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ABSTRACT This paper deals with the phase noise affecting communication systems, where local
oscillators are employed to obtain reference signals for carrier and timing synchronizations. The most
common discrete-time phase noise channel model is analyzed, with the aim to fill the gap between
measurements and analytical models. In particular, the power loss and the intersymbol interference due
to the presence of phase noise is evaluated with reference to the measurements parameters and to the
system bandwidth. Moreover, the impact on the communication systems’ performance of the phase noise
originating from the oscillator non-idealities is considered, in case of free-running and phase-locked
oscillators. The proposed analysis allows to extrapolate useful information about the performance of
practical systems by investigating the power spectral density of the oscillator phase noise. An expression
for the variance of the residual phase error after tracking, which depends on the main parameters of
practical oscillators, is derived, and used to study the dependence of the performance on the symbol rate.

INDEX TERMS Phase noise, oscillator noise, phase-locked loop, Wiener process.

I. INTRODUCTION

THE PHASE noise (PN) remains one of the main
limiting factors for communication systems. PN due

to instabilities of local oscillators, both at the transmitter
and at the receiver, can in fact cause a severe performance
degradation. Ideally, a local oscillator would produce a
sinusoidal signal, whose power spectrum is a delta function at
the carrier frequency, but in reality its output power appears
also in a band around the desired frequency. Since the PN can
strongly limit the performance, the study of the PN effects
in communication systems has attracted a lot of interest in
the literature of the last decades, see, e.g., [1], [2], [3], [4],
[5], [6], [7], [8], [9].

In [10], a PN spectrum model which is very suitable
for theoretical calculations is studied. The considered power
spectral density (PSD) has the fundamental features typical
of the PSD of practical oscillators, i.e., a −20 dB/decade

slope, a flat part at low frequencies, representing the
attenuation of the PN stabilized by means of a phase-
locked loop (PLL), and another flat part at high frequencies.
Moreover, it has the Wiener model as a special case. It
is similar to other models in the literature [11], [12], [13],
but it improves them since it allows us to describe the PN
in terms of measurement parameters of practical oscillators
and facilitates closed-form expressions of distortions and
performance. Starting from the PN PSD, the PSD of the
phasor can be derived and expressed in terms of the
parameters of the PN PSD, that are related to the oscillator
measurements. In this paper, the analysis is extended to the
general case where the flat part of the PN PSD at high
frequencies is not negligible and without resorting to the
approximation of low PN as usually done in the literature.
Despite the large number of publications on the subject,

there are questions that are not concisely answered yet. An
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important point regards a largely used discrete-time channel
model, that ignores the power loss and the intersymbol
interference (ISI) affecting the received symbols due to the
PN. The PN process has in fact an infinite bandwidth,
and some approximation errors will occur when using a
discrete-time model. Further, samples at the output of the
matched filter are not a sufficient statistic for detection since
the receiver filter is not matched due to the presence of
PN. In [14], the effect of filtering on the phase noise is
considered by using a multi-sample receiver, in the case
of Wiener PN and in the absence of ISI, and in [15]
bounds on the signal-to-noise ratio (SNR) penalty are derived
for the same scenario. In [16], the ISI is considered and
the common discrete-time approximation of the filtered
and symbol-rate sampled continuous-time PN is evaluated
though simulations. However, to the authors’ knowledge,
the quantification of these neglected effects in terms of the
measurement parameters is missing in the literature.
Another relevant question is how can we relate the

performance of phase tracking algorithms to the oscillator
measurements? It is of particular interest the dependence
of the performance on the white oscillator noise floor. This
effect has been recently studied in the literature through an
experimental approach [17], [18], but a theoretical analysis
is still missing.
In this paper, we give an answer to these questions starting

from the aforementioned general analytical model [10],
which can describe the PSD of the PN of real oscillators.
The main contributions of the paper are the following.

• The approximation errors that the discrete-time rep-
resentation of the PN suffers from are bounded. For
example, to quantify the ISI due to the presence of
PN in the case of a free-running oscillator and single
carrier modulation, the signal-to-interference (SIR) ratio
is derived in closed form as a function of the ratio
between the phasor bandwidth and the communication
system bandwidth, or, equivalently, as a function of the
innovation variance σ 2

u of the discrete-time Wiener PN
process. Interestingly, we can find a limit on σu to have
a SIR higher than a given value, e.g., the SIR is higher
than 25 dB if σu < 0.1 rad, and this means that for many
realistic cases those approximation errors are limited.
A similar investigation was performed in [19], albeit in
this manuscript we give deeper insight and results.

• The study of the performance of phase estimators
employed at the receiver side is performed. The PSD of
the residual phase error after phase tracking is derived
and connected to the main measurement parameters
of oscillators, to the system bandwidth and to the
variance of the additive noise affecting the communi-
cation system. The proposed analysis shows that the
performance does not depend monotonically on the
symbol rate but there exists an optimal value beyond
which performance degrades. To the best of the authors’

knowledge, this is the first time that the optimal symbol
rate is found in closed form.

The rest of the paper is organized as follows. The adopted
statistical model of the PN is described in Section II, while
the statistical model of the phasor is given in Section III.
Section IV introduces the communication system model. The
baseband discrete-time PN channel is analyzed in Section V
and the theory about the performance of phase trackers is
derived in Section VI. Numerical results are collected in
Section VII.
Notation. Given a random process x(t), the PSD and

the autocorrelation function are denoted by Sx(·) and Rx(·),
respectively. The expectation with respect to the random
variable y is denoted by Ey{·}. Operators R{·} and I{·} are
the real and imaginary operators.

II. STATISTICAL MODEL OF THE PHASE NOISE
The PN spectrum of many practical oscillators that
can be found from measurements is characterized by a
−20 dB/decade slope [10] due to integration of white noise
inside the oscillator circuitry, and by two flat parts: one at low
frequencies, representing the attenuation of the PN stabilized
by means of a PLL, the other at high frequencies, modelling
the thermal noise at the oscillator output [5]. Therefore, the
PN PSD can be modeled as

Sθ (f ) = 1010�2
100

f 2
3dB + f 2

+ �2∞. (1)

where f3dB is the 3dB bandwidth, and �2
100 and �2∞ are the

spectrum levels for f = 100 kHz and for high frequencies,
respectively. The PSD in (1) is obtained by assuming that
f3dB � 100 kHz1 and �∞ � �100. The first term in (1) is
the PSD of a first-order autoregressive (AR) process [20],
while the flat part at high frequencies dominates when

f >

√
1010�2

100
�2∞

− f 2
3dB [10].

In this work, two limiting cases are considered: a free-
running oscillator and a PLL oscillator. In particular, the case
f3dB → 0 is studied, which corresponds to a free-running
oscillator. In this case, the PN process is a nonstationary
Wiener process with a variance that increases linearly with
time; on the other hand, the PN has stationary increments
and can be described through the variance of the phase
increments. The other case is that of high f3dB, i.e.,
f3dB � π1010�2

100, which can represent a PLL oscillator
with 3dB-bandwidth f3dB. This condition is easily met in
practical PLL oscillators. In fact, the value of the spectrum
at 100 kHz, �2

100, is most often between −120 and −80
dBc/Hz, therefore the quantity π1010�2

100 is in the range
[0.03, 300] Hz. Since the PLL bandwidth is typically in the
order of 1 kHz or 1-2 decades higher than this value, the
condition f3dB � π1010�2

100 is normally satisfied for PLL

1When the condition f3dB � 100 kHz does not hold, the PSD can simply
be expressed as a function of another spectrum level in the −20 dB/decade
region.
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TABLE 1. Parameters of typical oscillators.

oscillators. The range of values of parameters of typical
oscillators are reported in Table 1.2

The above PSD model can be easily extended to match
more involved PSDs by assuming that the PN is given by
the sum of independent processes, each described by (1).
For example, in the case of PN given by the independent
contribution of two processes, the extended model is

Sθ (f ) = S′
θ (f ) + S′′

θ (f ) (2)

where both S′
θ (f ) and S′′

θ (f ) are given by (1), with suitable
different parameters. This extension is used in Section VII
to model the PN that can be found in the 3GPP docu-
ments [21], [22].

