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Abstract. We design and study splitting integrators for the temporal dis-

cretization of the stochastic FitzHugh–Nagumo system. This system is a model
for signal propagation in nerve cells where the voltage variable is the solution

of a one-dimensional parabolic PDE with a cubic nonlinearity driven by addi-

tive space-time white noise. We first show that the numerical solutions have
finite moments. We then prove that the splitting schemes have, at least, the

strong rate of convergence 1/4. Finally, numerical experiments illustrating the

performance of the splitting schemes are provided.

1. Introduction. The deterministic FitzHugh–Nagumo system is a simplified two-
dimensional version of the famous Hodgkin–Huxley model which describes how
action potentials propagate along an axon. Noise is omnipresent in neural systems
and arises from different sources: it could be internal noise (such as random synaptic
input from other neurons) or external noise, see for instance [31] for details. It was
noted in [44] that the addition of an appropriate amount of noise in the model helps
to detect weak signals. All this has attracted a large body of works on the analysis
of the influence of external random perturbations in neurons in the recent years,
see for instance [30, 31, 33, 38, 41, 44, 45, 47, 49].

In this article, we consider the stochastic FitzHugh–Nagumo system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B

Bt
u(t, ζ) =

B2

Bζ2
u(t, ζ) + u(t, ζ) − u3

(t, ζ) − v(t, ζ) +
B2

BtBζ
W (t, ζ),

B

Bt
v(t, ζ) = γ1u(t, ζ) − γ2v(t, ζ) + β,

B

Bζ
u(t,0) =

B

Bζ
u(t,1) = 0,

u(0, ζ) = u0(ζ), v(0, ζ) = v0(ζ),
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for ζ ∈ (0,1) and t ≥ 0. The objective of this article is to design and analyse
numerical integrators, which treat explicitly the nonlinearity, for the temporal dis-
cretization of the system above, based on splitting strategies.

In the stochastic partial differential equation (SPDE) above, the unknowns u =

(u(t))
t≥0

and v = (v(t))
t≥0

are L2(0,1)-valued stochastic processes, with initial val-

ues u0, v0 ∈ L2(0,1), see Section 2 and the standard monograph [21] on stochastic
evolution equations in Hilbert spaces. In addition, γ1, γ2, β ∈ R are three real-valued

parameters, ∆ = B
2

Bζ2
is the Laplace operator endowed with homogeneous Neumann

boundary conditions, and (W (t))
t≥0

is a cylindrical Wiener process, meaning that

the component u is driven by space-time white noise. The component u represents
the voltage variable while the component v the recovery variable. The noise repre-
sents random fluctuations of the membrane potential, see [44] for a related model
with a scalar noise. Note that in the considered system only the evolution of the
voltage variable u is driven by a Wiener process. Having noise for the evolution
of the recovery variable v would correspond to modelling different biological phe-
nomena which are not treated in this work. Instead of space-time white noise in
the evolution of the voltage variable, other types of Wiener processes, for instance
purely time-dependent Brownian motion or trace-class noises, could be considered.
See the references mentioned below for possible applications. Changing the type of
noise would require other techniques for the analysis and the numerical approxima-
tion of the SPDE system. This is out of the scope of the article.

The major difficulty in the theoretical and numerical analysis of the SPDE sys-
tem above is the nonlinearity u−u3 appearing in the evolution of the component u:
this nonlinearity is not globally Lipschitz continuous and has polynomial growth.
As proved in [3], using a standard explicit discretization like the Euler–Maruyama
method would yield numerical schemes which usually do not converge: more pre-
cisely, moment bounds, uniform with respect to the time step size, would not hold
for such methods.

For an efficient numerical simulation of the above SPDE system, we propose
to exploit a splitting strategy to define integrators and we show that appropriate
moment bounds and strong error estimates can be obtained. In a nutshell, the
main idea of a splitting strategy is to decompose the vector field, appearing in the
evolution equation, in several parts, in order to exhibit subsystems which can be
integrated exactly (or easily). One then composes the (exact or approximate) flows
associated with the subsystems to define integrators applied to the original problem.
Splitting schemes have a long history in the numerical analysis of ordinary and
partial differential equations, see for instance [5, 25, 29, 36] and references therein.
Splitting integrators have recently been applied and analysed in the context of
stochastic ordinary and partial differential equations. Without being exhaustive,
we refer the interested reader to [1, 2, 7, 12, 18, 28, 37] for the finite-dimensional
context and to [4, 10, 11, 13, 15, 19, 20, 22, 23, 32, 34, 35, 39] for the context of
SPDEs.

The main result of this paper is a strong convergence result, with rate of conver-
gence 1/4, for easy to implement splitting integrators, see Equation (23) in Subsec-
tion 3.2, for the time discretization of the SPDE defined above, see Theorem 3.3 for
a precise statement. To the best of our knowledge, Theorem 3.3 is the first strong
convergence result with rate obtained for a time discretization scheme applied to
the stochastic FitzHugh–Nagumo SPDE system. The first non-trivial step of the
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analysis is to obtain suitable moment bounds for the splitting scheme, see Theo-
rem 3.1. Note that the proof of the moment bounds of Theorem 3.1 is inspired by
the article [14] where splitting schemes for the stochastic Allen–Cahn equation

du(t) = ∆u(t)dt + (u(t) − u3
(t))dt + dW (t)

were studied. The proof of the strong convergence error estimates of Theorem 3.3
is inspired by the article [13]. However, one needs a dedicated and detailed anal-
ysis since the considered stochastic FitzHugh–Nagumo system is not a parabolic
stochastic evolution system, and several arguments are non trivial. Note also that
the construction of the splitting scheme is inspired by the recent article [16] which
treats a finite dimensional version

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

du(t) = (u(t) − u3
(t) − v(t))dt,

dv(t) = (γ1u(t) − γ2v(t) + β)dt + dB(t),

u(0) = u0, v(0) = v0,

of the stochastic FitzHugh–Nagumo system (where the finite-dimensional noise B
is in the v-component).

We now review the literature related to this work. The recent article [16] analyses
the strong convergence of splitting schemes for a class of semi-linear stochastic dif-
ferential equations (SDEs) as well as preservation of possible structural properties
of the problem. Applications to the proposed schemes to the stochastic FitzHugh–
Nagumo SDE are also presented. The work [46] performs extensive numerical sim-
ulations on the FitzHugh–Nagumo equation with space-time white noise in 1d. A
finite difference discretization is used in space, while the classical Euler–Maruyama
is used in time. The article [6] studies numerically the FitzHugh–Nagumo equation
with colored noise in 2d. In particular, the authors use a finite element discretiza-
tion in space and the semi-implicit Euler–Maruyama scheme in time. The two
previously mentioned works employ crude explicit discretization for the nonlinear-
ity and therefore may have the issues about moment bounds discussed above. The
work [24] proves convergence (without rates) of a fully-discrete numerical scheme,
based on a Galerkin method in space and the tamed Euler scheme in time, for a
general SPDE with super-linearly growing operators. This is then applied to the
FitzHugh–Nagumo equation with space-time white noise in 1d. The articles [42]
and [43] prove strong convergence rates of a finite difference spatial discretization
of the FitzHugh–Nagumo equation with space-time white noise in 1d.

This article is organized as follows. The setting is given in Section 2, in par-
ticular this allows us to state a well-posedness result for the considered stochastic
FitzHugh–Nagumo system. The splitting strategy, the proposed integrators and
the main results of the paper are then presented in Sections 3.1, 3.2 and 3.3 respec-
tively. Several auxiliary results are stated and proved in Section 4. Section 5 gives
the proofs of Theorems 3.1 and 3.3. Finally, numerical experiments are provided in
Section 6.

2. Setting. This section is devoted to introducing the functional framework, the
linear and nonlinear operators, and the Wiener process. This allows us to consider
the stochastic FitzHugh–Nagumo SPDE system as a stochastic evolution equation
in the classical framework of [21].
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2.1. Functional framework. Let us first introduce the infinite-dimensional, sep-
arable Hilbert space H = L2(0,1) of square integrable functions from (0,1) to R.
This space is equipped with the inner product ⟨⋅, ⋅⟩H and the norm ∥ ⋅ ∥H which
satisfy

⟨u1, u2⟩H = ∫

1

0
u1(ζ)u2(ζ)dζ, ∥u∥H =

√
⟨u,u⟩H ,

respectively, for all u1, u2, u ∈H. Let us then introduce the product spaceH =H×H,
which is also an infinite-dimensional, separable Hilbert space, with the inner product
⟨⋅, ⋅⟩H and the norm ∥ ⋅ ∥H defined by

⟨x1, x2⟩H = ⟨u1, u2⟩H + ⟨v1, v2⟩H , ∥x∥H =

√

∥u∥2
H + ∥v∥2

H ,

for all x1 = (u1, v1), x2 = (u2, v2), x = (u, v) ∈H.
Let also E = C0([0,1]) be the space of continuous functions from [0,1] to R, and

set E = E ×E. Then E and E are separable Banach spaces, with the norms ∥ ⋅ ∥E
and ∥ ⋅ ∥E defined by

∥u∥E = max
ζ∈[0,1]

∣u(ζ)∣, ∥x∥E = max(∥u∥E , ∥v∥E)

for all u ∈ E and x = (u, v) ∈ E .
Let us denote the inner product and the norm in the finite-dimensional Euclidean

space R2 by ⟨⋅, ⋅⟩ and ∥ ⋅ ∥ respectively. If M is a 2 × 2 real-valued matrix, let
~M~ = sup

x∈R2; ∥x∥=1

∥Mx∥.

Finally, in the sequel, N = {1,2, . . .} denotes the set of integers and N0 = {0}∪N =

{0,1, . . .} denotes the set of nonnegative integers. We often write j ≥ 1 (resp. j ≥ 0)
instead of j ∈ N (resp. j ∈ N0).

2.2. Linear operators. This subsection presents the material required to use the
semigroup approach for SPDEs, see for instance [21].

For all j ∈ N, set λj = (jπ)2 and ej(ζ) =
√

2 cos(jπζ) for all ζ ∈ [0,1]. In addition,

set λ0 = 0 and e0(ζ) = 1 for all ζ ∈ [0,1]. Then (ej)j≥0
is a complete orthonormal

system of H, and one has
∆ej = −λjej

for all j ≥ 0, where ∆ denotes the Laplace operator with homogeneous Neumann
boundary conditions. For all u ∈H and all t ≥ 0, set

et∆u =∑
j≥0

e−tλj ⟨u, ej⟩Hej . (1)

Then, for any u0 ∈H, the mapping (t, ζ)↦ u(t, ζ) = et∆u0(ζ) is the unique solution
of the heat equation on (0,1) with homogeneous Neumann boundary conditions
and initial value u(0, ⋅) = u0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bu(t, ζ)

Bt
= ∆u(t, ζ), t > 0, ζ ∈ (0,1),

Bu(t,0)

Bζ
=

Bu(t,1)

Bζ
= 0, t > 0,

u(0, ζ) = u0(ζ), ζ ∈ (0,1).

For all α ∈ [0,2], set

Hα
=

⎧⎪⎪
⎨
⎪⎪⎩

u ∈H; ∑
j≥0

λαj ⟨u, ej⟩
2
H <∞

⎫⎪⎪
⎬
⎪⎪⎭

,



218 CHARLES-EDOUARD BRÉHIER, DAVID COHEN AND GIUSEPPE GIORDANO

(−∆)
α
2 u =∑

j≥0

λ
α
2

j ⟨u, ej⟩Hej , u ∈Hα.

