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Beyond Perturbation: Modeling Anharmonicity in Materials
FRedRiK ERiKsson
Department of Physics

Chalmers University of Technology

Abstract
The vibrational motion of atoms is essential for understanding condensed matter sys-
tems. It directly influences numerous thermodynamic properties with significant tech-
nological implications. Additionally, these atomic movements indirectly contribute to
a variety of electronic and optical properties, making the study of vibrations both chal-
lenging and rewarding.

Today, we conceptualize these collective vibrational excitations as phonons. The study
of phonons bridges theoretical and experimental approaches through computer simu-
lations. Typically, phonons are studied at the lowest harmonic order and occasionally
to the first order using perturbation theory. However, in many systems of interest,
anharmonic motion, which represents interactions among phonons, is critical. Model-
ing this anharmonicity beyond perturbation theory is computationally intensive. For-
tunately, recent advancements in various fields, both within and outside condensed
matter physics, have made these simulations more feasible.

In this thesis, the primary computational tools for studying phonons are outlined and
applied to a diverse range of materials. Emphasis is placed on understanding the un-
derlying dynamics through microscopic correlation functions and their link to exper-
imental observables via spectral functions. Additionally, some practical details, often
overlooked in the literature, are discussed. Specifically, the framework of lattice dynam-
ics and the characterization of the potential energy surface through force constants are
described. For complex systems that extend beyond perturbation theory, the comple-
mentary approach of molecular dynamics is explored, with a focus on phonon dynam-
ics.

These techniques are applied to two sets of materials currently of interest. First, an-
isotropic thermal conduction in rotationally disordered 2D van der Waals structures is
examined using the Green-Kubo method. The findings align well with experimental re-
sults, demonstrating a substantial anisotropy that could be advantageous for managing
thermal waste in integrated circuits. Moreover, the chemistry-independent suppres-
sion of through-plane thermal conductivity in these materials is shown. Additionally,
through-plane thermal conduction as a function of the moiré twist angle is analyzed
and correlated with an entropymeasure. Lastly, the limitations of the quasi-particle pic-
ture of phonons are investigated in an inorganic halide perovskite. It is found that the
soft phonons are overdamped over a wide temperature range above the phase transition
but remain consistent with the model of independent damped harmonic oscillators.
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1
Introduction

Why look it up if you can make it up?

E. B.

1.1 Modeling materials dynamics
This thesis concerns the computer aided modeling of atomic ¹ vibrational dynamics
in condensed matter systems with a focus on the solid state. Atomic vibrations are
important for many structural and thermodynamic properties but also influence, e.g.,
electronic and optical properties of materials [1, 2]. The plethora of different materials
with different macroscopic properties is a key part of technology and thus it is of great
interest to understand the underlying microscopic mechanisms [3, 4]. One of the goals
in materials science is to understand how these properties emerge from the constituent
atoms. One approach is to predict and interpret experiments using only quantum me-
chanics and constants of nature. This is called ab initiomodeling and todaymuch of this
modeling is aided by computer simulations [5, 6]. Many modern simulation method-
ologies can provide excellent quantitative agreement with experiments — ideally for
the right reasons. Today, there are many computer codes which are available for per-
forming simulations of condensed matter systems. Especially during the last decade

¹In this thesis the terms ions, nuclei and atoms will often be used interchangeably
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Chapter 1. Introduction

open source software has had a large impact on the workflow of computational mate-
rials scientists as many codes are now easily accessible. By a hierarchy of methods it
is in principle possible to go all the way from the microscopic description of matter via
coarse grained models to the macroscopic world.

The two main ingredients needed to study atomic vibrations are (1) a means to cal-
culate the forces acting between atoms by solving the Schrödinger equation of the elec-
trons and ions, and (2) a method for integrating the resulting equations of motions to
predict the vibrational dynamics. The most common technique for task (1) is density
functional theory (DFT), an electronic structure method, which enables the calculation
of energy and forces, along with a wide array of derived properties. One can also use
interatomic potentials including machine-learned ones, which are often parametrized
using data from DFT calculations. With regard to (2) depending on the system at hand,
one usually uses either lattice dynamics (Chapter 2) or molecular dynamics (Chapter 3)
to solve the equations of motion. In short, lattice dynamics, as the name suggests, is
limited to more or less crystalline systems but allows one to more naturally handle
quantum effects. Molecular dynamics on the other hand is a mostly classical method
that can, however, also be applied to model disordered solids and even liquids. How-
ever, it is possible in both frameworks to overcome each respective limitation to some
degree which can be useful in cases where observables of interest are more natural to
calculate in one framework compared to the other. In the two main chapters, Chap-
ter 2 and Chapter 3, we shall take a brief look at both of the principal techniques used
to study atomic vibrations. In the rest of this introduction we shall take a more pedes-
trian approach to vibrational properties of solids. The particular type of properties we
will be concerned with are those directly connected to atomic vibrations.

How to model the atomic vibrations is intimately connected to the microscopic struc-
ture of the material and the interactions among the constituent atoms. Let us consider
some different types of systems from simple molecules to complex liquids. For instance,
in a diatomic gas (like nitrogen N2 or carbon monoxide CO) the vibrations of each
molecule are largely decoupled from the vibrations of all other molecules, apart from
occasional collisions. In other words, the diffusive motion of the molecules is largely
independent of the intramolecular vibrations. This allows us to study the vibrations in
a single individual molecule in detail while being able to describe related properties of
the macroscopic molecular gas. As we shall see later this makes it possible to predict
infrared absorption spectra.

It is also possible to study the vibrations of large molecules in solutions. In this case
the dynamics of the solvent and the interaction with the solute can often be coarse
grained. The vibrations of the large molecule can be modeled as the vibrations of the
isolated molecule under the influence of some stochastic external interaction. This is
different from the previous example where the interactions where instead rare. We will
see an explicit example of how to model this at the end of Chapter 3 where we discuss
the damped harmonic oscillator.

2



1.1. Modeling materials dynamics

Figure 1.1: The difference between (1) a crystal where the atoms are perfectly aligned, (2) a
crystal where atoms can diffuse around, and (3) a disordered glass. A liquid is like a glass where
the atoms can diffuse around freely, i.e. a combination of (2) and (3).

There is also the possibility to model vibrations in liquids. Although liquids are qual-
itatively very different from solids many concepts are common. In liquids the problem
is that the vibrational dynamics can not be decoupled from the diffusive motion. How-
ever, the stochastic nature of atomic motion in liquids makes the dynamics somewhat
less sensitive on the details of the description of the atomic interactions. For instance
many models of water will replicate the macroscopic behavior of the liquid but fail at
describing the different phases of ice [7].

The main systems studied in this thesis are bonded solids such that no or very lit-
tle diffusion is observed. They will furthermore be either ordered/crystalline or dis-
ordered/amorphous (sometimes called glassy). Amorphous systems share many simi-
larities with liquids in that there is no long-range order. Most solid materials we en-
counter are either disordered like glasses or poly-crystalline. In polycrystalline materi-
als, grains of randomly oriented crystals are surrounded by less ordered or disordered
regions called grain boundaries. Even materials that we might assume to be made up
of perfect crystals contain different types of defects. These can be point defects such
as missing atoms (“vacancies”) and interstitials or higher dimensional defects such as
stacking faults. The study of defects is a large and important area but in this thesis
we shall mainly deal with vibrations of perfect crystalline materials. Our hope is that
by understanding the crystalline case we can transfer the knowledge to more complex
systems. An illustration of the difference between the systems is provided in Fig. 1.1.
A large part of the challenge of simulating vibrations in solids is that many interesting
materials are somewhere between perfect order and total disorder.

However, as mentioned, the simplest systems to start the analysis are crystalline
solids. The study of atomic vibrations in crystalline solids is an old topic called lat-
tice dynamics. Atoms in the crystal vibrate back and forth under the influence of the
motion of neighboring atoms. Even in liquid systems where the atoms are subject to
diffusion there are characteristic frequency components of the motion. Much of the
modern theory of lattice vibrations was formulated by Max Born and Theodore von
Kármán in 1912–1913. In this theory the atomic motion is coupled and correlated and

3



Chapter 1. Introduction

the individual atomic vibrations (or excitations) are replaced by collective excitations
called phonons where the atoms move together in a wavelike manner. To understand
the properties of the material with respect to the atomic motion is then to understand
the dynamics of the phonons. The energies and vibrational frequencies of different
types of phonons of different wavelengths are a key properties to understand. A classi-
cal analogy of a phonon are elastic waves such as sound waves (“phono” means sound)
or vibrations on strings. The basic framework of the dynamics and interaction among
phonons and their role in, e.g., heat transport was to large extent already understood
by the end of the 1950s and early 1960s. In the subsequent years we saw the advent
of molecular dynamics and DFT and it appears the modern approach has not changed
much from at least the late 1980s.

We appreciate that once we can calculate the interaction among atoms we can in
principle understand in detail how the atoms vibrate in terms collective excitations
called phonons. The details of how to go from a model of the interaction between
atoms to the properties of the phonons is the topic of Chapter 2. Although indirectly
important for other properties as well, there are then several macroscopic materials
properties directly related to atomic vibrations which we can observe directly and try
to predict. Some everyday examples are thermal expansion, heat capacity and elasticity.
The contribution to these quantities from the atomic vibrations can today be computed
relatively easily.

Amore challenging property is for example the free energy which controls the stabil-
ity of different phases of a material with important implications for applications. Many,
in principle significant, materials for crucial applications such as thermoelectrics and
photovoltaics fall short due to kinetic free energy barriers in synthesis and structural
instability at ambient temperature variations. The reason is that a large proportion
of the free energy of a material can originate from the vibrational entropy. Because
materials synthesis is difficult and expensive it is convenient to have a computational
approach to try to predict the stability of a material. The methods described later in
the thesis can be used to calculate phase diagrams for different materials ranging from
simple ordered crystals to disordered liquids. This can also be useful before synthesis
in order to guide the experimental setup and subsequent analysis of experimental data.

A furthermacroscopic property of interest is the thermal conductivitywhich is slightly
different from the structural and equilibrium properties mentioned above. It is a non-
equilibrium property that is remarkably hard to both measure and simulate [8, 9]. The
thermal conductivity is an important property for technical applications in, e.g., elec-
tronics, aerospace and automotive engineering as well as energy production and stor-
age. Experimentally, it can be measured using, e.g., the 3𝜔-method [10]. In Paper III
the thermal conductivity of disorderedMoS2 was measured using the time domain ther-
moreflectance method instead, as discussed in reference [11]. While the free energy
needed for phase transitions in principle can be accessed from Monte Carlo simula-
tions the thermal conductivity is intimately related to the materials dynamics [12] and

4



1.2. Experimental probes

is thus a different probe of the accuracy of the underlying model of the atomic inter-
actions. Both properties are, however, challenging to simulate and there are still open
questions related to thermal conduction in disordered systems [13] and the need for
exact microscopic definitions of heat currents [14].

With the above discussion as motivation we will now go a bit deeper into how to
model phonons. In the simplest models the phonons act as independent excitations, or
in the language of quantum mechanics, they are exact energy eigenstates. Thus a par-
ticular type of phonon (called polarization) with some wavelength will oscillate with
some fixed frequency corresponding to the energy of the excitation. This mode of os-
cillation will act as an independent harmonic oscillator and thus its spectrum can be
described as a delta-function centered at this frequency. If there are several phonons
of different wavelengths we hope to see those frequencies also in some spectra if we
can probe the material in such a way to detect the phonons. We shall take a look at
some of this type of experiments and see how the picture of harmonic oscillations fails.
In particular we shall see that the peaks in the spectrum are not delta-functions but
rather have some finite width. With a finite width in frequency and the relation be-
tween energy and time we understand that a width in frequency means an uncertainty
in energy. This means that the phonons are not exact eigenstates but will in general
decay into other phonons after some time. In this case the harmonic picture must be
abandoned and we must treat the anharmonicity of atomic vibrations. To understand
this anharmonicity is the topic of the thesis and how to analyze anharmonicity using
perturbative and fully anharmonic methods. Now, let us take a look at some of the
primary experiments motivating and guiding us.

1.2 Experimental probes
Bulk properties are interesting from the perspective of applications as well as for test-
ing theories and computational methodologies. However, they do not provide much
insight into the microscopic dynamics needed for further understanding. For example,
both the free energy and lattice thermal conductivity are obtained through integration
and therefore errors can cancel out. In order to gain a deeper understanding of the
different types of motion in a material we need to interact with the modes directly. To
this end we can employ diffraction and scattering techniques using thermal neutrons,
x-rays or infrared photons, and even electrons. In diffraction experiments the structure
of the material is probed and is also sensitive to some thermal averaged properties. This
is sometimes used in pump-probe experiments where the material is pumped with, e.g.,
a laser and then, some (short) time later, probed with, e.g., x-rays. In Fig. 1.8 an elec-
tron diffraction pattern can be seen which is typically used to map out the structure of
the material of interest. While there are many types of techniques for diffraction and
scattering experiments we shall take a brief look at three common ones. First we will

5
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Figure 1.2: Infrared absorption of water. Notice the broadening of the peaks. Data from refer-
ence [15].

consider infrared absorption where an incoming photon interacts with and excites a
single phonon by being absorbed. Next up is Raman spectroscopy where the incom-
ing photon is of too high energy (not in resonance) to be absorbed but rather scatters
inelastically. Finally we take a brief look at inelastic neutron scattering which is simi-
lar to Raman scattering but using neutrons instead of photons. The change in energy
and direction observed in inelastic scattering experiments can be measured and (in first
order, directly) related to the frequencies of phonons with different wavelengths.

1.2.1 Infrared absorption
Infrared absorption is a technique where photons in the infrared range are absorbed by
the material under study. The infrared spectra stretches from wavelengths of 700 nm
to 1mm which corresponds to frequencies of 300GHz to 430 THz. Sometimes the spec-
trum is divided into near, mid and far-infrared with respect to the vicinity to the visible
spectrum. Typical phonon frequencies range from around 100 THz for very strong co-
valent bonds to less than 1 THz for weak vdW bonds and long wavelength acoustic
phonons. This match in frequency is the reason why infrared photons are well suited
for studying vibrations. On the other handwe know that typical atomic radii are around
1Å and the typical spacings between atoms in solids are around 1–10Å. So although
the photon frequencies match the typical phonon frequencies the momentum will typ-
ically not be matched except for phonons of very long wavelength. This is one of the
main problems of probing bulk materials using photons while for molecules this is less
of an issue. Another issue are the selection rules for transitions between different vibra-
tional states while absorbing a photon. For infrared absorption the first order process
requires a total change in dipole moment which limits which phonons can be excited
in the material.
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Frequency

In
te

ns
ity

Width

Shift
Anharmonic
Harmonic

Figure 1.3: Schematic illustration of the difference in the spectral function between a harmonic
and an anharmonic oscillator.

So what do we expect to see in a typical infrared absorption spectra? From the
Einstein model where each atom in the sample acts as an independent 3D oscillator
of the same frequency we would expect to see the spectrum of a quantum harmonic
oscillator, which is indeed the spectrum we observe in diatomic gases. However since
we know that the atomic vibrations are not independent a general spectrum would
consist of sharp peaks at the frequencies of the different types of phonon frequencies. In
Fig. 1.2 the infrared absorption spectrum for water is displayed and as expected we see
roughly three intense peaks at discrete frequencies. We can however also observe that
the peaks have a finite width. More so, if wewere to increase the temperature in general
we can observe a broadening and shift of the peaks and to explain this will be one of
our goals. The difference is schematically illustrated in Fig. 1.3. For an example of how
infrared spectroscopy and computer simulation can be combined see, e.g., reference
[16].

1.2.2 Raman spectroscopy
Now let us look at Raman spectroscopy where laser light is used as the probe. Tradi-
tional Raman is typically off-resonance and it is the inelastic scattered light which is
measured. The typical setup uses polarization filters for filtering the incoming light as
well as the scattered light. Often, due to the small momentum, only the back-scattered
light is used but in principle Raman can be momentum resolved. Raman is a comple-
mentary technique to, e.g., infrared absorption. For example the selection rules are
different as the states only need to differ in polarizability. In principle Raman can be
used for any material except metals due to the strong screening. As with infrared ab-
sorption one of the main limitations of Raman is the small momentum of the photons
which makes it hard to probe motions far from the Γ-point at the center of the Brillouin
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Figure 1.4: Raman spectrum for BaZrO3. Data from [17].

zone (i.e., phonons with long wavelengths). This can partially be overcome by studying
higher-order effects in which two or more phonons are excited by the incoming photon.
By carefully using the polarization and orientation of the crystal together with atom-
istic simulations it is possible to untangle the convoluted spectra of such experiments.

Raman spectra are typically reported as intensity as a function of the so called Raman
shift. The Raman shift is the amount of energy that the scattered photon gains or loses.
If the photon loses energy, it is called Stokes scattering and if it gains energy it is called
anti-Stokes scattering. If no change in energy is observed the scattering is elastic and is
denoted Rayleigh scattering. Typically the Stokes process is reported as negative shifts
(to the left) and anti-Stokes as positive shifts (to the right) but conventions may vary
depending on whether frequency or wavelength are used. At any temperature, but
especially noticeable at lower temperatures, the intensity of Stokes scattering is higher
(at zero Kelvin there are no excited phonons fromwhich the photon can gain energy). In
Fig. 1.4 the Raman spectrum of the perovskite BaZrO3 is presented. Inverse centimeters
is the typical unit used to report Raman shifts, where 1 cm−1 = 0.03THz = 0.124meV.
As we can see in the figure the peaks are far from sharp delta-functions but, as the
simulations elude to, it is possible to explain the shapes of the peaks using the methods
described in this thesis.
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Figure 1.5: The theoretical and simulated dispersion relation for BaZrO3. For the inelastic
neutron scattering (INS) the bars indicate the linewidth while for inelastic x-ray scattering (IXS)
the instrument resolution is indicated. Data from Ref. [20].

