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Abstract

This thesis details the development of an improved theoretical framework, computa-
tional methods, and the implementation of scientific software for small-angle x-ray
scattering tensor tomography. It includes experimental and simulation work to evaluate
the robustness of the method under constraints on data acquisition and to validate
implications of the theory.

Small-angle x-ray scattering tensor tomography is a promising method for the study
of millimeter-sized samples with anisotropic nanostructures at scales ranging from a
few to several hundred nanometers. This is accomplished by reconstructing the recip-
rocal space map of the sample in a volume-resolved manner. A thorough account is
given of the mathematical model and the algorithms used to carry out reconstructions
from experimental data. The performance of these algorithms is investigated through
correlation studies on simulated data, demonstrating that they are robust and perform
well compared to alternative approaches. The thesis details the software package Mu-
mott, the structure and development of which is informed by the advances within
this project. In the case of the experimental correlation study, the robustness of the
tensor tomographic reconstruction methods for a typical partial data set is evaluated
by comparison to the reconstruction obtained with a full data set. The full data set
was acquired by remounting the sample during acquisition. This analysis shows that
while the incompleteness of data has an appreciable adverse effect on the parts of the
reconstruction, many important quantities, such as the principal orientation, mean
intensity and relative anisotropy, are relatively robust. Finally, the thesis includes one
application study of the structure of the chameleon tongue, where small-angle x-ray
scattering tensor tomography is used to complement other imaging methods in a way
that leverages the advances in robustness and the study of complex textures detailed in
the thesis.

Keywords: small-angle scattering, tensor tomography, visualization, nanostructure,
diffraction, hierarchical materials, integral geometry, optimization iii
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1
Introduction

Small-angle x-ray scattering (SAXS) is a method for investigating the nanostructure of
materials, which probes nanometer-scale variations in the electron density, averaged
over the cross-sectional area of the impinging x-ray beam. Advances in synchrotron
facilities in recent decades have made SAXS a powerful technique with a wide range of
applications. Depending on the size of the x-ray beam, the area of averaging may lie in
a range from a few hundred nanometers up to 100 × 100 µm2. SAXS gives statistical
information about the size and shape of the scattering objects within the nanostructure
of the sample. It is a very suitable method to retrieve the main orientation as well as
the orientation distribution from underlying anisotropic ultrastructures, which can be
obtained from the anisotropic scattering pattern.
In scanning SAXS (sSAXS), a raster scan of a thin section of a sample is carried out,

with a step size which is typically comparable to the beam size. This allows the spatially
resolved imaging of the nanostructure of macroscopic samples which may be several
millimeters in size, or even larger [1–3]. This is an advantage in particular for hierarchical
materials, where structural differences across multiple length scales are of interest [4–6].
This can be compared to direct imaging methods such as scanning electron microscopy
(SEM), where probing nanostructural variations in the range 5–300 nm typically limits
the field-of-view to approximately 10–100 µm [7]. However, unlike direct imaging
methods, sSAXS does not allow for direct retrieval of the real-space electron density.
Instead, what is retrieved is the Fourier transform of the autocorrelation function of the
electron density in the plane orthogonal to the direction of the impinging beam, known
as the reciprocal space map (RSM).
A method that allows for the real-space electron density to be retrieved is x-ray

ptychography, where coherent Fraunhofer diffraction is used, and where overlapping
domains are scanned [8]. This allows for phase retrieval and direct imaging at very
high resolutions, which can be combined with tomography to yield volume-resolved

1



Chapter 1. Introduction

images of three-dimensional samples [9]. However, like SEM, x-ray ptychography is also
limited in its field-of-view when nanometer-scale resolution is desired, to approximately
10–100 µm. Another method for indirectly measuring anisotropic structures allowing
for a larger field-of-view is directional dark-field x-ray imaging, which combines x-ray
imaging with interferometry. This permits the imaging of anisotropic structures of
macroscopic samples, but at relatively large length scales on the order of 1 µm [10].
Thus, sSAXS excels when one desires to probe variations in the average nanoscale

structure of a sample over macroscopic regions. In this way, sSAXS is an excellent
bridge between larger-scale imaging (e.g., x-ray absorption imaging or visible light
microscopy) and very small-scale imaging (e.g., SEM or x-ray ptychography). SAXS can
be used to identify regions of interest, which can then be investigated by high-resolution
methods. This type of multi-modular imaging is an efficient approach to leveraging the
complementary advantages of multiple imaging methods while eliminating many of the
disadvantages associated with any one method from the final analysis.
Tomography, literally “slice imaging”, is a class of methods in which penetrating

waves (such as x-rays) are used to probe a sample from multiple angles, and these
images are used to reconstruct a volume-resolved image of the sample [11]. SSAXS,
when applied to three-dimensional samples rather than thin slices, can be combined
with tomographic reconstruction methods to yield a volume-resolved image containing
nanostructural information. In cases where the nanostructure is isotropic, i.e., when
it does not have a preferred orientation, SAXS tomography can be performed using
standard methods for computed tomography [12–14]. However, for anisotropic samples,
such as fibrous structures, it is necessary to account for the fact that SAXS only probes
the variation in nanostructure in certain directions, orthogonal to the direction of the
impinging beam. Standard tomography can be performed of select components of an
anisotropic RSM, in particular the component parallel to the axis of rotation, although
this discards much of the data [15–17]. It is also possible to compute invariants of the
entire probed RSM and reconstruct these, but this generally necessitates the imposition
of additional assumptions about the sample [18]. Similarly, it is possible to arrange
samples with certain symmetries in the RSM to be invariant to rotation and then perform
component-wise reconstruction using standard tomographic techniques [12, 13, 16, 19].
In order to not limit ourselves to these cases, we instead employ a more general

approach, small-angle x-ray scattering tensor tomography (SAXSTT), which entails
reconstruction of the entire RSM probed by SAXS, and necessitates the tilting of the
sample in addition to rotating it [20–22]. SAXSTT introduces a multitude of challenges:

• It is necessary to select a representation for the RSM, which at a single length
scale will be isomorphic to a function on the unit sphere, and the data from
the detector must be mapped to this representation. Possible choices include
polynomial representations (i.e., spherical harmonics), local representations (i.e.,
radial basis functions defined on a spherical grid), and binning measurements into

2



regions on the sphere, all of which have advantages and disadvantages.

• Standard scalar tomography algorithms cannot be directly applied to the re-
construction of tensor fields, and designing and implementing robust tensor
tomographic algorithms is challenging.

• Tilted measurements introduce additional computational complexity in the real-
space part of the reconstruction algorithm, and limit the choice of available
implementations for the efficient computation of the real-space line integrals
necessary to perform tomographic reconstructions.

• It is not feasible in most cases to measure a sample from all possible angles, which
means that there will be artefacts in some areas of the reconstruction (leading to
the so-called missing wedge problem), and the analysis should ideally account for
this.

• Analysis of the reconstruction, including orientation analysis, peak fitting, back-
ground subtraction, and the extraction of various quantities derived from the
shape of the SAXS curve, is complicated by a spherical geometry.

• The resultant reconstruction is potentially a highly complex tensor field, which
may be difficult to visualize or otherwise get an overview of.

These, and other related complications, make SAXSTT a highly challenging problem
at multiple points, from data acquisition to the final analysis. Moreover, we would
like to make SAXSTT available to a wider synchrotron user community, which means
that these problems must not only be accounted for in a software implementation, but
this implementation must be accessible to and usable by a user who is not necessarily
an expert in tomography or optimization problems. The relatively large number of
parameters needed to specify the experimental setup must be possible to specify and
configure in a reasonably intuitive manner, and the implementation should be possible
to run without specialized hardware such as high-end graphics cards. Additionally, the
practical use of SAXSTT necessitates that the robustness of the technique is thoroughly
investigated, so that both users and beamline scientists can have a good idea about the
type of information that one can and cannot reliably extract. This includes establishing
reference points for the amount and quality of data necessary to reliably carry out
reconstructions, in order to minimize acquisition time and maximize the use of allocated
beam time. Finally, users must have some access to or be made aware of visualization
techniques in order to inspect the data, although the extent to which this is possible
to do within the scope of a software project is limited due to the complex and highly
specialized nature of three-dimensional rendering techniques.
These considerations provide the motivation for the work presented in this thesis.

Chapter 2 outlines the theoretical framework of SAXSTT, including a review of previous
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Chapter 1. Introduction

work on SAXS, other approaches to SAXS tomography, and an outline of the problem
of representing the RSM. This summarizes the theoretical portions of papers I, II, and
IV. Chapter 5 deals with the validation of SAXSTT by demonstrating its robustness,
application to simulations, and consistency with tomographic theory. This is treated in
papers I and II. Chapter 3 gives an in-depth look at the various reconstruction algorithms
utilized and developed over the course of this work, as well as a detailed treatment of
the numeric computations necessary to implement them. This is the subject of papers I,
II, and IV. Chapter 4 details the Python software Mumott, which was developed over
the course of this work, and which seeks to address the problem of making SAXSTT
available to users. This is the subject of paper IV. Chapter 5 deals with the validation of
SAXSTT by demonstrating its robustness, application to simulations, and consistency
with tomographic theory. The visualization techniques employed in this work and
across all four papers are detailed and discussed in Chapter 6, including various techni-
cal considerations due to the large size and atypical structure of tensor tomographic
data. Chapter 7 treats the SAXSTT part of paper III, which applies SAXSTT to the
study of the chameleon tongue. This chapter details challenges and necessary method
improvements in reconstructing this data set, applying q-resolved analysis, segmenting
the reconstruction, and performing multi-orientation analysis. The resulting analysis
showcases the unique strength of SAXSTT, following the model improvements pre-
sented in this work, in resolving complex interwoven and multi-layered ultrastructures.
Finally, Chapter 8 concludes the comprehensive summary of this thesis and provides an
outlook on opportunities for improvement and future research in the field of SAXSTT.
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2
Theoretical framework of SAXSTT

2.1 Small-angle x-ray scattering
SAXS is an experimental method for probing statistical information about the nanos-
tructure of a sample in terms of the RSM, which is the Fourier transform of the autocor-
relation function of the electron density in one region of the sample. The way in which
SAXS probes the RSM, and how it compares to wide-angle x-ray scattering (WAXS), is
best illustrated through the concept of the Ewald sphere shown in Fig. 2.1. In this work
we are primarily concerned with scattering at small angles as in the small dark red circle
at Fig. 2.1v. The RSMmay be used to infer statistical information about the nanostructure
of a sample, such as the size and shape distributions of the particles that it is made up
of [23]. For samples with anisotropic nanostructures, that is, preferred orientations (see
Fig. 2.2), the RSM may be used to deduce information about the orientation distribution
function of the anisotropic constituents, such as fibers. We may express the RSM at a
given location in a sample as

rsm(𝒓, 𝒒) = ∭ d𝒓′[ ̃𝜌𝑁(𝒓′ − 𝒓) exp(−𝑖𝒒 ⋅ (𝒓′ − 𝒓))], (2.1)

where 𝑁 denotes a neighbourhood around 𝒓, ̃𝜌𝑁(𝒓′ − 𝒓) is the auto-correlation function
of the electron density over 𝑁 at 𝒓′ − 𝒓, and 𝒓′ is the integration variable. Specifically,
we can write

̃𝜌𝑁(𝒓) = ∭ d𝒓′ [𝑤𝑁(𝒓′)𝜌(𝒓′ − 𝒓)𝜌(𝒓′)] , (2.2)

where 𝑤𝑁(𝒓′) is a windowing function centered on the neighbourhood 𝑁, encoding
the point spread function of the beam and having a small thickness in the direction of
beam propagation.
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Chapter 2. Theoretical framework of SAXSTT

Figure 2.1: Simulation of the effect of the curvature of the Ewald sphere (large red sphere at
i.), for when a beam impinges on a sample (small object at ii.). The edge of the Ewald sphere
intersects with the origin of the RSM (transparent small sphere at iii.) and the cut of the
intersection forms the probed part of the RSM, a curved disk. The outer part of the cut scatters at
wide angles, and is greatly magnified when projected onto the detector (large blue-green-yellow
iv.). A single circle on the detector forms a small circle of one shell of reciprocal space due to
the curvature of the Ewald sphere. The inner part of the cut (dark red area at v.) is much less
dramatically magnified as the scattered rays are nearly parallel due to the small scattering angle.
A single circle in this part of the detector approximately forms a great circle of a small shell in
reciprocal space, due to the small curvature of the Ewald sphere over the angle.

Figure 2.2: Examples of an anisotropic and an isotropic RSM, measured by scanning SAXS.

This description is complicated by the fact that theoretical models used to describe the
RSM assume that the real-space structure is an infinitely extended, repeating unit cell.
The justification for this deviation from the theory is that the highly monochromatic
beams with a long correlation length that can be obtained at synchrotrons are in effect
plane waves at typical SAXS nanostructure length scales of 1 – 300 nm. The beams are
thus local on the scale of the sample as a whole, but have a very large extent on the
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2.1. Small-angle x-ray scattering

scale of the nanostructural elements.
To begin discussion our measurement of the RSM, we note that a beam impinging

upon, passing through, and exiting a non-emissive slab of material obeys the basic
equation

𝐼0 = 𝐼𝑇 + 𝐼𝑆 + 𝐼𝐴,

where 𝐼0 is the impinging intensity while 𝐼𝑇, 𝐼𝑆, and 𝐼𝐴 are transmitted, scattered, and
absorbed intensity, respectively. For a thin slab we may then write, using the fact that
under these constraints the total intensity 𝐼0 is constant as the beam passes through the
material, or in other words, d𝐼0 = 0,

−d𝐼𝐴 = d𝐼𝑇 + d𝐼𝑆.

Assuming that the beam does not couple strongly to the material, i.e., that it has a
sufficiently high energy, we may neglect 𝑑𝐼𝑆 in relation to 𝑑𝐼𝑇 and write

−d𝐼𝐴 ≈ d𝐼𝑇.

Assuming linear absorption such that 𝐼𝑇(𝑠 + 𝑑𝑠) = 𝐼𝑇(𝑠)(1 − 𝑎 𝑑𝑠), we integrate from 0
to 𝑠, where 𝑠 is the thickness of the slab, to obtain that

𝐼0 − 𝐼𝐴 ≈ 𝐼𝑇 = 𝐼0 exp(−𝑎𝑠). (2.3)

Moving on to the previously neglected scattering term, we note that the scattered
intensity increases as parts of the transmitted intensity are scattered, and decreases
as parts of the scattered intensity are absorbed. Assuming the scattering angle to be
small (cos(𝜃) ≈ 1), the absorption coefficient will be the same 𝑎 as for 𝐼𝑇(𝑠), and the
path length will also be the same. In other words, we can approximate

𝑑𝐼𝑆 ≈ 𝑑𝑠(𝛽𝐼𝑇(𝑠) − 𝑎𝐼𝑆(𝑠))
≈ 𝑑𝑠(𝛽𝐼0 exp(−𝑎𝑠) − 𝑎𝐼𝑆(𝑠)).

Because we assume the scattering coefficient 𝛽 to be small (𝑠𝛽 ≪ 1), we neglect higher-
order scattering (i.e., terms proportional to 𝛽𝐼𝑆(𝑠), (𝛽𝐼𝑆(𝑠))2, and so on). Knowing the
scattered intensity at 𝑠 = 0 (the point of impingement) is 𝐼𝑆(0) = 0, this differential
equation has the solution

𝐼𝑆(𝑠) = 𝑠𝛽𝐼0 exp(−𝑎𝑠).

Now, we find that

𝐼𝑆(𝑠)
𝐼𝑇(𝑠)

= 𝑠𝛽.
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Chapter 2. Theoretical framework of SAXSTT

We have carried out this entire derivation on a thin slab of material (assumed to have a
constant scattering coefficient), and we have considered the total amount of scattering
across all angles. We will now extend this to scattering through a thicker slab, which
may not have a constant scattering potential, and parameterize the scattering in terms of
the reciprocal space vector 𝒒. Assuming the wavelength of the beam is much smaller than
the characteristic length scales of the electron density of the material, while the beam
is effectively a plane wave at those length scales, we may now express the scattering-
transmission quotient in terms of the RSM, that is,

𝐼𝑆
𝐼𝑇

(𝑠 + d𝑠, 𝒒) −
𝐼𝑆
𝐼𝑇

(𝑠) = rsm(𝒓0 + 𝑠 ̂𝑠 ̂𝑠 ̂𝑠, 𝒒)d𝑠,

where 𝒓0 is the point of impingement. The size of the neighbourhood 𝑁 in Eq. (2.1) is
determined by the size of this impinging beam.