III. POWER SPECTRAL DENSITY OF THE PHASOR
Since both PN and phasor PSDs are used by industries
and studied in the literature [14], [23], [24], the PSD of the
random process of the phasor φ(t) � ejθ(t) is here derived.
Through simulations, it can be observed that the PSD of the
phasor follows the one of the PN at high frequencies. In the
literature, see, for example, [23], this is motivated by using
the low-PN approximation, i.e.,

φ(t) � 1 + jθ(t) (3)

when θ(t) is small. However, this approximation is not
always met (quite often it is not met in practice, actually),
and more exact expressions are derived below.
The PSD of the random process of the phasor can be

derived starting from the general model of the PN in (1).
We first consider the case where the flat part of the PN PSD
at high frequency is negligible, i.e., �2∞ = 0. Let us define
the process hτ (t) of the phase increments as

hτ (t) = θ(t) − θ(t − τ). (4)

The process hτ (t) is a Gaussian random process [25] with
zero mean and variance

σ 2
hτ

= E{(θ(t) − θ(t − τ))2} (5)

= 2π1010�2
100

f3dB

(
1 − e−2π f3dB|τ |) (6)

where the following expression of the PN autocorrelation

Rθ (τ ) = π1010�2
100

f3dB
e−2π f3dB|τ | (7)

obtained by taking the inverse Fourier transform of (1) with
�∞ = 0, has been used. The variance (6) increases with

2Parameter f3dB is given for PLL oscillators.

|τ | up to a ceiling at
2π1010�2

100
f3dB

. The autocorrelation of the
phasor, denoted by Rφ(τ ), is

Rφ(τ ) = E{ejθ(t)e−jθ(t−τ)} (8)

= E{ejhτ (t)} (9)

= e−
σ2
hτ
2 (10)

where the fact that hτ (t) is a zero-mean Gaussian random
variable has been used. Replacing (6) in (10), the autocor-
relation of the phasor process is obtained as

Rφ(τ ) = e
− π1010�2

100
f3dB

(
1−e−2π f3dB|τ |)

. (11)

The PSD of the phasor process is obtained by taking the
Fourier transform of the autocorrelation function

Sφ(f ) = e
− π1010�2

100
f3dB δ(f )

+e−
π1010�2

100
f3dB

∫ ∞

−∞

(
e

π1010�2
100e

−2π f3dB|τ |
f3dB − 1

)
cos(2π f τ)dτ

where δ(f ) denotes the Dirac delta function.
Now the two limiting cases f3dB → 0 and

f3dB � π1010�2
100 are considered. In the first case, using

the approximation e−2π f3dB|t| � 1 − 2π f3dB|t|, which is valid
when f3dB → 0, the phasor PSD becomes

Sφ(f )f3dB→0 = F{e−2π21010�2
100|τ |}

= 1010�2
100

π21020�4
100 + f 2

. (12)

When f3dB � π1010�2
100, the autocorrelation of the phasor

can be approximated as

Rφ(τ ) � 1 − π1010�2
100

f3dB

(
1 − e−2π f3dB|τ |) (13)

and the PSD can be computed as

Sφ(f )highf3dB = F
{

1 − π1010�2
100

f3dB
+ π1010�2

100e
−2π f3dB|τ |

f3dB

}

=
(

1 − π1010�2
100

f3dB

)
δ(f ) + 1010�2

100

f 2
3dB + f 2

. (14)

Expressions (12) and (14) give the PSD in the case of a
free-running oscillator and in the case of a PLL oscillator,
respectively. The PSD for the free-running oscillator is a
Lorentzian spectrum, with the value at 100 kHz given by
�2

100 and 3-dB bandwidth equal to

f3dB,φ = π1010�2
100 (15)

and overlaps with (1) for f � π1010�2
100. In the case of the

PLL oscillator, the spectrum has a delta function at f = 0,
and then follows exactly the PN spectrum (1).

The case �2∞ 	= 0 is now considered. In the following
derivation, the bandwidth Bθ of the white PN is introduced as

VOLUME 5, 2024 2213
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a help parameter.3 Ideally, Bθ can be chosen arbitrarily large.
On the other hand, �2∞Bθ � 1 is assumed in order to bound
the error of the used approximations—see (18). In practical
oscillators, the value �2∞ is in the order of −120 dBc/Hz or
less, therefore, even for large Bθ , the above assumption can
be satisfied. The statistical quantities that refer to the case
of �2∞ 	= 0 are marked with a circumflex accent. When the
assumption �2∞ = 0 is removed, the autocorrelation of the
phasor is

R̂φ(τ ) = Rφ(τ )e−�2∞Bθ (1−sinc(τBθ )) (16)

where the autocorrelation of the phasor when �2∞ = 0, Rφ(τ ),
is given in (11). Using the first order Taylor expansion of
the exponential ex � 1 + x in (16), we get

e−�2∞Bθ 1−sinc(τBθ ) = 1 − �2∞Bθ (1 − sinc(τBθ )) + E(τ ), (17)

where E(τ ) is the approximation error, upper bounded by
the second term of the Taylor expansion [26], that is

E(τ ) ≤ �4∞B2
θ (1 − sinc(τBθ ))

2/2 ≤ �4∞B2
θ . (18)

As stated, this error is low for a large range of values of Bθ .
If, for example, we consider �2∞ = −120 dB, we have an
error smaller than 10−4 for Bθ < 1010. For this reason, we
neglect E(τ ) in the following. Using (17) in (16), we get

R̂φ(τ ) = Rφ(τ )(1 − �2∞Bθ + �2∞Bθ sinc(τBθ )) (19)

and the PSD of the phasor is obtained by taking the Fourier
transform of the above autocorrelation, i.e.,

Ŝφ(f ) = (1 − �2∞Bθ )Sφ(f ) + Sφ(f ) ⊗ �2∞	

(
f

Bθ

)
(20)

where symbol ⊗ denotes convolution and 	(f ) is the
rectangular function equal to one for −1/2 < f < 1/2 and
zero otherwise. In (20), the factor 1 − �2∞Bθ that multiplies
Sφ(f ) makes the power of the phasor unitary, while the
effect of the flat PN, dominating at high frequencies, is
represented by the second term, which, in the case of free-
running oscillator, is

Sφ(f ) ⊗ �2∞	

(
f

Bθ

)
= �2∞

π

[
tan−1

(
1

π1010�2
100

(
f + Bθ

2

))

− tan−1

(
1

π1010�2
100

(
f − Bθ

2

))]
.

(21)

This term is constant and equal to �2∞ for |f | � Bθ

and equal to zero for |f | � Bθ . The function in (21) is
shown in Figure 1 for Bθ = 109, �2∞ = −130 dBc/Hz and
�2

100 = −90 dBc/Hz.
Using the approximation �2∞Bθ � 1, and assuming that

Bθ is larger than the system bandwidth, the PSD of the

3This is necessary to avoid dealing with a white process with infinite
bandwidth and power, but the end results are independent of this help
parameter.

FIGURE 1. Flat part of the phasor power spectral density given in (21), for Bθ = 109,
�2

∞ = −130 dBc/Hz and �2
100 = −90 dBc/Hz.

phasor in the communication band can be written with good
approximation as

Ŝφ(f ) = Sφ(f ) + �2∞. (22)

IV. APPLICATION TO COMMUNICATIONS
A communication system is considered, where linearly
modulated symbols {xn} are transmitted through the channel.
At the receiver, after down-conversion, the received signal is

r(t) =
∑
n

xnp(t − nTs)e
jθT(t)ejθR(t) + v(t)ejθR(t) (23)

where Ts is the symbol time, p(t) is the shaping pulse with
unitary energy satisfying the Nyquist criterion, v(t) is the
complex additive white Gaussian noise (AWGN) with PSD
N0, and θT(t) and θR(t) are the PN processes that arise
from local oscillator instabilities at the transmitter and at the
receiver, respectively (see Section II). The model (23) can
be rewritten as

r(t) =
∑
n

xnp(t − nTs)e
jθ(t) + w(t) (24)

where w(t) is an AWGN with same statistics of v(t) and
θ(t) is the sum of transmitter and receiver PN processes.
The PSD of θ(t) is the sum of the PSDs of θT(t) and
θR(t), since the two PN processes are independent. In many
practical cases, receiver and transmitter oscillators have quite
different performance, and hence only the dominant PN
can be considered, i.e., the PN of the oscillator adopted in
consumer grade equipment. In other cases, they are similar
and θ(t) has the sum level of both PNs. Hence, the PSD
model described in Section II is applicable in both cases.

