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ABSTRACT

To understand passive vortex-induced vibrations (VIV) coexisting with active structure motions, this paper numerically investigates the use of pure
pitch oscillation to control a square cylinder mounted with a deformable splitter plate at the Reynolds number of 333. The oscillation is enforced
with an amplitude of 3� and different frequencies from 0 to 6Hz. Direct numerical simulations using a partitioned method with a semi-implicit
coupling algorithm are performed. According to the trajectories of the splitter-plate tip displacement with respect to the lift or drag force coefficient,
a specific lock-in regime determined by the frequency of the enforced pitch oscillation is identified. Further spectral analyses of the tip displacement
and lift force show that the lock-in frequencies are equal to the enforced frequencies. Next to the lock-in regime, semi-lock-in regimes with narrow
bandwidths are distinguished, exhibiting both lock-in and non-lock-in features. In the non-lock-in regimes, the frequencies of the most predomi-
nant peaks in the spectra are found near the natural frequency of the splitter plate of 3.236Hz, and the frequencies of the two secondary peaks are
distributed along the characteristic lines following the ratios of these frequencies to the enforced frequency, which are 61. Thus, the interaction is
dependent on the combined effects of the passive VIV and the actively enforced pitch oscillations. Moreover, the intersection points of the charac-
teristic lines are located close to the upper and lower frequency limits of the lock-in regime, inferring the conditions for the lock-in onset.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0200566

I. INTRODUCTION

Vortex-induced vibration (VIV) is a typical phenomenon of
fluid–structure interaction (FSI) in flow past a blunt body where vorti-
ces induced by the body result in self-sustained vibration of the body.
It exists in vast applications such as offshore structures, renewable
energy harvesting, biomedical devices, and aircraft. VIV is categorized
into flutter, galloping, and buffeting in terms of vibration frequency
and amplitudes.1,2 A benchmark case of VIV is a deformable splitter
plate assembled onto the rear side of a square cylinder. Since this con-
figuration setup induces flow possessing plenty of representative mech-
anisms, it has been widely investigated and considered in the
validation of numerical and experimental FSI methods.3–9

Matthies and Steindorf4 proposed an implicit coupling (also
termed strongly coupling) algorithm on the basis of a nonlinear block
Newton algorithm, to develop a partitioned strategy for FSI simulation.

One of the validation cases in their study was the benchmark VIV case
of the square cylinder with the splitter plate at the Reynolds number,
Re, of 333. In the partitioned strategy, the flow and structure deforma-
tions were separately solved with different solvers but coupled by iter-
ating variables at the interfaces between the fluid and the structure.
Dettmer and Peri�c5 took advantage of this benchmark VIV case to val-
idate a partitioned approach with an implicit coupling algorithm. Both
flow and solid solvers were implemented based on finite-element dis-
cretization. Stabilized low order velocity–pressure finite elements were
considered to discretize the incompressible Navier–Stokes equations,
and standard finite element approximations for the structure. An arbi-
trary Lagrangian–Eulerian (ALE) strategy was used to capture the flow
domain deformation. A discrete implicit generalized-a method was
taken for the temporal discretization of both the solvers. In the study
by Wood et al.,7 this benchmark VIV case was simulated using a
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partitioned approach. An implicit coupling algorithm called the block-
Gauss–Seidel (BGS) algorithm was adopted to couple fluid and solid
solvers. An incompressible finite volume method (FVM) with an ALE
algorithm on deformable fluid–solid interfaces was utilized for the
flow solver, and a finite element method (FEM) for large dynamic
structural deformation was utilized for the solid solver. Later, consider-
ing the same VIV case, Kassiotis et al.8 compared the BGS and explicit
algorithms. Habchi et al.9 studied a similar partitioned approach
implemented in the open-source tool OpenFOAM and validated the
approach based on this benchmark case. The incompressible flow was
solved with the PIMPLE algorithm, and the large structural deforma-
tion was solved with the Saint Venant–Kirchhoff constitutive model. A
dynamic Aitken method was applied to accelerate the coupling itera-
tion between the solvers. Their method has also been tested for a bio-
mechanics application with large deformations by Yao et al.10 A
monolithic approach to FSI simulation was proposed by Schott et al.11

One of the cases for the method validation was this benchmark case.
In their study, the monolithic approach was implemented for FEM,
but it is generally applicable to other discretization schemes.

The square cylinder with the flexible splitter plate has been con-
sidered to develop a concept for piezoelectric energy harvesters,12

where the strain energy from plate deformations is harvested by piezo-
electric patches on the polymeric splitter plate. Previous harvesters of
this type were installed with rigid splitter plates, which vibrate at rela-
tively higher frequencies. In contrast, the flexible plate of the concept
has deformations at low frequencies. Through water-tunnels tests (at
Re between 9200 and 14 300) and numerical simulations with a parti-
tioned method coupling the ANSYS modules of Fluent and
Mechanical (at Re between 4974 and 9648), Binyet et al.12 showed that
the power conversion is dependent on the inflow speed and the geo-
metric parameters such as the square width, and the plate length and
thickness. The Reynolds-averaged Navier–Stokes (RANS) equations
with the realizable k–� model were used for the flow simulations. In
another work of water-tunnel tests by Binyet et al.,13 this configuration
at Re from 1500 to 19700 was studied to understand how the geomet-
ric parameters of the splitter plate affect the flow characteristics and,
consequently, the harvested mechanical energy.

Instead of a single set of a flexible plate attached on a square cyl-
inder (i.e., the benchmark case reviewed above), Furquan and Mittal14

analyzed two sets positioned side by side at Re¼ 100 using a parti-
tioned FEM approach. Compared to the single set, this two-set case
exhibits out-phase vibrations at the initial stage before in-phase vibra-
tions are developed. The lock-in was found by adjusting the plate
structure stiffness but retaining the density ratio of the solid to the fluid
and the Poisson ratio. In addition, increasing the distance between the
two sets results in a reduced vibration amplitude. Sarioglu15 carried
out an experimental study for a square cylinder at various incidence
angles from 0� to 45� at Re ¼ 3� 104, where a rigid and stationary
splitter plate with the same length as the square width was positioned
behind the cylinder to passively control vortex formation in the wake.
It was found that the splitter plate is effective in reducing the drag at all
incidence angles. A reduction in 20% is achieved at the zero incidence
angle, and the minimum and maximum reductions are near 13� and
20�, respectively.

Aside from the deformable splitter plate, the details of the rigid
splitter plate controlling the vortex shedding from the square cylinder
within a plane duct at low Re between 110 and 200 were explored

numerically by Turki.16 It was found that the length and location of
the splitter plate are critical to affecting the vortex shedding and char-
acteristic Strouhal number, as well as drag and lift coefficients. After
that, Ali et al.17 systematically analyzed the effects of attached with of
the rigid splitter plate varying between 0.5 and 6 times of the square
cylinder width at Re ¼ 150 by means of direct numerical simulation
(DNS).