This differential equation is solved by integrating both sides, yielding

𝐼𝑆
𝐼𝑇

(𝑠end, 𝒒) = ∫
𝑠end

𝑠0

rsm(𝒓0 + 𝑠 ̂𝑠 ̂𝑠 ̂𝑠, 𝒒)d𝑠. (2.4)

In other words, the transmission-normalized scattering measured is the line integral
of the RSM taken over the path of the beam. The measurable portion of the RSM is a
two-dimensional slice through the plane orthogonal to the impinging beam.

2.2 Tomography of anisotropic SAXS signals
Tomography includes a large number of imaging techniques which have in common
that they enable a sample to be studied in a slice-by-slice manner by probing it using
a penetrating wave such as radio waves, visible light, x-rays, neutrons or sound. We
are specifically interested in tomographic reconstruction of projection measurements
that can be modelled as line integrals of three-dimensional fields. Such projections are
described by the John transform, also known as the x-ray transform [11], which has the
general form

𝑃 [𝑓](𝐿) = ∫
∞

−∞
d𝑡𝑓 (𝒙0 − 𝑡(𝒙0 − 𝒙1)), (2.5)

where 𝑓 is a field in three-dimensional space, 𝐿 is a line in three-dimensional space,
and x0 and x1 are two distinct points on 𝐿. A transformed field obeys John’s equation,
an ultra-hyperbolic differential equation, which may be used to derive consistency
conditions for projection data, which determine the extent to which the original field
can be reconstructed from the data. Since the RSM in Eq. (2.4) is taken along a line
integral, it is clear that under at least some conditions it can be subjected to tomographic
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2.2. Tomography of anisotropic SAXS signals

reconstruction. At any constant ‖q‖ where the RSM does not depend on the direction
of 𝒒, it is effectively a scalar field, and it can therefore be reconstructed using stan-
dard tomographic methods [16, 17, 24]. This becomes more complicated if the RSM is
anisotropic, i.e., depends on the direction of q. If an axis exists such that the cut of
the RSM of each volume element is invariant with respect to rotation about it, then a
tomographic dataset can be collected by rotating the sample about this axis and treating
the RSM at each angle as a separate scalar field [12, 13, 18, 19].

The issue is substantially complicated when no simple condition of invariance exists
for the RSM. It is helpful to begin to consider what happens if we attempt the collection
of an ordinary tomographic dataset by rotating about some arbitrary axis ̂𝚤𝚤𝚤. We obtain

𝐷(𝑗, 𝑘, 𝛼, 𝑞, 𝜑) = ∫
∞

−∞
d𝑡 rsm(𝒗(𝑗, 𝑘, 𝛼) + 𝑡 ̂𝒑(𝛼), ‖𝑞‖ ( ̂𝚤𝚤𝚤 cos𝜑 + ̂𝚤𝚤𝚤 × ̂𝒑(𝛼) sin𝜑)),

where (𝑗, 𝑘) are two coordinates in the plane of projection, 𝛼 is the angle of rotation
about ̂𝚤𝚤𝚤, 𝜑 is an azimuthal angle on the detector, 𝒗 is a vector which locates some point in
the plane of projection, and ̂𝒑(𝛼) is the direction of projection. Two crucial conclusions
can be drawn from this equation. First, for |cos𝜑| = 1, the reciprocal space vector does
not depend on 𝛼. Second, for |cos𝜑| ≠ 1, it instead traces out a cone in reciprocal space
(a circle on the sphere of constant ‖𝒒‖). This means that for a given detector direction,
we measure a different direction in reciprocal space in every unique projection direction
except for the detector direction parallel to the axis of rotation.

We can understand this in the following way: for the components of the RSM parallel
to the axis of rotation, we have an ordinary tomographic dataset. For all other compo-
nents, we only know the average value of the RSM along that particular direction. It
would be possible to rotate the sample around multiple axes in sequence, reconstruct
the parallel component along each of these axes, and then interpolate the rest of the
RSM. However, this would be somewhat wasteful, because we would be throwing away
most of the data, except along those individual axes. One can attempt a measurement
array where multiple subsets of the measurements line up with a great circle; this is the
so-called virtual axis approach of Schaff et al. (2015) [20]. However, if we assume that
there is some amount of continuity in the RSM, we no longer have to think in terms
of individual axes of invariance. Instead, for a given direction in reciprocal space, we
can compute the tomographic trajectory along which we would have to measure in
order for that direction to be an invariant, and then see if we have measurements in the
neighborhood of that trajectory. That is to say, rather than measuring with multiple
main rotation axes (or in a way that takes virtual axes into account), we try to measure
as densely as needed across as much of the hemisphere as possible. A relatively simple
way of doing this is to use a tilt axis, orthogonal to the main rotation axis, see Fig. 2.3.
It is possible to cover the hemisphere up to a latitude of approximately 45∘ in this
way, before the rotation stage begins to obstruct the x-ray beam. This rotation-and-
tilt approach was taken by Liebi et al. (2015, 2018), in addition to Schaff et al. (2015)
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Chapter 2. Theoretical framework of SAXSTT

Figure 2.3: Schematic of experimental setup for measurements with a rotation and tilt
axis. The beam travels in the ̂𝒑 direction, and the sample is moved in the ̂𝒋 and �̂� directions
to carry out scanning SAXS. The sample can be rotated about the �̂� and ̂𝜷 axes to scan it from
different angles.

[20–22]. Assuming that measurements are made in a sufficiently dense fashion such
that the measurement directions cover the hemisphere up to 45∘, this should allow for
reasonably good reconstruction of reciprocal space components within a 45∘ cap. For
other directions, the data set will only be partial — there will be missing wedges in these
directions. We can express the two-axis transform in the following way,

𝐷(𝑗, 𝑘, 𝛼, 𝛽, 𝑞, 𝜑) = ∫
∞

−∞
d𝑡 rsm (𝒗(𝑗, 𝑘, 𝛼, 𝛽) + 𝑡 ̂𝒑(𝛼, 𝛽), 𝒒(𝛼, 𝛽, 𝜑)) ,

where 𝒒 = 𝑞 ̂𝒒(𝛼, 𝛽, 𝜙), where ̂𝒒 gives the direction in 𝑞-space as a function of rotation,
tilt, and detector angles. However, it is not practical to directly write out the expressions
for the effects of modifying (𝛼, 𝛽) (but see Sect. 4.1.1 for a discussion of how this and
other geometry-related concerns are handled in Mumott). Thus, for a more compact
representation, we will instead express the orientation of the sample using a single
variable 𝑠, which we take to parameterize a trajectory on the sphere of rotation that
depends on (𝛼, 𝛽),

𝐷(𝑗, 𝑘, 𝑠, 𝑞, 𝜑) = ∫
∞

−∞
d𝑡 rsm (𝒗(𝑗, 𝑘, 𝑠) + 𝑡 ̂𝒑(𝑠), 𝒒(𝑠, 𝜑)) . (2.6)

In Fig. 2.4 we see two components of the tensor John transform of a field of spherical
functions with respect to rotation about two orthogonal axes. The amplitudes in the
directions which are aligned with the axes change more smoothly as the projection
number changes. Moreover, in the orthogonal direction, some lines vanish as the
rotation angle changes, which is easiest to see on the left-hand side of panel b). The sum
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2.2. Tomography of anisotropic SAXS signals

Figure 2.4: Tensor John transform of a field with respect to rotation about two orthogonal
axes and two measured directions on the detector. The amplitudes have been normalized by
the sum of each horizontal line. The vertical axes show the rotation angle while the horizontal
axis shows a single scanned point across one line. The 𝜑 = 0∘ direction in panels a) and b) is
aligned with the 𝑥-axis and the 90∘ direction in panels c) and d) is aligned with the 𝑦-axis. The
amplitude of the transform with respect to rotation about the 𝑥-axis in panels a) and c) changes
more smoothly in the 𝜑 = 0∘ direction when the rotation angle changes than in the 𝜑 = 90∘

direction. Conversely, the transform with respect to rotation about the 𝑦-axis in panels d) and
b) is more continuous in the 𝜑 = 90∘ direction.

of the amplitude over each horizontal line is constant when the detector direction is
parallel to the rotation axis, because the same direction is always being measured in
three-dimensional reciprocal space, and the same part of the sample is always in view.
This is not true when a non-parallel component is being measured, since the direction
in three-dimensional reciprocal space will then change. Thus, normalizing by this sum
emphasizes the lack of smoothness with respect to change in the rotational angle.

There are limitations to the rotation-and-tilt approach, since it depends on the possi-
bility of interpolating the RSM between measured directions. If, for example, the RSM
contains very sharp features along certain directions, e.g., due to very precise alignment
of fibrils, some of those peaks might only be visible at one particular sample orientation.
In this case, it may be necessary to make additional measurements at neighbouring
orientations in order to determine the amplitude, width, and position of these peaks
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Chapter 2. Theoretical framework of SAXSTT

Figure 2.5: Kratky render of three-dimensional anisotropic RSM from a collagen-rich
region in a chameleon tongue. The q-range shown in this reconstructed RSM is approximately
0.02 – 1.6 nm−1, corresponding to a d-spacing of about 3.75 – 300 nm. The large disk in the center
corresponds to equatorial scattering from the diameter of collagen fibrils, whereas the multiple
smaller disks correspond to meridional scattering from the longitudinal spacing of collagen
molecules.

accurately. In order to better understand these issues it is necessary to discuss how we
represent the RSM.

2.3 Representation of the reciprocal space map

The RSM is a function of the three-dimensional reciprocal space vector 𝒒, which is
measured in two dimensions. See Fig. 2.5 for an example of a three-dimensional RSM.
In this case, the three-dimensional map has been interpolated from 194 spherical shells.
A set of 10 such shells is shown in Fig. 2.6. Because a given magnitude of the reciprocal
space vector corresponds to a given length scale in real space, per the Laue equation
or the equivalent Bragg condition [25], it is natural to parameterize reciprocal space
in spherical coordinates. Consequently, when discretizing the RSM it is reasonable
to begin with dividing the three-dimensional RSM into spherical shells. This means
that the problem of representation mainly concerns representing functions on the unit
sphere. Similarly, this means that the data reduction becomes an issue of mapping data
measured on a two-dimensional grid of pixels onto a representation in polar coordinates.
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2.3. Representation of the reciprocal space map

Figure 2.6: 10 RSM shells of a collagen-rich region in a chameleon tongue. Each of these shells
are reconstructed separately.

2.3.1 Data reduction
A SAXSTT data set is very large. Consider a measurement after a fairly modest scheme,
consisting of 50 × 50 scan points per frame, with 200 frames measured at different
sample orientations, and with 4 megapixels per diffraction image measured. If each
measured pixel is represented by a 16-bit, or 2-byte value, we end up with 4 × 106 ×
50 × 50 × 200 × 2B = 4TB of data. If we increase each scanning dimension, and the
number of frames, by a factor of 2 the data size increases to 32TB. These data sizes
are not manageable by ordinary means, and the data must be drastically reduced. The
obvious targets for reduction are the diffraction patterns themselves.
At small scattering angles, diffraction patterns generally follow power laws with

respect to ‖𝒒‖. This means that the scattering intensity contributions from various
structures follow 𝐼 ≈ 𝑎‖𝒒‖𝑏 with some coefficient 𝑎 and exponents 𝑏. Hence, it is natural
to study log 𝐼 ≈ log 𝑎 + 𝑏 log(‖𝒒‖). Different contributions dominate at different scales.
We thus generally want to reduce data in such a way that we have a high resolution
for small ‖𝒒‖ and conversely a low resolution when ‖𝒒‖ is large. This is in addition
motivated by the desire to reduce noise levels by including more data points at higher
‖𝒒‖, where the intensity is typically several orders of magnitude lower than at lower
‖𝒒‖.
The most common approach to reducing diffraction patterns is radial-azimuthal

integration (sometimes just called radial integration or azimuthal integration). In this
approach, the pixels are first given coordinates in terms of (‖𝒒‖, 𝜑). A set of radial
bins [‖𝒒‖ℎ, ‖𝒒‖ℎ+1) and azimuthal bins [𝜑𝑖, 𝜑𝑖+1) are then defined, and the pixels are
sorted into the two-dimensional array 𝐼ℎ𝑖 implicitly defined by these binnings. The
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Chapter 2. Theoretical framework of SAXSTT

array is normalized by the number of pixels in each bin, 𝑁ℎ𝑖
1. The principal advantage

of this method is that the uncertainty of each measurement can easily be tracked. If
the bin is sufficiently small, the uncertainty is, for single-photon counting detectors,
√𝐼ℎ𝑖/𝑁ℎ𝑖. For a larger bin with many pixels that covers a large angle or a large q-range,
the uncertainty can be estimated as the standard deviation of the intensities of all pixels
sorted into the bin. It is also possible to use whichever of these uncertainties is larger as
the estimate.
There are two other options in terms of reducing the data. One option is to define

a grid of nodes, rather than of bins, and to use a resampling method of choice (e.g.,
Lanczos resampling) — effectively, one needs to run a convolution kernel over each image
and then sample at pre-defined points. Another option is to fit the entire diffraction
pattern to a set of basis functions with the appropriate symmetries such as the Zernike
polynomials. In this case, the method of fitting or resampling would need to be done
in a way that minimizes the uncertainty due to noise. In addition, constraints such
as non-negativity would need to be imposed. Because of the relative complexity of
such alternative schemes, in this work, I have used the traditional approach of radial-
azimuthal integration.

2.3.2 Functions on the sphere
There are two aspects to functions on the sphere in the context of SAXSTT. One aspect is
the general question of how to expand and analyze a function on the sphere in a discrete,
finite representation. The other aspect is how to map detector measurements to the
spherical representation, i.e., how to interpolate spherical functions from measurements
on great circles.

2.3.2.1 Basis sets

To first cover the issue of how a function on the unit sphere, corresponding to one
‖𝒒‖-bin on the detector, is best represented, we consider that such a function is canon-
ically parameterized by a polar and an azimuthal angle, which we will denote (𝜃, 𝜙),
respectively. We are not exclusively interested in strict basis sets for functions on the
unit sphere, but also in approximate representations, i.e., vector-valued functions of
coordinates on the sphere which satisfy

𝑓(𝜃, 𝜙) ≈ ∑
𝑖

𝒂 ⋅ 𝑩(𝜃, 𝜙),

where 𝑓(𝜃, 𝜙) is any sufficiently smooth function on the unit sphere, 𝑎𝑖 is element 𝑖 of
some vector of coefficients, and 𝐵𝑖 is element 𝑖 of a vector-valued function of (𝜃, 𝜙). We

1This enumeration includes only valid pixels.
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do not necessarily want this approximate equality to become exact. Rather, we would
in many cases prefer our representation 𝒂 to yield a less noisy and smoother function.
In fact, it may be more natural to understand our approach as solving for a projection of
𝑓(𝜃, 𝜙) onto a representation-dependent subspace of the unit sphere, where the type of
representation determines the properties of this subspace.
If we forget momentarily about the tomography aspect of the problem that we are

studying, the projection of a function on the sphere into a subspace spanned by a basis
set may be written as

𝑓𝐵(𝜃, 𝜙) = 𝑩(𝜃, 𝜙) ⋅ argmin
𝒂

[∫ dΩ |𝑓(𝜃, 𝜙) − 𝒂 ⋅ 𝑩(𝜃, 𝜙)|2] (2.7)

The subscript 𝐵 in 𝑓𝐵(𝜃, 𝜙) indicates that this is the projection of the function into the
subspace spanned by 𝑩(𝜃, 𝜙). In fact, this type of function representation is already a
type of reconstruction and should be accompanied by regularizing constraints on, e.g.,
the sparseness, smoothness, or sign of the vector 𝒂. The constraint would depend on
the function in question, but we can write it as

𝑓 Λ
𝐵 (𝜃, 𝜙) = 𝑩(𝜃, 𝜙) ⋅ argmin

𝒂
[∫ dΩ |𝑓(𝜃, 𝜙) − 𝒂 ⋅ 𝑩(𝜃, 𝜙)|2 + Λ(𝒂)] , (2.8)

where Λ is a scalar-valued function of the vector spaced spanned by 𝑩 such as a norm
or an indicator function. We can then understand 𝑓 Λ

𝐵 as the most proximate function
to the projection of 𝑓 onto the subspace spanned by 𝑩 which satisfies the constraint
implied by Λ. We will return to this expression after considering the details of the
representations.
It is natural to consider a polynomial representation — i.e., the spherical harmon-

ics. There are clear advantages to this representation. It consists of orthogonal basis
functions, it is invariant with respect to rotation, there are many theorems that can be
used to compute statistics and properties of the represented function (such as the mean
amplitude and principal orientation), and it is easy to apply filters using the spherical
harmonic convolution theorem, to name a few. On the other hand, spherical harmonics
also have drawbacks. They suffer from the Gibbs phenomenon (ringing artefacts), it is
difficult to enforce bounds (such as positive definiteness) on the function, and they do
not yield sparse representations for data that is sparse on the sphere.