At the receiver side, a filter matched to the shaping pulse
p(t) is employed, followed by a sampler at symbol time. The
received samples represent an approximate sufficient statistic
and are given by

yk = r(t) ⊗ p∗(−t)|t=kTs . (25)

The considered system model is shown in Figure 2.
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FIGURE 2. Block diagram of the system model.

A commonly studied discrete-time channel model is

zk = xke
jθk + wk (26)

where θk is the PN sample obtained as θk = θ(kTs) and wk
is the sample obtained by filtering and sampling the AWGN
signal w(t), with variance σ 2

w = N0/Ts. The discrete-time
model for the PN with PSD (1) is

θk = θck + θ
f
k (27)

where θck and θ
f
k are independent processes, the for-

mer inducing the −20 dB/decade slope in the PN PSD,
which dominates close-to-carrier, the latter inducing the
flat part of the PSD, that dominates at high frequencies.
Random variables {θ fk } are independent and identically dis-
tributed (i.i.d.) zero-mean Gaussian variables with variance
σ 2
f = �2∞/Ts, while θck is a discrete-time AR random

process

θck = aθck−1 + uk (28)

where uk are i.i.d. zero-mean Gaussian variables with
variance σ 2

u , and parameters a and σ 2
u are

a = e−2π f3dBTs , σ 2
u = π1010�2

100

f3dB
(1 − e−4π f3dBTs). (29)

The aliasing affecting the PSD of the process θck in the band
[−1/2Ts, 1/2Ts] has power

σ 2
alias = π1010�2

100

f3dB

(
1 − 2

π
tan−1

(
1

2Tsf3dB

))
. (30)

The case of a free-running oscillator implies that f3dB → 0.
In this case, the parameter a is equal to 1 and the model (28)
reduces to the Wiener (random-walk) model. The Wiener
process is nonstationary, but the process of the phase
increment uk is stationary and the PN can be described
through the variance σ 2

u . We can compute the variance of the
phase increments in (29) by taking the limit for f3dB → 0
and we obtain

σ 2
u = 4π21010�2

100Ts (31)

= 4πρ (32)

where ρ � f3dB,φ Ts represents the ratio between
the phasor 3-dB bandwidth and the signal bandwidth
and will be called relative bandwidth parameter in the
following.
Model (26) neglects the ISI and the power loss due to

the presence of PN. In fact, the PN causes an enlargement
of the signal bandwidth, therefore the filter matched to the
shaping pulse p(t) cuts some spectral components of the

signal, resulting in a power loss. Moreover, the received
samples are affected by ISI due to mismatched filters. These
effects are quantified in Section V.

V. ERROR ANALYSIS OF THE DISCRETE-TIME CHANNEL
Here, the accuracy of the communication model (26) is
evaluated. Thanks to the statistical model described in
Section III, the results of this analysis can be connected to
the main PN parameters of practical oscillators. The case of
a free-running oscillator with �2∞ = 0 is studied, for which
the PSD of the phasor is given by (12). The case �2∞ 	= 0
is considered at the end of the section.
The following mean square error (MSE) is computed and

related to the parameters of the PN

η = Ex,θ,w

{
|zk − yk|2

}
(33)

where the expectation is done with respect to the transmitted
symbols, the PN and the AWGN. In (33), zk is the received
sample of the simplified model (26) ignoring ISI and power
loss, while yk is the received sample of the more accurate
model (25). In order to describe the effect of the PN and
matched filtering on the received samples, we define the
following linear time-varying discrete filter

gn,m = p(t)ejθ(t+mTs) ⊗ p∗(−t)|t=nTs . (34)

In the absence of PN and for a Nyquist shaping pulse,
g0,m = 1 and gn,m = 0 for n 	= 0.
Lemma 1: Consider the system model described in (24),

where the phasor ejθ(t) has PSD given in (12). Let ejθk be the
sample ejθ(kTs). The MSE in (33) between zk defined in (26)
and yk defined in (25) is given by

η = ηD + ηISI (35)

where

ηD = Eθ

{
|ejθk − g0,k|2

}
(36)

ηISI =
∑
m	=0

Eθ

{
|gm,k−m|2

}
(37)

and the terms gn,m are given in (34).
Proof: By expanding (25), we obtain

yk =
∑
m

xk−mgm,k−m + wk (38)

= xkg0,k +
∑
m	=0

xk−mgm,k−m + wk (39)

where g0,k is connected to a power loss of the desired output
xk, and the summation represents ISI. Using (26) and (39)
in (33), we obtain

η = Ex,θ

⎧⎨
⎩|xkejθk − xkg0,k −

∑
m	=0

xk−mgm,k−m|2
⎫⎬
⎭.

Assuming that the transmitted symbols are zero mean, i.i.d.,
and with unitary energy, η becomes the sum of two errors,
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one due to the approximation of g0,k with the phasor ejθk ,
the other due to the ISI, that is

η = Eθ

{
|ejθk − g0,k|2

}
+

∑
m	=0

Eθ

{
|gm,k−m|2

}
.

As expected, in the absence of PN and for a Nyquist shaping
pulse, g0,k = 1 and gm,k = 0 for m 	= 0.
For convenience, the following terms are defined

γm = Eθ {|gm,k−m|2} (40)

which, using the definition of gn,m in Lemma 1, can be
written as

γm =
∫ +∞

−∞

∫ +∞

−∞
p(t)p∗(t1)p∗(t − mTs)p(t1 − mTs)

·Rφ(t1 − t)dtdt1, (41)

where Rφ(τ ) is the autocorrelation of the phasor φ(t) =
ejθ(t). Equation (41) shows that the terms γm are independent
of k. When a detector that is not able to account for the ISI
is employed, the SIR can be expressed as a function of the
terms γm. Using the assumption of zero mean symbols and
considering that the symbols are independent, with unitary
energy, we have

SIR = γ0∑
m	=0 γm

. (42)

The following theorem gives the expression of the MSEs
in Lemma 1 as a function of the PN parameters and of the
system bandwidth. The theory is derived by assuming that
the filter p(t) is a root-raised cosine (RRC) shaping pulse
with roll-off factor zero, i.e., a normalized sinc function.
Other roll-off factors will be considered later in this paper.
Theorem 1: Consider the system model described in (24),

where p(t) is the normalized sinc function with unitary
energy, and the phasor ejθ(t) has PSD given in (12), with
bandwidth f3dB,φ (15). The MSEs η, defined in (33), ηD and
ηISI, defined in Lemma 1, are given by

η = 1 + 2

π

[
ρ

2
log

(
1 + 1

ρ2

)
− tan−1

(
1

ρ

)]
(43)

ηD = 1 + 2

π

[
ρ − (1 + ρ2)tan−1

(
1

ρ

)]
, (44)