In addition to square cylinders, a circular cylinder attached with a
deformable splitter plate within a plane channel was put forward as a
benchmark VIV case, termed the Turek–Hron benchmark, proposed
by Turek and Hron.18 It has also been widely adopted to validate FSI
methods, for example, by Giannelis and Vio.19 The Turek–Hron
benchmark was further modified to generate other VIV cases. For
example, in the research by Sahu et al.,20 the circular cylinder was
mounted onto a spring so that a spring-mass system at Re¼ 150 was
established in addition to the flexible splitter plate. By setting a slip
wall condition on the side boundaries and increasing the fluid domain
size for the Turek–Hron case, Pfister and Marquet21 analyzed the FSI
stability and dynamics for Re ¼ 80. Recently, Tatar and Yao22 pro-
posed to place an additional circular cylinder upstream of the bench-
mark and found that this setup enhances the energy harnessing
performance of the flexible splitter plate. Duan and Wang23 conducted
the experiments for rigid and flexible plates of different lengths
attached to a circular cylinder, to reduce the noise generated from the
flow induced by the cylinder at Re from 3:83� 104 to 9:57� 104. The
effects of cylinder rotation on hydrodynamic forces at low Reynolds
numbers were also widely investigated.24

Aside from passive VIV, active pitch oscillation was investigated
for a NACA0012 airfoil at dynamic stall.25,26 A suction jet actuator was
installed on the airfoil to control flow separation. The operational
parameters of the jet were optimized using a genetic algorithm coupled
with neural networks. It was found that the optimal jet is effective in
improving the aerodynamic performance, since leading-edge and
turbulent-separation vortices are suppressed. This inspires that splitter
plates can also be used for flow control.

The present study is motivated to understand the interaction
between the flow and structural deformation when passive VIV is trig-
gered in combination with active pitch oscillation of the structure. A
flexible splitter plate attached to a square cylinder is investigated. This
configuration has been simulated in previous studies where the square
cylinder is stationary.3–9,11 In contrast, the square cylinder is enforced
to oscillate in the present study. The previous data of the stationary
scenario will support the method validation in this study and be used
as a reference to address how the enforced oscillation affects VIV. The
aim is to explore the effects of the active pitch oscillation on the passive
vibrations of the downstream splitter plate. The changes in the lift and
drag forces, as well as the structural deformations, will be addressed.
Moreover, the onset conditions of the lock-in phenomenon will be
understood based on the analysis of variable changes in time and fre-
quency domains. The effects of the enforced pitch frequency will be
explored in terms of the predominant flow and structure
characteristics.

II. APPLICATION DESCRIPTION

The configuration investigated in this study is shown in Fig. 1. A
square cylinder is assembled with a splitter plate at the center of the
backside of the cylinder. The square cylinder is rigid, whereas the
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splitter plate is flexible. The side length of the square cylinder is D, and
the plate has a length of 4D and a thickness of 0:06D.

This combined structure system is forced to oscillate periodically
at the center of the joint between the square cylinder and the splitter
plate. The time-varying pitch angle is defined as

h ¼ A sinð2pfexctÞ ; (1)

where the pitch angle amplitude is A¼ 3�, and the oscillation fre-
quency fexc is prescribed between 0 and 6Hz. This frequency range is
chosen in order to encompass the first natural frequency of the splitter
plate, fn;1, which is reported in Table III in Sec. VA.

The setup of the configuration and inflow conditions are estab-
lished in reference to a benchmark VIV configuration at Re¼ 333
where the square cylinder is stationary. Here the Reynolds number
(Re) is calculated based on the side length of the square body, D, and
the free-stream flow velocity, U0. The benchmark configuration at
Re¼ 333 has been computed in two-dimensional (2D)3–6,9,27 and
three-dimensional (3D) simulations.7 In addition, this benchmark con-
figuration at Re¼ 204 was simulated in 2D.28,29 The DNS was used in
the simulations at both the Reynolds numbers.

The present flow is specified at Re¼ 333 by following the previ-
ous studies.3–7,9,27 In the study conducted by Wood et al.,7 the flow
was simulated in 3D, while the structure of the splitter plate was mod-
eled in 2D using a neo-Hookean plane stress material. Their results are
consistent with others, where both the flow and the structure are com-
puted in 2D.3–5 It is known that flow past a circular cylinder at Re
larger than 188.5 exhibits secondary instability along the spanwise
direction.30,31 Similarly, such instability should also exist for the square
cylinder in the present cases, which needs to be resolved using 3D sim-
ulations. However, according to the results of Wood et al.,7 the second-
ary instability has a negligible effect on affecting the current VIV
system. The reason is that the 2D structure modeling suppresses the
spanwise structural deformation. Based on this finding, the present
cases are simulated with the 2D approximation. The available data for
Re¼ 3333–7,9,27 will be used for the methodology validation in Sec. III.
However, the forced oscillation has not been introduced in these previ-
ous studies.

The incompressible flow is defined since the free-stream Mach
number of 0.151 is much smaller than the critical value of 0.3. The
characteristic frequency of the flow passing over the square body is
fT ¼ U0=D ¼ 51:3Hz.

The splitter plate is regarded as linear elastic. As the square cylinder
is rigid, it has no deformations and is thus excluded from the structural
analysis. The reduced velocity ratio is defined as U0=ðfn;1DÞ ¼ 1:542,

where fn;1 is the first natural frequency of the splitter plate. The mass
ratio of the plate structure density to the fluid density is 84.756. The
mass ratio is chosen to ensure a limited added mass effect in the current
VIV system in consideration of the low free-stream flow velocity and
the splitter-plate tip velocity. As reported by Sahu et al.,20 the structural
vibration amplitude and frequency are not changed much against the
mass ratio, when it is larger than 10 and the reduced velocity ratio is
smaller than 2. The VIV system in their study is a flexible splitter plate
(of different lengths from 1:5D to 3:5D) attached to a cylinder with
passive vertical oscillation (VO) at Re¼ 150. A similar effect was also
found for a single VO cylinder and for a rigid splitter plate attached to
a VO cylinder.32 As the different VIV systems exhibit the common
effect, it is deduced that the mass ratio specified in this study can lead
to small added mass. Nevertheless, a research in the future is to address
the influence of the mass ratio. Young’s modulus of the plate is
2:5� 105 Pa, and the Poisson ratio is 0.35.

III. NUMERICAL METHOD
A. Governing equations

The governing equations of the continuity and momentum in the
2D incompressible flow are written as

@ui
@xi

¼ 0; (2)

@ui
@t

þ uj
@ui
@xj

¼ � 1
qf

@P
@xi

þ �
@2ui
@xj@xj

; (3)

where ui and uj denote the i- and j-indexed components of the velocity
vector, respectively. P is the pressure. The density qf is constant for the
incompressible flow. The kinematic viscosity is denoted by �.

The structure material is linear elastic and isotropic. In the struc-
tural model, the effects of gravity and structural damping are neglected.
The momentum balance equations in the Lagrangian form read

@2yi
@t2

¼ 1
qs

@rsij
@xj

; (4)

where yi- is the i-indexed component of the displacement vector, qs is
the structure density, and rsij denotes the second-order Cauchy stress
tensor. The Saint Venant–Kirchhoff model is used to take into account
the geometric nonlinearity that is caused by large structure deflec-
tion.33 The constitutive stress–strain relationship of the linear elastic
model deals with the Green–Lagrange strain tensor Gij:

Gij ¼ 1
2

@yi
@xj

þ @yj
@xi

þ @yk
@xi

@yk
@xj

 !
: (5)

The second Piola–Kirchhoff stress tensor is written as

Sij ¼ 1
2
E

1
ð1þ �sÞGij � �s

ð1þ �sÞð1� 2�sÞGkkdij

� �
; (6)

where E is Young’s modulus, and �s is Poisson’s ratio.

