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Abstract In urban settings, fluctuating traffic conditions
and closely spaced signalized intersections lead to frequent
emergency acceleration, deceleration, and idling in vehi-
cles. These maneuvers contribute to elevated energy use
and emissions. Advances in vehicle-to-vehicle and vehicle-
to-infrastructure  communication technologies allow
autonomous vehicles (AVs) to perceive signals over long
distances and coordinate with other vehicles, thereby miti-
gating environmentally harmful maneuvers. This paper
introduces a data-driven algorithm for rolling eco-speed
optimization in AVs aimed at enhancing vehicle operation.
The algorithm integrates a deep belief network with a back
propagation neural network to formulate a traffic state
perception mechanism for predicting feasible speed ranges.
Fuel consumption data from the Argonne National Labo-
ratory in the United States serves as the basis for establishing
the quantitative correlation between the fuel consumption
rate and speed. A spatiotemporal network is subsequently
developed to achieve eco-speed optimization for AVs
within the projected speed limits. The proposed algorithm
results in a 12.2% reduction in energy consumption relative
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to standard driving practices, without a significant extension
in travel time.
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1 Introduction

Countries worldwide are presently grappling with fuel
shortages. The transportation industry’s fuel consumption
constitutes a significant share of the overall fuel utiliza-
tion. In China, as of 2020, transportation accounted for
66% of total fuel consumption, with road transportation
equipment, including both cars and heavy trucks,
contributing 77% of the entire transportation equipment’s
fuel consumption (Jia et al., 2022). Reports indicate that
nonenvironmentally friendly vehicle maneuvers, such as
acceleration, deceleration, and idling, constitute 30%—40%
of the total vehicle operating consumption. In urban
settings, this proportion tends to be even higher (Kabir
etal., 2023; Zhang et al., 2023). These nonenvironmentally
friendly vehicle actions not only result in increased vehicle
energy consumption but also trigger greater acceleration
and deceleration among upstream vehicles, leading to
what is commonly referred to as traffic waves (Cui et al.,
2022a; Guo et al., 2023; Jafaripournimchahi et al., 2023).
Such traffic jam waves can even emerge on highways
devoid of intersections, as seen in phantom traffic jams
(Goldmann and Sieg, 2020). Consequently, judicious eco-
speed optimization can mitigate not only a vehicle’s fuel
consumption but also the substantial fuel consumption
induced in upstream vehicles.

Advancements in vehicle-to-vehicle and vehicle-to-
infrastructure  communication  technologies enable
autonomous vehicles (AVs) to access signal phase and
vehicle state information beyond their line of sight (Ali
etal., 2021; Dong et al., 2022; Zhu et al., 2022). Numerous
studies have demonstrated that information regarding the
state of surrounding vehicles promotes traffic flow stability
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based on methods such as Fourier Ansatz linear stability
(Jiang et al., 2021; Yu et al., 2021; Cui et al., 2022a),
Lyapunov stability (Larsson et al., 2021; Cui et al.,
2022b; 2023), and others. However, these studies often
overlook the influence of signal phase changes at inter-
sections on traffic flow stability. The transition between
red and green signal phases can readily trigger abrupt
braking and acceleration among vehicles. The traffic flow
stability established in prior research can be disrupted by
signal phase changes, particularly in urban environments
characterized by close-proximity signalized intersections.
Thus, the optimization of vehicle trajectories to ensure
smooth travel must account for both surrounding vehicle
state information and intersection signal phases.

Certain studies have contemplated the influence of
information about surrounding vehicles on the optimiza-
tion of vehicle trajectories. Wu et al. (2011) devised an
environmental perception system to anticipate forthcoming
road conditions by utilizing feedback information from
road environment perception. They applied the
Lagrangian algorithm to optimize vehicle acceleration
and deceleration, with the aim of minimizing fuel
consumption. Wang et al. (2017), Almannaa et al. (2019),
Yang et al. (2016; 2021), and Liu et al. (2023) introduced
a microlevel eco-speed optimization strategy employing
fleet concepts and heuristic algorithms to achieve energy
efficiency and emissions reduction. Barth and Boriboon-
somsin (2009) furnished drivers with real-time updates
concerning fluctuating traffic conditions, including speed,
density, and traffic status near their vehicles, along with
dynamic recommendations. They observed that fuel
consumption could be reduced by approximately 10%—20%
without significantly extending travel time. Kamal et al.
(2010) harnessed vehicle dynamics models and traffic
flow models to predict the future state of the vehicle—
road—traffic network. They estimated fuel consumption
based on predicted future traffic conditions and subse-
quently generated optimal control inputs for eco-friendly
driving. Chen et al. (2022) employed model predictive
control to optimize vehicle ecological driving trajectories,
accounting for the uncertainty associated with intersection
queues and signal phases. Reza Amini et al. (2020) intro-
duced a multirange speed prediction framework that
accommodated varying levels of fidelity across different
forecast time step ranges. This framework was integrated
with model predictive control to optimize ecological
vehicle trajectories.

