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A B S T R A C T   

This study addresses the critical need for a constitutive model to analyze the cyclic plasticity of 
additively manufactured 316L stainless steel. The anisotropic behavior at both room temperature 
and 300 ◦C is investigated experimentally based on cyclic hysteresis loops performed in different 
orientations with respect to the build direction. A comprehensive constitutive model is proposed, 
that integrates the Armstrong-Frederick nonlinear kinematic hardening, Voce nonlinear isotropic 
hardening and Hill’s anisotropic yield criterion within a 3D return mapping algorithm. The model 
was calibrated to specimens in the 0◦ and 90◦ orientations and validated with specimens in the 
45◦ orientation. A single set of hardening parameters successfully represented the elastoplastic 
response for all orientations at room temperature. The algorithm effectively captured the full 
cyclic hysteresis loops, including historical effects observed in experimental tests. A consistent 
trend of reduced hardening was observed at elevated temperature, while the 45◦ specimen 
orientation consistently exhibited the highest degree of strain hardening. The applicability of the 
model was demonstrated by computing energy dissipation for stabilized hysteresis loops, which 
was combined with fatigue tests to propose an energy-based fatigue life prediction model.   

1. Introduction 

Additive manufacturing (AM) offers several advantages over conventional manufacturing (CM) methods, including greater design 
flexibility and reduced production times. These advantages have led to the gradual replacement of conventional manufactured metals 
by AM techniques. In particular, stainless steel 316L manufactured by powder bed fusion-laser beam (PBF-LB) is increasingly used in 
critical applications, such as in the nuclear power industry. The prediction of the cyclic plasticity and fatigue behavior of AM 316L is 
therefore of highest importance to assure the structural integrity in these applications. 

In PBF-LB, a high-powered laser selectively melts and fuses powdered metals together layer by layer to create a three-dimensional 
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Nomenclature 

b fatigue strength exponent 
c fatigue ductility exponent 
D stiffness tensor 
D Damage parameter 
E Young’s modulus 
F Hill’s parameter 
f yield function 
G Hill’s parameter 
H Hill’s parameter 
K0 kinematic hardening modulus 
K1 kinematic hardening parameter 
L coordinate transformation matrix 
m number of solution steps 
Nf fatigue life 
n plastic flow direction 
P Hill’s parameter tensor 
p power law exponent 
q back stress 
q̇ back stress increment 
R load ratio 
r Lemaitre parameter 
s Lemaitre exponent 
W dissipated energy density per cycle 
Wa energy density parameter 
Wb energy density parameter 
Wi dissipated energy density increment 
E Young’s modulus 
α accumulated plastic strain 
α̇ accumulated plastic strain increment 
β isotropic saturation exponent 
γ consistency parameter 
Δγ Lagrange (plastic) multiplier 
Δε strain increment 
ε strain tensor 
εa strain amplitude 
εe elastic strain tensor 
ε′

f fatigue ductility coefficient 
εp plastic strain tensor 
ε̇p plastic strain increment 
ξ relative stress tensor 
σ stress tensor 
σ̃ yield surface 
σa stress amplitude 
σeff effective stress 
σ′

f fatigue strength coefficient 
σh hydrostatic stress 
σsat isotropic saturation flow stress 
σY cyclic yield strength 
σY0 Hill’s average initial yield strength 
σY0.2 yield strength at 0.2 % plastic strain 

Acronyms 
AM additive manufacturing 
ASTM American society for testing and materials 
BD build direction 
CM conventional manufacturing 
EBSD electron backscatter diffraction 
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object. The PBF-LB process is characterized by rapid phase transitions, solidification and cooling which can have considerable effects 
on the final product’s geometry, microstructure, internal residual stresses and strength. The manufacturing process commonly en-
counters defects like porosity due to lack of fusion (LOF) and entrapped gas (Kruth et al., 2015), leading to adverse impacts on me-
chanical characteristics (Mukherjee, 2021). Additionally, the orientation of the final components with respect to the build direction 
(BD) creates anisotropic material properties. The microstructure of AM metals is characterized by columnar grains arranged along the 
laser BD and the monotonic strength has been found to be higher in the direction perpendicular to the BD compared to the BD (Wang 
et al., 2023; Wei et al., 2019). The cyclic elastoplastic response has also been shown to exhibit anisotropy for various metals (Agius 
et al., 2017, 2021; Lindström et al., 2020; Mooney et al., 2019a, 2019b). Post-processing techniques such as solution annealing (SA) 
can be conducted to obtain a uniform and fine-grained microstructure, stress relief and increase ductility to improve the mechanical 
performance. Another common technique in metal AM is hot isostatic pressing (HIP) which serves to densify the material by closing or 
reducing internal voids and LOF defects (Bronkhorst et al., 2019; Li et al., 2019; Liverani et al., 2017). Nevertheless, the anisotropic 
nature of AM materials remains a challenge. To accurately capture anisotropy and hardening mechanisms during cyclic plasticity of 
AM metals, it is crucial to develop appropriate material models. 

Constitutive models for cyclic plasticity play a crucial role in conducting fatigue life prediction analyses (Rautio et al., 2020; Riemer 
et al., 2014). Several studies have focused on modeling the cyclic plasticity of conventional metals (Abdel-Karim and Ohno, 2000; 
Chaboche et al., 2012; Chen et al., 2005; Krishna et al., 2009; Taleb and Cailletaud, 2011), including the use of a crystal plasticity 
framework (Cao et al., 2022; Pokharel et al., 2019). Muhammad et al. (2015) and Farooq et al. (2020) modeled the cyclic hardening 
behavior of conventional magnesium alloys and polycrystalline metals, respectively. For AM metals, Ghorbanpour et al. (2020) and 
Tancogne-Dejean et al. (2019) studied the monotonic response of Inconel 718 and 316L, respectively. Kourousis et al. (2016) modeled 
the elastoplastic response of AM Ti-6AL-4V but without taking the anisotropy into account. Lindström et al. (2020) proposed a 
constitutive model for the cyclic plasticity of an AM ductile nickel-based superalloy at elevated temperatures, considering the mul-
tilinear Ohno-Wang material model and a mid-life jumping procedure. Nonetheless, constitutive models describing the cyclic elas-
toplastic response of AM metals, considering the full cyclic hysteresis loops with historical effects, especially for the widely used 316L 
stainless steel, are lacking (Halama et al., 2021). This lack of predictive modelling is particularly notable when considering low cycle 
fatigue (LCF) of PBF-LB 316L at both room and elevated temperatures. It is noted that LCF is of major importance in a wide range of 
applications, such as for components in nuclear reactors enduring cyclic loads and thermal fluctuations at elevated temperatures. 

Accurate modelling of rate-independent plasticity in AM 316L stainless steel is therefore necessary to study the fatigue behavior, 
particularly under LCF conditions at room and elevated temperatures. To accurately depict phenomena like the Bauschinger effect, 
ratcheting, and saturation of hysteresis loops, appropriate hardening laws and constitutive models are crucial. A combination of ki-
nematic and isotropic hardening provides a more precise representation of metals experiencing plastic deformation. Frederick and 
Armstrong (1966) developed a nonlinear kinematic hardening model that included a strain-memory term, also known as the dynamic 
recovery term. This additional strain-memory term introduces nonlinearity into the model and leads to more accurate predictions of 
the Bauschinger effect. Other researchers have since improved upon this model to account for more complex material behaviors (Khan 
and Liu, 2012; Ohno et al., 2021), most famously by Chaboche (1989) where the proposed model was given as a superposition of 
several nonlinear kinematic hardening rules of the same form as the Armstrong-Frederick model. This improves accuracy by reducing 
overestimation of ratcheting effects. Voce (1948) proposed a nonlinear isotropic hardening law in which a saturation hardening term 
of the exponential type is appended to the yield strength, defining the initial size of the yield surface. 