1.2.3 Neutron scattering
The final technique we shall take a look at is neutron scattering. While infrared absorp-
tion and inelastic Raman scattering work with photons inelastic neutron scattering
(INS) works with neutrons. INS is very similar to inelastic x-ray scattering (IXS) where
the incoming photons scatter of the core electrons. Neutrons, however, have a nice ad-
vantage over photons in that the energy of a thermal neutron (𝑘B𝑇 at room temperature
is around 25meV) is around 2Åwhichmatches typical interatomic distances in crystals.
As 25meV is around 6 THz we see that also the energies match typical phonon energies.
This makes neutrons an excellent probe for measuring phonons in solids, although it is
limited by the accessibility to the expensive facilities needed for such experiments.

The main difference between Raman and INS is that we now have access directly to
frequencies of vibrations occurring at different wavelengths. The intensity of the scat-
tered particles at different angles and energies is typically communicated using either
the static or the dynamical structure factor sometimes called the spectral function. The
dynamic structure factor as measured by INS or IXS experiments is one of the most
direct measures of the dispersion relation (i.e., energy/frequency as a function of wave-
length) of the material as it measures the pair correlation between the motion of atomic
nuclei. In Fig. 1.5 the dispersion relation for the perovskite BaZrO3 can be observed.
Just as in Raman spectroscopy the shape of the spectrum can be probed and lineshapes
can be constructed. In our case only the peak position of the simulations are reported
while the line width is reported for INS and the instrument resolution for IXS, respec-
tively. For an application of elastic neutron scattering see, e.g., [18] and for INS see,
e.g., reference [19].
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Chapter 1. Introduction

Figure 1.6: Diatomic linear chain of atoms with mass 𝑚1 and 𝑚2, respectively, with lattice
parameter 𝑎 and interatomic force constant of strength 𝐶 . The displacement 𝑢 of a selected
atom is indicated.

With that we conclude this section about the experimental motivation for going be-
yond the simple harmonic models typically used. In this thesis we want to understand
the actually observed peaks (their shape, width and positions) as well as how they
change with temperature or when the material is close to a phase transition for ex-
ample. We shall look at both the case when the modes can be described by harmonic
oscillators affected by a weak perturbation and when the modes are far from harmonic.
In the following section we will describe a simple model for phonons in solid materials
and some elaboration on the concepts mentioned in this section.

1.3 Modeling atomic vibrations
To introduce the concepts for the later chapters we will go through a simple exam-
ple found in many textbooks. Consider a simple 1D crystal with a basis containing
two atoms of different mass. Each atom in the basis vibrates around some equilibrium
position and the restoring force is supplied by springs connected to each of its two
neighbors. The setup is depicted in Fig. 1.6. The solutions to the equation of motion
for this system can be found in terms of lattice waves. Since there are two atoms in the
basis and they are restricted to move in only one dimension there will be two types of
waves. These are called acoustic (the two atoms in the basis move together) and optical
(the two atoms move against each other) modes. If the atoms could move perpendicular
to the chain there would also be a transverse mode (the atoms moving perpendicular
to the propagation of the wave). In our case we will only have longitudinal motion
(movement along the chain). The relation between the wavelength (or wave number 𝑘)
and the frequency 𝜔 is called the dispersion relation. The analytical expression for the
dispersion relation is

𝜔2 = 𝐶
𝑚1𝑚2/(𝑚1 + 𝑚2) (

1 ± √1 − 2𝑚1𝑚2
(𝑚1 + 𝑚2)2 (1 − cos 2𝜋𝑘𝑎)

)
(1.1)

where 𝐶 is the force constant, 𝑚1 and 𝑚2 are the masses of the two atoms, and 𝑎 is
the lattice spacing. The function is plotted in Fig. 1.7. Note that the frequencies of
the modes are functions of the interaction strength between atoms, the masses of the
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Figure 1.7: Dispersion relation for the diatomic linear chain over from the center of the first
to the center of the second Brillouin zone. The dispersion relates the frequency (energy) to
the wavenumber (quantum state). The mass difference splits the dispersion into an optical and
acoustic branch. Notice how the dispersion is folded back in the case of equal masses.

atoms and the geometry of the crystal. The theory of lattice dynamics is essentially
the generalization of these concepts and is outlined in Chapter 2. For a long time the
force constants were calculated using simple models of electronic structure theory for
simple systems or fitted to a few macroscopic observables. Today the force constants
can be calculated with the help of approximate electronic structure methods based on
DFT or exact approaches based on Hartree-Fock.

1.4 Materials
Although the emphasis of this thesis is on themethods they aremotivated by challenges
in modeling interesting materials. The first class of materials are disordered, layered
vdW materials which are challenging to model due to the combination of order and
disorder. The second class is perovskites which exhibit a strongly anharmonic potential
energy landscape which can be hard to model using standard methods.

1.4.1 Layered vdW materials
In Paper III and Paper IV we studied disorder effects in a class of materials known
as 2D vdW structures. These structures are composed of 2D layers stacked on top of
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Figure 1.8: Electron diffraction pattern ofWS2 moire bilayer. Twist angle 𝜃 = 8∘. The diffraction
pattern represents the inverse cell of the material. Each peak is doubled due to the moire twist
angle. Figure courtesy Prof. Aditya Sood, Princeton University (unpublished). Measured at the
MeV-UED facility at SLAC National Accelerator Laboratory. For the atomic structure yellow
atoms corresponds to sulfur and teal to molybdenum.

each other forming highly anisotropic crystals. Common examples of these structures
include common graphite, which is composed of graphene layers stacked in a AB stack-
ing sequence. Here, the designation indicates the stacking sequence where each letter
represents a distinct translation and/or rotation relative to a reference layer. Other
examples also studied in the aforementioned papers include hexagonal boron nitride
and molybdenum disulfide. These materials inherit some of the interesting and some-
times exotic features of the constituent 2Dmonolayers. These structures are also highly
tunable, through, e.g., doping and mixing but also the way in which the materials are
stacked. In the context of this thesis, heat conduction across interfaces of these struc-
tures is of particular interest [21–23]. For an overview of heat conduction in graphene
in particular see, e.g., [24, 25].

Two important classes include 2D hetero-structures, where different materials are
stacked on top of each other in alignment and moiré structures where the monolayers
are rotated relative to each other. In the latter types of structures themismatch between
the layers leads to an effective increase in the unit cell. This can give rise to surpris-
ing effects such as the widely cited superconductivity in magic angle bilayer graphene.
More mundane effects are the extremely low through-plane thermal conductivity of
these materials which has been linked to disorder. Typically disorder is challenging to
model as the typical framework using quasi-particles becomes questionable in addition
to the problem of measuring low conductivities [26–28].
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Figure 1.9: The anharmonic energy landscape of a tilting mode in a perovskite along with the
crystal structure of the perovskite SrTiO3 (STO) in its cubic phase. Green atoms corresponds to
strontium, gray to titanium and red to oxygen.

1.4.2 Perovskites

Perovskite is the name for the mineral CaTiO3 but is also the name of a class of mate-
rials with a similar structure. This has been a very popular class of materials for many
decades thanks to the large configurational flexibility and interesting electronic and
optical properties. Perovskites are used in various applications including sensors, ac-
tuators, fuel cells, photovoltaics and lighting. Some examples of common perovskites
areBaZrO3 (BZO), SrTiO3 (STO) and CsPbBr3. There are even organic-inorganic (“hy-
brid”) perovskites in which one of the cations is exchanged for a molecule such as in
CH3NH3PbI3 (MAPI) [29].

One of the more interesting features of perovskites from a dynamical point of view
is the tilting motion of the octahedra. These tilting motions are associated with phase
transitions in the perovskite and often they exhibit octahedral, tetragonal or cubic sym-
metry in order of increasing symmetry. The potential energy landscape of these tilting
modes can be very anharmonic. This makes the analysis of the vibrations difficult but
interesting. Some perovskites also exhibit special dynamics due to quantummechanics.
For an example of a combined INS and theoretical study of the popular perovskite STO
see, e.g., [30].
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1.5 Outline
As has been demonstrated in the previous sections there are many materials properties
that we wish to predict accurately yet computationally efficiently using simulations.
In addition there are experimental techniques, such as INS, which can help us under-
stand the microscopic vibrations via spectral functions. In a very abstract sense we
want to understand the shape and dynamics of the phase space distribution function
𝜌(𝑥(𝑡), 𝑝(𝑡); 𝐻(𝑡)), which depends on the coordinates and momenta of the constituent
atoms for some system described by a Hamiltonian. For example how will the sys-
tem evolve (or propagate) from (𝑥(𝑡1), 𝑝(𝑡1)) to (𝑥(𝑡2), 𝑝(𝑡2)) on average or what is the
probability to observe the system in state (𝑥, 𝑝). Just like any static distribution can
be decomposed and understood in terms of its moments (the mean, variance and so
on) the dynamics of the phase space distribution function can be understood in terms
of correlation functions of increasing orders between quantities at different times. For
example the second order correlation functions can answer question of the sort: What
is the probability or correlation of an observation 𝐴 at time 𝑡 given that we did an ob-
servation 𝐵 at time 0. The spectral functions of a scattering experiment can be directly
related to certain correlation functions. The spectral function is thus one of the key
quantities we want to be able to calculate as it relates directly to experiments and to
the microscopic motions in the material.

In quantum mechanics these correlation functions can be thought of as bare and
dressed propagators relating the wave function at one point in space and time to an-
other. In many body theory they appear instead as Green’s functions for higher orders
while in classical mechanics they are typically just called higher-order correlation func-
tions. There are distinctions between propagators, correlation functions and Green’s
functions but for our purposes they can conceptually mostly be considered to be the
same. Just as the partition function in statistical mechanics is enough to calculate sys-
tem properties the one and two-point Green’s functions can be used to calculate all
single particle properties. To first order the spectral function captures two important
effects namely the frequency shifts and broadening of the atomic motion. Going even
further, by decomposing the spectral functions we can gain insight into contributions
from different types of motion and effects to properties of interest. Ultimately we want
to obtain a coherent picture of the dynamics where we can make statements of how
the material can be modified in order to, e.g., optimize it for some specific property.

Hopefully the following chapters will make this discussion less opaque. In Chap-
ter 2 the analysis of atomic vibrations in crystalline materials will be discussed. We
will see how the interaction among atoms can be described using a Taylor expansion
of the potential energy surface, which is also the topic of Paper I and Paper II. The
connection to observables and the concepts of phonon frequencies and lifetimes will
(hopefully) be made clear. The correlation functions of interest will be computed using
perturbation theory. This is the oldest approach and mostly useful for relatively simple
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systems. When the electronic structure theory calculations are expensive this is the
only practical approach.

Next in Chapter 3 we will consider the more general technique of molecular dy-
namics which is useful for the complex systems analyzed in Paper III, Paper IV and
Paper V. This technique has previously been limited due to the cumbersome process
of constructing interatomic potentials in combination with the expensive evaluation of
the system phase space. Today, however using modern machine learning potentials,
the energy landscape obtained from DFT calculations can be accurately described and
cheaply predicted, which makes the use of molecular dynamics for complex systems
more accessible.

Finally, in Chapter 4 we will see how our correlation functions can be used to cal-
culate the thermal conductivity using two different methods connected to lattice and
molecular dynamics respectively.
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2
Lattice dynamics

In this chapter, an overview of the framework of lattice dynamics is presented. Lattice
dynamics concerns the vibrations of atoms around equilibrium positions in solids. The
framework naturally handles small vibrations of atoms in crystals. Disordered solids
such as glasses and single molecules can be analyzed also, albeit with some limitations.
For liquids and systems where diffusion is important lattice dynamics is not suitable. In
those cases other techniques such as molecular dynamics (MD) and generalized vdW
theory are more appropriate. Nevertheless, the general ideas and concepts from lattice
dynamics are still applicable in those systems.

This chapter will proceed as follows: First, a qualitative description of the potential
energy surface (PES) of the atoms in the crystal, in terms of a Taylor expansion in
small displacements called the force constant (FC) expansion, is described. Some gen-
eral features of this expansion are discussed including anharmonic terms, symmetries
and long-range corrections. This is followed by an introduction to phonons, which are
the solutions to the equations of motion for the FC expansion truncated at the har-
monic level. Features of the dispersion relation in crystals are discussed together with
some thermodynamic properties. Next, anharmonic properties are introduced includ-
ing spectral broadening and the connection to lifetimes, frequency shifts and spectral
functions. Lastly, some techniques for handling strong anharmonicity are1 discussed.

Excellent general introduction to the topic of lattice dynamics are the works by Born
and Huang [31], Ziman [32], Choquard [33], Wallace [34], Srivastava [35], Cowley [36],
Callaway[37] and Dove [38].

2.1 Force constants
In order to analyze vibrations in a crystal we need a model Hamiltonian describing
the interactions between the atoms. These interactions are described by the poten-
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Chapter 2. Lattice dynamics

tial energy function, or simply “the potential”. The first step is to apply the Born-
Oppenheimer approximation in which the atomic nuclei move in the potential created
by the electrons in the electronic ground state of the given instantaneous configuration
of the nuclei. We can then write the lattice contribution to the potential energy of the
crystal as a Taylor expansion in displacements 𝑢 around some reference positions 𝑅,

𝐻 = 𝐾 + 𝑉 = 𝐾 + 𝐸0 + Φ𝑖𝑢𝑖 + 1
2!Φ𝑖𝑗𝑢𝑖𝑢𝑗 + 1

3!Φ𝑖𝑗𝑘𝑢𝑖𝑢𝑗𝑢𝑘 + … , (2.1)

where 𝐾 is the kinetic energy of the atoms and Φ are the FCs which relate the energy
to the displacements. The indices here are in general compound indices 𝑖 = {𝜇, 𝛼, 𝒏}
where 𝜇 enumerates the basis of the crystal, 𝛼 denotes the (Cartesian) direction of the
displacement and 𝒏 ∈ ℤ enumerates the primitive cells in the crystal. The first coeffi-
cient 𝐸0 is the cohesive energy of the crystal, which is not important when describing
the vibrations. This constant term is, however, important as it enters into the free en-
ergy of the crystal which is important when assessing the relative stability of different
phases. The second term Φ𝑖 is exactly zero if the crystal is in a local energy minimum at
zero temperature where all forces are zero. This first-order linear term is often assumed
zero and we shall also make this assumption. The second-order term is the basis for the
harmonic analysis of crystals to be discussed later in this chapter. Third and higher-
order terms are referred to as anharmonic terms and play an important role in, e.g.,
phase transitions and thermal transport. This expansion is schematically illustrated in
Fig. 2.1.

2.1.1 The displacement method
The first hurdle of describing vibrations in the framework of lattice dynamics is to cal-
culate the FCs which enter as parameters in our theory. Once specified we can use the
methods described in later sections to determine properties or microscopic mechanisms
of interest. Notice that the FC expansion is an interatomic potential, which given the
positions of the atoms can provide us with the forces. Thus if we can find the coeffi-
cients, this description of the interaction among atoms can be systematically improved
by increasing the order of the expansion. However, being a Taylor expansion, we know
it will not in general be able to describe displacements far from equilibrium positions.

A common method to extract interatomic FCs is to use the displacement method
where we calculate the Hellmann-Feynman forces acting on the nuclei for some dis-
placed structure using, e.g., density functional perturbation theory (DFPT). The force
is simply the gradient of the above expansion with respect to the atomic positions

𝐹𝑖 = −𝜕𝑉
𝜕𝑢𝑖

= −Φ𝑖 − Φ𝑖𝑗𝑢𝑗 − 1
2!Φ𝑖𝑗𝑘𝑢𝑗𝑢𝑘 − … (2.2)
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Figure 2.1: Illustration of the PES of a system described by a fourth-order polynomial. The
harmonic approximation (only second-order polynomial) is only good for low energies (low
temperatures). The cubic correction (third-order polynomial) would improve the description of
the landscape close to the origin but makes the potential unstable after about 1 distance unit.
To fully describe the fourth-order potential energy landscape the quartic term must be added.
A quartic term is typically necessary when describing dynamically stabilized phases.

and is still linear in the free parameters (the FCs). Thus, for a fixed set of configurations
(displacements) this can be written in matrix form as

𝐹𝑖 = 𝑈𝑖𝑎Φ𝑎, (2.3)

where 𝑈𝑖𝑎 is a matrix mapping for all the displacements and Φ𝑎 is the collection of FCs
flattened to an array

Φ𝑎 = [Φ0, Φ1, … , Φ𝑁 , Φ00, Φ01, … , Φ𝑁𝑁 , Φ000, … ]. (2.4)

Thus to find the coefficients we can use ordinary least squares (OLS) to fit the expansion
to reference forces calculated using, e.g., DFT.

In order to generate forces from DFT calculations we need atomic configurations in
order to generate the fit data (consisting displacements and forces). Systematic enu-
meration is the most straightforward (albeit not the most efficient) way to generate
this data. By displacing only one or a few atoms in a supercell the FCs can be read
off directly from the forces or extracted via a simple OLS fit. This procedure has been
used extensively in the past with very good results for second-order FCs in many sys-
tems. Systematic enumeration generates the exact amount of data needed in order to
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correctly identify all FCs and each configuration contains minimal noise. Many soft-
ware packages implement this method, which is often called the small displacement
method, introduced by Parlinski, Li, and Kawazoe [39]. Examples include phonopy
[40] for second-order FCs and thiRdoRdeR.py [41], phono3py [42], and alamode [43]
for third-order FCs. one can in principle also use this method to calculate higher order
FCs but this quickly becomes prohibitively expensive for disordered systems or high
orders.

The fundamental issue with the systematic enumeration is the low information con-
tent per configuration. This can be counteracted by randomly displacing all the atoms
and solving the corresponding regression problem that arises. This method is some-
times called the regression method and was introduced by Esfarjani and Stokes [44].
They also argued that the noise in the data is effectively canceled due to the random
nature of the displacements adding to the benefits of the increased information content.
Many methods exist for generating suitable configurations and the most simple one is
the rattle method where random displacements drawn from a zero mean normal distri-
bution are applied to the atoms. The distribution of displacements would correspond
to that of an Einstein crystal, which is typically a poor approximation of most solids. It
is a simple method but can lead to unphysical configurations probing unwanted anhar-
monicity in the crystal. At the end of this chapter we shall take a look at some better
ways for generating the displacements.

