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Abstract
The growth in data traffic coupled with trends in internet use will re-
sult in a requirement for interfaces of the network to reach Tb/s data
rate in the future. Considering this, novel transmission techniques that
can increase the data rate with orders of magnitude must be considered.
Coupled-core fibers (CCFs) have several closely spaced cores in the same
cladding, which allows carry more data in the spatial domain with slower
accumulation of group delay spread (GDS) and higher tolerance to non-
linearities. Application of CCFs in communication systems, though, is
coupled with distortions of the signal due to GDS and other effects. They
can be calculated, studied and partially mitigated if the transfer function
of the fiber under test is known. Thus, it is essential to characterise the
fiber’s transfer matrix using fast and accurate measurement techniques.
These characterisation measurements can also be used for building chan-
nel models that assist in simulations of the transmission and estimation
of ultimate system performance.

In this thesis a novel method for fiber’s characterisation based on
dual-comb spectroscopy (DCS) and swept-wavelength interferometry (SWI)
is proposed and evaluated. DC-SWI is studied in terms of capabilities,
advantages and limitations with application on a CCF with three cores,
for which the transfer function was measured. It is found that DC-SWI
enables measurement of the broadband features that can not be mea-
sured using DCS and provides flexible trade-offs on SNR and frequency
resolution. Unlike in SWI, in this experimental scheme it is not necessary
to construct an additional interferometer for laser’s sweep nonlinearity
compensation. Furthermore, this thesis discusses proposed random cou-
pling models that describe the linear properties of CCFs. The application
of these models is investigated for CCFs with three and four cores. Mod-
eled results show very good agreement with theory and measured data,
which paves the way for using these models in DSP tests, simulations
and investigation of installed fibers.
Keywords: swept-wavelength interferometry, dual-comb spectroscopy,
transfer function, coupled-core optical fibers, channel modeling.
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CHAPTER 1

Introduction

1.1 Motivation

Optical fibers and photonic devices are central to modern communication
links and have applications in other areas like medicine and metrology.
Since the development of the first optical fibers and their application in
gastroscopy [1] and data transmission [2] it was relevant to characterise
their parameters. Characterisation measurements assist in estimation of
the device quality, its manufacturing process and can give a clue of how
the investigated properties can be improved. Extracted parameters can
also be used to model the optical channel, which is a paramount task in
optical link design and capacity estimation.

The purposes of characterisation are not limited to only quality con-
trol. Even if a manufacturing process results in photonic devices of ex-
tremely high quality, there are still other features that can be measured
and provide information about the device, such as coupling coefficients,
higher order dispersion, mode-dependent loss (MDL) or differential group
delay (DGD). All such parameters can be extracted from the transfer
function, which describes how the output of the system is connected
with its input. In other words, if the transfer function of the device
under test (DUT) can be measured, almost all linear parameters of in-
terests can be easily extracted. Moreover, results of such measurements
can contribute to channel models, which can be beneficial in simulations
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Chapter 1. Introduction

and further improvements of the optical links. In fact, the channel model
is crucial in communication theory for estimating the performance of a
communication channel. More specifically, the channel capacity, i.e.,
the maximum data rate that can be transmitted error-free over a chan-
nel, depends solely on the channel model, as pioneered by Shannon in
1948 [3].

Since the demands on data throughput have risen intensely, space
division multiplexing (SDM) components have gained significant inter-
est thanks to their potential of increasing the data capacity. There are
three general approaches in SDM: multiple independent cores inside a
fiber (multi-core fiber (MCF)) [4], transmission through several modes
of a multi-mode fiber (MMF) [5] and the use of a special type of MCF
with close core spacing, the coupled-core fiber (CCF) [6]. All these fiber
types have their advantages and limitations and have been applied in
different scenarios. CCFs are particularly interesting for application in
optical transmission because of their higher tolerance to nonlinearities
and slower accumulation of group delay spread (GDS) with distance due
to strong coupling between the cores [7]. CCF transmission, however,
is associated with complex random coupling effects that impair propa-
gation and can make digital signal processing (DSP) complicated. This
further highlights the relevance of developing high-precision characteri-
sation techniques that can assist in extraction of these impairments and
creating realistic channel models for CCFs. In the following section I
will review the history of optical characterisation techniques and chan-
nel models with a specific emphasis on applications in SDM.

1.2 History

1.2.1 Characterisation of optical fibers and photonic de-
vices

The history of optical fiber characterisation measurements most likely
started in 1970, when Kapron with coauthors from Corning published
a seminal work on low-loss silica fibers and the measurement of their
propagation losses [8]. Another key parameter for fiber characterisation
was dispersion since it limited the transmission reach. One of the first
works where it was characterised dates back to 1973, where the authors
extracted the pulse dispersion by injecting short impulses of light into a
fiber and measuring the temporal pulse spread at the output [9]. The
pulse dispersion versus length was then measured as a step in a quality
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1.2. History

control after the manufacturing [10] using a shuttle pulse technique [11].
At the same time, experiments for extraction of material dispersion in
the 700-930 nm [12] and 1064-1550 nm [13] wavelength ranges by the
time of flight (pulse delay) technique were established. This method
is based on injecting pulses of different wavelengths into a fiber and
measuring the change in temporal separation between the pulses af-
ter propagation through the fiber. Throughout the years the time of
flight method using fiber Raman lasers [14], discrete-wavelength laser
diodes [15], supercontinuum-radiation sources [16] and tunable soliton
sources [17] has been applied for characterisation of photonic devices.
Today it is also extensively applied for transfer matrix characterisa-
tion [18] and included in methods recommended by the International
Telecommunication Union for dispersion measurements alongside with
phase-shift [19] and interferometric techniques [20].

With the emergence of optical modulation technologies, other tech-
niques for dispersion characterisation arose. The chirp parameter and
chromatic dispersion were measured in the frequency domain with small
modulation depth, where sharp resonance frequencies originating from
interferences between carrier and sideband wavelengths appear [21]. An-
other type of technique implied applying modulation instability side-
band generation for dispersion and nonlinear coefficient extraction [22].
A method based on the phase mismatch of four-wave mixing was devel-
oped in the work [23] and demonstrated dispersion measurements with
an accuracy of 0.03 ps/nm/km.

All these techniques would not be possible without the invention of
the laser [24]. In 1960 Maiman launched the first ruby laser [25] and one
year later, the first continuously operating gas laser was invented [26] at
Bell Labs. A few years later, in 1964, Hargrove and collaborators con-
structed the first mode-locked laser that emitted ultrashort pulses [27].
In the optical frequency domain such a laser presents a sequence of dis-
crete lines that were equally spaced manifesting a comb-like structure.
This formation was called a frequency comb (FC) and since 1964 the in-
terest in FCs has led to remarkable research and inventions, particularly
in the context of the dual-comb spectroscopy (DCS), which will be de-
scribed in more detail in Section 2.2.4. This technique has been applied
for characterisation measurements not only in photonics [28] but also
for liquid [29] and gas samples [30]. Another early example of comb-
based fiber characterisation is [31], where a dual-quadrature detection
scheme based on polarization demultiplexing was used to characterize

3



Chapter 1. Introduction

the dispersion of the fiber under test. The DCS was also combined with
phase-sensitive optical time-domain reflectometry for temperature and
strain change characterisation in fibers [32] and with single-pixel-imaging
for optical vortex characterisation [33]. In terms of SDM, DCS was re-
cently applied to characterise a 110-km CCF [34]. Other applications
of dual-comb interferometers include spectroscopy [35], vibrometry [36],
and imaging [37].

Another key technology in this context is tunable lasers. In 1966
Mary L. Spaeth invented the first tunable laser pumped by a ruby laser
and in 1980s came the arrival of semiconductor diode lasers that could
be tuned using temperature or injection current. These lasers enabled a
tremendous progress in telecommunications, but also provided novel ex-
perimental opportunities in terms of characterisation of photonic devices.
For example, they are crucial in the Poincaré sphere [38] and the Jones
matrix [39] methods for measuring polarization mode dispersion (PMD),
which is one of the principal impairments in optical fibers.

In 1980s appeared a set of techniques that can be united under the
basis of swept-wavelength interferometry (SWI). Eickhoff and Ulrich
described optical frequency domain reflectometry (OFDR) in 1981 [40],
one of the first such interferometric techniques. Since that time OFDR
systems have been developed to characterise fiber-optic networks and
components [41,42] and were employed to measure strain [43], tempera-
ture [44] and vibrations [45]. Recent work [46] demonstrates a character-
isation of of group and phase delays induced by bending and twisting in
a three coupled-core fiber (3CCF) using OFDR. Other SWI techniques
include FMCW ladar (laser detection and ranging) [47] and swept-source
optical coherence tomography, which has been highly successful in mea-
suring biological samples, such as skin [48]. In SDM devices characterisa-
tion it is usual to extend SWI with the configuration called optical vector
network analyzer (OVNA). Recent progress shows that this technique
is successful in transfer function extraction for few-mode fibers [49, 50],
MMFs [51], deployed SDM fibers [52] and spatial multiplexers [53,54].

Another important breakthrough in characterisation techniques hap-
pened in 1948 when Denis Gabor [55] invented holography, a method
which enables capturing both amplitude and phase of a DUT by utiliz-
ing the interference of light. A medium containing this information is
called a "hologram" [56]. A 3D image can be then reconstructed from
a hologram by using the theory of diffraction of light. Digital holog-
raphy (DH) [57] that was developed in 1960s is a technique in which
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a digital hologram that contains an object wavefront is recorded, and
both 3D and quantitative phase images of a DUT are reconstructed us-
ing a computer. These developments enabled many applications, which
are reviewed in [58] and during the last several years DH became one
of the common techniques for characterisation of SDM devices and has
been applied to characterise fibers with high mode count [52], photonic
lanterns [59] and multimode erbium-doped fiber amplifier [60]. A com-
prehensive overview on characterisation of SDM fibers using DH can be
found in [61].

The historical steps discussed above show a broad perspective of char-
acterisation for the fiber optics research, while the focus of this thesis is
on CCFs. A recent review paper on CCFs [6] provides more information
about how various characterisation techniques can be applied to measure
the transfer function specifically in this type of the fibers.

1.2.2 Modeling of SDM fibers

The purpose behind characterisation of optical fibers can also include
building realistic optical channel models, as was mentioned in the pre-
vious section. Channel modeling research started from Shannon’s com-
munication theory [3] for channels with additive noise and was actively
applied in wireless communications [62] and in optical wireless commu-
nications [63]. Fiber optical channel models were not described through
the concept of communication theory until 2000s, when novel modula-
tion formats [64] and forward error-correction coding appeared in opti-
cal communications research [65]. The conventional channel modeling
in fiber optical communication was based the on nonlinear Schrödinger
equation (NLSE), which can be solved efficiently by the split-step Fourier
method [66]. Nevertheless, this method can still be too computationally
demanding, especially for real-time applications. This issue paved the
way to developing new techniques to model the propagation in an or-
dinary single-mode fiber (SMF) and then became a basis for modeling
novel MCFs. The paragraphs below will provide a short historical review
of these developments.

The simplest representation of the SDM fiber is a SMF since in re-
ality it has two modes related to horizontal and vertical polarizations.
The development of SDM channel models, thus, is strongly related to
theoretical concepts on polarization that were continuously studied after
the low-loss optical fibers invention. Earlier in 1970s, the models ac-
counting for polarization impairments were not used much in communi-
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cation since optical receivers detected the optical power, rather than the
field, and were not sensitive to polarization. However, the invention of
erbium-doped fiber amplifiers (EDFA) in the 1980s [67] made long-haul
optical links possible and the accumulated polarization effects, like PMD,
manifested their importance. Since then, the models accounting for po-
larization impairments were in great demand. The PMD, a phenomena
causing the pulse distortion because two modes of different polarizations
propagate with different speed, was first measured in [68] and then mod-
eled in [69], where the concept of principal states of polarization (PSP),
was first introduced. The PSP are free of group delay dispersion to first
order in frequency and form the basis for adaptive optical techniques to
compensate PMD in direct detection systems [70]. Since then there were
many established models, where PMD and the polarization-dependent
optical power attenuation called polarization dependent loss (PDL), were
studied. Models based on differential equations describing the state of
polarization (SOP) change with frequency and fiber length were pre-
sented in [71, 72]. The combined effects of PMD and PDL in optical
fibers were investigated in [73]. The PMD was mostly studied with the
concatenation model, which is a powerful tool allowing determination of
the PMD vector of a set of concatenated fiber pieces with the known
PMD vectors. The idea of the model first appeared in experimental
work [74] and then was actively developed further [75] and summarized
in [70]. The statistical analysis of polarization effects was performed in
some of the previously mentioned works, while the autocorrelation func-
tion (ACF) of the PMD vector was first derived in 1999 in [76], which
enabled estimation of the bandwidth over which the first-order PMD is
applicable. In a couple of years, a generalized theory for computing the
probability density function of the PMD vector was presented [77].

Later, when interest in coherent detection arose, models that de-
scribe electromagnetic wave propagation accounting for the polarization
became relevant. To model such a propagation without PDL, the uni-
tary 2 × 2 Jones transfer matrix formalism [78] was typically used. The
description of a polarized electromagnetic wave in terms of its four real
quadrature components was pioneered in papers [79] and [80]. There ap-
peared then another analysis, where an extension of the conventional po-
larization analysis was applied to cover the full degrees of freedom of real
four-dimensional rotations [81]. Performance degradation in coherent
polarization multiplexed systems as a result of PDL was studied in [82].
Another direction related to models that account for the static [83] and
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dynamic [84] changes of the SOP during transmission in coherent fibre-
optic systems. Paper [85] presented a pioneering model for random SOP
drifts in the time domain by generalizing the one-dimensional phase noise
random walk to a higher dimension. This model was described in the
Jones, Stokes and mentioned 4D formalism. A comprehensive review
of channel models related to polarization effects in fiber optical com-
munication systems can be found in [86]. At the same time, in 2000s,
there appeared a lot of collaboration between communication and fiber
optics researchers since the increased attention to coherent communica-
tion demanded an explicit input-output relationship for the fiber optical
channel. A good review of such channel models is given in [87].

The models that described the polarization effects became the basis
for the first models that appeared after developing the SDM technologies.
The modes behavior in MMFs and in MCFs considered to follow similar
mechanisms of coupling. The concept of principal modes, the modes
that are free of modal dispersion to first order in frequency, was in this
sense similar to PSP. Principal modes are fundamental for adaptive
optical techniques to compensate modal dispersion in direct-detection
systems [88]. Fan and Kahn first predicted the existence of the principal
modes in MMFs [89] and the theory was then developed for the random
coupling regime in [90]. In [91] authors experimentally demonstrated the
principal modes in a six-mode fiber.

When the spatial modes in SDM fibers experience different attenu-
ations, it is said that the fibers have MDL, the phenomenon which is
parallel to another polarization effect, PDL. The statistical properties
and system impact of MDL in the strong-coupling regime in MMFs were
studied in [92, 93]. It was shown that the distribution of the modal
gains is equivalent to the eigenvalue distribution of a zero-trace Gaus-
sian unitary ensemble, which is the same as the distribution of the modal
group delays [94]. The performance metrics of multiple-input multiple-
output (MIMO)-SDM systems with different amplification schemes was
investigated in work [95].

Another big trend in modeling MCFs has been supermodes, which are
the superposition of the individual modes and the spatial eigenmodes of a
MCF. This concept is very useful for describing unperturbed, ideal SDM
fibers. The coupled-mode theory (CMT) described in [96] and [97] pro-
vided a solid basis for numerous studies of the supermodes and coupling
mechanisms in CCFs and MMFs. The analytical approach for two waveg-
uides in a weak coupling regime was published in [98] and one of the first
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works on two-core fiber was done in [99], where the intermodal dispersion
was analytically derived and studied. The coupled-mode analysis for de-
scribing the coupling properties of linear-core-array microstructured fiber
was shown in [100]. Xia et al. presented the study of the supermodes
in a four coupled-core fiber (4CCF) [101] and other CCFs [102], includ-
ing higher-order supermodes analysis. A comprehensive analytical and
numerical work on a CCF with 19 cores was presented in [103]. Super-
mode characteristics were also investigated in nested multiple hollow-core
strongly coupled anti-resonant fibers [104]. In work [105] the supermodes
behavior, including the effect of all high-order inter-core couplings, was
explored with finite element simulation and compared with the CMT
results.

The deterministic models mentioned in the previous paragraph are
very useful to study an ideal CCF, without any perturbations. To model
a realistic CCF, though, it is important to include the effects of random
mode coupling, as it is the main characteristic of such fibers that im-
pact propagation, mainly through the modal dispersion. The effects of
random mode coupling in CCFs can be evaluated by the CMT as well
and were discussed in a recent work [106]. The coupled mode equation
for the waveguide mode system in this case should account for random
variations of coupling coefficients [107]. The modal dispersion and its
statistical properties in coupled SDM fibers can also be studied using an
extension of the formalism developed for PMD [108]. The model was
also generalized to a case when the MDL is present in the system [109]
and validated by comparison with experimental data.

