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ABSTRACT

We study the flow stability and spatiotemporal spectral dynamics of cellulose nanocrystal (CNC) suspensions in a custom Taylor–Couette
flow cell using the intrinsic shear induced birefringence and liquid crystalline properties of CNC suspensions for flow visualizations, for the
first time. The analysis is performed at constant ramped speed inputs of the independently rotating cylinders for several cases ranging from
only inner or outer rotating cylinders to three counter-rotation cases. All CNC suspensions have measurable elasticity and shear thinning,
both increasing with CNC concentration. We show that the flow patterns recorded are essentially Newtonian-like, with non-Newtonian effects
ranging from a decrease in wavenumbers to altering the critical parameters for the onset of instability modes. Outer cylinder rotation flow
cases are stable for all concentrations whereas inner cylinder rotation flow cases transition to axisymmetric and azimuthally periodic secondary
flows. However, counter-rotation cases become unstable to asymmetric spiral modes. With increasing CNC concentration, a counter-rotation
case was found where azimuthally periodic wavy patterns transition to asymmetric spiral modes. Based on rheo-SAXS measurements, the
shear-thinning region of CNC suspensions is expected to lead to the breakdown of the chiral nematic phase, whose elastic constants constitute
the dominant structural elasticity mechanism. Thus, we interpret the Taylor–Couette stability of the CNC suspensions as dominated by their
shear-thinning character due to the expected loss of elasticity in nonlinear flow conditions.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0195130

I. INTRODUCTION

Since the discovery of secondary flows a century ago,1 Taylor–
Couette (TC) flow, i.e., flow between rotating concentric cylinders,2

continues to be the most prominent benchmark case for flow stability.
This is due to its distinctive complex flow fields in the form of uniquely
rich supercritical flow patterns beyond the limit of laminar Couette
flow. This has triggered a broad spectrum of experimental and theoret-
ical studies on analyzing emerging flow patterns and their stability in
both Newtonian and rheologically complex fluids.3–10 Elucidating the
spatiotemporal features of supercritical flow translations is not only

important to explain fundamental nature of nonlinear dynamical sys-
tems, but is also relevant to predicting the impact of flow translations
and instabilities on the transport phenomena present in technological
applications, such as chemical reactions,11–13 drilling,14 filtration
devices,15,16 the shearing process of proteins,17–19 and others.9,20

The TC flow of Newtonian fluids has been broadly investigated,
with a rotating inner cylinder while the outer cylinder is kept station-
ary, being the most studied configuration. The onset of different flow
patterns has been determined both theoretically and experimentally in
terms of the Reynolds (Re) and/or Taylor (Ta) numbers. Re stands for

Phys. Fluids 36, 044114 (2024); doi: 10.1063/5.0195130 36, 044114-1

VC Author(s) 2024

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 15 M
ay 2025 06:36:42

https://doi.org/10.1063/5.0195130
https://doi.org/10.1063/5.0195130
https://doi.org/10.1063/5.0195130
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0195130
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0195130&domain=pdf&date_stamp=2024-04-17
https://orcid.org/0000-0002-4864-9269
https://orcid.org/0000-0003-3006-2280
https://orcid.org/0000-0002-4906-0093
https://orcid.org/0000-0002-6255-4952
mailto:roland.kadar@chalmers.se
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0195130
pubs.aip.org/aip/phf


the ratio of inertial to viscous forces, with the Ta number being a mod-
ified version of Re, Ta / Re2 to account for centrifugal (quasi) forces
vs viscous forces.3,21–24 The spatiotemporal fingerprints of flow transi-
tions are commonly expressed in terms of their spectral dynamics, i.e.,
the characteristic temporal [frequency, f ¼ f ðReÞ] and spatial [wave-
number, j ¼ jðReÞ] periodicities of the patterns. Thus, with increas-
ing Re the flow transitions from laminar Couette flow (LCF) to
time-invariant axisymmetric counter-rotating toroidal vortices, a flow
pattern known as Taylor vortex flow (TVF). While all flow patterns
have one characteristic wavenumber that tends to decrease with
increasing Re, the number of the characteristic frequencies of super-
critical flow patterns can be as high as 2 and can include broadband
background noise due to either successive merging and splitting of vor-
tices or turbulent effects induced on the visualization particles within
the vortices.3,21,23,25–27

Of particular interest in the past two decades has been under-
standing transition states in rheologically complex fluids, such as visco-
elastic polymer solutions. In such systems, the complex interaction
between the flow field and the material structure, where the flow can
modify the structure of the materials, has led to the discovery of dis-
tinctive flow patterns compared to Newtonian fluids, as well as the crit-
ical Re associated with the onset of instabilities.6,8,28–31 In these
systems, in addition to inertial and viscous forces, TC flow stability is
influenced by elastic or inertio-elastic forces.3,4,7,29–37 Consequently,
the dimensionless Weissenberg (Wi) number is introduced for
expressing the ratio of elastic to the viscous response of the fluid. Upon
the combination ofWi and Re, the elasticity (El) number is obtained, a
parameter that signifies the ratio of elastic to inertial forces, and is
expressed as El ¼ Wi=Re. Apart from aforementioned forces or time
scales, an important distinction in viscoelastic fluid flows is that their
viscosity functions are most commonly shear thinning. According to
the scientific literature, elastic non-Newtonian fluids with negligible
shear-thinning behavior exhibit altered transition sequences compared
to their Newtonian counterparts.4,28,30,32,34,36,38 Distinctive flow pat-
terns thus recorded include disordered oscillations,39 oscillatory
strips34 diwhirls,40 standing waves,30,36,41 spirals and ribbons,28 and
elastic turbulence.8,37 In recent years, several works have shifted their
focus to shear-thinning fluids in TC flow systems, pointing to the
interplay of shear-thinning and viscoelastic response of the test fluids
on the sequence and spectral dynamics of flow transitions.42–46