This study aims to bridge this gap by providing a constitutive model for the cyclic plasticity of AM 316L stainless steel. It combines 
both nonlinear isotropic and nonlinear kinematic hardening laws to represent complete cyclic hysteresis loops using only one set of 
hardening parameters. The Armstrong-Frederick nonlinear kinematic hardening law and the Voce nonlinear isotropic hardening law 
were employed to model rate-independent cyclic plasticity at both room temperature and 300 ◦C. The constitutive model was 
developed for a transversely isotropic material behavior with respect to the BD by utilizing an anisotropic yield criterion. The cyclic 
elastoplastic response was successfully modelled using the classical return-mapping algorithm. Calibration of a single set of hardening 
parameters was conducted at each temperature using cyclic tests on specimens oriented at the 0◦ and 90◦ directions with respect to the 
BD. The model’s validity was confirmed through cyclic tests on 45◦ specimens, accurately capturing the complete stress-strain hys-
teresis loops, including historical effects and saturation. The algorithm was then employed to compute energy dissipation for stabilized 
hysteresis loops, which was combined with fatigue tests to propose an energy-based fatigue life prediction model. 

EDM electrical discharge machining 
HIP hot isostatic pressing 
LCF low cycle fatigue 
LOF lack of fusion 
LTO long term operation 
PBF-LB powder bed fusion-laser beam 
RT room temperature 
SA solution annealing 
SEM scanning electron microscope 
WLI white light interferometry  
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2. Experimental procedure 

2.1. Material 

The 316L stainless steel powder was produced by Höganäs AB in Sweden with the chemical composition shown in Table 1. The 
powder was gas atomized and had a spherical shape in the range of 15–45 µm with some instances of attached satellites (i.e., smaller 
particles attached to the main spherical particles), see Fig. 1a. The powder size distribution provided by Höganäs AB indicates that 3 % 
of the particles are less than or equal to 15 µm in diameter, while 1 % exceed 45 µm. Cylinders in the 0◦, 45◦ and 90◦ directions with 
respect to the BD were manufactured with the powder bed fusion – laser beam (PBF-LB) process using the AM400 Renishaw machine, 
see Fig. 1b. To prevent chemical oxidation, an inert atmosphere was created using Argon gas throughout the process with an oxygen 
concentration less than 0.1 %. The cylinders were manufactured using standard process parameters, see Table 2, where different 
scanning strategies were employed for the border and interior sections of the parts. The layer thickness is 50 µm with a hatch layer 
rotation of 67◦. The steel plate with the completed parts was then cut into four pieces in order to perform a SA and HIP procedure at the 
same time for each piece. The post-processing procedure was performed using the QIH21 M URC furnace at Quintus Technologies AB. 
The components were heated to 1150 ◦C and pressurized to 150 MPa for two hours with rapid cooling using the URC(R) functionality. 
The steel plate pieces were then quenched with a forced argon gas and the procedure was performed before machining the cylindrical 
parts. The density and porosity of the printed raw stock was then determined by using Archimedes’ principle on 16 different test 
samples from the four thin rods at the center of the build plate in Fig. 1b. 

2.2. Experimental testing 

The cylindrical parts were then machined into round tensile, cyclic and fatigue test specimens, see Fig. 2, using EDM and a lathe. 
The fatigue test specimens were the only ones polished in the gauge section to a surface finish of 0.15 μm (Ra), as measured with a 
white light interferometry (WLI) microscope. The fatigue and cyclic tests feature different specimen geometries for various reasons. 
Fatigue specimens are manufactured using EDM with subsequent polishing, while lathe machining is employed for cyclic specimens 
without polishing. Unlike fatigue tests, cyclic tests are less influenced by surface roughness and radius size, as the failure mechanism 
primarily involves buckling at large strain amplitudes without crack initiation. Therefore, shorter specimen lengths and thicker di-
ameters are preferred for cyclic tests to enhance buckling force, resulting in significantly shorter radii. Experimental testing is per-
formed under isothermal conditions at both room temperature (RT) and 300 ◦C by use of an MTS 809 axial/torsional servo-hydraulic 
testing machine. A furnace was installed in the testing machine for the elevated temperature tests. The temperature of 300 ◦C was 
chosen since it represents the operating temperature of the relevant systems, structures and components in nuclear reactors. Two 
diametrically mounted extensometers were used for the tests at room temperature while one extensometer was used in the furnace. 

The tensile tests were conducted according to ASTM E8 (2022) at both room temperature and 300 ◦C for all three specimen ori-
entations. The specimens were elongated with displacement control at a rate of 0.01 mm/s until failure. The fatigue tests were per-
formed according to ASTM E606 (2021) at fully reversed constant strain amplitudes from 0.2 – 0.5 % at 300 ◦C with 0◦ specimens only. 
The low cycle fatigue life was modelled using the Coffin-Manson (Coffin, 1954; Manson, 1965) strain-life equation defined as 

εa =
σ′

f

E
(
2Nf
)b

+ ε′
f

(
2Nf
)c
, (1)  

where εa is the strain amplitude, σ′
f is the fatigue strength coefficient, b is the fatigue strength exponent, ε′

f is the fatigue ductility 
coefficient and c is the fatigue ductility exponent. All fatigue data points were fitted to Eq. (1) with the least squares method. The cyclic 
tests were conducted according to ASTM E606 (2021) at both room temperature and 300 ◦C with all three specimen orientations. A 
constant strain rate of 10− 3 s− 1 was used for all fully reversed tests at constant strain amplitudes ranging from 0.1 – 2.0 %. Once the 
hysteresis loop stabilized, the strain amplitude was increased. This was repeated until the specimen failed by either separation into two 
parts or buckling. The hysteresis loop saturated within 15 cycles for each strain amplitude for all the cyclic tests. The cyclic stress-strain 
curves were then used to fit the developed anisotropic rate-independent plasticity model to obtain the cyclic properties of the addi-
tively manufactured 316L stainless steel. The constitutive model was then used to propose a fatigue life prediction model based on an 
energy dissipation approach. 

3. Constitutive modelling 

A numerical implementation of three-dimensional plasticity has been utilized to model the cyclic plasticity behavior of the AM 
material. Classical rate-independent plasticity is adopted with Hill’s (1948) anisotropic yield criterion in conjunction with Voce 
nonlinear isotropic hardening model and Armstrong-Frederick nonlinear kinematic hardening law. The elastic response is modelled 

Table 1 
Chemical composition (% by mass) of the 316L stainless steel powder.  

C Si Mn P S Cr Ni N Mo Fe 

≤ 0.03 ≤ 1.00 ≤ 2.00 ≤ 0.045 ≤ 0.03 16 – 18 10 – 14 ≤ 0.10 2 – 3 Balance  
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with the transversely isotropic form of the Hooke’s law 

σ = D(ε − εp), (2)  

where σ is the stress tensor and D is the stiffness tensor, see Appendix A. Here, an additive decomposition of the total strain, ε, into an 
elastic and plastic part, εe and εp, respectively, is assumed, 

ε = εe + εp. (3) 

The evolution equation for the plastic strain is given by the associative flow rule 

ε̇p
= γ̇

∂f
∂σ = γ̇n, (4) 

Fig. 1. (a) 316L stainless steel powder used to manufacture (b) cylinders in the 0◦, 45◦ and 90◦ directions with respect to the build direction (BD).  

Table 2 
The standard process parameters used in this study.   