As temporal fluctuations in the channel can impair the signal, the
models that describe dynamic changes in SDM fibers have been in great
demand. The ultra-short pulse propagation model for MCFs [110] is
based on the concept of local modes, in which the fiber perturbations
effects, including various types of nonlinear effects, are incorporated into
Maxwell equations. In [111], the authors carried out an experimental
analysis of the time-dependence of the transfer matrix of a few-mode
fiber, and proposed its parametrization to describe the temporal evolu-
tion. The time drift was mathematically expressed as an operator that
depended on phase variations. A similar approach was used in [112],
where the authors not only designed a model for fast and slow time
variations in MMFs, but also tested it for an adaptive MIMO equal-
izer. Such tests became extremely relevant after emerging experiments
on the real-time transmission through CCFs [113, 114] since they assist
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in studying equalizer performance using a specific channel model. It
becomes even more useful if the parameters of the model are fit to prop-
erties of field-deployed CCFs, as has been performed in [Paper E]. In
a recent work [115] devoted to the dynamic model for MMFs, the au-
thors propose a method for simulating the time and frequency-dependent
transfer matrix in all linear coupling regimes.

The linear effects discussed above limit data capacity in fiber telecom-
munications, but can in general be mitigated by various techniques.
However, the nonlinear Shannon capacity limit has been identified as
the fundamental barrier to the maximum rate of transmitted informa-
tion in optical communications as nonlinear effects can occur and can
be designed in various ways [116]. Numerous models were created to
describe nonlinear impairments in the optical fibers [117], and a lot of
efforts have been made to estimate the capacity of the nonlinear optical
channel [118]. In case of a SMF, nonlinear propagation is governed by
a pair of coupled NLSEs [66], while in the MMF case it is replaced by
2N coupled NLSEs having a more general form [119]. It was shown that
in realistic scenarios the nonlinear propagation in MMFs can be mod-
eled with coupled generalized Manakov equations [120]. The Gaussian
noise models [121] attracted a lot of attention because of their computa-
tional simplicity comparing to other techniques and have been extended
for SDM fibers in [122] and in [123], where the authors also took the
effect of spatial mode dispersion into consideration. The tutorial [124]
gives a broad review over various models for SDM fibers accounting for
nonlinear behavior. Communication friendly models accounting for non-
linearities are reviewed in [87]. Extensive research has also been done
on the models implemented with the nonlinear Fourier transform [125],
another way of solving the NLSE.

1.3 This thesis

The focus of this thesis is on characterising the full linear transfer func-
tion of CCFs for building realistic channel models. For this purpose we
employ a technique, which combines DCS that is based on the probing
a DUT with frequency combs and SWI, where a tunable laser source is
used to scan a DUT over a large wavelength range. The established tech-
nique, dual-comb swept-wavelength interferometry (DC-SWI), exhibits
advantages and flexible trade-offs from both DCS and SWI and enables
fast characterisation of CCFs. The experimental results can give the in-
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put for modeling the transfer function of CCFs. Thereafter, we designed
static and dynamic random coupling models that assist in calculation of
the transfer function of CCFs.

The papers included in this thesis mark the benefits of the proposed
experimental technique, demonstrate the results on transfer function
characterisation and show the analysis of the simulation results obtained
using proposed random coupling models for CCFs. In [Paper A], we per-
form transfer function characterisation of a 3CCF using DC-SWI. The
root mean square (RMS) widths of the impulse responses and differential
mode group delay (DMGD) values were estimated for every core. [Pa-
per B] is devoted to the comprehensive description of the DC-SWI tech-
nique. We discuss the operation principle, experimental implementation,
DSP, performance characteristics, advantages and limitations. In [Pa-
per C] we present for the first time, to the best of our knowledge, a
comparative analysis between scalar and vector models for 3CCFs. We
derive an analytically tractable vector model of the supermodes for an
unperturbed 3CCF, accounting for the birefringence from the presence
of nearby cores. The model is extended to account for the effects of
random mode coupling to analyze the intensity impulse response (IIR)
as well group delays (GDs) in a 3CCF by using the concatenated wave-
plate model. Comparisons with measured IIR [Paper A] then enable an
estimate of the correlation length of the fiber. In [Paper D] we present
a comparative analysis of the scalar and vector random coupling mod-
els for a 4CCF in the ideal case and random coupling regime. In [Pa-
per E] we use our channel model to explore an ASIC implementation
for pilot-based MIMO equalizers for coupled-core transmission. This
enables a study of chip area scaling trends and performance impact of
time-dependent drift. [Paper F] is devoted to designing a dynamic model
for CCFs, which contains a static frequency dependent part presented in
paper [Paper C] and time-drift part implemented in paper [Paper E]. We
show simulation results for IIR, GDs and ACF of a 4CCF, which has the
same geometrical parameters as the 4CCF used in reported transmission
experiments [113]. We also provide an analytical derivation of time and
frequency ACFs in our model.

The outline of this thesis is as follows. In Chapter 2, various SDM-
focused characterisation techniques, their advantages and limitations are
discussed. Chapter 3 introduces the DC-SWI technique, its implementa-
tion scheme, features and capabilities. Chapter 4 overviews the proposed
channel models for CCFs. Finally, in Chapter 5, the future outlook is
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presented and Chapter 6 outlines the main results in the appended pa-
pers.
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CHAPTER 2

Characterisation of SDM devices

Characterisation of optical fibers and photonic devices is extremely im-
portant for quality control and gaining principal information for fiber
optical links and their improvement. This requires application of ac-
curate and sensitive measurement techniques capable of retrieving the
parameters of interest. Some of the most important characterisation
techniques were highlighted in the introduction chapter. In the follow-
ing I will review spatial and temporal SDM characterisation techniques,
with an emphasis on DCS and SWI since they form a basis for DC-SWI,
which is one of the topics of this thesis. The chapter starts from a
brief description of various impairments present in transmission through
SDM fibers that are of importance in characterisation and which should
be accounted for in channel modeling.

2.1 Propagation effects in SDM devices

The propagation of the slowly varying envelope of a single polarization
electric field along a fiber is described by the NLSE:

∂E(t, z)

∂z
= −α

2
E(t, z)− j

β2
2

∂2E(t, z)

∂t2
+ jγ|E(t, z)|2E(t, z), (2.1)

where E(t, z) is the slowly varying envelope along the fiber at time t and
distance z, α is the attenuation coefficient, β2 is the group velocity dis-
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MMF MCF CCF

Figure 2.1: Types of the SDM fibers: MMF, MCF and CCF.

persion (GVD) and γ is the nonlinear coefficient. As can be seen, every
term on the right-hand side of the equation represents a specific type
of fiber impairment. There are thus three main impairments along the
fiber: the linear fiber loss and GVD and the nonlinear Kerr effect. There
are other linear effects that are relevant for the SDM fibers and will be
discussed in this Section. The nonlinear effects can be index-related, like
self-phase modulation, cross-phase modulation and four-wave mixing, or
scattering-related comprising stimulated Brillouin scattering and stimu-
lated Raman scattering. These nonlinear effects are summarised in [126]
and will not be discussed in this section since they are out of scope of
this thesis.

SDM fibers can be categorized into MMFs, MCFs and CCFs (Fig.
2.1). The MMFs guide several modes inside one core, while MCFs have
multiple cores inside the cladding. The CCFs are MCFs with the cores
that are closely arranged. The focus of this thesis and attached papers
is on CCFs since they more slowly accumulate GDS than other SDM
fibers and exhibit a higher tolerance to nonlinearities, which makes them
attractive for long-haul transmission [6].

2.1.1 Attenuation

Fiber loss per unit length is described by the attenuation coefficient α.
Attenuation is wavelength-dependent and has three main contributions:
Rayleigh scattering at short wavelengths, absorption at long wavelengths
and OH-absorption. Around 1550 nm, the sum of their terms is the
lowest and the loss typical values are α ≈ 0.2 dB/km [127]. The power
evolution of the optical field in the fiber is dictated by the Beer-Lambert
law:

P (z) = P (0)e−αz, (2.2)
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where z is a propagation distance, P (0) is the launched power and α is
the attenuation in linear units.

Rayleigh scattering is caused by the refractive index variations due to
microscopic fluctuations in material density of the glass, leading to scat-
tering. Absorption appears at longer wavelengths when silica molecules
absorb more photons, causing attenuation. Additionally, bending losses
can be a significant contribution to accumulated attenuation. If a fiber
is bent tightly, the mode moves more to the edge of the core until it is
not fully guided any more and starts becoming lossy. This type of loss
sets a critical bend diameter found in data sheets of fibers.

Attenuation can be compensated using EDFAs. However, they add
noise due to amplified spontaneous emission [128]. The quantum limited
noise figure in an ideal EDFA is 3 dB [128], while real-world amplifiers
can have the noise figure as large as 6-8 dB.

2.1.2 Group velocity dispersion

The GVD or chromatic dispersion is a linear propagation effect that
appears owing to the group velocity is different for different frequency
components in the optical fiber. This results in time domain pulse broad-
ening [66] and although spectral components are launched into the fiber
at the same time, they have different transit times and will thus arrive
at the receiver at different times.

Chromatic dispersion is defined through the dispersion parameter D
[ps/nm/km] which gives the pulse broadening per nm of spectral width
per km of fiber. It can be described in terms of the propagation constant
β(ω):

D = −2πc

λ2
β2, (2.3)

where λ is the wavelength, c is the speed of light and β2 is a term in
Taylor expansion of the propagation constant β(ω) that is proportional
to its second derivative with respect to frequency evaluated at the carrier
frequency ω0 as β2 = ∂2β

∂ω2 |ω=ω0 .
In SMF links the GVD is static and can be compensated by introduc-

ing dispersion compensating fibers or by receiver DSP in case of coherent
detection [84]. Thus, it is not a central problem in transmission or chan-
nel modeling, unless it is imperfectly compensated.
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2.1.3 Modal dispersion

The set of modes, their effective index and group velocity depend on the
waveguide geometry. Modes in the optical fiber have different spatial
profiles and can have different group velocities. If, for instance, the group
velocity for one mode is larger than for another, a pulse exciting both
modes will be dispersed and potentially split during propagation along
the fiber. This phenomenon is called modal dispersion or intermodal
dispersion.

One of the form of modal dispersion is PMD, where the two polariza-
tion modes of light in a waveguide propagate at different speeds due to
random imperfections breaking the circular symmetry [129]. This results
in separation of the signal’s polarization components causing spreading
of pulses and as for all dispersion effects, the pulse broadening will lead
to intrapulse crosstalk that will cause signal distortion and limit the
available bandwidth of the channel unless it is compensated. The PMD
values of modern low-PMD optical fibers are around 0.02 ps/

√
km.

The strength of modal dispersion can be defined by time delay per
unit length. This delay is referred as DGD, DMGD, differential mode
delay, spatial mode dispersion, or GDS. The record-low values of modal
dispersion measured on 2-core fiber ribbons [130] and on 4CCFs deployed
in the SDM fiber testbed in L’Aquila [131] are of 1.5 ps/

√
km and 2.5

ps/
√
km, respectively, two orders of magnitude larger than aforemen-

tioned PMD value. This modal dispersion can be compensated by com-
bining fibers with positive and negative DGD [132, 133]. The principle
is to offset the DGD introduced by a certain fiber by a very similar fiber
with DGD of opposite sign. However, any mode coupling during trans-
mission deteriorates the compensation making DSP more complicated.

The modal dispersion effect, if static, is not necessarily detrimental
for coupled SDM systems since MIMO DSP [134] enables compensation
for any mixing. Moreover, the mixing can be even desirable in coupled
SDM systems since in the regime of strong coupling DGD accumulates
only with the square root of distance [7], which is slower than for un-
coupled SDM fibers. However, the random mode coupling that arises
in MMFs and CCFs make modal dispersion random as well and time
varying. Modal dispersion, thus, requires adaptive equalizers [135] to be
compensated, which is challenging if the modal delays are big and the
drift is fast. The study [136] showed that the modal dispersion in CCFs
can be reduced to 0.1 ps/

√
km if an even number of cores are placed in

a ring-array structure, so that each core is coupled to two identical cores
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with the same propagation constant mismatch.

2.1.4 Mode-dependent loss

Imperfect coupling in SDM components can lead to different loss in dif-
ferent modes, which results in MDL and deteriorate the transmission
performance [137,138].

In an ideal system without MDL the transfer matrix of an SDM
device is unitary. MDL, therefore, is described by non-unitary transfer
matrices [92]. Using singular value decomposition, MDL can be then
calculated as the ratio between the modulus of the maximum λmax and
minimum λmin singular values of the measured transfer matrix, i.e.,

MDLdB = 10 · log10
[
|λmax|2

|λmin|2

]
. (2.4)

MDL was measured in the range of 8-10 dB for a 3CCF after 1200 km
and 10-12 dB for a three-mode few-mode fiber after 1045 km transmission
distance [139]. In [140] MDL a value of less than 0.05 dB over 97.9 km
was measured for a 4CCF.

2.2 Experimental schemes for characterisation of
SDM fibers

2.2.1 MIMO equalizer tap analysis

MIMO channel equalization [4] assists in unscrambling the mixing of the
modes in SDM fibers and resolving the data. The principle is that the
signals from outputs of a DUT are received independently (the number
of receivers correspond to the number of outputs) and then subjected to
the DSP by adaptive equalization. The equalizer adaptively learns how
to invert the transmission channel and the filter weights of the equal-
izer, equalizer taps, contain information about the transmission channel.
Equalizers updated using the minimum mean squared error or the least
means squares criteria converge to the inverse of the channel transfer
matrix in the noiseless regime [141]. Hence, the equalizer taps can be
used to simulate the transmission channel and estimate parameters of
interest, for example, modal dispersion or MDL.

Modal dispersion can be calculated by analyzing the MIMO equalizer
taps in the time domain. The summation of the absolute squared filter
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weights gives the impulse response of the channel. As was shown in
Section 2.1.4, MDL is calculated via singular value decomposition of
the transfer matrix of the DUT. MDL calculation is carried out in the
frequency domain, so the equalizer has to be run in the frequency domain,
or the time domain taps have to be Fourier transformed to represent the
frequency domain. It is important to mention though that MDL impairs
equalizer convergence, thus increasing the noise of the equalised symbols.
Experimental examples and calculation of modal dispersion and MDL for
various SDM fibers can be found in Chapter 6 of [61]. Various MIMO
equalization algorithms are extensively reviewed in [142].

2.2.2 Spatially and spectrally resolved imaging

Spatially and spectrally (S2) resolved imaging was first demonstrated
in 2008 [143] and applied for imaging higher-order-modes propagating in
large-mode-area fibers. The modes that propagate in optical fibers can be
identified by both the group delay difference which leads to a spectral in-
terference pattern for a broadband source propagating through the fiber,
and a spatial interference pattern between the high-order modes and the
fundamental mode [143]. In a MMF, the guided modes propagate with
different speeds and spectrally interfere. This results in multi-path in-
terference (MPI) and can lead to signal fading on a slow time scale [144].
The interference period of MPI is connected with the DGD between the
two interfering modes. The principle of S2 imaging is based on measur-
ing the MPI at several spatial points across the transmitted optical beam
using a scanning fiber probe.Fourier analysis of the recorded spectra as-
sists in resolving the DGD between two interfering modes and retrieving
the corresponding mode profiles.

Figure 2.2 shows the experimental setup for S2 imaging used in [143].
The light from a broadband optical source is launched into a MMF under
test. A magnified image of the output facet is scanned with an SMF
which is connected to an optical spectrum analyzer (OSA). A polarizer
is needed in order to ensure that polarization states of the modes are
aligned on the SMF end-face. The measured optical spectra are Fourier
transformed and intensity profiles of the individual modes are extracted.
The MPI can be calculated as a ratio of powers of the modes that can
be found by integration of intensities over the fiber cross section.

Applications of S2 imaging include mode analysis not only of large-
mode-area MMFs [143, 145], but also photonic crystal fibers [146], all-
solid and hollow core band-gap fibers [147], as well as extended long
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Figure 2.2: Experimental setup for S2 imaging implementation from [143]
.

tapers [148] and silicon waveguides [149]. It has also been successfully ap-
plied to observe supermodes in a coupled few-mode three-core fiber [102],
measure higher order mode bend-loss in photonic band-gap fibers [150],
characterise efficient higher order mode suppression in scalable output
fiber amplifiers [151]. Moreover, S2 imaging technique was applied in a
combination with correlation filter mode analysis for characterisation of
optical fibers [152] and such a method provided simultaneous decompo-
sition of one beam with considerable improved accuracy.

2.2.3 Digital holography

Digital holography (DH) is a widely-used imaging method with a lot of
applications. In terms of optical fiber characterisation, DH can bring
a lot of advantages, especially when a fiber with high mode count and
strong coupling is considered [52, 153, 154]. Compared to S2 imaging
that can fail in case of strong mode mixing, DH is more accurate since
it acts as a perfect mode demultiplexer [52]. A comprehensive overview
of SDM characterisation using DH is presented in Chapter 3.2 of [61].

Figure 2.3(a) demonstrates an experimental setup, where a signal
from a DUT beats with an angled reference beam on a camera. The
light from an SDM device is imaged with magnification using a free-
space optical setup. The interference between DUT signal and reference
lead to fringes in optical intensity, which are captured by the camera.

An example of the recorded camera frame taken from [155] and fur-
ther DSP process is presented in Fig. 2.3(b). First, a part of the image
is cropped around the center of interference pattern. Next, these parts
can be converted to the angular domain by Fourier transforming. The
converted interference pattern needs to be filtered in the angular domain
following a similar algorithm, so a new square piece of image has to be
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Figure 2.3: (a) Experimental setup for DH implementation. BC - a beam
combiner, WP - a Wollaston prism. (b) Example of the DSP
from [155].

cropped. The filtered pattern is shifted back to spatial domain using the
inverse Fourier transform. The resulted optical field contains both am-
plitude and phase information making it possible to calculate a complex
transfer function of a a SDM-DUT.