ηISI = 2

π

[
ρ2tan−1

(
1

ρ

)
+ ρ

2
log

(
1 + 1

ρ2

)
− ρ

]
(45)

where ρ = f3dB,φ Ts.
Proof: The MSE between the phasor ejθk and g0,k is given

in (36). Expanding (36), we obtain

ηD = 1 + γ0 − 2

(
Eθ

{
e−jθkg0,k

})
, (46)

where γ0 is given in (41) with m = 0. First the computation
of γ0 is considered. The expression of the pulse p(t),

p(t) = 1√
Ts

sinc

(
t

Ts

)
(47)

is substituted in (41) with m = 0,

γ0 = 1

Ts2

∫ +∞

−∞

∫ +∞

−∞
sinc2

(
t

Ts

)
sinc2

(
t1
Ts

)
Rφ(t1 − t)dtdt1,

(48)

then Rφ(t1 − t) is replaced with

Rφ(t1 − t) = F−1{Sφ(f ) e−j2π tf } =
∫ +∞

−∞
Sφ(f ) ej2π t1f e−j2π tf df

and the integrals in (48) are rearranged in the following way

γ0 = 1

Ts2

∫ +∞

−∞

(∫ +∞

−∞
sinc2

(
t

Ts

)
e−j2π tf dt

)
(∫ +∞

−∞
sinc2

(
t1
Ts

)
ej2π t1f dt1

)
Sφ(f ) df . (49)

The two internal integrals in t and t1 equal the Fourier
transform of sinc2, that is∫ +∞

−∞
sinc2

(
t

Ts

)
e−j2π tf dt = Ts
(fTs), (50)

where 
(x) is the triangular function, i.e., 
(x) = 1−|x|, for
−1 < x < 1 and zero otherwise. Replacing the expression
of Sφ(f ) given in (12) in (49), the following expression is
obtained

γ0 = 2

π

[
tan−1

(
1

ρ

)[
1 − ρ2

]
− ρlog

(
1 + 1

ρ2

)
+ ρ

]
(51)

where ρ = π1010�2
100Ts = f3dB,φ Ts. The last term in (46)

can be computed as

Eθ

{
e−jθkg0,k

}
= 1

Ts

∫ +∞

−∞
sinc2

(
t

Ts

)
Rφ(t)dt

= 2

π

[
tan−1

(
1

ρ

)
− ρ

2
log

(
1 + 1

ρ2

)]
. (52)

Using (51) and (52) in (46), equation (44) is obtained,
concluding the proof for ηD.
Now the computation of ηISI is considered. Using the

definition of γm in (40), we can write

ηISI =
∑
m	=0

γm. (53)

In the following, the above summation is computed over all
m, then γ0 in (51) is subtracted to the sum to obtain ηISI.
Signal r′(t) is defined as the received signal without AWGN,
i.e.,

r′(t) =
∑
n

xnp(t − nTs)e
jθ(t). (54)

Similarly, y′(t) and y′k are the signal after matched filtering
and the samples after sampling, respectively, without AWGN.
The process r′(t) is cycle-stationary, and can be made wide-
sense stationary with the classical approach of introducing a
random delay, uniformly distributed in [−Ts,Ts]. The power
of the process y′(t) can be computed by integrating its PSD,
that is

Py′ =
∫ +∞

−∞
Sr′(f ) |P(f )|2df (55)
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= Ts
π

∫ + 1
2Ts

− 1
2Ts

tan−1

(
f + 1/2Ts
π1010�2

100

)
− tan−1

(
f − 1/2Ts
π1010�2

100

)
df

(56)

= 2

π

[
tan−1

(
1

ρ

)
− ρ

2
log

(
1 + 1

ρ2

)]
. (57)

In (55), P(f ) is the Fourier transform of p(t). In (56), the
fact that the PSD of the received signal is given by the
convolution of the PSD of the information carrying signal
and that of the phasor ejθ(t) has been used. Since the process
y′(t) is bandlimited with bandwidth 1/Ts, the following
relationship holds

Py′ = Ex,θ
{
|y′k|2

}
=

∑
m

γm. (58)

By using (57) and (58), we obtain

∑
m

γm = 2

π

[
tan−1

(
1

ρ

)
− ρ

2
log

(
1 + 1

ρ2

)]
(59)

and from (53) and (51) we get (45). Finally, equation (36)
is obtained by using Lemma 1.

The expressions above show that the error made when
using the channel model (26) depends only on the relative
bandwidth parameter. The SIR can be expressed as a function
of ρ: starting from (42), the expression of γ0 in (51) is used
in the numerator, while the denominator is ηISI, i.e.,

SIR =
tan−1

(
1
ρ

)[
1 − ρ2

] − ρlog
(

1 + 1
ρ2

)
+ ρ

ρ2tan−1
(

1
ρ

)
+ ρ

2 log
(

1 + 1
ρ2

)
− ρ

. (60)

The SIR can be also expressed as a function of the phase
increment standard deviation by using equation (32) which
connects ρ with σu, i.e.,

SIR =
tan−1

(
4π

σ 2
u

)[
1 − σ 4

u
16π2

]
− σ 2

u
4π

log
(

1 + 16π2

σ 4
u

)
+ σ 2

u
4π

σ 4
u

16π2 tan−1
(

4π

σ 2
u

)
+ σ 2

u
8π

log
(

1 + 16π2

σ 4
u

)
− σ 2

u
4π

.

(61)

From the above equation, a limit on σu can be computed to
have a SIR higher than a given value. For example, a SIR
higher than 25 dB requires σu < 0.1 rad. The extension to
the case where �∞ is not negligible is performed by using
equation (22) and we obtain

SIR = γ0 + 2
3

�2∞
Ts∑

m	=0 γm + 1
3

�2∞
Ts

. (62)

A. IMPACT ON FREQUENCY SELECTIVE CHANNELS
In modern wideband wireless communication standards,
OFDM is adopted to cope with frequency selectivity gener-
ated by multipath fading. The selection of an OFDM symbol
time much lower than the channel coherence time ensures
that the use of complex equalization schemes can be avoided.
In fact, under this condition, the subcarriers’ orthogonality
is preserved and a simple single-tap equalizer on each

subcarrier is sufficient. When PN comes into play, the picture
changes dramatically since it can hardly be considered
constant over the OFDM symbol duration. Orthogonality is
thus destroyed and ICI appears [1], [2], [3], [23], [27], [28].
The discrete-time model (28) for the PN can be used to

compute the signal-to-noise-plus-interference ratio (SINR) in
OFDM systems, with the aim of evaluating the impact of PN
on ICI. An N-subcarrier OFDM system with symbol period
T is considered. The multipath fading channel is assumed to
have a delay spread uniformly and independently distributed
within the cyclic prefix and channel gains in the frequency
domain with unitary energy, as given in [3], [29]. The PN on
the kth sample of the generic OFDM symbol is given by the
model (28), with Ts = T/N. Under the above assumptions,
the SINR can be computed in closed form. By following
similar steps to [3], where the SINR is given in the case of
Wiener PN, the following expression is obtained

SINR = I(0)∑N−1
p=1 I(p) + N2

ω

(63)

where ω is the SNR per subcarrier and

I(p) =
N−1∑
n=0

N−1∑
l=n+1

2

{
e(j2πp(n−l)/N−ι(n,l)σ 2

u /2
}

+ N (64)

ι(n, l) = (an − al)2(a−2min(n,l) − a2) + 1 − a2|n−l|

1 − a2
. (65)

In (63), I(0) and
∑N−1

p=1 I(p) account for the common phase
error (CPE) and the ICI, respectively. For a → 1, or
equivalently f3dB → 0, the derived expression for the SINR
coincides with the one in [3] for the case of Wiener PN.

VI. OPTIMAL PHASE TRACKING THEORY
In this section, we show how to apply the optimal estimation
theory in the context of phase tracking. We consider the case
where the power loss and the ISI studied in the previous
section are negligible, i.e., yk � zk. This hypothesis is
removed in Section VII, where the PN is generated according
to the general model (25).

A. AUXILIARY CHANNEL MODELS
The estimator design is based on auxiliary channel models,
whose accuracy depends on the SNR. Interestingly, the two
models lead to the same expression of the residual PN error
after tracking.