2.1.2 Truncation of the expansion
Even though the regression method can be used to increase the amount of information
gained from each structure there are still too many FCs to be independently determined.
Thus the FC expansion must be truncated in some way in order to keep the number of
unknown coefficients manageable. First and foremost we cut off the expansion after
some order. For harmonic models only second-order terms are kept. If we want to
study heat transport at least third-order terms must be included while dynamically
stabilized materials might need fourth-order terms to adequately describe the PES. It is
also possible to incorporate our physical intuition that atoms far away from each other
only interact weakly. Thus we can view the above expansion as a cluster expansion
where each FC coefficient Φ𝑖𝑗𝑘… represents a cluster of atoms (𝑖𝑗𝑘 … ). For example a
cluster (𝑖𝑗𝑘𝑘) would be a three-body, fourth-order cluster; see Fig. 2.2 for an illustration
of clusters and crystal symmetries. Now we postulate that if two atoms 𝑖 and 𝑗 are
further away from each other than some cutoff 𝑐 all FCs where these two atoms are
present must be zero, i.e., Φ…𝑖…𝑗 = 0. In addition, we posit that in general 𝑛-body
clusters are more important than 𝑛 + 1-body clusters and higher orders are typically
less important than lower orders for most applications.

The FC expansion has advantages and disadvantages compared to other ways of de-
scribing the interatomic interactions. It is mathematically well studied and forms the
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Figure 2.2: Illustration of possible clusters in a lattice. To each cluster belongs a set of FCs
which must obey the lattice symmetries.

basis of the standard theory of lattice dynamics as we shall see later. Thus, it makes it
straightforward to combine and compare (computer aided) theoretical techniques with
direct computer simulations such as MD. The functional form is also simple to imple-
ment on, e.g., graphical processing units (GPUs) which makes it fast to evaluate for,
e.g., MD [45]. There is no limit (other than computer memory and speed) to including
larger clusters and higher order thus making the model scalable and tunable. The FC
expansion is also linear in the unknown coefficients (the FCs) which makes it easier to
analyze and fit compared to some other interatomic potentials.

On the other hand, the number of free parameters to determine grows rapidly with
increasing anharmonicity (order), range (cutof) and disorder (number of atoms in the
primitive cell). Since the number of parameters dictates the amount of training data
needed from usually computationally demanding reference calculations this makes it
difficult to use for, e.g., glasses. The expansion is also firmly rooted in the notion of
a lattice and (small) displacements around fixed lattice points. Thus when the PES
is shallow and the atoms move far from the lattice points the expansion can quickly
become unstable and lead to nonsensical predictions. This can for example happen
near a phase transition or when the defect formation energy is low.

Next, the main symmetries of the FC expansion will be presented and what must
be taken into account in order to make the extraction of the coefficients feasible in
practice.

2.1.3 Crystal symmetries
The crystal lattice imposes certain symmetries on the FCs. These symmetries can be
used to reduce the number of free parameters needed to determine the FCs. These
symmetries originate from the functional form, the spatial symmetries of the crystal
and physical symmetries in general.
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For example the equality of mixed partials enforces

Φ𝑖𝑗… = Φ𝑃 (𝑖𝑗… ), (2.5)

where 𝑃 is any permutation of a list of indices [𝑖𝑗 … ] of length 𝑛. In the harmonic case
(second order) this simply means that the FCs are described by a symmetric matrix. An
explicit example for third order would be

Φ𝑖=2,𝑗=5,𝑘=4 = Φ𝑖=4,𝑗=2,𝑘=5. (2.6)

The crystal/molecular symmetries impose further conditions on the FCs. Consider
the symmetry of a 180 degree clockwise rotation of a diatomic molecule oriented along
the horizontal axis in two dimensions. The symmetry operation which takes the orig-
inal displacements 𝑢 and transforms them to the symmetrically equivalent displace-
ments ̃𝑢 looks like

̃𝑢 =
⎡
⎢
⎢
⎢
⎢
⎣

̃𝑢𝑥
left
̃𝑢𝑦
left
̃𝑢𝑥
right
̃𝑢𝑦
right

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑢𝑥
left

𝑢𝑦
left

𝑢𝑥
right

𝑢𝑦
right

⎤
⎥
⎥
⎥
⎥
⎦

= 𝑆𝑢. (2.7)

But since the total energy of this configuration must be the same we have

1
2𝜙𝑖𝑗𝑢𝑖𝑢𝑗 = 1

2𝜙𝑖𝑗 ̃𝑢𝑖 ̃𝑢𝑗 (2.8)

𝜙𝑖𝑗𝑢𝑖𝑢𝑗 = 𝜙𝑖𝑗𝑆𝑖𝑖′𝑢𝑖′𝑆𝑗𝑗′𝑢𝑗′ . (2.9)

Since this must hold for all displacements 𝑢 we get

𝜙𝑖𝑗 = 𝜙𝑖′𝑗′𝑆𝑖′𝑖𝑆𝑗′𝑗 . (2.10)

By flattening the indices 𝑖𝑗 → 𝑎 we can write this relation as an eigenvalue equation

𝜙𝑎 = 𝑀𝑎𝑎′𝜙𝑎′ , (2.11)

where 𝑀 is now a 16 × 16 matrix. In scaled coordinates this matrix will always be an
integer matrix. The set of possible FCs is now described by the set of eigenvectors of 𝑀
with eigenvalue 1. Or in other words, the FCs are spanned by the kernel of 1−𝑀 . Using
this technique the set of independent parameters for the FCs can be reduced using the
crystal symmetries. Note that the interatomic potential is of course independent of any
rotation of the molecule and will lead to the so-called rotational sum rules described
later.

Another important symmetry for crystals is the translational invariance of the lattice

Φ(𝑛, 𝑛′, … ) = Φ(𝑛 + 𝑁, 𝑛′ + 𝑁, … ), (2.12)
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2.1. Force constants

where 𝑛 and 𝑁 index the primitive cells. Note that they are all expressed as linear
constraints and thus relatively easy to handle computationally. All these symmetries
are used in hiphive which is the code developed in Paper I via spglib [46] in order to
reduce the number of free parameters. More information can be found in Paper I. Next
we consider the effect of two global symmetries in the form of continuous translations
and rotations of the complete crystal.

2.1.4 Global symmetries
Apart from the local symmetries the FC expansion must obey some global symmetries,
namely translational and rotational invariance. These symmetries define so-called sum
rules, For the translational invariance, e.g., one obtains

∑𝜇𝑛
Φ𝛼

𝜇…(𝑛, … ) = 0. (2.13)

The translational sum rule ensures that no force acts on the atoms as the result of a
translation of the lattice. Note that the Cartesian component has been moved out of
the compound index 𝑖 as the sum has to be fulfilled for all three Cartesian directions
independently. The translational sum rule is important for the behavior of the disper-
sion relation near the Γ point (i.e., at zero momentum) where it should tend to zero for
acoustic phonons, see Fig. 2.3.

For the rotational symmetry there are two kinds of sum rules [31, 34]. The (second-
order) Born-Huang sum rule reads

∑
𝑗

Φ𝛼𝛽
𝑖𝑗 𝑟𝛾

𝑗 = ∑
𝑗

Φ𝛼𝛾
𝑖𝑗 𝑟𝛽

𝑗 (2.14)

and embodies that no torque is induced as the result of a rotation of the lattice. In
general, these sum rules will couple different orders of the expansion to each other but
only considering second-order sum rules is sufficient to enforce the quadratic behavior
of out-of-plane (ZA) modes in 2D materials [47]. This effect can be seen in Fig. 2.3

Additionally, there are the Huang constraints enforcing the correct behavior of the
elasticity tensor

∑
𝑖𝑗

Φ𝛼𝛽
𝑖𝑗 𝑟𝛾

𝑖 𝑟𝛿
𝑗 = ∑

𝑖𝑗
Φ𝛾𝛿

𝑖𝑗 𝑟𝛼
𝑖 𝑟𝛽

𝑗 , (2.15)

which are important for the elastic constants to exhibit the correct symmetries. The
rotational sum rules are especially important in two-dimensional materials, where they
are needed to enforce the correct quadratic behavior of the transverse acoustic modes
near the Γ-point, see Fig. 2.3.

The two sets of symmetries (crystal and global) define a set of irreducible FCs 𝜙 where
any set of FCs obeying the above symmetries can be written as a linear combination of
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Chapter 2. Lattice dynamics

Figure 2.3: Dispersion relation of MoS2 near the Γ-point (i.e., zero momentum) along the ⟨100⟩
direction. The translational (T) sum rules (2.13) are fulfilled as the dispersion goes to zero at Γ.
The Born-Huang (BH) sum rules (2.14) and Huang (H) constraints (2.15) are needed to enforce
the correct quadratic behavior of the lowest transverse acoustic mode.

the irreducible ones, i.e.,
Φ = ∑

𝑘
𝑎𝑘𝜙𝑘. (2.16)

This can be either combined with the crystal symmetries to reduce the number of free
parameters in the fitting procedure or enforced as a post-processing step.

In summary the FCs are a linear basis in which we can relate the forces with the dis-
placements in the system. To determine the FCs we calculate forces using, e.g., DFT for
some supercells with displacements and solve the system of linear equations. Symme-
try relations can be used to reduce the number of free parameters and thus reduce the
computational cost of computing the FCs using electronic structure theory calculations.
The FCs can for instance then be used to run MD simulations as described in Chapter 3
and [45] to calculate various properties of interest. They can also be used in analytical
methods to calculate properties directly using, e.g., Green’s functions methods. The
basics of this approach will be outlined in the following sections.

2.2 Harmonic phonons
The basi(c)s for understanding the thermodynamics of vibrations in crystals is the
phonon picture. In the harmonic approximation only the second-order FCs are kept
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2.2. Harmonic phonons

and the Hamiltonian is exactly solvable. The solutions to this system in the framework
of quantum mechanics are called phonons (in classical mechanics they are sometimes
called normal modes). These solutions are typically regarded as quasi-particles but can
be equally categorized as collective excitations. Nevertheless, the particle picture is
especially useful in the context of the Peierls-Boltzmann transport equation (PBTE)
which we will come across later in Chapter 4. In addition, the exactly solvable model
serves as a starting point for Green’s function methods to calculate higher-order cor-
rections to physical observables due to the anharmonicity. The theory is covered in
many text books (see the introduction to this chapter) and starts with the real space
representation of the PES leading to the following Hamiltonian

𝐻 = ∑𝑛𝜇𝛼

|𝑝𝛼
𝜇(𝑛)|

2

2𝑚𝜇
+ 1

2 ∑
𝑛,𝑛′

𝜇𝜈
𝛼𝛽

Φ𝛼𝛽
𝜇𝜈(𝑛, 𝑛′)𝑢𝛼

𝜇(𝑛)𝑢𝛽
𝜈 (𝑛′), (2.17)

where 𝑛 indexes the unit cells in the lattice, 𝜇 and 𝜈 index the atoms in the basis, while
𝛼 and 𝛽 index the Cartesian directions. 𝑝 is the momentum, 𝑢 the displacement and 𝑚𝜇
the mass of the atoms.

The solution to this Hamiltonian proceeds in two steps. First the lattice translation
symmetry is diagonalized by a discrete Fourier transform which introduces the mo-
mentum coordinate 𝑘 (this is the wave part). Second, the resulting dynamical matrix is
diagonalized which introduces the band index 𝑠 and corresponding frequencies 𝜔 and
polarization vectors 𝑊 .

We simply state the solution here without details. The dynamical matrix is a central
object as its spectrum provides the frequencies and polarizations

𝐷𝛼𝛽
𝜇𝜈 (𝑘) = ∑𝑛

Φ𝛼𝛽
𝜇𝜈(0, 𝑛)

√𝑚𝜇𝑚𝜈
𝑒−𝑖𝑘(𝑅𝜇−𝑅𝜈(𝑛)) = ∑𝑠

𝑊 𝛼
𝜇𝑠(𝑘)𝜔2

𝑠(𝑘)𝑊 𝛽
𝜈𝑠(𝑘). (2.18)

The new coordinates are in the form of lattice waves

𝑞𝑠(𝑘) = ∑𝜇𝛼𝑛
√𝑚𝜇𝑢𝛼

𝜇(𝑛)𝑊 𝛼
𝜇𝑠(𝑘)e𝑖𝑘⋅𝑅𝜇(𝑛) 𝑢𝛼

𝜇(𝑛) = 1
√𝑚𝜇 ∑

𝑘𝑠
𝑞𝑠(𝑘)𝑊 𝛼

𝜇𝑠(𝑘)e𝑖𝑘⋅𝑅𝜇(𝑛)

(2.19)
with polarization vectors 𝑊 and frequencies 𝜔. The polarizations describe orthogonal
displacement patterns in the unit cell which are modulated by plane waves of wave
vector 𝑘 and frequency 𝜔. One needs to be careful with respect to the the phase factor
since it is a matter of convention whether it is taken to be the position of the origin of
each primitive cell or the equilibrium position of the atom.

From the above expressions it is apparent that the central objects of interest are
the dispersion relation 𝜔𝑠(𝑘) and the corresponding polarization vectors 𝑊 𝛼

𝑠𝜇(𝑘). The
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Chapter 2. Lattice dynamics

dispersion relation relates the quantum states of the system indexed by the wave vector
𝑘 and the band index 𝑠 to the frequencies (energies) 𝜔𝑠(𝑘) of the modes. The dispersion
relation is sometimes just called the spectrum. It is important to note that the modes
produced by the harmonic approximation do not interact. The energy eigenvalues are
thus exact and the states have “infinite” lifetimes.

2.2.1 The dispersion relation
𝑘 can in principle be any vector in the Brillouin zone (the central primitive cell in the
inverse lattice) and is typically communicated by taking a path between high symmetry
points in the inverse lattice and plotting the corresponding frequencies for the different
bands indexed by 𝑠. Such a dispersion is illustrated in Fig. 2.4.

Let us go over some of the main features of the dispersion in Fig. 2.4. The y-axis
denotes the frequency (energy) of the mode and is typically reported in THz (meV or
cm−1). Typical phonon frequencies are on the order of 1 to 100 THz (1 THz = 4.136meV
= 33.36 cm−1). A very high frequency mode occurs in the stretch bond of the H2
molecule at around 125 THz or 500meV. Long wavelength modes and soft modes near
phase transitions modes can have almost zero frequency.

Along the x-axis is the k-point under consideration. The labels indicate certain high
symmetry points in the Brillouin zone such as zone edges, faces or corners. Γ is the zone
center and represents waves of infinite wavelength in which all atoms in the different
unit cells move in the same way.

From the Γ-point emerge two lines in each direction from zero frequency. These are
the two (in this case degenerate) TA modes and the single LA mode. The LA mode is
typically higher in energy as most materials resist compression better than shear strain.
The A stands for acoustic and originates from the fact that the slope of the dispersion
curve correspond to the group velocity of a traveling wave. In other words the speed
of sound and the elastic constants of the material can be read off from the slope of the
acoustic modes close to the zone center.

At higher frequencies at the Γ-point we can find the optical modes. Their name origi-
nate from the fact that they typically correspond to out of phase motion of neighboring
atoms which in certain crystals induce a polarization. This polarization allows a cou-
pling to electromagnetic radiation, typically in the infrared regime and hence themodes
can be optically excited. This effect is used in, e.g., infrared and Raman spectroscopy.

One very important thing to note is that while the real space sum in Eq. 2.17 in
principle extends to infinity, the fact that the interatomic FCs do not, implies that we
can limit the sum to neighboring cells in which the FCs are finite. This means that
if we can calculate the FCs for a small supercell in which the FCs go to zero before
atoms start to interact with their own mirror images, we can calculate the dynamical
matrix for any k-point we want – even those not supported by the supercell. This also
implies that once in reciprocal space the dynamical matrices can be exactly interpolated
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2.2. Harmonic phonons

without the need to go back to real space.
On the other hand if the FCs do not decay to zero within the supercell we will end

up with aliasing where long-range FCs fold back and appear like short-range FCs. This
can be a big problem in systems with electrostatic interactions and weak screening as
in polar insulators. The remedy is to create a model for how the long-range interactions
should look like, partition the FCs into a long-range and short-range contribution, cal-
culate each separately and then stitch them together again. This is described in the
seminal papers by Gonze and Lee [48] and partly described in the next section.

On the bright side, for certain choices of 𝑘 in Eq. 2.17 the sum is exact, even if the
atoms interact with their own images. These 𝑘 correspond to the inverse lattice points
of the supercell and thus the dispersion at those points is exact by construction. This
effect is illustrated for NaCl, which has very long ranged FCs, in Fig. 2.4. The dispersion
is compared using FCs in supercells of increasing size. The black line is effectively
the dispersion for an infinitely large system. The supported inverse lattice points are
indicated with circles. As we can see, even if the dispersions do not align with that of
the infinite systems they do agree at the supported points. This is, however, only true
if all FCs in the supercell are used. The blue lines indicate what happens if the FCs are
truncated using a spherical cutoff which roughly corresponds to a 2 × 2 × 2 supercell.

2.2.2 Long range corrections
We shall now discuss how the correct dispersion (the black line) was constructed in
Fig. 2.4. As mentioned above, as long as the cutoffs are longer than the expected in-
teractions in the material, the above approach, using cutoffs to limit the number of
free parameters, works well. In some cases though there are long-range forces present.
This can for example happen in two-dimensional materials where the screening is weak
in the out-of-plane direction or in polar materials with large dynamic (Born effective)
charges such as in NaCl. In these materials the displacements induce long-ranged elec-
trostatic dipole-dipole interactions [49], which in theory have infinite range. This effect
is the reason behind the so-called LO-TO splitting where the longitudinal optical (LO)
and transverse optic (TO) modes exhibit a seemingly non-analytical behavior near the
Γ-point [50], see Fig. 2.4.