2.2.4 Dual-Comb Spectroscopy (DCS)

Dual-Comb Spectroscopy (DCS) uses two FCs with slightly different rep-
etition rates to generate an RF comb that can be measured on an oscil-
loscope. From the relative phase and amplitude information of the RF
comb one can extract the characteristics of the DUT at the corresponding
optical frequencies. The DCS is capable of simultaneous measurements
of broadband and high-resolution spectra within microseconds. It is also
characterised by high signal to noise ratio (SNR), high sensitivity, fast
acquisition speeds, a small footprint, and implementation free of moving
parts. Recent reviews on DCS can be found in [156,157] and [Paper G].
Novel experimental schemes using the microcombs are discussed in [158].
This section provides a brief overview of the operation principle, math-
ematical description, implementation alternatives and key experimental
results on the use of DCS in photonic device characterisation.

Operation principle

The operation principle of DCS can be explained in the both frequency
and time domain. In the frequency domain two FCs with slightly dif-
ferent repetition rates, fr1 and fr2 , interfere on a photodiode generat-
ing an RF comb with a repetition frequency ∆fr = fr1 − fr2 formed
by heterodyne beating between pairs of the teeth of the optical combs
(Fig. 2.4(a)). At least one FC has to pass through the DUT, the fre-
quency response of which changes the shape of the FC (Fig. 2.4(b)).
The wavelength-dependent absorption and phase on the comb teeth are
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Figure 2.4: (a) Frequency domain representation of DCS. (b) Principle of
DCS. The black and green lines relate to optical and RF connec-
tions respectively. (c), (d) Time domain representation of DCS
for the (c) optical signals and (d) electric signal. (e) Captured
interferogram.
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modified into the corresponding amplitude and phase of the measured
RF comb. The RF comb spectrum can be extracted by Fourier trans-
forming a set of time domain interferograms captured by the real-time
oscilloscope (Fig. 2.4(e)).

In the time domain two pulse trains with slightly different repetition
rates interact and "walk through" each other (Fig. 2.4(c)). The resulting
beating on a photodiode produces an interferogram (Fig. 2.4(e)) that
can be described as a product of two FC pulses integrated over the
photodiode bandwidth. This signal is usually acquired as a function of
the effective time, n∆T , where n is the sample number at time intervals
of ∆T [156]. A weak ringing that can be observed on the edges of the
pulse (Fig. 2.4(d)) contains absorption information of the DUT.

Mathematical description

The mathematical analysis in this section is based on the analysis in
[159]. Let us denote absolute frequencies of two FCs as νk = fceo1 +kfr1
and νm = fceo2 +mfr2 , where k = 0...K − 1 and m = 0...M − 1 are the
comb line numbers and fceo is a carrier-envelope-offset (CEO) frequency
of the corresponding FC, comprising the carrier frequency of the laser.
Then, the electric field equations of the FCs can be described as

E1(t) =
K−1∑
k=0

Gk(νk − νc)e
i(2πνkt+ϕk) (2.5)

and

E2(t) =
M−1∑
m=0

Gm(νm − νc)e
i(2πνmt+ϕm), (2.6)

where Gk(νk − νc) and Gm(νm − νc) are the spectral profiles of the FCs,
νc is the center frequency, ϕk and ϕm are the phase factors. Note that in
Fig. 2.4(a,b) both FCs have ideal rectangular shape, which is not true
in reality.

After the interaction of two FCs on the detector, the heterodyne
interference output voltage is given by [159]

U(t) ∼ Re{
∑
k,m

ÃkÃ
∗
me

i(2π[νk−νm]t)}, (2.7)
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2.2. Experimental schemes for characterisation of SDM fibers

where Ãk = Gk(νk − νc)e
iϕk and Ãm = Gm(νm − νc)e

iϕm are complex
amplitudes of the kth and mth components for corresponding FCs.

The RF frequency components after multi-heterodyne interference
are defined as

fRF
k = νk − νm = fceo1 + kfr1 − (fceo2 +mfr2) =

= ∆fceo + (k −m)fr2 + k∆fr = fRF
ceo + k∆fr, (2.8)

where fRF
ceo = ∆fceo + (k −m)fr2 is the artificially prescribed CEO fre-

quency of the heterodyne comb structure, far from the zero frequency
to maintain k as a common index between the combs in optical and RF
domains [159].

An electronic filter is applied to restrict each optical frequency in FC
to one single RF frequency. In this case comb line numbers k and m
match each other and are limited to satisfy the following inequality:

−fr2
2

< fRF
ceo + k∆fr <

fr2
2
. (2.9)

The range of k is defined by the center wavelength and bandwidth
of the optical band-pass filter, and only one possible m responds to a
specific value of k under the condition (2.9). Under this requirement the
corresponding phases of the RF frequency components can be written as

ϕRF
k = ϕk − ϕm = ϕ01 + 2πνkτ01 − (ϕ02 + 2πνmτ02) =

= ϕRF
0 + 2πfRF τRF

0 , (2.10)

where ϕ01, ϕ02 and τ01, τ01 are carrier envelope phases and the initial
pulse center positions of two FCs respectively, ϕRF

0 is the carrier envelope
phase and τRF

0 is the initial pulse center position of the interferograms.
The output voltage of the detector can then be simplified to

U(t) ∼ Re{
K−1∑
k=0

H(fRF
k − fRF

c )ei(2πf
RF
k t+ϕRF

k )}, (2.11)

where H(fRF − fRF
c ) ≈ Gk(νk − νc)Gm(νm − νc) is the RF spectrum of

the interferograms, fRF
c = fRF

ceo + ∆fr
fr1

(νc − fceo1) is a carrier frequency
(center frequency) of interferograms.

If a DUT is introduced after one of the combs (as in Fig. 2.4(b)), then
the shape of the corresponding comb will be changed according to the
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Chapter 2. Characterisation of SDM devices

impulse response of a DUT h(t) and resulting voltage will be modified
as

U(t) ∼ Re{
K−1∑
k=0

h̃k(t)H(fRF
k − fRF

c )ei(2πf
RF
k t+ϕRF

k )}, (2.12)

where h̃k(t) is the impulse response of the individual k-th comb line.
(2.12) represents a set of interferograms (Fig. 2.4(e)), which in the fre-
quency domain will give a set of impulse responses separated by ∆fr.

Experimental implementation

One of the advantages of DCS is that it can be implemented on differ-
ent platforms, for instance microcombs [160] or integrated mode-locked
lasers [161] and various configurations, such as sweeping the comb rep-
etition rate by tuning the RF source [162, 163]. One of the most popu-
lar options is to use electro-optic FCs [164]. In contrast to mode-locked
lasers, electro-optic FCs do not rely on a cavity for constructing the mode
spectrum, and therefore provide flexibility in setting the center frequency
and spacing between the comb lines. Since electro-optic combs are fed
by a single continuous wave laser, they provide mutual phase coherence
in the DCS [164–167].

Figure 2.4(b) demonstrates an example of DCS based on electro-
optic FCs. The laser is divided into two paths and feeds FCs, one of
which is coupled in a DUT. The resulting beating is measured with
a receiver and digitized with a real-time sampling oscilloscope. The
oscilloscope has to be equipped with sufficient memory to capture the
measurement data. It is important to note that the setup has to be
synchronized in order to avoid additional DSP steps for compensating
a drift in the repetition rate of the comb. In Ref. [165] the authors
proposed an RF circuit included in the DCS setup, where the offset
in repetition rate frequencies is extracted via a mixer. The signal at
the output of the mixer is used as both external clock and trigger for
the oscilloscope. In other words, the sampling clock of the digitizer
has to be locked to the comb fr1 − fr2 clock. In addition, an acousto-
optic modulater (AOM) can be used for shifting away the downconverted
center line of the comb from DC [165]. Considered DCS configuration
(Fig. 2.4(b)) requires a calibration process, so in a reference experiment
the DUT should be removed from the signal arm. This measurement then
has to be subtracted from the one with the DUT in post-processing. For
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2.2. Experimental schemes for characterisation of SDM fibers

each interferogram, the spectral complex amplitude is recovered through
a Fourier transform process, which includes conventional tools in Fourier
analysis, such as zero padding or phase unwrapping.

2.2.5 Swept-wavelength interferometry (SWI)

Swept-wavelength interferometry (SWI) is one of the most popular exper-
imental schemes for characterising SDM fibers. Various configurations
of this technique are reviewed in [Paper G]. Chapter 5 of [168] provides
a detailed mathematical description, experimental implementation ex-
amples and DSP steps for SWI. This chapter presents an overview of
an operation principle, experimental issues and general post-processing
steps for SWI.

Operation principle

There are many measurement techniques that can be united under the
basis of SWI, as was discussed in the introductory chapter. Nuances of
their implementation may depend on the application, but the defining
element of all SWI systems is a frequency tunable source, which continu-
ously sweeps the light in a given wavelength range. Unlike in traditional
interferometry, where interference patterns are typically observed as a
function of a spatial coordinate, the interferogram in SWI is captured
as a function of the instantaneous optical frequency of a tunable source.
The output of the sweeping source is split into two arms - a reference
arm and a sample arm. The optical path length of the reference arm is
usually fixed, and the sample arm may include multiple distinct paths.
By performing a Fourier transform on the acquired interference pattern
data, the impulse response of the sample can be extracted (Fig. 2.5).

As was mentioned above, the interferogram in SWI is captured as a
function of the instantaneous optical frequency of a tunable source. This
point can be confusing because it is common to refer to raw data acquired
by a real-time oscilloscope as time domain data, while data that is Fourier
transformed is referred as frequency domain data. In SWI, however, the
roles of the time domain and the frequency domain are reversed since
the signal is acquired as a function of the instantaneous frequency of the
laser source as it sweeps, rather than as a function of time. Moreover,
the instantaneous frequency of the laser is a function of the sweeping
time. Hence, one can represent the fringes captured in SWI experiments
as a two-dimensional function which depends on instantaneous frequency
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Figure 2.5: Swept wavelength interferometry implemented in a single mode
optical fiber based on a Mach-Zehnder structure, showing extrac-
tion of the DUT impulse response function.

and sweeping time, which also define a size of the measurement window
of the real-time oscilloscope (see Fig. 2.5).

Mathematical description

A comprehensive mathematical description of various SWI configura-
tions, including SDM, is published in Chapter 5.1 and 5.2 of [168]. Here
we consider the case of a simple interferometer based on a Mach-Zehnder
geometry (Fig. 2.5). The output of the tunable laser is given as

E(t) = E0e
−iϕ(t)Q̂, (2.13)

where E0 is a constant amplitude, Q̂ is a unit polarization vector that
is assumed to be constant throughout the laser sweep and ϕ(t) is the
phase, which is related to the instantaneous frequency ν(t) of the laser
as

ν(t) =
1

2π

dϕ(t)

dt
. (2.14)

The instantaneous frequency ν(t) of the laser in the case of a linear
frequency sweep is

ν(t) = ν0 + γt, (2.15)

where γ is the sweep rate. Thus, by integrating (2.14), the phase is given
by

ϕ(t) = 2π(ν0t+ 0.5γt2). (2.16)

The laser field E(t) is split into two components E(t− τr) and E(t− τs)
that propagate through different paths with the group delay times of
the signals in the reference and sample arms τr and τs, respectively. For
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2.2. Experimental schemes for characterisation of SDM fibers

simplicity an equal splitting ratio is considered. When these two compo-
nents of the optical field are recombined on a photodetector, interference
results in a detector voltage given by

U(t) = |E(t− τr) + E(t− τs)|2 (2.17)

and the final result will be

U(t) = U0(1 + cos(2πγtτ0 + ψ)), (2.18)

where τ0 = τs − τr, U0 is a constant that depends on the detector sensi-
tivity and constant amplitude E0, and ψ is a constant phase. The result
can be interpreted as a sinusoidal output for a fixed-path-length interfer-
ometer and used for a further processing and extraction of the transfer
function and impulse response. In SWI it is often more convenient to
represent (2.18) as a function of the instantaneous optical frequency ν,
rather than a function of time:

U(ν) = U0(1 + cos(2πντ0 + ξ)), (2.19)

where ξ = ψ − 2πν0τ0.
In case of nonlinear frequency tuning, (2.18) can be written in a more

general form of

U(t) = U0(1 + cos(ϕ(t)− ϕ(t− τ0) + ψ)). (2.20)

In [169] (2.20) is simplified by expanding ϕ(t− τ0) in a Taylor series and
assuming that the instantaneous laser frequency does not change over a
time interval equal to the relative delay between the interferometer arms.
In this case the higher order terms in the expansion are negligible and

ϕ(t− τ0) ≈ 2πν(t)τ0, (2.21)

so the phase difference is no longer an explicit function of time, but
rather a function of the instantaneous optical frequency ν(t). After sub-
stitution of relation (2.21) in (2.20), an expression identical to (2.19) can
be derived. However, in case of nonlinear tuning this equation must be
applied carefully, since the fringe pattern is periodic in optical frequency,
but may be aperiodical in time, whereas in the case of ideal linear tuning,
the captured signal is periodic in both time and optical frequency.
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Nonlinearity of the laser sweep and its tracking

As was mentioned in the previous section, the laser sweep is generally not
perfectly linear. This leads to measurement errors and can artificially
broaden the measured impulse response function of the DUT [169]. To
overcome this issue, an auxiliary interferometer is usually introduced in
the experimental setup, as indicated in Fig. 2.6(a). This interferom-
eter assists in tracking the nonlinearity of the laser sweep, which can
then be compensated [41,169,170]. One option is to linearize the nonlin-
ear frequency sweep by extracting new sample points from the received
signal of this additional interferometer. Another alternative is to use
the auxiliary interferometer output as a clock signal to trigger the os-
cilloscope, which avoids the large number of interpolations required for
resampling [171–173]. Using this signal as an external clock to sam-
ple the fringe pattern output by the measurement interferometer en-
ables sampling at equal optical frequency steps ∆ν0 = 1/τ0. This, how-
ever, is correct only when the instantaneous frequency of the laser does
not change significantly over τ0 (the slow tuning approximation crite-
rion) [169]. Along with that, the trigger signal output can be used to
measure the varying laser sweep rate throughout an acquisition, provid-
ing the sweep rate data required to perform the resampling.

Both approaches discussed above rely on the condition that the inter-
ferometer output signal is periodic in optical frequency. However, when
the laser sweeping speed is high, the slow tuning approximation is not
valid anymore. Usually such lasers have much larger nonlinearity of the
sweep and one can face undesired variations in the sampling interval
that arise when using a particular clock to trigger the sampling of an
experimental data set. Such variations are referred as sampling errors in
Ref [169].

All mentioned issues were alleviated after the development of DSP
methods [168], but still lack absolute accuracy and suffer from a system-
atic error caused by a wavelength dependent fiber group delay. Owing
to that, calibration of the delay arm and operation in a stable condition
is required [171, 174]. Recently, a new approach was reported, where a
FC can be used as a frequency "ruler" for such a calibration [175].

Experimental implementation

Figure 2.6(a) shows a general experimental setup for characterisation of
photonic devices using SWI. A tunable laser sweeps across the mea-

28



2.2. Experimental schemes for characterisation of SDM fibers

DUTTunable
source

Receiver

Receiver R
ea

l-t
im

e
os

ci
llo

sc
op

e

(a) (c)
Power fading

Nonlinearity of
the laser sweep

Band-pass filtering

Fourier transforming

Compensation for

time

stop

start (b)
Impulse response extraction

Transfer function extraction

Inverse Fourier transforming

Figure 2.6: (a) Experimental setup for SWI implementation. (b) Principal
sketch showing deviations (red) from the ideal linear dependence
(blue) of laser’s frequency on sweeping time. (c) DSP algorithm.

surement range and its output is split between an interferometer with a
DUT and a reference interferometer assisting in tracking the nonlinearity
of the laser tuning. Additional arms can be added to an experimental
system for monitoring of power and polarisation fading. If the sweeping
bandwidth is large enough, so that the laser experiences power fluctua-
tions, it can assist in compensation for power fading during DSP. Finally,
the signal is detected by receivers and digitized with an analog-to-digital
converter (ADC).

Extraction of the transfer function and impulse response from the
sampled photocurrents can be done with DSP steps shown in Fig. 2.6(c).
The first DSP module is usually devoted to the compensation for the
power fading and nonlinearity of the laser sweep [155]. Next, a band-
pass filter is applied and the impulse response elements are found in the
spectra obtained by Fourier transform at positions corresponding to fiber
delays. Finally, the complex transfer function can be calculated with the
inverse Fourier transform of all impulse response elements.

2.2.6 Comparison of SDM characterisation techniques

In the previous section, various measurement techniques for SDM char-
acterisation were described and reviewed. All of them have their own
advantages and limitations and can be applied in various situations, de-
pending on purposes of measurement. Depending on the considered sys-
tem, the performance parameters can also vary a lot and while some of
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the discussed methods are perfectly suitable for measurement of some
devices, they can be inappropriate for others.

One important feature of SDM characterisation is that multiplexers
at the input and demultiplexers at the output of the DUT should be
included in the setup. Multiplexers and demultiplexers require fiber de-
lays for separation of impulse responses from different cores in the time
domain. If these delays are too large, it can be impossible to detect the
transfer function from some of the fiber cores due to limited frequency
resolution (limited range of time delays that can be captured by a specific
measurement technique). Thus, a selection of fiber delays for a particular
DUT should be made carefully.

