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ABSTRACT
This work addresses the performance of a full scale pro-
peller in an open water setup for varying roughness heights,
obtained with a RANS solver and the k−ω SST turbulence
model. The application of roughness is done with wall
functions and by resolving the boundary-layer. Two cases
are considered for the same propeller geometry, one with
and another without the anti-singing edge on the propeller
blades. Baseline simulations without roughness are per-
formed as well, and grid refinement studies are carried out
to estimate the numerical uncertainty. The results showed
that the influence of roughness is weak if wall functions are
not used, whereas a significant decrease in thrust and torque
is obtained if roughness is applied in conjunction with wall
functions. The inclusion of the anti-singing edge leads to
an increase in thrust and torque, but decrease in efficiency
for low advance coefficients. The region of separated flow
near the trailing edge of the propeller caused by the anti-
singing edge is influenced by the roughness height, and is
absent in the geometry without the anti-singing edge.

Keywords
Marine Propeller, Turbulence Modelling, Roughness, Anti-
singing Edge, Full Scale.

1 INTRODUCTION
The prediction of propeller performance is one of the key
aspects in maritime engineering. To achieve this, both
model testing and Computational Fluid Dynamics (CFD)
may be considered. With the first approach, propeller char-
acteristics at model scale operating in open water are di-
rectly obtained. However, it is impossible to guarantee
Reynolds number similarity with a full scale operation.
This results in a lower Reynolds number in the experi-
ments, where transitional effects may play an important
role (Baltazar et al 2018), and an appropriate scaling pro-
cedure is required to estimate the performance at full scale.
On the other hand, CFD is capable of handling both model
scale and full scale conditions. At model scale transitional
effects are once again a challenge, as the usual “fully-
turbulent” approach leads to negligible extents of laminar
flow, and additional models are required to accurately pre-
dict transition and its triggering mechanisms such as natu-
ral or crossflow transition. Naturally, the inclusion of such

effects is important in order to enable fair comparisons with
available experimental data where the flow was not tripped.

The much higher Reynolds number of the flow at full scale
means that the fully turbulent approach can be considered
as suitable, and so transition is not a concern. However,
the flow is still strongly affected by the roughness of the
blades and geometrical features. One of these features is
the anti-singing edge - a chamfer of the trailing edge - used
to prevent propeller singing, a noise causing phenomenon
in which the vortex shedding at the trailing edge of the
blade causes resonance on some frequencies of the blade
(Carlton 1994).

The inclusion of surface roughness effects in CFD is a chal-
lenging topic which extends far beyond propeller perfor-
mance (Eça et al 2022, Orych et al 2022). The resolution
required to resolve the roughness on the surface leads to
prohibitive computational requirements for practical appli-
cations and so its effects are usually accounted in a differ-
ent fashion. If the boundary layer is fully resolved, i.e. if
wall functions are not used, then roughness is included by
a modification of the boundary conditions of the turbulence
model on the surface. If wall functions are used, then a shift
in velocity is computed and used to adjust the law of wall
equation. Regardless of how the boundary layer is treated,
the inclusion of roughness also requires some knowledge
regarding its characterization, usually in the form of a value
for the equivalent sand grain roughness (Andersson et al
2020). The determination of this value from measurements
is not straightforward (Andersson et al 2020), and out of
the scope of the present paper. Logically, if different ap-
proaches are chosen to represent the boundary layer, it is
natural to expect that the application of roughness with the
same value of equivalent sand grain roughness may have
a different effect. In the context of propeller performance,
the study of roughness is usually focused on its influence
on cavitation (Asnaghi et al 2021, Sezen et al 2021).

This paper explores the effect of surface roughness on the
propeller performance at full scale and on the flow field
around the propeller blade, and the influence of how the
boundary layer is handled. The effect of the anti-singing
edge and its interaction with roughness is explored as well.
To this end, simulations are performed for a controllable
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pitch propeller at full scale in open water conditions. Two
different variations of the geometry are considered, one
with the anti-singing edge and one without it. The propeller
performance is assessed for the two variants of the geome-
try and varying advance coefficients, and considering both
a fully resolved boundary layer and wall functions, for a
hydrodynamically smooth surface and for a rough surface
with an equivalent sand-grain roughness of 30 µm. Varia-
tions of the roughness height for a constant advance coeffi-
cient are also considered.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the mathematical formulation of the prob-
lem and corresponding models used. The definition of the
problem and numerical setup is described in Section 3.
The main results of this work are presented and discussed
in Section 4, while the main conclusions arising from the
study are summarized in Section 5.