Some studies examine the influence of both the current
and future signal phases at intersections on vehicle trajec-
tories. Asadi and Vahidi (2011) incorporated signal phase
information at future time steps into an adaptive cruise
control system to reduce vehicle idling time at intersec-
tions, subsequently curbing fuel consumption. Similarly,
Shi et al. (2018) harnessed signal phase information at
future time steps but aimed to maximize the likelihood of
vehicles traversing multiple consecutive intersections

while the signals were green. In the context of continuous
intersections, several research endeavors have centered
on devising optimal vehicle trajectories through various
algorithms, including the A* algorithm (Hu et al., 2018),
Dijkstra algorithm (de Nunzio et al., 2016; Wu et al.,
2021), genetic algorithm (Luo et al., 2017; Li et al., 2018),
Markov chain (Li and Gopalswamy, 2021), receding
dynamic programming (Guo and Wang, 2019), pseu-
dospectral method (Wu et al., 2023), and model predictive
control (Liu et al., 2021; Pi et al., 2022). Liu et al. (2022)
directly incorporated signal phase information from
multiple intersections into a deep reinforcement learning
network to train eco-driving trajectories for vehicles. Ma
et al. (2021) introduced two dynamic programming algo-
rithms designed to optimize the speed trajectory of fleets,
ensuring that fleets can pass through consecutive signalized
intersections without separation.

To our knowledge, only a limited number of studies
have considered the joint influence of both traffic condi-
tions and signal phases at intersections on the optimization
of environmentally friendly vehicle trajectories. Munoz-
Organero and Magana (2013) developed an ecological
driving assistance system for detecting traffic signals.
However, their approach relied on information from
nearby vehicles and signal phases exclusively to optimize
vehicle speeds as they approached intersections. Zhang
et al. (2020) employed deep learning models to predict
traffic flow and devised an efficient red light duration
model based on traffic flow queuing dynamics. They
proposed a constrained optimization model to adjust
vehicle speeds, reducing computation time. Nevertheless,
none of the aforementioned studies took into account the
effect of traffic conditions in upstream lanes and signal
phases at upstream intersections on speed trajectory opti-
mization. Neglecting these factors can lead to excessively
high optimal speeds, given their substantial influence on
the feasible speed range for AVs. The presence of slow-
moving AVs or delays resulting from red signal phases
can lead to a significant number of AVs with minimal
intervehicle gaps on the upstream road. When these slow-
moving AVs exit or change lanes or when the red signal
transitions to green, these closely spaced AVs may
encounter traffic saturation or even oversaturation on the
downstream segment. In accordance with traffic flow
theory, this significantly narrows the feasible speed range
for vehicles. Thus, the traffic status on the upstream
segment and the signal phase at upstream intersections
play pivotal roles in optimizing eco-friendly vehicle
speeds. Furthermore, the optimized speed serves as a
crucial input for predicting the feasible speed range,
further enhancing the prediction accuracy.

This paper addresses the data-driven rolling eco-speed
optimization challenge for AVs, focusing on the opti-
mization of vehicle maneuvers. We introduce a short-
term speed forecasting algorithm to provide a feasible
speed range, and rolling AV eco-speed optimization is
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conducted within this range. This paper makes significant
contributions to related research in three key aspects:
1) We combine backpropagation (BP) neural networks
and deep belief networks (DBNs) to real-time predict the
short-term feasible speed range, considering traffic condi-
tions in both upstream and downstream lanes and signal
phases at upstream and downstream intersections; 2) We
construct a space—time network of speed and propose a
rolling eco-speed optimization algorithm for AVs at
consecutive intersections based on the Dijkstra algorithm;
and 3) We utilize data from the Argonne National Labo-
ratory in the United States to precisely establish the quan-
titative relationship between fuel consumption rates and
speed.

The subsequent sections of this paper are organized as
follows. Section 2 provides an elaborate description of
the data-driven rolling optimization problem. Section 3
combines BP and DBN to forecast the traffic state.
Section 4 introduces a rolling eco-speed optimization
algorithm grounded in the Dijkstra algorithm. Section 5
validates the aforementioned algorithms. And finally,
Section 6 summarizes this paper and outlines potential
avenues for future research.

2 Problem description

This paper focuses on optimizing the eco-speed of AVs
as they traverse consecutive intersections, as depicted in
Fig. 1. While factors such as phase cycle length, the overlap
ratio of green phases, and speed limits at intersections
and links have a significant effect on eco-speed optimiza-
tion, it is crucial to recognize the pivotal role played by
traffic conditions in this optimization process. For
instance, consider the scenario where traffic flow exhibits
small intervehicle gaps, a situation exacerbated by

¢ 5

Consecutive intersections.

Fig. 1
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slow-moving traffic along the upstream links. Such a
condition can potentially lead to congestion or even satu-
ration of downstream links during the subsequent time
step. Similarly, the presence of slow-moving traffic on
downstream links can impede the entry of traffic from
upstream links. As a result, vehicle speeds on the saturated
links often fall considerably below the prescribed speed
limits.