B. Partitioned approach of coupled FSI

The simulation of FSI adopts a partitioned approach.34 In this
approach, the fluid and structure are solved separately using different
solvers. An ALE algorithm is utilized to describe the continuum

FIG. 1. Schematic of the flexible splitter plate attached to the square cylinder, where
the cylinder is enforced to oscillate. The arrows upstream of the body indicate the
inflow direction. The angle hðtÞ varies periodically in time.
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mechanics in the progression of the deforming fluid and structure
domains in time and space.35,36 A semi-implicit method is applied to
coupling the fluid and structure solvers.37,38 The flow pressure and
shear stress tensors are exchanged with the structure displacements on
the interfaces between the flow and structure domains, where a space
conservative interpolation approach is used to map these variables
onto unconformable mesh cells between the domains.39

In the flow solver, a finite volume method based on the pressure-
based segregated algorithm of semi-implicit method for pressure
linked equations (SIMPLE) is used.40 A least squares cell-based
approach is adopted in the computation of gradients. A second-order
upwind scheme is used in the spatial discretization of the momentum
equations. The time marching approach is implemented with an
implicit scheme. The threshold value of residuals for justifying conver-
gence per time step is set to 1� 10�6.

The structure solver utilizes the finite element method (FEM).41

The approximation of the discretized governing equations in a weak
form is derived on the basis of the Galerkin method of weighted resid-
uals.42 The element approximation chooses the same formulations for
the weighting and element shape functions. The Gaussian integration
method is used to calculate integrals.43 Dynamic simulation is per-
formed since the splitter-plate structure is subjected to transient
dynamic loads from the flow.

C. Numerical setup

The computational domains of the fluid and structure are
sketched in Fig. 2. The domain dimensions and layout are defined in
reference to the studies by Ramm and Wall44 and Bazilevs et al.45 The
lengths are normalized based on the square cylinder widthD. The inlet
is positioned for 4.5 from the square cylinder, the side boundaries for
5.5, and the outlet for 14. To monitor the flow field, three probes such
as S1, S2, and S3 are positioned at ðx; yÞ ¼ ð0:5; 0:5Þ, (8, 0), and
ð0:5; 0:8Þ, respectively.

In the flow simulation, the boundary condition (BC) of the velocity
inlet is set at the inlet of the flow domain, the symmetry BC is set at the
side boundaries, and the pressure outlet at the outlet. The under-
relaxation factors for the pressure and momentum in the segregated flow
solver are set to 0.3 and 0.7, respectively. In the structure domain, the
time-varying rotation, which is predefined in Eq. (1), is set at the center of
the joint surface between the square cylinder and the splitter plate.

A desktop computer with the IntelV
R

CoreTM i9-9900 Processor
was used to run parallel simulations. The CPU has 8 cores of 16
threads. The physical memory of the desktop computer is 64 GB. The
operating system is Microsoft Windows 11.

IV. METHOD VALIDATION
A. Mesh independence study

Structured meshes are generated in the fluid and structure
domains. The Laplacian method is used to update the meshes during
the simulation. The dimensionless key cell sizes of the baseline case,
normalized by the square body length D, are listed in Table I. The sur-
face cell sizes for the splitter plate are taken to generate both the fluid
and structure meshes, and the remaining parameters for the generation
of the fluid mesh. The growth ratio of the cell sizes in the fluid mesh is
1.1. The surface cell size on the side surfaces of the splitter plate ranges
between 0.03 and 0.08. There are 20 layers of hexahedral elements
within the plate.

A convergence study of the mesh resolution is carried out based
on the meshes in Table II. There are five meshes, meshes 1–5, with dif-
ferent grid resolutions. These meshes are globally coarsen or refined
with a refinement factor (RF) in reference to the baseline mesh—mesh
3 outlined in Table I. Moreover, it is of interest to understand whether
the time step is small enough to provide converged results. Three val-
ues of the time step are set for mesh 3. Another factor that might
impact the simulation accuracy is the modeling of the geometric non-
linearity for the structure.33 To clarify this impact, the nonlinear model
is switched on or off for mesh 3 with the different time step values,
namely, cases a–f for mesh 3 in Table II. The maximum Courant–
Friedrichs–Lewy (CFL) numbers of all cases are less than 1.
Considering the largest time step of Dt=T ¼ 5:13� 10�2 for mesh 5,
the maximum CFL number is 0.36. As the cell sizes of mesh 5 are
smaller than the other meshes, its maximum CFL number is the largest
among the cases.

The convergence is evaluated in terms of the maximum displace-
ment of the splitter plate tip in the direction normal to the free-stream
flow direction, ytip;max , and the frequency of the energy peak in the
power spectral density (PSD) of the splitter-plate tip displacement, fres.
Fast Fourier transformation (FFT) is used for the PSD calculation. The
total length of the signals is 160T, where T is the time of the flow pass-
ing over the square cylinder. Each signal is divided into 15 segments,
with an overlapping rate of 50%. The sampling frequency is 1000Hz.
The Hanning window is used as the window function.

FIG. 2. Schematic of the fluid and structure computational domains. The dimen-
sions are normalized based on the square cylinder width D. The triangles mark out
the probe positions such as S1, S2, and S3 for monitoring flow variables.

TABLE I. The normalized key cell sizes of the baseline case (i.e., mesh 3 in Table II).

Location Size

Square body surface 0.026–0.05
Splitter plate surfacea 0.03–0.08 (side)

0.003 (tip)
First-layer cell height near walls 0.002
Far-field boundary 0.34
Growth ratio of cell sizes 1.1

aAs the splitter plate surface is actually the FSI interface, the cell sizes are used for both
fluid and structure meshes.
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By comparing the cases of meshes 1, 2, 3-a, 4, and 5 with the
same settings such as the large deflection and Dt=T ¼ 5:13� 10�2 in
Table II, the maximum plate tip displacement ytip;max and the peak fre-
quency fres are well converged with respect to the mesh resolution. In
reference to mesh 3-a of ytip;max=D ¼ 1:043, the deviations from the
fine meshes (meshes 4 and 5) are 0.0085 and 0.0037. A similar conver-
gence is also observed for fres, which is 3.327Hz in mesh 3-a. Meshes 4
and 5 deviate from mesh 3-a by –0.028 and –0.071Hz, respectively.

Define the time-averaged absolute value of the splitter-plate tip
displacement as

�w ¼ 1
t1 � t0

ðt1
t0

jytipjdt ; (7)

where t0 is the time when the flow is fully developed, and
ðt1 � t0Þ ¼ 226T . In reference to the results from the finest mesh reso-
lution (mesh 5), the error of �w from mesh i (for i¼ 1, 2, 3-a, 4) is
defined as

% e�w jMesh i ¼
�wjMesh i � �wjMesh 5

� �
�wjMesh 5

� 100%: (8)

By replacing �w with fres in Eq. (8), the error of fres from mesh i is
defined similarly.

Based on Eq. (8), the errors of �w and fres from the different mesh
resolutions are plotted in Fig. 3, where mesh 3 corresponds to mesh 3-
a in Table II. As can be seen, the errors decay exponentially with
respect to the total number of cells Ntot. The trends suggest that the
independence of the mesh resolution is achieved.