This can be effectively remedied using the technique introduced by Gonze and Lee
[48, 51] and the dispersion can be corrected around the Γ-point. It is important to
remember that if the FCs are constructed in a finite periodic supercell and all FCs are
included, the corresponding dispersion is correct at supported inverse lattice points [39]
as discussed in the previous section. If the FCs are long-ranged the Fourier interpolation
near the Γ-point at large wave lengths will fail. In practice the fix is to use the Born
effective charges calculated from DFPT to construct a long-ranged dynamical matrix
via Ewald techniques for the supercell in question and calculate the long-ranged real
space FCs ΦLR due to the interacting Born-charges (dipoles). The short-ranged FCs ΦSR
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Figure 2.4: Dispersion relation of NaCl. Demonstration of how the choice of supercell size
and method affects the phonon dispersion. Solid blue: A spherical cutoff corresponding to a
2 × 2 × 2 supercell cannot replicate the correct dispersion (black solid line) even at supported
reciprocal points. Solid orange/green/red: Exact FCs without any cutoff imposed in increasing
supercell sizes give an exact dispersion relation at supported reciprocal points. Solid black: Full
dispersion for the long-ranged interaction obtained from a 4 × 4 × 4 supercell and corrected
using the method by Gonze and Lee. The splitting at the Γ-point is called longitudinal optic–
transverse optic (LO-TO) splitting.

are fitted to the remainder of the DFT forces

𝐹DFT − (−Φ𝐿𝑅𝑢) = −Φ𝑆𝑅𝑢. (2.20)

Now the FCs are separated in a long-ranged analytical part and a short-ranged fitted
part and the analysis can continue as usual for any intermediate points.

2.2.3 Thermodynamics of phonons
We will now see how the phonons can be used in order to calculate various properties
of interest. A useful way of representing the phonons is in the language of second
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2.2. Harmonic phonons

quantization. Remember that the original harmonic Hamiltonian (Eq. 2.17) reduces to
a set of independent waves described by the wave number 𝑘 and band index 𝑠.

𝐻 = 1
2 ∑

𝑘𝑠
(|𝑝𝑠(𝑘)|

2 + 𝜔2
𝑠(𝑘) |𝑞𝑠(𝑘)|

2
) (2.21)

or in the framework of second quantization in terms of creation and annihilation oper-
ators

𝐻 = ∑
𝑘𝑠

(
1
2 + 𝑎†

𝑠(𝑘)𝑎𝑠(𝑘)) ℏ𝜔𝑠(𝑘) (2.22)

following the standard procedure.
We are now in the position to take a look at some equilibrium properties of phonons.

In theory the harmonic approximation is limited to thermodynamic equilibrium prop-
erties at zero Kelvin. In practice the anharmonic effects are often small and thermody-
namic properties are calculated for higher temperatures. Take for instance the expected
number of phonons in a mode 𝜆 given by the Bose-Einstein distribution

𝑛 = ⟨𝑎†𝑎⟩ = 1
eℏ𝜔/𝑘B𝑇 − 1

. (2.23)

Another interesting case can be seen in the probability distribution of finding the
oscillator at position 𝑞 at some temperature 𝑇 . The distribution is, just as in the classical
case, given by a normal distribution but with a different variance

𝜎2
quantum = ℏ

2𝜔 coth ℏ𝜔
2𝑘B𝑇 (2.24)

compared to the classical case 𝜎2
classical = 𝑘B𝑇 /𝜔2. This is straightforward to show using

the Mehler kernel and the real space solutions to the quantum harmonic oscillator,
see, e.g., [52]. This is useful if we want to generate configurations based on quantum
statistics.

Other equilibrium thermodynamics quantities can be derived from the Helmholtz
free energy

𝐹 = ∑
𝑘𝑠

1
2ℏ𝜔𝑠(𝑘) + 𝑘B𝑇 log (1 − e−𝛽𝜔𝑠(𝑘)/𝑘B𝑇 ) . (2.25)

Two other important equilibrium thermodynamic properties are the constant volume
heat capacity 𝐶𝑉 and density of states 𝜌(𝜔). The heat capacity is given by

𝐶𝑉 = ∑
𝜆 (

ℏ𝜔𝜆
𝑘B𝑇 )

eℏ𝜔/𝑘B𝑇

(eℏ𝜔/𝑘B𝑇 − 1)
2 (2.26)

and the density of states is defined as

𝜌(𝜔) = ∑
𝜆

𝛿(ℏ𝜔 − ℏ𝜔𝜆). (2.27)
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Figure 2.5: Phonon dispersion and density of states in aluminum calculated using an effective
medium theory potential.

In practice the density of states is commonly calculated on some 𝑘-space grid and
the delta-function is approximated using some nascent delta-function with a smear-
ing parameter. Other methods include integration schemes using, e.g., the tetrahedron
method [53]. Because of the linear dispersion near the Γ-point where the lowest en-
ergy modes live the density of states goes like 𝜌(𝜔) ∝ 𝜔2 for a 3D system. A plot of the
phonon dispersion and density of states in aluminum can be seen in Fig. 2.5.

The density of states is related to the free energy via the partition function

𝑍 = ∫
∞

0
d𝜔𝜌(𝜔)e−ℏ𝜔/𝑘B𝑇 . (2.28)

This is an important relationship and in Chapter 3 we shall also see the connection to
the velocity-velocity autocorrelation.

As a last example we shall look at the dynamical structure factor. The dynamical
structure factor can be evaluated in the harmonic approximation

𝑆𝑠(𝑄, 𝜔) ∝ ∑
𝑘

|𝐹𝑠(𝑄, −𝑘)|
2 (𝑛𝑠(𝑘) + 1)𝛿(𝜔 − 𝜔𝑠(𝑘))Δ(𝑄 − 𝑘), (2.29)

where 𝑄 is the scattering vector, 𝜔 the energy, 𝑛 is the Bose-Einstein distribution and
Δ is 1 whenever the argument is a reciprocal lattice vector 𝐺 and zero otherwise. 𝐹𝑠 is
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2.3. Lifetimes and spectral functions

given by

𝐹𝑠(𝑄, 𝑘) = ∑
𝑖 √

ℏ
2𝑚𝑖𝜔𝑠(𝑘)𝑏𝑖e−𝑊𝑖/2e𝑖(𝑄+𝑘)⋅𝑟𝑖𝑄 ⋅ 𝑒𝑗𝑠(𝑘), (2.30)

where 𝑏 is the neutron scattering length which needs to be replaced by a 𝑄-dependent
form factor in the x-ray case and 𝑊 is the Debye-Waller factor. The Debye-Waller
factor is given by 𝑊𝑖 = ⟨𝑞 ⋅ 𝑢𝑖⟩2 and is a thermal average that smears out the structure
factor.

2.3 Lifetimes and spectral functions
The harmonic model of vibrations in crystals works very well in many cases, espe-
cially at low temperatures. However, with increasing temperature, the displacements
increase and anharmonic effects become important. Most notably, the harmonic model
has infinite lifetimes and lacks thermal expansion. The phononswill thusmove through
the lattice without scattering. A first attempt to fix this is via the quasi-harmonic
approximation where FCs are calculated at different volumes. From this information
about the volume dependence of the frequencies, the Gibbs free energy can be calcu-
lated and related properties extracted such as Grüneisen and thermal expansion param-
eters.

While this approach is often sufficient for calculating equilibrium properties for
many materials, the modes are still independent and no scattering can take place. We
thus introduce the first-order perturbation in the form of the third-order FCs.

𝐻′ = 1
3! ∑ Φ𝑖𝑗𝑘𝑢𝑖𝑢𝑗𝑢𝑘. (2.31)

By considering the third-order FCs as a perturbation to the harmonic phonons we can
start to explore how anharmonicity affects the previously independent modes of vibra-
tions.

The introduction of a perturbation will make our previous independent modes start
to interact. This can be thought of as if the phonons will now oscillate in a slightly
different way with a slightly different frequency. Furthermore, if we excite a phonon
mode at time 𝑡0 and ask the question howmany phonons are in the mode at a later time
𝑡1 we will observe a change. This is captured by the lifetime of the mode which can be
thought of to represent how long time it takes for a phonon to decay. These effects are
captured by the line shift Δ and the line width Γ of the mode. How to relate and calcu-
late these quantities to observables is typically done in the framework of many-body
perturbation theory using Green’s functions methods and diagrammatic techniques
[54–56]. What it boils down to is a way to translate the real space perturbation 𝐻3
to second and higher-order correlation functions (or moments) of the phonons. The
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hope is to rewrite the correlation functions into a series which either converges fast or
is easy to sum to infinity. Typically the correlation functions (or propagators/Green’s
functions) can be more easily related to macroscopic observables such as cross sections
or thermodynamic quantities. Independent of the technique used (Feynman diagrams,
renormalized operators or decoupled Green’s functions) we start from something we
know and, using a recipe, calculate something we do not know but which looks similar
to what we do know.

The building blocks for all three methods are quadratic form of creation and destruc-
tion operators. Examples include the correlation function

𝐺(𝑡) = ⟨𝑎(𝑡)𝑎†(0)⟩, (2.32)

which is the overlap of the state of an additional particle created at time 0 with itself at
a later time 𝑡. In the harmonic case the time evolution is simple and we get

𝐺0(𝑡) = e−𝑖𝜔0𝑡, (2.33)

i.e., just a phase factor with the frequency given by the frequency of the mode. The
Fourier transform of the free propagator is given by

𝐺0(𝜔) = 1
𝜔 − 𝜔0

. (2.34)

Notice that this is not a delta-function. The departure from the free propagator is given
by the spectral function 𝐴 which can be used to calculate different types of propaga-
tors. In the harmonic case this is a delta-function, while in the interacting case the
archetypical form of the spectral function is the Lorentzian

𝐴(𝜔) = 1
(𝜔 − 𝜔′)2 + Γ2 , (2.35)

which results in the quasi-particle propagator

𝐺(𝜔) = 1
𝜔 − 𝜔′ + 𝑖Γ. (2.36)

The representation of the propagators using the spectral function is called the Lehmann
representation

𝐺(𝜔) = ∫ 𝑑𝜔′ 𝐴(𝜔′)
𝜔 − 𝜔′ . (2.37)

From this we can also see that the spectral function is intimately related to the imagi-
nary part of the propagator. In practice the spectral function is obtained by calculating
the self-energy Σ, which is related to the free 𝐺0 and interacting 𝐺 propagators via

Σ = Δ + 𝑖Γ = 𝐺−1
0 − 𝐺−1 (2.38)
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and is in some sense an equivalent way of quantifying the departure from the free
theory.

In reality the self-energy is frequency dependent which makes life hard but interest-
ing. The next step is to apply second-order perturbation theory with the third-order
FCs as a perturbation. In this way the corrections to the energy levels of the phonons
can be determined. To first order they are generally found to be imaginary with no
shift in the frequencies. The lifetime is related to the imaginary part of the self energy
and can be calculated using many-body perturbation theory to give

Γ𝜆(𝜔) = 36𝜋
ℏ2 ∑

𝜆′𝜆″
|Φ−𝜆𝜆′𝜆″|

2 [ (𝑛𝜆′ + 𝑛𝜆″ + 1)𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆″)+

(𝑛𝜆′ − 𝑛𝜆″)(𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆″) − 𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆″)) ] ,

where 𝜆 is a compound index over the momentum coordinate 𝑘 and band index 𝑠. The
self-energy (and thus the lifetime) depends on the Fourier transformed third-order in-
teractions and the temperature-dependent occupations 𝑛. Important to note is that the
self-energy of a mode depends on the frequency 𝜔. The energy shift is given by similar
expressions and can be found in, e.g., the book by Wallace [34].

With the self-energy at hand any single particle property can be calculated. One
such property is the 1-phonon neutron scattering cross section which turns out to be
proportional to the spectral function function. Using the above self energy we get
[38, 57].

𝜎(𝜔) ∝ 𝜔𝜆Γ𝜆(𝜔)
(𝜔2 − 𝜔2

𝜆 − 2𝜔𝜆Δ𝜆(𝜔))2 + 4𝜔2
𝜆Γ2

𝜆 (𝜔)
(2.39)

for the spectral function which can be compared to neutron scattering experiments.
Similarly other properties such as free energies or Raman spectra can be calculated

using Green’s function methods. However, due to the computational cost of extracting
higher-order FCs and the complexity of the subsequent computations typically some
kind of renormalization scheme is used, which will be described in the next section.

The above expressions can be derived in a couple of ways see, e.g., [35, 42, 43, 58].
Since the interaction element contains crystal-momentum conserving delta-functions
the lifetimes depend not only on the strength of the interaction (anharmonicity) but
also on the geometry of the dispersion relation. For example in BAs, which has a large
phonon band gap, higher-order processes must be included to correctly describe the
dynamics in the crystal [59] as the higher-energy states (bands) cannot be reached
from the low energy states via three-phonon processes due to energy (and momentum)
conservation laws. To overcome this limitation requires including fourth-order inter-
actions in the thermal conductivity calculations as we shall see in Chapter 4, providing
further motivation for methods for efficient extraction of higher-order FCs. The need
for higher-order FCs can also show up when the harmonic phonons have negative en-
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ergies (imaginary frequencies) as can happen in dynamically stabilized materials such
as body-centered cubic (BCC)-Ti.

If the harmonic phonons are still well behaved quasi-particles, it is sometimes suffi-
cient to calculate second-order corrections to the energies and lifetimes with ordinary
perturbation theory. In second-order perturbation theory there is a contribution from
both third and fourth-order FCs to both frequencies and lifetimes. Typically Green’s
function or variational methods are used to construct effective harmonic FCs corre-
sponding to the renormalized propagators. For more information see, e.g., [60–62] and
references therein.

2.4 Renormalized phonons
When the anharmonicity of the material is strong it is not enough to consider the de-
parture from the harmonic case as a perturbation. In this case higher-order terms in
the PES must be included and there are a few approaches for incorporating these. One
way is to extract the higher-order FCs and continue to use, e.g., many-body perturba-
tion theory. By including the higher-order processes it is possible to further correct the
lifetimes and frequencies of the phonons. This is for example implemented in alam-
ode [43]. There are, however, methods to include the renormalization by choosing the
displacements used to create the FCs as we will now see.

2.4.1 Variational principles
The choice of fitting the forces has an interesting relation to a variational principle
via the Bogoliubov inequality. By applying Jensen’s inequality (𝜓(⟨𝑋⟩) ≤ ⟨𝜓(𝑋)⟩ for
𝜓 convex) to the Zwanzig free energy perturbation formula [63] for the free energy
difference Δ𝐹 between two systems with Hamiltonians 𝐻 and 𝐻̃

Δ𝐹 = 𝐹 − 𝐹 = −𝛽−1 log⟨𝑒−𝛽Δ𝐸⟩𝐻 = ⟨Δ𝐸⟩𝐻 − 𝛽
2 ⟨Δ𝐸2⟩𝐻 ≤ ⟨Δ𝐸⟩𝐻 , (2.40)

it is possible to establish a variational principle for the model (𝐻 ) free energy 𝐹 . In
other words, the model free energy is minimized under the constraint that the first
cumulant is zero. By applying this idea it is possible to show that using the OLS loss
function for the forces 𝑓 of a harmonic model

min⟨(𝑓 − ̃𝑓)
2
⟩𝐻

subject to ⟨Δ𝐸⟩𝐻 = 0 (2.41)

is equivalent to
min𝐹 subject to ⟨Δ𝐸⟩𝐻 = 0. (2.42)

where the minimization is with respect to the free parameters of the model, i.e., the
FCs. If the true ensemble described by the exact Hamiltonian is used as the sampling

34



2.4. Renormalized phonons

ensemble the same idea holds but the model free energy must be maximized instead. In
other words the idea is symmetric in 𝐻 and 𝐻̃ . Notice that in practice the constraint
is trivially enforced by the constant term in the model Hamiltonian.

This establishes a rationale for these methods and the above relations can also be
obtained in the quantum case. Two common methods to be described below are based
on this idea and differ in whether the sampling is in the true exact ensemble (accessible
by, e.g., ab initio MD) or in the model ensemble.

2.4.2 Self-consistent harmonic phonons

If the procedure is based on sampling using the same model we want to construct, it
is called a self-consistent method [62]. In lattice dynamics it is often called the self-
consistent harmonic approximation (SCHA) or just the self consistent phonons (SCP)
method and it is described in, e.g., [34]. These methods have firm roots in theoretical
techniques such as Green’s function methods and diagrammatic perturbation theory or
the statistical perturbation method based on operator renormalization [64]. In practice
on a computer we can generate displaced configurations and fit a harmonicmodel to the
forces iteratively until the procedure has converged. The initial guess of the FCs is often
in the form of an Einstein crystal and then as the model improves new configurations
are generated using, e.g., the phonon rattle method where the modes are randomly
populated according to the known statistics of the harmonic oscillator. A variation of
this method is the stochastic self-consistent harmonic approximation (SSCHA) where
the free energy is minimized using a stochastic gradient descent method [64–68]. In
practice this makes it easy to minimize also the Gibbs free energy by varying the cell
metric.

One of the main problems with any harmonic method is that it is only possible to
effectively capture anharmonic effects in the harmonic FCs up to a certain degree. This
can be partly remedied by including anharmonic effects in the sampling and in the
model. The second large problem is deterioration of the ensemble average as the model
improves. The old configurations are based on a different model than the present and
thus all ensemble averages will be short-term biased. Clever methods exist, however,
to discard configurations deemed to be of no use for the current model and thus the
convergence can be sped up by including less data, a kind of bias-variance trade-off.
In other words we can include fewer samples from the more correct distribution and
remove bias terms but obtain a larger random error due to the finite samples size Or
we can include more data and remove errors due to small sample size but be penalized
by a small systematic error because of sampling from the (slightly wrong) distribution.
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2.4.3 Effective harmonic models
An alternative is to sample configurations from ab initio molecular dynamics (AIMD)
simulations. This ensures physical configurations but can be expensive depending on
the underlying ab initiomethod, code, system and so on. This approach is also called the
temperature-dependent effective potential (TDEP) method after the eponymous pro-
gram [69–71]. With this method effective harmonic models (EHMs) can be generated
where higher-order FCs have been captured (or renormalized) into the second-order
FCs. This allows for the calculation of temperature-dependent phonons and related
quantities. Naturally also higher-order models can be constructed in this way to ac-
cess, e.g., lifetimes and by extension the thermal conductivity [72]. The main downside
of this method is the expensive sampling, especially if quantum effects must be taken
into account which would require, e.g., path integral MD. This can be partly overcome
by stochastic initialization and up-sampling techniques [73]. Effective harmonic mod-
els can also be used to access otherwise hard to get properties via lattice dynamics even
when a cheap analytical potential is used where properties are (in principle) accessible
using other methods. In this fashion it is, for example, possible to calculate free ener-
gies via an EHM instead of via thermodynamic integration. How well this works in
practice is, however, system dependent and can differ between systems [74].