Aqueous suspensions of cellulose nanocrystals (CNCs) are a spe-
cial class of viscoelastic fluids. CNCs are composed of crystalline aggre-
gates of the polymer cellulose, as the most abundant natural polymer
on earth, where they constitute rod-like nanoparticles of a few nano-
meters in diameter and up to several hundred nanometers in length.
Remarkably, CNCs have the ability to self-assemble into liquid crystal-
line phases in certain structural and physicochemical conditions.
Depending on the CNC concentration, several distinctions are com-
monly made in terms of the structure of CNC suspensions.47–49 For
concentrations below the critical self-assembly concentration, such
suspensions are classified as isotropic. Above the critical self-assembly
concentration, the CNC suspensions consist of co-existing liquid-
crystalline as well as isotropic domains, so usually referred to as
biphasic. A particular feature of such birefringent suspensions is the
colorful patterns that they can exhibit under polarized light.48–52 The
nature of the microstructural origin of birefringence as observed at
flowscale depends on the assembly phase of CNCs, as observed

through rheology combined with polarized light imaging, rheo-PLI,
experiments.48–50 Thus, isotropic and weakly biphasic CNC suspen-
sions show only shear-induced birefringence with first-order interfer-
ence colors.53 With increasing CNC concentration, biphasic
suspensions will transition to shear-induced orientation having higher
order interference colors. As the isotropic component is diminished,
the suspension will show interference colors even in quiescent condi-
tions. Starting with biphasic suspensions having a well-developed chi-
ral nematic phase, the nature of the elastic response can be
fundamentally related to various modes in which the self-assembled
structures can be elastically deformed, as defined by the so-called elas-
tic Franck constants.54 However, it is known that above a critical shear
rate, liquid crystalline domains can be broken into individual nanopar-
ticles.55 In terms of flow stability, this would be expected to effectively
limit the elastic component of the suspensions. It needs to be noted
that the dimensional and morphology features of the CNCs differenti-
ate them from their non-colloidal spherical and other anisotropic
nanoparticles suspensions. Previous investigations thereon have shown
the flow dynamics to be significantly perturbed in terms of both flow
patterns and bifurcation kinetics.56–58

Thus, CNC suspensions constitute a niche case for analysis in TC
flow for several reasons: (i) their birefringence patterns can allow for
the visualization of flow patterns without the need for the addition of
visualization particles, (ii) the nature of the viscoelastic response differs
from that of the commonly used polymer solutions used in TC flows,
and (iii) the flow induced breaking of liquid crystalline domains flow
makeup for a case where beyond a critical Re the suspensions have
vanishing elastic liquid crystalline dominated material response, with
likely shear-thinning remaining as the dominant factor.

To date, no systematic study has investigated the flow transitions
of self-assembling suspensions in TC flow in the context of rheological
and birefringence pattern visualizations. Here, we study the flow stabil-
ity of several biphasic CNC suspensions differing in their CNC con-
centration. For this, we present here a novel TC flow optical
visualization setup with independently rotating cylinders that reveals
the flow patterns of CNC suspensions based solely on their intrinsic
birefringent properties, without the need to add flow visualization par-
ticles. The flow stability analysis is mainly based on the spatiotemporal
spectral dynamics of the patterns as observed through polarized light
imaging. After outlining the experimental setup and procedures, we
first describe transition sequences that are representative of all the
supercritical patterns observed, followed by an assessment of their sta-
bility. We then discuss the non-Newtonian effects discerned in the
context of elastic vs shear-thinning effects.

II. MATERIALS AND METHODS
A. Test materials

The test fluids consist of distilled water mixed with visualization
particles and water-based CNC suspensions in five different concentra-
tions. CNCs were purchased from CelluForce (Montreal, Canada) and
were used to make CNC suspensions in Milli-Q water at 1.0, 1.5, 2.0,
2.5, and 3.0wt.% concentrations. To this end, after mixing with Milli-
Q water, the suspensions were subjected to an ultrasound bath for one
hour. Subsequently, a bench shaker was used for mixing and homoge-
nizing the suspension for 72h.

The density of the suspensions was calculated based on the simple
rule of mixtures,
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q ¼ qCNC/v þ qwð1� /vÞ; (1)

where /v is the volume fraction of the CNC. The resulting densities
are listed in Fig. 2.

B. Rheological properties

Steady and oscillatory shear tests were performed on an Anton
Paar MCR702e Space (Graz, Austria) rotational rheometer in single
motor-transducer configuration using double-gap and bob-cup mea-
suring geometries. Figure 1 represents the steady shear viscosity func-
tions and angular frequency dependent dynamic moduli of the test
samples at room temperature. The viscosity functions in Fig. 1(a) were
fitted with the Carreau–Yasuda model,

gð _cÞ ¼ g0ð1þ ðkCY _cÞaÞ
ni�1
a ; (2)

where g0 is the zero-shear viscosity, and kcy and ni denote the model
relaxation time and shear-thinning index (flow index), respectively; a is
a parameter describing the transition from the Newtonian plateau to
the shear-thinning region. The fit parameters are plotted in Fig. S1 in
the supplementary material. Linear viscoelastic dynamic moduli from
frequency sweep tests performed at a constant strain amplitude of 70,
20, 4, 4, and 1% for 1.0, 1.5, 2, 2.5, and 3.0wt.%, respectively, are shown
in Fig. 1(b). The linear viscoelastic region was determined based on the
strain sweep measurements shown in Fig. S2 in the supplementary
material. All concentrations show a liquid-like behavior in the terminal
region, G00 > G0, with the highest concentration potentially approach-
ing a gel-like material response. We note that the linear viscoelastic
dynamic moduli essentially characterize the linear (Newtonian-plateau)
region of the viscosity functions in Fig. 1(a). The longest relaxation
times of the terminal region, i.e., the inverse of the angular frequency at
which this crossover occurs k ¼ 1=xG00¼G0 , are also represented in
Fig. 2. It needs to be noted that in the case of the 3wt.% suspension,
there is a considerable approximate overlap region between the
dynamic moduli at the represented scale. The crossover point was cho-
sen at their closest overlap point.

Based on the previous results with similar preparation methods49

and polarized light microscopy analysis, /CNC 2 ð1; 2�wt.% are
expected to be isotropic suspensions, whereas /CNC > 2 are expected
to be biphasic. Since 2wt.% CNC shows a uniform background, we

can consider it isotropic, Fig. S3(a), while 3wt.% appears biphasic, see
Fig. S3(b), with 10lm sized agglomerates.