To achieve a more practical eco-speed that aligns with
the prevailing road operating conditions, this paper intro-
duces a data-driven rolling eco-speed optimization algo-
rithm. This algorithm leverages historical and real-time
traffic state data to generate short-term forecasts of the
feasible speed range for AVs, as depicted by the dotted
lines in Fig. 2. Subsequently, the algorithm formulates
real-time rolling eco-speed plans based on these prediction
results, as indicated by the solid line in Fig. 2.

3 Traffic state prediction

The current road traffic conditions impose significant
constraints on the operational speeds of AVs. Achieving
precise optimization of the effective eco-speed for AVs
navigating consecutive intersections necessitates a
comprehensive consideration of the traffic state, particu-
larly within the interconnected upstream and downstream
links. Furthermore, the signal phases at both the intersec-
tion where the AV is approaching and the downstream
intersection also influence the eco-speed planning for the
AV. In cases where the AV cannot clear the downstream
intersection through rapid acceleration during the current
green phase, a judicious approach involves gradual accel-
eration to ensure arrival at the intersection in time for
subsequent green phase activation. This strategy mitigates
the adverse effects of rapid acceleration and idling, thus
minimizing fuel consumption.

Therefore, before optimizing the AV eco-speed, this
section makes a short-term prediction of the feasible
speed range based on the traffic state of upstream and
downstream links and the signal phases of upstream and
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downstream intersections. Let us take the continuous
links in Fig. 1 as an example to explain the rolling predic-
tion of the feasible speed range. When the AV, running
on link (¢, d), approaches intersection d, it predicts its
feasible speed range for running on link (d, ¢) using the
traffic state data of links (¢, d) and (d, e) and the signal
phases of intersections ¢ and 4. Subsequently, the AV
optimizes its speed through intersection d according to
the eco-speed optimization algorithm in Section 4.
Finally, the AV optimizes its speed passing through link
(d, e) based on the optimized speed passing through inter-
section d and the signal timing at intersection e. When the
AV approaches intersection e, the above feasible speed
range prediction and eco-speed optimization are repeated.

While traffic density and congestion index can effec-
tively reflect the state of links, speed is a more readily
measurable variable compared to them. Therefore, this
paper selects the speed v, on link (¢, d) at time slot 7 as
the state evaluation value of the link. Based on the
preceding discussion, the input of the predictive model
can be expressed as follows:

‘,}de,r = f(vz‘d,n vde,tfl’ vef,Hl, Ld’ Le) ’ (1)

where 7,,, is the predicted value of speed v,,, on link (d, e)
at time step ¢. L, and L, represent the signal phase periods
of intersections d and e, respectively.

DBN is an artificial neural network designed to
emulate the cognitive reasoning process of the human
brain. DBNs have found extensive applications across
various domains, including image and speech processing.
As a deep learning model, DBN exhibits remarkable
predictive accuracy and effectiveness when dealing with
nonlinear, nonstationary, and uncertain traffic flow data.
When confronted with large volumes of raw data, DBN
excels at extracting meaningful data characteristics,
making it particularly well suited for addressing regression
problems. A DBN is characterized as an arbitrary undi-
rected graph probabilistic generative model. It consists of
multiple layers of random neurons positioned between
the input layer and the output layer. These neurons can be
classified into explicit neurons, responsible for receiving
input, and hidden neurons, also known as feature detec-
tors, which are responsible for feature extraction. The
connections among the upper layers of neurons in a DBN
are undirected, forming a shared memory structure. In
contrast, the connections among the lower-layer neurons
are directed and represent data vectors, with the dimen-
sionality of the data vector scaling with the number of
neurons.

A DBN consists of a set of restricted Boltzmann
machines (RBMs) (Fig. 3), which provide feature learning
and feature extraction capabilities for DBNs. RBM
consists of neurons (i.e., v=[vy, Vs, coy Ujy oo, Uy]') in
the display layer and neurons in the hidden layer (i.e.,
h=1[hy, hy, ..., hy, ..., hk]T), where the neurons in the
display layer are used to input training data, and the

Fig.3 Restricted Boltzmann machines.

neurons in the hidden layer are used for feature detection.
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weight matrix between the neurons in the display layer
and the neurons in the hidden layer.

Typically, neurons in RBM are constrained to assume
values of either 0 or 1, which imposes limitations on its
applicability to practical problems. Given that traffic data
are continuous, this paper introduces the Gauss-Bernoulli
restricted Boltzmann machine (GBRBM), which is capable
of handling continuous data. In this model, neurons in the
visible layer follow a Gaussian distribution, while
neurons in the hidden layer follow a Bernoulli distribu-
tion. The GBRBM is an energy-based model that utilizes
neurons in the hidden layer to characterize the probability
distribution of neurons in the visible layer.