2.4.4 Anharmonic higher order models
Lastly there is the possibility to construct effective or self-consistent anharmonic FC
models. With this method anharmonic expansions are fitted to either AIMD or the
model itself is sampled using Monte Carlo (MC) or MD simulations. While MD has
been performed using FCs [75], to the best ofmy knowledge self-consistent anharmonic
models were not done before Brorsson et al. [45]. In the limit of infinite order and
cutoff this method should produce the same true expansion of the PES independent of
whether the sampling is in the true or the model Hamiltonian.

In practice this method using anharmonic FCs and MD allows for non-perturbative
treatment of high-order perturbations, e.g., up to fourth order in the energy expansion.
This can be useful where normal perturbation theory struggles. In addition the self-
consistent procedure ensures that the PES is stable for reasonable configurations. Typ-
ically an anharmonic force constant potential (FCP) will be somewhat unstable when
running MD if the training data is not diverse enough. This can often be fixed by in-
cluding configurations from an MD run close to where the system misbehaves. Unfor-
tunately many systems exhibit “thermodynamically necessary” defects which can even
be created spontaneously in MD simulation when the PES is soft or close to melting
[76]. In theses situations FCPs are ill-suited although there have been attempts to artifi-
cially stabilize/constrain the expansion. The problem with anharmonic FCPs in general
is that even if a good model is found it is not necessarily easier to find accurate proper-
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ties of interest from this model compared to a lower-order model. For example, the free
energy via perturbation theory from a self-consistent fourth-order model might not be
more accurate than the exact free energy from a self-consistent harmonic model due to
the extra level of approximations when dealing with fourth-order FCs.
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3
Full anharmonicity

Molecular dynamics (MD) is a computational technique where the equations of motion
for a system of atoms are (numerically) integrated in time [77]. The forces acting on
the atoms are computed from some (conservative) force field as the gradient of the
interatomic potential with respect to the positions. Since the force is the gradient of
the energy with respect to positions the force field is a gradient of a scalar potential,
hence the name interatomic potential.

For small systems and short time scales it is in principle possible to perform so-called
AIMD simulations in order to analyze the motion of atoms. In that case the atomic
forces (and other observables) are calculated by solving the (electronic) Schrödinger
equation and integrating the equations of motion. For large systems this becomes, how-
ever, exceedingly expensive due to the poor scaling of DFT calculations (especially with
respect to system size, as the cost scales approximately with the cube of the number
of electrons). Thus we need to approximate the Born-Oppenheimer PES with a simple
analytical form involving only the positions of the ions in order to study large systems
on long time scales. Such an approximation of the PES is captured by an interatomic
potential and can be roughly divided into two classes: traditional analytical (or em-
pirical) potentials with comparably few parameters and simple functional forms, and
modern heavily parameterized potentials often incorporating machine learning (ML)
techniques in the construction of the potential and/or in the functional form itself.

Wewill start this chapter with a brief overview of interatomic potentials and the need
for ML potentials and end with an overview of the MD technique. The final section
will be dedicated to correlation functions. There we will show how all the properties
we could calculate using perturbation theory can in principle be extracted from MD
simulations.
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3.1 Interatomic potentials
Interatomic potentials are roughly divided into analytical potentials and ML potentials.
Analytical potentials have functional formswhich are handcrafted, often based on some
electronic structure theory. ML potentials have general functional forms with numer-
ous tunable parameters. It is nice to understand the former in order to work with the
latter.

3.1.1 Analytical potentials
The first serious use of an interatomic potential was perhaps the work of Fermi, Pasta,
Ulam and Tsingou in the 1950s [78, 79]. They used the newly constructedMANIAC com-
puter system to study the interactions between particles in a linear chain, a standard
textbook problem in solid state physics (see Sect. 1.3). The particles were connected by
simple harmonic springs with a small anharmonic perturbation and what they found
was a surprising recurrence of the phase space path breaking the ergodic hypothesis, a
cornerstone of MD.

After the linear chain and other simple systems such as interacting hard spheres, the
Lennard-Jones (LJ) ¹ liquid was analyzed by computational means in the 1960s. The
LJ potential is one of the simplest analytical interatomic interactions and still widely
used today. The term analytical potential comes from the possibility to write down an
analytical expression for the interaction. The LJ potential consists of a weak attractive
part modeling the vdW interactions and a strong repulsive core modeling the Pauli
exclusion principle. The functional form is

𝑉 (𝑟) = 4𝜖 [(
𝜎
𝑟 )

12
− (

𝜎
𝑟 )

6

] (3.1)

and the potential is plotted in Fig. 3.1. The free parameters 𝜎 and 𝜖 determine the length
and the strength of the interaction and are specific for a given system, say Argon or
Helium. Despite its simplicity the LJ potential exhibits interesting behavior such as
phase transitions.

The LJ potential is a simple example of a pair potential that works well for gases
and some liquids, and pair potentials in general are heavily used in generalized vdW
theory [80] (also known as classical DFT). Often the functional form consists of just
a few parameters. Due to the simplicity they can be made to obey certain limiting
properties for, e.g., low and high densities which makes themmore well behaved in MD
simulations. For gases (low density) and liquids (high disorder) two-body potentials
work well or when the Coulomb pair-interaction dominates in ionic materials.

During the 1970smany systemswere investigated using pair potentials such aswater,
molecules, and even proteins [81]. But in order to describe more complex materials

¹Named after Sir John Lennard-Jones
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Figure 3.1: The Lennard-Jones potential. To the left of the minimum the strong repulsive part
modeling the Pauli exclusion force dominates, while on the right the weak attractive part due to
vdW interactions dominates. The minimum is located at a distance of 6√2𝜎 where the potential
energy is −𝜖. Notice how the potential is nearly zero beyond approximately 3𝜎.

many-body affects must be taken into account. Such models emerged during the 1980s
and include, e.g., embedded atom method (EAM) potentials [82], which can be cast in
the form

𝑉 = ∑
𝑖𝑗

𝑉2(𝑟𝑖𝑗) + ∑
𝑖

𝐹 [ ∑
𝑗

𝜌(𝑟𝑖𝑗)]. (3.2)

Here 𝑉2 is a pair potential and 𝐹 is called the embedding function. The form is well
suited to model metals where the atoms move in a sea of electrons and the many-body
effects enter as a density dependent two-body interaction 𝜌. Potentials of this type are
sometimes called (pair) functionals as they are parameterized via functions instead of
real parameters. This idea can be seen as a precursor to the modern types of heavily
parameterized potentials.

For more complex molecules or covalently bonded materials such as silicon we need
also angular dependence which enters as a “true” three-body effect (e.g., via angles)
instead of an aggregated effect such as the density, see Fig. 3.2. One such approach
is the bond-order potential formalism developed in the late 1980s by Abell [83] and
Tersoff [84]

𝑉 = ∑
𝑖𝑗

𝑉 𝑅
2 (𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑉 𝐴

2 (𝑟𝑖𝑗), (3.3)

where 𝑏𝑖𝑗 depends on all angles 𝜃𝑖𝑘𝑗 . For more information on analytical potentials see
[85].

During the 1990s and 2000s these types of potentials were successfully used for many
systems including multi-component systems and also combinations of several types of
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Figure 3.2: A cluster of three atoms described by three parameters, two bond distances and one
bond angle. The potential energy 𝑉 (𝑟12, 𝑟13, 𝜃) is an explicit function of the angle and can in
general not be described/decomposed into pure two-body interactions. This model would be
suitable for e.g. the internal forces in a water molecule.

potentials. However, they are hard to develop and systematically improve. Thus in
tandem with faster hardware and development of the ML field new types of potentials
emerged during the 2010s which were heavily parameterized. For more information
about the historical development of analytical potentials see [86, 87].

3.1.2 Machine learning potentials
With the growth of the field of ML and the increasing performance of computers an-
other class of potentials has emerged called ML potentials. For an overview of ML
potentials see [88]. The aim is to bridge the gap between pure ab-initio methods and
analytical potentials. The main problem with analytical potentials is that for complex
systems it becomes difficult to construct a functional form suitable for describing all
the interactions. The idea behind ML potentials is that a very flexible functional (e.g.,
neural networks (NNs) [89–91] or Gaussian process (GP) [92, 93]) can be trained given
enough data. The drawback with these types of potentials is that the functional form
is not easily (if at all) interpretable by a human and thus gives little insight into the un-
derlying physics. Furthermore the parameter landscape is typically vast and care must
be taken during the optimization to mitigate both overfitting and underfitting. Finally,
these potentials have essentially no extrapolation capacity but should be considered
as pure interpolations of the configuration space seen during training. It is thus very
important to choose training structures spanning the phase space of interest.

The first part of a ML potential are the descriptors which capture the local envi-
ronment around an atom and serve as inputs to the functional form instead of the raw
atomic coordinates. There are a huge number of atomic descriptors and the challenge is
to create descriptors such that the resulting PES obeys relevant global symmetries such
as translational and rotational invariance. The construction of (good) descriptors is dif-
ficult. They must be simple enough to be fast to calculate but span a complex enough
space so that different atomic configurations are discernible. They should also be robust
so that similar descriptors represent similar structures. Some examples of atomic de-
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Descriptors StructureDeep neural network
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i

Figure 3.3: Illustration of a neural network based machine learning potential. To the right is
a configuration of atoms. Two descriptor functions transform the Cartesian coordinates of the
neighboring atoms around the atom in the center to suitable input to a (in this case deep) neural
network. The network outputs the energy of the center atom.

scriptors commonly used in materials physics are distances, angles, Coulomb-matrices,
smooth overlap of atomic potentials, atom-centered symmetry functions, many-body
tensor representations and the atomic cluster expansion, see, e.g., [94]. Typically the
number of descriptors (i.e., the complexity or size of the basis) should be systematically
expandable until it is, in principle, possible to reconstruct the original configuration.

The functional form takes the output from the descriptors and calculates the energy
(or other properties) of the system, see Fig. 3.3. To be useful forMDpurposes derivatives
of the descriptors with respect to the Cartesian atomic positions and the derivative
of the functional form with respect to the descriptors must be available in order to
calculate forces and virials. The functional form can for example be based on GPs [92],
NNs [89, 95] or linear models [96, 97], but any regression model can in principle be
used.

The training method for ML potentials follows the general procedure as outlined in
the section about regularized regression (Appendix A) except that non-linear optimiza-
tion is needed. Typically the functional forms are comparably well understood and the
techniques to train them well tested for various applications. Typical methods include
stochastic gradient descent, evolutionary algorithms and maximum likelihood estima-
tion [98].

ML potentials are typically described as interpolation techniques and as such some-
times behave unexpectedly when posed with unseen structures or local environments.
Analytical potentials on the other hand are often constructed based on physical insight
and only contain a handful of parameters (highly regularized). As a result, they can
yield at least somewhat sensible results beyond the training regime. While the choice
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of descriptors and functional forms as well as optimization techniques are fairly well
understood, the selection of training structures is still a rather delicate aspect. Here,
physical intuition and experience play a large role as well as prior understanding of
the material at hand. There are various techniques to systematically choose good train-
ing data based on active learning and entropymaximization but this is ongoing research
[99]. For an instructive comparison and discussion of ML potentials see [100].

3.2 Molecular dynamics
Once a suitable potential is chosen we need some general procedure in order to sample
the phase space. The sampling of an interacting many body system is typically done
using either MC or MD techniques, see, e.g., Frenkel and Smit [77]. MD is the key
technique used tomodel atomicmotion inmaterials as it gives access to time-dependent
quantities.

3.2.1 Sampling phase space
The idea is to integrate the equations of motions 𝒇 = 𝑚𝒙̈ (a second order non-linear
differential equation) where the force is given as the gradient of the interatomic poten-
tial 𝒇𝑖 = −∇𝒙𝑖𝑉 (𝒙) with respect to the atomic positions 𝒙𝑖. Many advanced integrators
are available that can take multiple steps which can sometimes be useful in AIMD but
for practical purposes when dealing with empirical potentials almost always a variant
of the Verlet algorithm [101] is used such as velocity Verlet. One of the most important
properties of an integrator is to be able to conserve the energy of the system in order
to properly represent the microcanonical (NVE) ensemble. These types of integrators
are called symplectic integrators. The ergodic hypothesis can then be used to calculate
thermodynamic properties via time averages instead of ensemble averages

⟨𝐴⟩ = 1
𝑇 ∫

𝑇

0
𝐴(𝑡) d𝑡, (3.4)

where the angle bracket denotes an ensemble average corresponding to the macro-
scopic observable𝐴. The ergodic hypothesis states that all microstates are equally likely
to be observed. This is often not the case in computer simulations due to limited time.
Other limitations of MD typically include lack of nuclear quantum effects and compu-
tational cost, MD being somewhat of a brute force approach. The quantum mechanical
aspect can to some degree be remedied by using path integral MD [102]. Fortunately, at
low temperatures where quantum effects start to become important other techniques
can be used due to the harmonic nature of the potential at low temperatures. Further-
more for certain properties there are corrections which can be applied in a post process
but fully quantum MD simulations is still an area of active research [103].
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Figure 3.4: Typical dispersion relation calculated using velocity auto-correlation functions
(ACFs). To the left is longitudinal modes where the vibrations are in the direction of the momen-
tum (such as sound waves). To the right are transverse mode with motion perpendicular to the
momentum (such as electromagnetic waves). The acoustic modes originate from the Γ-point
while the optical modes appear as horizontal bands. This example is bulk MoS2 in the through-
plane direction taken from Paper III. The line width of the dispersion is very thin indicating a
harmonic systemwith long lifetimes. The striped appearance appears since a supercell can only
represent a finite number of momentum transfer vectors.

In order to sample other ensembles such as the canonical (NVT) or isothermal-isobaric
(NPT) ensembles a thermostat and/or a barostat is needed. These can be based on in-
stantaneous expressions for the thermodynamic properties they try to regulate or on
time-averaged properties. In general the temperature is comparably easy to control
via, e.g., the equipartition theorem. Typically the integrator is modified in order to
incorporate and additional term in the Hamiltonian modeling heat exchange with an
external bath system. Care must be taken to have a sufficiently large system so that
the effect of the thermostat is comparably weak when sampling dynamical properties.
This is motivated by the fact that in the infinite system size limit the NVE and NVT
ensembles are equivalent. Thermostats will appear again later in Chapter 4 during the
discussion of thermal conductivity as they can be used to transport heat or to probe the
response function of a system. Commonly used thermostats include the Nosé-Hoover
family [77], the Bussi–Donadio–Parrinello [104] thermostat and the Langevin thermo-
stat [77].

Barostats typically require more detailed information about the interatomic poten-
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tial in question. In principle the instantaneous stress tensor must be calculated which
requires the virials, which can be challenging for many-body potentials and when peri-
odic boundary conditions are present [105]. The impact of many-body effects on state
variables is in general well understood in terms of hydrodynamic variables but in prac-
tice challenging to implement explicitly.

3.2.2 Equilibrium properties
Now let us look at some properties of interest similar to the ones in Chapter 2. Using a
symplectic integrator we can simulate the microcanonical ensemble where the energy
is kept fixed and no external force acts on the system. Provided we can simulate a
large enough system to avoid finite size effects the dynamics in this simulation should
correspond to the physical one. In practice however we often want to simulate from a
correct canonical ensemble without going to very large systems. The partition function
corresponding to the canonical ensemble reads

𝑍 = ∫ e−𝛽𝐻(𝑥,𝑝) d𝑥 d𝑝. (3.5)

Thus, any thermodynamic equilibrium observable can be calculated as an ensemble av-
erage sampling from this distribution. For example the heat capacity can be calculated
as the change of the expectation value of the energy with respect to a temperature
change

𝐶 = 𝜕 ⟨𝐻⟩
𝜕𝑇 = 𝜕

𝜕𝑇 𝑍−1
∫ 𝐻(𝑥, 𝑝)e−𝛽𝐻(𝑥,𝑝) d𝑥 d𝑝 = 1

𝑘B𝑇 2 ⟨(𝐻 − ⟨𝐻⟩)2⟩ . (3.6)

and is found to be equal to the variance of the total energy.
There are also some very general results from statistical mechanics which can be

useful such as the equipartition theorem

⟨𝐴 𝜕𝐻
𝜕(𝑞 or 𝑝)⟩ = 𝑘B𝑇 ⟨

𝜕𝐴
𝜕(𝑞 or 𝑝)⟩ (3.7)

for any operator 𝐴[86]. This can for example be used to relate the temperature 𝑇 to
the average kinetic energy. For a purely harmonic system we can also see that

⟨𝑢2⟩ = 𝑘B𝑇
𝑚𝜔2 . (3.8)

The problem with simulating in the canonical ensemble is that the coupling to an
external heat bath introduces a perturbation which can affect the dynamics of interest
in the system. For example the Langevin thermostat introduces an artificial damping
and lifetime via a stochastic force which effectively limits system lifetimes.
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Before proceeding to time dependent properties let us take a look at the free energy
which is a notoriously hard property to calculate and one of the reasons why the effec-
tive harmonic methods described in Chapter 2 are so popular. The free energy can be
calculated in a few different ways. For instance one can use free energy perturbation
which is the basis of the effective harmonic methods of Chapter 2. There the free en-
ergy difference between a system A of known free energy and the target system B was
computed as

Δ𝐹 = −𝑘B𝑇 log⟨e−𝛽(𝐻𝐵−𝐻𝐴)⟩𝐻𝐴
. (3.9)

The expressions are, however, totally symmetric in A and B, such that in principle any
ensemble can be used. This expression, however, deals with very non-linear operators
and is in general hard to converge. In practice thermodynamic (or 𝜆) integration is used
instead where the interatomic potential is continuously varied between the potential
of a system of known free energy and the system for which the free energy is sought.
The potential is typically given by a linear mixing 𝑉 (𝜆) = 𝐻𝐴 + 𝜆(𝐻𝐵 − 𝐻𝐴) such
that as 𝜆 goes from 0 to 1 the interaction switches from, say, the know system A to the
system B of unknown free energy. The free energy change is then given by

Δ𝐹 = ∫
1

0
⟨𝐻𝐵 − 𝐻𝐴⟩𝐻(𝜆) d𝜆. (3.10)

For this method to work in practice the model potential A and the target potential B
must be relatively similar such that the difference varies smoothly so that the integral
converges numerically. With this we conclude the equilibrium part of the discussion
about MD and turn to dynamic properties.