Fill hatch 1st border 2nd border 

Laser power 195 W 110 W 140 W 
Beam spot diameter 70 µm 70 µm 70 µm 
Exposure time 80 µs 100 µs 50 µs 
Point distance 60 µm 20 µm 40 µm 
Hatch distance 90 µm N/A N/A  

Fig. 2. Geometry of the test specimens.  
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where f is the yield function, n is the plastic flow direction and γ̇ is the magnitude of the plastic strain increment, also known as the 
consistency parameter. The Voce nonlinear isotropic hardening law is adopted to describe the expansion of the yield surface according 
to 

σ̃(α) = σY + σsat[1 − exp(− βα)], (5)  

where σY is the cyclic yield strength of the material and thus the initial size of the yield surface. Here, σsat is the saturation flow stress 
describing the final size of the yield surface while β is the hardening rate which determines how fast the yield surface saturates. The 
variable α is the accumulated plastic strain with the evolution equation 

α̇ =
̅̅̅̅̅̅̅̅
2/3

√
‖ ε̇p

‖ =
̅̅̅̅̅̅̅̅
2/3

√
γ̇, (6)  

where ‖ ε̇p
‖ is the Frobenius norm. The Armstrong-Frederick nonlinear kinematic hardening law is implemented in conjunction with 

the isotropic hardening law by introducing an additional internal variable, denoted by q and called back stress, with the evolution law 

q̇ =
2
3
K0ε̇p

− K1α̇q. (7) 

Here, K0 is the kinematic hardening modulus while K1 is a nondimensional hardening parameter. The hardening laws can now be 
implemented in Hill’s anisotropic yield criteria to obtain the yield function 

f =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
Y0(σ − q)TP(σ − q)

√

− σ̃(α). (8) 

Here, P is a matrix of Hill’s anisotropic parameters obtained from the uniaxial tensile tests in the 0◦, 45◦ and 90◦ directions, see 
Appendix A. Note that in this context, σ represents the Cauchy stress, while the stress integration utilizes the relative deviatoric stress, 
as illustrated in Eq. (D.1) found in Appendix D. To give a form of the yield function that is suitable to isotropic hardening, the average 
initial yield stress, σY0, of the Hill material is defined as 

Table 3 
Return mapping algorithm for anisotropic 3D rate-independent plasticity with rotation.  

Initial conditions: 

{ε
′ p
n , αn, qn} = 0 

Strain-controlled loading: 
ε′ e trial

n+1 = ε′ e
n + Δε 

Rotation to material coordinates: 
εe trial

n+1 = L− Tε′ e trial
n+1 

Elastic predictor: 
σtrial

n+1 = D εe trial
n+1 

ξtrial
n+1 = σtrial

n+1 − qn 

f trial
n+1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
Y0(ξ

trial
n+1)

TP(ξtrial
n+1)

√

− σ̃(αn)

IF ftrial
n+1 ≤ 0 THEN 

σn+1 = σtrial
n+1 

ELSE 
Solve fn+1(Δγ) = 0 for Δγ 
WHILE abs(fn+1) > TOLERANCE 
Newton-Raphson iteration 
See Appendix D 
END WHILE 
Plastic corrector: 

n =

ξ̂
dev
trial +

[

1 −
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

]

q̂n

‖ ξ̂
dev
trial +

[

1 −
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

]

q̂n‖

εp
n+1 = εp

n + Δγn 
αn+1 = αn + Δγ

̅̅̅̅̅̅̅̅
2/3

√

qn+1 =

[
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

](

qn +
2
3
K0Δγn

)

Rotation back to machine coordinates: 

ε
′ p
n+1 = LTεp

n+1 

σ′
n+1 = L− 1DL− Tε′ e

n+1 
END IF  
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σY0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3

2(F + G + H)

√

, (9)  

where F, G and H are some of Hill’s parameters presented in Appendix A. The irreversible nature of plastic flow is captured by means of 
the Karush-Kuhn-Tucker complementarity conditions which in the present context read 

γ ≥ 0, f ≤ 0, γf = 0, (10)  

and represent the loading-unloading conditions for plasticity. The consistency parameter, γ, is determined from the consistency 
condition 

γḟ = 0. (11) 

The energy dissipation increment can be determined from each solution step as 

Wi = |σn+1|γ, (12)  

where σn+1 is the updated uniaxial stress in the loading direction. The total energy dissipation per cycle is then given by 

W =
∑m

i=1
Wi, (13)  

where m is the number of solution steps in one cycle. A discrete formulation of the constitutive models may be expressed by applying an 
implicit Euler backward integration scheme, see Appendix B. This leads to the classical return-mapping algorithm originally proposed 
by Wilkins (1964) and further developed by Simo and Hughes (1999) among others. The algorithmic procedure is more complicated in 
the present context of three-dimensional plasticity with an anisotropic material and nonlinear kinematic hardening. This is attributed 
to the fact that the plastic flow direction is a function of the consistency parameter and needs to be determined, see Appendix C, in 
contrast to the standard case of plasticity with linear kinematic hardening which is more straight forward (De Angelis and Taylor, 
2015). The derivation for solving the consistency parameter is shown in Appendix D with a Newton-Raphson (Simo and Taylor, 1985) 
iteration which completes the return-mapping algorithm. Since the material is anisotropic and tests will be performed with specimens 
oriented in three different directions relative to the BD, a coordinate system transformation is also needed, see Appendix E. The 
proposed framework can also be further extended with a continuum damage mechanics model that may be used to predict cyclic 
softening, see Appendix F for the implementation of Lemaitre (1992) damage evolution law into the present constitutive model. The 
numerical algorithm can be implemented in Matlab and is for convenience summarized in Table 3. 

4. Results and discussion 

4.1. Density measurements 

The density of the four thin rods at the center of the build plate in Fig. 1b is shown in Fig. 3. Archimedes’ principle was used to 
measure the density of four different samples from each rod and the error bars are represented in the figure. The rods exhibit a high 
density with two of them measuring 7995 kg/m3 and the other pair measuring 7993 kg/m3. This indicates a low level of porosity in the 
processed raw stock. Moreover, in a cross-sectional analysis performed with a scanning electron microscope (SEM), no defects or pores 
larger than 1 µm were found. 

Fig. 3. The density of the rods after PBF-LB.  
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4.2. Microstructure 

Electron backscatter diffraction (EBSD) was performed on three samples with normal directions at 0◦, 45◦ and 90◦ angles, see Fig. 4. 
The microstructure on each plane exhibits significant variations attributed to the printing process. In Fig. 4a, the morphology on the 
horizontal plane reveals small, evenly sized grains. Some grains appear elongated in the scanning direction of the laser beam, resulting 
in long, slender grains aligned along this direction. This phenomenon arises from the laser scanning process, leading to elongated 
grains. While the SA pretreatment promotes recrystallization in the majority of grains, not all grains undergo complete reforming. 
However, due to a hatch layer rotation of 67◦, the elongation direction of small, slender grains becomes uniformly distributed after 
reaching a certain build height. Consequently, transverse isotropy with respect to the build direction remains a valid assumption for 
AM metals. In contrast, the microstructure on the vertical plane (Fig. 4b) presents a distinct morphology. Here, grains exhibit clear 

Fig. 4. EBSD images with corresponding inverse pole figures in the (a) horizontal, (b) vertical and (c) 45◦ planes.  
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elongation in the vertical direction, with significantly larger grain size compared to Fig. 4a. This elongation results from the solidi-
fication and subsequent remelting of the metal in the build direction, which coincides with the vertical direction in Fig. 4b. While the 
pretreatments of the AM parts partially reform some grains, the vertical elongation remains evident. The grain morphology on the 45◦

plane (Fig. 4c) is characterized by small, irregularly shaped grains, forming a complex microstructure. Here, the crystallographic 
texture of the grains is evenly distributed across different directions, as depicted in the inverse pole figure in Fig. 4c. In contrast, both 
the horizontal and vertical planes exhibit some texture in their respective inverse pole figures. 