The chief alternative to a spherical harmonic representation is a representation based
on a grid of basis functions. Wavelets, which are local functions frequently used on the
plane, are not as useful on the sphere, as the various theorems which motivate the use
of wavelets do not apply on the sphere. A more promising alternative are non-negative
radial basis functions, such as Gaussians. Such a basis will yield smooth functions
with some denoising properties since neighbouring basis functions have a significant
overlap. Moreover, each basis function is local, roughly meaning that a function, which
is non-zero over only a small contiguous area, can be represented sparsely, i.e., with few
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non-zero coefficients. This is a useful property in many optimization problems. They
can be converted to spherical harmonics by evaluating the function on a sufficiently
dense grid (given by the Driscoll-Healy sampling theorem [26]) in order analyze derived
properties such as mean amplitude, variance or orientations. The Gaussian radial basis
functions are discussed at further length in Sect. 3.2.1.

It would be possible to bin measurements using nearest-neighbour interpolation on a
grid. Essentially, this is using a step function as the basis function. This representation
has advantageous properties such as orthogonality (which Gaussian basis functions
lack) and more easily enforced sparsity, but lacks smoothness and requires additional
processing, such as a low-pass filter, to be represented as a three-dimensional surface.
While they are implemented in Mumott they are not considered at length in this work.

Another possibility are barycentric or bilinear interpolations, which yield a represen-
tations that are piecewise smooth and everywhere continuous. They thus are interesting
alternatives but require additional computations and in the case of bilinear interpolation,
they limit the choice of a grid. For these reasons they have not been used in this work.
Finally, it is useful to discuss symmetry-constrained spherical harmonics, such as

zonal harmonics. Such a representation is used in Liebi et al. (2015, 2018) [21, 22], and
has certain interesting properties. In particular, its enforced symmetry can fill in missing
data, which can in principle improve a reconstruction if the symmetry applies. However,
it is substantially harder to solve optimization problems using such a representation.
This is because the zonal harmonics do not form a linear subspace of the spherical
harmonics , i.e., two zonal harmonics with different main orientations do not sum to
a third spherical harmonic if the band-limit ℓmax > 2. This requires optimization for
an additional orientation vector or equivalently two orientation angles. Because only
subspaces of the spherical harmonic with adjacent orientations can be accessed in each
iteration, the optimization is susceptible to getting trapped in local minima. There are
potentially interesting applications for enforced symmetries of this type, such as using
them in conjunction with other representations as soft constraints. While this type of
representation is also implemented in Mumott they are not considered in detail outside
the context of the robustness study that is the topic of paper I.

2.3.2.2 Detector-to-sphere mapping

The second issue of representation is the matter of how to map binned functions on
the detector to functions on the sphere. Effectively, the binning of measurements into
azimuthal bins on the detector corresponds to a line integral carried out along an arc
on the sphere, divided by the length of the arc. In fact, these line integrals can also be
treated as the projection of a function into a subspace spanned by basis functions which
are zero everywhere except along these arcs, assuming that the arcs do not overlap. This
is because the minimizer of the integrated squared difference between a function and a
constant is the mean value of that function, satisfying the optimization problem in the

16



2.3. Representation of the reciprocal space map

projection operation given in Eq. (2.7). This means that we can write the problem of
mapping functions between the detector segments and the sphere as finding a vector
𝒂∗ that satisfies

𝒂∗ = argmin
𝒂 [∑

ℎ
∫̂𝑙∈𝐷ℎ( ̂𝑙)≠0

d ̂𝑙 |𝑓𝐷ℎ𝐷ℎ ( ̂𝑙) − 𝒂 ⋅ 𝑩 ( ̂𝑙)|
2 + 𝜆 ‖𝑎‖1

1]
. (2.9)

Here, 𝐷ℎ is an indicator function which is 0 outside the arc and 1
𝐿ℎ

on the arc, where

𝐿ℎ is the arc length. 𝜆‖𝑎‖2
2 is a regularization term with 𝜆 being the regularization

coefficient2. The regularization term ensures a sparse solution to the projection. In other
words, the way in which we attempt to reconstruct a function that was projected onto
𝑫, the detector basis, in 𝑩, the reconstruction basis, is to find a sparse function in the
reconstruction basis which yields the same projection onto 𝑫 as the original function.

No matter how we frame the issue, in the end the mapping will necessitate evaluating
a term of the form

𝑀𝑖ℎ = ∫̂𝑙∈𝐷ℎ≠0
d ̂𝑙𝐷ℎ ( ̂𝑙) 𝐵𝑖 ( ̂𝑙) , (2.10)

which appears if we take the gradient of Eq. (2.9) with respect to either 𝑓𝐷ℎ or 𝑎𝑖. We
address the evaluation of this term, which can be understood as the overlap between
the two basis functions, in greater detail in Chapter 3.
In a SAXSTT problem, we will look for an 𝒂 that simultaneously satisfies many

constraints like Eq. (2.9). However, if our set of measurements is sparse enough and
our basis 𝑩 has a sufficiently high resolution, this may not be enough. In this case, we
may wish to introduce additional constraints, which this framing gives a natural way to
do. One approach would be to introduce a different kernel. This can be motivated as
follows: assume that the original function 𝑓 is smooth enough that

∫ dΩ𝑓 ( ̂𝑙) 𝐷𝑖 ( ̂𝑙) ≈ ∫ dΩ𝑓 ( ̂𝑙) 𝐸𝑖 ( ̂𝑙) (2.11)

In this case, if the line segment kernel 𝐷𝑖 does not result in enough coverage for 
reconstruction, we can use the alternative kernel 𝐸𝑖 (which might be a surface kernel 
with a width, e.g., a line kernel convolved with a Gaussian). Alternatively, one could 
in principle write the problem along the lines of Eq. (2.8). That is, rather than using 
the matrix in Eq. (2.10) to propagate changes to the sphere, one could evaluate Eq. (2.9) 
with further constraints, such as smoothness, applied to the function represented by

2In practice, 𝜆 is typically very small and the regularization term is not explicitly considered. It 
simply encodes an expectation that the mapping is as sparse as possible in B-space. When consider this 
problem more generally, this leads to the topic of basis pursuit.
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𝒂∗. This would, however, significantly complicate the problem, as it would no longer be
possible to precompute a matrix according to Eq. (2.10) and carry out the computations
using this matrix. The details and potential use of this possibility will be discussed in
greater detail in Chapter 3.
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3
SAXSTT Algorithms

3.1 SAXSTT as an optimization problem
In SAXSTT, we wish to reconstruct a discretized approximation of a six-dimensional
field 𝑓(𝒓, 𝒒). In order to discretize the 𝒒-dependent part of the function, we divide the
six-dimensional function into a set of three-dimensional scalar fields 𝑎𝑖(𝒓) and basis
functions 𝑩𝑖(𝒒). The field has been subjected not only to the John transform Eq. (2.6), but
also to integration over the sphere (Sect. 2.3.2), which we parametrize with a mapping
𝑫ℎ(𝑠, 𝒍). Thus we are, roughly speaking, concerned with solving the inverse problem

rsmℎ(𝑠, 𝑗, 𝑘) ≈ ∫𝐷ℎ(𝑠,𝒍)≠0
d𝒍𝐷ℎ(𝑠, 𝒍)𝐵𝑖(𝒍) ∫

∞

−∞
d𝑡 𝑎𝑖 (𝒗(𝑠, 𝑗, 𝑘) + 𝑡𝒑(𝑠)) (3.1)

using the Einstein summation convention for repeated indices. The left-hand side,
rsmℎ(𝑠, 𝑗, 𝑘) side is our measured data, and the right-hand side models

rsmℎ(𝑠, 𝑗, 𝑘) = ∫𝐷′
ℎ(𝑠,𝒍)≠0

d𝒍𝐷′
ℎ(𝑠, 𝒍) ∫

∞

−∞
d𝑡 𝑓 (𝒗(𝑠, 𝑗, 𝑘) + 𝑡𝒑(𝑠), 𝒍). (3.2)

That is to say, we are probing the 6-dimensional field 𝑓(𝒓, 𝒒). The real-space part of the
field is integrated along directions 𝒑(𝑠), where 𝑠 parameterizes the set of integration
directions. The integration is additionally parameterized by a plane coordinate, 𝒗(𝑠, 𝑗, 𝑘),
where 𝑗 and 𝑘 are two Cartesian coordinates in the plane orthogonal to the direction of
integration. The reciprocal-space part of the field is integrated and averaged over kernels
𝐷ℎ(𝑠, 𝒍) in q-space, following the data reduction scheme in Sect. 2.3.1. The theoretical
kernel 𝐷′

ℎ(𝑠, 𝒍) is not exactly the same as the model kernel — the theoretical kernel
includes discretization noise from the detector and averaging over a 𝒒-range, whereas
we only consider spherical shells of 𝒒 in our model. Moreover, as discussed in Sect. 2.3.2,
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Chapter 3. SAXSTT Algorithms

we may sometimes wish to use a modified kernel in order to impose assumptions or
constraints, although we do not here cover the possibility of using the more general
mapping constraints of Eq. (2.8).
It is difficult to gain an overview of this problem due to the many variables and

potential configurations. We will start by discussing the characteristics of the field
𝑓(𝒓, 𝒒). This function is essentially the RSM given in Eq. (2.1). However, we must
be somewhat careful in this discussion. The definition of the RSM includes a Fourier
transform and an auto-correlation function computed over a local neighbourhood, see
Eqs. (2.1) and (2.2). It is advantageous to the formulation of the problem of SAXSTT to
let this scale be defined by the size of the impinging beam, assuming that the beam is
symmetrical enough. In this case, we can speak of measuring the RSM at one particular
point rather than measuring the average RSM over an area, because we are talking about
a field which is the result of an integral over the probed region. Moreover, the inclusion of
this kernel makes the RSM a smooth function, which is advantageous when considering
solution algorithms. If the scale of the RSM neighbourhood is defined differently, such
as by the smallest size that makes physical sense (which would be twice the length
scale and thus 𝒒-dependent), we must admit another layer of approximation and we
run into complications relating to, e.g., the coherence length of the beam, which must
be accounted for. This is because our data undergoes convolution with a beam kernel,
which makes it more difficult to compute the integral accurately. The only disadvantage
of this framing is that two measurements carried out with the same parameters except
for the beam size will measure different RSMs, which may seem counter-intuitive. On
the other hand, the difference between the two data sets will be the same convolution
regardless of the framing. With this in mind, we prefer to think of measurements
being carried out at each real-space coordinate, rather than being integrated over a
neighbourhood.
There are other issues associated with the way our problem is posed. On one hand,

it is certainly possible to approximately solve Eq. (3.1) for some field 𝒂(𝒓), given 𝑩(𝒒),
𝑫(𝑠, 𝒒) as well as some reasonably efficient way to approximate the John transform.
On the other hand, there is no automatic guarantee that the solution 𝒂(𝒓) ⋅ 𝑩(𝒒) will be
a “good” approximation to 𝑓(𝒓, 𝒒), in the sense that the relationship

𝒂(𝒓) = argmin
𝒂(𝒓) ∬ d𝑉d𝑄 |𝒂(𝒓) ⋅ 𝑩(𝒒) − 𝑓(𝒓, 𝒒)|2

is not necessarily satisfied (approximately or exactly) for the total squared difference
or some similar measure. Much of optimization theory is concerned with formulating
optimization problems such that conditions of this type are better satisfied, under
some assumptions about 𝑓(𝒓, 𝒒) being a sufficiently “nice” function (smooth, noise-free,
having compact support, etc). Alternatively, one can regard it as solving for proximity
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to a function 𝑓 ∗ that satisfies

𝑓 ∗ = argmin
𝑔 ∬ d𝑉d𝑄 |𝑔(𝒓, 𝒒) − 𝑓(𝒓, 𝒒)|2 + Λ(𝑔(𝒓, 𝒒)),

where Λ is a constraint function and 𝑓 ∗ is a type of generalized projection of 𝑓. In this
case, the assumptions encoded in Λ do not necessarily have to hold for 𝑓 in order for
the optimization problem to be coherently posed.

3.2 Reciprocal space basis
When parameterizing the field, we use the approximation

𝑓(𝒓, 𝒒) ≈ 𝐵𝑖(𝒒)𝑎𝑖(𝒓) (3.3)

using the Einstein summation convention and where 𝑩 is a representation for a subset of
all functions on the unit sphere, per Sect. 2.3.2. There are several types of representations,
which are computed in different ways.

3.2.1 Reconstruction space representation
3.2.1.1 Grid-based representations

In a grid-based representation, the first feature of the representation that must be
determined is the grid. Several algorithms of varying complexity for computing spherical
grids exist. The simplest grids, such as the rectangular grid with evenly distributed
points across polar and azimuthal angles, are not suitable for representation as the points
have a very uneven distribution on the sphere. However, such grids have certain other
uses, such as when casting a function to spherical harmonics via the Driscoll-Healy
sampling theorem [26].

There are several other simple options. One appealing approach is the Kurihara mesh,
which divides the sphere into four quadrants and then subdivides those quadrants into
triangles, as it is very simple to compute. It can be modified by removing some points
in order to decrease its regularity, which is often desirable in order to avoid artefacts
from grid points coinciding in different representations. Such a modified Kurihara mesh
is the principal grid used in this work.
Another option is the Fibonacci lattice, which evenly divides the sphere by height

(cosine of latitude) and takes steps subdivided by the golden mean in the azimuthal
direction. There are several useful features of this lattice — an arbitrary number of points
can be placed, and except for the areas near the poles it has a fairly regular distribution.
This mesh is visually appealing and is used for some of the visualizations in this work.
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There are other possibilities, such as those based on icosahedra (which may be further
subdivided into triangles to increase density suitable for barycentric interpolation), those
based on cubic meshes (which allow easily defined bilinear interpolation to be carried
out), and those based on physics-inspired optimization, e.g., finding an electrostatic
configuration of 𝑁 surface charges on a conducting spherical shell. Except for some
illustrative purposes, these representations were not used in this work as bilinear and
barycentric interpolation were not investigated.
In addition to a grid, grid-based representations require a basis function or an inter-

polation scheme, and a metric. The most appropriate metric for a Friedel symmetric
spherical function is the hemispherical great-circle distance, defined as

Δ(𝒓1, 𝒓2) = arccos
|𝒓1 ⋅ 𝒓2|

‖𝒓1‖‖𝒓2‖
. (3.4)

Since we generally want our representations to be as directionally unbiased as possible,
a suitable type of basis function is the radiaul basis function (RBF), a function of a single
non-negative argument. One of the simplest RBFs is the Gaussian, defined simply as

𝐺(𝑟) = 𝑎 exp(− 𝑟2

2𝑏)
where 𝑎 and 𝑏 are amplitude and width parameters, respectively. The Gaussian kernel
for each grid point 𝑖 then becomes

𝐺𝑖 (Δ(𝒓𝑖, 𝒓)) = 𝑎 exp
(

−
Δ(𝒓𝑖, 𝒓)2

2𝑏 )

This kernel has many good properties: It is easy and intuitive to configure, it is smooth,
and it is relatively localized. Essentially, we want to set 𝑏 to be large enough that all
neighbouring Gaussians are within a full-width half-maximum of each other, so that
they pairwise yield unimodal distributions. We can then adjust 𝑎 on a point-by-point
basis to compensate for any lack of uniformity in the distribution of grid points using
some simple rule, e.g., that the sum of all basis functions at each grid point should be
the same.
There are certain theoretical disadvantages to the Gaussian kernel. Notably, it lacks

the property of compact support, which essentially means it is not constrained to any
one region on the sphere. This issue can be alleviated (if one wishes to obtain a sparse
system) bywrapping the Gaussianwith a window function (such as a Hammingwindow),
although this introduces additional parameters such as the window width and type.
An alternative is to use a kernel which already has compact support. One option with
compact support would be the bump function,

𝐾𝐵(𝑟) =
{

exp(− 1
1−(𝜖𝑟)2 ) if 𝑟 < 1

𝜖
0 otherwise
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and there are also several families of polynomial splines of 𝑟 that can be used to similar
effect such as Wendland kernels [27]. While it is plausible that in some cases one
could obtain improvements by using these alternative kernels, the Gaussian performed
sufficiently well for the purposes of this work and these other options have therefore
not been implemented.