Observe that H0 = H = L2(0,1). The Laplace operator ∆ with homogeneous
Neumann boundary conditions is a self-adjoint unbounded linear operator on H,
with domain D(∆) = H2. We also let Hα = Hα × H for all α ∈ [0,2]. For all
α ∈ [0, 3

2
), Hα is the fractional Sobolev space Wα,2(0,1) – in particular one has

H1 =W 1,2(0,1) – whereas for α = 2 one has H2 = {u ∈W 2,2(0,1); Bu
Bζ

(0) = Bu
Bζ

(1) =

0} due to the choice of homogeneous Neumann boundary conditions in this work.
These results follow for instance from the analysis in [48, Theorem 16.7] which
provides the equivalence of domains and norms associated with fractional powers of
the operator −∆ + 1.

Let us now introduce the linear operator Λ, defined as follows: for all x = (u, v) ∈
H2, set

Λx = (
−∆u

0
) .

Then Λ is a self-adjoint unbounded linear operator on H, with domain D(Λ) =H2.
For all x = (u, v) ∈H and t ≥ 0, set

e−tΛx = (
et∆u
v

) . (2)

Regularity estimates for this operator are presented in Section 4 below.

2.3. Nonlinear operator. Let β, γ1, γ2 ∈ R be parameters of the model. Define
the mapping F ∶ R2 → R2 such that for all x = (u, v) ∈ R2 one has

F (x) = (
u − u3 − v

γ1u − γ2v + β
) .

In order to define splitting schemes, it is convenient to introduce two auxiliary
mappings FNL ∶ R2 → R2 and FL ∶ R2 → R2 defined as follows: for all x = (u, v) ∈ R2,
set

FNL
(x) = (

u − u3

β
)

FL
(x) = (

−v
γ1u − γ2v

) = Bx,

where the matrix B is defined by

B = (
0 −1
γ1 −γ2

) .

One then has
F (x) = FNL

(x) + FL
(x) (3)

for all x ∈ R2. The mapping FL is globally Lipschitz continuous: for all x1, x2 ∈ R2

one has
∥FL

(x2) − F
L
(x1)∥ ≤ ~B~∥x2 − x1∥.

However F and FNL are only locally Lipschitz continuous, and satisfy a one-sided
Lipschitz continuity property: there exists C ∈ (0,∞) such that for all x1, x2 ∈ R2

one has

⟨x2−x1, F
NL

(x2)−F
NL

(x1)⟩ ≤ C∥x2−x1∥
2, ⟨x2−x1, F (x2)−F (x1)⟩ ≤ C∥x2−x1∥

2.
(4)
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In the sequel, an abuse of notation is used for simplicity: the same notation is
employed for a mapping f ∶ R2 → R2 and for the associated Nemytskii operator
defined on H or on E by f(u, v) = f(u(⋅), v(⋅)).

2.4. Wiener process. It remains to define the noise that drives the stochastic
FitzHugh–Nagumo system. We refer to the monograph [21] and for instance to the
lecture notes [8] for details on Wiener processes on Hilbert spaces. Let (W (t))

t≥0

be a cylindrical Wiener process on H: given a sequence (βj(⋅))j≥0
of independent

standard real-valued Wiener processes, defined on a probability space (Ω,F ,P)
equipped with a filtration (Ft)t≥0

which satisfies the usual conditions and where

E[⋅] denotes the expectation operator on the probability space, set

W (t) =∑
j≥0

βj(t)ej . (5)

For all t ≥ 0, define

W(t) = (
W (t)

0
) =∑

j≥0

βj(t)(
ej
0
) ,

then (W(t))
t≥0

is a generalized Q-Wiener process on H, with the covariance oper-
ator

Q = (
I 0
0 0

) .

Note that almost surely W (t) ∉H andW(t) ∉H for all t > 0. However, for all T ≥ 0,

the Itô stochastic integrals ∫
T

0 L(t)dW (t) and ∫
T

0 L(t)dW(t) are well-defined H-

valued and H-valued random variables respectively, if (L(t))
0≤t≤T

and (L(t))
0≤t≤T

are continuous adapted processes which satisfy ∑j≥0 ∫
T

0 E[∥L(t)ej∥
2
H]dt < ∞ and

∑j≥0 ∫
T

0 E[∥L(t)(
ej
0
)∥2
H]dt <∞ respectively.

Observe that for all T ≥ 0 one has

∑
j≥0
∫

T

0
∥et∆ej∥

2
H dt =∑

j≥0
∫

T

0
∥e−tΛ (

ej
0
)∥

2
H dt ≤ T +∑

j≥1

λ−1
j <∞.

Therefore, for all t ≥ 0 one can define the H-valued random variable Z(t) and the
H-valued random variable Z(t), called the stochastic convolutions, by

Z(t) = ∫
t

0
e(t−s)∆ dW (s),

Z(t) = ∫
t

0
e−(t−s)Λ dW(s).

(6)

The processes (Z(t))
t≥0

and (Z(t))
t≥0

are interpreted as the mild solutions of the

stochastic evolution equations

dZ(t) = ∆Z(t)dt + dW (t),

dZ(t) = −ΛZ(t)dt + dW(t)

with initial values Z(0) = 0 and Z(0) = 0. Note that Z(t) = (
Z(t)

0
) for all t ≥ 0.
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2.5. The stochastic FitzHugh–Nagumo SPDE system. In this work, we study
numerical schemes for the FitzHugh–Nagumo stochastic system for signal propaga-
tion in nerve cells. This system is written as the stochastic evolution system

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

du(t) = ∆u(t)dt + (u(t) − u3
(t) − v(t))dt + dW (t),

dv(t) = (γ1u(t) − γ2v(t) + β)dt,

u(0) = u0, v(0) = v0,

(7)

where the unknowns u(⋅) = (u(t))
t≥0

and v(⋅) = (v(t))
t≥0

are H-valued stochastic

processes, and with initial values u0 ∈H and v0 ∈H. Recall that Neumann boundary
conditions are used in the above system. Using the notation introduced above and
setting X(t) = (u(t), v(t)) for all t ≥ 0, the stochastic evolution system (7) is treated
in the sequel as the stochastic evolution equation

dX(t) = −ΛX(t)dt + F (X(t))dt + dW(t), X(0) = x0, (8)

with the initial value x0 = (u0, v0) ∈ H. For all T ∈ (0,∞), a stochastic process
(X(t))

0≤t≤T
is called a mild solution of (8) if it has continuous trajectories with

values in H, and if for all t ∈ [0, T ] one has

X(t) = e−tΛx0 + ∫

t

0
e−(t−s)ΛF (X(s))ds + ∫

t

0
e−(t−s)Λ dW(s). (9)

In the framework presented in this section, the stochastic evolution equation (8)
admits a unique global mild solution, for any initial value x0 ∈ H2α ∩ E and for
α ∈ [0, 1

4
), see Proposition 4.5 below.

For simplicity, the initial values u0, v0, resp. x0, appearing in (7), resp. (8), are
deterministic. It would be straightforward to extend the results below for random
initial values which are independent of the Wiener process and are assumed to
satisfy appropriate moment bounds, using a conditioning argument.

3. Splitting schemes. The time-step size of the integrators defined below is de-
noted by τ . Without loss of generality, it is assumed that τ ∈ (0, τ0), where τ0 is
an arbitrary positive real number, and that there exists T ∈ (0,∞) and N ∈ N such
that τ = T /N . The notation tn = nτ for n ∈ {0, . . . ,N} is used in the sequel. The
increments of the Wiener processes (W (t))

t≥0
and (W(t))

t≥0
are denoted by

δWn =W (tn+1) −W (tn), δWn =W(tn+1) −W(tn) = (
δWn

0
) .

The proposed time integrators for the SPDE (8) are based on a splitting strategy.
Recall that the main principle of splitting integrators is to decompose the vector
field of the evolution problem in several parts, such that the arising subsystems are
exactly (or easily) integrated. We define these subsystems in Subsection 3.1, then
give the definitions of three splitting schemes in Subsection 3.2 and state the main
results of this article in Subsection 3.3.

3.1. Solutions of auxiliary subsystems. The construction of the proposed split-
ting schemes is based on the combination of exact or approximate solutions of the
three subsystems considered below.
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● The nonlinear differential equation (considered on the Euclidean space R2)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

dxNL(t)

dt
= FNL

(xNL
(t)),

xNL
(0) = x0 ∈ R2

(10)

admits a unique global solution (xNL(t))
t≥0

. This solution has the following exact

expression, see for instance [14, Equation (3)]: for all t ≥ 0 and x0 = (u0, v0) ∈ R2,
one has

xNL
(t) = φNL

t (x0) =
⎛

⎝

u0√
u2
0+(1−u

2
0)e

−2t

v0 + βt

⎞

⎠
. (11)

● The linear differential equation (considered on the Euclidean space R2)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

dxL(t)

dt
= FL

(xL
(t)),

xL
(0) = x0 ∈ R2

(12)

admits a unique global solution (xL(t))
t≥0

. This solution has the following expres-

sion: for all t ≥ 0 and x0 = (u0, v0) ∈ R2, one has

xL
(t) = φL

t (x0) = e
tBx0. (13)

● The stochastic evolution equation (considered on the Hilbert space H)

{
dXs

(t) = −ΛXs
(t)dt + dW(t)

Xs
(0) = x0 ∈H

(14)

admits a unique global solution (Xs(t))
t≥0

. This solution has the following expres-

sion: for all t ≥ 0 and x0 = (u0, v0) ∈H, one has

Xs
(t) = e−tΛx0 + ∫

t

0
e−(t−s)ΛdW(s) = (

et∆u0 + ∫
t

0 e
(t−s)∆ dW (s)
v0

) , (15)

see (6) for the expression of the stochastic convolution. For all n ∈ {0, . . . ,N − 1},
set Xs,exact

n =Xs(tn), then one has the following recursion formula

Xs,exact
n+1 = e−τΛXs,exact

n + ∫

tn+1

tn
e−(tn+1−s)Λ dW(s) (16)

recalling the notation tn = nτ .
Instead of using the exact solution (15) of the stochastic convolution (14), one

can use approximate solutions (Xs,exp
n )

n≥0
= (us,exp

n , vs,exp
n )

n≥0
and (Xs,imp

n )
n≥0

=

(us,imp
n , vs,imp

n )
n≥0

defined by an exponential Euler scheme and a linear implicit

Euler scheme respectively:

Xs,exp
n+1 = e−τΛ

(Xs,exp
n + δWn) = (

eτ∆(us,exp
n + δWn)

vs,exp
n

) , (17)

and

Xs,imp
n+1 = (I + τΛ)

−1
(Xs,imp

n + δWn) = (
(I − τ∆)−1(us,imp

n + δWn)

vs,imp
n

) , (18)

with initial values Xs,exp
0 = Xs,imp

0 = x0 = (u0, v0) ∈ H, us,exp
0 = us,imp

0 = u0 ∈ H and

vs,exp
0 = vs,imp

0 = v0 ∈H.
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It is worth mentioning that one has∑j≥0 ∥eτ∆ej∥
2 <∞ and∑j≥0 ∥(I−τ∆)−1ej∥

2 <

∞, therefore the random variables eτ∆δWn = ∫
tn+1
tn

eτ∆ dW (s) and (I−τ∆)−1δWn =

∫
tn+1
tn

(I − τ∆)−1 dW (s) appearing in (17) and (18) above make sense and are H-

valued Gaussian random variables. Similarly, e−τΛδWn and (I + τΛ)
−1
δWn are

well-defined H-valued Gaussian random variables.

3.2. Definition of the splitting schemes. We are now in position to introduce
the three splitting schemes studied in this article. They are constructed using a
Lie–Trotter strategy, where first the subsystems (10), (12) are solved exactly using
the flow maps (11) and (13) respectively, and where the subsystem (14) is either
solved exactly using (15) or approximately using (17) or (18).