1) LOW PN APPROXIMATION

Using the low PN approximation, ejθk � 1 + jθk, we get the
following relationship

I{yk/xk} � θk + I{wk/xk} (66)

We define d(1)
k = I{yk/xk} and n(1)

k = I{wk/xk} and obtain

d(1)
k � θk + n(1)

k (67)
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where n(1)
k has variance

var(n(1)
k ) = 1

|xk|2
σ 2
w

2
. (68)

2) HIGH SNR APPROXIMATION [6]

The modulus of the observable yk is

|yk| =
∣∣∣xkejθk + wk

∣∣∣ (69)

=
∣∣∣|xk|ej∠xkejθk + w′

ke
j∠xkejθk

∣∣∣ (70)

= ∣∣|xk| + w′
k

∣∣ (71)

where w′
k is statistically equivalent to wk. From the above

equation, it can be seen that the modulus of the observable
cannot be used for the phase estimation. On the other hand,
the phase of yk can be expressed as

∠yk = ∠
(
xke

jθk + wk
)

(72)

= ∠
(
|xk|ej∠xkejθk + w′

ke
j∠xkejθk

)
(73)

= ∠xk + θk + ∠
(|xk| + w′

k

)
(74)

= ∠xk + θk + tan−1 I{
w′
k

}
|xk| + R{

w′
k

} (75)

In the asymptotic case of high SNR, we have

tan−1 I{
w′
k

}
|xk| + R{

w′
k

} � I{
w′
k

}
|xk| . (76)

We define the following auxiliary variable

d(2)
k = (∠yk − ∠xk) mod 2π , (77)

where the operator (·) mod 2π represents a wrapping of the
phase in the interval [−π, π), and we obtain the second
auxiliary channel model

d(2)
k � θk + n(2)

k (78)

where n(2)
k = I{

w′
k

}
/|xk| has variance

var(n(2)
k ) = 1

|xk|2
σ 2
w

2
. (79)

It is important to note that the two above approximations d(1)
k

and d(2)
k lead to the same channel model, being the statistics

of the noise in (78) and that in (67) the same. Therefore, they
will lead to the same expression of the optimal estimation
filter.
In the following, the approximation error of the above

models is studied. The exact model can be written as

Dk = d(i)
k + e(i)k , (80)

for i = 1, 2, where we defined the errors as

e(1)
k = θk − I

{
ejθk

}

e(2)
k = tan−1 I{

w′
k

}
|xk| + R{

w′
k

} − I{
w′
k

}
|xk| ,

FIGURE 3. Normalized variance of the approximation error for the auxiliary channel
models on which the design of the phase estimator is based.

and compute

η
(i)
k = var(e(i)k )/var(n(i)

k ) (81)

The variance of the noise sequence in the above equation
is time-varying since it depends on |xk|, and for this reason
we average it over the transmitted symbols. In Figure 3,
we report the minimum for i = 1, 2 of the normalized
variance of the error, min{η(1)

k , η
(2)
k } as a function of the SNR

and �2
100.In the case of the high SNR approximation, the

variance is independent of the PN parameters, while for the
low PN approximation the PN sequence has been generated
according to the following parameters: Rs = 1 MHz, f3dB =
10 kHz and �2∞ = −120 dBc/Hz. From the figure, it can be
seen that for all points the approximation error is very small,
except for a region, the light yellow one, where neither of the
two approximations works, being the PN particularly strong
and the SNR low. It is worth noticing that a normalized error
of 10−2 is already very low and corresponds to a system
dominated by AWGN.
In the rest of the paper, we will denote by dk and

nk the samples that we use for the phase estimation
and the noise, respectively, leaving out the apex for
simplicity.

B. RESIDUAL ERROR AFTER PHASE TRACKING
In this section, the optimal phase tracker is defined, based
on the model above. Due to its nature, the noise θ

f
k in (27)

cannot be tracked and hence it will be treated as additional
AWGN for the derivation of the phase tracker and its variance
added to the variance of the residual error. The optimal filter
is derived in the hypothesis that the transmitted symbols are
known (data-aided estimator). To make the analysis feasible,
the focus is on a time-invariant estimator, by which the
estimate of the PN samples, θ̂k, can be obtained as the output
of a linear time-invariant noncausal filter, i.e., the noncausal
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Wiener filter, with input dk and impulse response qi [30],
that is

θ̂k =
∞∑

i=−∞
qidk−i. (82)

The above assumptions may seem strong, but we will show
in Section VII that the derived closed-form expressions can
predict the behavior of practical PN estimators.
We now consider the noise affecting the observations dk. In

each time instant, the variance of nk depends on the modulus
of the transmitted symbol, |xk|, therefore the sequence is
non-stationary, and the optimal MMSE estimator for this
case is a time-varying filter. In order to find the optimal
time-invariant filter, we assume that the noise affecting the
observations is n′

k with variance

σ 2
n′ = �2∞

Ts
+ β

σ 2
w

2
(83)

and PSD

Sn′(f ) = �2∞ + βσ 2
wTs
2

(84)

where we included the contribution of the noise θ
f
k . The

parameter β is greater than or equal to 1. Particularly, two
cases can be identified: one with β = 1, the other with

β = Ex

{
1

|xk|2
}
. (85)

The case β = 1 is representative of the phase estimator that
is able to exploit the knowledge of the transmitted symbols
for determining the variance of the additive noise nk, such as
the Kalman smoother that will be considered in Section VII.
Finally, the system model that we use for the design of

the optimal filter for PN tracking is

dk = θck + n′
k. (86)

Assuming the model (86), the optimal time-invariant MMSE
filter, i.e., the noncausal Wiener filter, for the estimation of
the phase according to (82) has Z-transform [30]

Q(z) = Sθc(z)

Sθc(z) + Sn′(z)
(87)

where Sθc(z) and Sn′(z) are the Z-transforms of the autocor-
relation of the sequence θck and n′

k, respectively.
The PSD of the residual PN ek = θk− θ̂k in the bandwidth

[−1/2Ts, 1/2Ts] can be obtained by using the expression of
the PSD of the noise n′

k given in (84) and the expression of
the PSD of the PN θck , given in (1) with �2∞ = 0. We obtain

Se(f ) = 1010�2
100

2·1010�2
100

2�2∞+βσ 2
wTs

+ f 2
3dB + f 2

+ �2∞. (88)

FIGURE 4. Power spectral densities of the phase noise and of the residual phase
error after tracking in the system bandwidth.

From the above expression, we observe that the resid-
ual error PSD has the same shape of the PSD
of the PN that we wish to estimate, with a 3dB
bandwidth

f̃3dB =
√
f 2
3dB + 2 · 1010�2

100

βσ 2
wTs + 2�2∞

larger than the one of the PN PSD. Figure 4 shows
the two PSDs in the case where SNR = 10 dB, the
PN is characterized by �2

100 = −85 dBc/Hz, �2∞ =
−120 dBc/Hz, and f3dB = 1 kHz and the symbol rate is
Rs = 10 MHz.

The performance of a symbol-by-symbol detector, which
ignores the correlation among symbols due to the residual
PN, depends only on the first order statistics of the
PN after tracking. For this reason, in the following we
compute the variance of the residual PN error, which
can be used to predict the performance of the considered
system. Being the process zero-mean, the residual PN error
variance, distorting the communication, is obtained by inte-
grating the error spectrum in the communication bandwidth,
that is

σ 2
e =

∫ 1
2Ts

− 1
2Ts

Se(f )df

= 2 · 1010�2
100√

f 2
3dB + 2·1010�2

100
βσ 2

wTs+2�2∞

atan

(
1

2Ts

√
f 2
3dB + 2·1010�2

100
βσ 2

wTs+2�2∞

)
+ �2∞

Ts
.