3.2.1.2 Polynomial representation

Polynomial representation, i.e., expansion in spherical harmonics, is much simpler than
grid-based representation. The real-valued spherical harmonics are defined by

𝑌 𝑚
ℓ (𝜃, 𝜙) =

{
𝐿𝑚

ℓ (cos 𝜃) cos(𝑚𝜙), if 𝑚 ≥ 0,
𝐿|𝑚|

ℓ (cos 𝜃) sin(|𝑚|𝜙), if 𝑚 < 0,
(3.5)

where 𝐿𝑚
ℓ is the Legendre associated polynomial of degree ℓ and order 𝑚, and 0 ≤

|𝑚| ≤ ℓ. The spherical harmonics are tuned by selecting a band limit (constraining ℓ).
A good estimate for the upper bound can be obtained by applying the Nyquist-Shannon
sampling theorem to the detector space representation [28], which yields ℓ ≤ 𝑁 − 2
where 𝑁 is the number of detector segments after accounting for Friedel symmetry. This
is based on the argument that the spherical harmonics projected into a great circle result
in a Friedel symmetric trigonometric polynomial in 𝑚 with 7 degrees of freedom. This
argument does not yield an exact constraint, because the fit occurs to integrals rather
than to points and measurements from different projection directions can complement
each other to some degree. Instead, the result is a rough estimate of a suitable bound.

Spherical harmonics are arguably more useful in analyzing reconstructions than as a
basis set themselves. This is primarily because spherical harmonics suffer from the Gibbs
phenomenon (also known as ringing artefacts), which causes issues near sharp edges
in the reconstruction, and because it is difficult to apply certain types of constraints
to a spherical harmonic representation. For example, it is difficult to ensure that a
function in a spherical harmonic representation is non-negative, and it is difficult to
enforce certain types of regularization (such as 𝐿1 regularization) without breaking the
rotational invariance of the spherical harmonics. However, expanding a reconstruction
which was carried out using a different representation in spherical harmonics allows
for easy computation of various properties such as the mean value, the covariance,
and the rank-2 tensor component, from which the main orientation can be calculated.
Specifically, the spherical mean is given by 𝑎0

0 and the covariance can be obtained by
applying the power-spectral theorem per

𝑆ℓ(𝑔, ℎ) = 𝒩(ℓ)
ℓ

∑
𝑚=−ℓ

𝑔𝑚
ℓ ℎ𝑚

ℓ (3.6)

cov (𝑔, ℎ) = ∑
ℓ

𝑆ℓ(𝑔, ℎ), (3.7)
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where 𝑆ℓ is the cross-spectral function of 𝑔 and ℎ, which are two functions on the
sphere expanded in spherical harmonics. 𝒩(ℓ) is a normalization term that depends on
the choice of the spherical harmonic representation. Using the covariance, we can by
definition compute the Pearson correlation coefficient 𝑅2

𝑅2 =
cov (𝑔, ℎ)2

var (𝑔) var (ℎ)
, (3.8)

where var (ℎ) ≡ cov (ℎ, ℎ). This is a very useful quantity for evaluating the similarity of
two reconstructions.

Conversion to rank-2 tensor form is carried out by solving the system of equations

[𝑎2
0 𝑎2

1 𝑎2
−1 𝑎2

2 𝑎2
−2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2𝑧2−𝑦2−𝑥2

2√3
𝑥𝑧
𝑦𝑧
𝑥𝑦

𝑥2−𝑦2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦

⊤
⎡
⎢
⎢
⎣

𝑇𝑥𝑥 𝑇𝑥𝑦 𝑇𝑥𝑧
𝑇𝑥𝑦 𝑇𝑦𝑦 𝑇𝑦𝑧
𝑇𝑥𝑧 𝑇𝑧𝑦 𝑇𝑧𝑧

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦

(3.9)

for the rank-2 tensor components 𝑇𝑖𝑗. Orientation analysis can then be done by solving
the eigenvalue problem for the rank-2 tensor. Themain orientation for many symmetries
is given by the eigenvector associated with either the smallest or the largest eigenvalue.
If the symmetry is unambiguous, this eigenvalue is typically also the largest absolute
eigenvalue.
Moreover, filters can be easily applied to a spherical harmonics representation by

applying the spherical harmonic convolution theorem, which essentially says that
a circularly symmetric convolution kernel can be applied by weighting a spherical
harmonic representation according to

𝐾(𝜃) ∗ (𝑎𝑚
ℓ 𝑌 𝑚

ℓ (𝜃, 𝜙)) = 𝒮[𝐾]0
ℓ𝑎𝑚

ℓ 𝑌 𝑚
ℓ (𝜃, 𝜙),

where we employ the Einstein summation convention for repeated indices, and where
𝐾 is a convolution kernel that depends only on 𝜃, ∗ is the convolution operator, and
𝒮 is the spherical harmonic expansion of 𝐾. This approach can be used to smoothen
reconstructions, but also to compute the Funk-Radon transform [29], which converts a
so-called equatorial (or transversal) amplitude into meridional (or longitudinal) ampli-
tude. This is especially useful for visualizing the orientation of tensors with equatorial
symmetry.

3.2.2 Detector space representation
When the detector basis functions are integrals along curves (and surface integrals as in
Eq. (2.11)), they should be re-written as integrals of scalar variables in order to evaluate
them efficiently.
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Per the reduction scheme in Sect. 2.3.1, each detector segment will start at an angle
𝜑1 and end at an angle 𝜑2. Since the segment lies on a circle on the sphere (a great circle
in the small-angle approximation, a small circle more generally) it can be parameterized
using three vectors and spherical linear interpolation (SLERP) as

𝒒(𝜑) = 𝒒∥ + 𝒒0 cos𝜑 + 𝒒90 sin𝜑,
𝒒1 = 𝒒0 cos𝜑1 + 𝒒90 sin𝜑1,
𝒒2 = 𝒒0 cos𝜑2 + 𝒒90 sin𝜑2,

𝒒𝐷(𝑡) = 𝒒∥ +
𝒒1 sin (𝑡Δ𝜑) + 𝒒2 sin ((1 − 𝑡)Δ𝜑)

sinΔ𝜑
, 𝑡 ∈ [0, 1]

where 𝒒∥ is the component of the reciprocal space vector parallel to the incident beam
direction while 𝒒0 and 𝒒90 are two perpendicular components which together with
the parallel component parameterize the probed circle in reciprocal space. Δ𝜑 is the
difference between 𝜑1 and 𝜑2. If this difference is small, for numerical accuracy the
approximation sin (𝑡Δ𝜑)sinΔ𝜑 ≈ 𝑡 can be used instead yielding linear interpolation
(LERP). When the small-angle approximation is accurate, ‖𝒒∥‖ ≈ 0.

Writing a general expression for a surface integral is more difficult. A relatively
simple option would be to express a mapping of a rectangular kernel by simultaneously
rotating both 𝒒1 and 𝒒2 about the axis 𝒒1 − 𝒒2, or a component thereof, as a first SLERP
and then carrying out a second SLERP at each subdivision over the range of rotation.
This would allow the integral to be mapped to the range [0, 1] × [0, 1].
If we were to attempt to impose other constraints on the mapping, as described in

Sect. 3.2.2, such as

𝒂∗ = argmin
𝒂 ∫̂𝑙∈𝐷ℎ( ̂𝑙)≠0

d ̂𝑙|𝑓𝐷ℎ𝐷ℎ ( ̂𝑙) − 𝑎𝑖𝐵𝑖 ( ̂𝑙)|2 + Λ(𝒂) (3.10)

where Λ is, e.g., a smoothness constraint, we are faced with a much more difficult
problem to tackle. In effect, whether we describe this as a forward minimization problem
(optimizing for the mapping onto detector space) or as an inverse minimization problem
(optimizing for the mapping onto reconstruction space), we would be potentially forced
both to solve an optimization problem and to find an implicit vector-valued function,
e.g., 𝒇𝑫(𝒂, Λ). This is a rather onerous task and we will therefore not explore this path
further but rather leave it as an approach that could be of potential interest in some
cases.
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3.2.3 Matrix element quadrature
As discussed in Sect. 2.3.2, the most important aspect of mapping between the detector
space and the spherical space is to compute the matrix element

𝑀ℎ𝑘 = ∫̂𝑙∈𝐷ℎ≠0
d ̂𝑙𝐷ℎ ( ̂𝑙) 𝐵𝑘 ( ̂𝑙) ,

where𝐷ℎ is the integration kernel from the sphere to the detector, and𝐵𝑘 is the spherical
basis. Using the results of Sect. 3.2.2, we can re-write this as an integral of one variable
for the case of a simple curve:

𝑀ℎ𝑘 = ∫
1

0
d𝑡𝐷ℎ(𝒒𝐷(𝑡))𝐵𝑘(𝒒𝐷(𝑡)).

This integral can be computed by standard quadrature approaches, such as the adaptive
Simpson’s rule [30]. The adaptive Simpson’s approach, which is summed up in Algo-
rithm 1, involves dividing the integral into subintervals and applying Simpson’s rule to
each sub-interval until convergence is attained. For very small segments the midpoint
rule can be used. This rule is the approximation

∫
𝑏

𝑎
d𝑥𝑓(𝑥) ≈ (𝑏 − 𝑎)𝑓 (

𝑎 + 𝑏
2 ) ,

although cases where this approximation is suitable will generally easily converge with
other quadrature approaches.

Cases where simple quadrature rules may fail to converge in a reasonable number of
iterations include those where step functions (as in nearest-neighbour interpolation) are
used in the basis set due to the Runge phenomenon, which is the quadrature equivalent of
the Gibbs phenomenon in signal analysis [31]. In these cases, more complicated methods
of numerical integration, such as Gauss-Legendre or Clenshaw-Curtis quadrature, may
be more suitable. This may also be the case if the integral is two-dimensional and the
integration kernel is not constant, as an uneven distribution of points is likely to improve
convergence.

In the event that a more complicated relationship between detector and reconstruction
space is used, such as a proximity constraint in addition to another constraint on either
representation, the relationship may no longer be a linear one. Moreover, it may be that
different constraints are used in the forward and adjoint computation. The reason for
this is, as discussed in Sect. 3.1, that we want the reconstruction 𝒂 ⋅ 𝑩 to approximate
the field 𝑓, while possibly imposing constraints, not merely for the reconstruction to
yield a good approximation of an integral of 𝑓. For example, we could use a narrow
integration kernel for the forward computation, and a second, more dispersed kernel
for the gradient computation. Alternatively, we could impose sparsity conditions on
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Algorithm 1 Adaptive Simpson’s quadrature for matrix elements
𝑛 ← 3
𝑁 ← 0
𝜖 ← ∞
while 𝑁 < 𝑁max and 𝜖 > 𝜖max do

𝑑 ← 1/(𝑛 − 1)
𝑖 ← 0
𝑗 ← 0
for 𝑖..𝑖max, 𝑗..𝑗max do

𝑚 ← 0
𝑀𝑁

𝑖,𝑗 ← 0
while 𝑚 < 𝑛 − 2 do

𝑞 ← 𝑑
3 (𝐵𝑖𝑗(𝑚𝑑) + 4𝐵𝑖𝑗((𝑚 + 1)𝑑) + 𝐵𝑖𝑗((𝑚 + 2)𝑑)

𝑀𝑁
𝑖,𝑗 ← 𝑀𝑁

𝑖,𝑗 + 𝑞
𝑚 ← 𝑚 + 2

end while
if N > 0 then

𝜖𝑖𝑗 ← |𝑀𝑁
𝑖𝑗 − 𝑀𝑁−1

𝑖𝑗 |
else

𝜖𝑖𝑗 ← ∞
end if

end for
𝜖 ← max𝑖𝑗(𝜖𝑖𝑗)/max𝑖𝑗(|𝑀𝑁

𝑖𝑗 |)
𝑛 ← 2𝑛 − 1
𝑁 ← 𝑁 + 1

end while

the projection of the gradient (such as forcing it to minimize an 𝐿1 norm), which
would require not only a projection matrix but also a re-scaling and zeroing of small
elements. Because approaches along this line involve potentially complex numerical
computations (such as requiring two-dimensional integrals) and because this work is
not primarily concerned with sparse data, they have not been implemented. Instead,
adaptive Simpson’s quadrature over a curve on the unit sphere has been the primary
approach used for both the forward and gradient computation.

3.3 John transform quadrature
While the John transform can also be expressed in terms of a projection matrix, it is
generally too large to be stored as such in memory. Consider for example an image of
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50×50 elements, with 50 projections, mapping to a volume of 50×50×50 elements. Then
for each projection angle and pixel, it would be necessary to store an absolute minimum
of 50 non-zero matrix elements mapping to the volume, if limited nearest-neighbour
interpolation were to be used. This means a total of 504 = 6.25 × 106 non-zero elements,
in a sparse matrix of size 503 × 503. This is still a manageable size but considering
the additional storage and evaluation penalties of a sparse matrix, the need to store a
duplicate for efficient adjoint computation and the fact that the number of elements
grows with the fourth power of the system dimension, it quickly becomes apparent
that the sparse matrix storage approach is not practical. Thus, it is necessary to carry
out the John transform and its adjoint as repeated quadrature operations, and therefore
a trade-off between correctness, accuracy and speed is necessary. Good overviews
of the technical concerns when implementing tomographic quadrature on a graphics
processing unit (GPU) are given in Xu et al. (2010) as well as Palenstijn et al. (2011),
both of which presented important advances in the implementation of such algorithms
[32, 33].

A sketch of the tensor tomography version of the algorithm is given in Algorithm 2,
where the important modification for tensor tomography is that values from multiple
channels, rather than a single scalar value, are integrated over in parallel. See the
aforementioned works by Xu et al. (2010) and Palenstijn et al. (2011) for more detailed
discussions of efficiently implementing this algorithm [32, 33]. The approach used is
of the so-called slice-bilinear type, with the interpolation algorithm being described
in Algorithm 3 (including trilinear interpolation, which is not directly carried out in
Algorithm 2 but useful to discuss in understanding why this approach performs well).

We take 5–23 in Algorithm 3 to define the sampling operation 𝑋[𝒄, 𝑖] on line 11 in
Algorithm 2. In Algorithm 3, the trilinear interpolation (lines 17–22) is used if and
only if none of the three coordinates in the shifted 𝒄 is approximately an integer (or
is approximately 𝑖 + 0.5 for some integer 𝑖 in the original, unshifted 𝒄). Consider
disregarding the If-Then-Else branching and directly applying 17–22 when 𝑐0 = ⌊𝑐0⌋ =
⌈𝑐0⌉. Then 𝑤𝑖 = 0 for 𝑖 > 3, and, e.g., 𝑤0 = (1 − 𝑏)(1 − 𝑐), and the operation reduces
to bilinear interpolation of only 4 points, exactly as if steps 7–11 had been carried
out instead. Therefore, if the quadrature points of the John transform are selected
such that the interpolation always occurs when one coordinate equals 0.5, the trilinear
interpolation which is taken to approximate the underlying field sampled by 𝑋 will
always reduce to bilinear interpolation. This is precisely what Algorithm 2 does by
taking steps which begin at 0.5 and are always of length 1 in the slicing direction, and
then effectively carrying out trapezoidal quadrature.1 Taken at an arbitrary angle, a
line from one slice to another in a regular, trilinearly interpolated field can trace out

1Strictly speaking, the first and last sample should be multiplied by 0.5 for trapezoidal quadrature.
The underlying field, however, generally needs to be treated as going to zero near boundaries in order for
tomographic theory to be applicable, which renders this concern moot.
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Algorithm 2 Sketch of John transform algorithm
1: Given reconstruction volume 𝑿 consisting of some number of voxels, each with

𝑖max channels. 𝑿 is indexed via a set of 3D coordinates 𝒄, and a voxel index 𝑖.
2: Given a rectangular prism 𝑃 from (0, 0, 0) to (𝑥max, 𝑦max , 𝑧max ) within which 𝑿

is defined, structured according to three principal directions 𝒔0 = (1, 0, 0), 𝒔1 =
(0, 1, 0), 𝒔2 = (0, 0, 1).