1. Rheo-SAXS

To further gain a better understanding of the microstructural
dynamics of the CNC suspensions, rheological tests were performed
simultaneously with small-angle x-ray scattering experiments,

FIG. 1. Rheological properties of the cellu-
lose nanocrystal (CNC) suspensions
investigated: (a) shear viscosity functions
from steady shear tests and (b) dynamic
moduli from oscillatory shear frequency
sweep tests.

FIG. 2. Characteristic material parameters used to define the dimensionless groups
used in this study: g0—the zero-shear viscosity extracted from the Eq. (2) fits, see
also Fig. S1, k—the characteristic relaxation time of the suspensions, k ¼
1=xG00¼G0 in Fig. 1.
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rheo-SAXS at the CoSAXS beamline,59 Max IV Laboratory, Lund
University, Sweden. A parallel-plate measuring geometry was used in
single motor-transducer configuration. The diameter of the plate was
43 mm and the measuring gap was set at 1 mm. To quantify the flow
microstructure, we present here only Hermans orientation parameter,
hP2i, from azimuthal integration within q 2 ½1:4; 2:4� � 10�2 Å�1,
where q is the magnitude of the scattering vector. The scattering exper-
iment was set up such that the incident X-rays pass through the axis of
the concentric cylinders around the middle of the flow column. Thus,
the scattering experiments are representative of the velocity–vorticity
directions [so-called (1–3) plane]. By approximating the orientation
distribution function with a Legendre series expansion in cosu of
the orientation distribution function containing only even terms,
IuÞ � P6

n¼0 anP2nðcosuÞ; hP2i can be defined as

hP2i ¼

ðp
0

1
2

3 cos2u� 1
� �

IðuÞ sinuduðp
0
IðuÞ sinudu

; (3)

where u is the azimuthal angle of the scattering pattern and Ið/Þ is the
scattering intensity within the integrated q-range. Within the integra-
tion limits used, hP2i 2 ½�0:5; 1�, where hP2i ¼ 1 signifies that all
CNCs are oriented in the perpendicular direction to the flow, and
hP2i ¼ �0:5 indicates that all CNCs are oriented in the flow direction,
and hP2i ¼ 0 corresponds to random orientation. Due to the low
CNC concentrations employed, only the 3wt.% sample is presented.

C. Experimental setup

The flow stability experiments were performed using two
custom-design Taylor–Couette (TC) visualization flow cells, Fig. 3.
The TC flow cells were mounted on the same rheometer used for the
rheological characterization albeit in a separate motor-transducer

configuration. The inner and outer cylinders have radii of
Rei ¼ 20:5mm and Reo ¼ 22:5mm, respectively, giving a geometry
radius ratio of � ¼ Ri=Ro ¼ 0:91. The height of flow column is
L¼ 68.7mm, with a resulting aspect ratio of C ¼ L=d ¼ 34:4. All tests
were run at the temperature of 23 �C (ambient temperature). The rota-
tion of the inner and/or outer cylinder was controlled by the upper
and lower motors of the rheometer.

D. Dimensionless numbers

To account for the relative rotation of the inner (Xi) and outer
(Xo) cylinders, respectively, we define

b ¼ Xo

Xi þ jXoj ; (4)

where Xtot ¼ Xi þ jXoj is the total net angular speed of the flow cell.
Thus, b¼ 0 corresponds to a rotating inner cylinder while the outer
one is at rest; for b ¼ �1, the outer cylinder is rotating and the inner
one is stationary. The minus sign thus signifies counter-rotation. Five
flow cases have been thus considered: b ¼ 0;�0:25;�0:5;�0:75, and
�1. The Reynolds number for each cylinder can be defined as

Reði;oÞ ¼ qð/Þ � Ri;o � jXi;oj � db
g0ð/Þ

; (5)

where db is the relative gap between the two concentric cylinders that
depends on b,

db ¼ d � ð1� jbjÞ; if b ¼ 0; i:e:; Re ¼ ReðiÞ;
d � jbj; if b < 0; i:e:; Re 6¼ ReðiÞ:

(
(6)

It is thus convenient to report results using a “total” Reynolds number
defined as

Re ¼ ReðiÞ þ ReðoÞ: (7)

Thus, for any fRe; bg reported, the corresponding instantaneous
Re of the inner and outer cylinders are therefore ReðiÞ ¼
Reð1� jbjÞ and ReðoÞ ¼ Rejbj. We briefly note that in Eq. (5) g0 is
the zero-shear viscosity as extrapolated from Eq. (2), in contrast
to some previously published works where they use a shear rate
dependent viscosity for shear-thinning fluids.43,60,61 For a more compre-
hensive notation, the critical Re numbers are expressed as Reb;/CNC

cr .
In the case of non-Newtonian fluids, as explained in the intro-

ductory section, the Weissenberg number Wi is introduced to
account for the relaxation timescale of the materials. In the current
work, WiðiÞ and WiðoÞ correspond to the inner and outer cylinders,
respectively,

Wiði;oÞ ¼ k � Ri;o

jXi;oj � db : (8)

By combining (the total) Re and Wi, the elasticity number, El, is
defined as

El ¼ Wi
Re

¼ kg
qd2

; (9)

which is essentially a function only of fluid properties and flow geome-
try. Based on the El range in Fig. 2, we can classify suspensions with

FIG. 3. The two independently rotating Taylor–Couette (TC) flow geometries used
in the present study: (a) TC cell for visualization with reflective particles consisting
of a transparent glass outer cylinder and an aluminum inner cylinder, for the refer-
ence sample (water þ visualization particles) and (b) TC cell for cross-polarized
light visualizations consisting of a transparent glass outer cylinder and translucent
polycarbonate inner cylinder. The two are exact dimensional replicas of each other.
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/CNC < 3wt.% as weakly elastic, El � 1, and /CNC ¼ 3 as moder-
ately elastic, El � 1.30

From a different perspective, the flow of liquid crystals can be
characterized by the Ericksen number, Er, as the balance between vis-
cous and elastic forces. In contrast to Wi, the characteristic material
parameters are defined in the framework of the Leslie–Ericksen theory

and specific Frank elastic constants as Erði;oÞ ¼ c1v
ði;oÞd
K , where c1 is the

rotational viscosity as defined by the Leslie–Ericksen viscosities,62,63

c1 ¼ a3 � a2 (the a2 and a3 are Leslie viscosity coefficients), vði;oÞ is
the velocity of the inner/outer cylinder, and K is a Franck elastic con-
stant. We note here that determining experimentally the Leslie–
Ericksen viscosities remains a challenge,64 and the theory has been
applied mainly to nematogenic liquid crystals whereas CNCs form a
chiral nematic phase. The elastic Franck constants has been investi-
gated for nematic and cholesteric tactoids in biphasic CNC suspen-
sions by Bagnani et al.65 while estimates of Leslie–Eriksen viscosities
for CNCs can be found in the work of Noroozi et al..66 However, con-
sidering that the low concentrations considered in the study, even if
present, the mesophase is expected to breakup at relatively low shear
rates,55,66 all three Frank elastic constants would tend to zero, making
Er an unsuitable measure of flow stability.