4.3. Hill’s parameters 

In Fig. 5, engineering stress-strain curves depict the results of uniaxial tensile tests conducted at RT and 300 ◦C in the 0◦, 45◦ and 
90◦ directions. For each temperature and direction, two tests were performed, and the corresponding average values for Young’s 
modulus, yield strength and ultimate tensile strength are listed in Table 4. Hill’s parameters were computed following the guidelines in 
Appendix A, utilizing the monotonic yield strengths from Table 4. Notably, at both temperatures, the 45◦ specimens exhibited the 
highest strength, followed by the horizontally oriented 90◦ specimens, while the vertically aligned 0◦ specimens displayed the lowest 
strength. This trend can be attributed to the perpendicular orientation of the build layers relative to the loading direction, as well as the 
microstructure of the material characterized by elongated grains along the build direction. This is illustrated in Fig. 4, where the 
vertical 0◦ specimen exhibits large, elongated grains along the loading direction. This facilitates the movement of dislocations, making 
the vertical specimens weaker. In contrast, both the horizontal 90◦ specimen and the 45◦ specimen have significantly finer grains, 
which prevent dislocation movement, resulting in more strain hardening. 

4.4. Calibration of the cyclic plasticity model 

In Fig. 6, the experimental hysteresis loops are presented alongside the elastoplastic model employing Hill’s anisotropic yield 
criterion, nonlinear isotropic hardening and nonlinear kinematic hardening, showcased at both temperatures. The hardening pa-
rameters were determined through fitting to the 0◦ and 90◦ specimens. The yield function varied depending on the specimen orien-
tation, while the hardening parameters remained consistent across orientations at RT, as detailed in Table 5. Hence, only one set of 
hardening parameters were determined to capture the elastoplastic response. In addition, a constant cyclic yield strength, σY, was 
employed for each temperature, with parameters dependent solely on strain amplitude and temperature. However, the AM metal 
demonstrates a more pronounced anisotropy at 300 ◦C, resulting in distinct kinematic hardening parameters across the various ori-
entations. The cyclic elastoplastic response at the 45◦ direction at 300 ◦C is presented in Fig. 7 and the hardening parameters are listed 
in Table 6. Comparing the cyclic tests at 300 ◦C to those at RT, lower hardening behavior was observed in the former. Specifically, in 
Fig. 6b and d, the 90◦ specimens displayed more pronounced hardening compared to the 0◦ specimens depicted in Fig. 6a and c. 

For each increment in strain amplitude, the historical effects were considered, involving accumulated plastic strain and the back 
stress tensor, adjusting the initial conditions accordingly, given that the same specimen was used for all strain amplitudes. However, 
it’s important to note that the initial condition of accumulated plastic strain has no impact on the stabilized hysteresis loops, regardless 
of the applied strain amplitude. This is primarily due to the dominant influence of kinematic hardening, which remains unaffected by 
accumulated plastic strain once isotropic saturation has been reached. Consequently, the stabilized curves remain independent of the 
material’s historical loading. The independence of stabilized curves from material history is advantageous, as it allows for the reliable 
use of these cyclic hardening parameters in precise low cycle fatigue analyses and damage prediction, without the need to consider the 
material’s past loading history. For higher strain amplitudes, the hardening parameters can be extrapolated, as a discernible pattern 

Fig. 5. Tensile tests at RT and 300 ◦C with specimens in the 0◦, 45◦ and 90◦ directions.  
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emerges between strain amplitudes and the corresponding hardening parameters. 
In case of variable amplitude loading, the cyclic hardening behavior is determined by the largest occurring strain amplitude after 

isotropic saturation has been reached, even if lower strain amplitude levels were previously encountered. Therefore, it’s crucial to 
apply the hardening parameter set corresponding to the maximum strain amplitude until a greater strain amplitude is encountered. 
Throughout the analysis, parameters should be adjusted based on the maximum strain amplitude experienced up to that point. 
However, the strain amplitude is not considered a state variable, which can pose challenges in its evaluation. This issue of modelling 
isotropic hardening independently of the strain amplitude has been addressed by several researchers. Ohno (1982) introduced a 
variable that reaches a finite saturation value based on the strain amplitude. A nonhardening strain region, within which cyclic 
hardening does not develop, was proposed. Nevertheless, the model struggles to predict cyclic softening following a decrease in strain 
amplitude, necessitating the inclusion of a memory-erasure term in the evolution law for isotropic hardening. 

Table 4 
Material parameters at RT and 300 ◦C from the tensile tests.  

Temperature Specimen E (GPa) σY0.2 (MPa) σUTS (MPa) 

RT 0◦ 185 328 579 
45◦ 205 359 631 
90◦ 187 346 614 

300 ◦C 0◦ 169 243 450 
45◦ 182 261 484 
90◦ 160 253 476  

Fig. 6. Cyclic elastoplastic stress-strain curves from experiment and model at RT in the directions (a) 0◦ and (b) 90◦ and at 300 ◦C in the directions 
(c) 0◦ and (d) 90◦. 

Table 5 
Isotropic and kinematic hardening parameters for different strain amplitudes at RT.  

Temperature Strain amplitude σY 

(MPa) 
σsat 

(MPa) 
β K0 

(GPa) 
K1  

RT 
0.004 200 30 20 130 650 
0.008 200 35 10 75 350 
0.012 200 55 10 60 300 
0.016 200 85 10 55 270  
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Fig. 7. Cyclic elastoplastic stress-strain curves from experiment and model at 300 ◦C in the 45◦ direction with (a) isotropic and kinematic hardening 
and (b) only kinematic hardening. 

Table 6 
Isotropic and kinematic hardening parameters for different strain amplitudes and directions at 300 ◦C.   

0◦ 90◦ 45◦

Temperature Strain amplitude σY 

(MPa) 
σsat 

(MPa) 
β K0 

(GPa) 
K1 K0 

(GPa) 
K1 K0 

(GPa) 
K1  

300 ◦C 
0.004 150 20 20 75 500 110 700 105 700 
0.008 150 35 10 55 370 80 450 85 500 
0.012 150 45 10 50 300 75 380 85 450 
0.016 150 55 10 45 250 55 290 80 400 
0.020 150 65 10 – – – – 80 380  

Fig. 8. Cyclic elastoplastic stress-strain curves from experiment and model with only kinematic hardening at RT in the directions (a) 0◦ and (b) 90◦

and at 300 ◦C in the directions (c) 0◦ and (d) 90◦. 
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Chaboche et al. (1979) determined that hardening primarily depends on the largest plastic strain range. They introduced a new 
internal variable to retain memory of the previous largest plastic strain range, resulting in a fairly accurate description of the observed 
effects. McDowell (1985) proposed a cyclic plasticity model with two additional state variables to incorporate the effects of changes in 
plastic strain range in the evolution of isotropic hardening. This model can represent essential aspects of material behavior including 
the erasure of memory of prior deformation by overload excursions, cyclic hardening or softening, and ratchetting among others. 
Nouailhas et al. (1985) also investigated the historical effects of prior straining on subsequent cyclic hardening of 316 stainless steel. 
They utilized the new internal variable developed by Chaboche et al. (1979) to introduce a new memory surface in the plastic strain 
space to model cyclic behavior. More recently, Ohno et al. (2021) extended the evolution equation of cyclic hardening proposed by 
Chaboche et al. (1979) to include the effect of the maximum plastic strain induced by preloading and ratchetting. The extended 
evolution equation properly represented the effect of preloading on the stress amplitude under subsequent cyclic loading. Ohno et al. 
(2018) also proposed a resetting scheme to accurately evaluate the plastic strain range following preloading. This resetting scheme 
provides a definite value for the evolution parameter of the plastic strain range surface, regardless of the amounts of cyclic hardening, 
pre-straining and ratchetting. The model was experimentally verified by Ohno et al. (2019), where decreasing cyclic tests were 
conducted, gradually and stepwise reducing the strain range with an increasing number of cycles. The experiments revealed that the 
effect of the strain range history on cyclic hardening in the gradual decrease tests was weaker than that in the step decrease tests. 