(89)

The expression above connects the phase error after tracking
with the main PN parameters and with the system bandwidth.
In the following, we derive simplified forms in the limiting
case of free-running oscillator, i.e., f3dB → 0, and study the
impact of �∞ on the performance.
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C. PERFORMANCE IN THE CASE OF FREE-RUNNING
OSCILLATORS
In the case of free-running oscillators, i.e., f3dB → 0, the
residual error variance is

σ 2
e =

√
2 · 1010�2

100(βσ 2
wTs + 2�2∞)

· atan
(

1

2Ts

√
2 · 1010�2

100

βσ 2
wTs + 2�2∞

)
+ �2∞

Ts
. (90)

By approximating the arctangent with π/2 and using the
fact that βσ 2

wTs � 2�2∞, the above expression becomes the
following

σ 2
e � π105�100σw

√
βTs

2
+ �2∞

Ts
, (91)

which can be also expressed in terms of the phase noise
innovation variance given in (31), that is

σ 2
e � σuσw

√
β

8
+ �2∞

Ts
. (92)

The above simplified expressions are useful for under-
standing how the residual PN scales with the system
parameters. Regarding, for example, the symbol rate Rs =
1/Ts, if we consider that �∞ is usually very low, this
result is in line with the observation that in most cases the
performance improves if we increase the symbol rate, since
the PN varies more slowly from one symbol to the other
and hence it is easier to be tracked. On the other hand, there
are cases where we observe the opposite behaviour, and this
happens when the flat part of the PSD at high frequencies
is not negligible. This means that the performance does not
depend monotonically on the symbol rate. Particularly, the
performance improves by increasing the symbol rate up to
a point where the effect of the white phase noise entering
the signal bandwidth dominates the performance.
Expression (91) can explain this phenomenon. The error

variance in (91) is a concave function in Rs > 0 and hence
its minimum can be computed by setting to zero the partial
derivative with respect to Rs. In this way it is possible to
find that the minimum of error variance is achieved in the
symbol rate R∗

s

R∗
s =

(
π21010�2

100βσ 2
w

8�4∞

)1/3

. (93)

In Section VII, we will see that this result, although derived
under the hypothesis of free-running oscillators, is useful
also in the generic case of PLL oscillators.

VII. RESULTS
In this section, numerical results obtained through com-
puter simulations are shown to validate our theoretical
analyses.

TABLE 2. Parameters for the 3GPP PN model given in (94).

FIGURE 5. SSB power spectral density of the phase noise for a millimeter-wave
frequency band, with carrier frequency of 45 GHz. The proposed model is obtained
according to (5).

A. PHASE NOISE PSD MODEL FOR 3GPP PHASE NOISE
The proposed model is first compared with the multi-
pole/zero model, by considering the PN typical of millimeter
wave frequency band of next-generation cellular systems.
The PN that can be found in the 3GPP documents [21], [22],
whose single sideband (SSB) PSD is given by the following
expression

S(f ) = PSD0

∏N
n=1 1 +

(
f
fz,n

)αz,n

∏M
m=1 1 +

(
f
fp,m

)αp,m
, (94)

is considered, where PDS0 is the value of S(f ) at f = 0.
When the carrier frequency is 45 GHz, the parameters of
the above PSD are given in Table 2, while the SSB PSD
is shown in Figure 5. The spectrum is typical of a PLL-
locked oscillator, where the PN at very low frequencies is
due to the reference oscillator (see [10] for the description
of PN of PLL systems). Figure 5 also shows the proposed
model in the extended version (2), i.e., obtained as the sum
of two independent processes, each one with PSD of the
form (1), whose parameters are given in Table 3,4 where the
frequencies (low and high) where each process dominates
are highlighted.
It is worth noticing that, starting from expression (94),

it is difficult to derive a closed-form time-domain model
for the PN, while the proposed approach leads to a very

4The parameters of the proposed model refer to the double sideband PSD
of the phase noise.
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TABLE 3. Proposed model: parameters for the two processes to follow the 3GPP PN
spectrum.

FIGURE 6. Achievable information rate for OFDM systems affected by PN generated
according to the proposed model and the 3GPP model.

simple model for the time domain PN, that is the sum
of two independent AR processes. This is at the expense
of an approximation of the PSD. On the other hand, the
deviation of the two models at low frequencies has no impact
since the corresponding PN components are very slow and
hence easy to track. In order to compare the performance
of coded systems affected by the PN generated according
to the two models (proposed and 3GPP), in Figure 6 we
report the achievable information rate (IR) in bit per channel
use for an OFDM system with 64-QAM and 16-QAM,
using 1024 subcarriers with spacing 480 kHz, and with 800
active subcarriers. The fading is a Rayleigh process with
realizations known at the receiver and constant over the
OFDM symbol. For each OFDM symbol, the estimation of
the CPE is based on the phases of the received samples
at the pilot positions. The results show that the IR of the
system using the proposed model for the PN is the same of
the system using the 3GPP model for the PN.

B. VALIDATION OF THE ERROR ANALYSIS
We evaluate the SIR after the matched filter and the down-
sampling operation of the continuous-time system in (24),
simulated by using an oversampling factor 5. We consider
the transmission of linearly modulated QPSK symbols with
a RRC shaping pulse with roll-off factor ranging from 0 to
0.5. The simulated SIRs are reported as a function of the
relative bandwidth parameter in Figure 7. In order to validate
the proposed analysis, we report the curve that corresponds
to the closed-form expression given in (42), that is obtained
under the assumption that the filter p(t) is the ideal sinc

FIGURE 7. SIR after the matched filter at the receiver as a function of the relative
bandwidth parameter ρ.

function (roll-off zero). The numerical results are in line
with the closed-form analysis, being the simulated curve
with roll-off zero almost overlapped with the theoretical one.
Regarding the curves with roll-off larger than zero, they have
the same behaviour and approach the closed form as the
roll-off decreases.
In Figure 8, the hypothesis of constant channel gain is

removed and we consider a Rayleigh fading channel with
normalized Doppler bandwidth fDTs ranging from 10−3 to
5 · 10−2. The roll-off factor of the shaping pulse is 0.1 and
the symbol time Ts is 10−5 s. The figure shows the SIR as
a function of the bandwidth of the phasor f3dB,φ , with the
aim to compare the joint effect of PN and fading. It is worth
noticing that, under the assumption of free-running oscillator
and �∞ = 0, the product ρ = f3dB,φTs fully describes the
PN in the proposed model. The results show that for slow
to medium fading, the SIR is mostly influenced by the
PN, being the curves for fDTs ≤ 10−2 overlapped almost
everywhere with the curve without fading. The curve for
fast fading shows that in this case the fading dominates the
performance.
The case of OFDM system is now considered. The effect

of the ICI induced by the PN on the performance is evaluated
by computing the achievable IR per channel use as a function
of the per-carrier SNR. In Figure 9, a system with N = 256,
Ts = 10−6 s and 16-QAM is assumed. To focus on the
ICI, the CPE is assumed to be perfectly compensated at
the receiver. The achievable IR is computed by computer
simulation for �2

100 = −90 dBc/Hz, �2∞ = 0 and for different
value of f3dB. These curves are compared with the ones
representing the IR of an AWGN channel, where the SNR
is computed through (63). The figure shows the match of
the two curves for each case. The slight deviation at high
SNR of the free-running oscillator curves is due to the
suboptimality of the detector for the simulated curves. In
fact, the employed detection algorithm is designed for an
AWGN channel, without considering the ICI, which is taken
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FIGURE 8. Signal-to-interference ratio after the matched filter at the receiver as a
function of the phasor bandwidth for fixed Ts and for Rayleigh fading.

FIGURE 9. Achievable information rate in OFDM. Curves labeled CF represent the IR
of an AWGN channel with SNR given by (63).

into account only through an increase of the noise variance,
i.e., by assuming that the ICI is Gaussian.