For the composition of the first two subsystems, define the mapping φτ ∶ R2 → R2

as follows: for all τ ∈ (0, τ0), set

φτ = φ
L
τ ○ φ

NL
τ . (19)

Using the expression (16) for the exact solution (15) of (14) leads to the definition of
the following explicit splitting scheme for the stochastic FitzHugh–Nagumo SPDE
system (7):

XLT,exact
n+1 = e−τΛφτ(X

LT,exact
n ) + ∫

tn+1

tn
e−(tn+1−s)Λ dW(s). (20)

Using the exponential Euler scheme (17) to approximate the solution of (14) leads
to the definition of the following explicit splitting scheme for (7):

XLT,expo
n+1 = e−τΛφτ(X

LT,expo
n ) + e−τΛδWn. (21)

Using the linear implicit Euler scheme (18) to approximate the solution of (14)
leads to the definition of the following splitting scheme for (7):

XLT,imp
n+1 = (I + τΛ)

−1φτ(X
LT,imp
n ) + (I + τΛ)

−1δWn. (22)

For these three Lie–Trotter splitting schemes (20), (21) and (22), the same initial
value is imposed:

XLT,exact
0 =XLT,expo

0 =XLT,imp
0 = x0 ∈H.

Before proceeding with the statements of the main results, let us give several
observations and auxiliary tools.

Observe that the three schemes (20), (21) and (22) can be written using the
single formulation

Xn+1 = Aτφτ(Xn) + ∫

tn+1

tn
Btn+1−s dW(s) (23)

which is used in the analysis below. The expressions of the linear operators Aτ and
Btn+1−s for each of the three schemes are given by: Aτ = e

−τΛ,Btn+1−s = e
−(tn+1−s)Λ

for the scheme (20) Aτ = Btn+1−s = e
−τΛ for the scheme (21), and Aτ = Btn+1−s =

(I + τΛ)−1 for the scheme (22).
For any value τ ∈ (0, τ0) of the time-step size, introduce the mapping ψτ ∶ R2 → R2

defined as follows: for all x ∈ R2,

ψτ(x) =
φτ(x) − x

τ
. (24)



SPLITTING SCHEMES FOR FITZHUGH–NAGUMO SPDES 223

The Lie–Trotter splitting scheme (23) is then written as

Xn+1 = AτXn + τAτψτ(Xn) + ∫

tn+1

tn
Btn+1−s dW(s)

and can thus be interpreted as a numerical scheme applied to the auxiliary stochastic
evolution equation

dXτ(t) = −ΛXτ(t)dt + ψτ(Xτ(t))dt + dW(t), Xτ(0) = x0. (25)

Note that the SPDE (25) is similar to the original problem (8), however the non-
linearity F is replaced by the auxiliary mapping ψτ .

3.3. Main results. In this subsection, we state the main results of this article.
First, we give moment bounds for the three splitting schemes (23), see Theorem 3.1.
Then, we give strong error estimates, with rate of convergence 1/4, for the nu-
merical approximations of the solution of the stochastic FitzHugh–Nagumo SPDE
system (8), see Theorem 3.3.

Theorem 3.1. For all T ∈ (0,∞) and p ∈ [1,∞), there exists Cp(T ) ∈ (0,∞) such
that for all x0 ∈ E one has

sup
τ∈(0,τ0)

sup
0≤n≤N

E[∥Xn∥
p
E
] ≤ Cp(T )(1 + ∥x0∥

p
E
), (26)

where (Xn)n≥0
is given by (23) (with initial value X0 = x0), and where T = Nτ with

N ∈ N.

The proof of this theorem is postponed to Section 5.

Remark 3.2. The nonlinear mapping F is not globally Lipschitz continuous and
has polynomial growth. Therefore, if one employs a standard implicit-explicit or
exponential explicit Euler scheme

Xn+1 = AτXn + τAτF (Xn) + ∫

tn+1

tn
Btn+1−s dW(s)

with X0 = x0, applied directly to the original SPDE, where the same notation as for
the scheme (23) is used, it is expected that one has

sup
τ∈(0,τ0)

sup
0≤n≤N

E[∥Xn∥
p
E
] = sup

τ∈(0,τ0)

sup
0≤n≤N

E[∥Xn∥
p
H
] =∞.

This behavior is mentioned for instance in [24], and is analyzed in [3] for the sto-
chastic Allen–Cahn equation. As a consequence Theorem 3.1 is not a trivial result
and illustrates the superiority of the proposed explicit splitting scheme compared
with a crude explicit discretization method.

We are now in position to state our strong convergence result. Its proof is given
in Section 5.

Theorem 3.3. For all T ∈ (0,∞), p ∈ [1,∞) and α ∈ [0, 1
4
), there exists Cα,p(T ) ∈

(0,∞) such that for all x0 = (u0, v0) ∈H
2α ∩ E, all τ ∈ (0, τ0), one has

sup
0≤n≤N

(E[∥X(tn) −Xn∥
p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥(−∆)

αu0∥
7
H + ∥x0∥

7
E). (27)

The order of convergence 1/4 obtained in Theorem 3.3 is consistent with the tem-
poral Hölder regularity property of the trajectories t ↦ X(t) ∈ H. It is also consis-
tent with the strong convergence rate obtained in [13] for the stochastic Allen–Cahn
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equation. However new arguments are required to study the FitzHugh–Nagumo sys-
tem which is not a parabolic SPDE problem, and which has a cubic nonlinearity.

Let us state two of the main auxiliary results which are used in the proofs of the
main results. These propositions are proved in Subsection 4.2.

Proposition 3.4. For all τ ∈ (0, τ0), the mapping φτ ∶ R2 → R2 defined by (19) is
globally Lipschitz continuous. In addition, for all τ ∈ (0, τ0) and all x1, x2 ∈ R2 one
has

∥φτ(x2) − φτ(x1)∥ ≤ e
(1+~B~)τ

∥x2 − x1∥. (28)

Proposition 3.5. There exists C(τ0) ∈ (0,∞) such that for all τ ∈ (0, τ0), the
mapping ψτ ∶ R2 → R2 defined by (24) satisfies the following properties: for all
x1, x2 ∈ R2, one has

⟨x2 − x1, ψτ(x2) − ψτ(x1)⟩ ≤ C(τ0)∥x2 − x1∥
2 (29)

∥ψτ(x2) − ψτ(x1)∥ ≤ C(τ0)(1 + ∥x1∥
3
+ ∥x2∥

3)∥x2 − x1∥, (30)

and for all x ∈ R2 one has

∥ψτ(x) − F (x)∥ ≤ C(τ0)τ(1 + ∥x∥5). (31)

Finally, one has

sup
τ∈(0,τ0)

∥ψτ(0)∥ <∞. (32)

The inequality (29) states that ψτ satisfies a one-sided Lipschitz continuity prop-
erty which is uniform with respect to τ ∈ (0, τ0). This is similar to the property (4)
satisfied by F . It is straightforward to check that ψτ is in fact globally Lipschitz
continuous for any fixed τ ∈ (0, τ0), however this property does not hold uniformly
with respect to τ ∈ (0, τ0). Instead, one has the one-sided Lipschitz continuity prop-
erty (29) and the local Lipschitz continuity property (30) which are both uniform
with respect to τ ∈ (0, τ0).

4. Preliminary results. In this section we state and prove several results which
are required for the analysis of the three splitting schemes of type (23). In par-
ticular, we give properties of the semigroup (Proposition 4.1), we then prove the
properties of the auxiliary mappings φτ (Proposition 3.4) and ψτ (Proposition 3.5),
and finally we study the well-posedness and moment bounds for the mild solution
of the considered SPDE.

4.1. Properties of the semigroup. In this subsection, we study properties of the
semigroup generated by the linear operator Λ in the stochastic FitzHugh–Nagumo
system (8). In addition, estimates for the operator (I+τΛ)−1 used in the semi-linear
splitting schemes (18) and (22) are also provided.

Proposition 4.1. The semigroup (e−tΛ)
t≥0

defined by (2) satisfies the following
properties:
● For all t ≥ 0, e−tΛ is a bounded linear operator from H to H and from E to E . In
addition, for all t ≥ 0 one has

sup
x∈H∖{0}

∥e−tΛx∥H
∥x∥H

= 1, sup
x∈E∖{0}

∥e−tΛx∥E
∥x∥E

= 1. (33)
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● Smoothing property. For all α ∈ [0,∞), there exists a real number Cα ∈ (0,∞)

such that, for all (u, v) ∈H and all t ∈ (0,∞), one has

∥e−tΛ((−∆)
αu, v)∥H ≤ Cαmin(1, t)−α∥(u, v)∥H. (34)

● Temporal regularity. For all µ, ν ≥ 0 with µ + ν ≤ 1, there exists a real number
Cµ,ν ∈ (0,∞) such that, for all x = (u, v) ∈H2ν and all t1, t2 ∈ (0,∞), one has

∥e−t2Λx − e−t1Λx∥H ≤ Cµ,ν
∣t2 − t1∣

µ+ν

min(t2, t1)µ
∥(−∆)

νu∥H . (35)

Proof. ● On the one hand, since the eigenvalues (λj)j≥0
of −∆ are nonnegative, it

is straightforward to see that for all x = (u, v) ∈H and t ≥ 0 one has e−tΛx ∈H, and

∥e−tΛx∥2
H = ∥et∆u∥2

H + ∥v∥2
H ≤ ∥u∥2

H + ∥v∥2
H = ∥x∥2

H.

This proves that e−tΛ is a bounded linear operator from H to H for all t ≥ 0, and
that

sup
x∈H∖{0}

∥e−tΛx∥H
∥x∥H

≤ 1.

On the other hand, using the formula for the Green function of the heat equation
with homogeneous Neumann boundary conditions, the semigroup (et∆)

t≥0
defined

by (1) satisfies the following properties: for all t ≥ 0 and u ∈ E, one has et∆u ∈ E and
∥et∆u∥E ≤ ∥u∥E . As a consequence, for all x = (u, v) ∈ E , one has e−tΛx = (et∆u, v) ∈
E and

∥e−tΛx∥E = max(∥et∆u∥E , ∥v∥E) ≤ max(∥u∥E , ∥v∥E) = ∥x∥E .

To conclude the proof of (33), it suffices to check that for x = (0, v) and all t ≥ 0
one has e−tΛx = x.
● The smoothing property (34) is a straightforward consequence of the smoothing

property for the semigroup (et∆)
t≥0

: for all α ∈ [0,∞), t ≥ 0 and u ∈ H, one has

(recall that λ0 = 0)

∥et∆(−∆)
αu∥2

H =∑
j≥1

e−2tλjλ2α
j ⟨u, ej⟩

2
H ≤ sup

ξ∈(0,∞)

(ξ2αe−2ξ) t−2α
∥u∥2

H .

As a consequence, for all α ∈ [0,∞), t ≥ 0 and x = (u, v) ∈H, one has

∥e−tΛ((−∆)
αu, v)∥2

H = ∥et∆(−∆)
αu∥2

H + ∥v∥2
H ≤ C2

αt
−2α

∥u∥2
H + ∥v∥2

H

≤ C2
αmin(1, t)−2α

∥x∥2
H.