2 MATHEMATICAL FORMULATION
This paper addresses the flow of an incompressible, Newto-
nian fluid, governed by Reynolds-averaged Navier-Stokes
(RANS) equations. The flow is assumed to be statistically
steady, such that mean flow quantities are time averaged.
Under these conditions, the continuity and RANS equa-
tions can be written as

∂Ui

∂xi
= 0, (1)

ρUj
∂Ui

∂xj
= − ∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)]
+

∂τij
∂xj

,

(2)
where Ui are the Cartesian components of the mean ve-
locity vector, xi are the coordinates of the Cartesian coor-
dinate system, ρ is the density of the fluid, P is the mean
pressure of the fluid relative to the hydrostatic pressure, µ is
the kinematic viscosity of the fluid and τij is the Reynolds
stress tensor.

The Reynolds stress tensor is determined based on the
eddy-viscosity assumption, meaning that the Reynolds
stresses are obtained from

τij = µt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 2

3
kδij , (3)

where µt is the eddy-viscosity, k is the turbulence kinetic
energy and δij is the Kronecker delta function.

The calculation of k and µt is done through the use of the
k − ω Shear Stress Transport (SST) model (Menter 1994).
The k−ω model solves two transport equations, one for the
k and another for the specific turbulence dissipation rate ω
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∂k

∂xj

∂ω
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. (5)

In these equations Pk, Dk, Pω and Dω are the production
and dissipation terms of the turbulence kinetic energy and
specific dissipation rate, respectively, whereas σk, σω and
σω2 are constants and F1 is a blending function.

It should be noted that the implementation of the SST
model used in this work differs slightly from that given by
Menter (1994). One of the differences lies in the calcula-
tion of the eddy-viscosity, which is determined from

µt = ρkmin

(
1

max (ω, (SF2) /0.31)
,
0.6√
3S

)
, (6)

where S is the mean strain rate magnitude and F2 is a
blending function of the model. This modification aims
at preventing the growth of the eddy-viscosity in stagnation
regions, as no limiter is used in Pk, unlike what is described
by Menter (1994). The remainder of the formulation fol-
lows the original publication.

3 PROBLEM DEFINITION
All of the simulations performed for this work were
done with the commercial CFD software STAR-CCM+
2022.1.1. It employs the finite volume method for discreti-
sation of the differential equations and the SIMPLE algo-
rithm to solve the Navier-Stokes equations. The segregated
flow solver is used to solve the system of linear equations
and second order schemes are used for the discretisation of
the convective term of all transport equations.

The computational domain is a cylinder with a diameter of
60D where D is the diameter of the propeller. The domain
is divided into two non-overlapping regions, an inner one
consisting of a cylinder centered on the propeller, with a
diameter of 1.25D, and a length of 2D, and the outer re-
gion that makes up the rest of the domain. In the inner
region, the equations are solved in the body-fixed coordi-
nate system, meaning that the flow can be considered as
steady. The propeller is placed in the center of the domain,
which has a length of 60D, such that the inlet and outlet
are placed 30D away from the propeller plane.

The velocity and turbulence quantities are specified at the
inlet, whereas the pressure is specified at the outlet. A sym-
metry condition is enforced on the outer boundary of the
domain. Two different approaches are used for the wall
boundary conditions. In one case, the boundary layer is
resolved and the shear-stress at the wall, τw, is computed
directly from its definition. In the second approach, wall
functions are used instead.

The application of roughness depends on whether wall
functions are used or not. If wall functions are not used,
roughness is applied through the boundary condition for ω,
which is written as

ω =
ρu2

τ

µ
Sr, (7)

where

Sr =


(
50
k+

)2
, 5 ≤ k+ ≤ 25

100
k+ , k+ ≥ 25.

(8)
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k+ is the dimensionless roughness height, determined as

k+ =
ρuτks
µ

, (9)

where uτ =
√
τw/ρ is the friction velocity and ks is the

equivalent sand-grain roughness height.

