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ABSTRACT Improving our understanding of the transcriptional changes of Saccharo
myces cerevisiae during fermentation of lignocellulosic hydrolysates is crucial for the 
creation of more efficient strains to be used in biorefineries. We performed RNA 
sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol 
Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically 
in wheat straw hydrolysate. Many of the differently expressed genes identified among 
the strains have previously been reported to be important for tolerance to lignocellulosic 
hydrolysates or inhibitors therein. Our study demonstrates that stress responses typically 
identified during aerobic conditions such as glutathione metabolism, osmotolerance, 
and detoxification processes also are important for anaerobic processes. Overall, the 
transcriptomic responses were largely strain dependent, and we focused our study on 
similarities and differences in the transcriptomes of the LBCM strains. The expression of 
sugar transporter-encoding genes was higher in LBCM31 compared with LBCM109 that 
showed high expression of genes involved in iron metabolism and genes promoting the 
accumulation of sphingolipids, phospholipids, and ergosterol. These results highlight 
different evolutionary adaptations enabling S. cerevisiae to strive in lignocellulosic 
hydrolysates and suggest novel gene targets for improving fermentation performance 
and robustness.

IMPORTANCE The need for sustainable alternatives to oil-based production of 
biochemicals and biofuels is undisputable. Saccharomyces cerevisiae is the most 
commonly used industrial fermentation workhorse. The fermentation of lignocellulosic 
hydrolysates, second-generation biomass unsuited for food and feed, is still hampered 
by lowered productivities as the raw material is inhibitory for the cells. In order to map 
the genetic responses of different S. cerevisiae strains, we performed RNA sequencing 
of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two 
wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw 
hydrolysate. While the response to inhibitors of S. cerevisiae has been studied earlier, 
this has in previous studies been done in aerobic conditions. The transcriptomic analysis 
highlights different evolutionary adaptations among the different S. cerevisiae strains and 
suggests novel gene targets for improving fermentation performance and robustness.

KEYWORDS industrial yeast strains, wild-type isolates, RNA sequencing, inhibitor 
stress, tolerance

T he production of renewable chemicals and fuels from lignocellulosic hydrolysates, 
made from biomass unsuited for food and feed, is an important part of a forward-

looking climate policy where fossil raw materials are replaced with biological resources. 
The treatments required to free the monomeric sugars from the lignocellulosic biomass 
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however leads to the release of several compounds that are inhibitory for microorgan
isms used as biotechnological production hosts. When Saccharomyces cerevisiae 
is cultivated in lignocellulosic hydrolysates, its growth and ethanol production are 
challenged by high concentrations of different inhibitors such as furfural, weak acids, and 
phenolics. In spite of the vast number of studies and genetic modifications performed 
on S. cerevisiae to improve its tolerance [reviewed in reference (1)], overcoming the 
inhibitor stress still remains a challenge for second-generation biorefineries that convert 
lignocellulosic biomass into biochemicals.

In the past decades, considerable amounts of resources have been invested into 
isolation of new yeast strains with higher tolerance towards lignocellulosic hydrolysate 
inhibitors. Wild yeasts collected from harsh habitats may have developed superior stress 
tolerance, due to the selective pressures of their environment. Therefore, those wild 
yeasts may represent excellent starting points to develop inhibitor-tolerant cell factories 
(2). The manipulation and genetic improvement of such strains may however be more 
challenging compared with those of the laboratory strains that are commonly used 
also in studies aiming at improving industrially relevant stress responses (1). This is 
partly due to less knowledge of their physiology and genetics but also due to industrial 
strains often being diploids, tetraploids, and even euploids. Strains used in industrial 
settings display typical phenotypic traits such as high ethanol yield, thermostability, and 
increased inhibitor tolerance, which make them suited for large-scale bioprocesses (3, 
4). Notably, many strains with higher tolerance have been developed through classical 
strain engineering such as adaptive laboratory evolution. This means that the genetics 
behind a tolerant phenotype may not be evident.

Numerous studies on the genetic responses of yeast subjected to stress caused 
by lignocellulosic hydrolysates have already been conducted. There are several studies 
investigating the transcriptomic response of S. cerevisiae subjected to a single inhibitor, 
including furfural (5–7), acetic acid (5, 8, 9), formic acid (10, 11), and hydroxymethylfurfu
ral (HMF) (9, 12, 13). Previous studies have also addressed the transcriptomic responses 
to mixtures of inhibitors (14, 15). Moreover, transcriptomic studies of cells grown in 
the presence of hardwood spent sulfite liquor (15) or of cells during propagation in 
lignocellulosic hydrolysates (16) have been conducted. While the tolerance and response 
to individual inhibitors differ, it is also known that the inhibitors may have synergis
tic effects (17). Moreover, complex media such as lignocellulosic hydrolysates contain 
not only the main inhibitors but often also lesser amounts of other compounds that 
may be harmful for the cells. The cumulative effect of all the compounds found in 
a specific lignocellulosic hydrolysate may thus not be observed in cells grown in the 
presence of synthetic inhibitor mixtures. A further complicating matter is strain-depend
ent variance in tolerance and response to lignocellulosic hydrolysates (1). Remarkably, 
while many biotechnological production processes including bioethanol production are 
run anaerobically, the transcriptomic studies on hydrolysates have so far been conducted 
in aerobic conditions.