The joint energy function can be obtained by introducing
Gaussian noise with standard deviation o = [0, 0, ...,

o, ..., 0,]" in neurons v = [v,, Vs, ..., U;, ..., U,]" in the
display layer as follows:
& (Ui_ai)z T B —
E(w, h)y=-Y———-b"h-h"W—, 2)
=1 20 o
where a = [a,, ay, ..., a;, ..., a,]" and b=[b,, by, ..., bj,

..., b ]" represent the bias vectors of neurons in the
display layer and neurons in the hidden layer, respec-
tively. Since the neurons in the visible and hidden layers
are connected independently, they are independent of
each other. We can obtain the following conditional prob-
abilities:

P(h; = 1|v) = sigmoid (b,- + f ﬂw,,-), (3)
i=1 O

k
P(ulh) = N(ai"'o'i 2 wih;, O'I'Z)a “)
=1

where the function sigmoid(:) is defined as sigmoid(:) =
1+exp(-)
bution with mean u and variance o2 It is difficult
to directly estimate the structural parameters a = [a,
Qyy oor Giy ooy @)% b=1[by, by, ..., by, ..., b]", and W =

and N (u, 0?) represents a Gaussian distri-



624 Front. Eng. Manag. 2024, 11(4): 620-632

Wi Wik

of the GBRBM by minimizing the

Wl e Wi
negative log-likelihood. In this paper, the random approx-
imation method of Gibson sampling with a limited
number of iterations (also known as the contrastive diver-
gence algorithm) is used to update the structural parameters
as follows:

=logIl,,P(v,), &)
i) (2] o
oo o
w8 )

where ¢ is the learning rate, and (-), and (-),, represent
the expected values of the training data and the model,
respectively.

In the DBN model, data features are extracted from
observed data using the hidden layer of a GBRBM. These
data features are then utilized as inputs for another
GBRBM, resulting in a multilayer structure created by
stacking GBRBMs cyclically. It is important to note that
the GBRBM is inherently designed for unsupervised
learning. To transform it into a tool for supervised learn-
ing, it must be integrated with an additional supervised
learning algorithm, such as the BP neural network. In this
paper, the final output generated by the multilayer
GBRBMs serves as input for the BP neural network, with
the output of the BP neural network representing the
prediction results. The combined algorithm framework
that incorporates the multilayer GBRBMs and BP is
depicted in Fig. 4.

Input

4 Eco-speed optimization

AVs navigating urban roads frequently traverse multiple
intersections and links. In a predefined route, each link
presents distinct feasible speed ranges, and the corre-
sponding methods for traversing intersections, including
acceleration, deceleration, and maintaining a constant
speed, vary. As a result, AVs have the flexibility to
complete journeys using various combinations of speeds.
In this paper, we discretize the speed and establish a
coordinate system that employs time and space (position)
as the horizontal and vertical axes, as illustrated in Fig. 5.
The Dijkstra algorithm represents a classical shortest path
algorithm, focusing on the origin node and systematically
advancing through successive layers of nodes until reach-
ing the endpoint. By utilizing the spatial-temporal
network structure depicted in Fig. 5 and considering the
vehicle energy consumption weights associated with the
connecting links of spatial-temporal nodes, we apply the
Dijkstra algorithm to determine the path with the lowest
vehicle energy consumption.

When AVs are distant from intersections, optimizing
their eco-speed only requires consideration of the speed
limit on links and the traffic state of those links. The traffic
state of links can be quantified using the feasible speed
range of AVs predicted in the previous section. For
simplicity, we refer to the upper limit of vehicle speed
determined by the speed limit on links and traffic state as
the speed limit V;. This paper utilizes open-source data
provided by Argonne National Laboratory in the United
States to establish a quantified relationship between fuel
consumption and the speed of AVs. Figure 6 illustrates
the relationship between fuel consumption and vehicle
speed. As observed in the figure, the relationship between
fuel consumption and speed follows a pattern where fuel
consumption initially increases, then decreases, and even-
tually increases again with increasing speed. Prior to
reaching the critical speed value, the relationship between
fuel consumption and speed is nearly symmetrical around

BP Output

Hidden
layer

Fig. 4 Combined algorithm framework of multi-layer GBRBMs and BP.
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National Laboratory (2023)).

this point. Before the speed reaches the critical value V,,
the relationship between fuel consumption and speed is
almost symmetrical about v =V,. Therefore, when the
limit speed V; is less than V,, the optimal eco-speed is V.
This is because when the vehicle speed is Vi, it can not
only reduce energy consumption but also improve traffic
efficiency. When the speed limit V. is greater than V,, the
optimal eco-speed is V,. According to the above analysis,
when AVs are far from intersections, the optimal speed
Vot satisties Vo, = min{Vy, V,}.

It can be seen from Fig. 6 that the idling of AVs will
also cause high energy consumption. Therefore, when
AVs approach intersections, their eco-speed optimization
needs to consider the signal phase of intersections to
avoid idling. Let g., be the time step at which the /-th
green light phase at intersection c¢ starts. Let r.; be the
time step at which the red light phase starts after the /-th
green light phase at intersection c. If the time ¢ when the
AV arrives at intersection c satisfies ¢ € (g, r.,), the AV
can pass through intersection ¢ directly. If the time ¢

when the AV arrives at intersection c¢ satisfies
t € (ress 8esnr), the AV cannot pass through intersection c,
so it can only wait at idle speed at the intersection. s
represents the distance from the AV to the nearest down-
stream intersection. Let Fy, be the fuel consumption rate
when AVs are waiting at idle speed at intersections. Let
t.q be the time step when AVs are idling at intersections.