E. Experimental protocol

The flow stability analysis was performed using ramp-up speed
tests starting at a rotational velocity of zero and linearly increasing it
up to the maximum capability of the rheometer. The ramp rate was
chosen such that for any flow case the total rotational speed ramp is
constant for all CNC suspension flows, i.e., 8b; dXtot=dt ¼ 0:022. A
criterion for meeting quasi-steady-state conditions in a ramped-up TC
flow was defined as dRe=dt	 < 1 by Dutcher and Muller23 on
Newtonian fluids, where t	 stands for a dimensionless time via the vis-
cous timescale t� ¼ ðqd2=gÞ. Using the same principle, the ramp rates
in the present work correspond to dRe=dt	 
 0:16 for the CNC sus-
pensions. A special test protocol was chosen for the Newtonian refer-
ence (water) and was performed at dRe=dt	 
 7:29, as a compromise
between creating optimal quasi-steady-state conditions and the diffi-
culty in handling large amounts of video data. We briefly note that for
the Newtonian reference b¼ 0 case, the experimental critical Reynolds
number for the onset of instabilities was Recr1 � 210. This is consider-
ably higher than theoretical predictions based on the linear stability
analysis,67,68 where Recr1j�¼0:91 � 136.

F. Flow visualization and spectral analysis

One of the experimental features of the present work distinguish-
ing it from previous studies is the design of a customized TC flow
visualization setup for cross-polarized optical imaging (PLI). The visu-
alization setup comprised a Canon 90D DSLR camera (Tokyo, Japan)
equipped with a Canon L-series 100mmmacro lens. LED studio lights
were used as light source. Standard TC flow visualization setups oper-
ate in reflection mode, meaning the light source is placed on the same
side of the geometry with the camera and light reflected by the visuali-
zation particles is captured by the camera. In contrast, the PLI setup
we developed operates in transmission mode, with the concentric cyl-
inders placed between the light source and the camera together with
two linear polarizers oriented at 90� relative to each other placed
between the flow cell and camera and light source, respectively.

Due to fluid induced orientation during manufacturing, the translu-
cent polycarbonate cylinder exhibits weak birefringence, however,
when tested on water (non-birefringent) no flow patterns could be dis-
tinguished. In contrast, using the liquid crystalline test samples, beau-
tifully colored TC flow patterns could be readily observed, see Fig. 4.

During the ramped experiments, HD video (1920� 1080px)
recordings of the flow patterns were performed at 100 fps. Space-time
diagrams were then produced by extracting a vertical line of pixels pass-
ing through the middle of the flow domain from the video frames that
were added successively to create a new image (� 45 000� 1080 px), as
it is common in most similar studies.69,70 Thus, in the new image, the y
axis corresponds to the height of the flow column and the x axis to time
and correspondingly Re. Subsequently, 2D Fourier transform (FFT) was
applied using a moving window procedure. The window size was
500px and the window increment 1px. For each window j, the 2D
Fourier transform of the grayscale intensity function gjðz; tÞ is

Gjðz; tÞ ¼
ðþ1

�1
gjðz; tÞe�iðjÞz;2pf �tdzdt; (10)

where z is the coordinate along the axis, and ðj; f Þ are the characteris-
tic wavenumber and frequency of the window analyzed. Thus, based
on the number of characteristics ðj; f Þ and their dynamics, specific TC
flow patterns can be identified.

FIG. 4. Example of supercritical Taylor–Couette flow visualization of CNC suspen-
sions (/ ¼ 3 wt. % CNC, b ¼ �0:25; jRej � 400). The colors are natural as visu-
alized directly from the birefringent properties of the suspensions using a cross-
polarized light optical visualization system.
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III. RESULTS AND DISCUSSION

We first examine only the unique transition sequences for
/ ¼ 1wt.% CNC as function of b since they essentially contain nearly
the entire spectrum of instability modes identified in this study.
Thereafter, we discuss the influence of elasticity on the flow stability
and pattern characteristics. Subsequently, the results are discussed in
light of the interplay between the elasticity, shear-thinning, and the
structural evolution of CNC suspensions.

A. Characteristic instability modes and the influence
of relative cylinder rotation

The flow transitions for 1wt.% CNC at b ¼ 0;�0:5, and �0:75
are represented in Figs. 5–7, respectively. The figures compare the
space-time diagrams, and details therefrom, with scalar plots of the
(temporal) frequency spectra and (spatial) wavenumber spectra as
function of Re. Complementary still frame extracts from the video
recordings representative of the patterns identified are summarized in
Fig. 8. We note that in all temporal spectrograms, the rotational fre-
quency of the rotating cylinders, f ði;oÞn , has the highest signal-to-noise
ratio and a significant number of higher harmonics present in the
spectra. This can be readily identified as constant ramp peaks that
span the entire test duration. As a reference, the instability modes for
the Newtonian case (water) are presented in Fig. S4 in supplementary
materia V.