S2 imaging is capable of measurement of mode shapes and DGD ex-
traction without any demultiplexer, while it requires a reasonably sim-
ple setup. However, even low amount of coupling between the modes
becomes detrimental for signal analysis, which makes S2 less suitable
- or at least more complex - to characterise coupled SDM devices that
have time-varying transfer functions. Moreover, the phase of the DUT
is not measured in the simplest implementation of S2 [143], making it
impossible to extract a complex transfer function and calculate MDL. S2

imaging can, however, be implemented inside a SWI, where the phase
can be easily extracted [176].

In case of DH, with a setup similar to S2, the reference beam is
directed at an angle with respect to the signal, which may provide access
to the phase information, even though the camera only records intensity.
At the same time, DH possesses all the advantages of S2 imaging, e.g,
can assist in reconstruction of mode shapes.

The DCS is a powerful technique in terms of the resolution, measure-
ment bandwidth and high sensitivity. Furthermore, DCS allows using
both amplitude and phase information, making it possible to extract a
complex transfer function of a DUT. DCS is also favorable for measure-
ments of small dispersion values, which can be difficult to capture in
short fibers [28, 164]. However, it has some limitations due to the dis-
crete comb lines. Particularly, narrow band variations that fall between
the comb lines or delays that are larger than the inverse repetition rate
of the combs, cannot be measured using the DCS.

In SWI both amplitude and phase information is preserved, so the
full complex transfer function can be extracted as well. Moreover, em-
ploying a tunable laser source enables achieving high SNR and spectral
resolution. However, deviations from a linear frequency sweep and possi-

30



2.2. Experimental schemes for characterisation of SDM fibers

ble instability of the DUT during the sweep lead to measurement errors,
which require a reference interferometer for monitoring and compensa-
tion. This complicates and increases the size of the setup. Implementa-
tion of SWI also requires a trade-off for sweeping speed and stability of
the DUT.

With MIMO analysis, the equaliser taps can be used to approximate
the transmission channel and estimate characteristics such as modal dis-
persion and MDL. However, in the presence of noise, MDL might be
underestimated, which, though, can be corrected if the noise is known,
as was performed in [177]. Another issue is that MIMO systems become
impractical and costly for SDM-characterisation of fibers with the high
number of modes.

The choice of an experimental technique for SDM characterisation
is always a matter of trade-offs. The SWI and DCS enable capturing a
full complex transfer function, but can not give the information about a
mode shape that can be obtained from DH or S2. Note that if the mul-
tiplexers and demultiplexers are used in the setup to handle the inputs
and outputs of SDM fibers, measurement results will not correspond to
the pure transfer function of the SDM fiber. The modes of the multi-
plexers are often different from those of transmission fibers and hence
the issue is that using DCS or SWI it is not possible to measure SDM
devices directly, but rather a concatenation of multiplexers, SDM de-
vice and demultiplexer. Hence, characterisation techniques that enable
measurement of the optical field without demultiplexers are expected to
provide more accurate results.
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CHAPTER 3

Dual-Comb Swept-Wavelength Interferometry

This chapter expands the results published in [Paper A], [Paper B] and
presents an experimental technique which combines dual-comb spec-
troscopy (DCS) and swept-wavelength interferometry (SWI) for pho-
tonic devices characterisation. The main concepts of dual-comb swept-
wavelength interferometry (DC-SWI), its experimental implementation,
DSP and measurement results are discussed in the following.

3.1 Principle

In the previous chapter DCS and SWI were described. DC-SWI, is a com-
bination of these two techniques (Fig. 3.1). Similar to DCS, DC-SWI
uses two FCs with repetition rates fr1 and fr2 , but instead of a fixed
wavelength laser a swept laser acts as the seed laser to both combs.
Therefore, the technique is able to measure the full optical bandwidth
of the combs including the intermediate frequencies between comb lines.
In contrast to SWI, the laser is not swept over the large bandwidth, but
only covers the frequency range that corresponds to a repetition rate
of the frequency comb. In principle, this corresponds to a set of co-
herent SWIs defined by the number of comb lines K. This practically
increases the measurement speed K times compared to classic SWI and,
compared to the DCS, provides better frequency resolution as it is set
by the capture time of the digitizer, not the comb spacing. Moreover,
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Figure 3.1: Principle of DC-SWI.

as the measurement trace corresponds to multiple parallel SWIs that
experience the same laser sweep, we can take advantage of this to elim-
inate the sweep nonlinearity directly from the measurement without an
external calibration interferometer. It can be a beneficial point since,
as discussed in sections 2.2.5 and 2.2.6, the process of monitoring the
laser’s sweep nonlinearity and its compensation can be challenging and
increases complexity.

There are additional details that have to be taken into account.
First, it is important to operate with a sweeping bandwidth ∆νsweep =
νstart− νstop larger than the frequency comb spacing in order to have an
overlap between the detected spectral windows, so the transfer functions
from neighboring lines can be coherently stitched at the DSP stage [178].
Similarly to static DCS, the number of comb lines K and spacing ∆fr
limit the choice of sampling rate fs, which should be no less than K∆fr
in order to resolve all necessary spectral lines. At the same time, the
number of samples N should reflect the sweeping time as N = fstsweep,
which determines the necessary memory of the digitizer in order to cap-
ture the whole interferogram, as was discussed in section 2.2.5.

3.2 Mathematical description

The output electrical field of a frequency sweeping source in single po-
larization case can be expressed as

E0(t) = A · e−iϕ(t), (3.1)
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where A is the constant amplitude of the field, ϕ(t) is the time-dependent
phase connected with an instantaneous frequency ν(t) of the laser by
(2.14). Similar to the case of SWI, the phase in case of linear wavelength
tuning can be expressed by (2.16). However, as was mentioned in section
2.2.5, the laser sweep is never linear in practice and this can be accounted
by adding a nonlinearity term in (2.15). Alternatively, the phase in (3.1)
can be represented by linear and nonlinear components of the laser sweep
as ϕ(t) = ϕLin(t) + ϕNL(t).

After generating a comb with a repetition rate fr1 from the swept
laser the field becomes

E1(t) = E0(t)
K−1∑
k=0

e−2πit·kfr1 , (3.2)

where k = 0...K − 1 is the comb line number. Here we ignore the phase
profile across the comb and assume for simplicity that the modulation
introduces sidebands with equal power. The second comb with the rep-
etition rate fr2 = fr1 +∆fr is

E2(t) = E0(t)

K−1∑
k=0

e−2πit·k(fr1+∆fr). (3.3)

The output field of the comb that passes through the DUT (assumed to
be E1(t), without loss of generality), becomes the convolution of E1(t)
with time-domain response of the DUT h(t):

EDUT (t) = E1(t) ∗ h(t). (3.4)

For simplicity we limit the mathematical description to balanced detec-
tion, however, the technique is applied equally to the case when a coher-
ent detector is used. The fields E1(t) and EDUT (t) beat on a balanced
photodetector and the output photocurrent is given by:

I(t) = 2R ·Re{EDUT (t)E
†
2(t)}, (3.5)

where R is the responsivity of the detector and E†
2(t) is complex conju-

gate of the field E2(t).
In the ideal, linear-sweep case, (3.5) can be written as

I(t) ∼
K−1∑
k=0

h̃k(t)e
−2πit·k∆fr , (3.6)
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where h̃k(t) is the impulse response of the k-th comb line. In the fre-
quency domain this will give

I(ω) ∼
K−1∑
k=0

hk(ω − 2πk∆fr) (3.7)

which is a set of K impulse responses, where each impulse response is
centered at a different optical frequency ω − 2πk∆fr.

If h(t) is assumed to be a simple delay, so that h(t) = δ(t − T ) and
EDUT (t) = E1(t − T ) and nonlinearity of the laser sweep is taken into
account as ϕ(t) = 2π(ν0t + 0.5γt2) + ϕNL(t), then (3.5) can be written
as

I(t) = 2R ·Re{Ae−i(2πν0(t−T )+πγ(t−T )2+ϕNL(t−T ))×

× (
K−1∑
k=0

e−2πi(t−T )·kfr1 )×

Aei(2πν0t+πγt2+ϕNL(t))(

K−1∑
k=0

e2πit·k(fr1+∆fr))} (3.8)

and by taking the real part, the final expression for the photocurrent
becomes

I(t) = 2R ·A2
K−1∑
k=0

cos(2π(Tν0 − 0.5γT 2 + Tkfr1+

+ tk∆fr + tTγ) + ϕNL(t)− ϕNL(t− T )). (3.9)

When nonlinearity of the laser tuning is negligible, the term ϕNL(t)−
ϕNL(t − T ) will vanish. Moreover, one can neglect the constant terms
independent of t and k and (3.9) can be simplified as

I(t) = 2R ·A2
K−1∑
k=0

cos (2π(Tkfr1 + tk∆fr + tTγ)) . (3.10)

If the signal is sampled in time intervals ∆t as t = n∆t, where n = 1...N
is the sample number and ∆t is inverse to the sampling rate fs ≥ K∆fr,
(3.10) can be expressed as

I(n) = 2R ·A2
K−1∑
k=0

cos

(
2π

(
Tkfr1 +

kn

K
+ n∆tTγ

))
, (3.11)
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which shows that the detected photocurrent contains K terms oscillating
at different frequencies depending on comb line number k, and given by
k/K+Tγ and offset in phase by Tkfr1 . This generalizes the SWI result
which is oscillations at frequency γT .

3.3 Experimental implementation

The experimental setup used in [Paper A] and [Paper B] is shown in
Fig. 3.2. Two electro-optic FCs with 25.05 and 25.15 GHz repetition
rates and 12 nm bandwidth (55 lines) each were used. The combs were
configured with two phase modulators and one intensity modulator, with
the arrangement described in detail in [165]. An Agilent laser acted as
the seed, and swept over a 25.4 GHz bandwidth in 5 ms. The laser was
preamplied before the comb generation to increase the comb power and
thus the SNR of the DC-SWI system. A 25 MHz acousto-optic modulator
was added for shifting away the downconverted center line of the comb
from DC [165], which can be omitted when using a coherent receiver.
A 25.15 GHz comb went through the DUT and 25.05 GHz comb acted
as the local oscillator. The optical field was measured with a Finisar
25 GHz coherent receiver and digitized at 6.25 GS/s by Tektronix DSA
71604 real-time oscilloscope. The sampling clock of the oscilloscope was
locked to the 100 MHz beat-signal of the comb clocks [165], as indicated
by the dashed lines in Fig. 3.2. The oscilloscope is triggered by the
sweeping laser to ensure that a measurement starts simultaneously with
the sweep start.

Similar to DCS, DC-SWI requires a calibration process before mea-
surements. Hence, to obtain a correct device characterisation, a mea-
surement without the DUT has to be performed and then subtracted
from the one with the DUT during the DSP.

The setup is flexible with respect to experimental additions. For
instance, if the sweeping bandwidth is large enough, so the laser experi-
ences power fluctuations, a power monitoring arm can be included, the
data from which can assist in power calibration during the DSP. In
our experiments it was not strictly necessary since the sweeping band-
width, which reflects the repetition rate of the FCs, was small and there
were no significant fluctuations in the power level during the sweep. Ad-
ditionally, an auxiliary interferometer can be used for a comparison of
the performance when different algorithms for laser sweep nonlinearity
compensation are applied.
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Figure 3.2: Experimental setup for characterisation measurements with
DC-SWI. The black and green lines relate to optical and RF
connections respectively. EDFA: erbium doped fiber ampli-
fier, AOM: acousto-optic modulator, EO-comb: electro-optic fre-
quency comb, DUT: device under test. Inset: Optical spectrum
of the frequency comb with a frequency spacing of 25.15 GHz.

3.4 Digital signal processing

The signal processing is extensively presented in the DSP section of [Pa-
per B] and the reader is refereed to this paper for more details. The
DSP algorithm flow is shown in Fig. 3.3. It consists of several steps that
resemble a combination of signal processing used for SWI and DCS.

Front-end correc�on

Windowing 

Laser's sweep nonlinearity compensa�on

S�tching of the phase/amplitude

Fourier transform

Inverse Fourier transform

Calibra�on measurement subtrac�on

Figure 3.3: DC-SWI DSP flow.
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Figure 3.4: Zoomed-in image of the 12th, 13th and 14th comb lines after per-
forming the windowing with selected bandwidth of 4 MHz. Verti-
cal lines indicate the borders corresponding to 100 MHz spacing
between the spectral lines.

3.4.1 Front-end correction and windowing

First, the raw measured signal is orthonormalized in order to make I
and Q components strictly perpendicular. Note that this step is not
necessary in the case when a heterodyne receiver is used, since there will
be no 90-degree skew issues between I and Q components.

Second, a Fourier transform of the same length as the received data
I(n) is applied to the signal and the scan of each comb line is selected by
band-pass filtering, producing parallel SWI scans, the amount of which
is equivalent to the number of comb lines K. The performance of the
measurement can be adjusted by this digital filtering, which yields an
SNR vs frequency resolution trade-off, an aspect further discussed in
Section 3.6. After the filtering procedure, the response windows are
transformed back to the time domain. Fig. 3.4 demonstrates an example
for this filtering for three comb lines with a filtering bandwidth of 4 MHz.

3.4.2 Laser’s sweep nonlinearity compensation

The next step is to compensate for the laser’s sweep nonlinearity in every
comb window. This nonlinearity is extracted from the measured phases
in every comb window that can be written as

ϕk(t) = ϕLin(t) + ϕNL(t) + ψk(t), (3.12)
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Figure 3.5: Common phase calculated from (3.13) with averaging over 45
comb windows.

where ϕLin(t), ϕNL(t) are the linear and nonlinear parts of the laser’s
sweep, ψk(t) accounts for a phase response of the DUT at different fre-
quencies. The laser’s phase component is the same for all the comb lines,
which is why it is not indexed, whereas the phase responses of a DUT
depend on wavelength and can be different in every comb window. The
terms ϕLin(t) and ϕNL(t) are the contributions that need to be calcu-
lated and removed from the complex signal to compensate for the laser’s
sweep nonlinearity. This can be done by transforming ϕk(t) in two steps.
First, the term ϕLin(t) should be removed by calculating and subtract-
ing the average slope of the phases ϕk(t) with the derivative or fitting
procedure. Next, the averaging of ϕNL(t)+ψk(t) over all K lines enables
extraction of the common phase

ϕk(t) = ϕcom(t) = ϕNL(t) +
1

K

K−1∑
k=0

ψk(t). (3.13)

As can be seen, when the second term in (3.13) is negligible relative
to the first one, this common phase corresponds to the nonlinearity of
the laser sweep ϕNL(t). This common phase is shown in Fig. 3.5. More-
over, as was discussed in [Paper B], even if the number of the comb lines
K is small, the nonlinear phase component of the laser ϕNL(t) will be
the dominant term in (3.13). Therefore, the nonlinear component of the
sweep is defined by the common phase ϕcom(t), which can then be sub-
tracted from the measurement signal, alleviating the use of an additional
interferometer in the setup to extract the nonlinearity of the frequency
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sweep.
The compensation procedure is flexible and can be performed using a

common phase calculated only from a part of measured spectral windows
or a set of particular windows if the measured DUT has drastic changes
in particular comb scans. As an example of such selection, Fig. 3.7(c)
demonstrates calculated phase profiles of a 22 m SMF. These curves
are extracted from the same measurement, but using different number
of spectral windows during nonlinearity compensation. The results are
further discussed in section 3.5.1. After the compensation, calibration of
each line with respect to measurement without a DUT is performed.

3.4.3 Stitching of the amplitudes and phases

Finally, all K traces have to be stitched via the overlap regions in or-
der to produce the broadband full-field transfer function. Stitching of
the amplitudes and phases is carried out in a similar way and schemati-
cally shown in Fig. 3.6 for two neighboring phases that have the overlap
regions ϕoverk and ϕoverk+1 (inset in Fig. 3.6 (a)). In [Paper B] the stitch-
ing procedure was carried out through moving the subsequent phases
with respect to each other on the level difference ∆. These phases were
averaged and subtracted to find the difference between them:

∆ϕ = ϕoverk − ϕoverk+1 . (3.14)

The subsequent phase ϕk+1 was then moved by ∆ϕ with respect to ϕk.
This can be written as

ϕnewk+1 = ϕk+1 +∆ϕ. (3.15)

Finally, the phase arrays have to be stitched with each other in the over-
lap point. The resulting phase array is demonstrated in Fig. 3.6 (b). This
procedure, though, can be easily done by stitching the phases/amplitudes
straightaway in the overlap point.

The stitching procedure, however, can be tricky. The main issue
relates to the uncertainty of the level difference calculation when phases
or amplitudes traces have different magnitude in neighboring spectral
windows. This usually happens when stitching neighboring phases with
the one at the edges of the bandwidth because the comb lines there have
lower SNR, and thus, more noise. To avoid errors during the stitching
one can vary the window where the stitching procedure starts or filter out
the noise before the procedure. Another important detail for stitching is
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Figure 3.6: (a) Phases from two neighboring comb windows. Inset: overlap
region. (b) Result of the phase stitching: phase ϕk+1 is moved
up on ∆ϕ.

the number of points in the overlap region. One can try to increase the
sweeping bandwidth in order to make an overlap between the comb cans
larger, which can also improve the stitching.

3.5 Experimental results

In [Paper B] several measurements using applied filters on a Finisar
1000S Waveshaper were shown in order to demonstrate the capabilities of
the proposed technique. In this section characterisations of the transfer
function obtained using DC-SWI for SMF and 3CCF are presented.