3.3 Correlation functions
Many interesting properties are directly accessible from trajectories obtained fromMD
simulations such as microscopic mechanisms for diffusion of defects [76]. One of the
main advantages of the MD technique over MC is that it also gives us the possibility
to sample time-dependent properties such as time-correlation functions. In the near-
equilibrium limit the fluctuation-dissipation theorem and linear response theory give
us direct access to non-equilibrium properties such as thermal conductivities (see Chap-
ter 4) given that suitable observables can be defined.

One important property is the spectral function which can be calculated from the
ACFs of the atomic motion [106, 107]. The spectral function is the dispersion relation of
a material and relates the wavelength of lattice waves/phonons to the frequency of the
same waves, see Fig. 3.4. This provides us with a method to non-perturbatively sample
the dispersion relation and lifetimes/line widths of the system that can be compared to
results obtained from theoretical methods using lattice dynamics or to experiments via,
e.g., inelastic scattering with neutrons [108] or x-rays.
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The dynamic structure factor is often used to capture the dynamics of the system par-
titioned into different wavelength and frequencies. It can be shown that the dynamical
structure factor is related to the ACF of density fluctuations as

𝑆(𝑘, 𝜔) = ∫ e−𝑖𝜔𝑡 ⟨𝜌(𝑘, 𝑡)𝜌(𝑘, 0)⟩ = ∫ 𝑒−𝑖𝜔𝑡
∑
𝑖𝑗

⟨e−𝑖𝑘𝑥𝑖(𝑡)e𝑖𝑘𝑥𝑗 (0)⟩ . (3.11)

This quantity we can recognize from the Green’s function in Chapter 2.

3.3.1 Dynamic structure factor from neutrons
To motivate the use of the dynamic structure factor we can study the scattering of
neutrons (Sect. 1.2.3). There are many techniques used to study materials involving
neutron scattering, with the two archetypes being elastic neutron diffraction and in-
elastic neutron scattering. Both can be described in the framework of time-dependent
perturbation theory.

The incident and scattered neutron can be described by plane wave (free) states de-
scribed by

Ψ𝑘(𝑥) = 𝑒−𝑖𝑘𝑥 (3.12)
with energy 𝐸𝑘 for the momentum quantum number 𝑘. From time-dependent pertur-
bation theory we can show that the amplitude of a final state Ψ𝑘′(𝑥) can be written to
first order as

𝑐𝑘′(𝑡 → ∞) = −𝑖
ℏ ∫

𝑡→∞

0
𝑑𝑡′

∫ 𝑑𝑥Ψ𝑘′(𝑥)𝑉 (𝑥, 𝑡′)Ψ𝑘(𝑥)𝑒−𝑖(𝐸𝑘−𝐸𝑘′ )𝑡′/ℏ. (3.13)

Inserting the plane-wave basis we can rewrite the expression as

𝑐𝑘′(𝑡 → ∞) = −𝑖
ℏ ∫

𝑡→∞

0
𝑑𝑡′

∫ 𝑑𝑥𝑒𝑖𝑘′𝑥𝑉 (𝑥, 𝑡′)𝑒−𝑖𝑘𝑥𝑒−𝑖(𝐸𝑘−𝐸𝑘′ )𝑡′/ℏ = −𝑖
ℏ

̃𝑉 (𝑄, 𝜔)
(3.14)

with 𝑄 = 𝑘 − 𝑘′ and 𝜔 = (𝐸𝑘 − 𝐸𝑘′)/ℏ. The scattering amplitude is thus related to
the spatial and temporal Fourier transform of the scattering potential, which is a quite
general result.

For systems made up of particles the scattering can be written as a sum over all point
scatterers.

𝑉 (𝑥, 𝑡) = ∑
𝑖

𝑉𝑖(𝑥 − 𝑥𝑖(𝑡)) (3.15)

and the transform is given by

̃𝑉 (𝑄, 𝜔) = ∫ 𝑒−𝑖𝜔𝑡
∑

𝑖
𝑒−𝑖𝑄𝑥𝑖(𝑡)

∫ 𝑉𝑖(𝑥)𝑒−𝑖𝑄𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓(𝑄)

, (3.16)
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where 𝑓 is called the form factor of the scatterer. For thermal neutrons the wavelength
is much larger than the nuclei and the interaction can bemodeled as a point scatterer us-
ing the Dirac delta-function as potential. The form factor for neutrons is thus reported
as a single number 𝑏 for different isotopes. Using this we can calculate the scattering
probability 𝑆 using the convolution theorem

𝑆 ∝ | ̃𝑉 (𝑄, 𝜔)|
2 =

|∫
𝑒−𝑖𝜔𝑡

∑
𝑖

𝑏𝑖𝑒−𝑖𝑄𝑥𝑖(𝑡)
|

2

= ∫ 𝑒−𝑖𝜔𝑡
∑
𝑖𝑗

𝑏𝑖 ̄𝑏𝑗 ⟨𝑒−𝑖𝑄𝑥𝑖(𝑡)𝑒𝑖𝑄𝑥𝑗 (0)⟩

(3.17)
where on the right hand side we recognize the dynamic structure factor

𝑆(𝑄, 𝜔) = ∫ 𝑒−𝑖𝜔𝑡
∑
𝑖𝑗

𝑏𝑖 ̄𝑏𝑗 ⟨𝑒−𝑖𝑄(𝑥𝑖(𝑡)−𝑥𝑗 (0))⟩ . (3.18)

Note that while Eq. (3.17) is valid even in the quantum case this last equation is not.

3.3.2 Auto-correlation functions and mode projections
By measuring ACFs of observables many properties can be computed. For example
using a model for the polarizability the Raman spectrum can be computed from a
polarizability-polarizability ACF. Similarly diffusion coefficients and thermal conduc-
tivities can also be computed by fluctuations of their respective susceptibilities. For the
dynamical structure factor we do a position ACF but it is also possible to perform a
similar analysis on the velocities. In this case it is called a current-current or velocity-
velocity ACF and is closely connected to the vibrational density of states. In fact it can
be shown that the velocity-velocity ACF is related to the density of states. For instance
by using the equipartition theorem applied to the kinetic energy it can be shown that
the density of states is given by

𝜌(𝜔) = 1
3𝑁𝑘B𝑇 ∑

𝑖
𝑚𝑖 ∫ e−𝑖𝜔𝑡 ⟨𝑣𝑖(𝑡) ⋅ 𝑣𝑖(0)⟩ d𝑡. (3.19)

If a set of polarization vectors were given it is possible to project the atomic motion
onto the normal modes instead. This is known as mode projection. By inserting

𝑣𝛼
𝑖 (𝑛) = 1

√𝑚𝑖 ∑
𝑘𝑠

̇𝑞𝑠(𝑘)𝑊 𝛼
𝑖𝑠e

𝑖𝑘𝑅(𝑛) (3.20)

into the density of states we get the density of states for each mode

𝜌(𝜔) = ∑
𝑘𝑠

𝜌𝑠(𝑘, 𝜔) = ∑
𝑘𝑠

1
3𝑁𝑘B𝑇 ∫ e−𝑖𝜔𝑡 ⟨ ̇𝑞𝑠(𝑘, 𝑡) ̇𝑞𝑠(−𝑘, 0)⟩ d𝑡. (3.21)
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Chapter 3. Full anharmonicity

This way the spectrum can be defined for each mode as the contribution to the total
density of states. Notice, however, that since neither the polarization vectors nor the
frequencies enter explicitly we could as well choose the dynamical matrix to be diago-
nal. Therefore by summing over the band indices we get

𝜌𝑖(𝑘, 𝜔) = 1
3𝑁𝑘B𝑇 ∑𝑛

e−𝑖𝑘𝑅(𝑛)
∫ e−𝑖𝜔𝑡 ⟨𝑣𝑖(𝑛, 𝑡) ⋅ 𝑣𝑖(𝑛, 0)⟩ d𝑡, (3.22)

which is sometimes called the spectral energy density for basis atom 𝑖.
As we can see there are many ways in which the vibrations can be analyzed, both

in the phonon and the atom basis. Analyzing MD trajectories by projecting the mo-
tion onto normal modes is one of the most powerful tools available for understanding
material dynamics.

A simple approximation to the observed dynamics of nearly independent harmonic
oscillators which works extremely well is the damped harmonic oscillator model. In the
damped harmonic oscillator model the normal mode oscillates under the influence of
a stochastic background which dampens and kicks the mode in a way consistent with
the canonical ensemble. This is sometimes called Langevin dynamics and by using a
suitable set of polarization vectors the frequency shifts and lifetimes can be extracted
from the spectral functions by fitting the observed spectra to that of a damped harmonic
oscillator for which there are analytical expression.

3.3.3 Damped harmonic oscillator model
Consider the phonon mode coordinate 𝑞𝑠(𝑘) as an oscillator in a stochastic background.
A classical driven and damped harmonic oscillator can be modeled using the following
equations of motion

𝑥̈(𝑡) = −Γ𝑥̇(𝑡) − 𝜔2
0𝑥(𝑡) + 𝑓(𝑡) (3.23)

for some driving force 𝑓 . If we take the Fourier transform of this equation we get

𝑥̃(𝜔) = 1
𝜔2

0 − 𝜔2 + 𝑖Γ𝜔
̃𝑓 (𝜔) = ̃𝜒(𝜔) ̃𝑓 (𝜔), (3.24)

where we can identify the Green’s function as the susceptibility of the system. The
susceptibility can be decomposed into its real and imaginary parts

̃𝜒(𝜔) = ̃𝜒′(𝜔) + 𝑖 ̃𝜒″(𝜔) =
𝜔2

0 − 𝜔2

(𝜔2 − 𝜔2
0)

2 + Γ2𝜔2
+ 𝑖 −Γ𝜔

(𝜔2 − 𝜔2
0)

2 + Γ2𝜔2
. (3.25)

The imaginary part of the susceptibility, sometimes called the spectral function, can in
turn be related to the fluctuations in the system via the fluctuation-dissipation theorem

𝑆(𝜔) = −2𝑘B𝑇
𝜔

−Γ𝜔

(𝜔2 − 𝜔2
0)

2 + Γ2𝜔2
= 2𝑘B𝑇 Γ

(𝜔2 − 𝜔2
0)

2 + Γ2𝜔2
. (3.26)
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Assuming the driving force ̃𝑓 (𝜔) = 𝜎 is a white noise process with intensity 𝜎2 we can
calculate the power spectrum for the process directly from Eq. (3.24) and identify the
noise as 𝜎2 = 2𝑘B𝑇 Γ consistent with what we know from Langevin dynamics.

From the power spectrumwe can calculate the ACF of this process using theWiener-
Khinchin theorem as

𝐶(𝑡) = ℱ −1[𝑆(𝜔)](𝑡) = 𝑘B𝑇
𝜔2

0
𝑒−𝑡/𝜏

(cos𝜔𝑒𝑡 + 1
𝜏𝜔𝑒

sin𝜔𝑒𝑡) for 𝑡 ≥ 0, (3.27)

where 𝜔2
𝑒 = 𝜔2

0 − 𝜏−2 and 𝜏 = 2/Γ. Notice how the zero-time limit recovers the result
from the equipartition theorem.

The driven damped classical harmonic oscillator illustrates a few concepts. The in-
clusion of the damping term Γ introduces a lifetime to the oscillator. This shows up
as an exponential decay in the ACF. In the frequency domain the pole of the suscep-
tibility tells us about the broadening and we find that it is proportional to the inverse
lifetime. With this it is possible to analyze and predict phonon spectra and even in-
dividual lifetimes for certain modes. This was utilized in Paper V where this kind of
analysis was performed even for strongly overdamped modes as the system underwent
phase transitions.

With this we conclude the discussion of MD and the connection to lattice dynamics.
Both techniques are extremely useful, especially when combined. Going further it is
possible to define higher-order correlation functions and with different types of energy
partitioning schemes it is possible to track many-body correlations and energy flows
among phonons [109]. While this can give great insight it is computational expensive
and sometimes requires explicit calculation of higher-order force constants.

In the following chapter we will take a look at the thermal conductivity and how
it can be calculated using using both the methods from lattice dynamics and the MD
technique.
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4
Thermal transport

The macroscopic equation describing thermal conductivity is Fourier’s law

𝐽 = −𝜅∇𝑇 , (4.1)

where 𝐽 is the heat current, 𝜅 is the coefficient of thermal conductivity and ∇𝑇 is the
temperature gradient. 𝜅 is typically measured in units of W/m/K. There are many ap-
proaches for calculating the thermal conductivity in condensedmatter systems. Loosely
they belong to three classes based on thermostats, fluctuations via the Green-Kubo (GK)
relations and PBTE [110], respectively.

The most straightforward approach is non-equilibrium molecular dynamics (NEMD)
where two separated regions in an MD simulation are held at different temperatures
using thermostats. The heat will flow from the hot to the cold end via an intermediate
region, which evolves under NVE conditions [111]. The thermal conductivity can sim-
ply be calculated from the temperature gradient and the amount of heat that is pumped
between two thermostated regions per unit time. This is a conceptually simple method
and very useful for measuring interface conductivities. For bulk conductivities, how-
ever, the method has some drawbacks. First, the temperature gradient is typically very
large as the temperature difference needs to be larger than typical fluctuations while
the length scales are typically quite short. Second, the spatial limitation, or boundary
conditions, in the simulation may impose an artificial wavelength/mean-free-path cut-
off similar to a boundary scattering term in PBTE [42, 112]. Since the low lying acoustic
modes, which have typically long mean free paths, carry much of the heat this can lead
to an underestimation of the lattice thermal conductivity (LTC). The mean free path is
the typical distance a phonon can travel (and thus conduct heat) before it scatters. It
is calculated as the group velocity of the mode 𝑣 = 𝜕𝑘𝜔(𝑘) times the lifetime 𝜏 . For-
tunately, as the temperature increases the mean free path decreases so this is typically
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Chapter 4. Thermal transport

more problematic for low temperatures where other approaches (PBTE) can be used
instead.

The two other methods (PBTE and equilibriummolecular dynamics (EMD)) will now
be discussed in some detail starting with the PBTE.

4.1 Peierls-Boltzmann transport theory
When the motion of atoms in a solid is highly correlated it is often useful to make a
Fourier transform and instead describe the motion in terms of the resulting collective
excitations (phonons) as described earlier in Chapter 2. The resulting phase space is
now given by the phonon coordinates and momenta, and the quasi-particles are ef-
fectively assumed to behave similarly to the particles in a dilute gas. This system is
called a weakly interacting Bose gas as the phonons follows the Bose-Einstein statistic.
Here, the heat carriers are the phonon quasi-particles and the corresponding PBTE is
solved by constructing a scattering integral based on the phonon-phonon interactions
calculated from anharmonic FCs using, e.g., Green’s function methods as described in
Chapter 2. The method thus relies on an accurate description of the PES in terms of
FCs. The method is in some sense semi-classical but does include quantum effects. For
many materials 0 K or effective third-order FCs are enough but for some materials four-
phonon interactions are important and thus the corresponding scattering rates (the
rate at which phonons decay into other phonons) must be included [59, 113]. The main
issue with PBTE is the computational cost of constructing FCs and solving the PBTE
for systems with large primitive cells, e.g., systems with complex crystal structures or
disordered systems.