In this study, we investigate the transcriptomes of five S. cerevisiae strains, one 
laboratory strain, two industrial strains, and two wild-type isolates. RNA sequencing 
was conducted for strains grown in wheat straw hydrolysate (WSH) under anaerobic 
conditions. Differences as well as common traits emerged from the transcriptome 
comparisons. In particular, we aimed to determine what transcriptional response 
enabled the good performance of the LBCM strains that performed as well as the 
industrially adapted strains. The results presented aid in understanding the mechanisms 
behind lignocellulosic hydrolysate tolerance in yeast and provide new intel to engineer 
novel strains suitable for biorefinery applications.
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MATERIALS AND METHODS

Strains, media, and culture conditions

Five S. cerevisiae strains were used in this study, a commonly used laboratory strain of 
the CEN.PK linage, two industrial strains used for bioethanol production, and two strains 
isolated from cachaça distilleries (Table 1). The industrial strain KE6-12 is derived from 
TMB400 (Albers et al., unpublished).

The strains were maintained in yeast extract peptone dextrose (YPD) medium 
containing 10 g L−1 yeast extract, 20 g L−1 peptone, and 20 g L−1 glucose. The strains 
were grown in shake flasks in liquid minimal medium containing 70% (wt/wt) of WSH 
and 3 g L−1 potassium phosphate, 2.4 g L−1 urea, 0.5 g L−1 magnesium phosphate, 10.2 
g L−1 k-phthalate, 1 mL L−1 trace metal solution, and 1 mL L−1 vitamin solution (20). The 
medium was sterilized using 0.2 µm nylon membrane filters, and the pH was adjusted 
to 5.5 with 5 M NaOH. The WSH was prepared as described by van Dijk et al. (21) and 
contained 80.3 g/L glucose, 31.7 g L−1 xylose, 4.7 g L−1 arabinose, 8.4 g L−1 acetic acid, 0.6 
g L−1 HMF, and 4.6 g L−1 furfural.

Precultures were inoculated from glycerol cryostocks and incubated overnight at 
30°C and 200 rpm in YPD. After reaching a stationary phase, 100-mL shake flasks were 
inoculated at an initial optical density at 600 nm (OD600) of 1, with 9.3 mL of WSH 
medium at 75% and 0.7 mL of preculture. In YPD and aerobic conditions, all strains 
grew similarly. Pre-cultivation in WSH was not done, as the growth among the strains 
grown aerobically in WSH was very varying (data not shown). For anaerobic cultures, 
non-baffled shake flasks were chosen, and the medium was gassed with N2 for 10 s after 
inoculation. An air trap filled with sterile glycerol was used to prevent oxygen diffusion. 
Cultures were incubated at 30°C and 200 rpm and the growth was monitored online 
with a Cell Growth Quantifier (Aquila biolabs, Germany). A standard curve to correlate 
backscatter and OD600 was prepared following the instructions of the manufacturer. 
Quadruplicate cultures were carried out for each strain, and samples were taken within 
2 h after the culture had reached stationary phase.

Determination of maximal growth rate, OD600, and dry cell weight

The maximal specific growth rate (µmax) for each strain was defined according to the 
following equation:

μmax = ln x2/x1t2 − t1
where x2 and x1 are the manually identified finishing and starting OD600 values of 

the growth curve at its highest slope, respectively, and t2 and t1 the corresponding 
time points. The OD600 value was determined from cells resuspended in deionized 
water. The cells were harvested from 1.5 mL of culture by centrifugation. The OD600 was 
determined in triplicate for each sample by measuring the absorbance at 600 nm using 
a Genesys 20 spectrophotometer (Thermo Scientific, USA). The biomass concentration 
was also determined as dry cell weight (DCW) by collecting cells from 1.5 mL of culture 
by centrifugation, followed by resuspension in 1.5 mL of deionized water, and filtration 
using pre-weighed 0.45-µm polyether sulfone membranes (Sartorius, Germany). The 
filters were dried for 2 h at 65°C and weighed after 2 days in a desiccator.

Extracellular metabolite quantification

Culture samples were filtered through 0.2-µm nylon membrane filters (VWR, USA) and 
supernatants were used for extracellular metabolite quantification by high-performance 
liquid chromatography, using a refractive index detector (Jasco, Italy). Glucose, xylose, 
arabinose, acetic acid, HMF, and furfural were separated using a Rezex ROA-Organic Acid 
H+ column (Phenomenex, Germany) at a flow rate of 0.8 mL min−1, at 80°C, using 5 mM 
sulfuric acid as eluent.
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RNA extraction and quality control

Samples for RNA extraction were harvested by centrifugation, and pellets were frozen 
in liquid nitrogen and stored at −80°C until extraction as previously described (22). 
The concentration and quality of the RNA were assessed using the NanoDrop 2000 
Spectrophotometer (Thermo Scientific, USA), and the integrity was confirmed using the 
2100 Bioanalyzer System with the RNA 6000 Nano Assay (Agilent Technologies, USA). 
Four replicate samples with an RNA integrity number above eight were used for the 
library preparation.

Library preparation and RNA sequencing

Library preparation and sequencing were performed at the SNP&SEQ Technology 
Platform (Uppsala, Sweden). Sequencing libraries were prepared from 500 ng total RNA 
using the TruSeq Stranded mRNA Library Preparation Kit (cat# 20020595, Illumina Inc., 
USA), including polyA selection, following the instructions of the manufacturer (protocol 
#1000000040498). Unique dual indexes (cat# 20022371, Illumina Inc., USA) were used. 
The libraries were sequenced using a NovaSeq 6000 system (Illumina Inc., USA) and a 
SP-200 flow cell with pair-end 100 bp read length and v1.5 sequencing chemistry. A 
sequencing library for the phage PhiX was included as a 1% spike-in in the sequencing 
run. The sequencing generated a coverage of 8 to 14 M reads per library.