Based on the data in Fig. 5–7, the instability modes are identified,
and their sequence with increasing Re is essentially Newtonian-like.1,3,71

For b¼ 0, Fig. 5, the laminar Couette flow (LCF) cascades into
the axisymmetric Taylor vortex flow (TVF, Re0;1cr1 � 193), where parallel
colored stripes appear in the space-time diagram, see Fig. 5(i), charac-
terized only by one wavenumber jTV F, Fig. 5. Taylor vortices become
axially unstable and evolve into wavy vortex flow (WVF, Re0;1cr2 � 229),
where colorful waves traveling in the azimuthal direction can be readily
identified. We note that with the appearance of azimuthal waves, there
is a stabilization region, Fig. 5(ii), before the waves settle for WVF, see
Fig. 5(iii). The onset of the wavy regime is identifiable in terms of spec-
tral dynamics by the onset of a characteristic (temporal) frequency of
the waves, fWV F, while the axial motion of the secondary flows typically
leads to a decrease in j. At higher Re, the wavy regime undergoes a
wave modulation in frequency, Fig. 5(iv), resulting in the modulated
wavy vortices (MWF, Re0;1cr3 � 260). In the temporal spectrogram, the
characteristic pattern frequencies bifurcate with the addition of the low
modulation frequency component, fMWF. The onset of the chaotic wavy
regime (CWV, Recr4 � 283) features a broadband background noise
and multiple characteristic temporal frequencies. This includes a broad-
ening of j in the spatial spectrogram. These spectral characteristics are
due to the rapid successive collapsing and splitting of vortices that char-
acterize the pattern, see Fig. 5(v). The following supercritical instability
mode is expected to be wavy turbulent vortices (WTV, Re0;1cr4 � 420).
Interestingly, at the observation scale the spectra does not capture the

FIG. 5. Transition sequence for the 1 wt. % CNC suspension, b¼ 0. The left column compares the space-time visualization (top), temporal spectrogram (middle), and spatial
spectrogram (bottom), while on the right side specific instability modes are highlighted as details from the space-time visualization.
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FIG. 6. Transition sequences for the 1 wt. % CNC suspension b ¼ �0:5. The left column contains the space-time visualization (top), temporal spectrogram (middle), and spa-
tial spectrogram (bottom), while on the right side specific instability modes are highlighted as details from the space-time visualization.

FIG. 7. Transition sequence for the 1 wt. % CNC suspension, b ¼ �0:75. The left column contains the space-time visualization (top), temporal spectrogram (middle), and spa-
tial spectrogram (bottom), while on the right side specific instability modes are highlighted as details from the space-time visualization.
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broadband characteristics expected for material particles in turbulent
flow. This is further confirmed by the similar spectra obtained for the
Newtonian reference case, see Fig. S4. This in contrast to CWV where
the broadband noise present in the spectra corresponds to events occur-
ring at flow scale. Instead, WTV is characterized by the onset of fWTV

while jmaintains a well-defined fundamental and higher harmonics. A
modulation frequency could be detected with increasing Re marked as
a distinct pattern here, namely modulated wavy turbulent vortices
(MWTV, Re0;1cr6 � 700). Ultimately, the flow cascades into the turbulent
Taylor vortex regime (TTV, Re0;1cr7 � 870) with a wide spectrum of fre-
quencies and broadband noise. To summarize the full spectrum of
instabilities identified for CNC suspensions in the b¼ 0 case follows
a first Newtonian sequence (Sequence 1) of instabilities: LCF ! TVF
!WVF!MWV! CWV!WTV!MWTV! TTV.

The b ¼ �0:25 counter-rotation case exhibits a similar sequence
in instabilities to b¼ 0. However, new flow modes emerge with
b ¼ �0:5, where both cylinders counter-rotate at equal speeds, Fig. 6.
We briefly note that in counter rotation mode, the flow field is separated
into two zones by the zero-velocity plane, thus enabling the onset of
instabilities in both zones. Consequently, based on the simple visualiza-
tion method employed, we cannot fully resolve the spatiotemporal topol-
ogy of the instability modes. Following LCF, the first stability mode is a
non-axisymmetric spiral flow (S, Re�0:5;1

cr1 � 614) instability mode, char-
acterized by both one (temporal) frequency and (spatial) wavenumber
f S; jS corresponding to the azimuthal and axial periodicity of the spiral
flow, respectively, Fig. 6(i). The spiral mode translates into interpenetrat-
ing spirals (IS; Re�0:5;1

cr2 � 633), Fig. 6(ii). IS appears to have a transient
characteristic with increasing Retot with initially one new low-frequency
component, f IS#1 apparent in the spectra, followed by noise in that fre-
quency range and the addition of a new lower frequency component
(unmarked) and the decay of f IS#2. Gradually, all identifiable pattern peaks
broaden, and there is a broadband background noise in both the tempo-
ral and spatial spectrogram, and this signals the onset of disordered spi-
rals (DS, Re�0:5;1

cr3 � 900� 1000), Fig. 6(iii). Eventually, the background
noise in both f and j increases to a point where clear spatiotemporal pat-
terns are difficult to identify with the flow entering a new regime we call
turbulent vortices (TV, Re�0:5;1

cr4 � 1200� 1500), Fig. 6(iv). To summa-
rize, the full spectrum of instabilities identified for CNC suspensions in
the b ¼ �0:5 case also follows a second Newtonian sequence (Sequence
2) of instabilities: LCF! S! IS! DS! TV.

For all counter-rotation cases with b 
 �0:75, the LCF flow is
stable at all Re as exemplified in Fig. 7.

One exception from the Newtonian patterns described is found
for 3wt.% CNC in the form of ribbon-like spirals instabilities just
before the onset of TVF for b¼ 0 and�0:25, see Fig. 9.

B. Non-Newtonian effects on pattern formation
and stability

Here, we focus on identifying non-Newtonian effects on pattern
formation and flow stability. Figure 10 summarizes the transition
sequences recorded for all b and CNC concentrations investigated.
The stability diagrams therein map the characteristic flow patterns in a
Wiicr vs jWiocrj plot. Thus, b¼ 0 corresponds to jWiocr j ¼ 0 and thus a
vertical line, and b ¼ �1 corresponds to jWiicr j ¼ 0, a horizontal
line and so on. Overall and as previously mentioned, nearly the entire
spectrum of supercritical flow cascades can be mapped using

Newtonian-like instability modes. The maximum Wi attainable for
each concentration is limited by the increase in viscosity, and conse-
quently the number of accessible states dwindle with increasing El, e.g.,
compare Figs. 10(a) and 10(e). However, non-Newtonian effects could
still be distinguished in (i) the characteristic wavenumbers of the insta-
bilities j ¼ jð/CNCÞ as well as pre-TVF instabilities at the highest con-
centration; (ii) the Wi-range over which some instability modes are
stable, (iii) a transition sequence that starts with flow patterns charac-
teristic of Sequence 1 but then transitions into modes characteristic of
Sequence 2, and (iv) the stabilization/destabilization of critical instabil-
ity mode parameters with increasing CNC concentration, /CNC .