The elastoplastic response can be modeled using a single set of parameters, independent of the strain amplitude, when isotropic 
hardening is omitted. In this case, only nonlinear kinematic hardening is considered, and the hysteresis loop stabilizes immediately at 
the saturation point. The experiment, along with the Armstrong-Frederick model, is illustrated at RT in Fig. 8a and b and at 300 ◦C in 
Fig. 8c, d and Fig. 7b, with the hardening parameters listed in Table 7 and Table 8. By neglecting isotropic hardening, the model’s 
parameters are significantly reduced, yet it still effectively captures the saturated hysteresis loops, albeit with some discrepancy noted 
at the highest strain amplitude in Fig. 7b. 

The anisotropic nature of the AM metal is exclusively captured by Hill’s anisotropic yield function at RT. In this context, the 
hardening parameters remain constant across the different directions. This simplification involves employing the same set of hard-
ening parameters with distinct yield strengths in various directions, yielding accurate results with minimal parameters. The notable 
anisotropy observed at 300 ◦C necessitated the consideration of anisotropy in the kinematic hardening model as well, resulting in 
varying hardening parameters for the different orientations. The kinematic hardening law in Eq. (7) can be extended to incorporate 
anisotropic features, a topic addressed by several researchers (Vladimirov et al., 2010; Yoshida et al., 2015). Stoughton and Yoon 
(2009) developed a model that captures anisotropic hardening using four independent hardening data in different directions but lacks 
control over curvature due to its reliance on Hill’s quadratic function. Lindström et al. (2020) employed a similar approach to calculate 
an effective plastic modulus, akin to Stoughton and Yoon (2009), based on kinematic hardening parameters in various directions to 
account for anisotropy. Lee et al. (2017) improved upon the Stoughton and Yoon (2009) model, enabling curvature control of the yield 
surface while capturing anisotropic hardening. However, both models neglect asymmetric plastic behavior. To address this, Lee et al. 
(2018) proposed a kinematic hardening model integrating a condition function to capture anisotropic hardening and asymmetric 
plastic behavior simultaneously. The condition function replaces the hardening parameters, allowing tailored responses to loading 
direction. 

4.5. Validation of the cyclic plasticity model 

The constitutive model was validated at RT with 45◦ specimens, see Fig. 9. Notably, the 45◦ specimen exhibited the highest strength 
in the cyclic tests, as evident in Fig. 9 at RT and Fig. 7 at 300 ◦C. Remarkably, even at elevated temperatures, the specimens endured a 
strain amplitude of 2 % before buckling. This is associated with the fine grain structure shown in Fig. 4c, manifesting a crystallographic 
texture uniformly distributed across different directions. This, combined with the complex microstructure, results in numerous grain 
boundaries acting as barriers for dislocation movement. As a consequence, the specimens oriented at 45◦ outperform the other ori-
entations in terms of both monotonic properties and cyclic strain hardening. To validate the cyclic plasticity model with the 45◦ cyclic 
test, the same hardening parameters at RT as employed in Fig. 6 were used. Consequently, the model aligns well with all hysteresis 
loops. These results underscore the effectiveness of combining a nonlinear isotropic and nonlinear kinematic hardening law with an 
anisotropic Hill’s yield criterion in accurately capturing the cyclic plasticity behavior of AM 316L at RT. The model, featuring solely 
kinematic hardening, was further validated using 45◦ specimen at RT, as depicted in Fig. 9b. The model effectively captures the 
saturated hysteresis loops, albeit with some discrepancy noted at the 0.8 and 1.2 % strain amplitudes. 

4.6. Fatigue life of AM 316L and CM 304L 

In Fig. 10, the results of fully reversed fatigue tests conducted on the AM 316L material in the 0◦ direction are presented. These 
results are juxtaposed with fatigue tests performed by Subasic et al. (2023) under identical conditions at 300 ◦C, albeit with 

Table 7 
Kinematic hardening parameters at RT.  

Temperature σY 

(MPa) 
K0 

(GPa) 
K1 

RT 200 90 315  
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conventionally manufactured (CM) 304L stainless steel. While it is acknowledged that 316L and 304L stainless steels, though similar, 
are distinct materials, the comparison holds significance, particularly in the context of the nuclear power industry. In this industry, AM 
316L has the potential to replace components primarily made of CM 304L, thereby extending the operating lifetime of crucial com-
ponents. When comparing the fatigue lives of these two differently manufactured stainless steel grades, we observe that AM 316L 
exhibits similar fatigue life at lower strain amplitudes and slightly longer fatigue life at higher strain amplitudes. Similar results for this 
material have been reported in other studies including other AM materials (Cui et al., 2022; Wang et al., 2019; Yu et al., 2021). 

Fractography analyses were conducted on the 0.5 % and 0.4 % fatigue tests, with the fracture surfaces depicted in Fig. 11 and 
Fig. 12, respectively. In Fig. 11a, an overview of the fracture topography of the 0.5 % fatigue test is presented. Crack initiation occurred 
at the specimen’s surface, see Fig. 11b. The subsequent crack propagation stage dominates the majority of the fracture surface, 
characterized by fatigue striations and crack branching, as shown in Fig. 11c. While striations are less commonly observed for AM 
metals (Subasic et al., 2024), the SA and HIP pretreatments, which refined the microstructure and eliminated large defects such as LOF 
defects, reveal clear striations in this case. The blurred regions in Fig. 11a represent the final failure sites, as illustrated in Fig. 11d. 
These areas are distinguished by a noticeable difference in height and deformed gas pores, as seen in Fig. 11e. The gas pores become 
larger and more visible in this region due to the high local stresses at the crack tip before failure (Subasic et al., 2024). Similar fracture 
mechanisms are observed in the 0.4 % fatigue test, depicted in Fig. 12a. In this case, various crack initiation sites are evident on the 

Table 8 
Kinematic hardening parameters at 300 ◦C.   

0◦ 90◦ 45◦

Temperature σY 

(MPa) 
K0 

(GPa) 
K1 K0 

(GPa) 
K1 K0 

(GPa) 
K1 

300 ◦C 150 65 300 90 350 100 400  

Fig. 9. Cyclic elastoplastic stress-strain curves from experiment and model at RT in the 45◦ direction with (a) isotropic and kinematic hardening and 
(b) only kinematic hardening. 

Fig. 10. Fatigue life of AM 316L in the 0◦ direction and conventional 304L (Subasic et al., 2023) at 300 ◦C.  
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Fig. 11. Fatigue fracture surface of a 0.5 % strain amplitude test with (a) overview picture, (b) crack initiation site, (c) crack propagation region and 
(d) final failure with (e) deformed gas pores. 

Fig. 12. Fatigue fracture surface of a 0.4 % strain amplitude test with (a) overview picture, (b) crack initiation site, (c) crack initiations at (d) 
different surface locations, (e) crack propagation with (f) crack branching and (g) final failure with deformed gas pores. 

Fig. 13. Masing behavior of AM 316 L in the 0◦ direction and CM 304 L (Subasic et al., 2023) in the rolling direction (RD) at 300 ◦C.  
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specimen’s surface at different heights, see Fig. 12b-d, with the primary crack initiating in Fig. 12b. The smaller cracks initiated in 
Fig. 12c did not propagate deeply, as the final failure region is situated adjacent to it. The crack propagation region in Fig. 12e is also 
characterized by distinct fatigue striations, which are also visible inside the crack branch illustrated in Fig. 12f. This further clarifies 
that the deep holes shown in Fig. 11c and Fig. 12e are indeed crack branches and not LOF defects. No significant defects, other than gas 
pores in the final failure region (as seen in Fig. 12g), were observed on the fracture surfaces, aligning with the low porosity measured in 
the material. 