Pre-analysis and data quality control

Raw data from the RNA sequencing were analyzed using the nf-core rnaseq pipeline 
release 1.4.2 (23). Briefly, the workflow processed the raw data from FastQ inputs, 
aligned the reads, generated counts relative to genes or transcripts, and performed an 
extensive quality control of the results. Quality score distribution across the reads was 
assessed with FastQC v0.11.8 (24) followed by the removal of adapter contamination 
and trimming of low-quality regions with TrimGalore v0.6.4 (25, 26). The RSeQC v3.0.1 
package (27) was used to evaluate the parameters read distribution, inner distance, read 
duplication, junction saturation, and infer experiment. Duplication rates for genes were 
analyzed using dupRadar v1.14.0 (28), and the complexity of the libraries was estimated 
using Preseq v2.0.3 (29). Reads were mapped to the reference genome R64-1-1 using 
vSTAR_2.6.1d (30), while the featureCounts v1.6.4 package (31) was selected to obtain 
counts of reads mapping to genes. The quality control output files were visualized using 
MultiQC v1.7 (32).

Differential gene expression and functional enrichment analysis

Gene counts were imported into R, and all subsequent analyses of differential gene 
expression (DGE) were done using the EdgeR package (33). Exploratory analysis to 
investigate sample similarities was performed through multi-dimensional scaling plots 

TABLE 1 S. cerevisiae strains used in this study

Strain Description
Reference or 
source

CEN.PK113-7D Haploid laboratory strain (18)
Ethanol Red Diploid industrial strain; commercially used for bioethanol 

production
Fermentis, USA

KE6-12 Diploid industrial strain expressing XYL1 and XYL2 from 
Pichia stipitis and overexpressing the endogenous XKS1. The 
strain is derived from TMB400 and has been subjected to 
evolutionary engineering for improved xylose fermentation 
efficiency and lignocellulosic inhibitor tolerance.

Albers et al., 
unpublished

LBCM31 Strain isolated from a cachaça distillery (19)
LBCM109 Strain isolated from a cachaça distillery (19)
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using the plotMDS function. Genes with low expression values were filtered out using 
the filterbyExpr function, followed by a normalization with the weighted trimmed 
mean of M-values using the calcNormFactor function. Gene dispersion was calculated 
using pairwise contrasts with the estimateDisp function. To evaluate the differentially 
expressed genes (DEGs), the function makeContrasts was selected, controlling the false 
discovery rate (FDR) using a Benjamini-Hochberg correction (FDR < 0.01).

Gene Ontology (GO) enrichment analysis was performed using the R package PIANO 
(Platform for Integrative Analysis of Omics) (34), using gene level statistics. Only genes 
that passed the threshold of an adjusted P value < 0.01 were selected for the analysis, 
and the limits of genes per cluster were set to 5 and 500. The code used for the analysis is 
available at GitHub (https://github.com/MorMauri/Transcriptomics-WSH). Pathway genes 
are presented according to the KEGG Pathway database (https://www.genome.jp/kegg/
pathway.html).

RESULTS AND DISCUSSION

All strains grew similarly in wheat straw hydrolysate

In order to investigate strain-dependent transcriptional responses to growth in WSH, 
five S. cerevisiae strains (Table 1) were grown in minimal medium supplemented with 
70% WSH. The strains included the laboratory strain CEN.PK113-7D, the industrial strains 
Ethanol Red (Fermentis, USA) and KE6-12 (Albers et al., unpublished), and two wild-type 
strains (19). The strains were grown anaerobically in batch cultures and sampled for RNA 
sequencing after having reached the stationary phase (Fig. 1). All strains grew rather 
similarly in the WSH; growth was resumed after a lag time of ~10 h (Fig. 1). Expectedly, 
as S. cerevisiae is auxotroph for ergosterol when grown anaerobically (35), only 2–3 
doublings were observed before the cells entered the stationary phase. Considering the 
differences in growth of the different strains in aerobic conditions, the similar growth 
patterns and fermentation profiles in anaerobic conditions were not expected. Notably, 
no statistical differences were seen within the physiological parameters measured for the 
two LBCM strains (Table 2). This simplified the comparison of the DEGs among these two 
strains as strain physiology at the sampling time per se was not expected to reflect their 
transcriptomes.

The biomass accumulation and µmax of the strains spanned from 2.7 ± 0.5 to 3.7 
± 0.3 g DCW L−1 and from 0.15 to 0.20 h−1, respectively (Table 2). Notably, the LBCM 
strains had a higher µmax compared with all other strains. At the time of harvest, all 
strains had consumed all or almost all the glucose and accumulated similar amounts of 
ethanol, ranging from 29.2 ± 1.5 to 33.6 ± 0.9 g L−1. The 70% WSH media used for this 
study contained 5.9 g L−1 acetic acid, and this concentration was retained or even slightly 
diminished in most cultures (Table 2). Only trace amounts of xylose were converted to 
xylitol with the exception of the xylose-utilizing KE6-12 strain that had consumed ~4 
g L−1 of xylose at the time of sampling (Table 2). Xylitol is produced from xylose by 
the native aldose reductase Gre3 (36) or in KE6-12 by the heterologously expressed 
xylose reductase, Xyl1. Both enzymes are NADPH dependent, and as NADPH is produced 
predominantly through the aerobic pentose phosphate pathway, this is likely to explain 
the modest xylitol production and xylose consumption of the strains.