If wall functions are used, then the log-law is given by

U+ =
1

κ
ln
(
y+

)
+B −∆U+, (10)

where U+ and y+ are the dimensionless velocity and wall
coordinate, respectively, κ is the von Kármán constant, B is
a constant and ∆U+ is the roughness function which rep-
resents the change in the velocity profile due to roughness.
The roughness function of Demirel et al (2017) is used to
compute ∆U+

∆U+ =


0, k+ ≤ 3
1
κ ln (0.26k+)

f(k+)
, 3 < k+ ≤ 15

1
κ ln (0.26k+) , 15 < k+,

(11)

with

f(k+) = sin

 π
2 log

(
k+

3

)
log (5)

 . (12)

STAR-CCM+ uses a limiter by default to ensure that k+ ≤
y+. For the purpose of this work, this limiter is disabled,
otherwise it would be impossible to assess the influence of
the different ks values, particularly when wall functions are
not used.

Two propeller geometries are used, which differ only in
the existence of the anti-singing edge. The trailing edge
of a blade is depicted in Figure 1 for the two geometries.
Several different conditions are simulated for each geom-
etry. Nine advance coefficients ranging from J = 0.34
to J = 0.992 are considered, and the Reynolds number
varies from 2.4×107 to 2.6×107. The advance coefficient
is changed by only modifying the inlet velocity and keep-
ing the rotation rate of the propeller constant, minimizing
the change in Reynolds number. For the simulations with
roughness, the equivalent sand-grain roughness is varied
from 0.5 µm up to 300 µm. It is noted that while this is
just a systematic variation to assess the change in the flow,
the upper limit of this range might be excessive compared
to what might be encountered for an actual propeller. The
simulations for different advance coefficients are done for
four different settings:

• Propeller geometry with the anti-singing edge with
resolved boundary layer and smooth surface;

• Propeller geometry with the anti-singing edge with
wall functions and smooth surface;

• Propeller geometry with the anti-singing edge with
resolved boundary layer and rough surface (ks = 30
µm);

• Propeller geometry without the anti-singing edge
with resolved boundary layer and smooth surface.

Figure 1: Comparison of the two propeller geometries at the
trailing edge with the anti-singing edge (top) and without the
anti-singing edge (bottom).

The variation of ks is done for a single advance coefficient
J = 0.835. These simulations are done for both propeller
geometries, with and without wall functions.

In order to make the presentation of the data easier and
to facilitate the discussion of the results, specific designa-
tions are used to identify the simulations. Calculations per-
formed with wall functions are identified as WF, whereas
simulations that resolve the boundary layer are instead la-
belled as WR. The simulations that account for rough-
ness are usually identified by the corresponding roughness
height value, or by the non dimensional height k+ instead,
while simulations that do not account for roughness are
identified as “smooth”. Finally, when addressing the in-
fluence of the anti-singing edge, simulations done on the
geometry with this feature are referred to as “with ASE”,
whereas the calculations on the geometry without the anti-
singing edge are mentioned as “no ASE”.

Different cell types are used in the computational domain.
The inner region around the propeller is filled with polyhe-
dral cells, enabling the use of the advancing layer mesher
for the prism layers, which generates high quality prism
layers around the propeller blades and hub. The remain-
der of the domain is filled with hexahedral cells, which
grow from the interface between the two regions to the
outer boundaries of the domain. Figure 2 illustrates the grid
topology around the propeller and on the propeller surface.

Two sets of five nearly geometrically similar grids are used
for the simulations of all cases. One set is used for the sim-
ulations with wall functions and another set is used for the
simulations where the boundary layer is resolved. In each
set, the grids are designed to cover a grid refinement ratio
of two, but due to the use of an unstructured grid topology
the actual refinement is lower. Grids of the same refine-
ment level between different sets have the same sizes and
differ only on the number of prism layers and total thick-
ness of the prism layer, to ensure suitability of the size of
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the first cell above the wall for fully resolving the bound-
ary layer in one set, and for the use of wall functions on
the other. It should be mentioned that unlike what is com-
monly done with wall functions, the size of the first layer
above the wall is not kept constant as the grid is refined.
Instead, the coarsest grid is designed so that its y+ is in the
range of 100, meaning that the finest grid of the set is still
suitable for the use of wall functions. Details of the grid
sets used are given in Table 1 in terms of the number of
faces on the propeller blades #S and total number of vol-
ume cells #V for the grid set where the boundary layer is
resolved (WR) and for the grid set where wall functions are
used (WF).

