dt + 2

∫ 1

F (q)
F−1(t)tdt

− (q ∨ y)(2F (q ∨ y)) − 1) + qF (q)2.

Let us now use these results to evaluate the scoring rules
for the GEV distribution. We first consider the case γ = 0,
corresponding to the Gumbel distribution, and then the
case γ ̸= 0.

B.1. Scoring rules for the Gumbel distribution

For the case γ = 0, the GEV distribution has CDF
F (x) = exp(− exp(−(x − µ)/σ )) with inverse F−1(x) =

µ − σ ln(− ln x)). Therefore,∫ 1

F (q∨y)
F−1(t)dt = µ(1 − F (q ∨ y)) − σ

∫ 1

F (q∨y)
ln(− ln t)dt,∫ 1

F (q)
F−1(t)tdt =

1
2
µ(1 − F (q)2) − σ

∫ 1

F (q)
t ln(− ln t)dt,

hich gives
CRPS(P, y) = ((q ∨ y) − µ) − σ (C − ln(2))

− σ

(
Ei

(
−2 exp

(
−

q − µ

σ

))
− 2Ei

(
− exp

(
−

q ∨ y − µ

σ

)))
,

and
EPP[gw(X, X ′)] = 2σ ln(2) − 2(q − µ)(1 − F (q))

− 2σ
(
Ei

(
−2 exp

(
q − µ

σ

))
− Ei

(
− exp

(
q − µ

)))
.

σ
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B.2. Scoring rules for the GEV distribution with non-zero
shape parameter

For the case γ ̸= 0, the GEV distribution has CDF
(x) = exp

[
−

(
1 +

γ

σ
(x − µ)

)−1/γ
]
with inverse F−1(x) =

µ −
σ
γ

(
1 − (− ln x)−γ

)
. Therefore,

wCRPS(F , y) =

(
q − µ +

σ

γ

)
F (q)2

− ((y ∨ q) − µ +
σ

γ
)(1 − 2F (y ∨ q))

−
σ

γ
[2γ Γl(1 − γ , −2 ln(F (q)))

− 2Γl(1 − γ , − ln(F (y ∨ q)))] ,

and

EPP[gw(X, X ′)] = −2
(
q − µ +

σ

γ

)
F (q)(1 − F (q))

+ 2
σ

γ
[2γ Γl(1 − γ , −2 ln(F (q)))

− 2Γl(1 − γ , − ln(F (q)))] ,

where Γl(a, τ ) =
∫ τ

0 ta−1e−tdt .

Appendix C. Proofs

Proof of Proposition 3.5. Let gw(x, y) := |
∫ x
y w(t)dt|,

where w(x) is a non-negative function. Then gw : Ω ×

Ω → R is a symmetric real-valued function. Moreover,
n∑

i=1

n∑
j=1

aiajgw(xi, xj) ≤ 0

for all n, all a1, . . . , an ∈ R s.t.
∑n

i=1 ai = 0, and all
x1, . . . , xn ∈ Ω , since g(x, y) = |x − y| is negative definite.
Hence, the kernel gw is negative definite and the weighted
CRPS,

wCRPS(P, y) =
1
2
EP,P[gw(X, X ′)] − EP[gw(X, y)],

is indeed a kernel score. □

Proof of Proposition 3.7.
Note that for any Q for which Assumption 3.6 holds,

the assumption also holds for Qwu , where u ∈ supp(Q),
and wu is the indicator weight function.

We start by proving (i). Assume that Qθ is a proba-
bility measure satisfying Assumption Assumption 3.6. Let
S(Qθ, y) =

1
2EQθ ,Qθ

[gw(X, Y )] − EQθ
[gw(X, y)] denote the

CRPS, where qθ is the density of Qθ . By Taylor expansion
round θ, we have that

(Qθ+tσ r ,Qθ) = S(Qθ,Qθ) + tσ rT∇θS(Qθ,Qθ)

+
1
2
t2σ 2rT∇2

θ S(Qθ,Qθ)r + o(t2). (C.1)

From Assumption 3.6, s(θ ) = ∇
2
θ S(Qθ,Qθ)|Q=Qθ

exists
and is continuous, and we have ∇ S(Q ,Q ) = 0, since S
θ θ θ
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is proper. Hence,

S(Qθ,Qθ) − S(Qθ+tσ r ,Qθ)

= −
1
2
t2σ 2rT∇2

θ S(Qθ,Qθ)r + o(t2)

=
1
4
t2σ 2rT∇2

θ EQθ ,Qθ
[gw(X, Y )]r + o(t2).