● The regularity property (35) is a straightforward consequence of the following
regularity property for the semigroup (et∆)

t≥0
: for all µ, ν ∈ [0,1] with µ + ν ≤ 1,

0 ≤ t1 ≤ t2 and u ∈H2ν , one has

∥et2∆u − et1∆u∥2
H = ∥(e(t2−t1)∆ − I)et1∆u∥2

H

=∑
j≥1

(e−(t2−t1)λj − 1)
2
e−2t1λj ⟨u, ej⟩

2
H

≤ 22(µ+ν)
(t2 − t1)

2(µ+ν)
∑
j≥1

λ
2(µ+ν)
j e−2t1λj ⟨u, ej⟩

2
H

≤ 22(µ+ν) sup
ξ∈(0,∞)

(ξ2µe−2ξ)
(t2 − t1)

2(µ+ν)

t2µ1
∑
j≥1

λ2ν
j ⟨u, ej⟩

2
H

≤ 22(µ+ν) sup
ξ∈(0,∞)

(ξ2µe−2ξ)
(t2 − t1)

2(µ+ν)

t2µ1
∥(−∆)

νu∥2
H .
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As a consequence, for all µ, ν ∈ [0,1] with µ + ν ≤ 1, 0 ≤ t1 ≤ t2 and x = (u, v) ∈

H2ν ×H, one has

∥e−t2Λx − e−t1Λx∥H = ∥et2∆u − et1∆u∥H ≤ Cµ,ν
∣t2 − t1∣

µ+ν

tµ1
∥(−∆)

νu∥H .

The proof of Proposition 4.1 is thus completed.

In the sequel, the following properties are also used for the analysis of the split-
ting scheme (22) for which a linear implicit Euler method is used for the approx-
imation (18) of the stochastic convolution: for all t ≥ 0, (I + tΛ)−1 is a bounded
linear operator from H to H and from E to E , and one has

sup
x∈H∖{0}

∥(I + tΛ)−1x∥H
∥x∥H

= 1, sup
x∈E∖{0}

∥(I + tΛ)−1x∥E
∥x∥E

= 1. (36)

The proof of the inequality (36) is straightforward. Indeed, for all x ∈ H or x ∈ E ,
and all t ≥ 0, one has

(I + tΛ)
−1x = ∫

∞

0
e−(I+tΛ)sxds.

Using (33), one then obtains the inequalities

∥(I + tΛ)
−1x∥H ≤ ∫

∞

0
e−s∥e−tsΛx∥H ds ≤ ∫

∞

0
e−s ds∥x∥H = ∥x∥H

∥(I + tΛ)
−1x∥E ≤ ∫

∞

0
e−s∥e−tsΛx∥E ds ≤ ∫

∞

0
e−s ds∥x∥E = ∥x∥E .

Like in the proof of (33), choosing x = (0, v) gives (I + tΛ)−1x = x for all t ≥ 0, and
thus concludes the proof of (36).

4.2. Proofs of Propositions 3.4 and 3.5. In order to prove Propositions 3.4
and 3.5 which state properties of the mappings φτ ∶ R2 → R2 and ψτ ∶ R2 → R2

defined by (19) and (24), it is convenient to introduce the auxiliary mappings φAC
t ∶

R→ R and ψAC
t ∶ R→ R, defined as follows: for all t ∈ (0,∞) and u ∈ R, set

φAC
t (u) =

u
√
u2 + (1 − u2)e−2t

, ψAC
t (u) =

φAC
t (u) − u

t
. (37)

The mapping φAC
t is the flow map associated with the nonlinear differential equa-

tion, see the subsystem (10),

duAC(t)

dt
= uAC

(t) − (uAC
(t))3,

meaning that uAC(t) = φAC
t (uAC(0)) for all t ≥ 0. The properties of the mappings

φAC
τ and ψAC

τ stated in Lemma 4.2 are given by [14, Lemma 3.1–3.4].

Lemma 4.2. There exists C(τ0) ∈ (0,∞) such that for all τ ∈ (0, τ0), the mappings
φAC
τ ∶ R→ R and ψAC

τ ∶ R→ R satisfy the following properties:
● For all τ ∈ (0, τ0) and u1, u2 ∈ R, one has

∣φAC
τ (u2) − φ

AC
τ (u1)∣ ≤ e

τ
∣u2 − u1∣. (38)

● For all τ ∈ (0, τ0) and u1, u2 ∈ R, one has

(u2 − u1)(ψ
AC
τ (u2) − ψ

AC
τ (u1)) ≤ C(τ0)∣u2 − u1∣

2, (39)

∣ψAC
τ (u2) − ψ

AC
τ (u1)∣ ≤ C(τ0)(1 + ∣u1∣

3
+ ∣u2∣

3)∣u2 − u1∣, (40)
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and for all τ ∈ (0, τ0) and u ∈ R, one has

∣ψτ(u) − (u − u3
)∣ ≤ C(τ0)τ(1 + ∣u∣5). (41)

We are now in position to prove Proposition 3.4. The result is straightforward:
φτ is the composition of the two globally Lipschitz continuous mappings φL

τ and
φNL
τ . The proof is given to exhibit the dependence of the Lipschitz constant with

respect to the time-step size τ ∈ (0, τ0).

Proof of Proposition 3.4. Note that for all τ ∈ (0, τ0) and x = (u, v) ∈ R2 one has

φNL
τ (x) = (

φAC
τ (u)
v + βτ

) .

Using the definition (19) and the inequality (38) from Lemma 4.2, one then obtains
the following inequality: for all τ ∈ (0, τ0) and all x1 = (u1, v1), x2 = (u2, v2) ∈ R2,
one has

∥φτ(x2) − φτ(x1)∥
2
= ∥φL

τ (φ
NL
τ (x2)) − φ

L
τ (φ

NL
τ (x1))∥

2

= ∥eτB(φNL
τ (x2) − φ

NL
τ (x1))∥

2

≤ e2τ~B~
∥φNL
τ (x2) − φ

NL
τ (x1)∥

2

≤ e2τ~B~(∣φAC
τ (u2) − φ

AC
τ (u1)∣

2
+ ∣v2 − v1∣

2)

≤ e2τ~B~(e2τ
∣u2 − u1∣

2
+ ∣v2 − v1∣

2)

≤ e2τ(1+~B~)
∥x2 − x1∥

2.

This concludes the proof of Proposition 3.4.

In order to prove Proposition 3.5, the main tool is the following expression for
the mapping ψτ defined by (24): for all τ ∈ (0, τ0) and x ∈ R2, one has

ψτ(x) = ψ
L
τ (φ

NL
τ (x)) + ψNL

τ (x), (42)

where the mappings ψL
τ and ψNL

τ are given by

ψL
τ (x) =

φL
τ (x) − x

τ
=
eτB − I

τ
x

ψNL
τ (x) =

φNL
τ (x) − x

τ
= (

ψAC
τ (u)
β

)

for all τ ∈ (0, τ0) and x = (u, v) ∈ R2.
The proof of the equality (42) is straightforward: using (19), one has

ψτ(x) =
φτ(x) − x

τ
=
φL
τ (φ

NL
τ (x)) − φNL

τ (x)

τ
+
φNL
τ (x) − x

τ

= ψL
τ (φ

NL
τ (x)) + ψNL

τ (x).

Having the identity (42) at hand, we are now in position to prove Proposition 3.5.

Proof of Proposition 3.5. Note that the mapping ψL
τ ∶ R2 → R2 is linear and there-

fore is globally Lipschitz continuous. In addition, for all τ ∈ (0, τ0) and x1, x2 ∈ R2,
one has

∥ψL
τ (x2) − ψ

L
τ (x1)∥ ≤ ~

eτB − I

τ
~∥x2 − x1∥ ≤

eτ0~B~ − 1

τ0
∥x2 − x1∥, (43)
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using the inequalities

~
eτB − I

τ
~ = ~

∞

∑
k=1

τk−1

k!
Bk~ ≤

∞

∑
k=1

τk−1

k!
~B~

k
≤

∞

∑
k=1

τk−1
0

k!
~B~

k
=
eτ0~B~ − 1

τ0
.

Let us first prove the one-sided Lipschitz continuity property (29): for all τ ∈

(0, τ0) and x1, x2 ∈ R2, using the identity (42), then the Cauchy–Schwarz inequality
and (43), one has

⟨x2 − x1, ψτ(x2) − ψτ(x1)⟩ = ⟨x2 − x1, ψ
L
τ (φ

NL
τ (x2)) − ψ

L
τ (φ

NL
τ (x1))⟩

+ ⟨x2 − x1, ψ
NL
τ (x2) − ψ

NL
τ (x1)⟩

≤
eτ0~B~ − 1

τ0
∥x2 − x1∥∥φ

NL
τ (x2) − φ

NL
τ (x2)∥

+ ⟨x2 − x1, ψ
NL
τ (x2) − ψ

NL
τ (x1)⟩.

On the one hand, using the same arguments as in the proof of Proposition 3.4, one
has

∥φNL
τ (x2) − φ

NL
τ (x1)∥ ≤ e

τ
∥x2 − x1∥ ≤ e

τ0∥x2 − x1∥.

On the other hand, for all x = (u, v) ∈ R2 one has

ψNL
τ (x) = (

ψAC
τ (u)
β

) .

Using the inequality (39) from Lemma 4.2, one then obtains

⟨x2 − x1, ψ
NL
τ (x2) − ψ

NL
τ (x1)⟩ ≤ e

τ
∥x2 − x1∥

2
≤ eτ0∥x2 − x1∥

2.

Gathering the results then gives

⟨x2 − x1, ψτ(x2) − ψτ(x1)⟩ ≤ (
eτ0~B~ − 1

τ0
+ 1)eτ0∥x2 − x1∥

2,

which concludes the proof of the inequality (29).
Let us now prove the local Lipschitz continuity property (30). Using the iden-

tity (42) and the inequality (40), for all τ ∈ (0, τ0) and x1 = (u1, v1), x2 = (u2, v2) ∈

R2, one has

∥ψτ(x2)−ψτ(x1)∥ ≤ ∥ψL
τ (φ

NL
τ (x2)) − ψ

L
τ (φ

NL
τ (x1))∥ + ∥ψNL

τ (x2) − ψ
NL
τ (x1)∥

≤
eτ0~B~ − 1

τ0
∥φNL
τ (x2) − φ

NL
τ (x1)∥ +C(τ0)(1 + ∣u1∣

3
+ ∣u2∣

3)∣u2 − u1∣

≤ (
eτ0~B~ − 1

τ0
eτ0 +C(τ0))(1 + ∥x1∥

3
+ ∥x2∥

3)∥x2 − x1∥.

Let us now prove the error estimate (31). Using the identities (3) and (42), for all
τ ∈ (0, τ0) and x = (u, v) ∈ R2, one has

∥ψτ(x) − F (x)∥ ≤ ∥ψL
τ (φ

NL
τ (x)) − FL

(x)∥ + ∥ψNL
τ (x) − FNL

(x)∥.

On the one hand, the expressions of the linear mappings FL and ψL
τ and the defi-

nition of ψNL
τ , one has

∥ψL
τ (φ

NL
τ (x)) − FL

(x)∥ ≤ ∥ψL
τ (φ

NL
τ (x)) − FL

(φNL
τ (x))∥ + ∥FL

(φNL
τ (x)) − FL

(x)∥

≤ ~
eτB − I − τB

τ
~∥φNL

τ (x)∥ + τ~B~∥ψNL
τ (x)∥.



SPLITTING SCHEMES FOR FITZHUGH–NAGUMO SPDES 229

Note that φNL
τ (0) = (φAC

τ (0), βτ) = (0, βτ) and ψNL
τ (0) = (ψAC

τ (0), β) = (0, β). In
addition, one has

~
eτB − I − τB

τ
~ ≤

∞

∑
k=2

τk−1

k!
~B~

k
≤ τ

∞

∑
k=2

τk−2
0

k!
~B~

k
= τ

eτ0~B~ − 1 − τ0~B~

τ2
0

.

Therefore, using the inequalities (28) from Proposition 3.4 and (40) from Lemma 4.2,
one has

∥ψL
τ (φ

NL
τ (x)) − FL

(x)∥ ≤ C(τ0)τ(1 + ∥x∥4
).