1. Pattern characteristics

A visual comparison between the TVF flow patterns as a function
of /CNC is presented in Fig. 11. For the Newtonian case, the size of a
Taylor vortex pair in TVF has been shown using linear stability analy-
sis to be twice the gap between the concentric cylinders, Dz ¼ 2d,1

where Dz is the average size of a pair of vortices in the flow column.
Deviations from this have been associated with non-Newtonian fluids.
Shear thinning and elasticity have been shown to have opposite effects
thereon. While patterns with Dz > 2d (decrease in j) have been
shown to occur due to the effect of shear thinning within the flow
field,42,43,72–76 the results for elastic non-shear thinning fluids such as
Boger fluids reveal Dz < 2d (increase in j).32,77

This can be readily observed in the present data as well, by simply
comparing the number of vortices present in the column for TVF,
Fig. 11. Thus, for /CNC ¼ 0, 34 vortices in the fluid column roughly
correspond as expected to half the height of the flow cell, i.e., j � p=d.
However, for /CNC > 0 wt.% jTVF � p=d, with the total number of
Taylor vortices in the column being 28 (jTVF � 1:28) for /CNC ¼ 1
wt.% and down to only 21 (jTVF ¼ 0:96) for /CNC ¼ 3 wt.%. Overall,
a decrease in j for CNC suspensions compared to the Newtonian case
can be readily observed across the entire spectrum of instability modes
identified, e.g., compare, for b¼ 0, j ¼ jðReÞ for the Newtonian refer-
ence in Fig. S4 to the non-Newtonian case of 1wt.% case in Fig. 5.

It needs to be emphasized that jðReÞ is also significantly different
between the Newtonian case and the CNC suspensions. For the latter,
jj/CNC¼ct: does not decrease significantly with increasing Re. This is
also distinct from j dynamics observed in similar shear thinning and
elastically dominated transition sequences.32,43,77

2. Transition from axisymmetric and azimuthally
periodic patterns to asymmetric modes

As identified in the previous section, two distinct transition
sequences (Sequences 1 and 2) are present for /CNC 
 2, Fig. 10. The
first sequence starting with TVF (Sequence 1) occurs for b � �0:25
while the second sequence starting with S (Sequence 2) is limited to
b ¼ �0:5. In contrast, for /CNC � 2:5, the two transition sequences
co-exist for b ¼ �0:25, Fig. 10(d) and 10(e). Initially, TVF is followed
by WVF and MWV; however, higher order transitions are destabilized
by the relative counter-rotation of the outer cylinder, and the CWV
regime was not detected for b 6¼ 0.

3. Onset of instabilities and their Re range

Increasing /CNC has a significant effect on the range of Wiði;oÞ for
almost all flow patterns. Taking b¼ 0 (Wio¼ 0) and for/CNC ¼ 2 wt.%,
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FIG. 8. Flow visualizations at selected Re showcasing the main instability modes observed. The visualizations correspond to the data presented in Figs. 5–7: (a) b¼ 0, (b)
b ¼ �0:5, and (c) b ¼ �0:75. In (a), the collapse of a pair of vortices is highlighted for Re¼ 350.
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it can be observed that the TWV region has been partially suppressed
compared to the low concentration cases.

While Fig. 10 displays the cascade and the variation of flow
modes for relevant relative rotations of the cylinders and each CNC
suspension, Fig. 12 represents an overall view of the dynamics of flow
transition in terms of the El and Re normalized by the critical Re for
the onset of the TVF regime for the Newtonian reference, i.e.,
Recr=Recr1;El¼0, for b¼ 0, �0.25, and �0.5 cases. We note that transi-
tion sequences for b < �0:5 have been omitted as they comprise cases
where LCF is the only flow mode throughout the Re, El investigated.
Overall, for El< 0.65, in all cases, we can obtain the following relation-
ship Recr1;El=Recr1;El¼0 ¼ 160:25 (TVF). While initially causing a weak
destabilization (the onset of instabilities occurs at lower Recr1 compared
to the Newtonian case), see b ¼ 0;�0:5 in Figs. 12(a) and 12(c), or a
weak stabilization (the onset of instabilities occurs at higher Recr1 com-
pared to the Newtonian case) of the flow, see b ¼ �0:25 in Fig. 12(b),
for El¼ 0.65 (3wt.%), a pronounced destabilization of the flow is
recorded with Recr=Recr1;El¼0 < 0:2 for b ¼ 0;�0:25. Higher order
transitions can experience more significant shifts and seem to be more
prone to be destabilized by the addition of elasticity even for b ¼ �0:25.
This means that in the b¼ 0 case the TTV regime for example, while
not captured in the Newtonian case, could be identified for El¼ 0.036.
We note that for b 6¼ 0 the influence of elasticity does not equally affect
supercritical instability modes, e.g., see for El 2 ½0:036; 0:059� TVF,
WVF, and MWV in Fig. 12(b) and S, IS in Fig. 12(c). In particular, the
IS mode tends to destabilize as the CNC suspension reaches 1.0wt.%.
Later, the onset of IS is shifted to higher Re=Recr1;El¼0. In contrast to IS,
the spiral flow is absent in the Newtonian fluid, and it tends to emerge
for the CNC with 1.0 and 1.5wt.% with a shift to a lower critical Re.
The DS and TV modes are present in water and the CNC with
1.0wt.%; however, there are no visible traces of these modes in solu-
tions with higher El.