According to the signal phase when AVs arrive at inter-
sections, this paper divides the eco-speed optimization of
the AVs passing intersections into the following two
cases.

Case I: If the AV arrives at the intersection at speed V,,
the signal light is green, i.e., the time ¢ = s/V, for the AV
to reach the intersection at speed V, satisfies 7 € (g.,, 7.)).

(1) If V, < V¢, then the AV passes through the intersec-
tion at a constant speed V.

(2)IfV, > V; ,then the AV can only reach the intersection
at speed V| at the fastest. We discuss this in the following
two situations:

e [f the traffic light is green when the AV arrives at the
intersection at speed V. (i.e., (s/VL) € (g.s» Ts)), then the
AV passes through the intersection at a constant speed
Vi

e If the signal light is red when the AV arrives at the
intersection, the AV can choose to wait at the intersection
by idling or perform speed optimization to ensure that it
passes the intersection just when the red light ends. In the
case of idling, the fuel consumption of the AV is
F.(V.)(s/ VL) + Figie (81 — 8/ V1), where F,(:) is the rela-
tionship function between the speed and fuel consumption
rate. In the case that the AV passes the intersection just at
the end of the red light, the fuel consumption of the AV is
F.(5/8c111)8c1:1- If the fuel consumption of the former is
less than that of the latter, the AV waits at the idling
speed at the intersection. If the fuel consumption of the
former is greater than that of the latter, the AV passes the
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intersection at the end of the red light at speed s/g....

Case II: If the AV arrives at the intersection at speed
V,, the signal light is red, i.e., the time t = s/V, for the
AV to reach the intersection at speed V, satisfies
t€(Feps 8errn)-

(1) If V. = s/r., 2 V,, the AV can reach the intersection
before the red light ends while meeting the speed limit V;.
Therefore, the AV can choose the following three ways
to pass through the intersection: Accelerating to pass the
intersection before the end of the green light; driving at a
constant speed V, and waiting at the intersection at an
idle speed; and decelerating to ensure that the AV passes
the intersection when the red light ends. The fuel
consumption in the above three intersection passing ways
is F.(s/r)re, F.(V)(s/Vo)+ Fige(8en —s/V2) and
F.(5/8c1s1) &ess1» respectively. The AV chooses the way
with the least fuel consumption to pass through the inter-
section.

) If s/r.; = V. > V,, the AV cannot reach the intersec-
tion before the red light ends. There are two ways for the
AV to pass through the intersection: driving at a constant
speed V, and waiting at an idling speed after reaching the
intersection and decelerating so that the AV arrives at the
intersection after the red light ends. The fuel consumption
of the above two intersection passing ways is
F. (V) (s/Vy) + Fige (8eii1 —8/V2)  and  F.(8/8ci41) 8eisrs
respectively. AVs choose the way with the least fuel
consumption from the above two ways to pass through
the intersection.

B)IfV, > VL > s/g...1, the AV cannot travel at an eco-
speed V, below the speed limit V; and can only reach the
intersection when the next green light starts. Therefore,
there are two ways for an AV to pass through the inter-
section: Arriving at the intersection at a limited speed V.
and waiting at idle speed and passing through the inter-
section at a constant speed when the next green light
starts. The fuel consumption of the two intersection
passing ways is F.(V0)(s/VL)+ Fiqe(gerss —$/V) and
F.(5/8c1s1) &ess1» TESPECtively. AVs can choose the way
with the least fuel consumption to pass through the inter-
section.

(4) If s/g.1.1 = Vi, the AV can only pass the intersection
at the current speed limit V; or slow down so that it can
reach the intersection at the beginning of the next green
phase. We further analyze the above two ways as
follows:

e If the intersection is in the green phase when the AV
travels to the intersection at speed V., the optimal eco-
speed of the AV passing through the intersection is
constant speed V.

o [f the intersection is a red phase when the AV travels
to the intersection at speed Vi, then the two ways for the
AV to pass through the intersection are driving to the
intersection at speed V. and then idling to pass and just
arriving at the intersection at the beginning of the next
green phase. The fuel consumption of the above two

ways of passing through the intersection are
F (VD) (s/V) + Fiae (e —s/VL)  and  F.(8/8cr41) &eiris
respectively.