On the other hand, using the inequality (41) from Lemma 4.2, one has

∥ψNL
τ (x) − FNL

(x)∥ = ∣ψAC
τ (u) − (u − u3

)∣ ≤ C(τ0)τ(1 + ∣u∣5).

Gathering the estimates then gives the inequality

∥ψτ(x) − F (x)∥ ≤ C(τ0)τ(1 + ∥x∥5
),

which concludes the proof of (31).
It remains to prove the inequality (32). The proof is straightforward: using (42)

and the equalities φAC
τ (0) = ψAC

τ (0) = 0, one has

ψτ(0) =
eτB − I

τ
φNL
τ (0) + ψNL

τ (0) = eτB (
0
β
) .

Therefore one gets

sup
τ∈(0,τ0)

∥ψτ(0)∥ ≤ e
τ0~B~

∣β∣.

The proof of Proposition 3.5 is thus completed.

Let us conclude this subsection with a remark concerning the order of the com-
position of the two subsystems to define the splitting schemes, see equation (19).

Remark 4.3. Let φ̂τ ∶ R2 → R2 be defined as follows: for all τ ∈ (0, τ0), set

φ̂τ = φ
NL
τ ○ φL

τ . (44)

Compared with the definition (19) of φτ , the order of the composition of the in-
tegrators φL

τ and φNL
τ associated with the subsystems (12) and (10) respectively is

reversed. Define also

ψ̂τ(x) =
φ̂τ(x) − x

τ
(45)

for all τ ∈ (0, τ0) and x ∈ R2. Using the mapping φ̂τ , modifying the definition of the
scheme (23) gives the alternative splitting scheme

X̂n+1 = Aτ φ̂τ(X̂n) + ∫

tn+1

tn
Btn+1−s dW(s) (46)

for the approximation of the stochastic evolution equation (8). Precisely, alterna-
tives of the splitting schemes (20), (21) and (22) are obtained from the formula-
tion (46). However, the analysis performed in this paper does not encompass the

case of the scheme (46), due to missing properties for the mapping ψ̂τ , compared
with ψτ , as explained below.

Note that the result of Proposition 3.4 also holds with φτ replaced by φ̂τ . How-
ever, it is not clear whether the one-sided Lipschitz continuity property (29) from

Proposition 3.5 holds also with ψτ replaced by ψ̂τ (uniformly with respect to
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τ ∈ (0, τ0)). The proof of the inequality (29) exploits the global Lipschitz conti-
nuity property (43) of the auxiliary mapping ψL

τ , which is a linear mapping from
R2 to R2. Instead of the identity (42), one has

ψ̂τ(x) = ψ
NL
τ (φL

τ (x)) + ψ
L
τ (x), (47)

and since ψNL
τ is not globally Lipschitz continuous uniformly with respect to τ ∈

(0, τ0), the arguments of the proof above cannot be repeated for the splitting
scheme (46).

4.3. Moment bounds for the solutions of the stochastic evolution equa-
tions (8) and (25). Let us first state the moment bounds for the stochastic con-
volution defined by (6).

Lemma 4.4. Let (Z(t))
t≥0

be defined by (6). For all T ∈ (0,∞) and p ∈ [1,∞),

one has
sup

0≤t≤T
E[∥Z(t)∥p

E
] <∞.

Proof. Let us only provide the sketch of the proof. To deal with homogeneous
Neumann boundary conditions, it is convenient to introduce Z0(t) = ⟨Z(t), e0⟩e0 =

β0(t)e0 and Z⊥(t) = Z(t) − Z0(t) for all t ≥ 0. Let also Z0(t) = (
Z0(t)

0
) and

Z⊥(t) = Z(t) −Z0(t). On the one hand, one has

sup
0≤t≤T

E[∥Z0(t)∥
p
E
] = sup

0≤t≤T
E[∥Z0(t)∥

p
E] ≤ sup

0≤t≤T
E[∣β0(t)∣

p
]∥e0∥

p
E ≤ CT

p
2 .

On the other hand, applying the temporal and spatial increment bounds given
by [21, Lemma 5.21] and the Kolmogorov regularity criterion [27, Theorem C.6]
gives

sup
0≤t≤T

E[∥Z⊥(t)∥
p
E
] = sup

0≤t≤T
E[∥Z⊥(t)∥

p
E] ≤ C(T ) <∞.

Combining the moment bounds for Z0(t) and Z⊥(t) then concludes the proof of
Lemma 4.4.

We now state well-posedness and moment bounds properties, first for the solu-
tions to the stochastic FitzHugh–Nagumo SPDE system (7), second for the solutions
to the auxiliary SPDE (8).

Proposition 4.5. For any initial value x0 ∈H, the stochastic evolution equation (8)
admits a unique global mild solution (X(t))

t≥0
, in the sense that (9) is satisfied.

Moreover, for all T ∈ (0,∞) and all p ∈ [1,∞), there exists Cp(T ) ∈ (0,∞) such
that for all x0 ∈ E one has

sup
0≤t≤T

E[∥X(t)∥p
E
] ≤ Cp(T )(1 + ∥x0∥

p
E
). (48)

Proposition 4.6. For any initial value x0 ∈H and for all τ ∈ (0, τ0), the stochastic
evolution equation (25) admits a unique global mild solution (Xτ(t))t≥0

, in the sense

that

Xτ(t) = e
−tΛx0 + ∫

t

0
e−(t−s)Λψτ(Xτ(s))ds + ∫

t

0
e−(t−s)Λ dW(s) (49)

is satisfied for all t ≥ 0. Moreover, for all T ∈ (0,∞) and all p ∈ [1,∞), there exists
Cp(T, τ0) ∈ (0,∞) such that for all x0 ∈ E one has

sup
τ∈(0,τ0)

sup
0≤t≤T

E[∥Xτ(t)∥
p
E
] ≤ Cp(T )(1 + ∥x0∥

p
E
). (50)
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The detailed proofs of Propositions 4.5 and 4.6 are omitted. However let us
emphasize that the main arguments used in the proofs are, on the one hand, the
one-sided Lipschitz continuity properties (4) and (29) of F and ψτ respectively,
and on the other hand, the moment bounds on Z(t) from Lemma 4.4. Observe
that the mapping ψτ is globally Lipschitz continuous for any τ > 0, therefore the
existence and uniqueness of the mild solution (Xτ(t))t≥0

satisfying (49) follows from

standard fixed point arguments, see for instance [21, Theorem 7.5]. The proof of the
moment bounds (50) requires some care: indeed, one needs to obtain upper bounds
which are uniform with respect to τ ∈ (0, τ0), and applying [21, Theorem 7.5] would
not be appropriate since the Lipschitz constant of ψτ is unbounded for τ ∈ (0, τ0).
Introducing Yτ(t) = Xτ(t) − Z(t), one obtains the moment bounds (50) using the
one-sided Lipschitz continuity property (29) from Proposition 3.5, which is uniform
with respect to τ ∈ (0, τ0). Similar arguments are used to prove Proposition 4.5.
Propositions 4.5 and 4.6 are variants of [14, Propositions 1 and 2] for the analysis
of the stochastic Allen–Cahn equation and we refer to [17, Proposition 6.2.2] for
a more general version. Some arguments need to be adapted since the considered
systems (8) and (25) are not parabolic systems.

Finally, let us state the following result which is required in Section 5 below.

Lemma 4.7. For all T ∈ (0,∞), p ∈ [1,∞) and α ∈ [0, 1
4
), there exists Cα,p(T ) ∈

(0,∞) such that for all x0 = (u0, v0) ∈H
2α ∩ E, all τ ∈ (0, τ0) and t1, t2 ∈ [0, T ], one

has

(E[∥Xτ(t2) −Xτ(t1)∥
p
H
])

1
p ≤ Cα,p(T )∣t2 − t1∣

α(1 + ∥(−∆)
αu0∥

4
H + ∥x0∥

4
E). (51)

Proof. Let 0 ≤ t1 < t2 ≤ T , using the mild form (49) of the auxiliary stochastic
evolution equation, we obtain the estimate

(E [∥Xτ(t2) −Xτ(t1)∥
p
H
])

1
p ≤ ∥e−t2Λx0 − e

−t1Λx0∥H + (E [∥Z(t2) −Z(t1)∥
p
H
])

1
p

+ ∫

t1

0
(E [∥ (e−(t2−s)Λ − e−(t1−s)Λ)ψτ(Xτ(s))∥

p
H
])

1
p ds

+ ∫

t2

t1
(E [∥e−(t2−s)Λψτ(Xτ(s))∥

p
H
])

1
p ds,

where we recall that Z(t) denotes the stochastic convolution (6).
The first term on the right-hand side is estimated using the inequality (35) in

order to get

∥e−t2Λx0 − e
−t1Λx0∥H ≤ ∣t2 − t1∣

α
∥(−Λ)

αx0∥H.

The second term corresponds to the temporal regularity of the stochastic convolu-
tion

(E [∥Z(t2) −Z(t1)∥
p
H
])

1
p ≤ ∣t2 − t1∣

α.

This is obtained combining the proofs of Lemma 4.4 and of [8, Theorem 4.4].

The last two terms are estimated using the property ∥ψτ(x)∥ ≤ C(τ0) (1 + ∥x∥)
4

(polynomial growth), see equations (30) and (32) in Proposition 3.5. Indeed, one
has

∥ (e−(t2−s)Λ − e−(t1−s)Λ)ψτ(Xτ(s))∥H ≤ Cα
∣t2 − t1∣

α

∣t1 − s∣α
∥ψτ(Xτ(s))∥H

≤ Cα(τ0)
∣t2 − t1∣

α

∣t1 − s∣α
(1 + ∥Xτ(s)∥

4
E)
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and

∥e−(t2−s)Λψτ(Xτ(s))∥H ≤ (1 + ∥Xτ(s)∥
4
E)

for the last term. One concludes the proof using the moment bounds of the solution
of the auxiliary stochastic evolution equation, see Proposition 4.6.

5. Proofs of the main results. In this section, we provide the detailed proofs for
the main results of the present work. We start by proving moment bounds for the
three splitting schemes (Theorem 3.1). We then prove the strong error estimates
with rate of convergence at least 1/4 (Theorem 3.3).

5.1. Proof of Theorem 3.1. The proof of the moment bounds (26) given below
is inspired by the proof of [14, Proposition 3] and requires some auxiliary tools.

Given the time-step size τ ∈ (0, τ0), introduce the auxiliary scheme (Zn)n≥0
defined as follows: for all n ≥ 0,

Zn+1 = AτZn + ∫

tn+1

tn
Btn+1−s dW(s) (52)

with initial value Z0 = 0, using the same notation as for the general expression (23)
of the three splitting schemes (20), (21) and (22). One has the following moment
bounds for the solution of the scheme (52). Recall that one has T = Nτ for some
integer N ∈ N.

Lemma 5.1. For all T ∈ (0,∞) and p ∈ [1,∞), one has

sup
τ∈(0,τ0)

sup
0≤n≤N

E[∥Zn∥
p
E
] <∞. (53)

Lemma 5.1 is a variant of [14, Lemma 3.5], using the same arguments as in the
sketch of proof of Lemma 4.4 above. The proof of Lemma 5.1 is therefore omitted.

We are now in position to provide the proof of Theorem 3.1.

Proof of Theorem 3.1. For all n ∈ {0, . . . ,N}, set

rn =Xn −Zn. (54)

Using the definitions (23) and (52) and the definition (24) of the mapping ψτ , for
all n ∈ {0, . . . ,N − 1}, one has

rn+1 =Xn+1 −Zn+1 = Aτ(φτ(Xn) −Zn)

= Aτ(φτ(rn +Zn) − φτ(Zn)) + τAτψτ(Zn).