Figure 2: Grid on the propeller plane (top) and around the
propeller blades and hub (bottom).

Table 1: Details of the grids used for the propeller geometry
with the anti-singing edge in terms of the number of faces on
the propeller blades #S and total number of volume cells #V
for the set where the boundary layer is resolved (WR) and for
the set where wall functions are used (WF).

Grid #S #V (WR) #V (WF)
5 78,200 7.8M 5.1M
4 106,140 14.3M 9.5M
3 145,853 23.7M 15.8M
2 194,036 36.6M 24.4M
1 234,426 52.3M 35.2M

The numerical error in steady simulations is typically di-
vided into three different contributions (Roache 2009): dis-
cretization error, iterative error, and round-off error. The
round-off error arises due to the finite precision of comput-
ers in representing and storing numbers. In this work, all
the simulations are done in the double precision version of
STAR-CCM+, making the round-off error negligible when
compared to the remaining components.

The iterative error is caused by the iterative methods used
to solve the linear system of equations. With regards to
this error, the forces on the propeller blades and hub are

monitored throughout the simulation, as well as the L2

norm of the normalized residuals. The residuals are nor-
malized such that they correspond to dimensionless vari-
able changes in a simple Jacobi iteration. Although it is not
possible to drive the residuals down to machine precision,
when each simulation is stopped the L2 norm of the resid-
uals of all variables is around or lower than 10−5, and there
is no significant change in the forces monitored. Thus, the
iterative error is neglected as well.

This means that the dominant component of the numerical
error is the discretization error, which is a consequence of
the discretization of the governing equations and the com-
putational domain. In order to estimate it, the procedure
developed by Eça and Hoekstra (2014) is used. This proce-
dure relies on a power series expansion of the error written
as

e ≈ ϕi − ϕ0 = αhp
i , (13)

where e is the discretization error, ϕi is the value of any
given quantity of interest in grid i, ϕ0 is the estimate exact
solution of mathematical model, α is an error constant, p
is the order of grid convergence and hi is the typical cell
size. In Equation (13) there are 3 unknowns, α, p, and ϕ0,
meaning that one requires the solution on at least 3 grids to
obtain the error. In the method of Eça and Hoekstra (2014),
data from more than 3 grids is used, and Equation (13) is
solved in the least-squares sense, in order to mitigate the
effect of noise that is usually present in CFD calculations.
Finally, the method estimates the numerical uncertainty of
a given quantity at a desired grid based on the estimated
discretization error, the variation of the solution between
different grids, and the quality of the least-squares fit.

One important aspect in the application of methods based
on grid refinement studies is the definition of the grid
size. Generally, these methods require geometrically simi-
lar grids for their application, a constraint that is incompat-
ible with the use of unstructured grids. The method is used
nonetheless, with the typical cell size being defined based
on the number of cell faces on the propeller blades such

that hi =
(

1
#S

)1/2

, as according to Rocha et al (2017).

The main quantities of interest addressed in this work are
those that relate to the performance of the propeller, namely
the thrust coefficient KT , the torque coefficient KQ, and
the efficiency η. These are defined as

KT =
T

ρn2D4
, (14)

KQ =
Q

ρn2D5
, (15)

η =
JKT

2πKQ
. (16)

In these equations, T and Q are the propeller thrust and
torque, respectively, whereas n is the propeller rotation rate
in rps. The skin-friction coefficient Cf on the surface of the
blades is presented as well, and it is written as

Cf =
τw

1
2ρU

2
Ref

, (17)
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where URef is the reference velocity, computed as the ve-
locity at 70% of the propeller radius, meaning that URef =√
V 2
A + (0.7Dπn)

2.