The influences of the geometric nonlinear structural modeling33

are identified through the comparison of the cases on the basis of
mesh 3. The modeling is considered in cases 3-a, 3-c, and 3-e with the
different time step sizes, but excluded from the other cases. According
to the results in Table II, disregarding the modeling leads to differences
in ytip;max and fres, which are not negligible. Therefore, the nonlinearity
associated with large deformations of the splitter plate is important for
numerical accuracy. The modeling is involved in the simulations in the
following analysis of the VIV.

The time step size is adjusted in cases 3-a–3-f of mesh 3 to find a
feasible value. The results of cases 3-a, 3-c, and 3-e, where the geomet-
ric nonlinear structure model is accounted for, show limited differ-
ences between them. Case 3-a with Dt=T ¼ 5.13� 10�2 provides

TABLE II. Results from different grid resolutions and numerical setups compared with the previous studies.a

Mesh number RF Ntot LD Dt/T ytip;max=D fres (Hz)

Mesh 1 0.6 4274 Yes 5.130� 10�2 1.0773 3.3630
Mesh 2 0.8 6740 Yes 5.130� 10�2 1.0529 3.3390
Mesh 3-a – 9408 Yes 5.130� 10�2 1.0430 3.3270
Mesh 3-b – 9408 No 5.130� 10�2 1.0867 3.2723
Mesh 3-c – 9408 Yes 2.565� 10�2 1.0264 3.2971
Mesh 3-d – 9408 No 2.565� 10�2 1.1028 3.2175
Mesh 3-e – 9408 Yes 1.026� 10�2 1.0254 3.2798
Mesh 3-f – 9408 No 1.026� 10�2 1.1349 3.1867
Mesh 4 1.2 12 520 Yes 5.130� 10�2 1.0345 3.2990
Mesh 5 1.4 19 738 Yes 5.130� 10�2 1.0393 3.2560
Wall3 1.12–1.32 2.78–3.26
Matthies and Steindorf4 1.0–1.35 3.13
Dettmer and Peri�c5 1.1–1.4 2.96–3.31
Olivier et al.6 0.95 3.165
Wood et al.7 1.1–1.2 2.78–3.13
Habchi et al.9 1.02 3.253

aHere, RF is the refinement factor, Ntot the total number of cells, ytip;max the maximum displacement of the splitter plate tip, and fres the frequency of the plate structure response. The
large deflection (LD) is switched on or off. The blue frame highlights the final choice used for the following analysis, that is, the baseline mesh in Table I.

FIG. 3. The errors of the time-averaged
absolute tip displacement �w and the peak
frequency of the tip displacement fres from
the different mesh resolution in reference
to the finest mesh (mesh 5) as a function
of the total number of cells Ntot.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 043612 (2024); doi: 10.1063/5.0200566 36, 043612-5

VC Author(s) 2024

 15 M
ay 2025 06:34:24

pubs.aip.org/aip/phf


ytip;max=D ¼ 1:043, whereas cases 3-c and 3-e with smaller time step
sizes provide 1.0264 and 1.0254, respectively. Moreover, fres of case 3-a
is 3.327Hz, which is similar to the other cases of 3.2971 and 3.2798. In
addition to that, although the geometric nonlinear model is excluded
from cases 3-b, 3-d, and 3-f, the results of these cases with different
time step sizes are similar. It is, therefore, reasonable to choose the
time step size of Dt=T ¼ 5.13� 10�2 to guarantee numerical accuracy
and a relatively shorter simulation time.

The cases of this study are also compared to the same scenario
(i.e., the same configuration at Re¼ 333) simulated in previous
studies,3–7,9 as listed in Table II. The present cases give ytip,max/D
¼ 1.0254–1.1349 and fres¼ 3.1867–3.363Hz. These values are consis-
tent with the previous results.

V. RESULTS AND DISCUSSION
A. Modal analysis

A model analysis is performed for the flexible splitter plate using
FEM and an analytical modeling method, i.e., the Euler–Bernoulli
beam model.46 It is assumed that there are no external forces, struc-
tural, or viscous damping effects. In the analytical model, the general
form of the nth mode shape reads

/ðxÞ ¼ AsinðbnxÞ þ BcosðbnxÞ þ CsinhðbnxÞ þ DcoshðbnxÞ; (9)

b4n ¼ x2
nm=ðEIÞ ; (10)

where m is the mass per unit length of the splitter plate, I is the area
moment of inertia of the plate section, andxn is the natural circular fre-
quency. Given the upstream tip of the plate is imposed with zero dis-
placement and rotation, bn at the downstream tip of the plate satisfies

cosðbnLÞcoshðbnLÞ þ 1 ¼ 0 ; (11)

where L denotes the length of the splitter plate. Equation (11) is solved
analytically to determinexn.

The first three natural frequencies of the splitter-plate structure
(fn;1; fn;2, and fn;3), which are computed using the two methods, are
presented in Table III. In the FEM simulation, mesh 3 is adopted. The
FEM results are consistent with those of the analytical model. Small
differences of about 6% between the methods are observed.

B. Unsteady FSI characteristics

Lift and drag forces of the configuration including both the
square body and the splitter plate are analyzed by means of the trajec-
tory evolution of the force coefficients in time. The lift coefficient is
defined as CL ¼ fy=ð0:5qf U2

0 Þ, and the drag coefficient is defined as
CD ¼ fx=ð0:5qf U2

0 Þ. The trajectory evolution of CL against CD for a
variety of active oscillation frequencies fexc is shown in Fig. 4. Here fexc
ranges between 0 and 6Hz. The time-averaged drag coefficient CD;mean

and the root mean square (RMS) value of the lift coefficient CL;RMS are
marked out in this figure.

As shown in Fig. 4, the polar of CL and CD evolves in a closed
simple trajectory as the square body is stationary, i.e., fexc¼ 0Hz.
However, as fexc is slightly increased to 0.25Hz, the trajectory becomes
disordered. It is enveloped within a region that has a similar overall
shape but is larger compared to that of the stationary case. This sug-
gests larger lift and drag variations are introduced by the enforced
body oscillation. The disordered status is sustained until fexc increases
up to 2.75Hz. The area spanned by the trajectory is increased with fexc.
A special case is found at 2.25Hz, where the trajectory is comparatively
less complex than the neighbor frequencies.

Clear single trajectories are also observed at fexc 2 ½2:875; 3:5�Hz
in Fig. 4. This phenomenon indicates that a lock-in effect appears
because of the interaction between the plate structure and flow. The
variation range of the trajectory is decreased as the frequency increases.
The trajectory is almost collapsed into a curve at 2.875Hz, while it
becomes separated to form a butterfly shape at higher frequencies. The
shapes of the trajectories at these high frequencies are different from
that of the stationary case.

For fexc above 3.5Hz, Fig. 4 shows that disordered trajectories are
excited again. The trajectory variation range first increases with respect
to fexc up to 4.25Hz and then decreases with the frequency. This
behavior is different compared to the disordered cases at the lower fre-
quencies before the lock-in regime onsets, as discussed above.
Moreover, the variation range at 3.625Hz after the lock-in regime is
much smaller than that at 2.75Hz before the lock-in regime, but is rel-
atively comparable to 0.25 and 6Hz. A relatively less complex trajec-
tory is seen at 4.5Hz outside the lock-in regime. A similar effect also
exists at 2.25Hz below the lock-in frequencies.