3.5.1 Characterisation of a SMF

As a first example, a simple measurement of a 22 m SMF is presented.
The experimental setup described in section 3.3 was used for the char-
acterisation.

Figure 3.7 shows the amplitude (a) and the phase (b) of the transfer
function of the 22 m SMF. The amplitude profile is constant, as ex-
pected, while exhibits noise fluctuations about 1 dB due to limited SNR.
The phase profile is a parabolic function, from which the quadratic dis-
persion β2 parameter can be extracted as β2 = -21.14 ps2/km at λ =
1545 nm, which agrees well with the β2 expectations for SMFs.

Fig. 3.7(c) shows several phase curves that are calculated with
slightly different compensation of the laser sweep nonlinearity. Different
colors indicate how many comb line windows K were used for calculation
of the common phase. It can be seen that the resulted phase profiles are
very similar and β2 parameters for all the cases are in a good agreement
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Figure 3.7: Stitched (a) amplitudes and (b) phases of the transfer function of
SMF extracted from 45 comb lines. (c) Phase profiles obtained
after the subtraction of the common phase calculated by averag-
ing nonlinear laser phase components from the different number
of windows.

with the one calculated for the case when all the comb windows phases
were used for averaging (Fig. 3.7(b)). This result points out that during
the DSP a flexible selection of comb spectral windows for common phase
calculation can be performed.

3.5.2 Characterisation of three coupled-core fiber (3CCF)

In this section characterisation results of a 1.6 km 3CCF manufactured
by Sumitomo Electric Industries are shown and discussed. These findings
are mainly summaries of [Paper A] and more details can be found there.

The experimental setup for 3CCF characterisation is the same as
demonstrated in Fig. 3.2 with addition of fan-in/out devices for coupling
the light into the cores of the 3CCF and handle outputs from multiple
cores. The fan-in/out devices are based on ultrafast laser-inscribed 3D
waveguides in a boro-aluminosilicate glass [179]. We also added delay
fibers of 20 and 40 m at the output of the 3CCF in order to separate
impulse responses of different cores in the time domain. The length of
these delays was chosen to be larger than the impulse response of a single
core of the 3CCF. All 3 outputs of the 3CCF were then combined using
3-dB couplers and sent to a coherent receiver.

Figure 3.8 shows the magnitude of the 3CCF’s transfer function over
1.1 THz comb bandwidth. The illustrated data is calculated as a sum
of magnitudes of the respective X- and Y-polarizations and normalized
by the total power from all the cores. Each plot corresponds to a dif-
ferent input fiber core. For all inputs, around 10 dB variations in max-
imum/minimum transmission is observed. Core 2 has a slightly higher
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Figure 3.8: Stitched magnitudes of the transfer function extracted from 45
comb lines with light entering the different cores.

power than the other cores, which is likely due to different losses in the
fan in/out devices.

Figure 3.9 represents the total power impulse responses for each fiber
input core calculated as a sum of impulse responses corresponding to
output cores and then normalized by its maximum value. Possible rea-
sons for a noisy behavior (fluctuations as a function of frequency) of the
curves are reflections from fan in/out connectors or discrepancies in the
phase stitching. Using values of estimated RMS widths of the impulse
responses, TRMS1 = 18.9 ps, TRMS2 = 18.6 ps and TRMS3 = 18.5 ps,
DMGD of every fiber core can be calculated as DMGDi = TRMSi/

√
L,

where L is a fiber length and i is a fiber core number. Corresponding
DMGDs are DMGD1 = 14.94 ps/

√
km, DMGD2 = 14.65 ps/

√
km and

DMGD3 = 14.62 ps/
√
km, which are in a good agreement with prop-

erties of the CCFs that were published in [180]. These results are also
consistent with previously reported values of DMGD for the 3CCF [181]
and other CCFs [182].

Note that the elements of the transfer matrix were not measured
simultaneously. An optical switch was used to select input core of the
3CCF during the experiment, so only 3 elements were captured per mea-
surement shot. Input core delays can be added to enable a single-shot
measurement of all inputs and outputs and this is a possible future ex-
tension of this experiment.
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Figure 3.9: Total power impulse responses of a 1.6 km 3CCF.

3.6 Discussion of performance

In this section performance characteristics, different trade-offs and com-
petitive sides of DC-SWI are discussed.

3.6.1 Time resolution

Assuming perfect stitching and compensation for sweep nonlinearity, the
time resolution, or minimum time delay δt that can be measured in
DC-SWI is the inverse comb bandwidth ∆ν:

δt =
1

∆ν
. (3.16)

The comb bandwidth ∆ν, in turn, relates to the number of used spectral
lines and a comb repetition rate as ∆ν = Kfr. Consequently, employing
broader FCs improves the temporal resolution.

In the presented setup 50 comb lines with 25.15 GHz repetition rate
were used, so the time resolution can be estimated as δt ≈ 0.8 ps. This
time resolution also can be reached using a static DCS or conventional
SWI, since the bandwidth ∆ν in (3.16) will be the same.

3.6.2 SNR and the frequency resolution

SNR is one of the most important parameters in optical communication
systems. As was discussed in [183], in DCS-based measurement schemes
SNR scales per spectral line of the comb as 1/K, while the shot-noise lim-
ited SNR in SWI will be defined only by the output power of the tunable
source and the bandwidth of the detector [184]. In DC-SWI a flexible
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trade-off between SNR and spectral resolution is possible at the win-
dowing stage of DSP: by selecting the desired interval around responses
and cutting off unnecessary frequencies, SNR can be increased. The
SNR, however, can significantly degrade when SDM devices with high
core count are characterised since the number of measurement channels
is increased. An appropriate choice of the power coupling ratio between
reference and DUT arms of the measurement interferometer should then
be considered.

The frequency resolution is the minimum frequency difference be-
tween two distinct transfer function features one can distinguish. It
is related to the longest delay that can be measured. In DC-SWI ex-
periment the frequency resolution can be selected by bandpass filtering
around the individual spectral line of the RF comb in the DSP. In this
windowing process the number of points m may decrease if only a part
of the spectral window is kept, depending on the width of the impulse
response. It can then be defined more generally as

δν =
∆ν

K ·m
=
K · fr
K ·m

=
fr
m
. (3.17)

This value can be then used to calculate maximum delay time that is
possible to measure, which is the inverse frequency resolution:

δT =
1

δν
. (3.18)

In all experiments presented in this thesis, one comb line scan con-
tained 511 998 points before windowing, so the best possible frequency
resolution was δν = 49.121 kHz and the maximum delay time is 20.4
µs. Hence, the presented setup is capable of characterisation of DUTs
with delays range from 0.8 ps to 20.4 µs, which is a benefit of DC-SWI
because, as was pointed out in section 2.2.6, the spectral resolution in
static DCS techniques is limited and measuring long delays can therefore
be challenging.

A key advantage of DC-SWI is that one can more easily decide which
trade-offs are desired during the experiment and DSP. Different comb
sources and tunable lasers with various speed can be used, which also
influence the capabilities of the setup and ultimate performance of the
system.
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Channel models

The transfer matrix characterisation can assist not only in gaining im-
portant information about optical fibers, but also in building channel
models that realistically describe their properties. A channel model can
be defined as an input-output model for a given signal and is useful for
estimating the transmission system performance (i.e. channel capacity)
and optimising system parameters. The purpose of modeling is often
seen as creating a strategy for simulating a transfer function of a fiber
because the transfer function can be used to extract all parameters of
the system under study. Channel models also assist in developing and
testing modulation formats, efficient transmission and detection schemes
as well as in the design of photonic devices.

This chapter starts from a short review of channel models for fiber
optic communication and then provides a theoretical description of the
proposed linear channel models for CCFs and examples of the simulation
results for a 3CCF and 4CCFs. These channel models include determin-
istic static models for ideal CCFs and random coupling models, where
the frequency dependence of the coupling coefficients and time-drift ef-
fects are taken into account.
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4.1 Overview of Gaussian noise channel models

The NLSE is the principal equation describing how the propagation is
guided in the optical fibers. As was mentioned in the previous chapters, it
is a time-dependent nonlinear differential partial equation, which cannot
be solved analytically in the general case. The split-step Fourier method
[66] is used to solve it numerically by dividing a fiber into short pieces,
such that linear and nonlinear impairments can be applied separately.
The situation becomes much more complicated when SDM fibers are
investigated since one has to consider a set of coupled NLSEs that include
random mode/core coupling and random phase noise from the channels.
In optical communication, discrete-time channel models for which the
channel output is an explicit function of the channel input are desirable
to use. Such information-theory friendly channel models are reviewed
in [87] and in the following subsections two most commonly used models
for fiber optic communication systems are described.

4.1.1 The additive white Gaussian noise model

The additive white Gaussian noise (AWGN) channel is the simplest
model, which states that the output signal Y is defined by the input
signal X and the random vector Z as

Y = X+ Z, (4.1)

where Z is a circularly symmetric, complex, white, Gaussian random
sequence, independent of X. Input X contains independent identically
distributed (i.i.d.) symbols, drawn from the same constellation, and have
a given average transmitted power. From the equation above it can be
seen why the model is called additive - this is because the received signal
Y is equal to the sum of transmitted signal X and noise Z. White refers
to the idea that the noise has uniform power spectral density across
the whole frequency band for the information system. It is an analogy
to the white color, which is composed of all frequencies in the visible
spectrum. Lastly, it is Gaussian since it has a normal distribution in the
time domain with an average time domain value of zero.

The AWGN channel is accurate for modeling the back-to-back case
in fiber optic communications. Even if this model does not consider
other phenomena except AWGN, analyzing the performance assuming
the AWGN model can provide insights for the system design. Moreover,
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its simplicity and control capabilities allow deriving theoretical perfor-
mance limits. The AWGN model is also reliable when the amplified spon-
taneous emission (ASE) noise is the dominant impairment in the system,
or if the other impairments can be compensated with DSP. Hence, the
AWGN channel is a very popular model for design and test of fiber optic
systems, including SDM fibers.

4.1.2 The Gaussian noise model

In fiber optic links where the accumulated dispersion is large and non-
linear effects are weak, the joint effect of GVD and the Kerr effect can
be approximated by additive Gaussian noise [185]. Such systems can be
described through the Gaussian noise model, which belongs to the family
of AWGN channels. The additive noise Z in this case is given as

Z = Z̃
√
PASE + ηP 3, (4.2)

where Z̃ are i.i.d. zero-mean unit-variance circularly symmetric complex
Gaussian random variables, PASE and η are real, non-negative constants,
and P = E[[X]2] is the average transmitted power. The value PASE rep-
resents the total ASE noise of the optical amplifiers for the investigated
channel and η quantifies the nonlinear interference. Several expressions
for η coefficient have been proposed. For example, [185] gives the equa-
tion for η in case of distributed amplification and wavelength-division
multiplexed signals. Ref. [186] provides the expression in case of dual
polarization and single channel transmission over several lumped ampli-
fier spans.

It has been shown that the Gaussian noise model is conservative, as it
overestimates the nonlinear interference power [121], however, it is a con-
venient tool for predicting system performance. Its prediction accuracy
depends on system parameters and has been validated through both sim-
ulation [121] and experiments [187]. As the nonlinear interference noise
depends on the transmitted modulation format [188], the enhanced, er-
godic Gaussian noise model [189] was proposed. This ergodic Gaussian
noise model takes into account the dependency of the nonlinear interfer-
ence power on different modulation formats and was then also developed
for SDM fibers in [123].
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4.2 Deterministic static models

Modeling of CCFs has to take into consideration the principal phe-
nomenon in such fibers - coupling between the cores/modes. When de-
signing a model, it is always useful to have a benchmark by investigating
an ideal, unperturbed fiber. This model is referred as deterministic in
this thesis. Deterministic static models are based on the assumption that
mode coupling is constant over time and describe SDM fibers without
perturbations. These models usually apply CMT [96] for characterising
coupling effects and other parameters in SDM fibers. Moreover, using
this approach it is possible to analyse supermodes [101, 190], which can
be described as a superposition of modes from isolated cores. This is an
important aspect of studies since the supermodes, being spatial eigen-
modes, propagate without shape distortion in an unperturbed fiber.

Some of the most important works that have been done on super-
modes are mentioned in Section 1.2.2. One of the aspects that was
absent in these works is a consideration of the polarization. CMT-based
deterministic static models accounting for polarization multiplexing were
proposed in [Paper C] for a 3CCF and in [Paper D] for a 4CCF. This
type of the model is referred as the vector model, while the former case,
where the polarization of the modes was disregarded, is referred as the
scalar model. As both scalar and vector models were presented in [Paper
C] and [Paper D], the aim of this section is to summarize and extend
the theory provided in the papers, and give a comprehensive analyti-
cal derivation of expressions for the supermodes and their propagation
constants in a 3CCF and 4CCF in terms of scalar and vector models.

Supermodes s⃗k and their propagation constants βsk strongly depend
on the core count D, geometry and the refractive indices of the core
n1 and the cladding n2 of the studied fiber. In general, the calculation
algorithm always starts from defining the D×D (2D× 2D in the vector
case) frequency-dependent coupling matrix M(ω), which describes the
coupling between the cores/modes. To build this matrix, one needs to
calculate its elements - the coupling coefficients, which depend on the
fiber geometry and frequency. When dealing with the vector model, it is
also necessary to take into account the birefringence. Once the coupling
matrix is found, the supermodes and their propagation constants can be
calculated as eigenvectors and eigenvalues of M(ω). The algorithm at
the end of this section summarizes all the steps for calculations, while
the following subsections provide more details on every step.
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Figure 4.1: A structure of the coupling matrix in (a) scalar and (b) vector
cases. In the scalar case, the interaction between the cores is
described by the coupling coefficients cpq, while in the vector
case it is described by 2× 2 matrices Cpq describing the coupling
between the mode’s polarizations.

4.2.1 Coupling matrix and coupling coefficients

In CMT, mode coupling along a fiber with multiple cores/modes in the
scalar case is described by the following equation [101]:

d

dz
A⃗ = −jA⃗M, (4.3)

where A⃗ = [A1, ..., AD] is the modal amplitude vector and M is a D ×
D coupling matrix, which contains propagation constants of the single
mode β and coefficients cpq defining the mode coupling from the pth

core/mode to the qth core/mode, where p, q = 1...D. A structure of
such coupling matrix M is shown in Fig. 4.1(a). Note that the coupling
matrix will strongly depend on the chosen core enumeration and if the
way of enumeration is changed, the coupling coefficients can change their
places in the matrix. In case of the vector model, when polarization of the
modes is taken into account, the modal amplitude vector will be of the
form A⃗ = [A1x , A1y , ..., ADx , ADy ] and every coupling coefficient will be
substituted by 2× 2 matrix describing the coupling between the modes’
polarizations as well. Most importantly, one has to take into account the
birefringence described by the matrices Bp, which is discussed in Section
4.2.2. The resulting coupling matrix M will have 2D × 2D dimensions
(Fig. 4.1(b)).

In the simplest case the coupling of pth core/mode to the qth core/mode
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Figure 4.2: Geometry of the modeled 3CCF and 4CCF. Here d is the core
pitch, r is the core radius. Enumeration of the cores are indicated
by blue numbers.

is identical to the inverse coupling, so cpq = cqp. Assuming a step-index
fiber and the weakly-guiding approximation, the coupling coefficients can
be written as [96]

cpq =

√
n21 − n22
n21

· 1
r
· U

2

V 3

K0(Wd/r)

K2
1 (W )

, (4.4)

where r is the core radius, d is a core pitch, K0 and K1 are the mod-
ified Bessel functions of the second kind of order 0 and 1 and V is the
normalized frequency given by

V =
2πr

λ0

√
n21 − n22. (4.5)

The refractive index for the core n1 is obtained from the Sellmeier
equation for fused silica [191]. The refractive index function for the
cladding n2 can be calculated using the refractive index difference ∆ as
n2 = n1(1−∆). For a given V , the parameters U and W can be found
by solving the equation system{

U ·K0(W )J1(U) =W ·K1(W )J0(U)

U2 +W 2 = V 2
, (4.6)

where J0(U) and J1(U) are the Bessel functions of the first kind of orders
0 and 1. The solution of the equation system can be efficiently found
using the fsolve function of the scipy.optimize module in Python (see the
supplementary materials with the codes in Ref. [28] of [Paper C]) or with
other root solvers. As coupling coefficients depend on the V parameter,
they are frequency dependent, cpq(ω). Further in the text they will be
denoted as cpq and the frequency dependence sign will be omitted for
simplicity.
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Table 4.1: Parameters of the 3CCF and the 4CCF with the structure shown
in Fig. 4.2.

3CCF 4CCF-1 4CCF-2
[Paper A, C] [Paper D] [Paper F], [113]

Core radii r [µm] 4.75 4.75 4.75
Core pitch d [µm] 22.5 22.5 25.4
Index difference ∆ [%] 0.44 0.44 0.44
Fiber length L [km] 1.6 - 69.2

Table 4.2: Coupling matrices derived in case of the scalar model for the 3CCF
and the 4CCF with the geometry shown in Fig. 4.2.