We can now follow the steps in the proof of Lemma 1
in Bolin and Wallin (2023), where we replace their kernel
gc(x, y) with our weighted kernel gw(x, y), since the only
thing required in the proof is that the kernel is a positive
negative-definite kernel and that gw(x, y) ≤ g(x, y), both
of which hold whenever |w(t)| ≤ 1 for all t ∈ R. This
holds certainly for our indicator weight function wq but
even for other choices of w. This results in

∇θEQθ ,Q[gw(X, Y )] = −σ−1EQ,Q[gw(σX+µ, Y )v(X)], (C.2)

and

∇
2
θ EQθ ,Qθ

[gw(X, Y )]

= σ−2EQ,Q[gw(σX + µ, σY + µ)H(X, Y )], (C.3)

where v(X) is a vector and H(X, Y ) is a 2 × 2 matrix, both
independent of θ, and

gw(σx + µ, σy + µ) =

⏐⏐⏐⏐∫ σx+µ

σy+µ

w(t)dt
⏐⏐⏐⏐

= σ

⏐⏐⏐⏐∫ x

y
w(στ + µ)dτ

⏐⏐⏐⏐ .
For w = wq, we have

gw(σx + µ, σy + µ) = σ

⏐⏐⏐⏐∫ x

y
1
{
τ ≥

q − µ

σ

}
dτ

⏐⏐⏐⏐
=

⎧⎪⎪⎨⎪⎪⎩
σ |x − y| if x, y ≥

q−µ

σ
,

σ |y −
q−µ

σ
| if y ≥

q−µ

σ
≥ x,

σ |x −
q−µ

σ
| if x ≥

q−µ

σ
≥ y,

0 otherwise.

(C.4)

ince we cannot let w depend on θ = (µ, σ ), we cannot
hoose any w such that

w(σx + µ, σy + µ) = σgw(x, y).

owever, letting k =
q−µ

σ
, we have that gw(σx + µ, σy +

µ) = σ |x − y| for all x, y ≥ k.
Then the wCRPS has scale function

s(Qθ) = σ−1EQ,Q[HQ(X, Y )h(X, Y )],

where HQ(X, Y ) is a 2 × 2 matrix independent of θ , and
h(X, Y ) is a function dependent on θ. Furthermore, there
exists a constant k < ∞ such that h(X, Y ) is independent
of θ for all X, Y ≥ k. From this scale function we directly
see that the wCRPS is neither locally scale invariant nor
locally tail-scale invariant.

We now prove (ii). Let S be the swCRPS defined in
Eq. (9). As in the proof of statement (i), we perform the
Taylor expansion shown in Eq. (C.1). Since S is proper,
∇θS(Qθ,Qθ) = 0 and we only need to consider the term
∇

2
θ S(Qθ,Q)|Q=Qθ

that exists and is continuous.
For simplified notation, let EP,Q = EPθ ,Q[g(X, Y )],
EṖ,Q = ∇θEPθ ,Q[g(X, Y )], EQ ,Ṗ = ∇θEQ,Pθ
[g(X, Y )], and
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EP̈,Q = ∇
2
θ EPθ ,Q [g(X, Y )]. One can show that

∇
2
θ log(EP,P ) = −

2EṖ,PE
T
Ṗ,P

E2
P,P

+
EṖ,Ṗ

EP,P
+

EP̈,P

EP,P
,

∇
2
θ

EP,Q

EP,P
= −

2EṖ,Q E
T
Ṗ,P

E2
P,P

−

2EP,Q ET
Ṗ,P

E2
P,P

−

2EP,Q ET
Ṗ,Ṗ

E2
P,P

+

23EṖ,PE
T
Ṗ,P

E3
P,P

+
EP̈,P

EP,P
−

2EP,Q ET
P̈,P

E2
P,P

.

Evaluating these together at Q = P yields

∇
2
θ S(Pθ,Q)|Q=Pθ

=
1

EP,P
EṖ,Ṗ −

2
E2
P,P

EṖ,PE
T
P,Ṗ .