Both AM 316L and CM 304L exhibit Masing behavior at low strain amplitudes, see Fig. 13. However, at higher strain amplitudes, both 
metals demonstrate non-Masing behavior, with isotropic hardening becoming increasingly dominant. This trend is particularly evident 
in CM 304L, where the change in yield strength is more pronounced. For AM 316L, the material maintains Masing-like behavior at high 
strain amplitudes due to the proximity of the ascending segments of the hysteresis loops at different strain amplitudes. This behavior is 
attributed to the prevailing influence of kinematic hardening. In contrast, CM 304L relies more on isotropic hardening at high strain 
amplitudes, with the primary hardening mechanism being the growth in the yield surface. Given that the cyclic behavior of AM 316L is 
predominantly governed by kinematic hardening, isotropic hardening can be overlooked. This allows for the derivation of an accurate 
cyclic plasticity model, considering only the nonlinear Armstrong-Frederick parameters. The cyclic and monotonic stress-strain curves 
for both materials are depicted in Fig. 13, revealing similar behavior characterized by clear cyclic hardening. 

4.7. Energy-based fatigue life prediction model 

The distinction in fatigue life of AM 316L and conventional 304L is further elucidated in Fig. 14, where energy density dissipation 
per cycle is computed using the computational plasticity algorithm. The curves for energy dissipation show similarities in the lower 
energy dissipation region and slightly extended cycles to failure for AM 316L in the higher energy dissipation region. The energy 
dissipation per cycle was determined by analyzing the stabilized hysteresis loop for each fatigue test. The hardening parameters 
derived from the 0.4 % cyclic test at 300 ◦C were used for all fatigue tests ranging from 0.2 % to 0.5 % strain amplitude. 

The obtained results reveal a noticeable correlation between energy dissipation per cycle, denoted as W, and the corresponding 
fatigue life, Nf , as depicted in Fig. 14. Thus, we can establish an energy-based fatigue life prediction model for AM 316L stainless steel, 
akin to the model proposed by Subasic et al. (2023). This model employs a power law fit represented as 

W = Wa
(
Nf
)p

+ Wb, (14)  

where Wa and Wb are energy density parameters and p is a power law exponent. For these parameters, the values are 6 776 ⋅ 103 

MJm− 3, 0.5362 MJm− 3 and − 1.566, respectively. 

5. Conclusions 

In summary, this study addresses the critical need for a constitutive model of the cyclic plasticity for AM 316L stainless steel. The 
following key findings and conclusions can be drawn from our research:  

• A substantial effect of anisotropy on the stiffness, yield strength and the ultimate tensile strength of AM 316L stainless steel was 
observed both in RT and 300 ◦C, with 8–10 % higher values for 45◦ specimens compared to 0◦ specimens.  

• Experiments conducted with full hysteresis loops including historical effects, showed a significantly lower maximum peak stress at 
300 ◦C compared to RT. The final strain amplitude before buckling was however similar at both temperatures. 

Fig. 14. Energy dissipation per cycle for the fatigue tests of AM 316L in the 0◦ direction and conventional 304L (Subasic et al., 2023).  
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• The experimental findings unveiled significant distinctions in cyclic hardening behaviour among specimens with different orien-
tations. The 45◦ specimen orientation consistently exhibited the highest degree of strain hardening.  

• To accurately describe the cyclic plasticity of AM 316L, a constitutive model was introduced in a 3D return mapping algorithm, 
combining Armstrong-Frederick nonlinear kinematic hardening, Voce nonlinear isotropic hardening laws, Hill’s anisotropic yield 
criterion and Lemaitre damage evolution law. The proposed model consists of only one set of hardening parameters for all ori-
entations at RT.  

• An energy-based fatigue life prediction model was proposed for predicting the fatigue life of AM 316L stainless steel in the LCF 
regime, demonstrating a strong correlation between energy dissipation per cycle and experimentally determined fatigue life.  

• This research demonstrates the potential of AM 316L stainless steel as a replacement material, offering similar or slightly better 
fatigue performance at 300 ◦C compared to conventional 304L stainless steel. 

CRediT authorship contribution statement 

M. Subasic: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, 
Project administration, Methodology, Investigation, Formal analysis, Conceptualization. A. Ireland: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis. R. Mansour: Writing – 
review & editing, Supervision, Project administration, Methodology, Formal analysis, Conceptualization. P. Enblom: Writing – review 
& editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis. P. Krakhmalev: 
Resources, Investigation, Funding acquisition. M. Åsberg: Investigation, Resources. A. Fazi: Investigation, Resources. J. Gårdstam: 
Investigation, Resources. J. Shipley: Investigation, Resources. P. Waernqvist: Project administration, Resources. B. Forssgren: 
Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – review & editing. P. 
Efsing: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – review & 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work would not have been possible without the financial support from Ringhals AB and Vattenfall AB. Martin Öberg is also 
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Appendix A. Tensor notation and tensors 

Stress and strain will be represented in vector notation, including their equivalent six by one vector form and the full nine by one 
vector form from the tensor notation. The reasoning behind using different forms of representation is due to the plastic flow direction, 
n, as shown in Eq. (4). This direction exists in a nine-dimensional hyperspace, therefore, to correctly implement the return mapping 
algorithm this nine by one equivalent vector notation needs to be captured. However, many of the constitutive equations can be 
simplified in the six by one vector form which will be used as standard. Once the nine by one vector form is utilized, the tensors will be 
denoted with a hat operator according to 

σ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σxx

σyy

σzz

σxy

σyz

σxz

σyx

σzy

σzx

⎤

⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎦

, ε̂ =
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, (A.1) 
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while the tensors without the hat operator, σ, ε and q, only have the first six components in Eq. (A.1). Hence, the stiffness matrix D in 
Eq. (2) is given by 

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − νyzνzy

EyEzΔ
νyx + νzxνyz

EyEzΔ
νzx + νyxνzy

EyEzΔ
0 0 0

νxy + νxzνzy

EzExΔ
1 − νzxνxz

EzExΔ
νzy + νzxνxy

EzExΔ
0 0 0

νxz + νxyνyz

ExEyΔ
νyz + νxzνyx

ExEyΔ
1 − νxyνyx

ExEyΔ
0 0 0

0 0 0 Gxy 0 0

0 0 0 0 Gyz 0

0 0 0 0 0 Gxz

⎤

⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.2)  

where 

Δ =
1 − νxyνyx − νyzνzy − νzxνxz − 2νxyνyzνzx

ExEyEz
. (A.3) 

Here, Ex, Ey and Ez are the Young’s moduli in the X, Y and Z direction, respectively. Gxy, Gyz and Gxz are the shear moduli in the XY, 
YZ and XZ planes, respectively, and νxy, νyx, νyz, νzy, νxz and νzx are the Poisson’s ratios with the following relationship 

νxy

Ex
=

νyx

Ey
,

νyz

Ey
=

νzy

Ez
,

νzx

Ez
=

νxz

Ex
. (A.4) 

If the stiffness matrix, D̂, is used with the nine by one stress tensor, σ̂ , it is updated in the following way as 

D̂ =
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. (A.5) 

For a transversely isotropic material, the following simplification can be made where only five material parameters are required to 
describe the anisotropic response as 

Ez = ELL, Ex = Ey = ETT, (A.6)  

νzx = νzy = νLT, νxz = νyz = νTL =
νLTETT

ELL
, νxy = νyx = νTT, (A.7)  

Gxy = GTT =
ETT

2(1 + νTT)
, Gzx = Gyz = GLT . (A.8) 

Here, the Poisson’s ratios νLT and νTT are both assumed to be 0.3. In Hill’s yield criterion in Eq. (8), the matrix P is given by 

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H + G − H − G 0 0 0
− H F + H − F 0 0 0
− G − F G + F 0 0 0
0 0 0 2N 0 0
0 0 0 0 2L 0
0 0 0 0 0 2M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.9)  

where F, G, H, L, M and N are the Hill’s parameters which can be determined based on the yield strengths of the material in tension and 
shear according to 
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, (A.12)  

N =
1

2σ2
Ys,xy

, L =
1

2σ2
Ys,yz

, M =
1

2σ2
Ys,xz

. (A.13) 

