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Abstract

Background: We developed a fully automated artificial intelligence (AI)AI‐based‐

based method for detecting suspected lymph node metastases in prostate‐specific

membrane antigen (PSMA)(PSMA) positron emission tomography‐computed tomog-

raphy (PET‐CT)(PET‐CT) images of prostate cancer patients by using data

augmentation that adds synthetic lymph node metastases to the images to expand

the training set.

Methods: Synthetic data were derived from original training images to which new

synthetic lymph node metastases were added. Thus, the original training set from a

previous study (n = 420) was expanded by one synthetic image for every original

image (n = 840), which was used to train an AI model. The performance of the AI

model was compared to that of nuclear medicine physicians and a previously

developed AI model. The human readers were alternately used as a reference and

compared to either another reading or AI model.

Results: The new AI model had an average sensitivity of 84% for detecting lymph

node metastases compared with 78% for human readings. Our previously developed

AI method without synthetic data had an average sensitivity of 79%. The number of

false positive lesions were slightly higher for the new AI model (average 3.3

instances per patient) compared to human readings and the previous AI model

(average 2.8 instances per patient), while the number of false negative lesions was

lower.

Conclusions: Creating synthetic lymph node metastases, as a form of data

augmentation, on [18F]PSMA‐1007F]PSMA‐1007 PETPET‐CT‐CT images improved

the sensitivity of an AI model for detecting suspected lymph node metastases.

However, the number of false positive lesions increased somewhat.
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1 | INTRODUCTION

Prostate‐specific membrane antigen‐ligand (PSMA) positron emis-

sion tomography with computed tomography (PET‐CT) is an

emerging and important method for the correct staging of patients

with high‐risk prostate cancer, identifying sites of recurrence and

determining eligibility for [177Lu]Lu‐PSMA treatment. Different

diagnostic PSMA radiopharmaceuticals are available, such as

[68Ga]Ga‐PSMA‐11 and [18F]PSMA‐1007 (Anttinen et al., 2021;

Derwael et al., 2020; Herlemann et al., 2016; Hofman et al., 2020;

Hope et al., 2019; Maurer et al., 2016; Perera et al., 2020; Petersen

& Zacho, 2020; Seifert et al., 2021). The interpretation relies on

visual analysis, so it is subject to inter‐ and intra‐observer variability

(Fanti et al., 2017). Artificial intelligence (AI) can help with the

standardization of image interpretation, act as a second opinion to

nuclear medicine physicians, possibly quantify the PSMA‐positive

tumour burden before [177Lu]Lu‐PSMA treatment, and evaluate the

treatment response in consecutive PSMA PET‐CT scans (Lindgren

Belal et al., 2024).

We have previously developed a fully automated AI‐based

method for the detection and quantification of suspected

prostate tumours and their recurrence, lymph node metastases,

and bone metastases in [18F]PSMA‐1007 PET‐CT scans (Tragardh

et al., 2022). Since the training of the AI model relies on manual

segmentations of tumour and metastases, increasing the size of

the training set is time‐consuming. However, a large and varied

training set is important for creating good AI. We hypothesized

that creating synthetic lymph node metastases as a form of data

augmentation, could help with increasing the training data for the

AI method without the need for laborious manual segmentations,

thus providing the potential to increase the performance of the AI

model.

Data augmentation is a common technique used to reduce

overfitting; the idea is to slightly modify the input data in a

realistic way to improve the generalization of the model. For

medical images commonly used augmentation methods are

random rotations, scaling, deformations and intensity shifts. To

the best of our knowledge, no one has used synthetic data to

train AI models for PSMA PET‐CT images before. Bergen et al. has

previously used generative adversarial networks (GANs) to

synthesize head‐and‐neck [18F]fluorodeoxyglucose PET images

(Bergen et al., 2022). They were able to train a network to

segment tumours and metastases with only synthesized data but

achieved slightly worse results than a network trained on

real data.

The aim of this study was to develop a fully automated AI‐

based method for detecting suspected lymph node metastases in

[18F]PSMA‐1007 PET‐CT in patients with prostate cancer by

adding synthetic lymph node metastases to the images to expand

the training set. The performance of this method was then

compared to that of nuclear medicine physicians and a previously

developed AI method (Tragardh et al., 2022) that did not include

synthetic data.