The evolution history of the trajectories of the splitter-plate tip
displacement, ytip, and the lift coefficient, CL, is displayed in Fig. 5. As
can be seen, the trajectory of the stationary-cylinder case at fexc¼ 0Hz
does not follow a single loop. This behavior is contrary to the lift-drag
trajectory identified in Fig. 4. A reason is that vortices bring about
velocity and force fluctuations at high frequencies, which will be dis-
cussed later in spectral analysis.

It is clear in Fig. 5 that the trajectory becomes regularized as a sin-
gle closed loop in the lock-in regime of fexc 2 ½2:875; 3:5�Hz.
Moreover, at 2.875Hz where the lock-in regime onsets, the tip dis-
placement is zero meter (i.e., at the neutral position of the splitter
plate) when the lift force coefficient is zero. In contrast to this effect, at
the other higher frequencies of the lock-in regime, the zero tip dis-
placement is associated with non-zero lift coefficients. There are two
points in the trajectory curve where the tip displacement is zero. They
are dependent on the sides from which the plate returns to the neutral
position. In addition, the trajectories at 2.25 and 4.5Hz are less disor-
dered than the neighboring frequencies, although both frequencies are
away from the lock-in regime. These behaviors agree with the findings
for the lift-drag trajectories in Fig. 4.

Figure 6 displays the evolution history of the trajectory from the
tip displacement and the drag coefficient CD. The stationary case at
fexc¼ 0Hz also exhibits a simple trajectory. This is in line with the
observation for the displacement vs CL in Figs. 4 and 5, since flow vor-
tices affect the drag and lift forces simultaneously.

A general observation in Fig. 6 is that the smallest CD always
appears at two positions of the plate tip that are located between the
neutral and the maximum positions, but not at the neutral position.
The reason is that vortices are subjected to fewer constraints in the

TABLE III. Natural frequencies of the flexible splitter plate (unit: Hz).

Natural frequency Analytical model FEM

fn;1 3.0288 3.2360
fn;2 18.981 20.256
fn;3 53.148 56.628
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process of being swept downstream, when the splitter plate is pitched
away from the neutral position. Furthermore, CD increases rapidly as
the plate tip approaches to the maximum deformation position, while
it has the largest value before the plate tip reaches to the maximum
position. This process indicates that the streamwise motion of vortices
is confined by the pitch plate, resulting in the impingement of the vor-
tices onto the plate. The impingement is increased quickly when the
pitch process approaches the largest plate deformation.

As shown in Fig. 6, because of the lock-in, single close trajectories
are seen at the enforced frequencies between 2.875 and 3.5Hz. This
effect is well consistent with the findings in Figs. 4 and 5. It is noticed
in Fig. 6 that the area spanned by the trajectory increases with the
enforced frequency before the lock-in regime is reached. Then, in the
lock-in regime, it grows with frequencies up to 3.125Hz and then is

narrowed down. After the regime, the area becomes larger again up to
4.5Hz and decreases above this frequency. Additionally, the trajecto-
ries at 2.25 and 4.5Hz are less disordered than the neighboring fre-
quencies. These phenomena agree with those in Figs. 4 and 5.

Snapshots of the z-component of the vorticity vector, xz, for sev-
eral selected fexc are illustrated in Fig. 7. These frequencies are 0, 2,
3.125, 4.25, and 6Hz, which spread over the whole frequency range of
interest including the lock-in regime. The contours at the different
oscillation frequencies exhibit similar vortex patterns. This indicates
that given the pitch oscillation amplitude and Reynolds number in this
study, the flow mode of vortices detached from the square body is not
sensitive to the oscillation frequencies. However, the structural
responses to the flow are highly dependent on the oscillation frequen-
cies, since the splitter plate is enforced to interact with the vortices.

FIG. 4. The trajectory evolution of CL vs CD in time. The x-axis is CD, and the y-axis is CL. The red and blue dash lines mark out CD;mean and CL;RMS.
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This effect is identified in the preceding trajectory analysis of the force
coefficients and splitter-plate tip displacement, which behave in dis-
tinct manners within and outside the lock-in regime.

The time series of the tip displacement ytip and the velocity com-
ponent uy, which is normal to the free-stream flow direction, at the
probe point S2 are displayed in Fig. 8. The results of fexc¼ 0, 2, 3.25,
and 4.25Hz are chosen to show. Assuming the splitter plate is rigid
without any deformation, periodic sinusoidal displacement at the plate
tip is obtained and also shown in the figure to explore the potential
coherence between the passive structure deformation and the active
(enforced) structure oscillation (i.e., the pitch motion). The probe
point is positioned in the wake downstream of the plate, and its coor-
dinates are found in Fig. 2.

It is seen in Fig. 8 that the plate tip in the stationary case exhibits
regular wavy displacements. The velocity component uy in the wake in

this case, however, fluctuates with an irregular wave shape, indicating
that multiple frequencies exist in the fluctuations.

In the cases of the square cylinder enforced with fexc¼ 2 and
4.25Hz outside the lock-in regime in Fig. 8, ytip fluctuates with a vari-
ety of amplitudes and phases, which does not follow the enforced oscil-
lation displacement (drawn with the red curves in the figure). The tip
displacement in the case at 4.25Hz shows more wave periods than
that at 2Hz. It suggests that the enforced pitch oscillation introduces
fluctuations at more frequencies. Meanwhile, the fluctuations of uy are
much more irregular in both cases.

A specific case shown in Fig. 8 is the one at fexc¼ 3.25Hz, which
is located within the lock-in regime. As can be seen, the tip displace-
ment fluctuates in a regular waveform. A constant phase shift is identi-
fied in the plate tip displacement in comparison to the enforced tip
oscillation. The amplitude of the tip displacement is much larger than

FIG. 5. The trajectory evolution of ytip=D vs CL in time. The x-axis is CL, and the y-axis is ytip=D. The blue dash line indicates the RMS value of CL.
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the enforced tip oscillation, since the large-scale deformation of the
flexible plate accounts for additional displacement at the plate tip.
Moreover, the velocity component uy at S2 in the wake exhibits peri-
odic wave-like fluctuations. Small fluctuations are observed near the
wave troughs and valleys. This implies the fluctuations at a relatively
higher frequency because of vortices developed in conjunction with
the upstream structure vibration.

C. Spectral analysis of FSI

The normalized PSDs of the velocity component uy (denoted by
Ŝuy ) at the probe points, S1, S2, and S3, for several cases are shown in
Fig. 9, where the predominant peaks and corresponding frequencies
are marked out. All PSDs in the different cases are normalized based
on the maximum peak of S2 at 3.327Hz in the stationary case

(fexc¼ 0Hz). The coordinates of the probe points are illustrated in
Fig. 2. As noticed in Fig. 7, S1 is placed between two shear layers that
are shed from the leading and trailing edges of the square body, respec-
tively. The position of S3 is mainly inside the region over which the
leading-edge vortices pass. S2 is contained in the wake downstream of
the splitter plate.