4 RESULTS
Figure 3 presents the relative variation for KT , KQ and
η, where the reference value considered corresponds to
those obtained for the simulation with the resolved bound-
ary layer and no roughness. Figure 3 shows that the ap-
plication of roughness leads to a reduction of less than 1%
in KT and KQ for the lowest advance coefficients, with a
slight decrease in efficiency as well. As J increases, KT

and KQ decrease further, with the reduction in the former
being stronger, which also leads to an overall decrease of
the efficiency that reaches 4% at the highest advance coef-
ficient simulated. When wall functions are used, a reduc-
tion in the thrust coefficient is observed, which is similar
to that obtained if roughness is used. On the other hand,
there is a stronger decrease on the torque coefficient, ulti-
mately leading to a higher efficiency. This trend remains
for most of the advance coefficients simulated with the ex-
ception of the highest one. For these conditions, the de-
crease of the propeller thrust is more pronounced than the
decrease in torque, causing a very slight reduction in the
efficiency, lower than 1%.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
J
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0.96
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10KQ - WR, ks = 30 µm

KT - WR, ks = 30 µm

η - WR, ks = 30 µm

10KQ - WF, ks = 0

KT - WF, ks = 0

η - WF, ks = 0

Figure 3: Comparison of the performance of the smooth WF
and rough WR (ks = 30 µm) approaches relative to the
smooth WR solution at varying advance coefficients for the
geometry with the anti-singing edge.

Tables 2 and 3 present the estimate of the numerical uncer-
tainty obtained for the thrust and torque coefficients of the
propeller for different advance coefficients and the smooth
WR and WF approaches, as well as the WR approach with
ks = 30 µm. A general trend for both quantities is the
increase of the uncertainty with the increase of J . Since
the uncertainty is provided in relative terms, it must be
mentioned that in some cases, particularly at the lowest ad-
vance coefficients, the estimated absolute value of the un-
certainty is actually lower, but since KT and KQ decrease,
this causes an increase in the relative uncertainty. Another
trend in the data is that the highest uncertainty is typically
obtained when the boundary layer is resolved and rough-
ness is not applied, with the exception of the highest ad-
vance coefficient tested. In this regard, it is clearly seen
that the use of wall functions leads to a much lower un-

certainty than the remaining approaches. Furthermore, the
uncertainty of the different modelling approaches is consid-
erably larger than the relative variation exhibited in Figure
3.

Table 2: Estimate of the numerical uncertainty of the thrust
coefficient obtained for several advance coefficients for the
smooth WR and WF cases and the WR approach with a
roughness height of ks = 30 µm.

U(KT )
J WR ks = 0 WR ks = 30 µm WF ks = 0

0.34 6.4% 4.2% 0.6%
0.425 4.7% 3.4% 1.9%
0.508 6.3% 3.5% 1.3%
0.588 4.7% 2.6% 1.3%
0.670 6.0% 3.6% 1.7%
0.751 8.2% 5.3% 3.3%
0.835 10.7% 6.7% 3.6%
0.914 15.5% 5.1% 6.4%
0.992 6.6% 12.2% 8.8%

Table 3: Estimate of the numerical uncertainty of the torque
coefficient obtained for several advance coefficients for the
smooth WR and WF cases and the WR approach with a
roughness height of ks = 30 µm.

U(KQ)
J WR ks = 0 WR ks = 30 µm WF ks = 0

0.34 5.7% 3.3% 1.6%
0.425 6.0% 3.6% 1.4%
0.508 5.2% 3.6% 1.8%
0.588 5.6% 3.8% 2.1%
0.670 6.1% 4.4% 2.1%
0.751 7.7% 5.9% 3.0%
0.835 9.6% 7.3% 4.0%
0.914 13.1% 9.8% 5.8%
0.992 19.4% 15.6% 10.7%

We now turn our attention to the variation of the roughness
height for a single advance coefficient. Figure 4 shows the
relative variation in efficiency and thrust and torque coef-
ficients obtained at J = 0.835 as a function of the dimen-
sionless roughness height for the simulations done with the
resolved boundary layer and using wall functions. In this
case, the values are given relative to the corresponding sim-
ulations without roughness.

Addressing first the simulations where the boundary layer
is resolved, the application of roughness leads to a decrease
in all quantities less than 1% for k+ < 1. In the range
1 < k+ < 10 a significant reduction is observed in all
quantities, with the thrust decreasing by almost 2%. As the
roughness height is further increased up to k+ = 100, only
a small decrease is observed in the propeller performance.
A difference in trend is observed for the simulation with
the highest roughness computed, as the torque coefficient
increases, causing a drop in the efficiency of around 1%.
Although not shown in Figure 4, the friction and pressure
components of the thrust and torque were compared. In the
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case of the thrust coefficient, the increase of the roughness
height causes a decrease in both the friction and pressure
components, with the variation in the friction component
being one order of magnitude lower than the pressure con-
tribution. Thus, the change in KT is dominated by the pres-
sure contribution, explaining the decrease as the roughness
height increases. In the case of the torque coefficient, the
increase of k leads to a reduction of the pressure compo-
nent, while the friction one increases. For all roughness
levels but the highest one, the dominant effect is that of the
pressure, leading to the decrease of torque. In the range of
the two highest roughness heights simulated, the effect of
the friction contribution is larger than that of the pressure
component, leading to the overall increase in torque.