In order to relate the phonon dynamics to macroscopic transport we need to intro-
duce a notion of localization. While formally the phonons are only exact excitations for
an infinite (periodic) crystal and thus spread out over a large region they can be local-
ized in space by considering wave packets. The physical picture is thus that phonons
are created at a certain macroscopic point in space and travel for a time as a wave
packet and are annihilated at another point in space later, resulting in the transfer of
energy and heat. Theses wave packets thus have a frequency 𝜔, a speed of propagation
𝑣 = 𝜕𝑞𝜔 and a lifetime 𝜏 . In addition we can think of each wave packet carrying some
energy ℏ𝜔 and thus a wave packet that is created (excited) at a point 𝑥 in the system
will carry an energy ℏ𝜔 with speed 𝑣 for a time 𝜏 before being annihilated at a point
𝑥′ = 𝑥 + 𝑣𝜏 = 𝑥 + Λ where Λ is the mean free path. The reason why there is a flow
of heat is because of the difference in phonon populations at different points in space
due to the thermal gradient. It is this difference in populations we calculate using the
PBTE. In the following this formalism will be briefly described. For a more extensive
account of PBTE see, e.g., [32, 114] and for ab-initio thermal transport in general see
[115].
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4.1. Peierls-Boltzmann transport theory

The Peierls-Boltzmann theory of thermal transport begins with the assumption of a
well defined local equilibrium distribution function,

𝑛0
𝜆(𝑇 (𝑥)) = 1

eℏ𝜔𝜆/𝑘B𝑇 (𝑥) − 1
, (4.2)

for the mode 𝜆, which is defined by the lattice momentum and band index. The spatial
variation enters through the spatial variation of the temperature. The phonon transport
equation is now equivalent to the transport equation in the kinetic theory of gases. First
the Liouville equation is integrated down to a single particle distribution function to
yield the Boltzmann equation,

d𝜌
d𝑡 = 0 ⟹ d𝑛𝜆

d𝑡 = 𝑆𝜆[𝑛], (4.3)

with the assumption that the scattering integral 𝑆 depends only on the single particle
distribution itself. In more detail we have

𝜕𝑛𝜆
𝜕𝑡 + 𝜕𝑛𝜆

𝜕𝑥 𝑣𝜆 = 𝑆𝜆[𝑛], (4.4)

for a phonon of type 𝜆 at position 𝑥 moving with velocity 𝑣𝜆 as given by the dispersion
relation. Now we assume that the change in occupation due to the thermal gradient
is a small perturbation to the equilibrium distribution 𝑛 = 𝑛0 + 𝑛′ and that the spatial
variation of the population is solely due to the spatial variation of the temperature in
the equilibrium ensemble. In equilibrium (𝜕𝑡 = 0 and 𝑆[𝑛0] = 0) we get the typical
linearized PBTE

𝐶𝜆𝑣𝜆
ℏ𝜔𝜆

∇𝑇 = 𝜕𝑆𝜆[𝑛0]
𝜕𝑛𝜆′

𝑛′
𝜆′ = Γ𝜆𝜆′𝑛′

𝜆′ (4.5)

with the scattering matrix Γ𝜆𝜆′ . The heat current is defined as

𝐽 = ∑
𝜆

ℏ𝜔 𝑣𝜆 𝑛′
𝜆, (4.6)

which is simply the energy of a phonon 𝜆 times the velocity times the number (differ-
ence) of phonons in that state. Plugging in our expression for the populations we then
find

𝐽 = ∑
𝜆

ℏ𝜔𝜆𝑣𝜆
𝐶𝜆′𝑣𝜆′

ℏ𝜔𝜆′
Γ−1

𝜆𝜆′ . (4.7)

In deriving the above expression we have postulated that the out-of-equilibrium dis-
tribution returns to equilibrium via linear relaxation. This is called the relaxation time
approximation (RTA) which states that the backward transition is proportional to the
perturbation. The lifetime can be taken to be the inverse of the self-energy (at the
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harmonic frequency) of each phonon as described earlier and will depend on the oc-
cupations via the scattering rates. In the single-mode relaxation time approximation
(SMRTA) we furthermore simply use only the diagonal part of the scattering matrix
Γ−1

𝜆𝜆 = 𝜏𝜆 and the expression for the thermal conductivity reduces to the typical

𝜅 = ∑
𝜆

𝐶𝜆𝑣2
𝜆𝜏. (4.8)

The main drawback of the SMRTA is that it underestimates the repopulation of modes
which is important for some materials [116]. To improve this result the full scattering
matrix can be inverted either via a direct approach or iteratively [58].

The main problem with the PBTE is that it is hard to calculate the scattering rates
which appear in the scattering matrix. Typically Fermi’s golden rule can be used to
calculate single rates but in principle the scattering process should be time-dependent
and the complete spectral function should be used [116].

It is also possible to include higher-order processes when calculating the relaxation
times as described in Chapter 2 and as implemented in [113]. Recent insights into the
PBTE include the Wigner formulation described in [13, 117] where glass-like transport
is more readily handled and spectral based methods like [118]. The Wigner method is
implemented in both phono3py and Kaldo [119].

4.2 Green-Kubo relations
For an excellent overview of the GK formalism see [120] which is the basis for this
short introduction. In the 1950s Green and Kubo developed a theory of linear transport
based on the work of Callen and Welton on the fluctuation-dissipation theorem. The
theory relates equilibrium fluctuations expressed as time correlation functions with the
corresponding transport coefficients,

𝜅 ∝ ∫
∞

0
⟨𝐽(𝑡)𝐽 (0)⟩ d𝑡. (4.9)

Thus anMD simulation can be performed in the NVE ensemble and the auto-correlation
of the heat flux 𝐽 is measured to provide the thermal conductivity coefficient 𝜅. This
EMD approach is a very general method and in principle free from bias as the system
evolves without any external perturbation.

Compared to the NEMD method the effect of boundary conditions is not as severe.
Although the allowed wave vectors are limited (since not all wavelengths can be sup-
ported by a finite supercell) their mean free paths are not as the modes are free to
propagate through the periodic boundary conditions. The main problem lies in the
challenge to adequately sample the correlation function, especially for harmonic mate-
rials with long life times (i.e., materials with a large LTC). This can be overcome by the
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use of clever methods from signal analysis allowing even the direct use of AIMD, see
again [120] and also [121].

For a macroscopic system we stipulate that there exists a energy density function
𝑒(𝑥, Γ) that measures the local energy at a point 𝑥 in the system in state Γ. This density
is related to the total energy of the system via

∫ 𝑒(𝑥, Γ)d𝑥 = 𝐻(Γ), (4.10)

where Γ is a point in the phase space of the system and d𝑥 is large compared to the
range of the interatomic interactions. The energy is furthermore a (locally) conserved
quantity and thus the energy density obeys the continuity equation

−𝑖𝜔 𝑒(𝑞, 𝜔) = −𝑖𝑞 𝑗(𝑞, 𝜔) (4.11)

for some heat current density 𝑗. The long-wavelength parts of conserved densities are
called hydrodynamic variables and our goal now is to find their equations of motion.

In the small field limit the equation of motion for the energy density can be linearized
in Fourier space

−𝑖𝜔 𝑒(𝑞, 𝜔) = Λ(𝑞, 𝜔) 𝑒(𝑞, 𝜔) (4.12)
and we can thus identify the heat current density as

𝑗(𝑞, 𝜔) = − 1
𝑖𝑞 Λ(𝑞, 𝜔)𝑒(𝑞, 𝜔). (4.13)

From general considerations the constant and linear term must vanish in Λ due to
causality and parity considerations. As a result, the macroscopic flux 𝐽 = ∫ 𝑗 d𝑥 and
the macroscopic density gradient 𝐷 = ∫ ∇𝑒 d𝑥 are linearly related via 𝐽 = 𝜆𝐷. Be-
cause of assumptions of local equilibrium of the state variables we can also write the
relation in terms of the thermodynamic force 𝐹 = ∫ ∇𝛽 d𝑥 where 𝛽 = 1/𝑇 is the
intensive conjugate variable to the internal energy and we arrive at

𝐽 = 𝐿𝐹 (4.14)

for some parameter 𝐿 and force 𝐹 to be determined. Note here that the natural cause
of a heat current is actually the gradient of the inverse temperature. Nevertheless, in
the linear regime any equivalent measure can be used and the corresponding transport
coefficient will only differ by a function of the equilibrium state variables.

The GK relations allow us to calculate the parameter 𝐿 by studying the equilibrium
fluctuations of the flux 𝐽 . Specifically for a perturbation 𝑉 = ∫ 𝑣(𝑥)𝑒(𝑥) d𝑥 with some
coupling constant 𝑣 (the driving field) to the original Hamiltonian the corresponding
thermodynamic force is given by

𝐹 = 𝛽0 ∫ ∇𝑣 d𝑥 (4.15)
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Figure 4.1: Heat current auto correlation (HAC) in the through plane direction of Graphite
at 600 K. The gray curves are 100 individual simulations overlayed and the red curve is the
unfiltered mean. At around 40 ps the correlation is almost zero and should be enough to get a
converged value of the thermal conductivity.

and the corresponding transport coefficient is

𝐿 = ∫
∞

0
⟨𝐽(𝑡)𝐽 (0)⟩0 d𝑡. (4.16)

For a coupling field 𝑣 = −Δ𝑇 /𝑇0 the (mechanical) perturbation mimics the effect of
a temperature field. This will be important later for the homogeneous non-equilibrium
molecular dynamics (HNEMD) method where this observation allows us to study the
heat current response to a perturbation. Continuing, the corresponding force for the
above perturbation just becomes the temperature (𝑇 ) gradient and finally the thermal
conductivity is given by

𝜅 = 1
𝑉 𝑘𝐵𝑇 2 ∫

∞

0
⟨𝐽(𝑡)𝐽 (0)⟩0 d𝑡. (4.17)

An exampled of a heat current auto-correlation function can be seen in Fig. 4.1 while
the corresponding integrated thermal conductivity can be seen in Fig. 4.2.

Now the only thing left is a local definition of heat or internal energy that is consis-
tent and compatible with both our microscopic and macroscopic understanding. This
can be conceptually challenging due to the ambiguity in the localization of the internal
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Figure 4.2: Running thermal conductivity corresponding to Fig. 4.1. The gray lines show the
results from 100 individual simulations while the red curve shows the mean and standard devi-
ation. After around 40 ps the thermal conductivity is converged.

energy. Recent research has, however, shown that the exact definition of the energy
density on the atomic level is not important [120]. As long as general principles are
obeyed all definitions should give equivalent results. Thus from the conservation of
energy and from the local character of the interatomic potential we stipulate that in
the thermodynamic limit of coarse graining there must exist a local measure of the in-
ternal energy obeying the continuity equation for a suitable definition of the heat flux.
In practice the energy is divided up into atomic energies

𝐸 = ∑
𝑖

𝐸𝑖 = ∑
𝑖

𝑝2
𝑖

2𝑚𝑖
+ 𝑉𝑖(𝑥) (4.18)

and each atom is considered a heat carrier and the corresponding current is analogous
to, e.g., a mass or charge current.

The EMD method can also be combined with a perturbing thermostat in order to
artificially increase the fluctuations and thus provide a stronger signal to noise ratio,
leading to faster computational convergence. Evans et al. have shown that a time-
dependent field 𝐹 (𝑡) can be used to drive the system out of equilibrium, enhancing
the fluctuations [122]. By studying the correlation between the driving force and the
response of the heat current the thermal transport coefficient can be calculated using
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Chapter 4. Thermal transport

a simple formula relating the force to the induced heat current

⟨𝐽(𝑡)⟩
𝑇 𝑉 = 𝜅𝐹 (𝑡). (4.19)

Fan et al. generalized this method to many-body potentials [123] and implemented it
specifically for HNEMD [124] in the gpumd software package used in Paper III.
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5
Outlook

No! The quote was “Yes, we could look it up but it is much
more fun to speculate.”

Esmée Berger

To first order, the future looks bright, at least for computational materials dynamics.

Hardware. From a computational materials science perspective we can still rely to
some degree on the increase in computer performance. If this will continue forever is
not certain but progress seem steady, although at a slower pace. The recent years have
also seen an increase in use of GPUs as a compute resource. This is to a large degree
motivated by the interest inML and artificial intelligence. Future challengesmight be to
adapt traditional methods to this new type of hardware which is arguably more suitable
for many numerical computations than traditional CPUs. This might be accomplished
by writing directly in frameworks such as CUDA, using, e.g., just-in-time compilation
to write in a high-level language and target GPUs, or use frameworks such as JAX and
PyTorch. A solid understanding of how to use modern ML frameworks might be as
important as cache localization was 20 years ago.

Software. Speaking about software, nothing in this thesis would be possible with-
out open source (or at least open access) software. The maturity of the present array of
software and methods made available during the last decades is impressive. Implement-
ing newmethods by using existing software packages from different countries, authors
and funding agencies gives hope for the future. On the flip side the sustainability of
the open source software development has been questioned in society in general (see
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for example the heartbleed bug). For us physicists this manifests in the funding of soft-
ware projects, issues relating to citations and attributions and software maintenance.
Towards the end of my PhD the last point stands out to me. A software is only as alive
as the documentation and community around it. Maybe something in the way we fund
and work needs to change in order to not loose the work we put into development.

Machine learning. A more engaging development in society is that of ML and ar-
tificial intelligence. These old concepts have now started to become very popular and
will probably permeate into every part of science even more. One very nice aspect is
that since the concepts and problems are so general the piggybacking factor is large.
This means that development in one field should in principle be directly applicable in
many others. Challenges still remain though which do not only affect physics. Inter-
pretability of models and uncertainty estimation are two challenges that stand out to
me. A somewhat under-explored field is using ML to find patterns in vibrational mo-
tion. While the static case, e.g., structure analysis, has been explored for a long time I
have not seen similar applications to dynamics.

Electronic structure methods. Electronic structure theory and especially DFT
will probably continue to improve and become both comparably less expensive and
more accurate. This implies that perhaps ab-initio MD, possibly coupled with ML po-
tentials, will be the dominant method to study vibrations. However, even though there
are many exchange-correlation functionals which work very well for many materials,
the disagreement between different functionals is often a concern. So maybe there will
be a transition over to othermore accurate butmore expensivemethods andwe are back
to training cheap potentials again. Other approaches that are starting to be used is to
transfer learn DFTML potentials using the expensive but accurate alternative methods.
Or, someone (probably amachine)might learn the true exchange-correlation functional.
Regardless if we can construct fast and correct potentials for the ionic potential there
is still a problem with large scale simulations, quantum effects and interactions with
other excitations in matter.

Lattice dynamics. As accurate and computationally efficientML potentials become
increasinglymore common place the usefulness of lattice dynamics basedmethods com-
pared to MD methods might be questioned. While the relatively low cost of harmonic
FCs for simple systems and direct access to quantum effects have made lattice dynam-
ics the workhorse of vibrational dynamics, one can suspect that higher-order FCs will
become less widely used. The possibility to connect such relations to theory might,
however, makes them useful for benchmarking other potentials with respect to, e.g.,
quantum dynamics, and to provide physical interpretability. Another use case is to
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compare Boltzmann transport methods with GK based using the same underlying rep-
resentation of the PES.

Even though we have access to interatomic potentials the PES is still quite conve-
niently studied using harmonic and potentially lower-order FCs. The main drawback
is the problem of describing the PES for unstable phases. Therefore it would be useful
to have an automatic procedure which makes it possible to partially include third and
fourth-order FCs that are important for the unstable modes. Ideally this should be as
simple and automatic as the standard zero Kelvin calculations and provide a solid basis
for further studies. So some work could still be done to make such analysis readily
accessible to non-experts.

In terms of future development of hiphive there is still missing the ability to handle
cell deformations. This can also naturally be related to FC expansions in internal co-
ordinates similar to classical intramolecular force fields used in chemistry. This would
also be a natural framework to start studying disordered systems. There is always a
point for any basis when its efficacy breaks down, and with the increased popularity
of ML potentials many properties could perhaps be more easily obtained by construct-
ing a suitable ML potential instead. However, in the end we wish to learn something
about the underlying physics and thus there will perhaps remain a need for simpler po-
tentials. Just as ML potentials bridge analytical potentials and ab-initio methods, one
might require a bridge between a deep NN and an analytical potential.

High-throughput. From a practical perspective we want accurate methods that can
predict properties with low computational cost and limited human input. This is the
goal of so-called high-throughput studies [125] but unfortunately this is hard to pull
off in practice as there are as many details as there are materials. Another angle is to
make certain types of standard procedures semi-automatic for the end user. One such
attempt is active learning of ML potentials which has been successfully applied to a
range of systems, see, e.g., [126, 127]. A third approach is to sacrifice computational
cost for human effort and go directly from ab-initio calculations to properties of interest
via exact methods such as GK [128, 129]. One could argue that is akin tp “kicking the
can down the road” as there are approximations made even in DFT, nevertheless this
type of methods will probably grow in popularity. Thus here it could be interesting to
further develop methods to quickly calculate properties of anharmonic and unstable
energy landscapes as in [130].

Accuracy and sources of error. For the construction of FCs some questions re-
main open (at least frommy perspective) concerning the relationship between different
methods. For example, when should EHMs be preferred over SCP? What is actually be-
ing optimized in the different self-consistent procedures? How are the derived proper-
ties related to the observed properties? One potentially insightful approach here would
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be to compare PBTE and GK directly by using the same FCP as input. This would al-
low one to explore the details of recent progress of relating PBTE and GK on the same
footing.

As methods become increasingly precise the question of accuracy becomes more
important. At one point the errors made in certain approximations such as, e.g., the
PBTEwill be smaller than the errors in input data obtained from ab-initio techniques. In
addition many properties of condensed matter systems are ignored such as interactions
of phonons with other excitations and degrees of freedom such as electrons and spins
as well as structural properties such as defects and boundaries.

Path integral MD. During the last decade, interatomicML potentials have started to
dominate how we model the PES acquired from DFT calculations. More recently path
integral MD has gained increased interest where some quantummechanical effects can
be incorporated into MD simulations. Quantum effects are one of the last limitations
of MD and thus it is valuable to fully understand the limitations of this approach when
studying dynamics. Maybe there is the need to develop equivalent methods for ions as
for electrons to propagate the ionic wave functions?

Vibrational analysis and moiré structures. Many of the above points culmi-
nate in the study of thermal conductivity in disordered vdW structures that continues
beyond the third paper in this thesis. In spite there being accurate potentials and many
experimental studies, the nature of thermal transport in these types of materials is still
not completely understood. This might be the lack of physical intuition on the side of
the researcher but it might also be due to a lack of tools. For simple systems a lot of
questions might be answerable in the language of lattice dynamics. For complicated
systems such as glassy materials with disorder or systems with grain boundaries the
picture is not as clear. I thus think there are prospects to develop tools to understand
vibrational dynamics from MD trajectories, perhaps using ML approaches.
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6
Summary of papers

Paper I

The Hiphive Package for the Extraction
of High-Order Force Constants by Machine Learning.

Paper I is the first of a set of two papers related to the extraction and application of FC
expansions. In this paper we present methods and workflows as well as some demon-
strations of the hiphive package that we developed. The focus is on the advantages of
an accessible framework to work with FCs and how to use auxiliary software such as
sciKit-leaRn to accelerate the regression extraction. The main features of hiphive are
presented as well as the concepts necessary to work with FCs in practice. This includes
proper handling of both local crystal symmetries as well as global symmetries such
as translational and rotational invariance. The translational symmetries are exactly
fulfilled by using integer numerics to find the kernel of the translational sum rule con-
straint matrix. hiphive handles FC expansions up to arbitrary order allowing for accu-
rate descriptions of complex PESs. This allows, for example, for exact non-perturbative
treatments of properties of interest.