In the stationary case in Fig. 9, two predominant peaks are
observed at S1. The maximum peak at 6.653Hz, and the smaller peak
exists at 3.327Hz, which is close to the first natural frequency of the
splitter-plate structure of fn;1 ¼ 3:236Hz. The smaller peak frequency
is half of the other large peak frequency. The same maximum peak fre-
quency at 6.653Hz is also seen for S3. Despite a peak at 3.327Hz also
exists at S3, its normalized magnitude is nearly negligible than that at
S1. Looking at S2, only one peak is recognized at 3.327Hz. The results
convey that the shear layer mainly contains vortices at the two

FIG. 6. The trajectory evolution of ytip=D against CD in time. The x-axis is CD, and the y-axis is ytip=D. The red dash line indicates the time-averaged value of CD.
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frequencies identified in the PSDs. The vortices at the lower frequency
are flushed down along the splitter plate and then excite the plate
vibration. Meanwhile, when the other vortices at the higher frequencies
move downstream, they go outward away from the splitter plate and,
therefore, have a limited influence on the plate vibration. This effect is
visualized in terms of the vorticity component xz in Fig. 7. The probe
point, S1, is in the region where the leading- and trailing-edge shear
layers interact with each other, and the leading-edge vortices occur on
the outer side with respect to those trailing-edge ones. Therefore, it is
reasonable to deduce that S1 captures the characteristic frequencies of
both shear layers, namely, the two predominant peak frequencies. S3
presents the characteristic frequency of the leading-edge shear layer.
At S2, the vortices from the two sides of the square body merge
together, and the merged wake is characterized with a peak frequency
of 3.327Hz.

In Fig. 9, the enforced case with fexc ¼ 2Hz shows five significant
peaks at S1. The multiple frequencies arise as the enforced frequency is
outside the lock-in regime. Part of these frequencies such as 3.245Hz
is only identified at S2, and the others (5.245, 6.469, and 8.469Hz) as

well as 7.245Hz are identified at S3. This phenomenon suggests that
S1 captures the flow characteristics at both S2 and S3. This effect is
also found in the stationary case discussed above. By observing the
enforced cases with fexc ¼ 3.25 in the lock-in regime and 4.25Hz above
the regime, the same effect exists as well.

To understand the effects of the enforced pitch frequency on the
characteristic frequencies of the tip displacement and the lift and drag
forces, the PSDs of these variables are shown in Fig. 10. The results of
each variable are normalized based on the largest peak magnitude of
the respective PSD in the stationary case. As can be seen in the station-
ary case, the PSD of the lift force ŜL shows another smaller peak at
16.653Hz, in addition to the peak at 3.327Hz that is also observed for
the velocity field in Fig. 9. The drag force ŜD has three peaks. The addi-
tional small high frequency peaks explain the reason about why the
trajectories in Figs. 4–6 are not completely single loops. Similar phe-
nomena are observed for the enforced cases, so the trajectories related
to the lift and drag become disordered. Among all variables, the PSDs
of the drag force exhibit more peaks than the tip displacement and lift
force. This might be caused by the splitter plate interfering the shear

FIG. 7. Snapshots of the vorticity compo-
nent xz. From left to right: approximately
the position of the maximum tip displace-
ment, the neutral position, and the position
of the minimum tip displacement.
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layers detached from the leading edges of the square cylinder (see
Fig. 7). A common effect in all cases is that the frequency of the major
peak is near the natural frequency of the plate. However, for the
enforced frequencies of fexc at 2.75 and 3.75Hz, which are close to the
lock-in regime, the tip displacement is noticed with another peak with
a large magnitude that exists near fexc, and the lift force also presents a
relatively large peak at the same frequencies. It means that the flow
and structure interact at two characteristic frequencies. Thus, the tra-
jectory of the tip displacement and lift force becomes disordered, as
found in Fig. 5. A special case is at fexc¼ 3.625Hz, which is the upper
bound of the lock-in regime. Only one significant peak exists for both
the tip displacement and the lift force, but several very small peaks
commence. This leads to a disordered trajectory as well. When
fexc¼ 0.25 and 5Hz, which are far from the lock-in regime, secondary
peaks at the enforced frequencies become small.

In Fig. 11, the RMS lift coefficient CL;RMS, the time-averaged drag
coefficient CD;mean, and the RMS drag coefficient CD;RMS are plotted as
a function of fexc. All the three coefficients change in similar trends: the
magnitudes gradually increase and reach the largest value at
fexc¼ 3Hz. Above this frequency, the magnitudes drop fast to become

similar to that in the stationary case. Recalling the lock-in regime for
fexc 2 ½2:875; 3:5�Hz indicated in Fig. 4, it is, therefore, found that the
fast increase and drop of the large magnitudes are triggered due to the
lock-in effect. The large RMS values of the lift and drag coefficients
imply that flow vortices and structure deformations are intensively
interacted at specific frequencies. Therefore, remarkable energy from
the flow is absorbed by the splitter-plate structure. It is worth noting
that the frequency of the largest coefficient is 3Hz rather than 3.25Hz
that is closer to the first natural frequency of the splitter plate
fn;1 ¼ 3.236Hz. The reason is associated with the combined effects of
the passive VIV and active pitch oscillation, which will be explained in
the following discussion. Moreover, another obvious increase starting
from 4.25Hz outside the lock-in regime is observed and leads to a local
maximal magnitude at 4.5Hz. Above this frequency, the coefficients
decrease, even though the enforced oscillation is enhanced by increas-
ing fexc.

Figure 12 shows the dominant peak frequencies obtained from
the normalized PSDs of the lift force, ŜL, in the enforced oscillation fre-
quency range between 0 and 6Hz, and the symbols plotted are colored
based on the normalized peak magnitudes. The normalization is made

FIG. 8. The time series of the normalized
tip displacement ytip=D and the normal-
ized velocity component uy=U1 at the
probe point, S2, in the wake. The black
curves in the left figures indicate the tip
displacement of a rigid splitter plate.
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on the basis of the PSD peak magnitude of the stationary case, where
only one peak is observed at fL ¼ 3:327Hz (see Fig. 10). The first nat-
ural frequency of the splitter plate, fn;1 ¼ 3:236Hz from the FEM pre-
sented in Table III, is chosen as a reference to evaluate the resultant
characteristic frequencies. Here fL;M denotes the frequency of the larg-
est peak, and fL;L and fL;R are the frequencies of the secondary peaks
below and above fL;M , respectively. The criterion to choose the peaks is
that peak magnitudes should be larger than 5% of the largest peak
magnitude in a PSD spectrum. In other words, small peaks below the
critical value are disregarded. In the lock-in regime, fL;M is equal to the
enforced oscillation frequency fexc. This suggests that the force genera-
tion is only controlled by the active pitch oscillation. Furthermore, the
peak magnitudes in the lock-in regime are larger than those outside
the regime. Especially, the largest magnitude is noticed at fexc ¼ 3Hz,
where the largest values of CL;RMS; CD;RMS, and CD;mean are also found
(see Fig. 11).

However, for fexc¼ 2.75, 3.625, and 3.75Hz that are outside but
next to the lock-in regime, the frequencies of the predominant struc-
tural response are still equal to fexc. There are two different effects at
these frequencies in comparison with the lock-in. First, a secondary
peak frequency fL;R is seen for fexc¼ 2.75Hz, while fL;L for 3.75Hz.
The other effect is that the peak magnitudes are much smaller than

those in the lock-in regime. Secondary frequencies are invisible for
fexc¼ 3.625Hz, since the peaks (which are marked out with cyan
circles for ŜL in Fig. 10) are too small to consider based on the evalua-
tion criterion given above. These secondary peak frequencies lead to
the disordered trajectories, as observed in Figs. 4 and 5. Given these
special effects, it is deemed that semi-lock-in regimes are formed
around these enforced frequencies.