Analysing now the simulations where wall functions are
used, it is clear that the influence is much greater than if
the boundary layer is resolved. The decrease of KQ reaches
9%, while that of KT has a maximum value of 17%, for the
highest value of roughness height tested. It should also be
mentioned that despite using the same values of ks for both
sets of simulations, the resulting mean k+ on the propeller
blades shows some differences. A peculiar behaviour oc-
curs in the range 10 < k+ < 22, which corresponds to
15 µm < ks < 30 µm, in which the torque and thrust
increase with the increase of ks. In this particular range,
the pressure components of both torque and thrust increase
from k+ = 10 to k+ = 22, although the general trend of
the pressure components of torque and thrust is to decrease
with increasing roughness. This is observed for all other
variations of roughness.
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Figure 4: Variation of KT , KQ and η with varying roughness
height of the rough WR and WF conditions relative to the cor-
responding smooth conditions at J = 0.835 for the geometry
with the anti-singing edge.

A comparison of the skin friction coefficient and limiting
streamlines on the suction side of the blade at J = 0.835
is illustrated in Figure 5 for the WR and WF cases without
roughness, and the WF solution with a roughness value of
ks = 15 µm. The solutions without roughness display a
similar behaviour, with a small variation in Cf , most no-
tably at the tip of the blade. Across all cases it is possible

to see that the flow undergoes separation near the trailing
edge, as a consequence of the anti-singing edge, although
it does not extend until the tip of the blade. It is also noted
that the geometrical influence of the anti-singing edge be-
gins upstream of when flow separation takes place. The
solution with wall functions and a roughness height of 15
µm exhibits the highest Cf , a natural consequence of the
use of roughness. It was also found that roughness plays a
role in the extent of the separation zone at the trailing edge
if wall functions are used.

This is confirmed in Figure 6, which shows Cf and stream-
lines on the blade for the WF solutions for three levels of
roughness height ranging from ks = 15 µm to ks = 300
µm. Besides the increase of Cf with increasing roughness
height, it is seen that the extent of the separation zone at
the trailing edge is also slightly affected by roughness, ex-
tending more towards the tip of the blade as roughness in-
creases. Although not shown in the paper, the same does
not hold true if wall functions are not used. When the WR
approach is employed, the increase in Cf for the highest
roughness height is much smaller, and there is a minimal
effect on the separation zone at the trailing edge.

Figure 7 presents the results obtained for the smooth WR
sets for the two geometries tested. Significantly lower KT

and KQ are obtained for the geometry without the ASE, re-
sulting in slightly higher efficiency for most of the J range
tested. However, when the propeller is lightly loaded, there
is a significant drop in the efficiency. The numerical uncer-
tainty, given in the form of the error bars, is also consider-
ably lower for the geometry without the ASE, with the ex-
ception of some conditions that exhibited non-monotonic
converge and thus led to a very conservative estimate of
the numerical error.

A comparison of the effect of roughness for the geom-
etry without the anti-singing edge is presented in Figure
8. The trends observed match those discussed for the ge-
ometry with the anti-singing edge, as the influence of the
roughness height is much smaller when the WR approach is
used, when compared to the application of wall functions.
The sporadic increase of KT and KQ at certain roughness
heights is also observed. Comparing the results with those
in Figure 4 shows that the variation of KT and KQ with
the roughness height seems to be lower for the geometry
without the anti-singing edge. Considering the WF case,
the thrust coefficient exhibits a reduction of around 6% at
k+ = 10 for the geometry with ASE, whereas the cor-
responding simulation for the geometry without the anti-
singing edge only decreases by 4%. A similar behaviour
is observed for the torque coefficient, albeit with a larger
variation, particularly at the highest roughness heights. Al-
though not shown here, the estimated numerical uncer-
tainty is also the lowest when wall functions are used, and
tends to decrease with the increase in roughness height.
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Figure 5: Skin-friction coefficient and limiting streamlines on
the suction side of the propeller blade at J = 0.835 for the
smooth WR (top), smooth WF (middle) and rough WF ks = 15
µm (bottom) conditions for the geometry with the anti-singing
edge.