Unsupervised and DGE analyses showed significant differences in gene 
expression between the strains

Unsupervised multi-dimensional scaling analysis revealed that the four replicate samples 
grouped together and also apart from other sample replicates (Fig. 2). This indicated a 
good reproducibility of the results, as well as a substantial difference in transcriptomic 
signature between the different samples. This presumably reflects the different genetic 
backgrounds of the strains. The levels of non-aligned sequences were similar for all 
strains; less than 10% of the sequences did not map to any loci.
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A large number of significantly (adjusted P-value < 0.01; fold change ≥2) DEGs were 
identified—from 1,357 in the comparison between LBCM31 and KE6-12 to 3,235 in the 
comparison between KE6-12 and Ethanol Red (Fig. 3). Considering the different genetic 
background of the strains analyzed, a high number of DEGs was expected. It should 
be noted that the RNA sequences of all strains were aligned to the same reference 
genome. This could potentially partially attribute to larger genome differences that 
could impact alignment of reads. Major differences in gene expression among different 
S. cerevisiae strains have been reported earlier (37, 38). van Dijk et al. (16) identified 1,162 
DEGs between S. cerevisiae cells of the same strain when cells adapted to lignocellulosic 
hydrolysate were compared with non-adapted cells. This study showed that a large 
amount of genes can be involved in the adaptive response. On the other hand, when 
the transcriptional response of S. cerevisiae T2 in the presence of individual inhibitors was 
compared with the transcription of cells in the presence of hardwood spent sulfite liquor, 

FIG 1 Anaerobic cultivation of CEN.PK113-7D (red squares), KE6-12 (yellow circles), Ethanol Red (green 

triangles), LBCM31 (blue diamonds), and LBCM109 (purple crosses) in minimal medium containing 70% 

WSH. Sampling time for each culture is indicated by the vertical dashed line in the corresponding color. 

Data obtained from four biological replicates; shadows show the standard deviation.

TABLE 2 DCW, maximal growth rate (µmax), and final metabolite concentration of the strainsa

Strain DCW
(g L−1)

µmax
(h−1)

Glucose
(g L−1)

Xylose
(g L−1)

Xylitol (g L−1) Acetate (g L−1) Ethanol (g L−1)

CEN.PK113-7D 2.7 ± 0.5 0.16 ± 0.1 0.7 ± 0.1 19.6 ± 0.3 0.6 ± 0.0 7.0 ± 0.0 32.8 ± 0.9
KE6-12 3.7 ± 0.3 0.15 ± 0.0 0.5 ± 0.0 15.9 ± 0.6 0.8 ± 0.2 5.6 ± 0.3 33.6 ± 0.9
Ethanol Red 3.2 ± 0.1 0.17 ± 0.0 0.6 ± 0.0 19.4 ± 0.1 0.3 ± 0.2 5.5 ± 0.4 32.2 ± 0.8
LBCM31 3.7 ± 0.2 0.20 ± 0.0 0.0 ± 0.0 19.4 ± 0.3 0.6 ± 0.1 5.0 ± 0.6 29.2 ± 1.5
LBCM109 3.6 ± 0.4 0.20 ± 0.0 0.0 ± 0.0 19.4 ± 0.0 0.6 ± 0.1 5.8 ± 0.3 31.6 ± 0.6
aData presented are the average of four biological replicates ± standard deviation. Also arabinose, HMF, and furfural were measured. Arabinose was not consumed by any 
strain, and HMF and furfural levels were below the detection level for all strains.
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merely 400 genes showed significant expression changes (15). This emphasizes that the 
number of DEGs can be strain and condition dependent.

Pairwise comparisons of strains revealed large overlaps in the most signifi
cant DEGs of the LBCM strains compared with the other strains

There was a large overlap between the genes that were expressed at the highest 
or lowest level in the LBCM strains, when compared with the other analyzed strains 
(supplementary materials: Fig. S1; Table S1). Considering all comparisons including the 
10 most significant DEGs, a total of 29/60 genes were common for both strains. All 
common genes expressed at the lowest level (GPP2, HOM3, MAL12, PRM7, and YAR028W) 
and two of the common genes expressed at the highest level (GRE1 and GTT1) in the 
LBCM strains compared with the CEN.PK113-7D strain have previously been identified 
to play a part in hydrolysate-related stress responses (1). HOM3 and PRM7 are both 
regulated by Gcn4, a transcriptional activator of amino acid biosynthetic genes. Genes 
involved in biosynthesis of amino acids are well known to be involved in the tolerance to 
lignocellulosic inhibitors (1, 15). GPP1 and GPP2 were expressed at a 1.6- or 3.8-fold lower 
level in the LBCM strains compared with the CEN.PK strain (supplementary materials: 
Fig. S1; Table S1). GPP1 and GPP2 encode glycerol phosphatases which are induced in 
response to osmotic stress (39), and overexpression of GPP2 was shown to increase 
tolerance to inhibitors in hydrolysates (2).