C. OPTIMAL PHASE TRACKING THEORY
The analysis about the optimal phase tracking theory is
validated by using computer simulations to compute the
residual PN error after tracking. We consider the trans-
mission of known 8-PSK symbols, i.e., pilot symbols,
which are corrupted by PN and AWGN. The PN sequence
has been generated according to the following parameters:
Rs = 500 MHz, f3dB = 10 kHz, �2∞ = {−120,−130} dBc/Hz
and �2

100 = {−80,−90} dBc/Hz. At the receiver, the phase
is estimated by exploiting the knowledge of the symbols.
In Figure 10, the variance of the phase error after track-
ing obtained though simulation is reported and compared
with the closed form (89), showing an excellent match
between theory and numerical results. The figure also
reveals the performance degradation due to the increase
of �2∞ and that this degradation is more prominent for

FIGURE 10. Variance of the phase error after tracking. Comparison between
numerical results and closed form expression (89).

lower �2
100. Furthermore, for fixed �2

100, the dependence on
the SNR is smaller when �2∞ is larger, since the corre-
sponding PN component cannot be tracked, even for very
high SNR.
In the following, we study the performance of prac-

tical communication systems, where pilot symbols are
inserted between fields of 50 information symbols. The
simulation results are compared with the closed-form
expression derived in Section VI. The PN sequence has
been generated according to the following parameters:
Rs = 10 MHz, f3dB = 10 kHz, �2∞ = −120 dBc/Hz and
�2

100 = {−80,−90} dBc/Hz. At the receiver, after down
conversion, the phase is estimated by using a practical PN
estimator, that is a Kalman smoother [31], [32]. The Kalman
estimator is employed in an iterative fashion: at the first
iteration, the estimator uses only the pilots symbols, while
in the successive ones it also uses the hard decisions on the
information symbols and, since it uses the knowledge of the
modulus of the symbols (exact/approximated in the case of
pilots/information symbols), we set β = 1 in (89).
First we analyze the performance of an uncoded scheme

with 8-PSK modulation. Figure 11 shows the variance of
the phase error as a function of the SNR. The curves of the
practical estimator follow the ones obtained in closed form
after a given SNR, that corresponds to the SNR where the
decisions fed back from the detector to the phase tracker are
more reliable and hence the Kalman estimator is effective.
We now consider coded schemes using low-density parity-

check (LDPC) code [33], with codeword size 64800 bits and
rate 1/2. The coded bits are mapped into 16-QAM or 8-PSK.
The Kalman smoother is run for 3 iterations and uses the
hard decisions, obtained by running the detection and LDPC
decoding algorithms. In Figures 12 and 13, we report the
variance of the phase error as a function of the SNR for
�2

100 = −80 and −90 dBc/Hz, respectively. Also in the coded
case, the curves of the practical estimator match the closed
form after a given SNR, that corresponds to the SNR where
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FIGURE 11. Variance of the phase error after tracking. Comparison between the
practical Kalman-based estimator and the proposed closed-form expression in the
uncoded transmission case.

FIGURE 12. Variance of the phase error after tracking. Comparison between the
practical Kalman-based estimator and the proposed closed-form expression for
�2

100 = −80.

the decisions fed back from the decoder to the phase tracker
are reliable. This confirms that the hypothesis of known
symbols, under which the closed form of the error variance
was obtained, is fulfilled with good approximation. It is
worth noticing that, for fixed PN parameters, the gap between
the SNR where the simulations correspond to the theory for
8-PSK and 16-QAM is around 2 dB. This corresponds to
the SNR gap in the Shannon capacity curve between 1.5
and 2 [bps/Hz], that are the mutual information of 8-PSK
and 16-QAM coupled with a binary code with rate 1/2,
respectively.
In Figure 14, we consider the variance of the resid-

ual error computed through the proposed closed-form
expression as a function of the symbol rate Rs for
SNR = 0 dB, �2∞ = {−130,−120,−110} dBc/Hz and
�2

100 = {−80,−90} dBc/Hz. The dashed line are for the
PLL-case, with f3dB = 10 kHz, while the continuous lines

FIGURE 13. Variance of the phase error after tracking. Comparison between the
practical Kalman-based estimator and the proposed closed-form expression for
�2

100 = −90.

FIGURE 14. Error variance as a function of the symbol rate for PLL (continuous
line) and free-running (dashed line) oscillators. The minimum of the variance obtained
through (93) is indicated by circles.

are for the free-running oscillator case. The figure shows
that the variance decreases up to a point where increasing
the symbol rate is not beneficial anymore. On the contrary,
the performance degrades due to the presence of the white
PN. We observe that this change of trend happens for lower
symbol rate when �2∞ is larger. In the figure we report
with a circle the argmin of the error variance computed
through (93), and show that this computation is accurate and
valid for both free-running and PLL oscillators.

VIII. CONCLUSION
In this paper, the phase noise typical of local oscillators in
communication systems has been considered. The discrete-
time phase noise channel has been studied by using analytical
models described by means of parameters linked to measure-
ments. The intersymbol interference and the power loss due
to the presence of phase noise, affecting the samples obtained
by matched filtering and sampling, have been bounded.

VOLUME 5, 2024 2223



PIEMONTESE et al.: DISCRETE-TIME MODELS AND PERFORMANCE OF PN CHANNELS

Then, we have studied the performance of phase tracking
algorithms. We have applied the optimal estimation theory
to find an expression for the residual error variance after
tracking as a function of the PN parameters, the AWGN
variance and the system bandwidth. Moreover, we derived in
closed form the expression for the optimal symbol rate that
minimizes the estimation error variance. Simulation results
based on a practical Kalman based estimator have validated
the proposed theory.
An important implication of our work is that the derived

closed-form expressions can be used in the design of receiver
algorithms and for performance prediction, starting from
the knowledge of some fundamental parameters that can be
found from measurements of practical oscillators.

REFERENCES
[1] L. Tomba, “On the effect of Wiener phase noise in OFDM

systems,” IEEE Trans. Commun., vol. 46, no. 5, pp. 580–583,
May 1998.

[2] A. G. Armada, “Understanding the effects of phase noise in orthogonal
frequency division multiplexing (OFDM),” IEEE Trans. Broadcast.,
vol. 47, no. 2, pp. 153–159, Jun. 2001.

[3] S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase
noise: Consequences and solutions,” IEEE Trans. Commun., vol. 52,
no. 11, pp. 1988–1996, Nov. 2004.

[4] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative
decoding in the presence of strong phase noise,” IEEE J. Select. Areas
Commun., vol. 23, no. 9, pp. 1748–1757, Sep. 2005.

[5] A. Demir, “Computing timing jitter from phase noise spectra for
oscillators and phase-locked loops with white and 1/f noise,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 9, pp. 1869–1884,
Sep. 2006.

[6] A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the
presence of phase noise,” IEEE Trans. Commun., vol. 59, no. 7,
pp. 1966–1974, Jul. 2011.

[7] G. Colavolpe, “Communications over phase noise channels: A
tutorial review,” Int. J. Satell. Commun. Netw., vol. 32, pp. 167–185,
May/Jun. 2014.

[8] M. R. Khanzadi, D. Kuylenstierna, A. Panahi, T. Eriksson, and
H. Zirath, “Calculation of the performance of communication systems
from measured oscillator phase noise,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 61, no. 5, pp. 1553–1565, May 2014.

[9] G. Colavolpe, E. Conti, A. Piemontese, and A. Vannucci, “The difficult
road of expectation propagation towards phase noise detection,” in
Proc. IEEE Int. Conf. Commun., 2023, pp. 4640–4645.

[10] A. Piemontese, G. Colavolpe, and T. Eriksson, “A new analytical
model of phase noise in communication systems,” in Proc. IEEE
Wireless Commun. Netw. Conf., 2022, pp. 926–931.

[11] J. Tubbax et al., “Compensation of IQ imbalance and phase noise
in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, no. 3,
pp. 872–877, May 2005.

[12] C. Muschallik, “Influence of RF oscillators on an OFDM signal,” IEEE
Trans. Consum. Electron., vol. 41, no. 3, pp. 592–603, Aug. 1995.

[13] P. Robertson and S. Kaiser, “Analysis of the effects of phase-noise
in orthogonal frequency division multiplex (OFDM) systems,” in
Proc. IEEE Int. Conf. Commun., 1995, pp. 1652–1657.

[14] H. Ghozlan and G. Kramer, “Models and information rates for Wiener
phase noise channels,” IEEE Trans. Inform. Theory, vol. 63, no. 4,
pp. 2376–2393, Apr. 2017.