3CCF 4CCF

Coupling matrices

β c c
c β c
c c β



β c1 c1 c2
c1 β c2 c1
c1 c2 β c1
c2 c1 c1 β



In [Paper C] and [Paper D] we studied the 3CCF and 4CCF with
the geometry and core enumeration shown in Fig. 4.2. The parameters
of these fibers are listed in Table 4.1. In case of the 3CCF the distance
between all the cores is the same. Thus, all the coupling coefficients
will be the same in the scalar and simplified vector cases and will be
simply denoted as c. For the 4CCF there are two types of coupling
coefficients, since the neighboring cores (cores 1-2, 2-4, 4-3, etc.) have the
core pitch d, while the cores placed on the diagonal (cores 1-4, 2-3) have
the pitch

√
2d. The coupling coefficients between the neighboring cores

are denoted as c1, while c2 are the coefficients describing the coupling
between the cores on the diagonal. The corresponding coupling matrices
for both fibers in case of the scalar and simplified vector models are
listed in Tables 4.2, 4.3. As coupling coefficients and birefringence are
frequency dependent, there is a natural dependence on frequency for the
coupling matrix M(ω). Similarly to coupling coefficients it will further
be denoted as M for simplicity. As was mentioned, the supermodes
and their propagation constants can be found as the eigenvectors and
eigenvalues of the coupling matrix M. The calculation is presented in
Section 4.2.3.
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Table 4.3: Coupling matrices derived in case of the simplified vector model
for the 3CCF and the 4CCF with the geometry shown in Fig. 4.2.

Coupling matrices

3CCF



− b
2

√
3b
2 c 0 c 0

√
3b
2

b
2 0 c 0 c

c 0 − b
2 −

√
3b
2 c 0

0 c −
√
3b
2

b
2 0 c

c 0 c 0 b 0

0 c 0 c 0 −b



4CCF



0 b2 c1 0 c1 0 c2 0

b2 0 0 c1 0 c1 0 c2

c1 0 0 −b2 c2 0 c1 0

0 c1 −b2 0 0 c2 0 c1

c1 0 c2 0 0 −b2 c1 0

0 c1 0 c2 −b2 0 0 c1

c2 0 c1 0 c1 0 0 b2

0 c2 0 c1 0 c1 b2 0


The solution to (4.3) can be formally written as

A⃗(z) = A⃗0 exp(jMz) = A⃗0T, (4.7)

where exp denotes the matrix exponential, T = exp(jMz) is the transfer
matrix and A⃗0 is the input amplitude vector. Eq. (4.7) gives the channel
model for the unperturbed fiber and provides the opportunity to simulate
the transmission and see effects of the coupling. Algorithm 1 at the end of
Section 4.2.2 summarizes all the steps that are necessary for calculation
of the transfer matrix T of an idealized CCF.

4.2.2 Birefringence

The vector model described in [Paper C] and [Paper D] is based on the
concept of form birefringence [192]. Note that in these papers we intro-
duced the simplified vector model, where the birefringence in coupling
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Figure 4.3: Illustration of birefringence axes in (a) a 2CCF and (b) a ring-
array structured 3CCF, which manifests a combination of the
structure shown in (a) with its two ±120-rotated two coupled-
core fiber (2CCF) instances. The numbers 1, 2, 3 show the enu-
meration of the cores.

coefficients was neglected for simplicity as it is a very small contribu-
tion [192]. In this section, the expanded vector model with consideration
of all polarization corrections is shown.

In case when the polarization of the modes is taken into account, the
coupling matrix M should be transformed to a 2D×2D matrix as shown
in Fig. 4.1 (b). It will now contain parameters of the birefringence axes,
bx and by and polarization corrections to the coupling coefficients. The
coupling coefficients will be now inside of the 2 × 2 matrices Cpq that
characterise the coupling between the cores. Here it is again assumed
that the coupling associated with all the cores is identical and orthogonal
polarizations between modes do not couple.

The birefringence matrix describing birefringence effects from a neigh-
boring core along the x-axis as in Fig. 4.3 (a)) can be expressed as

B =

(
bx 0
0 by

)
(4.8)

and we assume for symmetry reasons that by = −bx = b. The birefrin-
gence b is given by [192]

b(ω) = ∆2β · 4U
2W

V 4

K0(W )

K1(W )
×

×
[
I1(W )

K1(W )
− I2(W )

K0(W )

]
K2(Wdm/r). (4.9)
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As can be seen, when the cores are placed along one line, they have
the same birefringence axes (2CCF case, Fig. 4.3 (a)). However, when
there are other cores that are placed in the cladding, one has to project
the birefringence from the other cores to the neighboring cores (as shown,
for example, in Fig. 4.3 (b)) with the rotation matrix R(ϕ):

R(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
. (4.10)

The rotation is also applied when the coupling coefficient matrices
Cpq are built from C, which is given by

C =

(
cpqx 0
0 cpqy

)
(4.11)

The coupling coefficient cpqx can be found with (4.4), while cpqy is cal-
culated with the polarization correction δc as [192]

cpqy = cpqx − δc, (4.12)

where δc is calculated as [192]

δc = 2∆W
K2(Wdm/r)

K0(Wdm/r)
(I1(W )K0(W )− I2(W )K1(W ))cpqx , (4.13)

where ∆ = 1 − n2/n1 is the refractive index difference, K2(Wdm/r) is
the modified Bessel function of the second kind of order 2 and I1(W ),
I2(W ) are the modified Bessel functions of the first kind of orders 1 and
2. Note that in the simplified vector model shown in [Paper C] and
[Paper D] cpqx = cpqy = cpq.

The subsections below will show the formation of birefringence ma-
trices Bp and coupling coefficient matrices Cpq for the 3CCF and 4CCF
shown in Fig. 4.2.

3CCF

In the vector model, the coupling matrix for the 3CCF in Fig. 4.2 can
be written in the form

M =

B1 C12 C13

C21 B2 C23

C31 C32 B3

 . (4.14)
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The paragraphs below show the calculation of all the matrix components.
The birefringence for a 3CCF with a ring-array structure can be

described using a superposition of birefringences from pairwise linear-
array structures as shown in Fig. 4.3. When the third core is placed
around two other cores, one has to project the birefringence from the
third core to the neighboring cores (as shown in Fig. 4.3 (b)) with the
rotation matrix R(ϕ) given by (4.10). The birefringence matrix for each
core can then be calculated as the contribution from its two neighbors
as

B1 = B+R(−120◦) ·B ·R(120◦) (4.15)

B2 = B+R(120◦) ·B ·R(−120◦) (4.16)

B3 = R(−120◦) ·B ·R(120◦) +R(120◦) ·B ·R(−120◦) (4.17)

The coupling coefficients matrices are found in the same way, rotating
the matrix C by ±120◦:

C12 = C21 = C (4.18)

C13 = C31 = R(−120◦) ·C ·R(120◦) (4.19)

C23 = C32 = R(120◦) ·C ·R(−120◦) (4.20)

As was mentioned in Section 4.2.1, the coupling coefficients will be
the same in the scalar and simplified vector cases as the distance between
the cores is the same. Here, though, we take into account the polarization
corrections and denote the coupling coefficients associated with x- and
y- polarizations as cx and cy respectively. The resulting coupling matrix
will take form

M =



−b
2

√
3b
2 cx 0

cx+3cy
4

√
3(cy−cx)

4√
3b
2

b
2 0 cy

√
3(cy−cx)

4
3cx+cy

4

cx 0 −b
2

−
√
3b

2
cx+3cy

4

√
3(cx−cy)

4

0 cy
−
√
3b

2
b
2

√
3(cx−cy)

4
3cx+cy

4
cx+3cy

4

√
3(cy−cx)

4
cx+3cy

4

√
3(cx−cy)

4 b 0√
3(cy−cx)

4
3cx+cy

4

√
3(cx−cy)

4
3cx+cy

4 0 −b


(4.21)

In in the simplified vector case, when cx = cy = c, the coupling matrix
will take a simpler form shown in Table 4.3.
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4CCF

In the vector model, the coupling matrix for the 4CCF shown in Fig. 4.2
can be written in the form

M =


B1 C12 C13 C14

C21 B2 C23 C24

C31 C32 B3 C34

C41 C42 C43 B4

 . (4.22)

The paragraphs below show the calculation of all the matrix components.
The birefringence for a 4CCF can be described using a superposition

of birefringences from pairwise linear-array structures as shown in Fig.
4.4. It should be noted that in this case there will be two types of
birefringence matrices, representing the adjacent cores

B =

(
−b1 0
0 b1

)
(4.23)

and the diagonal cores

B′ =

(
−b2 0
0 b2

)
. (4.24)

The birefringence matrix for each core can then be calculated as the
contribution from its three neighbors as

B1 = B+R(−90◦) ·B ·R(90◦) +R(45◦) ·B′ ·R(−45◦) (4.25)

B2 = R(90◦) ·B ·R(−90◦) +B+R(135◦) ·B′ ·R(−135◦) (4.26)

B3 = R(−90◦) ·B ·R(90◦) +B+R(−45◦) ·B′ ·R(45◦) (4.27)

B4 = R(90◦) ·B ·R(−90◦) +B+R(225◦) ·B′ ·R(−225◦) (4.28)

The contribution from the adjacent cores B will cancel out, and the final
birefringence matrices become

B1 = B4 = −B2 = −B3 =

(
0 b2
b2 0

)
. (4.29)
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Figure 4.4: Illustration of birefringence axes in a 4CCF, which manifests a
combination of the 2CCF structure (green axes) with its −90◦

(illustration on the left) and −135◦ (illustration on the right)
degree-rotated instances. The numbers 1, 2, 3, 4 relate to the enu-
meration of the cores, d is the core pitch between the nearest
cores, r is a core radii.

The coupling coefficients matrices will be also of two types, corre-
sponding to the neighboring cores

C =

(
c1x 0
0 c1y

)
(4.30)

and the diagonal cores

C′ =

(
c2x 0
0 c2y

)
. (4.31)

The coupling coefficients matrices are found in the same way, rotating
the matrices C and C′ by ±90◦ and ±135◦:

C12 = C21 = C (4.32)

C13 = C31 = R(−90◦) ·C ·R(90◦) (4.33)

C14 = C41 = R(45◦) ·C′ ·R(−45◦) (4.34)

C23 = C32 = R(135◦) ·C′ ·R(−135◦) (4.35)
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C24 = C42 = R(90◦) ·C ·R(−90◦) (4.36)

C34 = C43 = R(−90◦) ·C ·R(90◦) (4.37)

The resulting coupling matrix will then take form

M =



0 b2 c1x 0 c1y 0
c2x+c2y

2

c2y−c2x
2

b2 0 0 c1y 0 c1x
c2y−c2x

2

c2x+c2y
2

c1x 0 0 −b2
c2x+c2y

2

c2x−c2y
2 c1y 0

0 c1y −b2 0
c2x−c2y

2

c2x+c2y
2 0 c1x

c1y 0
c2x+c2y

2

c2x−c2y
2 0 −b2 c1y 0

0 c1x
c2x−c2y

2

c2x+c2y
2 −b2 0 0 c1x

c2x+c2y
2

c2y−c2x
2 c1y 0 c1y 0 0 b2

c2y−c2x
2

c2x+c2y
2 0 c1x 0 c1x b2 0


(4.38)

In in the simplified vector case, when c1x = c1y = c1 and c2x = c2y = c2,
the coupling matrix will take a simpler form shown in Table 4.3.

Algorithm 1 Calculation of transfer matrix T of an unperturbed CCF
Input: r, d, n1, n2 and frequency/wavelength
1: Calculate V-parameter with (4.5)
2. Calculate U and W with (4.6)
3: Calculate cpq (*cpqx) using (4.4)
4: *Calculate cpqy using (4.12) and (4.13)
5: *Calculate Cpq

6: *Calculate b using (4.9)
7: *Calculate Bp

8: Form M as in Fig. 4.1
9: Calculate T = exp(jMz)
10: Repeat for other frequencies/wavelengths if necessary
Output: T
*the steps necessary for the vector model

4.2.3 Supermodes, their propagation constants and group
delays

The supermodes s⃗k and their propagation constants βsk can be found by
solving the eigenvalue problem for the coupling matrix M. Algorithms

60



4.2. Deterministic static models

 

FUT

Figure 4.5: Explanation of the group delays τk of the supermodes in case
when two supermodes propagate through a fiber under test
(FUT).

for eigendecomposition include the power algorithm and the QR algo-
rithm [193]. The results in this thesis were obtained in analytical form
using Wolfram Mathematica and Python with simpy and linalg modules,
where the eigenvectors and eigenvalues were found numerically as well.

Another important characteristic of the supermodes of CCFs are their
GDs. The GDs can be understood as the time delay between the super-
modes at the output of the fiber (Fig. 4.5) and they are related to the
GDS, which is necessary to know when calculating the number of taps
for a MIMO equalizer. The GDs per fiber length can be calculated as
the first derivative of βsk(ω) with respect to ω

τk =
dβsk(ω)

dω
, (4.39)

which will give the GDs for a full fiber if multiplied by the fiber length.
It also can be found as the eigenvalues of the delay operator [70]:

D = −jT†dT

dω
. (4.40)

The calculation below shows the supermodes, their propagation con-
stants and GDs for both 3CCF and 4CCF for the simplified and ex-
panded vector models. Analytical calculation can be found in the first 4
files in Ref. [194] and all the generated figures with numerical results are
accessible in the last file with a Jupiter notebook in the same reference.

3CCF

Propagation constants of the supermodes are found as the eigenvalues of
the coupling matrix 4.21:

βs1 = −b+ cx − 3cy
2

(4.41)
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Figure 4.6: Propagation constants βsk of the supermodes of the 3CCF in case
of the simplified and expanded vector models.

βs2 = b+
cy − 3cx

2
(4.42)

βs3,4 = βs5,6 =
cx + cy ± ψ

4
, (4.43)

where ψ =
√
16b2 + 13c2x + 10cxcy + 13c2y + 16b(cy − cx). As can be

seen, when cx = cy = c, the equations above correspond to the sim-
pler case presented in [Paper C], where the propagation constants were
found to be

βs1,2 = −(c± b) (4.44)

and

βs3,4 = βs5,6 =
c±

√
4b2 + 9c2

2
. (4.45)

Fig. 4.6 demonstrates the calculated propagation constants bsk of the
3CCF in case of the simplified and expanded vector models. As can be
seen, the difference between the two cases is not significant: both results
demonstrate two groups of bsk and accounting for the polarization effects
in coupling coefficients (Fig. 4.6 (b)) results in slightly larger splitting
of the eigenvalues inside the second group.
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Figure 4.7: Supermodes of the 3CCF in case of the simplified vector model.
Colors mark corresponding eigenvalues βsk shown in Fig. 4.6.

Figure 4.8: Supermodes of the 3CCF in case of the expanded vector model.
Colors mark corresponding eigenvalues βsk shown in Fig. 4.6.

Supermodes are calculated as the eigenvectors of the coupling matrix
(4.21):

s⃗1,2 =

{√
3

2
,−1

2
,−

√
3

2
,−1

2
, 0, 1

}
,

{
−1

2
,−

√
3

2
,−1

2
,

√
3

2
, 1, 0

}
, (4.46)

s⃗3,4 =

{
4b− 5cx − cy ∓ ψ

4
√
3(cx + cy)

,
4b− cx + 3cy ∓ ψ

4(cx + cy)
,

−4b+ 5cx + cy ± ψ

4
√
3(cx + cy)

,
4b− cx + 3cy ∓ ψ)

4(cx + cy)
, 0, 1

}
, (4.47)

s⃗5,6 =

{
−4b+ 3cx − cy ∓ ψ

4(cx + cy)
,
4b+ cx + 5cy ± ψ

4
√
3(cx + cy)

,

−4b+ 3cx − cy ∓ ψ

4(cx + cy)
,
−4b− cx − 5cy ∓ ψ)

4
√
3(cx + cy)

, 1, 0

}
. (4.48)

and shown in Fig. 4.8, where arrows denote the direction of electrical
field. Every supermode is represented by 6 coordinates, where every pair
corresponds to each fiber core. This means that the first 2 components
of every supermode are the coordinates of the arrow end in the first core,
the third and fourth components are the coordinates of the arrow end in

63



Chapter 4. Channel models

1.545 1.546 1.547 1.548 1.549 1.550
Wavelength [ m]

125

100

75

50

25

0

25

50

75

Gr
ou

p 
de

la
ys

 [p
s] s

s1

s2

s3

s4

s5

s6

1.5450 1.5455 1.5460

63

64

Figure 4.9: Calculated GDs of the supermodes in the unperturbed 3CCF.

the second core and the fifth and sixth components are the coordinates of
the arrow end in the third core. The center of each core has coordinates
(0;0). The supermodes are plot for cx = 5.159 1/m, cy = 5.149 1/m
and b = 0.0094 1/m, which are calculated at λ = 1545.49 nm with (4.4),
(4.12) and (4.9) respectively.

It can be seen that by setting cx = cy = c, the results will correspond
to the supermodes obtained in the simplified vector model in [Paper C]:

s⃗1,2 =

{√
3

2
,−1

2
,−

√
3

2
,−1

2
, 0, 1

}
,

{
−1

2
,−

√
3

2
,−1

2
,

√
3

2
, 1, 0

}
, (4.49)

s⃗3,4 =

{
2b− 3c∓

√
4b2 + 9c2

4
√
3c

,
2b+ c∓

√
4b2 + 9c2

4c
,

−2b+ 3c±
√
4b2 + 9c2

4
√
3c

,
2b+ c∓

√
4b2 + 9c2)

4c
, 0, 1

}
, (4.50)

s⃗5,6 =

{
−2b+ c∓

√
4b2 + 9c2

4c
,
2b+ 3c±

√
4b2 + 9c2

4
√
3c

,

−2b+ c∓
√
4b2 + 9c2

4c
,
−2b− 3c∓

√
4b2 + 9c2)

4
√
3c

, 1, 0

}
. (4.51)
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Figure 4.10: Propagation constants βsk of the supermodes of the 4CCF-2 for
the simplified and expanded vector models.