2 | METHODS

2.1 | Patients and imaging

The patients and imaging were the same as those in a previous study

(Tragardh et al., 2022). In short, the study included 660 patients who

were referred for [18F]PSMA‐1007 PET‐CT at Skåne University Hospital,

during 2019−2020. The patients were administered 4MBq/kg of [18F]

PSMA‐1007, and images were obtained on a Discovery MI PET‐CT

system (GE Healthcare) after a 2 h accumulation time. The images were

obtained using time‐of‐flight, point spread function modelling and a

256×256 matrix (with a pixel size of 2.7 × 2.7mm2 and slice thickness

of 2.8mm).

Images were reconstructed using Q.Clear (GE Healthcare) and a

beta factor of 800 (Tragardh, Minarik, et al., 2020). Diagnostic CT

with oral and intravenous contrast was performed and used for

attenuation correction and anatomic correlation. Images for attenua-

tion correction were acquired in the late venous phase. An adaptive

statistical iterative reconstruction algorithm was used. The study was

approved by the Regional Ethical Review Board (#2016/417, #2018/

117 and #2018/753) and the Swedish Ethical Review Authority

(#2021‐05734‐02). The patients provided written informed consent,

and the study followed the principles of the Declaration of Helsinki.

2.2 | Manual segmentations for training

One experienced nuclear medicine physician and radiologist segmented

suspected lymph node metastases in the PET‐CT images, as described

previously (Tragardh et al., 2022). From the full set, 120 studies were

used as a test set. Additional data set statistics are shown in Table 1.

2.3 | Synthetic data creation

The synthetic data used in this paper were derived from original

training images to which new, synthetic, lymph node metastases

TABLE 1 Data set statistics divided into training (without synthetic
data), training synthetic, validation and test splits (with the three different
manual segmentations for the test set).

Data set n n empty mean n positives

Training 420 294 1.79

Training synthetic 840 308 2.88

Validation 120 83 1.175

Test reading 1 120 78 2.05

Test reading 2 120 70 2.52

Test reading 3 120 70 2.29

Note: Number of patients (n), number of patients without lymph node
metastasis (n empty) and mean number of lymph node metastasis per

patient (mean n positives) are shown.
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were added. Two important aspects were considered when adding

synthetic lymph node metastases to training images. Firstly, the

synthetic lymph node metastases should be positioned realistically.

Secondly, the CT and SUV image values should be realistic for the

added metastases. To achieve this, an atlas of lymph node metastases

was built using the images in the training set and a manually

annotated lymph node positioning mask. The atlas was used to add

new, synthetic, lymph node metastasis to existing CT and SUV

images. In short, the CT and SUV image values for lymph node

metastasis available in the training set were copied to new synthetic

training images.

2.4 | Lymph node metastasis atlas

The lymph node metastasis atlas consisted of the following:

1. A lymph‐node position mask for a reference CT image.

2. Transformations from the reference CT image to all CT images in

the training set.

3. Lymph‐node metastasis templates.

Each part of the atlas is described in detail below.

2.5 | Lymph node position mask

To enable realistic positioning of the synthetic lymph nodes, areas

where lymph nodes naturally appear were manually annotated in a

lymph‐node position mask. The annotations were manually done in a

reference CT image by an experienced radiologist, as shown in

Figure 1. This was the only manual labour needed to create the

synthetic data set.

2.6 | Spatial transformations

Spatial transformations were calculated between all training images

and the reference CT image. Thus, the lymph‐node position mask

could be transformed from the reference CT to any training image.

The spatial transformations were specifically designed with lymph‐

node positioning in mind. The idea was that the relative position

between a lymph node and the surrounding organs should be

accurate for the position to appear realistic. To calculate the

transformation between a training image and the reference, organs

were segmented in both images using only the CT image and the

method described in a previous study (Tragardh, Borrelli, et al., 2020).

A subset of all segmented organs was then used to align the training

image to the CT image by calculating a set of affine transforms using

Elastix (Klein et al., 2010). The organs used were the aorta, left lung,

right lung, heart, sternum, left hip bone, right hip bone, left femur,

right femur and all vertebrae. These organs were chosen as they were

located close to the lymph nodes where metastases generally appear

and because they can be reliably segmented with high accuracy.

For each organ, an affine transformation that aligns the two images

locally was calculated. The surface pixels for all organs in the two images

were then matched by first transforming the pixel position of the surface

pixels in the reference image using the calculated affine transformation,

followed by finding the closest surface pixel in the training image. In

addition to the matched points, the local affine transformation without

the translation was stored to account for scaling and rotation differences

between the two images. The transformations from the four closest

organs were used to transfer points between reference and training

images. This is described in more detail in a later section.