3: Initialize output projections 𝒑, with 𝑛max pixels, 𝑚max directions, and 𝑖max channels:
𝒑 ← 0

4: for each pixel 𝑛..𝑛max and each direction 𝑚..𝑚max do
5: Initialize accumulator: 𝑎𝑖 ← 0
6: Find optimal slicing direction ̂𝒔 for 𝒎: ̂𝒔 ← 𝒔argmax𝑘‖𝒎𝑘‖.
7: Find 3D coordinates 𝒄 for pixel 𝑛 in the plane orthogonal to direction 𝒎 which

cuts through the origin.
8: Find offset vector 𝒐 parallel to direction 𝒎 such that 𝒐 + 𝒄 has coordinate value

0.5 in direction ̂𝒔, and update: 𝑐 ← 𝑐 + 𝑜.
9: while 𝒄 in 𝑃 do
10: for 𝑖 ← 0 up to 𝑖max do
11: Sample reconstruction volume: 𝑎𝑖 ← 𝑎𝑖 + 𝑋[𝒄, 𝑖]
12: end for
13: 𝒄 ← 𝒄 + 𝒎

𝒎⋅ ̂𝒔
14: end while
15: for 𝑖 ← 0 up to 𝑖max do
16: 𝑝𝑛𝑚𝑖 ← 𝑎𝑖

|𝒎⋅ ̂𝒔|
17: end for
18: end for

a polynomial of up to degree 4, since a trilinearly interpolated volume is a first-order
function of three independent variables, and a line from one slice to another may cross
a boundary in one of the other two directions. In principle, then, taking 3 additional
samples per slice would guarantee exact quadrature of the trilinear field, and adding 1
additional central point and applying Simpson’s rule should also yield an improvement.
However, this is unlikely to improve the outcome of the reconstruction in practice, since
the underlying field is assumed to be relatively smooth at the scale of sampling and
higher derivatives would therefore be small to begin with. Moreover, there is no reason
to expect any systematic bias in over or underestimating the integral, and therefore
some cancellation of such errors is likely to occur across the integration range. Thus,
such schemes are unlikely to significantly improve the already internally consistent
trapezoidal-bilinear quadrature approach, which is consistent with the results reported
by Xu and Mueller (2005) [34].
It is useful to briefly discuss the adjoint John transform algorithm, sketched out in
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Algorithm 3 Bilinear-trilinear interpolation
1: Given a three-dimensional scalar field 𝑽 (𝑥, 𝑦, 𝑧), defined within a rectangular prism

of integer side length 𝑃 from (0, 0, 0) to (𝑥max, 𝑦max , 𝑧max ), let the three-dimensional
array 𝑋(𝑖, 𝑗, 𝑘) consist of discrete, unit-spaced samples of 𝑽 from (0.5, 0.5, 0.5) to
(𝑥max − 0.5, 𝑦max − 0.5, 𝑧max − 0.5), indexed by integer values in the prism 𝑃 ′,
spanning (0, 0, 0) to (𝑥max − 1, 𝑦max − 1, 𝑧max − 1). For any triplet of integer indices
(𝑖, 𝑗, 𝑘) that does not lie in the prism 𝑃 ′, let 𝑋(𝑖, 𝑗, 𝑘) ∶= 0.

2: Let 𝒄 ≡ (𝑐0, 𝑐1, 𝑐2) be an arbitrary set of coordinates in 𝑃.
3: Shift 𝒄 ← 𝒄 − (0.5, 0.5, 0.5)
4: Let ⌈𝑟⌉ denote the ceiling operation, and ⌊𝑟⌋ denote the floor operation.
5: Then let 𝑋[𝒄] denote the approximation of 𝑽 by interpolation of the discrete samples

in 𝑋 according to
6: if 𝑐0 + 𝛿 = ⌊𝑐0 + 𝛿⌋, for some 0 ≤ 𝛿 ≪ 1 then
7: 𝑐0 ← 𝑐0 + 𝛿
8: Let 𝑋0 ← 𝑋 (⌊𝑐0⌋, ⌊𝑐1⌋, ⌊𝑐2⌋), 𝑋1 ← 𝑋 (⌊𝑐0⌋, ⌊𝑐1⌋, ⌈𝑐2⌉), 𝑋2 ←

𝑋 (⌊𝑐0⌋, ⌈𝑐1⌉, ⌊𝑐2⌋), and 𝑋3 ← 𝑋 (⌊𝑐0⌋, ⌈𝑐1⌉, ⌈𝑐2⌉).
9: Let 𝑎 ← 𝑐1 − ⌊𝑐1⌋, and 𝑏 ← 𝑐2 − ⌊𝑐2⌋
10: Let 𝑤0 ← (1 − 𝑎)(1 − 𝑏), 𝑤1 ← (1 − 𝑎)𝑏, 𝑤2 ← 𝑎(1 − 𝑏), 𝑤3 ← 𝑎𝑏
11: Let 𝑋[𝒄] ∶= ∑3

𝑖=0 𝑋𝑖𝑤𝑖
12: else if 𝑐1 + 𝛿 = ⌊𝑐1 + 𝛿⌋, for some 0 ≤ 𝛿 ≪ 1 then
13: Do 7–11 but swap operations applied to 𝑐0 and 𝑐1 in 8, and swap 𝑐0 and 𝑐1 in 7

and 9.
14: else if 𝑐2 + 𝛿 = ⌊𝑐2 + 𝛿⌋, for some 0 ≤ 𝛿 ≪ 1 then
15: Do 7–11 but swap operations applied to 𝑐0 and 𝑐2 in 8, and swap 𝑐0 and 𝑐2 in 7

and 9.
16: else
17: Let 𝑋0 ← 𝑋 (⌊𝑐0⌋, ⌊𝑐1⌋, ⌊𝑐2⌋), 𝑋1 ← 𝑋 (⌊𝑐0⌋, ⌊𝑐1⌋, ⌈𝑐2⌉), 𝑋2 ←

𝑋 (⌊𝑐0⌋, ⌈𝑐1⌉, ⌊𝑐2⌋), 𝑋3 ← 𝑋 (⌊𝑐0⌋, ⌈𝑐1⌉, ⌈𝑐2⌉)
18: Let 𝑋4 ← 𝑋 (⌈𝑐0⌉, ⌊𝑐1⌋, ⌊𝑐2⌋), 𝑋5 ← 𝑋 (⌈𝑐0⌉, ⌊𝑐1⌋, ⌈𝑐2⌉), 𝑋6 ←

𝑋 (⌈𝑐0⌉, ⌈𝑐1⌉, ⌊𝑐2⌋), 𝑋7 ← 𝑋 (⌈𝑐0⌉, ⌈𝑐1⌉, ⌈𝑐2⌉)
19: Let 𝑎 ← 𝑐0 − ⌊𝑐0⌋, 𝑏 ← 𝑐1 − ⌊𝑐1⌋, and 𝑑 ← 𝑐2 − ⌊𝑐2⌋.
20: Let 𝑤0 ← (1 − 𝑎)(1 − 𝑏)(1 − 𝑑), 𝑤1 ← (1 − 𝑎)(1 − 𝑏)𝑑, 𝑤2 ← (1 − 𝑎)𝑏(1 − 𝑑),

𝑤3 ← (1 − 𝑎)𝑏𝑑.
21: Let 𝑤4 ← 𝑎(1 − 𝑏)(1 − 𝑑), 𝑤5 ← 𝑎(1 − 𝑏)𝑑, 𝑤6 ← 𝑎𝑏(1 − 𝑑), 𝑤7 ← 𝑎𝑏𝑐.
22: Let 𝑋[𝒄] ∶= ∑7

𝑖=0 𝑋𝑖𝑤𝑖
23: end if
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Algorithm 4 Sketch of John transform adjoint algorithm
1: Given measurement space gradient 𝒈, with 𝑚max directions, some number of pixels,

and 𝑖max channels, which is treated as sampling a function spanning the plane 𝑃 from
(0, 0) to (𝑥max , 𝑦max ), at discrete points from (0.5, 0.5) to (𝑥max − 0.5, 𝑦max − 0.5).

2: Initialize volume gradient array 𝑮, with 𝑛max voxels, and 𝑖max channels: 𝒑 ← 0
3: for 𝑛 ← 0 up to 𝑛max do
4: for 𝑚 ← 0 up to 𝑚max do
5: Initialize accumulator: 𝑎𝑖 ← 0
6: Find optimal slicing direction ̂𝒔 for 𝒎: ̂𝒔 ← 𝒔arg max𝑘|𝒎𝑘|.
7: Find 2D coordinates 𝒄 for voxel 𝑛 where a ray in direction 𝒎 would intersect

the projection plane.
8: for 𝑖 ← 0 up to 𝑖max do
9: Sample projection gradient: 𝑎𝑖 ← 𝑎𝑖 + 𝑔[𝑚,𝒄,𝑖]

|𝒎⋅ ̂𝒔|
10: end for
11: end for
12: for 𝑖 ← 0 up to 𝑖max do
13: 𝐺𝑛𝑖 ← 𝑎𝑖
14: end for
15: end for

Algorithm 4. This algorithm has an apparent inconsistency in its definition: It does
not trace out each ray through the volume, slice-by-slice, and distribute the gradient
contribution according to inverse bilinear interpolation of the volume, which would
be the naive expectation (it would be the transpose of the implicit matrix of the John
transform). Rather, the algorithm bilinearly interpolates a point in projection space
which would intersect exactly with the sampled point in volume space, and takes the
value of this interpolated point to be the gradient contribution with respect to that mea-
surement direction. This is clearly not the exact adjoint, since the bilinear interpolation
is carried out in a different coordinate system and not all points to which each voxel
contribute will necessarily contribute to the gradient of that voxel. However, as with the
discussion of the sphere-to-detector representation in Sect. 3.2.3, the adjoint does not
necessarily need to be the adjoint of the bilinear approximation. Rather, it needs to be
an approximation of the continuous adjoint of the John transform, which is an integral
of a transformed field that runs over all integration directions, mapping to each point in
three-dimensional space. Using bilinear interpolation on a different grid for the adjoint
computation provides an advantage, because it ensures that interpolation artefacts in
the forward computation are not reflected exactly in the adjoint computation. Thus,
Algorithm 2 and Algorithm 4, together with Algorithm 3, summarize the forward and
adjoint John transform algorithms and interpolation operations as they are implemented
in Mumott.
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3.4 Tensor tomography algorithms
The tensor tomography algorithms discussed in this work follow a common structure:
Pre-processing to compute reciprocal space projection matrices, weights, and precon-
ditioners, and then utilizing these in combination with an on-demand computed John
transform to carry out reconstruction.

Algorithm 5 Sketch of SAXS Tensor Tomography algorithm
1: Load data 𝒅.
2: Compute all necessary vectors and scalars for carrying out the John transform P[⋅].
3: Compute reciprocal space projection matrix 𝑀.
4: Compute weights w and preconditioning matrix W. Let W encode the step size for

each update of the solution. In the simplest case, w is the identity matrix, and W is
the identity matrix multiplied by a constant step size.

5: Solution X ← 0.
6: while 𝑖 < 𝑖max or until convergence do
7: Compute John transform of solution 𝒑 ← P[X]
8: Project solution into detector space 𝒑′ ← 𝒑M
9: Compute the gradient of the weighted residual norm with respect to the pro-

jected solution, e.g., 𝒈 ← w(𝒑′ −𝒅)), and if used to determine convergence, compute
the residual norm itself and add to loss function, e.g., 𝐿 ← 1

2 (𝒑′ − 𝒅)𝑇w(𝒑′ − 𝒅).
10: Compute the gradient of the residual with respect to the projection from recon-

struction reciprocal space into data space, 𝒈′ ← M𝒈.
11: Compute the adjoint of the John transform of the partial gradient 𝒈′, weighted

by the preconditioning matrix: 𝑮 ← W𝑃 𝑇[𝒈′].
12: Compute the gradients with respect to any regularization norms, and if used,

the regularization norms. Add to gradient and loss function respectively: 𝑮 ←
𝑮 + ∇𝑿Λ(𝑿), and 𝐿 ← 𝐿 + Λ(𝑿).

13: Update solution: 𝑿 ← 𝑿 − 𝑮
14: Compute e.g., change in loss function or magnitude of gradient, if used to

determine convergence.
15: 𝑖 ← 𝑖 + 1
16: end while

In Algorithm 5, an overview of a gradient descent-based algorithm is given. This
algorithm uses the squared loss function, but in principle more general methods can be
used. Moreover, with only minor modifications (such as an additional gradient storage),
momentum-based and quasi-Newton methods suitable for large-scale optimization
problems can be used, such as Nestorov gradient descent, the conjugate gradient method,
and LBFGS.
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The separation of the John transform and the RSMping can be emphasized by writing
the residual calculation in the form

𝑟ℎ(𝑠, 𝑗, 𝑘) = rsmℎ(𝑠, 𝑗, 𝑘) − Mℎ𝑖 ∫
∞

−∞
d𝑡 𝑎𝑖 (𝒗(𝑠, 𝑗, 𝑘) + 𝑡𝒑(𝑠)) ,

where Einstein summation over repeated indices is used. It can be understood from
this formulation that we are able to compute the summation over 𝑖 for this step and
the summation over 𝑗 necessary in the gradient computation separately from the John
transform quadrature, as specified in Algorithm 5.

A potentially interesting opportunity for optimization occurs when the matrix 𝑀 is
sparse, such as when using small detector segments and a high-resolution RSM basis.
In this case, rather than converting the projection of the solution into detector space, or
the loss function gradient into reconstruction space, an appealing option is to define a
modified John transform, which we may represent by moving the matrix 𝑀𝑖𝑗 inside the
integral sign, resulting in

𝑟ℎ(𝑠, 𝑗, 𝑘) = rsmℎ(𝑠, 𝑗, 𝑘) − ∫
∞

−∞
d𝑡Mℎ𝑖𝑎𝑖 (𝒗(𝑠, 𝑗, 𝑘) + 𝑡𝒑(𝑠))

The corresponding modification in implementation is reflected in Algorithm 6. The
inner loop over all reconstruction channels up to 𝑖max is replaced with a double loop.
The outer loop goes over all detector segments up to 𝑗max. The inner loop goes over all
non-zero elements in the sparse projection matrix for that particular detector segment,
the sparse indices of which are stored in the pointer array, and the non-sparse indices
and values of which are stored in the index and value arrays.
There are three main advantages of this approach. First, if each detector segment

only maps to one, or a few, reconstruction basis elements and there are many more
reconstruction basis elements than detector segments, the overall penalty for the extra
searches and extra arithmetic operation may be relatively small, when compared to
the cost of iterating over all reconstruction basis channels in a much larger projection
matrix. Second, there is no need to allocate memory for storing projections with the
reconstruction reciprocal space basis and the memory can be re-used for the residual.
Third, there is no longer a need to carry out a separate matrix multiplication for every
pixel. Consequently, Algorithm 6 enables a very lean and efficient implementation of
asynchronous computation for the subset of cases where the assumptions of sparsity
are applicable.
The adjoint can be defined by modifying Algorithm 4 in a similar way. The asyn-

chronous solution algorithm which follows by modifying Algorithm 5 is given in Algo-
rithm 7.

Since the value of the loss function is not used for a fully asynchronous computation,
optimizations such as pre-weighting the data array and computing the residual using a
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Algorithm 6 Sketch of sparse John transform algorithm
1: As 1 and 2 in Algorithm 2.
2: Given also a set of sparse projection matrices 𝑀𝑚𝑗𝑖 for 𝑚max directions, 𝑖max chan-

nels, and 𝑗max detector segments per direction.
3: Compute compressed sparse row (CSR) representation of 𝑀𝑚𝑗𝑖, giving pointer array

𝑀ptr
𝑚𝑗 , index array 𝑀 ind

𝑚𝑙 , and value array 𝑀val
𝑚𝑙 .