These supermodes are shown in Fig. 4.7. It can be seen that they
are identical to ones in Fig. 4.8, demonstrating that the polarization
corrections to the coupling coefficients are indeed small contributions
and do not impact the eigenvectors shape.

The GDs of the 3CCF are found by differentiating propagation con-
stants (4.41)-(4.43) with respect to frequencies, as in (4.39), and multi-
plying the result by the fiber length, L=1.6 km. The calculated GDs are
shown in Fig. 4.9. As propagation constants of the supermodes βsk do
not exhibit significant differences between the simplified and expanded
models, only the expanded vector model is illustrated for simplicity. It
can be seen that the GDs form two groups. The GDs of two degenerate
supermodes that have the highest propagation constants are grouped at
the bottom of the graph, in contrast to the other four GDs showed in the
inset. The GDs do not change over the given interval. In [Paper C] we
calculated the GDs of the 3CCF in a larger wavelength interval, where
a slight linear variation in GDs was present.

4CCF

In case of the 4CCF, the coupling matrix in the expanded vector model
will have an even more complicated form than for the 3CCF, since
there are two types of coupling coefficients, which in case of x- and
y-polarizations will split in four types (4.38). This makes the analytical
solution of the eigenvalue problem complicated and bulky. This section,
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Figure 4.11: Supermodes of the 4CCF-2 in case of the simplified vector
model. Colors mark corresponding eigenvalues βsk shown in
Fig. 4.10.

Figure 4.12: Supermodes of the 4CCF-2 calculated numerically in case of the
expanded vector model. Colors mark corresponding eigenvalues
βsk shown in Fig. 4.10.

thus, shows the analytical calculation results for the supermodes in the
simplified vector model and numerical calculation of the supermodes in
the expanded vector model. The comprehensive analytical calculation
for the both simplified and expanded vector models can be found in
Ref. [194].

Propagation constants of the 4CCF in the simplified vector case can
be found as eigenvalues of the coupling matrix shown in Table 4.3:

βs1,3 = βs2,4 = ∓ b2 − c2, (4.52)

βs5,7 = βs6,8 = c2 ∓
√
b22 + 4c21 (4.53)

and are shown in Fig. 4.10 for 4CCF-2, which also demonstrates numer-
ically calculated eigenvalues in case of the expanded vector model. As
can be seen, both results demonstrate three groups of bsk and accounting
for the polarization effects in coupling coefficients (Fig. 4.10 (b)) results
in splitting of the eigenvalues inside every group.

The supermodes are the eigenvectors of the coupling matrix given in
Table 4.3 and calculated to be

s⃗1,2 =

{
0, 0,−1,−1, 1, 1, 0, 0

}
,

{
1,−1, 0, 0, 0, 0,−1, 1

}
, (4.54)

s⃗3,4 =

{
0, 0,−1, 1, 1,−1, 0, 0

}
,

{
1, 1, 0, 0, 0, 0,−1,−1

}
, (4.55)
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Figure 4.13: Calculated GDs of the supermodes in the unperturbed 4CCF-2
in case of the simplified vector model.

s⃗5,7 =

{
0,±1,∓ b2

2c1
,
−
√
b22 + 4c21
2c1

,∓ b2
2c1

,
−
√
b22 + 4c21)

2c1
, 0,±1

}
, (4.56)

s⃗6,8 =

{
−1, 0,

±
√
b22 + 4c21
2c1

,
b2
2c1

,
±
√
b22 + 4c21)

2c1
,
b2
2c1

,−1, 0

}
(4.57)

and shown in Fig. 4.11 for 4CCF-2. The supermodes are plot for
c1 = 1.492 1/m, and b2 = 2.67 · 10−5 1/m, which are calculated at
λ = 1550 nm with (4.4), and (4.9) respectively. Fig. 4.12 shows numer-
ically calculated supermodes of 4CCF-2 in case of the expanded vector
model. It is notable that the first two supermodes look the same, while
the last two have 90◦ rotated fields. The other four supermodes exhibit
non zero fields in the diagonal cores, in contrast to the simplified vector
model case.

The GDs are found by differentiating the propagation constants (4.52)-
(4.53) with respect to frequencies, as in (4.39), and multiplying the result
by the fiber length, L= 69.2 km. The calculated GDs of the 4CCF-2 are
shown in Fig. 4.13. Note that there is an error in color marking in Fig. 2
in [Paper D], where the GDs of the 4CCF-1 were calculated. The colors
for the first and third GDs groups should be reversed.

The Algorithm 2 below summarizes all the discussed steps for calcu-
lations of the supermodes and their propagation constants.
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Algorithm 2 Calculation of supermodes s⃗k and their propagation con-
stants βsk
Input: r, d, n1, n2 and frequency/wavelength
1: Follow steps 1-8 of Algorithm 1 to form M
2: Find the eigenvalues βsk of M
3: Find the eigenvectors s⃗k of M
4: Repeat for other frequencies/wavelengths if necessary
Output: s⃗k and βsk

4.3 Random coupling models

The core separation and ellipticity in a realistic CCF will vary by small
amounts over the length of the fiber due to manufacturing imperfec-
tions, causing small variations in the core coupling and birefringence
parameters, which results in a randomized core coupling and phase de-
lay between the modes of the coupled cores. An accurate model for
CCFs has to include this random mode coupling. It is, thus, unrealis-
tic to assume that the transfer matrix T = exp(jMz) is constant over
the full fiber length L, as was done in the deterministic model in Sec-
tion 4.2. However, this matrix can be considered constant over a short
length of the fiber, which is called the coupling length. This length is
different for different CCFs and can be calculated from measured GDS
or impulse response of the fiber. The model can then be performed by
building the fiber of length L from constant coupling parts, where every
piece is also subjected to random perturbations. This approximation
implies that the fiber under study can be concatenated by N constant
coupling parts, in between of which effects of random mode coupling are
taken into account as shown in Fig. 4.14. The following sections present
a theoretical description of realistic models for such a fiber with ran-
dom coupling along its length. The models are proposed for the static
and dynamic cases. The former include only frequency-dependent effects
originated from coupling and the latter takes into account time-varying
effects. The equations that will be described in this section hold both
in the scalar and vector models. In case of the vector model it is nec-
essary to substitute D with 2D in (4.59), (4.60), (4.65), (4.66), (4.70),
(4.72)-(4.74).
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L

L/N randomness

Figure 4.14: Illustration of the general idea of random coupling model.

m=1 m=2 m=N

Td(ωl) U1 U2 UNTd(ωl) Td(ωl)

L

Ld

Figure 4.15: Illustration of the static random coupling model schematics.

4.3.1 Static random coupling model

Random propagation in a CCF that supports D modes (2D modes in
polarization-multiplexed case) can be modeled by using the aforemen-
tioned concatenation rule that originates from PMD calculus [195]. The
method is illustrated in Fig. 4.14 and 4.15. A piece of length Ld of an
ideal CCF is represented by the delay matrix Td:

Td(ωl) = exp (jM(ωl)Ld), (4.58)

which is similar to the transfer function for ideal fiber of length Ld from
(4.7) and defined for a set of l = 0...s− 1 frequencies.

The length of one concatenation, Ld, is always constant, but it is
possible to investigate the effect of changing its length. This is studied
in [Paper C], where we analysed a 1.6 km 3CCF by changing the number
of concatenations N , which, in turn corresponded to different Ld. It is
important to note though, that the model of a real fiber has to be built on
(4.58) with its real correlation length, which corresponds to the length of
one concatenation piece, Ld. This, in turn, will correspond to a specific
number of concatenations N = L/Ld. Thus, to model a real fiber, one
has to calculate an appropriate N knowing the correlation length of the
fiber. For this, the GDS of the investigated fiber has to be measured.
GDS can also be estimated from the expression for GDS defined in

69



Chapter 4. Channel models

[Paper C]:

⟨GDS2⟩ = N

D

D∑
k=1

τ2k , (4.59)

where τk are the eigenvalues of the delay operator that can be calculated
using the deterministic model presented in the previous section with
(4.39). Thus, in order to define a reasonable number of concatenations
N , one can relate the total measured GDS for the fiber ⟨GDS2⟩ and its
ideal GDS per piece:

N = ⟨GDS2⟩D/
D∑

k=1

τ2k . (4.60)

Random perturbations in CCFs can be considered and modeled in
various ways [106]. As mentioned above, the randomness in real CCFs
is likely a variation in core size and separations along the fiber due
to manufacturing imperfections. This can be modeled by introducing
a random unitary matrix U. For symmetry reasons we argue that U
should have the Haar distribution [196], and can be realized using QR-
factorization [197]. The matrices U are calculated for every concatena-
tion and placed between the sections described by Td(ωl) as indicated
in Fig. 4.15.

The total transfer matrix can be then found as

Ttot(ωl) =

N−1∏
m=0

Td(ωl) ·UN−m ∀ l = 0...s− 1. (4.61)

The Algorithm 3 summarizes the steps discussed above for the trans-
fer matrix calculation. Examples of the model application can be found
in Section 4.3.4.

4.3.2 Time drift model

The aim of introducing a time-dependent part in the model is to take
time drift effects in CCFs into account. The origin of the time drift can
be temperature fluctuations along the fibers, mechanical movements, or
other time-varying effects.

In the previous section, for the static random coupling model, it was
assumed that the perturbations are modeled by a random unitary matrix
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Algorithm 3 Calculation of transfer matrix Ttot(ωl)

Input: r, d, n1, n2, n and set of frequencies/wavelengths
1: Follow steps 1-8 of Algorithm 1 to form M(ωl)
2: Choose/calculate N with (4.60)
3: Calculate Td(ωl) with (4.58)
4: Generate Um, ∀ m = 1...N using algorithm [197]
5: Calculate Ttot(ωl) using (4.61)
Output: Ttot(ωl), l = 0...s− 1

ti

......U(t1) U(t2) U(tn-1)U(t0)

Figure 4.16: Illustration of the time drift model: matrices at different time
instances i = 0...n− 1 separated by δt.

Um which was constant for a chosen concatenation m. Assume now that
U is a D×D (2D× 2D) unitary transfer matrix and changes with time
as

U(ti) = exp(jHi−1γ)U(ti−1) = ∆U ·U(ti−1), (4.62)

where Hi is a D × D (2D × 2D) Hermitian matrix, γ =
√
δt/TD is a

numerical parameter describing the scaling factor of the standard devi-
ation of Hi and controlling how correlated U(ti−1) and U(ti) are. The
decorrelation time TD is unique for each fiber installation and should be
measured, δt is a short time period.

The idea of the model is illustrated in Fig. 4.16, showing a time scale
divided by n discrete time points separated by δt. Each time instance
corresponds to a matrix U(ti), i = 0....n − 1, which has a recursive
structure, as can be seen from (4.62).

The steps for calculation of the time drift matrices U(ti) are sum-
marized in Algorithm 4. First, we choose an arbitrary, small number γ
and the number of time points n. Next, we generate a random unitary
matrix U(t0) corresponding to an initial state in the same manner as
in [197]. After that, we generate a D ×D (2D × 2D) matrix R, which
has complex normally distributed elements rsp with N (0, 1). Using this
result, the matrix H is then calculated and plugged in to the matrix ex-
ponential to form ∆U, which represents how the initial matrix changes
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m=1 m=2 m=N

L

Td(ωl) U1(ti) U2(ti) UN(ti)Td(ωl) Td(ωl)

Ld

Figure 4.17: Illustration of the dynamic random coupling model schematics.

over the interval δt. In the last step, the time drift matrix is calculated
using the initial state matrix and matrix ∆U.

Algorithm 4 Generation of time drift matrices U(ti)

Input: γ, n
1: Generate U(t0) using algorithm in [197]
2: Generate Ri = {rsp ∈ CD×D, rsp ∼ N (0, 1)}
3: Calculate Hi =

Ri+R†
i

2
4: Calculate ∆U = exp(jHiγ)
5: Calculate U(ti+1) = ∆U ·U(ti)
6: Repeat the steps 2-6 ∀ i = 1...n− 1.
Output: U(ti), i = 0...n− 1

4.3.3 Dynamic random coupling model

The aim of the dynamic model is to incorporate the time drift model into
the static random coupling model described in Section 4.3.1. Instead of
using one randomly generated unitary matrix Um for each fiber piece,
we define a set of matrices Um(t), which are generated according to
Algoritm 4 at every concatenation m (Fig. 4.17). The total transfer
function can be then calculated as

Ttot(ωl, ti) =

N−1∏
m=0

TdN−m(ωl) ·UN−m(ti). (4.63)

The resulting Ttot will represent a transfer matrix at every frequency
l and time instance i, which is illustrated in Fig. 4.18. It is important
to note that this model assumes the time drift is much slower than any
group delay. The Algorithm 5 summarizes the steps for the transfer
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Algorithm 5 Calculation of transfer matrix Ttot(ωl, ti)

Input: r, d, n1, n2, l, n and set of frequencies/wavelengths
1: Follow steps 1-3 of Algorithm 3 to form Td(ωl)
2: Generate a set of matrices Um(ti) ∀ m = 1...N using Algorithm 4
3: Calculate Ttot(ωl, ti) using (4.63)
Output: Ttot(ωl, ti), i = 0...n− 1, l = 0...s− 1

ωl

ti

Ttot(ω0,t0) Ttot(ω1,t0) Ttot(ωs-1,t0)

Ttot(ω0,t1) Ttot(ω1,t1) Ttot(ωs-1,t1)

Ttot(ω0,tn-1)Ttot(ω1,tn-1) Ttot(ωs-1,tn-1)

ω0 ω1 ωs-1

t0

t1

tn-1

Figure 4.18: Representation of the dynamic model output: n × s × D × D
array of the transfer matrix Ttot.

matrix Ttot(ωl, ti) calculation. Examples of the model application can
be found in Section 4.3.4.

4.3.4 Application of the random coupling models for the
analysis of CCFs

There are numerous effects and properties of the CCFs that can be stud-
ied with the presented models. The subsections below demonstrate an
overview of the investigated characteristics in the 3CCF with the geomet-
rical parameters listed in Table 4.1. All the results are obtained with the
expanded vector model. The simulation parameters for all calculations
are listed in Table 4.4, unless specified otherwise. Note that the number
of concatenations N = 22 indicated in Table 4.4 is calculated to model a
real 3CCF characterised in [Paper A]. As the ideal GDS is known from
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Table 4.4: Simulation parameters of the 3CCF used in Section 4.3.4.

Simulation parameters Values
Wavelength range λ [µm] 1.545-1.550
Number of concatenations N 22
Number of frequency points s 500
Number of time points n 500
Time drift parameter γ 0.001

193.6 193.7 193.8 193.9 194.0 194.1
Frequency [THz]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

t 1
1

Figure 4.19: Real (blue) and imaginary (orange) parts of the element t11 of
a transfer matrix Ttot(ωl).

the calculation in Section 4.2.3 and experimental GDS was estimated to
be 14.6 ps/

√
km in [Paper A], N and Ld can be easily calculated with

(4.60).

Transfer function

The transfer matrix of a CCF can be calculated according to Algorithm 3
when there is no time dependence and with Algorithm 5 for the dynamic
model. The transfer function is the basis for calculating other charac-
teristics, as it contains all the information about fiber under study. The
investigation of the transfer matrix elements can also give insights about
the propagation inside the fiber, for example, the rate of frequency/time
variations, periodicity, etc.

As an example, Fig. 4.19 demonstrates real and imaginary parts of
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Figure 4.20: A 6×6 transfer matrix Ttot(ωl) of the 3CCF. Only real part is
shown for clarity.

the first element t11 of the transfer matrix of the 3CCF calculated with
(4.61). The fact that all N concatenations have the same length causes
the curve to be (artificially) periodic in frequency. The period in this case
is related to the inverse GDS of each element. The full transfer matrix
of the 3CCF is shown in Fig. 4.20. It can be seen that all its elements
exhibit periodic behavior, similarly to t11 shown in Fig. 4.19. This result
can be also compared with the experimental magnitude of the 3CCF’s
transfer function shown in Fig. 3.8. As can be observed, the experimental
data manifests similar behavior. In [Paper C] we investigated how the
behavior of t11 will change with different N for the same fiber length and
the reader is referred to this paper for more details on this case.

Group delays

The GDs in a fiber with random coupling can be found by calculating
the eigenvalues of the delay operator D similar to (4.40):

D = −jT†
tot

dTtot

dω
. (4.64)

The GDs for one realization of the transfer matrix are illustrated by
red lines in Fig. 4.21. It can be seen that they show periodic behavior
and do not cross. As was discussed in [94], the delay operator D can be
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Figure 4.21: The GDs of the 3CCF calculated for 1 transfer matrix realization
(red curves) and averaged over 500 realizations (black curves).

modeled as a random Gaussian matrix, and since the probability for such
a matrix to have two identical eigenvalues is negligibly small, the GDs do
not coincide. In [Paper C] we investigated the GDs of the 3CCF in case
of 1 transfer matrix realization for various number of concatenations N .
It was shown that when N = 1 and N = 2 the GDs remain constant over
the frequency range, while showing periodic random behavior at large
N . In [Paper D] we studied the GDs of the 4CCF-1, where we kept the
length of one concatenation Ld constant, while changing N and observed
the same type of behavior for the GDs. In [Paper F] we studied GDs
of the 4CCF-2 and showed that the behavior agrees well with what has
been reported in experiment [198] for a 4CCF with the same parameters.