2.7 | Lymph node metastasis templates

The lymph node templates were extracted from all images in the training

set. For each lymph node metastasis in the training set, CT and SUV

images as well as annotation patches, were stored as a template. The size

of the patch depended on the size of the metastasis annotation and was

extended by 15mm in all directions from the annotation edges. Some

lymph node metastases in the training set were excluded since they

would be hard to transfer to a new training image in a realistic way. The

exclusion criteria used were a maximum metastasis volume of 15mL and

a limitation of only one metastasis that could be present in a patch.

2.8 | Adding synthetic metastases to an image

A synthetic image was created by adding synthetic lymph node

metastases to one of the existing training images. Firstly, the number of

synthetic metastases that should be added was chosen randomly

between 1 and 4. Then, for each synthetic metastasis, two steps were

taken: positioning and image augmentation. Note that for a few cases, no

valid positions for synthetic lymph nodes could be found, and hence no

synthetic data were added.
F IGURE 1 Visualization of the manually annotated lymph‐node
position mask.
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2.9 | Positioning

A centre position was randomly chosen from the reference lymph

node position mask. In addition to being placed within the position

masks, the centre point of the metastasis was placed at least 15mm

away from any organ or any other tumour or metastasis (synthetic or

real). The centre position was transferred to the training image using

the organ surface point correspondences and local affine transforma-

tions. For all alignment organs, the distance to the closest surface point

from the centre position was calculated. In addition, the estimated

corresponding position in the training image was calculated using:

( )p s A s s= + −i
T

i
T

i i
T

i
R

where the subscript i denotes the organ from which the position

estimation came, superscripts T and R denote training and reference

images, respectively, s denotes the surface positions, and A is the

local affine transformation. The translation part of the local affine

transformation has been set to identity. The final transformed centre

position in the training image was then calculated by:

p w p w p w p w p= + + +T T T T T
1 1 2 2 3 3 4 4

where the weights wi were calculated for all organs as the inverse of

the distance to the closest surface pixel for that organ. The weights

for the four closest organs were then normalized so that they sum to

one and used to calculate the transformed centre position.

2.10 | Image augmentation

Once the centre position in the training image of the synthetic metastasis

was calculated, a metastasis template was randomly chosen and copied

into the image at that position. Before being copied, the CT, SUV and

annotation were perturbed by applying a small random rotation and

scaling. To avoid introducing sharp edges in the CT and SUV images, the

template CT and SUV were added to the training image using a Gaussian

weighting map of 1 at the centre position and 0 at the edges. Hence, at

the centre position, the new image was identical to the template but

closer to the edges. The new image intensities were weighted averages of

the template and the original image. The lymph node annotation was

added with the same method, but the annotation was not weighted with

a Gaussian weighting map as the CT and SUV images were. Figure 2

shows an example of a training image where a synthetic lymph node

metastasis has been added.

2.11 | AI tool

The structure and training of the AI tool trained on the real and

synthetic images was the same in almost all aspects as what was

presented in a previous study (Tragardh et al., 2022). The model was

a 3D UNet (Cicek et al., 2016) that segmented the image into four

classes: prostate tumour or recurrence, lymph node metastases, bone

metastases or background. In addition to the CT and SUV images, a

previous organ mask (Tragardh, Borrelli, et al., 2020) was used as

input to the network. The training set of the AI tool consisted of the

original training set from another study (Tragardh et al., 2022) and

one synthetic image for every image in the original training set. The

training of the model followed the same procedure as in the other

study (Tragardh et al., 2022), but samplings masks for the synthetic

training images were not updated using the pixel losses. The sampling

mask updates are a good way to find background areas that are

difficult for the model to segment correctly. Since the synthetic

images were created from the original training images, the difficult

background areas were already present in the original images.

2.12 | Model evaluation and statistical analysis

The performance of the AI‐based method was assessed by the same

test set as in a previous study (Tragardh et al., 2022) and consisted of

F IGURE 2 Example image of a synthetic lymph node metastasis. Left: The original fused PET‐CT image. Centre: Fused PET‐CT image with a
synthetic lymph node metastasis added on the left side of the pelvis (arrow). Right: CT image with a synthetic lymph node metastasis added
(arrow). PET‐CT, positron emission tomography‐computed tomography.
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120 patients and three sets of annotations by expert readers. One of

the expert readers was the nuclear medicine physician who also

performed the segmentations for the model training (denoted as

Reading A). Six other nuclear medicine physicians segmented

suspected lymph node metastases in 40 cases each from the test

set of 120 patients. Thus, each PET‐CT in the test set was segmented

by two readers who were not involved in the model training (Reading

B and Reading C).