The yield strengths in tension are given by σYs,ij when i = j while the yield strengths in shear are given by σYs,ij when i ∕= j. Since the 
AM 316L is transversely isotropic with respect to the BD, the Hill’s parameters can be simplified to F = G and L = M if the BD is in the 
ZZ-direction. In this case, σYs,zz = σYs,LL and σYs,xx = σYs,yy = σYs,TT, and the constraint 

2σYs,LL > σYs,TT (A.14)  

must be maintained in order to have a closed yield surface that provides realistic values. The matrix P̂ is given by 

P̂ =

⎡
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⎢
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⎣

H + G − H − G 0 0 0 0 0 0
− H F + H − F 0 0 0 0 0 0
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0 0 0 N 0 0 0 0 0
0 0 0 0 L 0 0 0 0
0 0 0 0 0 M 0 0 0
0 0 0 0 0 0 N 0 0
0 0 0 0 0 0 0 L 0
0 0 0 0 0 0 0 0 M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A.15)  

Appendix B. Implicit Euler backward integration scheme 

An implicit Euler backward integration scheme can be performed to address the numerical implementation of the constitutive 
models described in this paper. The flow rule in Eq. (4), the evolution law for the equivalent plastic strain in Eq. (6) and the Armstrong- 
Frederick kinematic hardening law can be written in the discrete form 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̂p
n+1 = ε̂p

n + Δγn

αn+1 = αn + Δγ
̅̅̅̅̅̅̅̅
2/3

√

q̂n+1 =

[
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

](

q̂n +
2
3
K0Δγn

)
(B.1)  

where Δγ is the Lagrange multiplier which is the algorithmic counterpart of the consistency parameter, γ. Here, {ε̂p
n, q̂n, αn} are the 

initial conditions which are used to form the auxiliary trial state, the so called elastic predictor. The integration technique is based on a 
strain-driven approach where 

ε̂n+1 = ε̂n + Δε̂ . (B.2) 

A trial deviatoric stress can be formulated as 

ŝtrial
= V̂

(
ε̂n+1 − ε̂p

n

)
. (B.3) 

In Eq. (B.3), the matrix V̂ is given by V̂ = D̂Â where 
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Â =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
3

⎡

⎢
⎢
⎣

2 − 1 − 1

− 1 2 − 1

− 1 − 1 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.4) 

The trial state is an admissible solution to the problem only if it satisfies the stress-strain relationship, the flow rule, the hardening 
laws and the Karush-Kuhn-Tucker conditions which leads us to the following criterion (Alzweighi et al., 2022). 

f trial
n+1

{
≤ 0 → elastic step Δγ = 0,
> 0 → plastic step Δγ > 0. (B.5) 

For the case in which f trial
n+1 > 0, the process is incrementally plastic and the trial state is not a solution to the incremental problem 

since (ŝtrial
, αn, q̂n) violates the constraint condition f ≤ 0. Thus, the consistency parameter Δγ > 0, which enforces fn+1 = 0, has to be 

determined in order to obtain ŝn+1 ∕= ŝtrial. This results in the so called plastic corrector step which completes the return-mapping 
algorithm. The deviatoric stress is given by 

ŝn+1 = V̂(ε̂n+1 − ε̂p
n+1) . (B.6) 

By use of Eqs. (B.1) and (B.3), the deviatoric stress can be expressed as 

ŝn+1 = ŝtrial
− ΔγV̂n. (B.7) 

Hence, the consistency parameter, Δγ, and the plastic flow direction, n, need to be determined in order to perform the so called 
plastic corrector step and determine the true stress. 

Appendix C. Determination of the plastic flow direction tensor 

It proves convenient to introduce the auxiliary variable 

ξ̂
dev
trial = ŝtrial

− q̂n, (C.1)  

known as the relative stress. The deviatoric stress ŝn+1 in Eq. (B.7) can now be rewritten to 

ŝn+1 = ξ̂
dev
trial + q̂n − ΔγV̂n . (C.2) 

The relative deviatoric stress ξ̂
dev
n+1 is given by 

ξ̂
dev
n+1 = ŝn+1 − q̂n+1, (C.3)  

which can be further rearranged by use of Eqs. (B.1) and (C.2) to 

ξ̂
dev
n+1 = ξ̂

dev
trial + q̂n − ΔγV̂n −

[
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

](

q̂n +
2
3

K0Δγn
)

. (C.4) 

The left hand side in Eq. (C.4) can be rewritten as ξ̂
dev
n+1 =‖ ξ̂

dev
n+1 ‖ n to further rearrange the equation to 

‖ ξ̂
dev
n+1‖ n+ΔγV̂n +

[
2
3

K0Δγ
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

]

n = ξ̂
dev
trial +

[

1 −
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

]

q̂n . (C.5) 

Here, the plastic flow direction, n, is a unit normal vector. Therefore, the right hand side in Eq. (C.5) must be collinear with all the 
terms containing n in the left hand side. Hence, Eq. (C.5) can be used to determine the plastic flow direction 
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n =

ξ̂
dev
trial +

[

1 − 1
1+K1Δγ

̅̅̅̅̅
2/3

√

]

q̂n

‖ ξ̂
dev
trial +

[

1 − 1
1+K1Δγ

̅̅̅̅̅
2/3

√

]

q̂n‖

. (C.6) 

The relative deviatoric stress ξ̂
dev
n+1 can now be expressed as 

‖ ξ̂
dev
n+1‖=‖ξ̂

dev
trial +

[

1 −
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

]

q̂n Î − ΔγV̂ −

[
2
3
K0Δγ

1
1 + K1Δγ

̅̅̅̅̅̅̅̅
2/3

√

]

Î, (C.7)  

where Î is the nine by nine identity matrix and the consistency parameter, Δγ, is now the only variable left to solve for in order to 
complete the return mapping algorithm. 

Appendix D. Determination of the consistency parameter 

The yield function in Eq. (8) can now be written as 

fn+1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
Y0
(
‖ ξ̂

dev
n+1n

)T
P̂
(
‖ ξ̂

dev
n+1n

)
√

− σ̃(αn+1) = 0. (D.1)  

by utilizing Eq. (B.1) and (C.3). By use of Eqs. (C.6) and (C.7) and the nonlinear isotropic hardening law in Eq. (5), Eq. (D.1) becomes a 
scalar equation in which the consistency parameter, Δγ, is the only unknown variable. The equation can be solved for numerically by 
use of the Newton-Raphson method, which is commonly used in literature on computational inelasticity and in finite element software. 
The derivative of the yield function in Eq. (D.1) with respect to the consistency parameter is computed with the chain rule and given by 

dfn+1

dΔγ
=

(
d(‖̂ξ

dev

n+1‖)
dΔγ n+ ‖ ξ̂

dev
n+1 ‖ dn

dΔγ

)T

2σ2
Y0 P̂
(
‖ ξ̂

dev
n+1n

)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
Y0
(
‖ ξ̂

dev
n+1n

)T
P̂
(
‖ ξ̂

dev
n+1n

)
√ −

dσ̃(αn+1)

dΔγ
, (D.2)  

with the following derivatives 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dσ̃(αn+1)

dΔγ
=

̅̅̅̅̅̅̅̅
2/3

√
σsatβexp(− βαn+1)

d
(

ξ̂
dev
n+1

)

dΔγ
=

K1
̅̅̅̅̅̅̅̅
2/3

√

(
1 + K1Δγ

̅̅̅̅̅̅̅̅
2/3

√ )2nT q̂n Î − V̂ −

⎡

⎢
⎣

2
3

K0
(

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√ )2

⎤

⎥
⎦Î

dn
dΔγ

=
K1

̅̅̅̅̅̅̅̅
2/3

√

(
1 + K1Δγ

̅̅̅̅̅̅̅̅
2/3

√ )2
Îu2 − uuT

u3 q̂n ∈ R9×1

(D.3) 

Here, the vector u is defined as 

ξ̂
dev
trial +

[

1 −
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

]

q̂n, (D.4)  

such that n = u/ ‖ u ‖ as in Eq. (C.6). The iterative Newton-Raphson solution is then given by 

Δγk+1 = Δγk −
fn+1(Δγk)

dfn+1
dΔγ

⃒
⃒
⃒
⃒

Δγk

, (D.5)  

and with the solution of the consistency parameter, Δγ, the return mapping algorithm is complete. 