GRE1, which was among the highest expressed genes in the LBCM strains compared 
with CEN.PK113-7D, encodes a stress-induced hydrophilin. The expression of GRE1 was 
previously found to be downregulated in an industrial strain adapted to growth in 
lignocellulosic hydrolysates (16). Still, in other studies (and strains), GRE1 was found 
significantly upregulated in the presence of a mix of inhibitors common in hydrolysates 
(40, 41). The function of Gre1 has not been elucidated, but its paralogue, Sip18, was 

FIG 2 Unsupervised multi-dimensional scaling plot of all RNA sequencing samples of CEN.PK113-7D (red 

squares), KE6-12 (yellow circles), Ethanol Red (green triangles), LBCM31 (blue diamonds), and LBCM109 

(purple crosses). X and Y axes represent the first (dim 1) and second (dim 2) leading fold change that best 

separates the samples and explains the largest proportion of variation in the data.
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reported to be a cytoplasmic phospholipid-binding protein. The expression of SIP18 was 
shown to be induced by osmotic stress (42). In our study, SIP18 was highly expressed 
in both LBCM strains when compared with the CEN.PK strain (supplementary materials: 
Table S1). The high expression of GRE1 and SIP18 may thus be a means for counteracting 
osmotic stress in the LBCM strains, whereas the CEN.PK strain may be more prone to 
regulate its glycerol synthesis for achieving osmotolerance. In anaerobic conditions, 
glycerol production is essential to reoxidize NADH and glycerol is produced to counteract 
osmotic stress. Growth in lignocellulosic hydrolysates as well as ethanol accumulation is 
reported to cause osmotic stress in yeast (43).

The LBCM strains were isolated from a cachaça distillery where they have adapted to 
high ethanol concentrations and osmotic stress. A recent study comparing the genetic 
variation among 11 strains of the LBCM collection shared single-nucleotide variants of 
many genes encoding proteins involved in the tolerance to fermentative stresses and 
ethanol (44). This adaptation to ethanol may also explain the high expression levels of 
ZNF1 and AQY3, which were among the most highly expressed genes in the LBCM strains 
compared with KE6-12 (>3.5-fold increase, Fig. S1; Table S1). ZNF1 encodes a zinc cluster 
transcription factor required for adaptation to pH, osmotic, and ethanol stress (45). The 
overexpression of ZNF1 has been shown to increase acetic acid tolerance and improve 
ethanol productivity (46). Aqy3 is an aquaporin, similar to Fps1 that plays a critical role in 
osmoregulation by controlling the accumulation of the osmolyte glycerol but also small 
molecules such as acetate (47). Much less is known about Aqy3 compared with Fps1, but 
a recent study revealed that AQY3 was mutated in a strain resistant to low pH, elevated 
acetic acid concentrations, and high temperature (48). This indicates that Aqy3 indeed 
can play a role in resistance to stressors that are present in lignocellulosic hydrolysates. 

FIG 3 Counts of the significant DEGs between the strains analyzed. The number of genes that were expressed at a significantly higher (red bars) or lower (green 

bars) level for the strain reported at the bottom of the bars compared with the one specified at the top; CEN.PK113-7D, KE6-12, Ethanol Red, and LBCM31. 

Significance was defined as adjusted P value < 0.01 and fold change ≥ 2. Data presented are based on the average of four biological replicates.
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Changing the cellular uptake or export of inhibiting compounds can function as a 
complement to inhibitor detoxification inside the cells.

S. cerevisiae is able to detoxify formic acid to CO2 by formate dehydrogenases such 
as Fdh1, Fdh2, and YPL276W. FDH1 was among the genes whose relative expression 
in the LBCM strains compared with both KE6-12 or Ethanol Red was lowest (Fig. S1; 
Table S1). Similarly, the expression of FDH2 and YPL276W was expressed at a lower 
level in both LBCM strains when compared with KE6-12. We suggest that the higher 
expression of formate dehydrogenase-encoding genes may be a result of the strain 
improvement KE6-12 or Ethanol Red have gone through. Adaptive laboratory evolution 
to improve formate tolerance in S. cerevisiae CEN.PK 113-5D led to a ~ 3,000-fold higher 
expression of the formate dehydrogenase-encoding genes FDH1, YPL276W, and FDH2 
(49). Overexpression of FDH1 has been demonstrated to increase tolerance to formic acid 
and acetic acid, through decomposition of formic acid and generation of additional ATP, 
respectively (50).

The LBCM strains showed high expression of glutathione-related genes

Several genes involved in glutathione metabolism (and NADPH regeneration) were 
expressed at a significantly higher level in both LBCM strains compared with CEN.PK, 
namely, GTT1, URE2, GLR1, IDP3, IDP2, GND2, ZWF1, and PRX1 (Fig. 4). On the contrary, 
GSH2 was expressed at a significantly lower level (Fig. 4). GSH1, encoding a glutamyl
cysteine synthetase that catalyzes the first and rate-limiting step in the glutathione 
biosynthetic pathway, was highly expressed in LBCM109 but not differentially expressed 
in LBCM31 compared with CEN.PK (supplementary materials: Table S1). GSH2 encodes 
an ATP-dependent glutathione synthase and while GSH1 overexpression was shown 
to increase glutathione content in cells, the deletion of GSH2 was shown to have no 
impact on the resistance to oxidative stress (51). Increasing the glutathione content in 
yeast was shown to increase tolerance toward lignocellulose inhibitors (52). Many genes 
involved in glutathione metabolism have been reported to be upregulated during formic 
acid treatment (53). Oxidative stress due to accumulation of reactive oxygen species 
generated during aerobic growth in the presence of lignocellulosic hydrolysates is well 
documented. Moreover, the presence of furfural has been shown to lead to oxidative 
stress (54) and yeast has been suggested to suffer from oxidative stress also during 
anaerobic fermentation (55). Yeast cells lacking glutathione have been shown to be 
sensitive to oxidative stress (56).