As illustrated in Fig. 12, another interesting phenomenon is that
for fexc outside the lock-in and semi-lock-in regimes (that is, in the
non-lock-in regimes), fL;M is always identified around the first natural
frequency of the splitter plate fn;1. Moreover, secondary peak frequen-
cies of both fL;L and fL;R are clearly visible. Even more interestingly, the
secondary peak frequencies are distributed along the line defined by
fL ¼ fexc, as well as the two lines (colored in blue and red in the figure)
following the ratio of DfL=Dfexc ¼ �1. Note that another ratio of
DfL=Dfexc ¼ 1 is derived from fL ¼ fexc. Thus, the flow field is influ-
enced by the combined effects of the passive structural characteristics
and the active pitch oscillation. The largest peak magnitude of ŜL
among all the cases is observed at fexc¼ 3Hz, but not at another
enforced frequency that is more close to fn;1. By looking at the lines
highlighted in the figure, this enforced frequency is located at the inter-
section point of the lines following fL ¼ fexc and the�1 ratio.

FIG. 9. The normalized PSDs of the
velocity component uy at the probe points
S1, S2, and S3 (from left to right) at vari-
ous fexc. The PSDs are normalized by the
peak magnitude at 3.327 Hz of the PSD at
S2 in the stationary case, which is
encircled by the dashed box in orange.
The predominant peaks are marked out
with red cross symbols, and the corre-
sponding frequencies are listed aside.
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D. Structural responses of the splitter plate

The values of fres for the most predominant peaks in the normal-
ized PSDs, Ŝytip , are plotted with respect to fexc in Fig. 13. The normali-
zation is based on the magnitude of the dominant peak in the
stationary case with fexc¼ 0Hz. Here fres;M denotes the frequency of
the largest peak, and fres;L and fres;R are the frequencies of the second or
third largest peaks below and above fres;M , respectively. The criterion to
choose the peaks is that peak magnitudes should be larger than 2% of
the largest magnitude in the respective PSD spectrum. The symbols in
the figure are colored with the PSD magnitudes. The first natural fre-
quency, fn;1 ¼ 3:236Hz computed using the FEM (see Table III), is
defined as a reference point for the evaluation. The FFT for computing
the spectra of the splitter-plate tip displacements adopts the same

signal processing parameters and setup as those used to do the spectral
analysis for fres in Table II.

As shown in Fig. 13, in the range of fexc from 2.75 to 3.75Hz, the
values of fres are aligned with the relationship of fres;M ¼ fexc, namely,
the ratio of Dfres;M=Dfexc ¼ 1. This trend is also observed for the lift
force PSDs in Fig. 12. The frequency range covers the lock-in and
semi-lock-in regimes according to the analysis of the lift force PSDs.
This suggests that the enforced pitch oscillation plays an important
role in controlling the energy absorption of the structure. The oscilla-
tion dominates the resonant responses of the splitter-plate structure,
which significantly interact with flow vortices. This specific lock-in
effect due to the enforced pitch is different from classical lock-in effects
found in the VIV of the benchmark stationary case at fexc¼ 0Hz27,47

FIG. 10. The normalized PSDs of the tip
displacement (Ŝytip ), the lift force (ŜL),
and the drag force (ŜD) at different fexc.
The PSDs of each variable are normalized
in reference to those at fexc¼ 0 Hz, which
are displayed within the dashed boxes.
The cyan circles in the plots at
fexc¼ 3.625 Hz mark the peaks that have
nearly negligible amplitudes.
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or a stationary circular cylinder.27,33 In these stationary blunt body sce-
narios where the free-stream velocity U0 can be adapted within a wide
range at low Reynolds numbers, the frequencies of the lock-in regime
are found being dependent on the reduced velocity ratio that is defined
as U0=ðfn;1DÞ.

Like the frequency distribution of ŜL (see Fig. 12), an interesting
phenomenon for the non-lock-in regimes in Fig. 13 is that apart
from the most dominant peak fres;M � fn;1, two secondary peaks fres;L
and fres;R are identified in the non-lock-in frequencies of fexc ranging
from 1.5 to 2.5 and 4 to 4.25Hz. These secondary peaks are distrib-
uted along three lines with the ratios of Dfres=Dfexc ¼ 61, where the
ratio of 1 is derived from fres¼ fexc. Moreover, secondary peaks are
not identified at comparatively lower and higher enforced frequen-
cies of fexc � 1:25 and �4.5Hz. Therefore, the passive structural
responses determined by the natural frequencies are mainly signifi-
cant in the non-lock-in regimes, in particular at frequencies far from
the lock-in regime. In contrast, in the lock-in and semi-lock-in

regimes, the effects of the enforced pitch oscillation overwhelm the
passive responses and furthermore determine the energy conversion
from the flow to the structure deformation.

VI. DISCUSSIONS

To confirm the ratios of Dfres=Dfexc ¼ 61, Fig. 14 shows the
absolute differences between the secondary peak frequencies (fres;L and
fres;R) and the predominant peak fres;M as a function of the enforced
oscillation frequency fext. The left peak difference is calculated as
Dfres;L ¼ fres;M � fres;L, and the right peak difference as
Dfres;R ¼ �fres;M þ fres;R. According to the analysis for Fig. 13, the sec-
ondary peak frequencies appear at fexc from 1.5 to 2.5 and 4 to 4.25Hz.
Examples for the calculation at fexc¼ 2.25 and 4Hz are illustrated in
Fig. 14. As can be seen in this figure, Dfres;L and Dfres;R are nearly equal
to each other at every enforced frequency of interest. In other words,
the two secondary peak frequencies, fres;L and fres;R, are nearly symmet-
ric with respect to the frequency of the largest peak fres;M , resulting in
the ratios of 61. The same effects have also been observed for the lift
force PSDs ŜL, while the data are not plotted here for the sake of
brevity.

Comparing all the cases in terms of the magnitudes of the most
predominant peaks in the lift force PSDs (see Fig. 12) and the tip dis-
placement PSDs (see Fig. 13), the smallest values are found at
fexc¼ 2.75 and 3.75Hz outside the lock-in regime. The cases with these
two enforced frequencies as well as 3.625Hz exhibit that fL;M and fres;M
are dependent on fexc like those in the lock-in regime. On the other
hand, as indicated in Figs. 4–6, the trajectories of the tip displacement,
lift, and drag become disordered at these enforced frequencies. This is
because a secondary peak commences to play a role, which is identified
in Fig. 10. Additionally, as found in Fig. 11, the force coefficients of
CL;RMS; CD;mean, and CD;RMS alter obviously at these enforced frequen-
cies. By synthetically considering all of these effects, fexc¼ 2.75, 3.625,
and 3.75Hz are, therefore, deemed to be in semi-lock-in regimes,
which exist next to the lock-in regime.

FIG. 11. The RMS lift coefficient, CL;RMS, and the time-averaged and RMS drag
coefficients, CD;mean and CD;RMS, as a function of the enforced oscillation frequency
fexc.

FIG. 12. The maximum peak frequency in the PSDs of the lift force, fL;M , and the
secondary peak frequencies, fL;L and fL;R , with respect to fexc. The symbols are col-
ored with the normalized magnitudes of the PSDs, ŜL, at these frequencies. The
dash-dotted line marks out the natural frequency of the splitter plate of
fn;1 ¼ 3:236 Hz; the blue and red solid lines are drawn based on the ratio of
DfL=Dfexc ¼ �1.