The model was evaluated on a lesion‐based level to determine

the AI model's ability to detect the lymph node metastases identified

by one of the three readings. To assess inter‐reader variability, the

readers were also compared. Readings A, B and C were alternately

used as references and compared to either another human reading or

to the AI model. True positive lesions for a human reading or the AI

model were defined as partial (at least one voxel), or full segmenta-

tion (all voxels) overlap with another reading used as the reference;

otherwise, they were considered false negative. Lesions detected by

a human reading or the AI model without segmentation overlap with

the reading used as the reference were regarded as a false positive.

The sensitivity was calculated as the proportion of suspected lymph

node metastases detected by a human reading or by the AI model out

of those detected by the reading used as a reference. The positive

predictive value (PPV) was calculated as the proportion of true

positive lesions for human readings or by the AI model compared to

the reference reading. Specificity and negative predictive value were

left out due to the problem of defining meaningful true‐negative

samples in this kind of study.

3 | RESULTS

The AI model had an average sensitivity of 84% for detecting

suspected lymph node metastases, whereas the average sensitivity

was 78% for human readings (when each reading was alternately

used as a reference). For comparison, our previously developed AI

method without synthetic data had an average sensitivity of 79%

(Tragardh et al., 2022), as shown in Figure 3. Table 2 shows the

number of true positive, false negative and false positive lymph node

metastases. The number of false negatives per patient was rather low

for both when the AI model and a human reading was compared to a

reference reading. For the AI method, the number of true positives

was higher, and the number of false negatives lower compared to

‘Reading versus Reading.’ A higher number of false positive lesions

were found when the AI model was compared to human readings

compared with ‘Reading versus Reading.’ When comparing the

numbers to our previously published AI method, the new AI method

found more true positive lymph node metastases (230 vs. 215) and a

lower number of false negative lesions (45 vs. 59) but a higher

number of false positive lesions (391 vs. 333).

Of all suspected lymph node metastases segmented by the AI

model on the test set, 29.7% were also marked by all three readings.

Two of the readings agreed with the AI model in 5.2% of the cases,

and one of the readings in 10.1% of the cases. Thus, in 55% of the

positive lesions marked by the AI model, none were marked by any of

the readings.

Figure 4 shows an example of segmented suspected lymph node

metastases for the different readings and AI models.

F IGURE 3 Sensitivity for lymph node
metastases of the AI model trained with synthetic
data, the previously developed AI method, and
readings when using Readings A, B and C as a
reference. AI, artificial intelligence.

TABLE 2 True and false positives (TP/FP), false negatives (FN),
sensitivity and positive predictive value (PPV) for the detection of
lymph node metastases. The numbers show the average and range
when one reader at a time was used as a reference.

n = 120
patients

AI synthetic
versus reading

AI reference
versus reading

Reading versus
reading

TP (n)

Total 229.7 (226–233) 215.3 (209–221) 208.7 (198–217)

Per patient 1.9 (1.9–1.9) 1.8 (1.7–1.8) 1.7 (1.7–1.8)

FP (n)

Total 391 (383–397) 333.3 (331–335) 65.7 (32–104)

Per patient 3.3 (3.2–3.3) 2.8 (2.8–2.8) 0.5 (0.3–0.9)

FN (n)

Total 44.7 (20–72) 59.0 (30–93) 65.7 (32–104)

Per patient 0.4 (0.2–0.6) 0.5 (0.3–0.8) 0.5 (0.3–0.9)

Sensitivity (%) 84.3 (76.2–91.9) 79.1 (69.2–87.8) 77.9 (65.6–87.0)

PPV (%) 37.0 (36.3–37.5) 39.2 (38.5–40.0) 78.3 (66.9–87.1)

Abbreviation: AI, artificial intelligence.
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4 | DISCUSSION

In this study, we investigated if data augmentation by adding synthetic

lymph node metastases to [18F]PSMA‐1007 PET‐CT images could

improve a fully automated AI method for the detection of suspected

lymph node metastases in patients with prostate cancer. By adding

synthetic lymph node metastases in our training data, the training set

could double in size. The sensitivity and number of true positive lesions

were higher compared to a previously published AI method that did not

use synthetic data (Tragardh et al., 2022) and compared to nuclear

medicine physicians. The number of false negative lesions was lower for

the new AI model. However, the false positive lesions increased.