C. Elasticity and shear thinning in the Taylor–Couette
flow of cellulose nanocrystal suspensions

In this section, we discuss the stability of CNC suspensions in the
framework of elasticity and shear thinning effects. The Taylor–Couette
flow of CNC suspensions presents a conundrum compared to other

non-Newtonian cases in the scientific literature. While part of the
discussion in Sec. III B 3 has been carried out in the framework of
El ¼ ElðReÞ stability diagrams, it is important to note that with
increasing CNC concentration both elasticity, as quantified by El, and
shear thinning, as quantified by ni show a power law dependence on
the CNC concentration up to 2.5wt.%, Fig. 13, see also Fig. 2.
Thereafter, the relative increase in El exceeds considerably that of the
ni. However, the flow patterns remain Newtonian-like throughout the
El; ni investigated.

The vast majority of non-Newtonian Taylor–Couette flow cases
have been performed on polymer solutions. Such systems are inher-
ently elastic due to the elastic nature of polymer chains. At the same
time, polymeric solutions are also shear thinning, as the chains stretch
and orient in the flow direction. To eliminate shear thinning, weakly
elastic polymer solution compositions have been investigated, also
known as Boger fluids, while more recently shear thinning fluids with
different elasticity levels have been investigated. Thus, the general sta-
bility discussion on polymer solutions, from material point of view,
revolves around the influences of elasticity and shear thinning. We
note that the parameter space determining the TC flow stability
includes not only material parameters but also setup parameters such
as the relative counter-rotation of the cylinders, which is considered in
the present study, as well as the radius and aspect ratios (0.91 and 34.4,
respectively). Thus, despite a substantial number of studies on non-
Newtonian TC flows available in the scientific literature, direct com-
parisons are not always possible. In terms of radius ratio, the present
experiment can be considered as narrow-gap TC flow, similar to the
works by Dutcher and Muller, but at almost half of their aspect ratio
(60.7).29,30 In contrast, the radius and aspect ratio used in the present
study are considerably higher than some studies that are relevant for
comparison in terms of elasticity and shear thinning (e.g., 0.776 and
21.56, respectively, by Balabani and coworkers43,44) Thus, as we pro-
pose a different interpretation for the interplay between elasticity and
shear thinning based on a mesophase (liquid crystalline domain) evo-
lution with CNC concentration and Re, we will refer below mainly to
flow and geometry cases that are similar to the present case.

Dutcher and Muller have investigated the flow cascades of shear-
thinning polymer solutions at low to intermediate El at different
relative cylinder rotations with flow phase diagrams similar to Fig. 10
but in terms of critical Reynolds numbers.29,30 Our findings with
b ¼ �0:25 bear the closest similarity to their results at weak elastici-
ties, that is, the CNC suspensions with< 2.5wt.%. However, our
experiments show the onset of spiral-like flow modes in contrast to
elastically inherent flow phases revealed in their study. In two indepen-
dent contributions by Baumert and Muller, stationary counter-rotating
vortices have been reported for non-shear-thinning fluid of dilute pol-
yisobutylene solutions in polybutene of low elasticities (El¼ 0.056236

and 0.1678) for b ¼ �1,36 where the former and latter case have simi-
lar elasticity level of the CNC suspension with CNC of 1.5–2.5, and
3.0wt.%, respectively. The same authors reported similar stationary
counter-rotating vortices for highly elastic fluids of polymer solutions
at El¼ 1 and El¼ 44, where depending on the viscosity, Wi, and Re,
intermediate flow patterns such as Migrating Bands and Distorted
counter-rotating vortices emerge78 for b ¼ �1. Another work and
based on the linear stability analysis points to a flow mode called axi-
symmetric, oscillatory for the stationary inner cylinder at the elasticity
level of 0.16 is comparable to CNC of 3.0wt.%.79 However, in the

FIG. 9. Examples of pre-TVF instabilities in the form of ribbon-like spirals observed
in 3 wt. % CNC, and b ¼ 0;�0:25.
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current work and for stationary inner cylinder scenarios, LCF pattern
persists to exist in the entire examined Re. Supercritical transitions
from TVF to elastic rotating standing waves (RSW), which cascades to
disordered oscillations (DO)35,80 or the uninterrupted morphing of
TVF into DO35,81 at relatively higher El values have also been reported.

The emergence of standing vortices (SV),30 disordered rotating
standing waves (DRSW),39 elastically dominated turbulence (EDT), or
elasto-inertial turbulence (EIT)30,44,60,82 at moderate to high elasticity
numbers for weakly shear-thinning polymer solutions have been
ascribed to the significant contribution of the elastic response, with

FIG. 10. Stability diagrams in the form of
Wiicr vs jWiocr j for all CNC suspensions,
/ ¼(a) 1, (b) 1.5, (c) 2, (d) 2.5, and (e)
3 wt. % CNC. A summary of notations is
listed in (f).
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FIG. 11. Influence of CNC concentration on the Taylor vortex flow (TVF) instability mode (b ¼ 0Þ. Note that the flow visualizations correspond in most cases to slightly super-
critical conditions, Re � Recr1.

FIG. 12. Flow stability diagrams in the
form of El vs Re comparing the reference
Newtonian case and the CNC suspen-
sions for b ¼ 0 (a), b ¼ �0:25 (b), and
b ¼ �0:5 (c).
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direct translation of LCF to EIT in certain cases.44,80 In recent studies,
it has been argued how the flow translations deviate from non-
shear-thinning systems if the test fluid exhibits shear-thinning
behavior.41–44,61,72,83,84 In a work by Cagney et al., the authors have
looked into the interplay of fluid’s rheology and shear-thinning on
flow instabilities.43 Their experiments showed Newtonian-like flow
patterns, however, with alteration in flow transition critical parameters.
In another work, same authors have shown that both Recr1 and Recr2
(b¼ 0) tend to decrease non-monotonically with increasing El. Reicr1
was relatively low than the non-Newtonian fluids and a Reicr2 signifi-
cantly deviating from the Newtonian case.42 Similar destabilizing
effects of shear-thinning have also been discussed in other works both
using experimental techniques41,76,85–88 and numerical methods.89–91

A few of studies have also argued that shear-thinning introduces asym-
metric flow states such as ribbons (RIB) and spiral vortex flow
(SVF)61,87,88 absent in Newtonian fluids, or the expansion and contrac-
tion of vortices outwards and inwards in radial direction,42 or modifi-
cations in waviness patterns attributed to the WVF states.43 In a study
by Lacassagne et al., the interplay of shear-thinning and elasto-inertial
contribution has been elaborated,44 where the fluids with high shear-
thinning levels and at moderate to high El conventional Newtonian-
like flow emerge with variations in wavenumber and the wave fre-
quency of TVF and WVF.44 The same work points to the emergence
of elastically regulated flow patterns only in low to moderate shear-
thinning levels at high elasticities.