On the one hand, using the inequalities (33) and (36) and the global Lipschitz
continuity property (28) of φτ (see Proposition 3.4), one has

∥Aτ(φτ(rn +Zn) − φτ(Zn))∥E ≤ ∥φτ(rn +Zn) − φτ(Zn)∥E ≤ e
τ(1+~B~)

∥rn∥E .

On the other hand, using the inequalities (33) and (36), the local Lipschitz con-
tinuity property (30) of ψτ (see Proposition 3.5) and the upper bound (32), one
has

∥Aτψτ(Zn)∥E ≤ C(τ0)(1 + ∥Zn∥
4
E).

Therefore one obtains the following inequality

∥rn+1∥E ≤ e
τ(1+~B~)

∥rn∥E +C(τ0)(1 + ∥Zn∥
4
E),
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and by a straightforward argument, using the fact that Nτ = T , one has the esti-
mate:

∥rn∥E ≤ C(T, τ0)(∥r0∥E +
n−1

∑
k=0

(1 + ∥Zk∥
4
E)),

for all n ∈ {0, . . . ,N}.
Finally, for all p ∈ [1,∞), using the moment bound (53) from Lemma 5.1, one

obtains for all n ∈ {0, . . . ,N}

(E[∥rn∥
p
E
])

1
p ≤ C(T, τ0)(∥r0∥E +

n−1

∑
k=0

(1 + (E[∥Zk∥
4p
E

])
1
p )) ≤ Cp(T, τ0)(∥r0∥E + 1).

Since Xn = rn +Zn owing to (54), using the moment bound above and the moment
bound (53) from Lemma 5.1 then concludes the proof of the moment bound (26).
The proof of Theorem 3.1 is thus completed.

5.2. Proof of Theorem 3.3. Recall that the numerical scheme is given by (23).
It is straightforward to check that for all n ≥ 0 one has

Xn = A
n
τ x0 + τ

n−1

∑
k=0

A
n−k
τ ψτ(Xk) +

n−1

∑
k=0
∫

tk+1

tk
A
n−k−1
τ Btk+1−s dW(s). (55)

Let us introduce the auxiliary process (Xaux
n )

n≥0
which is defined as follows: for all

n ≥ 0 one has

Xaux
n = A

n
τ x0 + τ

n−1

∑
k=0

A
n−k
τ ψτ(Xτ(tk)) +

n−1

∑
k=0
∫

tk+1

tk
A
n−k−1
τ Btk+1−s dW(s), (56)

where we recall that tk = kτ and that (Xτ(t))t≥0
is the unique mild solution of the

auxiliary stochastic evolution equation (25). Note that for all n ≥ 0 one has

Xaux
n+1 = AτX

aux
n + τAτψτ(Xτ(tn)) + ∫

tn+1

tn
Btn+1−s dW(s). (57)

Lemma 5.2. For all T ∈ (0,∞) and p ∈ [1,∞), there exists Cp(T ) ∈ (0,∞) such
that for all x0 ∈ E one has

sup
τ∈(0,τ0)

sup
0≤n≤N

E[∥Xaux
n ∥

p
E
] ≤ Cp(T )(1 + ∥x0∥

p
E
). (58)

Proof of Lemma 5.2. Using the discrete mild formulation (56) of Xaux
n , the inequal-

ities (33) and (36), the local Lipschitz continuity property (30) of ψτ and the upper
bound (32) (see Proposition 3.5), for all τ ∈ (0, τ0) and n ≥ 0 one has

∥Xaux
n ∥E ≤ ∥x0∥E +C(τ0)τ

n−1

∑
k=0

(1 + ∥Xτ(tk)∥
4
E) + ∥Zn∥E .

It suffices to use the moment bounds (50) for the auxiliary process Xτ from Propo-
sition 4.6 and (53) for the Gaussian random variables Zn from Lemma 5.1, and the
Minkowskii inequality, to conclude the proof of the moment bounds (58). The proof
of Lemma 5.2 is thus completed.

Observe that for all n ∈ {0, . . . ,N} the error X(tn) −Xn can be decomposed as
follows:

X(tn) −Xn =X(tn) −Xτ(tn) +Xτ(tn) −X
aux
n +Xaux

n −Xn. (59)

In order to prove Theorem 3.3, it suffices to prove error bounds for the three error
terms appearing in the right-hand side of (59). They are given in Lemma 5.3,
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Lemma 5.4 and Lemma 5.5 respectively. The proofs of these technical lemmas are
presented at the end of the section.

Lemma 5.3. For all T ∈ (0,∞) and p ∈ [1,∞), there exists Cp(T, τ0) ∈ (0,∞) such
that for all x0 ∈ E and all τ ∈ (0, τ0), one has

sup
t∈[0,T ]

(E[∥X(t) −Xτ(t)∥
p
H
])

1
p ≤ Cp(T, τ0)τ(1 + ∥x0∥

5
E). (60)

Lemma 5.4. For all T ∈ (0,∞), p ∈ [1,∞) and α ∈ [0, 1
4
), there exists Cα,p(T ) ∈

(0,∞) such that for all x0 = (u0, v0) ∈H
2α ∩ E, all τ ∈ (0, τ0), one has

sup
0≤n≤N

(E[∥Xτ(tn) −X
aux
n ∥

p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥(−∆)

αu0∥
7
H + ∥x0∥

7
E). (61)

Lemma 5.5. For all T ∈ (0,∞), p ∈ [1,∞) and α ∈ [0, 1
4
), there exists Cα,p(T ) ∈

(0,∞) such that for all x0 = (u0, v0) ∈H
2α ∩ E, all τ ∈ (0, τ0), one has

sup
0≤n≤N

(E[∥Xaux
n −Xn∥

p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥(−∆)

αu0∥
7
H + ∥x0∥

7
E). (62)

With the auxiliary error estimates given above, it is straightforward to give the
proof of Theorem 3.3.

Proof of Theorem 3.3. Using the decomposition of the error (59), the Minkowskii
inequality and the error estimates (60), (61) and (62), one obtains the following
result: for all α ∈ [0, 1

4
) and p ∈ [1,∞), there exists Cα,p ∈ (0,∞) such that for all

τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥X(tn) −Xn∥
p
H
])

1
p ≤ sup

0≤n≤N
(E[∥X(tn) −Xτ(tn)∥

p
H
])

1
p

+ sup
0≤n≤N

(E[∥Xτ(tn) −X
aux
n ∥

p
H
])

1
p

+ sup
0≤n≤N

(E[∥Xaux
n −Xn∥

p
H
])

1
p

≤ Cp(T, τ0)τ(1 + ∥x0∥
5
E)

+Cα,p(T )τα(1 + ∥(−∆)
αu0∥

7
H + ∥x0∥

7
E)

+Cα,p(T )τα(1 + ∥(−∆)
αu0∥

7
H + ∥x0∥

7
E)

≤ Cα,p(T )τα(1 + ∥(−∆)
αu0∥

7
H + ∥x0∥

7
E).

This concludes the proof of the inequality (27) and the proof of Theorem 3.3 is thus
completed.

Let us now give the proofs of the auxiliary error estimates. Note that the proof
of Lemma 5.5 requires the error estimate (61) from Lemma 5.4.

Proof of Lemma 5.3. For all t ≥ 0 and τ ∈ (0, τ0), set

Rτ(t) =Xτ(t) −X(t).

The auxiliary process (Rτ(t))t≥0
is the unique solution of the evolution equation

dRτ(t)

dt
= −ΛRτ(t) + ψτ(Xτ(t)) − ψτ(X(t)) + ψτ(X(t)) − F (X(t))
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with the initial value Rτ(0) = 0. Therefore one obtains, almost surely, for all t ≥ 0

1

2

d∥Rτ(t)∥
2
H

dt
= ⟨Rτ(t),−ΛRτ(t)⟩H + ⟨Rτ(t), ψτ(Xτ(t)) − ψτ(X(t))⟩H

+ ⟨Rτ(t), ψτ(X(t)) − F (X(t))⟩H.

First, one has

⟨Rτ(t),−ΛRτ(t)⟩H ≤ 0.

Second, using the one-sided Lipschitz continuity property (29) from Proposition 3.5
for ψτ (uniformly with respect to τ ∈ (0, τ0)), one has

⟨Rτ(t), ψτ(Xτ(t)) − ψτ(X(t))⟩H ≤ C(τ0)∥Rτ(t)∥
2
H.

Finally, using the Cauchy–Schwarz and the Young inequalities and the error esti-
mate (31) from Proposition 3.5 , one has

⟨Rτ(t), ψτ(X(t)) − F (X(t))⟩H ≤ ∥Rτ(t)∥H∥ψτ(X(t)) − F (X(t))∥H

≤
1

2
∥Rτ(t)∥

2
H +

1

2
∥ψτ(X(t)) − F (X(t))∥2

H

≤
1

2
∥Rτ(t)∥

2
H +C(τ0)τ

2(1 + ∥X(t)∥10
E ).

Gathering the upper bounds above and using Gronwall’s lemma, one obtains, almost
surely, for all t ∈ [0, T ]

∥Rτ(t)∥
2
H ≤ C(T, τ0)τ

2
∫

T

0
(1 + ∥X(s)∥10

E )ds.

Using the moment bound (48) from Proposition 4.5, one then obtains for all t ∈ [0, T ]

and all p ∈ [2,∞)

(E[∥Rτ(t)∥
p
H
])

2
p ≤ C(T, τ0)τ

2
∫

T

0
(1 +E[∥X(s)∥5p

E
]

2
p )ds

≤ C(T, τ0)τ
2(1 + sup

s∈[0,T ]

E[∥X(s)∥5p
E

]
2
p )

≤ Cp(T, τ0)τ
2(1 + ∥x0∥

10
E ).

This estimate has been proved for p ∈ [2,∞), however it is also valid for p ∈ [1,2).
This concludes the proof of the error estimate (60) and of Lemma 5.3.

In order to prove Lemma 5.4, let us recall the following useful standard inequality:

sup
n∈N,z∈[0,∞)

n∣
1

(1 + z)n
− e−nz ∣ + sup

n∈N,z∈[0,∞)

∣ 1
(1+z)n

− e−nz ∣

min(1, z)
<∞. (63)

In addition, for all α ∈ [0,1], n ∈ N and z ∈ [0,∞), one has min(1, z) ≤ zα. See
Section A in the appendix for a proof.