Our data allows us to hypothesize that the LBCM strains have evolved to recycle 
glutathione rather than to produce more glutathione. GTT1 encoding a glutathione 
transferase was the most highly expressed gene when comparing the LBCM strains 
to CEN.PK. Glutathione transferases function to detoxify the cells against for instance 
xenobiotics, environmental pollutants, or harmful small molecules (57); thus, it seems 
plausible that Gtt1 could detoxify inhibitors found in lignocellulosic hydrolysates. GTT1 
was previously reported to be upregulated in evolved strains exposed to inhibitors (14). 
Similarly, high expression of PRX1 encoding a peroxiredoxin that upon oxidative stress 
transfers oxidative equivalents to glutathione that is oxidized to glutathione disulfide 
(58) could provide a means for the LBCM strains to ease their oxidative stress. Recently, 
oxidized glutathione was demonstrated to play a key role in the response of yeast to 
formic acid stress (53). Overexpression of GLR1 encoding a glutathione oxidoreductase 
was on its own shown to not impact glutathione contents of cells, possibly due to 
limitation of NADPH (52). Thus, the high expression of not only GLR1 but also many 
genes encoding enzymes responsible for NADPH regeneration (e.g., IDP2, IDP3, GND2, 
and ZWF1) may lead to increased glutathione-dependent antioxidant activity in the 
LBCM strains.
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Many GO terms previously associated with importance in hydrolysate 
tolerance were among the DEGs of the LBCM strains

While the LBCM strains were both isolated from cachaça distilleries and showed many 
similarities in terms of transcriptional response to lignocellulosic hydrolysates compared 
with the other strains analyzed, they still had ~2,000 DEGs (Fig. 3). Therefore, we did 
a comparative GO enrichment analysis on the DEGs of the two LBCM strains. A total 
of 23 GO terms were identified for the DGEs, and 13 of these referred to DNA or 
RNA processes (Fig. 5; supplementary materials: Table S2). All GO categories enriched 
contained DEGs expressed at both higher and lower levels in LBCM109 compared 
with LBCM31 (Fig. 5). In line with this, studies where the EUROSCARF mutants were 
profiled for resistance to inhibitors often demonstrated a great antagonism in the genes 
leading to increased tolerance towards inhibitors (1). Notably, a few GO terms that were 

FIG 4 Expression of genes related to glutathione metabolism and NADPH regeneration. (a) Schematic map depicting the metabolic pathway of glutathione 

according to the KEGG pathway representation. Elements in pink and blue represent genes that are expressed at a significantly (adjusted P value <  0.01) higher 

or lower level in both LBCM strains compared with CEN.PK113-7D. (b) Differential expression of genes related to glutathione metabolism in LBCM31 (blue bars) 

and LBCM109 (purple bars) compared with CEN.PK113-7D. The relative expression level of each gene is visualized as log2 of the fold change (log2 FC). The letters 

“ns” above the last bar represent the statistically non-significant (adjusted P value >  0.01) differential gene expression for that comparison.
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enriched during stress caused by lignocellulosic inhibitors in the study of Vanacloig-
Pedros et al. (59) were similar to the GO terms of the DGEs we noted when comparing 
LBCM31 to LBCM109, namely, “RNA processing and translation,” “amino acid biosynthesis 
and mitochondrial stress,” and “transcription regulation.” Transcription, translation, and 
amino acid synthesis-related GO terms were enriched for genes that were predominantly 
expressed at a lower level in LBCM109 compared with LBCM31 (Fig. 5). In line with this, a 
transcriptomic study with a S. cerevisiae strain adapted to spent sulfite liquor concluded 
that acetic acid and HMF stress affected genes associated with biosynthesis of amino 
acids (15). Modification of amino acid synthesis genes or overexpression of transcription 
factors has in many studies proven to be a successful strategy for improving tolerance 
toward inhibitors (1).

Among the enriched GO terms that predominantly contained genes expressed at 
a higher level in LBCM109 compared with LBCM31, we noted many terms describing 
metabolic processes, such as “dephosphorylation,” “carbohydrate metabolic process,” 
“transmembrane transport,” “lipid metabolic process,” and oxidation-reduction process” 
or DNA modulation, such as “DNA integration,” “transposition,” and “DNA recombina
tion.” Similarly, comparative transcriptomics of two strains evolved in lignocellulosic 
hydrolysates revealed 52 DEGs in medium with multiple inhibitors, >50% of which 
clustered in the GO term “metabolic process” that contains genes related to fatty acid 
metabolism, general cellular metabolism, and oxidative stress response (14). A large set 
of genes related to oxidative stress response was induced by propagation in lignocellulo
sic hydrolysates, further demonstrating their importance in hydrolysate tolerance (16). 
In summary, many of the GO terms enriched for genes that were differently expressed 
between the two LBCM strains were previously highlighted in studies on tolerance to 
hydrolysates or inhibitors therein, indicating that stress mechanisms typically identified 
during aerobic conditions may also be important for anaerobic processes. Almost all 
of the 10 most differently expressed genes of the LBCM strains (Fig. 6A) have been 
previously reported to be important for tolerance to hydrolysate or inhibitors therein 
[BNA6 (60), YHB1 (61), COX10 (62–65), SCW4 (2, 65), TOP1 (2, 66), UPS3 (2, 65), SOP4 (2, 
65, 66), SFP1 (64), SSM4 (66), STB4 (2, 65), SER33 (65), TMT1 (65), FAT3 (65), IMA1 (65), 
MAL13 (2, 65), and MAL11 (67)] or osmotic and oxidative stress tolerance [DOG2 (68)]. Still, 
their mechanistic role in this context is often still to be elucidated. It should however be 
noted that the genetic background of a strain may strongly influence how a specific gene 
influences strain physiology. Furthermore, the results from screens of the EUROSCARF 
deletion collection for tolerance to individual or mixed inhibitors (2, 62, 64, 65) have 
been shown to be highly context dependent (1). Therefore, we here highlight similarities 
among the LBCM strains that were previously identified across studies.