During the above eco-speed optimization process, AVs
may need to accelerate or decelerate to reach the eco-
speed. According to Xia et al. (2013), when the speed of
AVs is changed based on the sinusoidal trigonometric
function, the acceleration rate and deceleration rate of
AVs are moderate, which can ensure driving comfort and
ecological fuel consumption. The vehicle speed change
equation based on the cos function is as follows:

Vi, — V,cos (mt) relo, L]
L~ 2m
Bl go3) ol (3L
m P i
Vh_;Vd te (%4-%)’ vh]
©)]

where V, is the current speed, V, is the difference
between the initial speed and the desired speed, and m
and n are parameters. To obtain the optimal acceleration
curve, it is necessary to determine the values of parameters
m and n. Xia et al. (2013) assumed that the time for the
AV to adjust speed is 7, and the value range of parameter
m considering fuel consumption economy and driver
comfort is 3.08/7 <m <2xn/T. The value range of n is
determined by the following equation:

nz—mn(Tm—g)—mQ(l—E):O.

5 (10)

5 Numerical simulations

This section conducts numerical simulations to validate
the efficacy of the algorithms presented in this paper.
Section 5.1 provides an overview of the simulation setup,
while Section 5.2 conducts comparative simulations to
validate the performance of the rolling forecast algorithm
proposed in this paper. Furthermore, Section 5.3 evaluates
the effectiveness of the eco-speed optimization algorithm.

5.1 Simulation setting

The numerical simulations in this study are conducted
using Hutai Road in Shanghai, China, as illustrated in
Fig. 7. Hutai Road has a total length of 5.33 km, starting
from Zhijiang Road and ending at Jiangchang West Road.
It is divided into five distinct links, each with specified
lengths, red light intervals, and green light intervals, as
outlined in Table 1. In Shanghai, every taxi is equipped
with a vehicle-mounted GPS receiver that transmits data
every ten seconds, including latitude, longitude, and
reception timestamps, among other information. The



Ying YANG et al. Data-driven rolling eco-speed optimization for autonomous vehicles 627

Fig. 7 Huitai Road in Shanghai, China.

Table 1 Link length, red light interval and green light interval at
intersections

Link No.  Link start and end Link length  Green light ~ Red light
(m) interval (s) interval (s)
Link 1 Zhijiang Road— 1042 20 30
Luochuan Road
Link 2 Luochuan Road— 1089 30 40
Yichuan Road
Link 3 Yichuan Road— 927 60 70
Lingshi Road
Link 4 Lingshi Road— 1118 40 60
Hutai side Road
Link 5 Hutai side Road— 1152 - -

Jiangchang West Road

proportion of information that cannot be transmitted due
to delays or communication failures is less than 10%. For
this study, we collected GPS feedback data from all taxis
traveling along the selected road during March 2016.

It is widely acknowledged that the vehicle fuel
consumption rate is a function of vehicle speed. However,
the speed of taxis is not explicitly provided by the vehicle-
mounted GPS receiver. Therefore, we calculate the
speeds of the taxis by leveraging the latitude and longitude
information, along with the reception timestamps, after
performing map matching. The following equation is
employed to convert latitude and longitude information
into the distance between two points, denoted as points A
and B:

d=Rx li[% X Arccos(sin (LatA) X sin (LatB)

+cos(LatA) X cos (LatB) X cos (LonA — LonB)),
(11
where d is the spherical distance between two points A
and B, R is the radius of the earth, LonA and LonB are

the longitudes of points A and B, respectively, and LatA
and LarB are the latitudes of points A and B, respectively.

The accuracy of the GPS data is approximately 90%.
Inaccurate data may result from equipment errors and
transmission issues. Consequently, it becomes necessary
to filter out calculated abnormal speeds. In conjunction
with the speed limits on roads in Shanghai, this paper
excludes data points where the speed is higher than
80 km/h.

From the data, it becomes evident that there is a consid-
erable variance in the speeds of taxis at the same time
step within the same link. Utilizing all the data as input
for the DBN prediction algorithm in Section 3 may not
effectively capture the traffic state of the link traversed
by AVs. Consequently, this paper divides the historical
data into two separate datasets based on their numerical
values. These sets are then employed as input for the
speed prediction algorithm, allowing the prediction algo-
rithm to provide a feasible speed range.

5.2 Prediction numerical simulation

In this paper, 80% of the collected data serve as the training
set, while the remaining 20% are allocated for the test set.
The parameters in the DBN prediction model, including
the number of layers (7)), the number of visible layer units
(m), the number of hidden layer units (), the number of
iterations (), and the learning rate (¢), need to be trained.
The ranges of these parameters are preset as 7 € [1, 4],
m € [150, 200], ke€[150, 200], N €[100, 500], and
£ €[0.0005, 0.005] in this paper. After cross-validation of
the training set data, the values of these parameters are
finally determined to be 7 =2, m=200, k=200,
N =500, and £ = 0.005.

This section uses the mean absolute percentage error
(MAPE), mean absolute error (MAE) and root mean
square error (RMSE) to evaluate the deviation between
the predicted value and the actual observed value and to
evaluate the accuracy of the predictive model. The calcu-
lation equation of each method is as follows:

1 U ﬁcd,t_vcd,t
MAPE = - ), ——— x 100%, (12)
n =1 Ved
1
MAE = - Z {}ai,t - Vrd,/ 3 (13)
H =1
1 oo 2
RMSE = [-—— 2, (Veas = Veas) ™ (14)
H—1 =1

where 7 is the prediction time step.