Proof of Lemma 5.4. Using the mild formulations (49) for Xτ(tn) and (56) for
Xaux
n , one obtains the following decomposition of the error: for all n ≥ 0, one

has

Xτ(tn) −X
aux
n = Eτ,1n +Eτ,2n +Eτ,3n +Eτ,4n +Eτ,5n , (64)

where

Eτ,1n = (e−nτΛ
−A

n
τ )x0 (65)

Eτ,2n = Z(tn) −Zn (66)
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Eτ,3n =
n−1

∑
k=0
∫

tk+1

tk
e−(tn−s)Λ(ψτ(Xτ(s)) − ψτ(Xτ(tk)))ds (67)

Eτ,4n =
n−1

∑
k=0
∫

tk+1

tk
(e−(tn−s)Λ − e−(tn−tk)Λ)ψτ(Xτ(tk))ds (68)

Eτ,5n = τ
n−1

∑
k=0

(e−(tn−tk)Λ −An−kτ )ψτ(Xτ(tk)). (69)

Let us now give estimates for those five error terms.
● If the splitting schemes (20) and (21) are considered, one has Aτ = e−τΛ and

thus Eτ,1n = 0 for all n ≥ 0. If the splitting scheme (22) is considered, one has
Aτ = (I + τΛ)−1, thus using the inequality (63), for all n ∈ {0, . . . ,N}, one has

∥Eτ,1n ∥
2
H = ∥(enτ∆

− ((I − τ∆)
−1

)
n)u0∥

2
H

=
∞

∑
j=1

(
1

(1 + τλj)n
− e−nτλj)

2
⟨u0, ej⟩

2
H

≤ Cα
∞

∑
j=1

(τλj)
2α

⟨u0, ej⟩
2
H

≤ Cατ
2α

∥(−∆)
αu0∥

2
H .

Therefore one obtains the following upper bound: for all α ∈ [0, 1
4
), there exists

Cα ∈ (0,∞) such that for all τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Eτ,1n ∥
p
H
])

1
p ≤ Cατ

α
∥(−∆)

αu0∥H (70)

● Note that if the splitting scheme (20) is considered (Xn =X
LT,exact
n for all n ≥ 0),

one has Eτ,2n = 0 for all n ≥ 0. If the splitting schemes (21) and (22) are considered,
for all n ≥ 0 one has

Eτ,2n = Z(tn) −Zn = (
Z(tn) −Zn

0
) ,

with Zn = Z
LT,expo
n (resp. Zn = Z

LT,imp
n ) if the scheme (21) (resp. the scheme (22))

is considered. Here, we denote

ZLT,expo
n+1 = eτ∆

(ZLT,expo
n + δWn)

ZLT,imp
n+1 = (I − τ∆)

−1
(ZLT,imp

n + δWn).

One has the following mean-square error estimate, which are standard results in the
analysis of numerical schemes for parabolic semilinear stochastic partial differential
equations, see for instance [40, Theorem 3.2]: for all α ∈ [0, 1

4
), there exists Cα ∈

(0,∞) such that

sup
n≥0

E[∥Z(tn) −Zn∥
2
H] ≤ Cατ

2α,

if Zn = Z
LT,expo
n and Zn = Z

LT,imp
n . Since Z(tn)−Zn is a H-valued Gaussian random

variable, one obtains the following upper bound: for all α ∈ [0, 1
4
) and p ∈ [1,∞),

there exists Cα,p ∈ (0,∞) such that for all τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Eτ,2n ∥
p
H
])

1
p ≤ Cα,pτ

α. (71)
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● Using the inequality (33) and the local Lipschitz continuity property (30) of ψτ
(Proposition 3.5), one obtains

∥Eτ,3n ∥H ≤
n−1

∑
k=0
∫

tk+1

tk
∥e−(tn−s)Λ(ψτ(Xτ(s)) − ψτ(Xτ(tk)))∥H ds

≤
n−1

∑
k=0
∫

tk+1

tk
∥(ψτ(Xτ(s)) − ψτ(Xτ(tk)))∥H ds

≤ C(τ0)
n−1

∑
k=0
∫

tk+1

tk
(1 + ∥Xτ(s)∥

3
E + ∥Xτ(tk)∥

3
E)∥Xτ(s) −Xτ(tk)∥H ds.

Using the Minkowskii and Cauchy–Schwarz inequalities, the moment bound (50)
(Proposition 4.6) and the regularity estimate (51) (Lemma 4.7), one has

(E[∥Eτ,3n ∥
p
H
])

1
p

≤ C(τ0)
n−1

∑
k=0
∫

tk+1

tk
(1 + sup

r∈[tk,tk+1]

(E[∥Xτ(r)∥
6p
E

])
1
2p )(E[∥Xτ(s) −Xτ(tk)∥

2p
H

])
1
2p ds

≤ Cα,p(T )τα(1 + ∥x0∥
3
E)(1 + ∥(−∆)

αu0∥
4
H + ∥x0∥

4
E).

Therefore one obtains the following upper bound: for all α ∈ [0, 1
4
), p ∈ [1,∞) and

T ∈ (0,∞), there exists Cα,p(T ) ∈ (0,∞) such that for all τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Eτ,3n ∥
p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥(−∆)

αu0∥
7
H + ∥x0∥

7
E). (72)

● Using the inequality (35) from Proposition 4.1 (with µ = α ∈ [0,1) and ν = 0) and
the local Lipschitz continuity property (30) of ψτ combined with the bound (32)
(Proposition 3.5), one has for all s ∈ [tk, tk+1]

∥(e−(tn−s)Λ − e−(tn−tk)Λ)ψτ(Xτ(tk))∥H ≤ Cα
∣s − tk ∣

α

(tn − s)α
∥ψτ(Xτ(tk))∥H

≤ Cα
τα

(tn − s)α
(1 + ∥Xτ(tk)∥

4
E).

Using the Minkoswskii inequality, the moment bounds (50) from Proposition 4.6,

and the fact that ∫
T

0 s−α ds < ∞ for α ∈ [0,1), one obtains the following upper

bound: for all α ∈ [0, 1
4
), p ∈ [1,∞) and T ∈ (0,∞), there exists Cα,p(T ) ∈ (0,∞)

such that for all τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Eτ,4n ∥
p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥x0∥

4
E). (73)

● Note that if the splitting schemes (20) and (21) are considered, one has Aτ = e
−τΛ

and thus Eτ,5n = 0 for all n ≥ 0. If the splitting scheme (22) is considered, one has
Aτ = (I +τΛ)−1. Using the inequality (63), for all x = (u, v) ∈H and all 0 ≤ k ≤ n−1
one has

∥(e−(tn−tk)Λx −An−kτ x∥H = ∥e(n−k)τ∆u − ((I − τ∆)
−1

)
n−ku∥H ≤

C∥u∥H
(n − k)

≤
C∥x∥H
(n − k)α

.

As a consequence, using the Minkowskii inequality, the local Lipschitz continuity
property (30) of ψτ combined with the bound (32) (Proposition 3.5) and the moment
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bounds (50) from Proposition 4.6, one has

(E[∥Eτ,5n ∥
p
H
])

1
p ≤ τ

n−1

∑
k=0

C

(n − k)α
(1 + (E[∥Xτ(tk)∥

4p
E

])
1
p )

≤ Cp(T )τ
n

∑
`=1

1

tα`
τα(1 + ∥x0∥

4
E).

Using the fact that for all α ∈ [0,1) one has

sup
τ∈(0,τ0)

τ
N

∑
`=1

1

tα`
<∞,

one obtains the following upper bound: for all α ∈ [0, 1
4
), p ∈ [1,∞) and T ∈ (0,∞),

there exists Cα,p(T ) ∈ (0,∞) such that for all τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Eτ,5n ∥
p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥x0∥

4
E). (74)

We are now in position to conclude the proof: using the decomposition of the
error (64) and the upper bounds (70), (71), (72), (73) and (74), one obtains the
following upper bound: for all α ∈ [0, 1

4
), p ∈ [1,∞) and T ∈ (0,∞), there exists

Cα,p(T ) ∈ (0,∞) such that for all τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Xτ(tn) −X
aux
n ∥

p
H
])

1
p ≤ Cα,p(T )τα(1 + ∥(−∆)

αu0∥
7
H + ∥x0∥

7
E).

This concludes the proof of the inequality (61) and the proof of Lemma 5.4 is
completed.

Note that the proof of Lemma 5.4 above does not use Gronwall inequalities
arguments.

Proof of Lemma 5.5. Using the expressions (57) and (23) for Xaux
n and Xn, and the

definition (24) of the mapping ψτ , for all n ∈ {0, . . . ,N − 1} one obtains

Xaux
n+1 −Xn+1 = Aτ(X

aux
n −Xn) + τAτ(ψτ(Xτ(tn)) − ψτ(Xn)).

Writing

ψτ(Xτ(tn)) = ψτ(Xτ(tn)) − ψτ(X
aux
n ) + ψτ(X

aux
n ),

and using again the identity (24), one obtains

Xaux
n+1 −Xn+1 = Aτ(φτ(X

aux
n ) − φτ(Xn)) + τAτ(ψτ(Xτ(tn)) − ψτ(X

aux
n )). (75)

On the one hand, using the inequalities (33) (Proposition 4.1), ifAτ = e
−τΛ and (36),

if Aτ = (I + τΛ)−1, and the global Lipschitz continuity property (28) of φτ (Propo-
sition 3.4), one obtains

∥Aτ(φτ(X
aux
n ) − φτ(Xn))∥H ≤ ∥φτ(X

aux
n ) − φτ(Xn)∥H

≤ eτ(1+~B~)
∥Xaux

n −Xn∥H.

On the other hand, using the inequalities (33) (Proposition 4.1), if Aτ = e−τΛ

and (36), if Aτ = (I + τΛ)−1, and the local Lipschitz continuity property (30) of ψτ
(Proposition 3.5), one obtains

∥Aτ(ψτ(Xτ(tn))−ψτ(X
aux
n ))∥H ≤ ∥ψτ(Xτ(tn)) − ψτ(X

aux
n )∥H

≤ C(τ0)(1 + ∥Xτ(tn)∥
3
E + ∥Xaux

n ∥
3
E)∥Xτ(tn) −X

aux
n ∥H.
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By a straightforward argument, since Xaux
0 = X0 = x0, for all n ∈ {0, . . . ,N}, one

has

∥Xaux
n −Xn∥H ≤ C(τ0)e

T (1+~B~)τ
N

∑
k=1

(1 + ∥Xτ(tk)∥
3
E + ∥Xaux

k ∥
3
E)∥Xτ(tk) −X

aux
k ∥H.

Using the Minkowskii and Cauchy–Schwarz inequalities, the moment bounds (50)
and (58) from Proposition 4.6 and Lemma 5.2 respectively, and the error esti-
mate (61) from Lemma 5.4, one obtains the following strong error estimate: for all
α ∈ [0, 1

4
), p ∈ [1,∞) and T ∈ (0,∞), there exists Cα,p(T ) ∈ (0,∞) such that for all

τ ∈ (0, τ0) one has

sup
0≤n≤N

(E[∥Xaux
n −Xn∥pH])

1
p ≤ C(T )τ

N

∑
k=1

(1 + (E[∥Xτ(tk)∥6pE ])
1
2p + (E[∥Xaux

k ∥6pE ])
1
2p )

× (E[∥Xτ(tk) −Xaux
k ∥2pH ])

1
2p

≤ Cα,p(T )τα(1 + ∥x0∥3E)(1 + ∥(−∆)αu0∥4H + ∥x0∥4E).

This concludes the proof of the inequality (62) and the proof of Lemma 5.5 is thus
completed.

6. Numerical experiments. This section presents numerical experiments to sup-
port and illustrate the above theoretical results. To perform these numerical ex-
periments, we consider the stochastic FitzHugh–Nagumo SPDE system (7) with
Neumann boundary conditions on the interval [0,1]. The spatial discretization is
performed using a standard finite difference method with mesh size denoted by h.
In order to obtain a linear system with a symmetric matrix, we use centered differ-
ences for the numerical discretization of the Laplacian, while first order differences
are used for the discretization of the Neumann boundary conditions. The initial
values are given by u0(ζ) = cos(2πζ) and v0(ζ) = cos(2πζ). For the temporal dis-
cretization, we use the three Lie–Trotter splitting integrators (20), (21) and (22)
studied in this paper, denoted below by LTexact, LTexpo, LTimp respectively.