[15] L. Barletta and G. Kramer, “Signal-to-noise ratio penalties for
continuous-time phase noise channels,” in Proc. Int. Conf. Cogn. Radio
Orient. Wireless Netw. Commun., 2014, pp. 232–235.

[16] S. Mandelli, M. Magarini, A. Spalvieri, and S. Pecorino, “On discrete-
time modeling of the filtered and symbol-rate sampled continuous-time
signal affected by Wiener phase noise,” Opt. Switch. Netw., vol. 18,
pp. 96–103, Nov. 2015.

[17] J. Chen et al., “Does LO noise floor limit performance in multi-gigabit
millimeter-wave communication?” IEEE Microw. Wireless Compon.
Lett., vol. 27, no. 8, pp. 769–771, Aug. 2017.

[18] J. Chen et al., “Influence of white LO noise on wideband com-
munication,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 7,
pp. 3349–3359, Jul. 2018.

[19] A. Piemontese, G. Colavolpe, and T. Eriksson, “A new discrete-time
model for channels impaired by phase noise,” in Proc. IEEE Glob.
Telecommun. Conf., 2021, pp. 1–6.

[20] A. Mehrotra, “Noise analysis of phase-locked loops,” in IEEE/ACM
Int. Conf. Comput. Aided Des. (ICCAD) IEEE/ACM Tech. Dig., 2000,
pp. 277–282.

[21] “Study on new radio access technology: Radio frequency (RF) and
co-existence aspects; Version 14.2.0,” 3GPP, Sophia Antipolis, France,
Rep. TR 38.803, 2017.

[22] “On mm-wave phase noise modelling,” 3GPP, Sophia Antipolis,
France, Rep. R4-1701165, 2017.

[23] L. Piazzo and P. Mandarini, “Analysis of phase noise effects in OFDM
modems,” IEEE Trans. Commun., vol. 50, no. 10, pp. 1696–1705,
Oct. 2002.

[24] J. R. Barry and E. A. Lee, “Performance of coherent optical
receivers,” Proc. IEEE, vol. 78, no. 8, pp. 1369–1394, Aug. 1990.

[25] G. J. Foschini and G. Vannucci, “Characterizing filtered lightwaves
corrupted by phase noise,” IEEE Trans. Inf. Theory, vol. 34, no. 6,
pp. 1437–1448, Nov. 1988.

[26] M. Kline, Calculus: An Intuitive and Physical Approach. Chelmsford,
MA, USA, Courier Corp., 1998.

[27] A. G. Armada and M. Calvo, “Phase noise and sub-carrier
spacing effects on the performance of an OFDM communication
system,” IEEE Commun. Lett., vol. 2, no. 1, pp. 11–13, Jan. 1998.

[28] D. Petrovic, W. Rave, and G. Fettweis, “Effects of phase noise
on OFDM systems with and without PLL: Characterization and
compensation,” IEEE Trans. Commun., vol. 55, no. 8, pp. 1607–1616,
Aug. 2007.

[29] O. Edfors, M. Sandell, J.-J. Van De Beek, S. K. Wilson, and
P. O. Borjesson, “OFDM channel estimation by singular value
decomposition,” IEEE Trans. Commun., vol. 46, no. 7, pp. 931–939,
Jul. 1998.

[30] J. Proakis, Digital Communication, 3rd ed., New York, NY, USA:
McGraw-Hill, 1996.

[31] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[32] L. Barletta, M. Magarini, and A. Spalvieri, “Bridging the gap between
Kalman filter and Wiener filter in carrier phase tracking,” IEEE
Photon. Technol. Lett., vol. 25, no. 11, pp. 1035–1038, Jun. 2013.

[33] “Digital Video Broadcasting (DVB); second generation framing
structure, channel coding and modulation systems for broadcasting,
interactive services, news gathering and other broadband satellite
applications, Part II: S2-extensions (DVB-S2X),” ETSI, Sophia
Antipolis, France, Rep. 302 307-2. Accessed: 2021. [Online].
Available: http://www.etsi.org

AMINA PIEMONTESE (Member, IEEE) received
the Dr.Ing. degree in telecommunications engi-
neering from the University of Parma, Italy, in
2006, and the Ph.D. degree in information technol-
ogy from the University of Parma and TELECOM
Bretagne, Brest, France, in 2011. From 2011
to 2015, she was a Postdoctoral Fellow with
the Department of Engineering and Architecture,
University of Parma, where she is currently an
Associate Professor. From May 2015 to May
2020, she was with the Department of Electrical

Engineering, Chalmers University of Technology, Gothenburg, Sweden. Her
research activity includes various topics in digital communications, with
particular emphasis on iterative joint detection and decoding algorithms,
multiuser communications theory, and information theory. She received
the Best Paper Award at the 5th Advanced Satellite Mobile Systems
Conference and 11th International Workshop on Signal Processing for
Space Communications 2010 and the IEEE Wireless Communications and
Networking Conference, and the Marie Curie Individual Fellowship of the
European Commission.

2224 VOLUME 5, 2024



GIULIO COLAVOLPE (Senior Member, IEEE)
received the Dr.Ing. degree (cum laude)
in telecommunications engineering from the
University of Pisa, Italy, in 1994, and the
Ph.D. degree in information technologies from
the University of Parma, Italy, in 1998. Since
1997, he has been with the University of
Parma, where he is currently a Professor of
Telecommunications with the Dipartimento di
Ingegneria e Architettura. In 2000, he was a
Visiting Scientist with Institut Eurécom, Valbonne,

France. In 2013, he was a Visiting Scientist with the European Space
Agency (ESTEC), Noordwijk, The Netherlands. His research interests
include the design of digital communication systems, adaptive signal
processing (with particular emphasis on iterative detection techniques
for channels with memory), channel coding, and information theory. His
research activity has led to more than 200 papers in refereed journals
and in leading international conferences, and 18 industrial patents. He
received the Best Paper Award at the 13th International Conference on
Software, Telecommunications and Computer Networks, Split, Croatia,
September 2005, the Best Paper Award for Optical Networks and Systems
at the IEEE International Conference on Communications, Beijing, China,
May 2008, and the Best Paper Award at the 5th Advanced Satellite
Mobile Systems Conference and 11th International Workshop on Signal
Processing for Space Communications, Cagliari, Italy, 2010. He served as
an Editor for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE TRANSACTIONS ON COMMUNICATIONS, and IEEE WIRELESS

COMMUNICATIONS LETTERS and an Executive Editor for Transactions on
Emerging Telecommunications Technologies.

THOMAS ERIKSSON received the Ph.D. degree in
information theory from the Chalmers University
of Technology, Gothenburg, Sweden, in 1996.
From 1990 to 1996, he was with the Chalmers
University of Technology. In 1997 and 1998, he
was with AT&T Labs-Research, Murray Hill, NJ,
USA. In 1998 and 1999, he was with Ericsson
Radio Systems AB, Kista, Sweden. Since 1999,
he has been with the Chalmers University of
Technology, where he is currently a Professor of
Communication Systems. Further, he was a Guest

Professor with Yonsei University, South Korea, from 2003 to 2004. He is
currently the Vice Head of the Department of Signals and Systems, Chalmers
University of Technology, where he is responsible for undergraduate and
master’s education. He has authored or coauthored more than 250 journal
and conference papers, and holds 14 patents. He is leading the research
on hardware-constrained communications with the Chalmers University
of Technology. He is currently leading several projects on, e.g., massive
MIMO communications with imperfect hardware; MIMO communication
taken to its limits: 100-Gb/s link demonstration; mm-Wave MIMO testbed
design; satellite communication with phase noise limitations; and efficient
and linear transceivers. His research interests include communication,
data compression, and modeling and compensation of nonideal hardware
components (e.g., amplifiers, oscillators, and modulators in communication
transmitters and receivers, including massive MIMO).

Open Access funding provided by ‘Università degli Studi di Parma’ within the CRUI CARE Agreement

VOLUME 5, 2024 2225



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