Overall, these variations in flow modes reported for polymer
solution highlight the distinctive nature of CNC suspensions TC flow
stability. For the weakly elastic CNC suspensions, /CNC 2 ½1; 2:5�
(El � 1), it could be argued that flow stability is either dominated by
shear-thinning, or the Newtonian infinite shear viscosity plateau has
been reached. Although the latter is not identifiable in the viscosity
functions, this can be inferred based on the shear thinning slope and
the fact that g1 should be greater than 10�3 (water). Within the
weakly elastic range, with increasing CNC concentration, both El and
ni gradually increase, see Fig. 13(a), meaning that the conditions for
the development of elastically driven novel instability modes are not
met. However, the fact that even for 1wt.% CNC j is significantly

lower than the Newtonian case for all Re could suggest that shear thin-
ning does influence flow stability up to the highest Re investigated.
This would mean that the transition sequence recorded for � 2wt.%
CNC from TVF ! WVF ! MWV ! IS is also a consequence of
shear thinning.

For the moderate El case, /CNC ¼ 3 wt.%, there is a significant
increase in both El and ni. In this case, again, the conditions for elasti-
cally induce patterns are most likely not met, or elastic effects are sup-
pressed by the flow. The fact that there are no clear fingerprint
patterns that are associated with the chiral nematic phase present in
the POMs suggests that the systems contain a level of agglomeration
(here by agglomerates we mean clusters of CNCs without positional
and/or orientational order at lengthscales greater than the particle
lengthscale). To gain a more profound insight into the structural
dynamics of the flow, we have performed rheo-SAXS experiments on
the 3wt.% CNC sample, Fig. 13(b). Interestingly, at low shear rates,
we see evidence of vertical orientation, hP2i > 0. The loss of vertical
orientation based on the shear rate in the rheo-SAXS test would corre-
spond to Re � 1:2 in the TC flow case. This has been associated with
the breakup of the mesophase into nematic and then individual CNCs
that orient in the flow direction, after which orientation gradually
increases.55 We note that depending on the preparation method, the
shear rate corresponding to the orientation in the flow direction can
vary considerably depending on the q-range investigated. Thus, based
on several similar experiments over a broader q-range (data not
shown), we estimate that for 3wt.% a reasonable Re-range would be
between 0.02 and 3. This is considerably lower than Recr1 for 3wt.%
CNC, b¼ 0, see Fig. S5. This means that the pre-TVF instability
observed could still be a form of shear thinning effect. Alternatively,
due to the agglomerates apparent in the 3wt.%, it is possible that
some could form a mesophase under the influence of shear. At this
point, without further evidence this remains a speculation. We also
need to distinguish the effect of elasticity and shear-thinning within
liquid crystals systems like CNCs in this study and a typical polymer
chain solution. In polymer solutions, normal stresses and subsequent
elastically dominated “hoop stresses” dictate the flow instability at ele-
vated shear rates.31 In contrast, in CNC suspensions at sufficiently

FIG. 13. (a) El/n vs CNC concentration.
(b) Hermans orientation parameter, hP2i,
representation from rheo-SAXS experi-
ments as function of shear rate for the
3 wt. % CNC suspension. The datapoints
plotted correspond to the azimuthal inte-
gration of the scattering intensity over
q 2 ½1:4; 2:4� � 10�2 Å�1. The marked
region corresponds to the shear rate / Re
range for orientation in the flow direction
within q 2 ½0:9; 19� � 10�2 Å�1, estima-
tion based on a broader range of experi-
ments (not shown).
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high Re the chiral nematic assemblies, which in principle account for
the elastic contribution in liquid crystalline flow systems, start to disin-
tegrate, and shear-thinning mostly determines the flow stability. At the
same time, CNC systems also distinguish themselves from other types
of suspensions previously investigated in TC flow. Specifically, non-
colloidal sphere-like or prolate (2D) nanoclay particles have been
shown to perturb the TC critical parameters and flow patterns.56–58 In
contrast, due to the fragmenting of chiral nematic assemblies into indi-
vidual CNC 1D nanorods of relatively low aspect ratio, e.g., compared
to the mentioned 2D nanoclays, appear to lack the same effect.
However, to better understand the impact of nanoparticle morphology
and aspect ratio on flow pattern dynamics, further investigations using
combined techniques like rheo-SAXS would be required. Finally, we
note that the flow stability of CNC suspensions could be further eluci-
dated without the requirement for higher CNC concentrations by
employing different preparation methods, which can significantly
influence their self-assembly and rheological properties.92

IV. SUMMARY AND CONCLUSIONS

In the current work, the flow stability of CNC suspensions at dif-
ferent concentrations corresponding to altered elasticities has been
investigated. Specifically, a novel rheo-optical method has been utilized
to directly observe flow patterns at altered rotations of inner and outer
cylinders of the TC geometry. The particular liquid crystalline nature
of the cellulose nanocrystal and how they respond to polarized light
can explain the applicability of such a method. The supercritical flow
modes at varied relative cylinder rotations have been observed and
detailed in light of the material functions and elastic response of the
cellulose nanorods. In essence, the flow transitions observed follow a
Newtonian-like sequence but modified mainly by shear-thinning. In
brief, the Taylor–Couette flow stability problem for CNC solutions is
significantly influenced by the strong shear-thinning behavior of such
solutions in nonlinear flow conditions, where the elasticity dwindles
due to the disengagement of nematic or chiral nematic domains. Also,
our findings on the one hand sheds light on distinctions between liquid
crystalline and polymer chains in terms of their viscoelastic nature,
and on the other hand, evidences the understanding the concept of
elasticity beyond a single number used for defining the viscoelastic
response of a non-Newtonian fluid.

SUPPLEMENTARY MATERIAL

See the supplementary material for model fit parameters, polar-
ized optical microscopy, all relevant imaging and spectral data not
included in the main manuscript, and a brief outline of how rheo-
SAXS data were represented.
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