Cell wall-related genes and genes involved in lipid and membrane biosyn
thetic genes were upregulated in LBCM109 compared with LBCM31

Genes falling under the GO term “cell wall function” have previously been reported to be 
important for acetic acid tolerance (65). In our study, 3 of the 10 most upregulated genes 
in the carbohydrate metabolic process GO term that was enriched for LBCM109, SCW4, 
GAS2, and GAS5 encode proteins important for the cell wall (Table S4). SCW4 encodes a 
cell wall protein, whereas GAS2 and GAS5 encode 1,3-beta-glucanosyltransferases. GAS2 
was reported to be expressed exclusively during sporulation while GAS5 is expressed 
during vegetative growth (69). The overexpression of GAS2 was demonstrated to 
decrease growth in a medium supplemented with acetate (65) or lignocellulosic 
inhibitors (2). GAS5 deletion on the other hand was shown to increase acetate tolerance 
of a laboratory strain (65). The single deletion of SCW4 or GAS5 has been shown to alter 
the cell wall (70). The cell wall, together with the plasma membrane, is the first barrier of 
S. cerevisiae, and its structure is very important for the resistance to lignocellulosic 
hydrolysates [reviewed in reference (71)].

Out of the 50 genes comprised in the “lipid metabolism” GO term, 28 were differen-
tially expressed in LBCM109 and LBCM31 (Fig. 6B). Those genes encode proteins 
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regulating the metabolism and transport of a variety of lipids, including fatty acids (OLE1, 
CAT2, YAT1, and YAT2), sphingolipids (FAA4, FAA1, NCR1, LCB4, LAC1, LIP1, LAG1, and LCB3), 
acylglycerols (PLC1, TGL3, and DGA1), phospholipids (TGL4, SFK1, TGL5, NTE1, PGC1, GDE1, 
ARV1, and DCI1), and sterols (YEH1, YEH2) (Fig. 6B; supplementary material: Tables S3 and 
S4). Notably, many of the genes that were expressed at a higher level in LBCM109 when 
compared with LBCM31 encode proteins involved in synthesis and accumulation of 
sphingolipids or phospholipids. Sphingolipids as well as phospholipids are crucial 
components of the plasma membrane as well as other cellular membranes [reviewed by 
Hannun and Obeid (72)]. Previous studies revealed a link between a high level of 
complex sphingolipids and the natural tolerance of Zygosaccharomyces bailii to acetic 
acid (73–75). Furthermore, lipid remodeling of S. cerevisiae upon exposure to weak acids 
has been found to result in the increase of very-long-chain fatty acids, which are the 
precursors of sphingolipids (76). Guo et al. also uncovered a change in phospholipid 
composition following acid stress and found that overexpression of OLE1 led to an 
increased unsaturation index of fatty acids in the plasma membrane and a higher 
tolerance to acetic, formic, and levulinic acids. OLE1 that encodes an essential ∆-9 fatty 

FIG 5 GO term analysis of genes differently expressed in LBCM109 when compared with LBCM31. Percentages of expressed 

genes at a significantly (adjusted P value < 0.01) higher or lower level are marked in dark-red or dark-blue, respectively, 

whereas genes differently expressed, although not at a significant level (adjusted P value > 0.01), are marked in light-red or 

light-blue, respectively. The name of each GO term is inside the left or the right side of its relative bar, depending on whether 

the majority of the genes for that GO term are expressed at a higher (left side) or lower (right side) level. Each GO term name is 

followed by the total number of genes of that GO term. Data obtained from four biological replicates.
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acid desaturase required for the production of monounsaturated fatty acids was the 
most highly expressed gene for the “lipid metabolism” GO term in LBCM109 when 
compared with LBCM31. Similarly, FAA1 and FAA4 that are paralogs encoding long-chain 

FIG 6 Log2 FC of the (a) 10 genes expressed at highest or lowest level; (b) most significantly differentially expressed genes 

of the “lipid metabolism” GO term; (c) most significantly differentially expressed genes involved in ergosterol biosynthesis; 

(d) most significantly differentially expressed genes involved in iron metabolism or sugar transport in LBCM109 when 

compared with LBCM31. Significance was defined as adjusted P value < 0.01. Data are obtained from four biological replicates. 