4: Initialize output projections 𝒑, with 𝑛max pixels, 𝑚max directions, and 𝑗max channels:
𝒑 ← 0

5: for each pixel 𝑛 ← 0 up to 𝑛max , and each direction 𝑚 ← 0 up to 𝑚max do
6: Initialize accumulator: 𝑎𝑗 ← 0
7: As 6 to 8 in Algorithm 2
8: while 𝒄 in 𝑃 do
9: for 𝑗 ← 0 up to 𝑗max do
10: for 𝑙 ← 𝑀ptr

𝑚𝑗 up to 𝑀ptr
𝑚(𝑗+1) do

11: Sample reconstruction volume: 𝑎𝑗 ← 𝑎𝑗 + 𝑋[𝑐, 𝑀 ind
𝑚𝑙 ]𝑀val

𝑚𝑙
12: end for
13: end for
14: 𝒄 ← 𝒄 + 𝒎

𝒎⋅ ̂𝒔
15: end while
16: for 𝑗 ← 0 up to 𝑗max do
17: 𝑝𝑛𝑚𝑗 ← 𝑎𝑗

|𝒎⋅ ̂𝒔|
18: end for
19: end for

fused multiply-add operation can be employed. If implemented correctly, the compu-
tation kernels in Algorithm 7 can be computed and sent to the GPU well in advance
of the actual computations being carried out, reducing overhead. It is also possible to
synchronize only occasionally, check convergence, and continue the computations if
convergence has not been achieved yet. For example, the solution and forward projec-
tion could be copied to standard RAM every 10 iterations and the loss function could
then be computed using CPU resources after the instructions for the next 10 iterations
have been sent to the GPU. Alternatively, the change in the loss function could be com-
puted directly using GPU resources, but only transferred to regular RAM and checked
once every 10 or so iterations. This is in stark contrast to a standard mixed computation
implementation following Algorithm 5, where only the John transform and the adjoint
would be computed on the GPU, requiring two separate copying operations to GPU
memory and two separate copying operations back to the CPU for every iteration.
It is also relatively easy to implement a similar albeit somewhat more memory-

demanding version of asynchronous reconstruction for non-sparse cases. This is because
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Algorithm 7 Sketch of asynchronous, sparse SAXSTT algorithm
1: Load data 𝒅.
2: Compute all necessary vectors and scalars for carrying out the John transform 𝒫[⋅].
3: Compute reciprocal space projection matrix 𝑀, and its sparse representation, de-

noted 𝑀csr.
4: Compute weights w and preconditioning matrix W, and choose a step size 𝑡.
5: Allocate solution array 𝑿 ← 0.
6: Allocate gradient array 𝑮 ← 0.
7: Allocate projection array 𝒑 ← 0
8: Move all arrays to be used to the GPU.
9: while 𝑖 < 𝑖max do
10: Compute sparse-matrix John transform of solution 𝒑 ← 𝒫[𝑿,Mcsr]
11: Compute the gradient of the weighted residual norm with respect to the pro-

jected solution and store in the same array as the projection, e.g., 𝒑 ← w(𝒑 − 𝒅).
12: Compute the adjoint of the sparse-matrix John transform of the partial gradient

𝒈, weighted by the preconditioning matrix: 𝑮 ← W𝒫𝑇[𝒈, 𝑀csr].
13: Compute the gradients with respect to any regularization norms. Add to gradi-

ent: 𝑮 ← 𝑮 + ∇𝑿Λ(𝑿).
14: Update solution: 𝑿 ← 𝑿 − 𝑮
15: 𝑖 ← 𝑖 + 1
16: end while

the contraction operations in Algorithm 5 can be represented as a series of matrix-vector
products instead of matrix-matrix products. In particular, the two contraction operations
are

𝑎′
𝑠𝑗𝑘ℎ = 𝑀𝑠ℎ𝑖𝑎𝑠𝑗𝑘𝑖,

𝑟′
𝑠𝑗𝑘𝑖 = 𝑀𝑠ℎ𝑖𝑟𝑠𝑗𝑘ℎ,

where we note that contraction only occurs over the last index in 𝑎 and 𝑟, respectively.
While it would be possible to structure these operations as matrix-matrix products,
doing so efficiently would require re-structuring of the data. Since this contraction
operation is the less demanding operation when compared to the John transform, it does
not seem sensible to structure the data around this computation. Thus, carrying out
this computation as a series of matrix-vector products appears sensible and sufficiently
efficient. Matrix-vector products are substantially easier to optimize than matrix-matrix
products as their memory-access patterns are far simpler. It is also straightforward
to implement each of these operations separately as a CUDA kernel. This makes it
relatively easy to write a dense-matrix SAXSTT implementation.

The dense-matrix asynchronous approach is sketched out in Algorithm 8. It is fairly
similar to the sparse-matrix approach of Algorithm 7, but requires an additional storage
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Algorithm 8 Sketch of general asynchronous SAXSTT algorithm
1: Load data 𝒅.
2: Compute all necessary vectors and scalars for carrying out the John transform 𝒫[⋅].
3: Compute reciprocal space projection matrix M
4: Compute weights w and preconditioning matrix W, choose step size 𝑡.
5: Allocate solution array X ← 0.
6: Allocate gradient array G ← 0.
7: Allocate projection array p ← 0
8: Allocate reconstruction tensor projection array 𝑷 ← 0
9: Move all arrays to be used to the GPU.
10: while 𝑖 < 𝑖max do
11: Compute John transform of solution 𝑷 ← 𝒫[𝑿]
12: Project John transform of solution to detector space 𝑝𝑠𝑗𝑘ℎ ← 𝑀𝑠ℎ𝑖𝑃𝑠𝑗𝑘𝑖
13: Compute the gradient of the weighted residual norm with respect to the pro-

jected solution and store in the same array as the projection, i.e., 𝒑 ← w (𝒑 − 𝒅).
14: Project gradient back into solution space, store in 𝑷: 𝑃𝑠𝑗𝑘𝑖 ← 𝑀𝑠ℎ𝑖𝑝𝑠𝑗𝑘ℎ
15: Compute the adjoint of the John transform of the partial gradient stored in 𝑷,

weighted by the preconditioning matrix: 𝑮 ← W𝒫𝑇[𝑷 ].
16: Compute the gradients with respect to any regularization norms. Add to gradi-

ent: 𝑮 ← 𝑮 + ∇𝑿Λ(𝑿).
17: Re-scale gradient by step size 𝑡: 𝑮 ← 𝑡𝑮
18: Update solution: 𝑿 ← 𝑿 − 𝑮
19: 𝑖 ← 𝑖 + 1
20: end while

array as well as separate John Transform and matrix multiplication operations. It would
be possible to also combine the John Transform and the dense matrix in order to reduce
memory usage, but this is not necessarily efficient, and requires more code duplication
to be carried out.

3.5 Loss functions
The loss function of an optimization algorithm is not always explicitly computed, how-
ever, it is generally implied by the choice of update term. Most of the discussion thus
far has focused on the weighted squared loss, which has the form

ℒ2(𝒙, 𝒅) = (𝒙 − 𝒅)𝑇w(𝒙 − 𝒅), (3.11)

for projection 𝒙, data 𝒅, and matrix of weights w. In the trivial case, the weight matrix
is simply the identity matrix such that Eq. (3.11) reduces to ordinary least squares. In
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general, the weight matrix can encode geometric information as in the simultaneous iter-
ative reconstruction technique (SIRT) case, but it can also be used to encode information
about the measurement uncertainty, which is discussed in Sect. 3.5.1.
The other principal loss function of interest is the Huber loss, which splices the 𝐿1

and 𝐿2 norms with a parameter 𝛿. Minimizing this type of norm is a type of robust
regression and one version of the norm may be written

ℒ𝐻(𝒙, 𝒅, 𝛿) = ∑
𝑖 {

1
2𝛿 (𝑥𝑖 − 𝑑𝑖)𝑇𝑤𝑖𝑗(𝑥𝑗 − 𝑑𝑗) if|𝑥𝑗 − 𝑑𝑗| < 𝛿
|𝑤𝑖𝑗(𝑥𝑗 − 𝑑𝑗)| − 𝛿

2 otherwise.
(3.12)

Depending on the choice of 𝛿, one can balance the robustness of the reconstruction to
outliers against the ease of solving the system. It is generally not very useful to use
uncertainty-basedweightswith this type of loss function, as a single large deviation is not
privileged over many small ones, although there is some potentially useful information
such as the large uncertainty of areas where the transmission is small. The use of such
weights need to be balanced against the potential issue of making it more difficult to
find the minimum.
Geometry-based weights can be used more freely, but it is still necessary to pick a

step size based on the magnitude of the data. Using SIRT weights here can be helpful to
eliminate geometry-based influences on the step size. Solving a least-squares problem
is often around an order of magnitude faster than solving a robust regression problem,
if statistical weights are not used. However, robust regression combined with a total
variation regularization is a very reliable approach for reconstruction.

3.5.1 Weights and preconditioners
3.5.1.1 Tensor SIRT

An interesting approach, which can be written in terms of weights and preconditioners,
is SIRT, a classic tomographic algorithm. Essentially, SIRT is based on normalizing the
residual of a tomography problem by the path length of each line integral within the
volume considered, and then normalizing the gradient based on the number of rays that
contribute to each point in the adjoint. In other words,

w = diag (𝒫[1]) ,

where 𝒫 is the John transform and 1 is a solution vector filled with the value 1 every-
where, and

W = diag (𝒫𝑇[1′]) ,

where 𝒫𝑇 is the adjoint of the John transform and 1′ is a projection-space vector filled
with the value 1 everywhere. This has the effect of normalizing the reconstruction
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such that step size unity can be used for gradient descent, and it tends to speed up
reconstruction and make it easier to obtain a smooth reconstruction, as all parts of the
solution converge at a similar rate.

It is possible to directly apply this to tensor tomography, by simply applying the same
weights and preconditioners to all basis functions in each representation, considering
only the real-space part of the problem. But the approach can be further extended to a
problem with a tensor representation by choosing

w = diag (𝒫[1]M)

for the weights, where M is the detector-to-sphere mapping matrix, and

W = diag (M𝒫𝑇[1′])

for the preconditioner. This will tend to smoothen out, e.g., biases in the gradient due to
the choice of representation. The drawback is that the use of weights means that the
solution obtained via SIRT differs from the solution obtained via ordinary least squares.

3.5.1.2 Noise estimation

If a detector registers an average count of 𝐼 across 𝑛 pixels, and the transmission for this
measurement is 𝑇, then the entry in the data vector will be 𝐼/𝑇. Using Poisson statistics
and the central limit theorem, we can estimate the uncertainty of this measurement. A
single measurement of 𝐼 has variance 𝐼, and per the central limit theorem, averaging
over 𝑛 pixels decreases the standard error by a factor of about √𝑛. In other words, the
variance of the averaged measurement can be estimated to be 𝐼/𝑛. Accounting also for
the transmission correction, we end up with a final estimate for our variance as 𝐼/𝑛𝑇 2.
Encoding the inverse of this value into 𝒘 will scale the gradient in a way that accounts
for this uncertainty and ensures that values with a smaller uncertainty are prioritized
in the optimization.

If we also have an estimate for the uncertainty in the transmission, we can carry out
a more complicated error propagation given by

𝑑 =
𝐼 ± 𝜎𝐼
𝑇 ± 𝜎𝑇

≈ 𝐼
𝑇

±
𝐼𝜎𝑇 + 𝑇 𝜎𝐼

𝑇 2 . (3.13)

This expression for the uncertainty of a data point is especially useful as it encodes the
fact that uncertainties in the transmission become very important when the transmission
is small. This can counteract influence by outliers that may occur in low-transmission
areas by encoding this information into the weights of the loss function.
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3.5.1.3 Iteratively reweighted norm

One promising use of weights and preconditioners which can be approached in a few
different ways is the iteratively reweighted norm (IRN) approach, which is based on
the iteratively reweighted least squares (IRLS) method [35]. In this method, one solves
a problem using a diagonal weight matrix that gradually transforms a least-squares
problem into a 𝑝-norm problem. In a simple case, we transform the problem of solving for
the smallest 𝑝-norm of a residual,regularized by minimizing the 𝑡-norm of the solution
vector,into a weighted least squares problem. This least-squares problem has the loss
function

ℒ𝑝𝑡 = ‖𝒙 − 𝒅‖𝑝
𝑝 + 𝜆 ‖𝑿‖𝑡

𝑡

= ‖w𝑝 (𝒙 − 𝒅)‖
2
2 + 𝜆 ‖W𝑡𝑿‖

2
2
. (3.14)

Here, we initially set W0
𝑝 and w0

𝑝 to the identity matrix and then refine them iteratively,
clamped by a Huber approximation for small values,

w𝑖
𝑝 = (max(𝒙𝒊−1 − 𝒅, 𝜖𝑝))

𝑝−2
𝑝

W𝑖
𝑡 = (max(𝑿𝒊−1, 𝜖𝑡))

𝑡−2
𝑡

,

where 𝑿𝑖 is obtained by solving

𝑿𝑖 = argmin
𝑿 (‖w𝑖

𝑝 (𝒙 − 𝒅)‖
2
2 + 𝜆 ‖W𝑖

𝑡𝑿‖
2
2) .

As the number of iterations increases, 𝑿𝑖 converges towards a Huber-regularized solu-
tion that minimizes Eq. (3.14) with respect to 𝑿.
This approach can be simpler than the Huber approach, since it is typically not

necessary to do a step-size search as the step size for the least-squares problem can be
directly estimated. It is also not necessary to redefine the computation of the gradient
for every value of 𝑝 and 𝑡, which is especially useful for more complicated regularization
terms.

3.5.2 Tensor tomography regularization
In principle, tensor tomography regularization does not need to be particularly different
from scalar tomography regularization. The main complication is the question of
how to deal with representation-specific concerns. There are three main concerns:
convergence rate, reconstruction smoothness, and converging without overfitting to
the data. Regularization helps with these issues by imposing additional constraints on
the reconstruction. In general we can identify four types of constraints:
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• Point-by-point norm regularization such as constraining the 𝐿1 or (squared) 𝐿2
norm of the reconstruction. This type of regularization considers every basis
function in every voxel individually. This is the simplest type of regularization. It
can help to reduce background noise as well as speeding up convergence.

• Voxel-by-voxel norm regularization. This type of regularization considers each
voxel individually, and does not necessarily decouple the basis functions but rather
considers the spherical function as a whole. Certain norms (e.g., the variance)
may belong to the point-by-point type for some basis sets (such as spherical
harmonics) and the voxel-by-voxel type for others (e.g., most local representations
would need to undergo a transforma, such as into spherical harmonic space, in
order to determine the variance). An example of a voxel-by-voxel norm would
be the Euclidean norm of the basis functions of each voxel. Another example
would be the Euclidean norm for each frequency band in a spherical harmonic
representation.

• Real-space variation regularization, which considers the relationship between
tensors in nearby voxels and imposes a constraint on some measure of this rela-
tionship, such as the Laplacian or the total variation, between voxels. Generally
this type of regularization is used to make the solution more smooth, which also
helps with the convergence rate and the avoidance of overfitting.

• Reciprocal-space variation regularization, where one considers how similar basis
functions are that are close to each other on the reciprocal space sphere. This type
of regularization could be of interest for sparsely sampled data. However, similar
effects to applying this kind of regularization can be obtained through a suitable
choice of reciprocal space representation and segment-to-reciprocal space sphere
mapping. Therefore this type of regularization will not be considered in detail.

Point-by-point regularization is appealing largely due to its simplicity. Essentially,
one includes a simple norm of the reconstruction (such as the sum of all absolute
coefficient values for 𝐿1 regularization or the sum of all squared coefficient values for
𝐿2 regularization) and obtains a predictable effect — the reduction of small values and
background noise for 𝐿1 regularization and rapid convergence as well as the damping of
large values for the 𝐿2 norm. It can be difficult to get 𝐿1 regularization to converge since
the gradient is not smooth, and for this reason it is often useful to employ a smoothened
version of the norm such as the 𝐿1 norm spliced with an 𝐿2 norm for small values. This
is analogous to the Huber loss function in Eq. (3.12).

Voxel-by-voxel norm regularization has similar aims as point-by-point regu-
larization. It allows regularization to be applied to a region of space, rather than to

40



3.5. Loss functions

individual points in RSMs. This can be advantageous especially when accounting for the
difficulty of constraining some parts of reciprocal space. By considering an entire voxel,
additional information from other parts of the reciprocal space can be used to constrain
the underdetermined parts. For example, when using the Euclidean norm of the entire
spherical function as a regularization norm, the entire norm is considered and if well-
determined parts of the RSM are very small, this can constrain less well-determined
parts of the RSM to be small as well.

Real-space variation regularization encourages smoothness of the reconstruc-
tion. This is arguably the most important type of regularization, as it dampens fluctua-
tions in the reconstruction and encourages continuity. This helps prevent overfitting
to noisy data and its usage reflects real physical knowledge about the system since
generally experimental parameters such as beam and step size should be chosen such
that the reconstruction can be expected to be reasonably smooth. Two options of interest
are the total variation between neighbours (the absolute value of the real-space gradient)
as well as the Laplacian (the real-space second derivative). The Laplacian, approximated
by the second-order finite difference, is especially interesting in the context of spher-
ical harmonics, as minimizing it corresponds to maximizing the covariance between
neighbours, and it is easy to minimize, e.g., the squared norm of the Laplacian. However,
it can excessively smoothen the solution and for this reason, total variation is often
preferable. Like the 𝐿1 norm, the total variation can be made to converge more easily
by splicing it with the Laplacian at small variations.
The total variation can also be extended to the case of entire voxels. The scalar,

one-sided2 total variation can be defined as

tv(𝑿) =
‖
‖
‖
‖

1
2

√√√

⎷

2

∑
𝑖=0

(𝐷𝑖𝑿)2
‖
‖
‖
‖

1

1

, (3.15)

with 𝐷𝑖 being the finite difference operator in the forward direction for the Cartesian
coordinate 𝑖. For example for 𝑖 = 0

[𝐷0𝑿](𝑥, 𝑦, 𝑧) = 𝑋(𝑥, 𝑦, 𝑧) − 𝑋(𝑥 + 1, 𝑦, 𝑧).