The black lines in Fig. 4.21 show the GDs calculated as average over
500 realizations of the transfer matrix. Notably, their values are constant
over the wavelength span, similarly to the GDs in the unperturbed case
shown in Fig. 4.9. As was shown in [Paper C], taking into account
the birefringence effects does not change the GDs in an unperturbed
3CCF significantly, since in CCFs the magnitude of birefringence is much
smaller than the coupling, b << cpq. However, in the 3CCF subject to
random perturbations, the GDs become more polarization dependent
and change much more significantly. Moreover, when we increased N ,
they became distinct in contrast to the ideal case, when they formed 2
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Figure 4.22: Frequency and time evolution of all six GDs of the 3CCF cal-
culated for 1 transfer matrix realization at γ = 0.001. Color
scale from blue to yellow indicate minimum to maximum values
respectively for every GD.

groups.
Fig. 4.22 shows dynamic behavior of the 3CCF’s GDs. The time

dependence of the GDs manifests a random, but periodic behavior, sim-
ilarly to frequency dependence. However, how fast the GDs will change
with time is defined by the γ parameter. Evidently, the smaller the γ
parameter, the less drastic changes in time the GDs will experience. Dy-
namic behavior of the GDs was also studied in [Paper F] for the 4CCF-2.

Group delay spread

As was discussed in the previous chapters, GDS quantifies the modal dis-
persion and defines the required number of filter taps in a MIMO receiver
DSP, which is necessary to uncouple the signals after transmission. GDS
was defined by Ho and Kahn as the difference between maximum and
minimum GDs [94], while the formula derived in Ref. [95] relates the
GDS to the fiber geometry and to the statistical properties of the struc-
tural fiber perturbations. In [Paper C] we proposed to use the average
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Figure 4.23: Calculated dependence of averaged GDS on propagation dis-
tance in the 3CCF.

of the squared eigenvalues τtot,k of the delay operator (GDs), i.e.

⟨GDS2⟩ = 1

D

D∑
k=1

⟨τ2tot,k⟩. (4.65)

In a concatenation of N , D-dimensional delay matrices, this can be
calculated exactly as [94]

⟨GDS2⟩ =
N∑

m=1

D∑
k=1

⟨τ2km⟩
D

, (4.66)

where τkm denotes the kth eigenvalue of the delay operator of element
m. In the ideal case of an unperturbed CCF discussed in Section 4.2,
GDS can be evaluated by (4.59). The benefits of using this metric for
GDS is twofold: (i) it scales exactly linearly with fiber length and, (ii) it
equals the RMS intensity impulse response averaged over all modes, as
was shown in [Paper C]:

⟨T 2
RMS⟩theory = ⟨GDS2⟩+ T 2

RMS0
, (4.67)

where TRMS0 is the RMS width of the input Gaussian pulse. It also
should be noted that this relation for GDS is closely related to the mean-
square length of the generalized PMD vector defined in [108].

Calculation of the GDS was discussed in [Paper C] and [Paper D],
where we investigated how it scales with distance in the 4CCF-1. Fig.
4.23 shows calculated GDS for the 3CCF. The theoretical curve is calcu-
lated with (4.59), while the simulation graph was obtained with (4.66).
It is clearly seen that the curves are in good agreement and manifest a
square root behavior on propagation distance, as expected for CCFs.
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Figure 4.24: Normalized total power IIR calculated for the 3CCF. Blue and
orange lines are related to the instances where a 8-ps Gaussian
pulse is injected to x- and y-polarizations of the first core for
a single realization. The black and yellow curves are the IIRs
averaged over 200 realizations.

Impulse response

The impulse response of a fiber can be studied in simulations by exciting
each of the core by a short Gaussian pulse and observing the received
intensities in each of the cores and polarizations. A Gaussian pulse in
time domain can be expressed as

u(T ) = exp(− T 2

2T 2
0

), (4.68)

where T is the time coordinate and T0 is the 1/e half-width of the pulse
power.

If a pulse enters a fiber, the output complex amplitude can be ex-
pressed as

A⃗(T ) = F−1[Ttot(ω)A⃗0F [u(T )]], (4.69)

where F [x] is the Fourier transform of x. The total power IIR then can
be calculated as I(T ) = A⃗H(T )A⃗(T ).

The total power IIRs calculated for light coupled to the first 3CCF’s
core are shown in Fig. 4.24. Blue and orange lines denote the IIRs cal-
culated when a 8 ps Gaussian pulse is injected to x- and y-polarizations

79



Chapter 4. Channel models

-157.0 -95.0 -32.0 32.0 95.0 157.0
T [ps]

199

160

120

80

40

0

Ti
m

e 
st

ep
(a)  = 0.001

-157.0 -95.0 -32.0 32.0 95.0 157.0
T [ps]

(b)  = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.25: Dynamic evolution of the normalized total power IIR at (a)
γ = 0.001 and (b) γ = 0.1.

respectively. The total power IIRs averaged over 200 realizations are
shown by the black and yellow curves. The RMS width of the averaged
impulse response agrees with the measured result in [Paper A], showing
that the way of calculation of Ld for a specific CCF in the proposed
random coupling model is accurate. It is evident that the polarization of
the input state impacts the shape of the IIR, while on average the Gaus-
sian shape is retained. This illustrates the importance of birefringence
effects when analysing real-time behavior or single measurements. The
same conclusions were obtained in [Paper C], and [Paper D], [Paper F]
for 4CCF-1 and 4CCF-2.

In [Paper C] we investigated how the IIR of the 3CCF changes with
number of fiber concatenations N . For N = 1 there are two distinct
peaks separated by 183 ps, which corresponds to a GDS defined as the
difference between maximum and minimum GDs [94] and agrees well
with calculation presented in Section 4.2.3. As we increase the number of
concatenations, there appear more peaks that move closer to the central
position and the impulse response starts to be Gaussian-shaped at N =
20, which almost corresponds to the chosen length of one concatenation,
Ld, in this Section. We also studied the dependence of the RMS width
on the number of concatenations N . The results showed good agreement
with theoretical estimates defined by (4.67).

The time evolution of the normalized total power IIRs calculated for
two different γ parameters is shown in Fig. 4.25. The IIRs are calculated
when a 8 ps Gaussian pulse enters X-polarization of the first core. The
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Figure 4.26: Theoretical and modeled frequency ACFs of the 3CCF.

value of γ parameter controls how fast IIR evolves. It can be seen that
the IIR at γ = 0.1 in Fig. 4.25 (b) experience fast changes during the
propagation, while the IIR in Fig. 4.25 (a) for γ = 0.001 shows a stable
behavior with much slower decorrelation. The dynamic behavior of the
IIR was also studied for 4CCF-2 in [Paper F], where the change in the
shape of the responses can be also observed.

Frequency and time autocorrelation functions

The similarity between transfer matrices at various discrete points is
quantified through the correlation coefficient α ∈ [0, 1], where α = 0
indicates that two matrices are completely uncorrelated (independent)
and the highest correlation corresponds to α = 1.

The frequency ACF can be calculated as

αω(∆ω) =
1

D
Tr{< T†

tot(ω
′ +∆ω)Ttot(ω

′) >}, (4.70)

where ω′ is a chosen frequency at which the ACF is calculated, ∆ω =
ωl − ω′, and Tr is the trace operation and triangular brackets refer to
the averaging over realizations of calculation of T†

tot(ω
′ +∆ω)Ttot(ω

′).
The analytical expression for the frequency ACF is derived in Ap-

pendix of [Paper F] as

αωth
(∆ω) = exp(−⟨GDS2⟩∆ω

2

2
). (4.71)
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Figure 4.27: Time ACFs of the 3CCF for different γ parameters. The the-
oretical curves are indicated by dots. Inset shows zoomed in
version of the time ACF for γ = 0.001.

Fig. 4.26 represents analytical and simulated frequency ACFs of
the 3CCF. The simulation was performed over the wavelength range
[1545, 1545.5] nm and averaged over 200 realizations. There is a good
agreement between the modeling result calculated using (4.70) and the
analytical curve obtained from (4.71). The frequency ACF for 4CCF-
2 was investigated in [Paper F] and showed similar behavior and good
agreement between theory and simulation.

The ACF in time is defined as

αt(∆t) =
1

D
Tr{< T†

tot(t
′ +∆t)Ttot(t

′) >}, (4.72)

where t′ is a chosen time point at which ACF is calculated and ∆t =
ti − t′. As ti = i · δt, then ∆t = δt(i− i′) = δt∆i.

Let us consider δt = 1 for simplicity, then the above equation can be
rewritten for the time step as

αt(∆i) =
1

D
Tr{< T†

tot(i
′ +∆i)Ttot(i

′) >}. (4.73)

and the analytical result can be found as

αtth(∆i) = exp(−γ2|∆i|D
2
N), (4.74)

which is derived in Appendix of [Paper F].
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Figure 4.28: 2D ACF of the 3CCF calculated at (a) γ = 0.001 and (b) γ =
0.05.

Fig. 4.27 demonstrates time ACFs of the 3CCF for different γ param-
eters. Simulated curves are calculated according to (4.73) and averaged
over 200 realizations of transfer matrices. Theoretical curves are cal-
culated with (4.74) and show good agreement with the simulation. As
expected, the functions at higher γ parameter exhibit faster decorrela-
tion, while the ACF at γ = 0.001 shows smooth behavior close to linear
dependence.

Another way of looking on time and frequency ACFs is 2D ACF,
which can be calculated as

α2D(∆ω,∆i) = αω(∆ω)α
⊤
t (∆i). (4.75)

Fig. 4.28 show 2D ACFs of the 3CCF calculated with (4.75) for
γ = 0.001 and γ = 0.05 respectively. Simulation was performed using
the wavelength range of [1545,1545.3] nm with 100 points, and the result
was averaged over 100 realizations. As can be seen, this is just another
representation of the ACF discussed above. Estimated 2D ACF can
help to investigate necessary parameters of the model in both time and
frequency and connect them to the properties of the real, installed fiber.

4.3.5 Final remarks

The simulations presented in the previous section show a good agreement
with the theoretical and experimental results for the 3CCF obtained
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Figure 4.29: Computational time of the 3CCF’s transfer function in the vec-
tor case of the static random coupling model depending on the
number of concatenations N and frequency points s.

in [Paper A], while the simulation results on the 4CCF-2 discussed in
[Paper F] also agree well with the theory and experimental data [113,198].
This highlights the applicability of proposed random coupling models for
various purposes in fiber optic communication.

It should be noted that the computational complexity for the per-
formed simulations grows linearly with the increasing number of concate-
nations, N , frequency s, and time n points, as shown in Fig. 4.29. The
number of dimensions D also impacts the computational time. Hence,
modeling of long CCF links with a high core count might be time-
consuming. Averaging operations over many realizations might also take
a long time. It is thus desirable to use an optimized code structure for
testing and following the calculation. The simplest thing is setting up a
logger in the simulation code, which assists in keeping track of the cal-
culation steps, timing and helps with possible debugging. An example
of such logger can be found in the file with the used functions in Ref. 22
of [Paper F].
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CHAPTER 5

Future outlook

There are numerous research topics related to this thesis that can be
investigated in later work. We will likely see that SDM fibers will be
commercially deployed in the future and while the best platform is still
undecided, CCFs are very promising candidates. Thus, modeling and
characterisation will become more and more important because we will
try to optimise fibers and devices even further to approach the data
capacity limits. The purpose of this chapter is to briefly discuss research
opportunities that are particularly connected to the work presented in
Papers A-F.

Some of the advanced experimental techniques for SDM systems char-
acterisation were discussed in Chapter 2. While extensively described
DCS and SWI represent many advantages, we show in [Paper A] and
[Paper B] that it is beneficial to use a combination of these two schemes,
DC-SWI. Application of the tunable laser source that sweeps over the
comb repetition rate provides fast and accurate full-field characterisation
measurements without any additional interferometer for laser sweep non-
linearity compensation. The experimental results in [Paper B] demon-
strate that DC-SWI enables extraction of transfer functions in a good
agreement with the applied filters. These results show that DC-SWI can
be used as a tool for measuring the amplitude and phase of the transfer
function and extracting the parameters of interest for various samples.
Possible research opportunities of DC-SWI unite DCS and SWI practi-

85



Chapter 5. Future outlook

cal applications and can include metrology, optical imaging, etc. More-
over, the findings of [Paper A] demonstrate that DC-SWI is a promising
method for characterising complex DUTs with rapid changes in trans-
fer matrix elements. One of the possible applications in the future can
be a combination of DC-SWI with an imaging experimental technique
in order to obtain not only the full complex transfer function, but also
information about the mode shape.

Additional investigations can be carried out to improve the DC-SWI
implementation in terms of the scanning speed of the intermediate fre-
quencies. The simplest way is to use a faster tunable laser. Another
scenario is to employ an arbitrary waveform generator to produce a
frequency sweep in the electrical domain, similar to the arrangement
in [199], which might provide more linear tuning and much higher mea-
surement speed.

Another important application of the DC-SWI lies in the domain of
channel modeling for systems based on SDM. Information gained from
characterisation measurements can be used in building the theoretical
description of the fiber optic channel model. In Chapter 4 the effects
of random coupling and their modeling in strongly coupled fibers were
discussed. Existing and proposed models in Papers C-F can compre-
hensively describe many propagation properties, however, the a priori
knowledge on time-frame changes of transfer matrix elements in a con-
sidered fiber can improve the models. The ultimate goal can be estab-
lishing even more realistic dynamic channel models that include many
rapidly changing events such as phase noise and nonlinear impairments.

The proposed channel models can be applied further to test MIMO
equalizers in various dynamic links as has been done in [Paper E]. As a
possible novelty, the equalizer can be also tested for various frequencies
with the model presented in [Paper F]. As the frequency range and the
time fluctuations rate can be easily changed in the proposed model, it
brings a lot of flexibility in the test process. This can be especially
relevant for modelling of long-haul real-time transmission experiments
[113,114].
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Summary of papers

Paper A
Characterisation of a Coupled-Core Fiber Using Dual-Comb
Swept-Wavelength Interferometry
Presented at European Conference on Optical Communication (ECOC),
Bordeaux, France, Sep, 2021.

In this paper we demonstrate transfer function measurements of the
three coupled-core fiber performed with the DC-SWI, which is described
in detail in [Paper B]. Using the extracted RMS-widths from the impulse
response functions, values of DMGDs for every core is estimated.

My contribution: I constructed a part of the setup, carried out mea-
surements, DSP and experimental analysis, prepared the figures and
wrote the paper. I presented the results at ECOC 2021.

Paper B
Dual-Comb Swept-Wavelength Interferometry: Theory and Ex-
periment
Journal of Lightwave Technology, vol. 40, no. 19, pp. 6508-6516, Oct,
2022

In this article we comprehensively describe a measurement technique
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which combines DCS and SWI, and demonstrate characterisation mea-
surements over 1.25 THz bandwidth performed with the frequency res-
olution superior to the DCS. Experimental advantages are gained by
using a tunable laser source in order to sweep over the the frequency
comb spacing and capture all intermediate frequencies. Moreover, em-
ployed DSP algorithms enable compensation of the laser sweep without
any external interferometer.

My contribution: I constructed a part of the setup, carried out mea-
surements, DSP and experimental analysis, prepared the figures and
wrote the paper.

Paper C
Modeling of 3-Coupled-Core Fiber: Comparison Between Scalar
and Vector Random Coupling Models
Journal of Lightwave Technology, vol. 42, no. 2, pp. 793-801, Jan, 2024

In this work we present for the first time, to the best of our knowledge,
a comparative analysis between scalar and vector models for a 3CCF.
We derive for the first time an analytically tractable vector model of the
supermodes for an unperturbed 3CCF, accounting for the birefringence
from the presence of nearby cores. The model is extended to account for
the effects of random mode coupling and analyze the impulse response
as well GDs in a 3CCF by using the concatenated waveplate model.
Comparisons with measured impulse responses [Paper A] then enable an
estimate of the correlation length of the fiber.

My contribution: I implemented and analyzed the model, carried out
simulations and calculations, prepared the figures and wrote the paper.

Paper D
Analysis of the Scalar and Vector Random Coupling Models
For a Four Coupled-Core Fiber
European Conference on Optical Communication (ECOC), Glasgow, UK,
Oct. 2023

In this work we present a comparative analysis of the scalar and vec-
tor random coupling models for a 4CCF in the ideal case and random
coupling regime. We show for the first time, to the best of our knowledge,
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analytically calculated supermodes and their propagation constants for
a 4CCF in a polarization multiplexed case.

My contribution: I implemented and analyzed the model, carried out
simulations and calculations, prepared the figures and wrote the paper.

Paper E
Circuit Implementation of Pilot-Based Dynamic MIMO Equal-
ization for Coupled-Core Fibers
Optical Fiber Communications Conference, San Diego, March 2024

In this article we explore ASIC implementation for pilot-based MIMO
equalizers for coupled-core transmission, considering chip area scaling
trends and performance impact of time-dependent drift. Our channel
model was central in the simulations of the equalizer performance.

My contribution: I implemented and analyzed the time-drift model
used to test the equalizer.

Paper F
Dynamic Model For Coupled-Core Fibers
Journal of Lightwave Technology, submitted

In this article we design a dynamic (time dependent) model for CCFs,
which contains a static frequency dependent part presented in [Paper
C] and time-drift part used in [Paper E]. Simulation and analytical re-
sults for impulse response, group delays and autocorrelation functions
are shown for a 4CCF.

My contribution: I implemented and analyzed the model, carried out
simulations and calculations, prepared the figures and wrote the paper.
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