The prediction model described in Eq. (1) incorporates
a total of five input variables. To investigate the potential
presence of redundant variables, we devised six sets of
comparative models. Table 2 presents the results for these
six groups of models, each with different input configura-
tions, along with their respective MAPE results.
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Table 2 Comparative models and MAPE values

Model Input variables MAPE
Ved.t Vde,t—1 Vef,t+1 Ly L,
1 J J J y 11.02%
2 \ \ \/ \ 12.89%
3 \/ J V y 10.68%
4 J J J y 10.28%
5 v v v v 12.23%
6 J J v J v 9.31%

Upon comparing models 1, 2, and 3, it becomes evident
that historical traffic state data from the current link
exerts a more significant effect on prediction accuracy
compared to data from the downstream link. This
phenomenon can be attributed to the influence of vehicles
from the upstream link in the previous time step entering
the current link, thus significantly affecting vehicle
speeds.

Similarly, when contrasting models 4 and 5, it becomes
apparent that the signal phase of the downstream intersec-
tion has a more substantial effect on the prediction accuracy
than the signal phase of the current intersection. This
discrepancy arises from the signal phase of the downstream
intersection, causing traffic flow on the current link to
pause and await the signal change, thereby significantly
impacting prediction accuracy.

Last, when comparing models 1 through 6, it becomes
evident that model 6 yields the lowest MAPE value.
Consequently, we adopt the influencing factors present in
model 6 as the input variables for our DBN prediction
model.

To assess the effectiveness of the proposed prediction
algorithm, this paper employs support vector machines
(SVMs), random forests (RFs), BP neural networks, and
K-nearest neighbors (KNNs) as comparison algorithms.
Figure 8 compares the performance of the five prediction
models in terms of MAE, MAPE, and RMSE.

As shown in the figure, SVM, RF, and BP outperform
KNN significantly. This improvement can be attributed
to feature simplification in RF, which helps avoid overfit-
ting issues. BP demonstrates a notable advantage in
predicting data with substantial fluctuations. From the
perspective of structural risk minimization, SVM
analyzes various aspects of the learning process, including
consistency, convergence speed, and more, resulting in
its strong performance.

Among the five models, the DBN model achieves the
highest prediction accuracy. To further substantiate the
superior performance of the DBN model, a comparison is
made between actual and predicted values across all five
models, as illustrated in Fig. 9. The graphical representa-
tion clearly indicates that the DBN model exhibits the
smallest deviation between actual and predicted values,
resulting in a clustering of predicted points near the
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Predictive algorithm

Fig. 8 MAE, MAPE and RMSE under different predictive
algorithms.

fitting line. This observation underscores the enhanced
prediction accuracy achieved by the DBN model
proposed in this study. In contrast, the actual values
under the remaining four models deviate significantly
from their corresponding predicted values, leading to a
dispersed arrangement of predicted points. This discrep-
ancy underscores the comparatively inferior prediction
performance of these four algorithms when compared to
the DBN model. These test results unequivocally affirm
the DBN model’s prowess in addressing short-term traffic
flow forecasting, thereby meeting the precision criteria
stipulated in this study. Consequently, the DBN model
emerges as a valuable tool for providing the feasible
speed range necessary for eco-speed optimization.

To assess the influence of vehicle data arriving at inter-
sections during different signal phases on the prediction
results, the data are segregated into two sets: One
comprising vehicles arriving at intersections during the
red light period and the other during the green light
period. These two new datasets are used as inputs sepa-
rately, and the predicted results are displayed in Fig. 10.

From the figure, it is evident that the prediction accuracy
varies between vehicle arrivals at intersections during
different signal phases. This observation underscores the
effect of the signal phase on the prediction process, vali-
dating the rationale for DBN to consider the signal phase
as input for the prediction model. Additionally, the data
of vehicles arriving at intersections during the green
phase positively influence the model more than the data
from the red phase, resulting in higher prediction accuracy
for the model.

5.3 Eco-speed optimization

The prediction results regarding the feasible speed intervals
for each link are presented in Table 3. This paper does
not account for errors in eco-speed optimization stemming
from prediction inaccuracies.

Figure 11 illustrates vehicle trajectories under three
scenarios: eco-speed optimization considering traffic
state (ES-TS), eco-speed optimization without considering
traffic state (ES-WTS), and normal driving (ND). In the
figure, the horizontal axis represents travel time, and the
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Fig. 10 MAE, MAPE and RMSE under different signal
phases.

vertical axis represents distance traveled. The scale points
on the vertical axis denote intersections. The red horizontal
line signifies that the intersection is in the red phase,

Table 3 The predicted feasible speed intervals

Link No. Feasible speed intervals (m/s)
Link 1 11-16

Link 2 14-17

Link 3 8-11

Link 4 11-14

Link 5 20-22.2

indicating that AVs are not allowed to pass. The time
period between the red horizontal lines represents the
green phase during which AVs can pass.