Due to the difficulty of creating large annotated medical data

sets, especially for PET‐CT images, the approach of synthesizing

training data as a form of data augmentation is becoming increasingly

popular. However, to the best of our knowledge, no one has used

synthetic data in PSMA PET‐CT before. In this work, the approach of

doing the spatial transformations, focusing on preserving the relative

position to nearby organs as accurately as possible, is new, as far as

we know. Others have tried different approaches in the field of

synthesizing PET training data. For PET image synthesis,

Papadimitroulas et al. (2013) used Monte Carlo simulations to

generate PET images that capture the heterogeneous activity

distributions of tumours. Berthon et al. (2015) developed another

Monte Carlo‐based simulation method to generate PET images. The

generated images were not used for training machine learning models

but instead to evaluate existing PET segmentation methods.

The use of GANs has recently become a popular way to create

synthetic training data. Jin et al. (2018) simulated lung nodes in CT images

using a GAN. They used the synthetic data to train a lung node

segmentation network and improved the segmentation accuracy over the

baseline training without synthetic data. Tang et al. (2019) used a similar

approach to segment lymph nodes in CT images. For PET images, Bergen

et al. (2022) used a GAN to synthesize head‐and‐neck [18F]fluorodeox-

yglucose PET images. They trained a network to segment tumours and

metastasis with only synthesized data, which achieved slightly worse

results than a network trained on real data.

Comparing the AI methods trained with and without synthetic

data, the most notable differences were the higher sensitivity and the

slightly larger number of false positives for the one trained with

synthetic data. We speculate that this is due to the higher rate of

lymph node metastases than normal in the synthetic data. This skew

in the training set can transfer to the AI model trained on the data.

When keeping all other training parameters fixed, there will be a bias

for the model, which will segment more areas as lymph node

metastases than a model trained without this skew in the training

data set. This most likely explains the higher sensitivity and false

positive rate. This could possibly be solved by finding more PET‐CT

scans without lymph node metastases, thus increasing the number of

negative examples. It might also be possible to create synthetic

negative examples, although care must be taken to make the tissue

where a lymph node has been removed seem realistic. We did not try

this approach. Unfortunately, specificity on a lesion level cannot be

calculated since it is not possible to define meaningful true‐negative

lesions. The number of false positive lesions with the AI model

trained on synthetic data was on average 3.3 per patient. Although

somewhat higher than compared with the AI‐model without

synthetic data (average 2.8 per patient), this should be compared to

the CE‐marked and FDA‐cleared product aPROMISE, which demon-

strate a false positive rate of 19.5 per patient for regional lymph node

metastases and 90.8 per patient for all lymph node metastases

(Johnsson et al., 2022).

This study has some limitations. Only [18F]PSMA‐1007 PET‐CT

images with 2 h accumulation time from a single hospital were used,

which probably limits the generalizability of the AI to other patient

cohorts. Furthermore, the patients were admitted due to either

staging of high‐risk prostate cancer or recurrence, so the tumour

burden was often low. Thus, the AI might perform worse for patients

with a higher tumour burden, such as those with metastatic

castration‐resistant prostate cancer. Also, no histopathological

verification of suspected lymph node metastases exists. In a previous

study from our hospital, we assessed the diagnostic accuracy of [18F]

PSMA‐1007 PET‐CT for primary staging of pelvic lymph node

metastases before extended lymph node dissection (Ingvar

F IGURE 4 A patient example (maximum intensity projections) showing the different segmentations of suspected lymph node metastases in
red for the different readings, the AI with synthetic data and the reference AI. False positive (FP) and false negative lesions (FN) for the AI
methods are marked. AI, artificial intelligence.
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et al., 2022). We found a high specificity of 96% but a low sensitivity

(27% for the entire cohort, 54% when only lymph node metastases

>3mm were evaluated). In this study, the AI‐tool was trained on the

manual segmentations, and it is thus not expected that the AI model

performs better than the in‐data (human image interpretations).

5 | CONCLUSIONS

It was possible to create synthetic lymph node metastases, as a form

of data augmentation, on [18F]PSMA‐1007 PET‐CT images and thus

double the size of the training set for developing a fully automated AI

method. The new method had higher sensitivity than experienced

nuclear medicine physicians, as well as than a previously developed

AI method that did not use synthetic data. However, the PPV was

slightly lower due to a higher number of false positive lesions.
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