Inserting (C.2) and (C.3) instead of EṖ,P and EṖ,Ṗ into the
equation above results in

s(Qθ ) = −
1
2

∇
2
θ S(Qθ ,Q)|Q=Qθ

= −
σ−2

2

(
EQ,Q[gw(σX + µ, σY + µ)H(X, Y )]

EQ,Q[gw(σX + µ, σY + µ)]

−
2EQ,Q[gw(σX + µ, σY + µ)v(X)]EQ,Q[gw(σX + µ, σY + µ)v(X)]T

EQ,Q[gw(σX + µ, σY + µ)]2

)

and for u ≥ k,

(Qwu
θ ) = −

σ−2

2

(
σEQwu ,Qwu [|X − Y |H(X, Y )]

σEQwu ,Qwu [|X − Y |]

−
2σ 2EQwu ,Qwu [|X − Y |v(X)]EQwu ,Qwu [|X − Y |v(X)]T

σ 2EQwu ,Qwu [|X − Y |]2

)
,

.e.

(Qwu
θ ) = s(Qwu

(0,1))

or u ≥ k, showing that the swCRPS is locally tail-scale
nvariant. □

roof of Proposition 3.8.

(i) According to Bolin and Wallin (2023), the scale
function of rCRPS with kernel function

gc(x, y) =

{
|x − y|, |x − y| < c
0, otherwise

(C.5)

is

s(Qθ ) = σ−1EQ,Q

[
HQ(X, Y )1

(
|X − Y | <

c
σ

)]
,

where HQ(X, Y ) is a 2 × 2 positive semidefinite
matrix independent of θ . Choose u =

c
2σ . Then for

|x| < u, |y| < u,

|x − y| ≤ |x| + |y| <
c
2σ

,

and

s
(
Qwu

θ

)
= σ−1EQwu

,Qwu
[
HQwu (X, Y )

]
.

Therefore, rCRPS is not locally weight-scale invari-
ant with respect to wu(x) = 1{|x| < u}

(ii) Following the proof of Proposition 3.7, using the
fact of Eq. (C.5) instead of Eq. (C.4) yields that the
rSCRPS is locally weight-scale invariant for weight
function w(x) = 1{|x| < c/2}. □
 s
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Proof of Proposition 3.9. For u ≥ q, the censored
likelihood score, LSq, and the logarithmic score, LS, have
the same conditional expectation, since

Su(P,Q) = EQ[LSq(Pu, Y )|Y > u]
= EQ[1{Y ≤ q} log(F (q))

+ 1{Y > q} log(f (Y ))|Y > u]

= EQ[log(f (Y ))|Y > u]
= EQ[LS(Pu, Y )|Y > u].

he logarithmic score is locally scale invariant (Bolin &
allin, 2023), and thus also locally tail-scale invariant

ccording to Remark 3.2. Therefore, the conditional like-
ihood is also locally tail-scale invariant. □

roof of Proposition 3.10. First note that

Logw(P, y) = w(y) log
(∫

R
p(t)w(t)dt

)
+ (1 − w(y)) log

(
1 −

∫
R
p(t)w(t)dt

)
+ w(y) log(pw(y))

= w(y) log (p(y)) + (1 − w(y))

× log
(
1 −

∫
R
p(t)w(t)dt

)
onditioned on w̃(y) = 1{w(y) = 1}, the score becomes
he scale invariant logarithmic score, so the CLogw is
ocally weight-scale invariant with respect to w̃. □

roof of Proposition 3.11.

(i) Consider the score

owS(P, y; w) = w(y)S0(Pw, y)

Note that
owS(Pw,Qw

; w) = E[w(Y )S0(Pw, Y )|w(Y ) > 0]

= E[S0(Pw, Y )|w(Y ) > 0] = S0(Pw,Qw)

so if S0 is locally weight-scale invariant with respect
to w, then owS is also locally weight-scale invariant
with respect to w.

(ii) Consider the score S = S1 + S2. The weight-scale
function of S is the sum of the weight-scale func-
tions of S1 and S2. If S1 and S2 are locally weight-
scale invariant with respect to w, their weight-scale
functions fulfil the requirements for local scale in-
variance, and hence the weight-scale function of S
does too. Therefore, S is locally weight-scale
invariant. □

ppendix D. Estimated flood densities

The annual maximum water levels were modelled
ith a stationary GEV distribution and the estimated
arameters shown in Table 3. Stations Michigan Huron
station 2) and Lake Superior (station 4) were used for

imulations, since those stations suggested stationarity



H.K. Olafsdottir, H. Rootzén and D. Bolin International Journal of Forecasting xxx (xxxx) xxx
Fig. D.10. Density of estimated GEV distributions for flood stations as described in Table 3, after shifting the x-axis by the estimated mode of each
station.
and since the scale parameter of Lake Michigan Huron
was almost twice the scale parameter of Lake Superior.
All stations had negative shape parameter. In Fig. D.10 the
estimated density function is compared at all five stations,
where the x-axis has been shifted by each respective
mode for readability.
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