FIG. 13. The peak frequencies (i.e., the maximum peak frequency fres;M, the sec-
ondary peak frequencies fres;L and fres;R below and above fres;M ) of the normalized
splitter-plate tip displacement PSD Ŝytip with respect to fexc. The symbols are col-
ored with the normalized magnitudes of the PSDs, Ŝytip , at these frequencies. The
dash-dotted line indicates the natural frequency of the plate of fn;1 ¼ 3:236 Hz; the
blue and red solid lines are plotted based on the ratio of Dfres=Dfexc ¼ �1.
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Considering the lines following the ratios of61 in Fig. 12 or 13,
two intersection points of the lines are located at fexc¼ 3 and 3.44Hz.
These frequencies are very closed to the frequency limits of the lock-
in regime, which are 2.875 and 3.5Hz. Thus, it is deduced that the
onset of the lock-in effects is associated with the conditions at the
intersection points. At fexc¼ 3Hz, the largest peak magnitude
presents in both ŜL and Ŝytip . The peak magnitudes in the semi-lock-
in regimes in both PSDs are smaller than those in the lock-in and
non-lock-in regimes.

For the lift force and tip displacement, the common relationships
explored to determine the peak frequency distribution in the PSDs are
summarized as follows. Here, either fL or fres is simply signified as f for
brevity.

• If fexc is in the lock-in regime,

fM ¼ fexc ) DfM=Dfexc ¼ 1: (12)

• If fexc is in the semi-lock-in regimes,

fM ¼ fexc ) DfM=Dfexc ¼ 1

fR 2 ðfM ; fn;1Þ & invisible fL; for fexc < fcr;min

fL 2 ðfn;1; fMÞ & invisible fR; for fexc > fcr;max:

8>><
>>: (13)

Here fcr;min and fcr;max are the minimum and maximum critical
values of the enforced frequency for the lock-in regime, respec-
tively. In the current study, fcr;min is around 2.875Hz, and fcr;max

is around 3.5Hz. Note that for fexc¼ 3.625Hz, fL is also invisible
because of the negligible spectral magnitude at this frequency
(see Fig. 10).

• If fexc is outside the lock-in regime,

fM � fn;1

fi ¼ fexc ) Dfi=Dfexc ¼ 1; i ¼ L or R

Dfi=Dfexc ¼ �1:

8>><
>>: (14)

VII. CONCLUSIONS

The combination of the passive VIV and active pitch oscillation is
investigated for a square cylinder assembled with a flexible splitter plate
at a low Reynolds number of 333. The enforced oscillation frequency,
fexc, ranges from 0 to 6Hz, and the oscillation amplitude is kept as a
constant of 3�. The stationary-cylinder case for this configuration with
fexc¼ 0Hz has been widely investigated as a benchmark VIV case. This
facilitates the validation of the method used in this study and further-
more the understanding of how the actively enforced pitch oscillation
affects the VIV in reference to the stationary-cylinder case.

The trajectories of the lift and drag coefficients evolving in time
are disordered, except for the stationary case and those with fexc
between 2.875 and 3.5Hz where the trajectories are in simple closed
loops. Even though a very low frequency of 0.25Hz is enforced, the lift
and drag are affected. The area within which a disordered trajectory
varies is dependent on fexc. Likewise, the trajectories of the splitter-
plate tip displacement with respect to either lift or drag exhibit similar
behaviors. Based on the trajectory patterns, a lock-in regime of
fexc 2 ½2:875; 3:75�Hz is deduced, since the simple closed loops indi-
cate the lock-in interaction between the flow and the splitter plate. The
zero lift and the smallest drag in the lock-in regime are achieved on
most occasions when the tip of the splitter plate is at non-neutral posi-
tion, while an exception is at 2.875Hz where the lift is not zero.

The RMS values of the lift coefficient and the RMS and time-
averaged values of the drag coefficient show similar trends in the
dependence on fexc. A remarkable change of these values is found in
the lock-in regime. The coefficients become the largest at 3Hz, which
implies the most significant lock-in interaction being excited, despite
that the first natural frequency of the splitter plate is fn;1 ¼ 3:236Hz.

For the cases with fexc¼ 2.75, 3.625, and 3.75Hz, the flow and
structural vibrations show special features mixing lock-in and non-
lock-in effects. As in the lock-in regime, the frequencies of the largest
peaks in the PSDs of the lift force and tip displacement are nearly equal
to the corresponding fexc. However, the magnitudes of the largest peaks
are smaller than in all other cases. Since a secondary peak frequency
onsets, the trajectories of the tip displacement with respect to the lift
and drag forces become disordered, as in the non-lock-in regime. The
time-averaged and RMS values of the force coefficients also alter signif-
icantly. Therefore, the regimes encompassing these enforced frequen-
cies are deemed as semi-lock-in regimes.

By extracting the predominant peak frequencies fL from the PSDs
of the lift force, it is found that these frequencies are distributed by fol-
lowing three characteristic relationships such as fL � fn;1, fL¼ fexc (i.e.,
DfL=Dfexc ¼ 1), and DfL=Dfexc ¼ �1. In the lock-in regime, only one
predominant peak at fL;M presents in every case, and it satisfies
fL;M ¼ fexc. This relationship is also found in the semi-lock-in regimes,
while additionally a secondary peak appears at a frequency between
fL;M and fn;1. In the non-lock-in regimes, fL;M � fn;1; and the frequen-
cies of the two secondary predominant peaks, fL;L and fL;R, are distrib-
uted to follow fL¼ fexc and the ratio of DfL=Dfexc ¼ �1. Moreover, the
characteristic lines intersect with each other at fexc¼ 3 and 3.44Hz,
which are very close to the frequency limits of the lock-in regime. The
largest peak magnitude among all the cases presents at fexc¼ 3Hz.
These results suggest that the onset of the lock-in effects is triggered by
the conditions at the intersection points.

The tip displacement exhibits the same spectral characteristics as
those found for the lift force. The characteristic relationships addressed

FIG. 14. The absolute differences between the secondary peak frequencies of the
splitter-plate structural responses (fres;L and fres;R) and the largest peak frequency
fres;M , as a function of the enforced oscillation frequency fexc. These frequencies are
referred to Fig. 13.
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for the lift force and tip displacement infer that the interaction between
the flow and current configuration is dependent on the combined
effects of the passive VIV and actively enforced pitch oscillation. On
the other hand, in the specific lock-in regime caused by adjusting fexc,
only the enforced pitch oscillation dominates the interaction.

Nonetheless, the present study has not analyzed the parameters,
such as the pitch magnitude, the center of rotation, the length of the
splitter plate, and Reynolds numbers. Their effects are interesting to
address in future work. Furthermore, when high Reynolds numbers
are concerned, more complex simulations with turbulence modeling
techniques will be requested to solve relevant issues. It is also worth
noting that secondary instability onsets at the Reynolds number in this
study. Flow simulation in 3D is of interest to understand spanwise
mechanisms, which are neglected in the present 2D simulations.

It is interesting to extend the present study of the square cylinder
to a circular cylinder, such as the Turek–Hron benchmark.18 As both
blunt bodies induce vortex streets, it is anticipated that similar results
might be achieved in a circular cylinder case. On the other hand, gallop-
ing exists for a square cylinder, but not for a circular cylinder, at low
Reynolds numbers.48,49 Extensive numerical or experimental research in
the future should be carried out to confirm these anticipations.
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