All data on the DEGs are found in Tables S3-S4.
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fatty acyl-CoA synthases were highly expressed in LBCM109 (Fig. 6B). While the deletion 
of FAA1 was shown to increase tolerance to acetic acid (65), the Δfaa1 strain was more 
sensitive to formic acid (10). Deletion of FAA1 and FAA4 has been demonstrated to be an 
effective way to increase the level of free fatty acids in yeast (77), and sensitivity to 
oxidative stress in both aerobic and anaerobic conditions has been shown to be 
dependent on the membrane lipid composition (78). Also, genes involved in ergosterol 
biosynthesis, ERG27, ERG4, ERG28, ERG26, ERG9, ERG20, ERG1, and ERG29, were expressed 
at a higher level in LBCM109 compared with LBCM31 (Fig. 6C; supplementary material: 
Table S3). The ergosterol content of the cell membrane of S. cerevisiae has been reported 
to change under stress caused by organic acids (76). The deletion of individual ergosterol 
synthesis genes has been reported to alter tolerance to acetic and formic acids (1). 
Studying the lipid composition of the two LBCM strains could shed light on the role of 
lipid metabolism in the tolerance to lignocellulosic hydrolysates.

Various transporter-encoding genes were differently expressed in the two 
LBCM strains

Several genes encoding transporters have been reported to be involved in yeast 
tolerance to inhibitors or lignocellulosic hydrolysates (1). The importance of transport
ers was also highlighted in our study. The LBCM strains showed great differences in 
expression of genes of the GO terms “transport” (GO:0006810) and “transmembrane 
transport” (GO:0055085) (Fig. 6D; supplementary materials: Table S4). A total of 347 out 
of the 594 genes belonging to the GO term “transport” and 124 out of the 217 genes 
falling under the GO term “transmembrane transport” were significantly differentially 
expressed in LBCM31 and LBCM109 (supplementary materials: Table S4).

Five of the 20 most highly expressed transport genes in LBCM31 compared with 
LBCM109 were members of the hexose transporter family: HXT2, HXT3, HXT5, HXT7, and 
HXT13 (Fig. 6D, supplementary materials: Table S4). Moreover, the maltose and trehalose 
transporter-encoding gene MAL11 was the most highly expressed transporter-encoding 
gene in LBCM31 when compared with LBCM109. Overexpression of MAL11 was shown 
to improve xylose uptake in S. cerevisiae (79). GAL2 encoding another hexose transporter, 
a galactose permease important for uptake of xylose (80), as well as another maltose 
transporter-encoding gene, MAL31, and the hexose transporter genes HXT6 and HXT12 
were on the other hand expressed at a higher level in LBCM109 (Table S3). Overexpres
sion of hexose transporters has been proven to lead to higher glucose (81) or xylose 
[reviewed in reference (82)] uptake and improved cell growth in S. cerevisiae. A higher 
rate of glucose intake may help the cell in producing more energy as well as cofactors for 
inhibitor tolerance and detoxification (83). Furthermore, a faster glucose depletion may 
push the cell to consume sooner alternative carbon sources, such as acetic acid, hence 
contributing to a quicker detoxification of the media. Indeed, LBCM31 cultures displayed 
a slightly lower amount of acetic acid at the end of the cultivation compared with 
LBCM109 (Table 2). Thus, the two LBCM strains may have evolved different strategies for 
efficient sugar uptake.

Seven of the 10 most highly expressed genes belonging to the GO term “transport” 
in LBCM109 encode proteins involved in iron transport and homeostasis; Fit2, Fit3, Fre3, 
Fre5, Fet4, Arn2, and Enb1 (Fig. 6D). Also CCC1 and MRS3, encoding a vacuolar and a 
mitochondrial iron transporter, respectively, were expressed at a significantly higher level 
in LBCM109 compared with LBCM31 (Table S3). Iron is found in various biomolecules 
and is essential for all cells, whereas excessive iron levels are toxic, both in aerobic and 
anaerobic conditions (84). Many iron metabolism-related genes have been previously 
reported to be involved in tolerance toward lignocellulosic hydrolysate inhibitors (1). FIT2 
and FIT3 encode mannoproteins involved in the retention of siderophore-iron in the cell 
wall (85). Several iron transport-related genes, including FIT2 and FIT3, were upregulated 
in two S. cerevisiae strains upon exposure to furfural (86). The authors hypothesized that 
the high expression of siderophore iron transmembrane transporter-encoding genes 
may be a means for adaptation to a higher, inhibitor-induced, demand of iron (86). 
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They also mention iron leakage due to membrane damage as a possible explanation for 
increased need of iron transporters, which could also explain why the LBCM109 strain 
had high expression of ergosterol genes (Fig. 6C).

Conclusions

The LBCM strains had a higher µmax compared with the other strains when grown 
anaerobically in the presence of lignocellulosic hydrolysate. Our strain comparison 
demonstrates that naturally tolerant strains can be good alternatives to strains adapted 
to a specific substrate. When compared with the industrial strains or CEN.PK113-7D, 
the LBCM strains also shared many transcriptomic responses. Numerous genes showing 
differential expression among the strains have previously been recognized as crucial 
for tolerance to lignocellulosic hydrolysates or their inhibitors. This underscores that 
stress-related mechanisms identified under aerobic conditions also play a pivotal role 
in anaerobic processes. Collectively, the work sheds light on strain-specific mechanisms 
regulating lignocellulosic hydrolysate tolerance and improves our comprehension of 
stress resistance in yeast. This can be applied to improve the stress tolerance of S. 
cerevisiae for biorefinery applications.
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