Equation (3.15) can be applied directly to tensor tomography by simply computing
this quantity for each basis function separately. But it is also possible to consider the
total variation over all the basis functions at once, that is,

vtv(𝑿) =
‖
‖
‖
‖

1
2

√√√

⎷
∑

ℎ

2

∑
𝑖=0

(𝐷𝑖𝑿ℎ)
2
‖
‖
‖
‖

1

1

, (3.16)

2It is most common to use the one-sided total variation, which minimizes the variation between grid
points, rather than at grid points.
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Figure 3.1: Comparison between three reconstructions for a trabecular bone sample, looking
at three components of the RSM. Leftmost column: Tensor SIRT with no regularization and
50 iterations. Middle column: Nesterov-accelerated SIRT with total variation and Huber norm
regularization. Rightmost column: IRN least-squares reconstruction with voxel-wise total
variation and coefficient-wise 𝐿1 regularization.

where each ℎ indexes a basis function. We can combine this approach with the IRLS
detailed in Sect. 3.5.1, by calculating

vtv (𝑿𝑖) ≈
vtv (𝑿𝑖)

2

vtv (𝑿𝑖−1)
,

where 𝑿𝑖 is the reconstruction currently being optimized and 𝑿𝑖−1 is the reconstruction
of the previous optimization. A similar approach can be used to optimize for, e.g.,
the Euclidean norm of the coefficient vector in each voxel, which can be useful in
thresholding reconstructions.

We can see a few different approaches to regularization applied to trabecular bone in
Fig. 3.1, which has �̂� as its main tomographic axis. The tensor SIRT reconstruction is
simple and leads to a smooth reconstruction, but it is blurry and suffers from missing
wedge artefacts, especially the 𝑦 and 𝑧-components. On the other hand, the Nesterov-
accelerated SIRT reconstruction that is total variation and Huber norm regularized
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Figure 3.2: Comparison between three reconstructions for a trabecular bone sample with large
amounts of added noise, looking at three components of the RSM. Leftmost column: Tensor
SIRT with no regularization and 50 iterations. Middle column: Nesterov-accelerated SIRT with
total variation and Huber norm regularization. Rightmost column: IRN 𝐿1 reconstruction with
voxel-wise total variation and coefficient-wise 𝐿1 regularization.

performs better, reducing the smearing, since the regularization enforces sparsity. Fi-
nally, consider the IRN reconstruction which enforces voxel-wise total variation and
coefficient-wise 𝐿1 regularization. Both types of regularization appear to be enforced
more effectively with this reconstruction algorithm, making it possible to push recipro-
cal space sparsity and continuity to relatively extreme lengths. The reconstruction has
well-defined as well as larger, more localized amplitudes for the ̂𝒚 and ̂𝒛 components of
the RSM.

A similar comparison is shown in Fig. 3.2, where large amounts of noise has been added
to the reconstruction, and an 𝐿1 norm is used for the IRN residual, making this a robust
regression reconstruction [36]. SIRT and momentum total variation reconstruction
(MOTR) both suffer heavily from the noise, resulting in many artefacts, which are
especially strong in MOTR. This is likely because MOTR converges more quickly, and
is therefore be more prone to overfitting. However, IRN with an 𝐿1 residual norm is
relatively robust against the noise; while the reconstruction quality does not appear to
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be as good as any example in Fig. 3.1, there are no noise artefacts being reconstructed
in empty space, and the reconstruction is serviceable. This robustness to outliers is a
major advantage of robust regression.

3.6 Other approaches
There are optimization approaches which are similar but not identical to the gradient-
based approach. Here, we will consider proximal methods as well as direct reconstruction.

3.6.1 Proximal methods
Rather than using gradients, it is possible to use proximal operators for optimization.
Applying a proximal operator is similar to updating a solution with a gradient but more
general. In principle, each application of a proximal operator is in itself an optimization
problem in so far as one tries to find the most proximal vector to the current estimate,
which fulfills some additional condition. Proximal operators can exhibit some behaviours
that are not possible to precisely obtain using only gradients. The proximal operator is
defined by

prox𝑓(𝑥) = argmin𝑧 [𝑓(𝑧) + 1
2

‖𝑥 − 𝑧‖2
2] .

For example, let 𝑓(𝑥) be the 𝐿1 norm scaled by a weight 𝜆. In this case, it can be
shown that

prox𝜆‖⋅‖1
(𝒙) = sgn (𝑥𝑖)max (|𝑥𝑖| − 𝜆, 0) ∀𝑥𝑖 ∈ 𝒙 (3.17)

Here, where a gradient-based approach would just subtract 𝜆 sgn(𝑥), the proximal
operator subtracts this term and also sets to zero any coefficients that would otherwise
flip the sign. This means that noise terms smaller than 𝜆 in the solution will simply be
set to 0, counteracting oscillation between small positive and negative values on every
iteration. Similarly, for the 𝐿2 norm,

prox𝜆‖⋅‖2
(𝒙) = max

(
1 − 𝜆

‖𝒙‖2
2

, 0
)

𝑥. (3.18)

These operations are used in the proximal gradient algorithm, which is of particular
interest when one wishes to solve a differentiable problem (such as the tomography
problem) subject to a constraint expressed by a function which is not differentiable
everywhere, such as the 𝐿1 norm.
Algorithm 9 sketches the proximal gradient algorithm. The algorithm is in practice

very similar to the general gradient-based approach (Algorithm 5) with the difference
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Algorithm 9 Proximal gradient algorithm for SAXSTT
1: Let 𝐹 (X) ∶= 𝐻(X) + 𝐺(X). The objective is to minimize 𝐹 (X).
2: Let 𝐻(X) be a differentiable loss function (e.g., the squared loss or Huber loss) of

the John transform of the reconstruction X, projected into detector space, and the
measured data d.

3: Let 𝐺(X) be a possibly non-differentiable norm, such as the 𝐿1 norm.
4: for 𝑖 ← 0 up to 𝑖max do
5: Update solution X with step size 𝜔: X ← X − 𝜔∇𝐻(X).
6: Compute proximal operator of updated solution with respect to 𝐺: 𝑋 ←

proxG(X).
7: end for

that the gradient of the regularization function is replaced with a proximal operator. In
practice, the usefulness of Algorithm 9 depends on the proximal operator being easy
to evaluate, which is primarily the case for so-called simple proximal operators, i.e.,
those that have a closed-form expression. Other proximal algorithms exist which can
handle non-differentiable loss functions, such as the Chambolle-Pock algorithm. These
are generally significantly more complicated to employ than gradient-based algorithms
and require a very large number of iterations, but are guaranteed to converge. Several
tomography algorithms based on the Chambolle-Pock algorithm have been derived by,
e.g., Sidky et al. (2010) [37], which could in principle be applied to tensor tomography
by incorporating the reciprocal space projection into the system matrix. However, the
examples shown by Sidky et al. required thousands to tens of thousands of iterations to
converge, although it is possible that appropriate preconditioning of the problem could
improve this. Therefore these algorithms are likely to be useful mainly for specialized
applications in tensor tomography, such as reconstruction from very noisy images.
In view of this, the IRLS-weighted approach sketched out in Sect. 3.5.1 appears more
promising.

3.6.2 Direct reconstruction
It is interesting to consider the potential of applying some analogy of the inverse
Radon formula to tensor tomography. The inverse Radon formula, or filtered back-
projection (FBP), can easily be derived from the projection-slice theorem. Somewhat
more intuitively, one can understand it by considering the operation of applying the
adjoint of the Radon transform to measured data, that is,

ℛ𝑇[d] = ℛ𝑇[ℛ[𝑿]] ∶= A𝑿 (3.19)

The operator A is essentially a convolution which exaggerates low spatial frequencies
relative to high spatial frequencies in the plane orthogonal to the axis of projection.
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Hence, the original image 𝑿 can be retrieved by deconvolving with a high-pass filter,
such as the Ram-Lak filter.
In SAXSTT, it is a good approximation that all measurements of a particular point

in reciprocal space lie on a great circle orthogonal to that point. Consequently, the
real-space convolution of each point in reciprocal space will occur in the corresponding
real-space plane orthogonal to that point. This means that we should in principle be
able to apply a filter to the image formed by each detector segment, then compute the
adjoint projection into 3D-reciprocal sphere space, and obtain a solution at least for the
reciprocal space points sampled along a full semicircle. This reconstruction is likely to
suffer heavily from missing wedges and similar artefacts for some points in reciprocal
space, but it may be an interesting avenue to explore for very fast reconstructions
that do not necessarily need to be very well-behaved. A comparable approach was
demonstrated for diffraction grating dark-field tensor tomography by Kim et al. (2022)
[38].

3.6.3 Relaxing the small-angle scattering constraint
It is interesting to consider what happens if we relax the small-angle scattering constraint,
so that the transmitted and the scattered beam do not travel approximately the same
path within the sample. In addition to the fact that we then probe a small circle, rather
than a great circle, on the reciprocal space sphere, we will not be able to treat our
projected data with transmission correction and directly regard it as the RSM. We rather
have for our non-transmission-corrected data 𝑑ℎ(𝑠, 𝑗, 𝑘) that

𝑑ℎ(𝑠, 𝑗, 𝑘) = ∫𝐷′
ℎ(𝑠,𝒍)≠0

d𝒍𝐷′
ℎ(𝑠, 𝒍) ∫

∞

−∞
d𝑡 𝜎(𝒓(𝑠, 𝑗, 𝑘, 𝑡), 𝒑(𝑠), 𝒍)𝑓 (𝒓(𝑠, 𝑗, 𝑘, 𝑡), 𝒍),

where 𝜎 is an opacity function, representing the absorption that the contribution to
the measured scattering from each point in the field undergoes, depending on incident
and scattering angles. Explicitly computing this function would be very expensive as it
would be necessary to compute one value for every detector segment and projection
direction for every point in the field. For example, for 300 projections and 32 detector
segments, and a 503-size volume, it would be necessary to compute 1.2 billion parameters.
However, observe that 𝜎 factors into an incident and an exiting component according to

ln(𝜎(𝒓, 𝑠, 𝒍)) = ∫
𝑡

−∞
d𝜏𝑎(𝒓0 + 𝜏𝒑(𝑠)) + ∫

∞

𝑡
d𝜏𝑎(𝒓 + 𝑡𝒑(𝑠) + 𝜏𝒑′(𝑠, 𝒍)),

where 𝒑′(𝑠, 𝒍) is the scattering direction corresponding to the probed point on the RSM
and the incident direction 𝒑(𝑠). By considering the physical problem, we can conclude
that the absorption undergone by an ensemble of photons that is exiting from the point
𝒓(𝑠, 𝑗, 𝑘, 𝑡) is the same as that which a photon that travels to that point, going in the
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opposite direction. This means that 𝜎 can be represented as the exponent of a field of
partial projection tensors of the absorbance. The partially projected absorbance tensor
can then be written

𝑨(𝒓, 𝒑) = ∫
𝑡

−∞
d𝜏𝑎(𝒓0 + 𝜏 ̂𝒑) (3.20)

where 𝑡 = ‖𝒓 − 𝒓0‖2 and ̂𝒑 is an arbitrary projection direction vector. This leads to

ln(𝜎(𝒓, ̂𝒑, 𝒍)) = 𝑨(𝒓, ̂𝒑) + 𝑨(𝒓, − ̂𝒑′( ̂𝒑, 𝒍)),

where 𝜎 is now a function of an arbitrary projection vector ̂𝒑, rather than one parame-
terized by 𝑠.
Unfortunately, evaluating Eq. (3.20) is significantly more difficult than carrying out

the forward or adjoint John transform, since the discretized form of it combines aspects
of both — a an accumulation of values that goes through real space but maps to each
voxel. This means that it will be difficult to carry it out in slice-by-slice fashion due to the
difficulty of interpolating values between different rays while maintaining independence
between different blocks of the computation. One potentially successful approach would
be to carry out a regular forward projection but storing the coordinates and values of
each ray and at each step, and then carrying out a coordinate transformation after the
fact to map the values to the coordinates of the voxels. Alternatively, one could simply
compute one ray per voxel, as in the adjoint computation, and allow each of those rays
to go through the partial forward projection necessary to reach the voxel. The first
approach is likely more efficient since it does not require multiple computations for
each path, but the second approach is likely more accurate since it does not involve an
additional interpolation step.

Once the partial projections have been computed densely enough, the same approach
to representing spherical functions that we have used for the RSM can be used to solve
for the partial projection field in, e.g., a Gaussian radial basis function representation.
Given an easily pre-computed and evaluated expression for 𝜎, the forward projection
can then be computed similarly as the sparse John transform in Algorithm 6, binning
the result directly into detector segments.
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4
Implementation of tensor
tomography in Mumott

Mumott is an open-source software package written in Python (available as the Python
package mumott via PyPI) for analyzing tensor tomographic data. It is designed to be
easy to install, portable, and have limited dependency on external libraries, while also
providing high-performance implementations of tensor tomography algorithms. For
numerics, Mumott depends primarily on NumPy, SciPy and Numba [39–41]. It also uses
SciKit-Image for certain image-processing related features (such as cross-correlation
alignment) [42], H5Py for input-output handling, and tqdm for progress tracking. Finally,
it employs Matplotlib, as well as two libraries, ColorCET and colorspacious, providing
colormaps suitable for scientific visualization [43]. In particular, the multiple-channel
John transform (Sect. 3.3) is implemented using custom Numba kernels in both CPU and
CUDA-based versions, and thus it has no dependency on external tomography libraries.
Mumott is designed with a wide range of possible users in mind, from experts

working with high-performance computing setups to end-users working on laptops, and
offers an extensively documented, modular, robust and thoroughly tested environment
for exploring tensor tomography algorithms.

Fig. 4.1 shows the general outline of the object-oriented workflow in Mumott. This
structure is characterized by object-oriented programming, while adopting some prin-
ciples of functional programming. In effect, the parts of the implementation up to
the ResidualCalculator function according to a typical inter-object communication
structure, where objects prompt other objects to execute code by passing messages.
The following parts including the interaction of the LossFunction, Regularizer, and
Optimizer also have some things in common with functional programming. This is
motivated by the optimization being a function of the loss function, which is the function
of a residual and a set of regularizers. These two components operate independently
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Figure 4.1: Outline of workflow of the object-oriented structure in Mumott. Orange boxes
show input parameters and data, blue ovals show objects, the green box shows the output, and
arrows indicate instances of objects interacting with one another.

of each other. As a result, the BasisSet, DataContainer and Projector can be used
independently of the optimization workflow.

Many objects are safely mutable after instantiation and employ hashes of their mutable
properties to track the state of linked instances, which means that derived properties can
be (automatically) recomputed when required. For the computation of hashes of floating-
point numbers, each number is separated into a mantissa and an exponent. These are
then rounded to five significant digits, before being concatenated and hashed using the
Blake2B algorithm [44]. This allows hashes to be reproduced across different platforms
with a high fidelity, even if the platforms do not yield exactly the same numerical result,
and make changes between versions easy to identify through testing.

4.1 Input handling
Input data for Mumott is provided in the form of an HDF5 file, which contains a
projections group, with numbered entries. Each numbered entry contains one “frame”
of measured data. Additionally, it contains several basis vectors, rotation operators, and
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detector segment angles.

4.1.1 Geometry
Along with measured projections, Mumott requires the specification of 5 basis vectors,
as well as the central angle of each detector segment (which, as of version 2.0, are
assumed to be of equal size). The 5 basis vectors, all in Cartesian coordinates, define the
parameters of a projection measured when no rotation operation is being applied (i.e.,
when both rotation and tilt angles are zero). These definitions assume that each projec-
tion is stored and accessed in contiguous, row-major order (also called C-contiguous),
which is enforced by writing to and reading from the HDF5 format.

• Two coordinate systems are used in real space. The laboratory frame is spanned
by three coordinates, (𝑝, 𝑗, 𝑘). The laboratory basis vectors must be defined in
terms of the Cartesian vectors (𝑥, 𝑦, 𝑧), which are attached to the sample, and
define directionsrelative to a fixed sample. Thus, the scanning directions are the
movement of the beam relative to the sample. Moreover, ordinality is defined in
terms of contiguous row-major data ordering. This means that the term first pixel
index means the index a change in which induces the largest jump in the image data
(because changing it skips to the next row), which in the HDF5 format means the
leftmost index. This also means that what Mumott treats as the first scanning
direction is not necessarily the fast scanning direction.1

– ̂𝒋, the first scanning direction (when the first pixel index is incremented).