The simulation results clearly demonstrate the advan-
tages of eco-speed optimization considering the traffic
state. For example, on the first link, the predicted feasible
speed range is 11 to 16 m/s. Under ND, the AV on this
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Fig. 11 Spatio—temporal trajectories of positions under different optimization algorithms.

link travels at maximum speed. However, at this time, the
signal phase at the first intersection is red, necessitating
the AV to wait at an idle speed. It is worth noting that
fuel consumption at idle speeds cannot be underestimated.
Therefore, with ES-TS, the AV travels at a speed that
allows it to pass the first intersection just as the red light
ends, eliminating the need to wait at an idle speed at the
first intersection.

Similarly, on the second link with a predicted feasible
speed range of 14 to 17 m/s, an AV traveling at this speed
under ND cannot reach the second intersection before the
green phase ends. This implies that the AV would have to
wait at an idle speed at the second intersection. However,
an AV under ES-TS starts with a certain initial speed
when passing the first intersection, allowing it to arrive
and pass the second intersection before the red light
phase begins.

On the third link, with a predicted feasible speed range
of 8 to 11 m/s, an AV traveling at this speed under ND
can pass through the third intersection while the light is
green. However, the AV speed optimized by ES-TS
cannot pass the third intersection before the green light
ends. Therefore, under ES-TS, AVs choose to reduce
their speed and pass the third intersection just when the
red light phase ends.

The predicted feasible speed range for the fourth link is
11 to 14 m/s. ES-TS determines that the AV at this speed
can clear the fourth intersection before the next red light.
Therefore, under this speed optimization, the AV chooses
to accelerate and pass the intersection. Under ND, the AV
can only wait at an idle speed when it reaches the fourth
intersection.

On the fifth link, with a predicted feasible speed range
of 20 to 22.2 m/s, the AV can travel at a relatively high
speed. However, the theoretical eco-speed for the AV is

21 m/s. Therefore, under ES-TS, the AV runs at the theo-
retical eco-speed. Under ND, the AV travels to the end at
a speed greater than 21 m/s.

Comparing ES-TS with ES-WTS reveals that the speed
profile derived from the latter contradicts actual traffic
conditions. ES-WTS results in speeds exceeding the
feasible speed range, primarily to enable the AV to navigate
the first intersection quickly. However, during the traversal
of the third, fourth, and fifth links, the AV adheres solely
to an eco-speed under the constraint of the road speed
limit, without considering the prevailing traffic flow
conditions.

The speed profiles for all three driving strategies depict
the AV’s characteristic acceleration and deceleration
behavior at intersections, aligning with the real-world
driving dynamics of AVs. Notably, under the ND strat-
egy, the AV frequently undergoes sharp acceleration and
deceleration, which is unfavorable for minimizing fuel
consumption. In contrast, the vehicle speed profile under
ES-TS maintains a more environmentally friendly speed
and exhibits relative stability.

Table 4 presents the results of fuel consumption and
travel time under the three driving strategies. It is evident
from Table 4 that the eco-speed optimization algorithm
considering traffic states yields a notable fuel-saving
effect, achieving a fuel-saving efficiency of up to 12.2%
when compared to the ND strategy. Furthermore, travel
efficiency is maintained in terms of travel time, ensuring
a positive travel experience for passengers.

On the other hand, the eco-speed optimization algorithm
that does not consider traffic states reduces travel time
but lacks practical significance. This is primarily because
it does not account for the feasibility of speed. Addition-
ally, this algorithm does not offer a significant advantage
in terms of fuel economy.
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Table 4 Fuel consumption and travel time under the three driving
strategies

Strategy Fuel consumption (kg) Travel time (s)
ND 0.49 461
ES-TS 0.43 397
ES-WTS 0.47 292

6 Conclusions

In an urban environment, the majority of fuel consumption
in AVs is attributed to frequent acceleration, deceleration,
idling, and related factors, accounting for approximately
two-thirds of the total fuel consumption. To address this
issue, this paper introduces a data-driven rolling eco-
speed optimization algorithm designed to smooth vehicle
trajectories and decrease fuel consumption. This algorithm
combines BP and DBN to utilize traffic state information
from both upstream and downstream links, as well as
signal phase information from upstream and downstream
intersections, to predict short-term traffic conditions. This
prediction provides a feasible speed range for subsequent
speed optimization, thereby preventing excessive vehicle
speeds. The paper also establishes a speed space—time
network and presents a rolling eco-speed optimization
approach based on the Dijkstra algorithm. Through road
tests conducted at four intersections in Shanghai, the
proposed algorithm successfully reduces fuel consumption
by 12.2% without significant increase in travel time.

Looking ahead, this paper offers several avenues for
future expansion and research. The paper can explore the
development of a multilayer model to achieve simultaneous
optimization of vehicle trajectories and signal phases,
potentially leading to further reductions in fuel consump-
tion. It can extend its scope to include multivehicle
collaborative trajectory optimization, aiming to minimize
unnecessary vehicle braking and enhance overall traffic
flow efficiency.
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