Appendix E. Coordinate system transformation 

The stresses thus far have all been in terms of the material coordinate system where the Z-direction corresponds to the BD of the AM 
316L. Since uniaxial testing will be performed on AM specimens oriented at 0◦, 45◦ and 90◦ directions relative to the BD, the material 
coordinate system will be rotated with respect to the testing machines coordinate system. If the material coordinate system is denoted 
by X, Y and Z while the testing machines coordinate system is denoted by X’, Y’ and Z’, a transformation matrix can be used to 
determine the stresses and strains according to 
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σ = Lσ′ ε = L− T ε′, (E.1) 

where the unprimed and primed vectors are in the material and testing machines coordinate system, respectively. Here, L is the 
transformation matrix given by 

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2 0 s2 0 0 − 2cs
0 1 0 0 0 0
s2 0 c2 0 0 2cs
0 0 0 c − s 0
0 0 0 s c 0
cs 0 − cs 0 0 c2 − s2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (E.2)  

where c = cos(θ), s = sin(θ) in which θ is the angle of rotation between the two coordinate systems with respect to the Z’-direction. It 
should be noted that L− 1 = L(− θ) in Eq. (E.1) and not the inverse of the matrix L. In addition, the boundary conditions of the specimen 
in the testing machine also need to be considered in the development and rotation of the constitutive model. The following stresses and 
strains will occur in the machines coordinate system 

σ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ′
xx

σ′
yy

σ′
zz

σ′
xy

σ′
yz

σ′
xz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

σ′
zz

0
0

σ′
xz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ε′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε′
xx

ε′
yy

ε′
zz

2ε′
xy

2ε′
yz

2ε′
xz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε′
xx

ε′
yy

ε′
zz
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (E.3)  

Here, σ′
xz = 0 if the AM 316L specimen orientation is θ = 0∘ or θ = 90∘ In the testing machine, ε′

zz is controlled while the elastic 
portion of the strains ε′

xx and ε′
yy will evolve from the solution to the system of equations that develops from the consideration of the 

elastic constitutive law for an anisotropic material in Eq. (2) and the above boundary conditions. If the material was isotropic, this 
would simply be Poisson’s ratio. However, for this transversely isotropic material, this ratio will be given a unique definition for the 
strains in the X’ and Y’ directions according to the following definition 

ε′e =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε′e
xx

ε′e
yy

ε′e
zz

0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RXε′e
zz

RYε′e
zz

ε′
zz

0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (E.4)  

The constants RX and RY are orientation specific and given by 

RX =
RXN

RXD
, RY =

RYN

RYD
, (E.5)  

where 

RXN =
(
D2

12 +D2
23 − D11D22 − D22D33 + 4D22D66

)
c2s2 + (D12D23 − D13D22)

(
c4 + s4), RXD

= (2D13D22 − 2D12D23 + 4D22D66)c2s2 +
(
D11D22 − D2

12

)
c4 +

(
D22D33 − D2

23

)
s4, RYN

= (D11D23 − D12D13)c6 + (D12D33 − D13D23)s6 + (4D23D66 + 4D12D66)
(
c2s4 + c4s2)+ (D12D13 − D11D23)c2s4

+ (D13D23 − D12D33)c4s2,RYD

= (2D13D22 − 2D12D23 + 4D22D66)c2s2 +
(
D11D22 − D2

12

)
c4 +

(
D22D33 − D2

23

)
s4 (E.6) 

Here, Dij represents the ij-component of the stiffness matrix D in Eq. (A.2). By rotating the applied stresses and strains to the 
material coordinate system, we can now numerically determine the consistency parameter, Δγ, using Eq. (D.1). Following the solution 
for Δγ, the stresses and strains are reoriented back to the machine coordinate system in preparation for the subsequent incremental 
application of strain. 
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Appendix F. Continuum damage mechanics model 

The proposed framework can be further extended to also include a continuum damage mechanics model which may be used to 
predict cyclic softening. The isotropic Lemaitre damage evolution law is given by 

Ḋ =
Δγ

1 − D

(
− Y
r

)s

, (F.1)  

where r and s are the Lemaitre material parameters. Here, Y is defined as 

Y =
− σ2

eff

6G(1 − D)
2 −

σ2
h

2K(1 − D)
2, (F.2)  

where σeff and σh are the effective stress and hydrostatic stress, respectively, and G and K are the shear and bulk modulus, respectively. 
The implicit Euler backward integration of the damage evolution law incorporated with Hill’s yield function is given by Alzweighi 
et al., (2023). 

Dn+1 = Dn +
Δγ

1 − Dn+1

⎛

⎜
⎝

1
r

⎡

⎢
⎣

σ2
Y0(σn+1 − qn+1)

TP(σn+1 − qn+1)

6G(1 − Dn+1)
2 +

1
9(σ11 + σ22 + σ33)

2

2K(1 − Dn+1)
2

⎤

⎥
⎦

⎞

⎟
⎠

s

= 0. (F.3) 

The updated stress is given by 

σn+1 = (1 − Dn+1)D
(
εn+1 − εp

n − Δγn
)
. (F.4) 

Since the damage evolution law is dependent on both stress and accumulated plastic strain, the return mapping algorithm can not 
be simplified to a single scalar equation solely dependent on the consistency parameter. Instead, a system of equations with 14 
equations and unknowns (Neto et al., 2008) need to be solved given by 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σn+1 − (1 − Dn+1)D
(
εn+1 − εp

n − Δγn
)

qn+1 −

[
1

1 + K1Δγ
̅̅̅̅̅̅̅̅
2/3

√

](

qn +
2
3
K0Δγn

)

Dn+1 − Dn −
Δγ

1 − Dn+1

⎛

⎜
⎝

1
r

⎡

⎢
⎣

σ2
Y0(σn+1 − qn+1)

TP(σn+1 − qn+1)

6G(1 − Dn+1)
2 +

1
9(σ11 + σ22 + σ33)

2

2K(1 − Dn+1)
2

⎤

⎥
⎦

⎞

⎟
⎠

s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
Y0(σn+1 − qn+1)

TP(σn+1 − qn+1)

√

1 − Dn+1
− σY − σsat

[
1 − exp

(
− β
(

αn + Δγ
̅̅̅̅̅̅̅̅
2/3

√ ))]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
0

⎫
⎪⎪⎬

⎪⎪⎭

. (F.5) 

Here, the plastic flow direction vector is given by n = df/dσ and the solution to the system of equations yields the updated stress 
components, σ, back stress components, q, damage parameter, D, and consistency parameter, Δγ. The hysteresis loops for 1000 cycles 
are illustrated in Fig. F.1a with the Lemaitre damage model and in Fig. F.1b without damage, for illustrative purposes. In both cases, 
the strain amplitude is 0.4 % and the hardening parameters at 300 ◦C are taken from Table 5. The Lemaitre damage parameters, r and s, 
were arbitrarily chosen as 1 MPa and 1.5, respectively. It’s noteworthy to observe the initial hardening and saturation followed by 
cyclic softening in Fig. F.1a, whereas Fig. F.1b depicts initial hardening with subsequent saturation and no further change. In addition, 
there’s a noticeable difference in accumulated plastic strain despite the same number of cycles, attributed to the reduced elastic 
stiffness resulting from the damage model.  
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Fig. F.1. Hysteresis loops for 1000 cycles (a) with Lemaitre damage model and (b) without damage.  
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