6.1. Evolution plots. Let us first display one sample of the numerical solutions
of the stochastic FitzHugh–Nagumo system (7) with the parameters γ1 = 0.08,
γ2 = 0.8γ1 and β = 0.7. The SPDE is discretized with finite differences with mesh
h = 2−10. We consider the time interval [0, T ] = [0,1] and apply the integrators
with time step size τ = 2−15. The results are presented in Figure 1. The general
behaviour of the numerical solutions given by the three splitting schemes is the
same. However, one can observe a spatial smoothing effect in the u component of
the solution when the schemes LTexpo–(20) or to some extent LTimp–(22) are
applied: for a given time step size, the spatial regularity of the numerical solution is
increased compared with the one of the exact solution. On the contrary, the scheme
LTexact–(20) preserves the spatial regularity of the solution for any value of the
time step size. We refer to the recent preprint [9] for the analysis of this phenomenon
for parabolic semilinear SPDEs. Let us emphasize that the phenomenon is due to
the way the stochastic convolution is computed, exactly for the scheme LTexact–
(20) or approximately for the schemes LTexpo–(20) and LTimp–(22).

6.2. Mean-square error plots. To illustrate the rates of strong convergence for
the Lie–Trotter splitting schemes stated in Theorem 3.3, we consider the stochastic
FitzHugh–Nagumo system (7) with the parameters γ1 = γ2 = β = 1, with T = 1 and
apply a finite difference method with h = 2−9 for spatial discretization. We apply
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Figure 1. Space-time evolution plots of u and v using the Lie–
Trotter splitting schemes LTexact, LTexpo, and LTimp.

the Lie–Trotter splitting schemes with time steps ranging from 2−10 to 2−18. The
reference solution is computed using the scheme LTexact–(20) with time step size
τref = 2−18. The expectation is approximated using Ms = 100 samples. We have
checked that the Monte Carlo error is negligible. A plot in logarithmic scales for
the mean-square errors

(E[∥X(tN) −XN∥
2
H])

1
2

is given on the top figure of Figure 2. We observe that the strong rate of convergence
for the three considered Lie–Trotter splitting schemes is at least 1/4, which illus-
trates the result stated in Theorem 3.3. Furthermore, the numerical experiments
suggest that for the scheme LTexact–(20) the order of convergence is 1/2, which
is not covered by Theorem 3.3. The fact that using an accelerated exponential
Euler scheme where the stochastic convolution is computed exactly yields higher
order of convergence is known for parabolic semilinear stochastic PDEs driven by
space-time white noise, under appropriate conditions, see for instance [26] or [9,
Proposition 7.3]. However, the stochastic FitzHugh–Nagumo equations considered
in this article are not parabolic systems therefore it is not known how to prove the
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Figure 2. Mean-square errors as a function of the time step: Lie–
Trotter splitting schemes, φτ = φL

τ ○ φ
NL
τ (top) and φτ = φNL

τ ○ φL
τ

(bottom), (◇ for LTexact, ◻ for LTexpo, ☆ for LTimp). The
dotted lines have slopes 1/2 and 1/4.

observed higher order strong rate of convergence. This question may be studied in
future works.

The bottom figure of Figure 2 shows the errors for the variant (46) of the splitting
scheme (23) introduced in Remark 4.3: the mapping φτ = φ

L
τ ○φ

NL
τ given by (19) is

replaced by φ̂τ = φ
NL
τ ○ φL

τ given by (44). As explained in Remark 4.3, this type of
Lie–Trotter schemes is not covered by the results in Section 3.3, more precisely the
moment bounds in Theorem 3.1 cannot be proved by the techniques used in this
article. However, the numerical experiments are similar to those on the top figure
of Figure 2 and suggest that the strong order of convergence for this variant is at
least 1/4, and that higher order convergence with rate 1/2 may be obtained for the
variant of the scheme LTexact–(20).

Remark 6.1. In Figure 2 it is observed that for large values of the time step size τ
the error for the scheme LTexact–(20) is larger than for the two other integrators.
We have performed additional numerical experiments (change of reference solution,
time horizon or spatial mesh size) and observed a similar behavior. However, note
that for the smallest time step sizes the errors for all the schemes are of the same
size, which is consistent with our main theoretical results.
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Appendix A. Proof of the inequality (63). Let us first state two elementary
inequalities:

● for all 0 ≤ a ≤ b and n ∈ N, one has 0 ≤ bn − an ≤ nbn−1(b − a),
● for all z ∈ [0,∞), one has 0 ≤ 1

1+z
− e−z ≤ Cmin(1, z2).

As a consequence, for all n ∈ N and z ∈ [0,∞) one has

0 ≤
1

(1 + z)n
− e−nz ≤

n

(1 + z)n−1
(

1

1 + z
− e−z).

Proof of (63). For all n ≥ 3 and z ∈ [0,∞), one has

n∣
1

(1 + z)n
− e−nz ∣ ≤

Cn2z2

(1 + z)n−1
≤

Cn2z2

1 + (n − 1)z + (n−1)(n−2)
2

z2
≤

2Cn2

(n − 1)(n − 2)
≤ C.

The cases n = 1 and n = 2 are treated separately, one has

sup
z∈[0,∞)

∣
1

(1 + z)
− e−z ∣ + sup

z∈[0,∞)

2∣
1

(1 + z)2
− e−2z

∣ <∞.

This concludes the proof of the first inequality. To prove the second inequality,
observe first that one has

sup
n∈N,z∈[0,∞)

∣
1

(1 + z)n
− e−nz ∣ ≤ 2.

In addition, for all n ≥ 2 and z ∈ [0,∞), one has

∣ 1
(1+z)n

− e−nz ∣

z
≤

Cnz

(1 + z)n−1
≤

Cnz

1 + (n − 1)z
≤
Cn

n − 1
≤ C.

The case n = 1 is treated separately: using the inequality min(1, z2) ≤ z one has

sup
z∈[0,∞)

∣ 1
1+z

− e−z ∣

z
≤ C.

Gathering the results concludes the proof of the second inequality.
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sawa, editors, Soft Computing as Transdisciplinary Science and Technology, pages 61-69,

Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[39] J. L. Padgett and Q. Sheng, Convergence of an operator splitting scheme for abstract stochas-
tic evolution equations, Advances in Mathematical Methods and High Performance Comput-

ing, volume 41 of Adv. Mech. Math.,Springer, Cham, 2019, 163-179.
[40] J. Printems, On the discretization in time of parabolic stochastic partial differential equations,

M2AN Math. Model. Numer. Anal., 35 (2001), 1055-1078.

[41] L. Qin, D. Ma and J. Shu, Wong-Zakai approximations and long term behavior of stochastic
FitzHugh-Nagumo system, Int. J. Biomath., 14 (2021), Paper No. 2150008, 30pp.

[42] M. Sauer and W. Stannat, Lattice approximation for stochastic reaction diffusion equations

with one-sided Lipschitz condition, Math. Comp., 84 (2015), 743-766.
[43] M. Sauer and W. Stannat, Analysis and approximation of stochastic nerve axon equations,

Math. Comp., 85 (2016), 2457-2481.

[44] B. Spagnolo and E. V. Pankratova, Influence of noise sources on FitzHugh-Nagumo model in
suprathreshold regime, In N. G. Stocks, D. Abbott and R. P. Morse, editors, Fluctuations and

Noise in Biological, Biophysical, and Biomedical Systems III, SPIE, 5841 (2005), 174-185.

[45] M. Thieullen, Deterministic and stochastic FitzHugh-Nagumo systems, In Stochastic
Biomathematical Models, volume 2058 of Lecture Notes in Math., Springer, Heidelberg, 2013,

175-186.

[46] H. C. Tuckwell, Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo
model neuron, Neural Comput., 20 (2008), 3003-3033.

[47] H. C. Tuckwell, Stochastic partial differential equations in neurobiology: Linear and nonlinear
models for spiking neurons, In Stochastic Biomathematical Models, volume 2058 of Lecture

Notes in Math., pages 149-173. Springer, Heidelberg, 2013.
[48] A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Mono-

graphs in Mathematics. Springer-Verlag, Berlin, 2010.

[49] M. E. Yamakou, T. D. Tran, L. H. Duc and J. Jost, The stochastic FitzHugh-Nagumo neuron

model in the excitable regime embeds a leaky integrate-and-fire model, J. Math. Biol., 79
(2019), 509-532.

Received for publication January 2023; early access May 2023.

http://dx.doi.org/10.1016/j.physrep.2003.10.015
http://dx.doi.org/10.1016/j.physrep.2003.10.015
http://www.ams.org/mathscinet-getitem?mr=MR3119724&return=pdf
http://dx.doi.org/10.1093/imanum/drs051
http://dx.doi.org/10.1093/imanum/drs051
http://www.ams.org/mathscinet-getitem?mr=MR2661971&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2009.11.004
http://www.ams.org/mathscinet-getitem?mr=MR2264815&return=pdf
http://dx.doi.org/10.4310/CMS.2006.v4.n4.a1
http://www.ams.org/mathscinet-getitem?mr=MR4278943&return=pdf
http://dx.doi.org/10.4310/CMS.2021.v19.n4.a8
http://dx.doi.org/10.4310/CMS.2021.v19.n4.a8
http://www.ams.org/mathscinet-getitem?mr=MR2009376&return=pdf
http://dx.doi.org/10.1017/S0962492902000053
http://www.ams.org/mathscinet-getitem?mr=MR1860968&return=pdf
http://dx.doi.org/10.1137/S106482750037024X
http://dx.doi.org/10.1137/S106482750037024X
http://dx.doi.org/10.1007/3-540-32391-0_14
http://dx.doi.org/10.1007/3-540-32391-0_14
http://www.ams.org/mathscinet-getitem?mr=MR3839068&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1873517&return=pdf
http://dx.doi.org/10.1051/m2an:2001148
http://www.ams.org/mathscinet-getitem?mr=MR4249991&return=pdf
http://dx.doi.org/10.1142/S179352452150008X
http://dx.doi.org/10.1142/S179352452150008X
http://www.ams.org/mathscinet-getitem?mr=MR3290962&return=pdf
http://dx.doi.org/10.1090/S0025-5718-2014-02873-1
http://dx.doi.org/10.1090/S0025-5718-2014-02873-1
http://www.ams.org/mathscinet-getitem?mr=MR3511288&return=pdf
http://dx.doi.org/10.1090/mcom/3068
http://www.ams.org/mathscinet-getitem?mr=MR3051033&return=pdf
http://dx.doi.org/10.1007/978-3-642-32157-3_7
http://www.ams.org/mathscinet-getitem?mr=MR2467646&return=pdf
http://dx.doi.org/10.1162/neco.2008.08-07-585
http://dx.doi.org/10.1162/neco.2008.08-07-585
http://www.ams.org/mathscinet-getitem?mr=MR3051032&return=pdf
http://dx.doi.org/10.1007/978-3-642-32157-3_6
http://dx.doi.org/10.1007/978-3-642-32157-3_6
http://www.ams.org/mathscinet-getitem?mr=MR2573296&return=pdf
http://dx.doi.org/10.1007/978-3-642-04631-5
http://www.ams.org/mathscinet-getitem?mr=MR3982703&return=pdf
http://dx.doi.org/10.1007/s00285-019-01366-z
http://dx.doi.org/10.1007/s00285-019-01366-z

	1. Introduction
	2. Setting
	2.1. Functional framework
	2.2. Linear operators
	2.3. Nonlinear operator
	2.4. Wiener process
	2.5. The stochastic FitzHugh–Nagumo SPDE system

	3. Splitting schemes
	3.1. Solutions of auxiliary subsystems
	3.2. Definition of the splitting schemes
	3.3. Main results

	4. Preliminary results
	4.1. Properties of the semigroup
	4.2. Proofs of Propositions 3.4 and 3.5
	4.3. Moment bounds for the solutions of the stochastic evolution equations (8) and (25)

	5. Proofs of the main results
	5.1. Proof of Theorem 3.1
	5.2. Proof of Theorem 3.3

	6. Numerical experiments
	6.1. Evolution plots
	6.2. Mean-square error plots

	Acknowledgments
	Appendix A. Proof of the inequality (63)
	REFERENCES