Figure 6: Skin-friction coefficient and limiting streamlines on
the suction side of the propeller blade at J = 0.835 for the
rough WF conditions with ks = 15 µm (top), ks = 50 µm
(middle) and ks = 300 µm (bottom) for the geometry with the
anti-singing edge.
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Figure 7: Open water diagram for smooth WR conditions for
the geometries with and without the ASE.
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Figure 8: Variation of KT , KQ and η with varying roughness
height of the rough WR and WF conditions relative to the cor-
responding smooth conditions at J = 0.835 for the geometry
without the anti-singing edge.

Figure 9 depicts the limiting streamlines and Cf on the
suction side of the propeller blade for different conditions.
Similarly to the previous results, the increase in roughness
height leads to an increase in Cf . However, in contrast to
the geometry with the ASE, there is no separation near the
trailing edge of the blade, even for the highest roughness
height used with wall functions.

5 CONCLUSIONS
This study assessed the influence of roughness on the per-
formance of a full scale propeller, considering its applica-
tion through the use of wall functions and by resolving the
boundary-layer and instead changing the boundary condi-
tion for ω at the wall. The importance of the anti-singing
edge on the propeller blades was also investigated. A four
blade controllable pitch propeller in an open water setup
was simulated using the RANS equation and the k−ω SST
turbulence model. Grid refinement studies were conducted
for all cases in order to estimate the numerical uncertainty
of the simulations. The main conclusions of the study are
as follows:

• The use of wall functions for a propeller with a
smooth surface, i.e. with no roughness applied, leads
to a small reduction in the predicted thrust and torque
coefficients. The difference grows larger with the in-
crease of the advance coefficient, with the efficiency

of the propeller obtained with smooth wall functions
being slightly higher than that of the smooth wall re-
solved approach, except at the highest J considered.

• The application of roughness when the boundary
layer is resolved leads to a small effect on the pro-
peller performance, with a maximum decrease of
2.5% for the propeller thrust at the highest rough-
ness height tested. On the other hand, the influence
of roughness is stronger if wall functions are used,
with the propeller thrust decreasing by over 15% for
the highest roughness height tested.

• The comparison of the simulations performed with
and without the anti-singing edge showed that this
geometrical detail has a strong impact on the thrust
and torque. The simulations performed without the
anti-singing edge exhibited lower KT and KQ, and
an overall increase of efficiency. However, for con-
ditions where the propeller is lightly loaded, the ef-
ficiency of the propeller is actually lower when the
anti-singing edge is not present.

• The combined use of roughness and wall functions
was seen to have an impact on the separated flow re-
gion obtained near the trailing edge of the propeller
blades, as a consequence of the anti-singing edge.
The influence of roughness is smaller for the geom-
etry without the anti-singing edge, and no flow sep-
aration is visible near the trailing edge, regardless of
the conditions.

The results of this study show that the effect of roughness
depends greatly on whether wall functions are used or not.
Even though resolving the boundary layer is the most ac-
curate approach since it avoids the inherent limitations of
wall functions, its combination with roughness is trouble-
some due to the requirements on the size of the first cell
above the wall. This constraint means that in some situa-
tions the size of the near-wall cell might be lower than the
roughness height, a physically questionable situation. On
the other hand the use of wall functions allows for a much
higher size of the first cell above the wall, thus avoiding
this situation and also leading to reduced computational
cost. Nonetheless, their application in the presence of
strong adverse pressure gradients or separated flow should
be avoided. When all factors are considered, wall functions
seem to provide the best framework for the application of
roughness, although it is clear that further development is
required in this area. However, experimental data would
be required in order to provide further confidence that the
effects of roughness are better reproduced with wall func-
tions rather than resolving the boundary layer.
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Figure 9: Skin-friction coefficient and limiting streamlines on
the suction side of the propeller blade at J = 0.835 for the
smooth WR (top), rough WF ks = 30 µm (middle) and rough
WF ks = 300 µm (bottom) conditions for the geometry with-
out the anti-singing edge.
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