Demonstrations include proper handling of rotational invariance and phonon dis-
persions of the two-dimensional material MoS2 as well as the thermal conductivity.
Furthermore we demonstrate how to use higher-order FCPs to run MD via the ase
library.
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Paper II
Efficient construction of linear models in materials modeling
and applications to force constant expansions.

In paper II we used hiphive in conjunction with the sciKit-leaRn package to bench-
mark and test the use of compressive sensing and related techniques to the FC extrac-
tion problem in the setting of the regression approach. The regression method can
vastly cut down the number of DFT calculations needed and we tested several different
methods including least absolute shrinkage and selection operator (LASSO), adaptive
LASSO, recursive feature elimination (RFE) and automatic relevance determination re-
gression (ARDR) on different systems. In terms of methods RFE with OLS works well
in many cases while ARDR tends to suffer from bad scaling as the training size increase.

The single most important thing when fitting FCs is to tune the cutoffs properly.
The regularized regression methods should in principle be able to find the correct pa-
rameters and discard clusters that are beyond the interaction length of the potential.
However, the size of the training set needed for such approaches might be too large to
handle for some of these algorithms.

The second important observation is that for some physical properties the accuracy
does not correlate with the root mean squared error (RMSE) measure. This highlights
the pitfalls of blindly optimizing for this measure and led us to conjecture that using
estimators from information theory such as Bayesian information criterion (BIC) and
Akaike information criterion (AIC) should provide more sensible models. Furthermore
the highly popular LASSO method does not perform as well as some other methods
and suffers from over-selection. Therefore post-LASSO methods are preferable such as
adaptive-LASSO. Finally, we demonstrated that temperature-dependent thermal con-
ductivities including fourth-order effective renormalization and beyond is computa-
tionally feasible and necessary in complex clathrates with 54 atoms in the unit cell.

In conclusion, despite compressive sensing (CS) being somewhat useful for configu-
rational cluster expansions [131, 132], we did not find the methods very useful for our
systems compared to Zhou et al. [133]. For FC expansions it is much easier to gener-
ate new data as each configuration contributes 3𝑁 new data points for systems where
the cutoffs are comparable or longer than the size of the system. We also found that a
naive use of advanced regularized regression methods can sometimes add a significant
computational cost so care must be taken.

Paper III
Extremely anisotropic van der Waals thermal conductors.
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In paper III we employed MD to explain the extremely low through-plane conductivity
of rotationally disordered MoS2 vdW structures. The work was a collaboration with the
groups of David Muller, David Cahill, and Jiwoong Park who performed the synthesis
and experimental measurements. The main challenge was the complexity of the unit
cell for these kind of materials. Molybdenum disulfide MoS2 consists of stacked layers
of single sheets much like graphite is build from stacked layers of graphene. These
types of materials have been studied before [134] in the bulk configuration with small
unit cells using PBTE and the transport mechanism is rather well understood. For ro-
tational disorder, however, things become complicated as the size of the cell grows
rapidly as the inter-planar angles decrease. Many studies have been carried out on
so-called bi-layer moiré structures, where two free standing layers are rotated relative
to each other with some magic angles in order to ensure that both layers can fit in
the same supercell. However, generating a large supercell with rotationally disordered
(many different rotational angles between layers) is not trivial. To approach this chal-
lenge, we implemented an algorithm to stack many layers on top of each other with
random interlayer rotations while allowing for some strain in each layer. To calculate
the thermal conductivity we used the HNEMD method [122] together with an analyt-
ical potential [135] implemented in gpumd [136] instead of PBTE as the latter would
be computationally to demanding for this kind of setup. Using this approach we could
replicate nearly quantitatively the experimental measurements, most crucially the drop
in the through-plane conductivity confirming the claim of an extremely high anisotropy
in the thermal conductivity. Based on our simulations We posited that the microscopic
mechanism can be related to the extreme softening of the through-plane transverse
modes. However, it might also be due to general disorder arguments as the coupling
between longitudinal through-plane and in-plane modes decreases.

Paper IV
Tuning the through-plane lattice thermal conductivity
in van der Waals structures through rotational (dis)ordering.

In the fourth paper the rotationally disordered vdW structures are investigated further.
Motivated by the results in the previous paper the goal is to understand if the observed
effects generalize to other, similar materials. Thus we used the neuroevolution poten-
tial method (a ML approach) and constructed models for hexagonal boron nitride and
graphene/graphite in addition to molybdenum disulphide. Our results showed that the
same drop in through-plane thermal conductivity can be observed in the other mate-
rials. In particular the results stayed more or less the same for the original material
MoS2 despite using a new potential and employing GK equilibrium MD instead of the
HNEMD method. The choice of using the standard GK method was largely motivated
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by not having to converge the extra hyperparameter associated with the external driv-
ing force in the HNEMD approach.

Furthermore we expanded on the analysis of the microscopic mechanism responsi-
ble for the conduction by studying how the conductivity changed as a function of twist
angle in the moiré structures. We found the conductivity to correlate with the entropy
associated with a simple interplane order parameter which agrees with the common
notion that the conductivity decreases with disorder. The difference between the ma-
terials and aspects of the reconstruction of the moiré structures was linked to the slip
surfaces of the materials.

The work, however, left some questions still open concerning the exact mechanism
dictating conduction in these materials. For example, the through-plane transverse
acousticmodes become extremely soft and naive PBTE calculations show that this effect
can also push down the conductivity without any need for structural disorder. There is
thus still work to be done related to thermal conduction in these structures in particular
and in semi-disordered materials in general.

Paper V
Limits of the phonon quasi-particle picture at the
cubic-to-tetragonal phase transition in halide perovskites.

In the final paper we studied the dynamics of the tilt-modes in the prototypical halide
perovskite CsPbBr3 using a neuroevolution potential and MD simulations. In particu-
lar the dynamics close to phase transitions were analyzed. This is important as they
relate to the shape of spectral functions observed in experiments when studying these
phase transitions. The frequencies of the soft tilting modes were analyzed using several
different renormalized methods and compared to the fully anharmonic methods based
on MD and mode projection. We found that the simple model of the damped harmonic
oscillator worked well using the MD approach for the dynamics of the modes even
when the modes were overdamped. Most interestingly we found that the overdamped
dynamics extend by as much as 200 K above the transition temperature.
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A
Regularized linear regression

Once structures are generated the FC expansion can be constructed using linear regres-
sion as long as the corresponding properties are linear functions of the free parame-
ters (e.g., forces and energies). When there is plenty of training data, and the data is
homogeneous there is often no reason not to use OLS. In Fig. A.1 a typical learning
curve is shown. For low amount of data the training error is very different from the
validation error indicating overfitting. However, even when the resulting fit matrix is
larger than the number of parameters, the matrix rank can still be lower and thus the
regression problem can still be ill-conditioned. This can, for example, happen in sys-
tems with a large primitive cell. Regularized regression is a technique used to combat
over-fitting and used together with cross-validation to assess the performance of the
resulting model, see [137–139] for applications to FCs where it is sometimes called CS.

During regularized linear regression in addition to the (typically) squared error im-
posed on the difference in forces an extra term is introduced to penalize large parameter
vectors. Thus not only must we find an accurate model but we must find it using few
or small parameters. Two common approaches are LASSO (𝐿1) and ridge regression
(𝐿2) which are typically defined as

min
𝑥

‖𝐴𝑥 − 𝑏‖2 + 𝜆 ‖𝑝‖𝑛 (A.1)

where the choice 𝑛 = 1 is called LASSO and 𝑛 = 2 is called ridge regression. The
parameter 𝜆 is called the regularization parameter and controls the trade-off between
bias and variance errors. A high bias error means that the model is unable to predict
patterns in the data and is thus under-fitted. If the variance error is high the model is
sensitive to noise in the training data and is over-fitted.

Many regularization techniques can also be formulated in a Bayesian framework.
The LASSO method is for example equivalent to a Laplace prior distribution together
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Figure A.1: Typical learning curve. As the training set increases the training error goes up (less
overfitting) while the validation error goes down until they meet at the noise level.

with an assumption of Gaussian noise. The reformulation of the regularization problem
in terms of Bayesian inference provides powerful tools to quantify uncertainties in the
models. It is, for example, possible to assess the effect of uncertainties in the PES on
the dispersion relation and use such error estimation to steer model construction.

A.1 Feature selection
A natural consequence of the regularization is that we get information about what fea-
tures in our model matter and which do not. Feature selection (and regularization in
general) has different names in different fields. In signal processing it is called com-
pressed sensing and is typically based on 𝑙1 regularization, i.e., LASSO. By assuming
sparse solutions of the problem the set of possible solutions can be reduced and con-
sequently signals can be recovered even when the amount of data is seemingly not
enough. From a Bayesian point of view we can regard it as a prior knowledge about
the correlation between the solution coefficients where we encode that not all coeffi-
cients can be large at the same time.

Popular methods include RFE and orthogonal matching pursuit (OMP) which can
be added on top of any standard training method. In RFE the least important features
are dropped iteratively starting from a full solution. In OMP features are instead itera-
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A.2. Cross validation
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Figure A.2: Typical hyper-parameter scanwith RFE.The training error decreasesmonotonically
as the model increases in complexity. At a certain point the validation error goes up indicating
overfitting. The minimum of the validation curve should in principle correspond to the best
generalization but in practice less complex models (less features) may be preferred.

tively added from a zero solution. Bayesian methods include ARDR which puts individ-
ual Gaussian priors on the coefficients and eliminates coefficients if their magnitude
relative to the posterior falls below a pre-defined threshold.¹

All methods discussed have one or more hyper-parameters that must be tuned. They
can either be the number of features or some continuous parameter(s). In either case
cross-validation can be used to determine optimal hyper-parameter to use.

A.2 Cross validation
In order to assess the performance of the model and to mitigate both over and under-
fitting cross-validation should be performed. The generated data is divided in three
sets: training, validation, and testing. Typically the training set is large compare to
the two other sets. The training set is used to fit the model and the validation set is
used to optimize the regularization parameter. If a large amount of data is available the
training error and the validation errors are the same, see Fig. A.1. This is equivalent to

¹The threshold value is a hyper-parameter of this method.
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saying that the learning curve has converged. If the validation error is at a minimum
with respect to the regularization parameter but much larger than the training error
we are in principle over-fitted but the error stems from lack of data, see Fig. A.2 for an
illustration. Once the optimal hyper-parameters have been selected the final model can
be evaluated again against the test set. If the scores on the validation and test sets are
similar the optimal choice of hyper-parameters should be independent of the choice of
validation set.

In addition to the RMSE information criteria can be used, such as AIC and BIC. For
Gaussian errors the BIC is given by (lower is better)

BIC(𝑘|𝑛) = 𝑛 log(MSE) + 𝑘 log(𝑛), (A.2)

where 𝑛 is the number of samples and 𝑘 the number of parameters. Here, we can see
that the BIC balances low error (low mean squared error (MSE)) against a complex
model (large 𝑘). Such criteria can aid in automatic determination of optimal models.

A.3 The Bayesian perspective
As mentioned, regularized regression and many other aspects of machine learning can
be analyzed in a Bayesian framework. This is especially useful when analyzing model
uncertainties or to encode general physical intuition. For linear models this analysis is
especially simple under some simplifying assumptions of the character of the noise.

Consider the linear model
𝑦 = 𝑋𝛽 + 𝜖 (A.3)

where 𝑦 is the observations, 𝑋 are the regressors, 𝛽 are the sought parameters and 𝜖
models the noise in the data. In the Bayesian framework we have some prior knowl-
edge about the true parameters encoded as a probability distribution. This is simply
called ”the prior distribution” 𝑃prior(𝛽; 𝜃𝛽) which can depend on some auxiliary param-
eter 𝜃. This auxiliary parameter is called a hyper parameter. Our model above defines
a likelihood function under some suitable choice of the noise function. The noise is
typically assumed to be normally distributed 𝜖 ∼ 𝑁(𝜎2) with some unknown variance.
The variance is also controlled by some hyper parameter 𝜃𝜎 . This fully defines the prior
knowledge and the likelihood function 𝐿 of making the observation (𝑦, 𝑋) given the
parameters (𝛽, 𝜎). For our simple model we get

𝐿(𝑋, 𝑦; 𝛽, 𝜎) ∝ exp(−(𝑋𝛽 − 𝑦)2/𝜎2). (A.4)

Bayes theorem then states that the posterior distribution on the parameters is given by

𝑃posterior(𝛽, 𝜎) ∝ 𝐿(𝑦, 𝑋; 𝛽, 𝜎)𝑃 (𝛽, 𝜎; 𝜃). (A.5)
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For certain combinations of distributions and likelihood functions it is possible to di-
rectly relate 𝜃posterior with 𝜃prior given the observations. Certain regularizations directly
corresponds to the choice of the prior distribution. For example the ridge regression cor-
responds to the normal distribution and the solution is given by a closed form. LASSO
on the other hand corresponds to a Laplace prior and must be solved using numerical
methods.
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B
Derivation of the Green-Kubo

expression

As a bonus section I’ll try to motivate the Green-Kubo formula in a language which
might bemore familiar. Consider themacroscopic energy density𝐸(𝑥, 𝑡) of thematerial
where we assume that the energy has been shifted so that ⟨𝐸(𝑥, 𝑡)⟩ = 0 in equilibrium.
The energy density obeys the continuity equation

̇𝐸 = −∇𝑗 (B.1)

for some energy current 𝑗(𝑥, 𝑡). In the weak field limit the current can be assumed to
vary linearly with the gradient of the energy density (Fourier’s law)

𝑗 = −𝛼∇𝐸 (B.2)

where 𝛼 is the thermal diffusivity (area per time). Putting these two together we get
the heat equation

̇𝐸 = 𝛼∇2𝐸. (B.3)

This is the macroscopic equations of motion for the thermal conduction in the mate-
rial. We shall now see what the corresponding equations look like for the microscopic
picture.

The microscopic energy density can be written as

𝐸(𝑥, 𝑡) = ∑
𝑖

𝐸𝑖(𝑡)𝛿(𝑥 − 𝑥𝑖(𝑡)) (B.4)

for some atomic partition of the energies. In principle any proxy for the temperature
for which the macroscopic continuity equation holds should be sufficient. The spatial
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Fourier transform of the energy density looks like

𝐸(𝑘, 𝑡) = ∑
𝑖

𝐸𝑖(𝑡)𝑒−𝑖𝑘𝑥𝑖(𝑡). (B.5)

By inserting this into the heat equation we get

̇𝐸(𝑘, 𝑡) = −𝛼𝑘2𝐸(𝑘, 𝑡). (B.6)

Now let’s multiply both sides with ̇̄𝐸(𝑘, 0) (a bar signifies complex conjugation) and
Taylor expand the L.H.S. to second order in 𝑘 to match the R.H.S.

1
2

𝜕2

𝜕𝑘2 ( ̇𝐸(𝑘, 𝑡) ̇̄𝐸(𝑘, 0))𝑘=0
= −𝛼𝐸(0, 𝑡) ̇̄𝐸(0, 0). (B.7)

Notice the similarity with the other correlation we’ve seen. We now define the Fourier
transformed current density as

𝑗(𝑘, 𝑡) = 𝜕
𝜕𝑡 ∑

𝑖
𝐸𝑖(𝑡)𝑥𝑖(𝑡)𝑒−𝑖𝑘𝑥𝑖(𝑡) (B.8)

and notice that 𝜕𝑘 ̇𝐸 = −𝑖𝑗 leading to (suppressing 𝑘 = 0)

𝑗(𝑡) ̄𝑗(0) − 1
2 (𝑗′(𝑡) ̇̄𝐸(0) + ̇𝐸(𝑡) ̄𝑗′(0)) = −𝛼𝐸(𝑡) ̇̄𝐸(0). (B.9)

where 𝑗′(𝑡) = 𝜕𝑡 ∑𝑖 𝐸𝑖(𝑡)𝑥2
𝑖 (𝑡). We can now in the long wavelength limit drop the

complex conjugation since all variables are real. Now let’s embrace the equation with
an ensemble average and tidy up

𝐶𝑗𝑗(𝑡) − 1
2 (𝐶𝑗′ ̇𝐸(𝑡) + 𝐶 ̇𝐸𝑗′(𝑡)) = −𝛼𝐶𝐸 ̇𝐸(𝑡). (B.10)

where we have defined the correlation function as 𝐶𝐴𝐵(𝑡) = ⟨𝐴(𝑡)𝐵(0)⟩. We nowmake
use of some properties of correlation functions. First we know that 𝐶𝐴𝐵(𝑡) = 𝐶𝐵𝐴(−𝑡)
and second that ̇𝐶𝐴𝐵 = 𝐶 ̇𝐴𝐵 . We get

𝐶𝑗𝑗(𝑡) − 1
2

𝜕
𝜕𝑡 (−𝐶𝐸𝑗′(−𝑡) + 𝐶𝐸𝑗′(𝑡)) = 𝛼 ̇𝐶𝐸𝐸(−𝑡). (B.11)

Finally after we perform a Laplace transform and take the 𝑠 = 0 limit the second term
at the L.H.S. will vanish (or by invoking detailed balance already in the step above)

∫
∞

0
𝐶𝑗𝑗(𝑡)𝑑𝑡 = 𝛼 ∫

∞

0
̇𝐶𝐸𝐸(−𝑡)𝑑𝑡 = −𝛼 [𝐶𝐸𝐸(𝜏)]

−∞
0 = 𝛼 ⟨𝐸2⟩ (B.12)
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where we recognize (remember 𝐸 = 𝐻 − ⟨𝐻⟩) the R.H.S. as ⟨𝐸2⟩ = 𝑉 𝐶𝑉 𝑘𝐵𝑇 2. We
can thus conclude that since the thermal diffusivity is given by the thermal conductivity
as 𝛼 = 𝜅/𝐶𝑉 we get

𝜅 = 1
𝑉 𝑘𝐵𝑇 2 ∫

∞

0
𝐶𝑗𝑗(𝜏)𝑑𝜏 (B.13)

which is the Green-Kubo expression from before. The steps needed was (1) a continuity
equation for the energy density, (2) the linear response step where the current was pro-
portional to the gradient, and (3) a long wavelength limit followed by a low frequency
limit.
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