– �̂�, the second scanning direction (when the second pixel index is incre-
mented).

– ̂𝒑, the projection direction (the direction travelled by the beam impinging
on the sample).

• Reciprocal space is spanned by three basis vectors, ̂𝒒 = (𝑞0, 𝑞90, 𝑞∥); see Sect. 3.2.2
for a more detailed discussion of these. At any given ‖𝑞‖, a circle in q-space is
projected onto the detector,2 which is spanned by two linear combinations of these
three basis vectors. By definition, ̂𝒒∥ = ± ̂𝒑, and so we define it as equal to ̂𝒑 by
convention. This leaves the two other components, which are specified in terms

1At present, Mumott does not distinguish between different types of scanning. Although it would be
possible to define the two directions in terms of the experimental fast and slow axis, it would ultimately
only add to the burden of specification. Otherwise the user would need to not only track how the
real-space geometry of their sample was set up, but also how it related to the experiment. In case this
distinction is ever used, e.g., for considering point spread functions, it would be easier for the user to
simply specify whether 𝑗 or 𝑘 is the fast direction.

2Which may be a great or small circle on the sphere of constant ‖𝑞‖. In SAXS we take it to be a great
circle per the small-angle approximation sin 2𝜃 ≈ 0.
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of where the detector angle equals 𝜙 = 0∘ and 90∘, respectively. Two vectors must
be specified in order to resolve whether 𝜙 rotates clockwise or anti-clockwise
with respect to ̂𝒑. Like the other basis vectors they are specified in terms of the
(𝑥, 𝑦, 𝑧) basis vectors of the sample.

– ̂𝒒0, the direction of scattering at detector angle 𝜑 = 0∘.

– ̂𝒒90, the direction of scattering at detector angle 𝜑 = 90∘. The two ̂𝑣𝑒𝑐𝑞-
vectors together define the starting point of the detector coordinate system
as well as whether the detector angle runs clockwise or counter-clockwise.

• There are typically two rotation axes in a SAXSTT experiment. It is not necessary
to provide these in Mumott. Instead, a rotation matrix specifying rotation that
they carry out can be included. However, Mumott supports their inclusion and
enables some additional features (such as changing the axis of rotation or tilt for
one or several measurements) if they are included. Moreover, they function as
metadata, documenting a key aspect of how the experiment was carried out, and
their inclusion is therefore encouraged.

– The outer axis, also called ̂𝜷, is also called the tilt axis. It is fixed in the
laboratory frame.

– The inner axis, or �̂�, is also called the rotation axis or the standard tomo-
graphic axis. It moves as the rotation about the outer axis changes.

This coordinate specification system, is not minimalistic in the sense that it uses a
larger number of vectors than is strictly necessary. This is because the system makes
no assumptions about how a pixel index should correspond to a three-dimensional
coordinate or how the angle of the detector should be defined. Instead, it is set up to
allow a user or beamline scientist to refer to a photograph or schematic of the laboratory,
set up whichever Cartesian coordinate system they are most comfortable with, check
the ordering of their input data, and derive and specify the necessary Mumott vectors
to carry out a reconstruction without any rearranging of their data.
An example for the structure of such an HDF5 file is shown in Table 4.1. The basis

vectors and their corresponding field in the HDF5 file are also shown, along with
the field names in the HDF5 format. Note that this structure is not exhaustive; for
example, it is possible to supply an inner_axis and outer_axis for each projection,
which will override any axes specified at the base level. It is also possible to specify a
rotation_matrix, in which case the angle-axis pairs are not needed. If both are supplied,
the provided rotation matrix is used unless the user decides to make changes to the
geometry, which requires it to be re-calculated (by, e.g., changing the associated angles).3

3It is the responsibility of the user to verify that the angle-axis pairs are consistent with the rotation
matrix if data is provided in this redundant fashion. Given that rotation matrices often have relatively

52



4.1. Input handling

Table 4.1: Top: Outline of the HDF5 file format used by Mumott. The spaces indicate the
hierarchy of entries; 0 is an entry in the group projections, whereas data is an entry in the
group 0, and so on. Bottom: Unit vectors defining the experimental geometry of Fig. 4.2 and
their values.

Path Type

p_direction_0 float(3)
j_direction_0 float(3)
k_direction_0 float(3)
detector_direction_origin float(3)
detector_direction_positive_90 float(3)
inner_axis float(3)
outer_axis float(3)
volume_shape int(3)
detector_angles float(𝑛𝜑)
projections Group

0 Group
data float(𝑛𝑗, 𝑛𝑘, 𝑛𝜑)
diode float(𝑛𝑗, 𝑛𝑘)
inner_angle float(1)
j_offset float(1)
k_offset float(1)
outer_angle float(1)
weights float(𝑛𝑗, 𝑛𝑘, 𝑛𝜑)

1 Group
⋮

Symbol Value Field name

̂𝒑 + ̂𝒛 p_direction_0
̂𝒋 + ̂𝒚 j_direction_0

�̂� +�̂� k_direction_0
̂𝒒0 +�̂� detector_direction_origin
̂𝒒90 + ̂𝒚 detector_direction_positive_90

�̂� + ̂𝒚 inner_axis
̂𝜷 +�̂� outer_axis
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Figure 4.2: Examples of experimental setup and coordinate system. The coordinate
system (𝑥, 𝑦, 𝑧) is attached to the sample mounted on the rotation stage, whereas the system
(𝑝, 𝑗, 𝑘) is attached to the laboratory frame. The vector pair ( ̂𝒒0, ̂𝒒90), which defines probed
directions in reciprocal space, is also attached to the laboratory frame. The rotation axis ̂𝜷 is
fixed to the laboratory frame, while �̂� rotates as the sample is rotated about ̂𝜷. Figure adapted
from Paper IV.

The differently numbered projections do not need to have the same shape in the (𝑛𝑗, 𝑛𝑘)
dimensions; the input will be padded to the largest size. The reconstruction will then be
performed within the user’s preferred coordinate system.
An example of such a system is shown in Fig. 4.2. This leaves the definition of the

detector angle as the main potential uncertainty for the user. It can be derived given
adequate knowledge of the technical specifications of the detector and the data reduction
pipeline. However, the detector segment orientations should ideally be checked by using
a test sample with known scattering directions, such as a carbon fiber knot. For each
projection, then, the rotation operation to be applied to the basis vectors needs to
be provided, as a rotation matrix or as two axis-angle pairs. Finally, the geometry
requires offset factors in the j and k directions to be either provided or determined via
an alignment algorithm. These offset factors should eliminate precession, ensuring that
all projections share a common center of rotation.

low numerical accuracy, and that axis-angle pairs are useful as metadata, we opted to neither carry out a
check of nor to forbid this usage. Instead, the log will tell the user whether the internally used rotation
operators were taken from provided matrices or generated from axis-angle pairs.
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4.1.2 Data
As shown in Table 4.1, a single frame of projection data in Mumott is a 3-dimensional
array with the dimensions (𝑛𝑗, 𝑛𝑘, 𝑛𝜑) — number of pixels in the first direction, number
of pixels in the second direction, and number of detector segments per pixel. In addition,
projection data needs to be transmission corrected and therefore a diode entry with
dimensions (𝑛𝑗, 𝑛𝑘) is also expected. If the projection data is already transmission
corrected, it is not strictly necessary to provide the diode data, however, it is useful
for aligning projection frames. The user may also provide a set of weights of the same
shape as the projection data, which can be used to mask data points known to be invalid
as well as to encode uncertainties.

4.2 Method objects
The forward model in Mumott is specified by composing method objects. Specifically,
these objects include real-space linear mapping objects (Projector), reciprocal-space
linear mapping objects (BasisSet) as well as the ResidualCalculator object.

4.2.1 Projectors
The Projector objects do not, in the strict mathematical sense, carry out a projection,
which is typically defined as an idempotent mapping onto a subset. Rather, they compute
the John transform of the tensor fields (Eq. (2)) and its adjoint (Eq. (4)), which can be
regarded as being composed of a series of projections.
A projector object is initialized by giving it a Geometry instance. The necessary

code for computing the John transform and its adjoint is then compiled, and can be
executed on request through the methods .forward(field) and .adjoint(image).
There are two types of projectors: a SAXSProjector and a SAXSProjectorCUDA.
The SAXSProjector uses CPU-based Numba kernels to compute the John transform
while a SAXSProjectorCUDA instance uses the Numba CUDA interface to compile
and execute kernels written for the GPU, which can be several orders of magnitude
faster.

4.2.2 Basis sets
A BasisSet is an object for computing and applying a mapping between a representation
on a sphere to a representation on a detector. This is essentially the procedure described
in Sect. 3.2.3. Currently there are three BasisSet implementations in Mumott . The
BasisSet functions analogously to the Projector, with a forward and a gradient
method, except that it applies to the reciprocal space part of the representation.
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4.2.3 Residual calculators
In order to compose the forward model, the ResidualCalculator is used. It takes a
BasisSet, a Projector as well as a DataContainer as inputs. Its main function is to
compute the residual, which we may symbolically write as

𝒓 = B (P (𝑿)) − 𝑫,

where B represents the forward action of the BasisSet, P represents the forward action
of the Projector, 𝑿 represents the reconstruction, and 𝑫 is the data.
The ResidualCalculator also computes the gradient of the residual norm with

respect to 𝑿, i.e.,

∇𝑿 ‖𝒓‖ = B𝑇 (P𝑇 (∇𝒓 ‖𝒓‖)) ,

where B𝑇 represents the adjoint operation (or more generally, gradient) of B and P𝑇

represents the adjoint of the John transform.
In addition to providing these operations, the ResidualCalculator tracks and dy-

namically updates the current state of 𝑿.

4.3 Optimization objects
In order to obtain a solution to a system, we need to define an optimization. The
optimization approaches supported by this framework are gradient-based methods of
the form

ℒ(𝑿) = ‖B(P(𝑿)) − 𝑫‖𝑎
𝑎 + 𝜆 ‖𝐹 (𝑿)‖𝑏

𝑏 + …

where the ellipsis indicates that more terms of the form 𝜆 ‖𝐹 (𝑿)‖𝑏
𝑏 may be added, where

𝜆 is a regularization weight, 𝐹 ( ̇) is some function of 𝑿, and 𝑎 and 𝑏 specify norms.

4.3.1 Loss functions
The loss function is defined through a LossFunction object, which takes the Residu-
alCalculator as input. There are currently two LossFunctions. The SqaredLoss
is used for ordinary least-squares regression, whereas the HuberLoss can be used for
robust regression. Instances of these classes expose a get_loss() method, which can be
used to obtain the sum of the residual norm and the regularization terms as a function
of a reconstruction 𝑿.

In addition, the LossFunction can be given Regularizers along with the respective
regularization weights. It will then apply the regularizing contributions to the loss and
its gradient when get_loss is invoked.
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4.3.2 Regularizers
A number of Regularizers are implemented in Mumott. These interact with the
LossFunction by providing it with a regularization norm and a regularization gradient,
which are used together with the regularization weight to find the solution to the
optimization problem. These include:

Laplacian – Smooths the solution by minimizing the squared 𝐿2 norm of the Lapla-
cian of the tensor field.

TotalVariation – Smooths each coefficient of the solution in a more robust manner
than the Laplacian, by minimizing the Euclidean norm of the gradient for each
coefficient. Can be configured to use the Huber approximation for small values,
in order to make convergence easier.

L2Norm, L1Norm – Minimizes the 𝐿2 and 𝐿1 norms of the solution, respectively. The
𝐿2 norm penalizes large values (ridge regression), while the 𝐿1 norm penalizes
small values, yielding a sparse solution (LASSO).

HuberNorm – Minimizes the Huber norm of the tensor field, acting as an L1Norm
for large values and an L2Norm for small values.

4.3.3 Optimizers
There are two general-purpose optimizers in Mumott, along with a special zonal
harmonics optimizer.

GradientDescent – Uses fixed-stepsize gradient descent, with an option to use
Nesterov accelerated momentum.

LBFGS – Uses the SciPy implementation of the LBFGS-B algorithm for quasi-Newton
solution of the optimization.

ZonalHarmonicsOptimizer – A special optimizer for reconstructions using zonal
harmonic representations of the RSM.

4.4 Pipelines
There are reasons for why some users might not necessarily want to employ the object-
oriented interface, at least not initially. One reason typically occurs to novice users – the
object-oriented interface is complicated, and therefore one desires a simplified interface.
Another reason that is more likely to occur to experienced users is that some features
are not practical or feasible to implement within the object-oriented interface, as it
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presently exists. One such case is alignment, where the data set needs to be aligned such
that the lines of integration in the John transform map correctly to three-dimensional
coordinates.

4.4.1 Alignment
Phase matching alignment – Uses a simple cross-correlation algorithm which com-

pares the data with forward projections, to estimate the offsets to the coordinates
(𝑗, 𝑘) which are needed to align projections to each other. Can efficiently upsample
projections by using a refined cross-correlation calculation [45].

Optical flow alignment –The optical flow alignment uses several methods to improve
and refine the phase matching alignment approach [46].

4.4.2 Standard reconstruction
MITRA – Modular iterative tomographic reconstruction algorithm (MITRA) is a highly

modular pipeline that by default uses Nesterov accelerated gradient descent, a
GaussianKernels representation as well as “tensor SIRT” weights and precondi-
tioners. However, it can take a wide range of keyword arguments, allowing for it
to be customized. It is therefore a suitable interface for the intermediate user to
experiment with.

SIGTT – The spherical integral geometric tensor tomography (SIGTT) pipeline com-
bines a basic SphericalHarmonics basis set and a Laplacian regularizer.

Discrete directions – This pipeline is used to emulate the approach of Schaff et al.
[20], by splitting up the reconstruction into multiple sub-datasets.

4.4.3 Asynchronous reconstruction
There are several pipelines which execute asynchronously on the GPU, avoiding syn-
chronization overhead from transferring data between the CPU and GPU. These include
a tensor SIRT pipeline, which is similar to MITRA without Nesterov momentum. In
addition, there is MOTR, which is essentially the default MITRA pipeline with two fixed
regularizers attached, for 𝐿1 and two-sided total variation regularization. robust and
denoised tensor tomography (RADTT) optimizes for the Huber norm with two-sided
total variation regularization, making it more robust to noise. There are also sparse
versions of the asynchronous pipelines, which use VRAM more effectively. For details
on asynchronous and sparse approaches to reconstruction, see Sect. 3.4.

58



4.5. Timing and evaluation

Table 4.2: Comparison of reconstruction times in seconds averaged across 10 runs each for a
typical single-𝑞 dataset consisting of 247 projections, each with 65 × 55 pixels and 8 detector
segments, using different reconstruction pipelines and running on different computers. 𝑁 is the
number of basis functions per voxel. In all cases, relative uncertainties were smaller than 5%,
and are omitted to maintain ease of reading. The workstation (WS) data was obtained using an
AMD Ryzen 7 3700X processor with 8 physical cores, 64GB of DDR4 2666MHz RAM, and for
the GPU accelerated calculations an Nvidia GeForce RTX 3060 GPU with 12GB of VRAM. The
high-performance computing (HPC) CPU timings were generated using 8 top-level threads on a
64-core Intel Xeon Platinum 8358 @ 2.0GHz CPU with some operations utilizing lower-level
multithreading. The HPC GPU timings were obtained used an Nvidia A100 GPU with 40GB of
VRAM and 8 threads on 16 cores of a 64-core Intel Xeon Platinum 8358 @ 2.0GHz.

CPU GPU

𝑁 WS HPC WS HPC

SIGTT 6 23 18 9 9
20 45 29 18 14
72 108 69 60 36

MITRA 18 41 22 13 8
50 93 45 40 14
162 271 156 115 37

DD 18 81 72 40 43
50 156 157 101 111
162 334 392 290 346

MOTR 18 9 8
50 12 10
162 46 22

4.5 Timing and evaluation
It is instructive to look at the performance of various pipelines for different platform;
see Table 4.2 for a comparison between a CPU and GPU-using, typical mid-range
workstation, and a high-end high-performance computing (HPC) node. GPU-based
computations are very fast, especially for the HPC node compared to the workstation.
We can also look at the difference in computational time for different SAXSTT methods,
in particular the computing times for the approaches of Liebi et al. (2015, 2018) and Gao
et al. (2019) and Mumott 0.2, as reported in Paper I, to methods in the current version
of Mumott [21, 22, 47, 48].
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Table 4.3: Comparison of reconstruction times for different SAXSTT methods. 𝑁 is the number
of coefficients per voxel that are being optimized. The speedup is computed relative to the
speed of the zonal harmonics method of Liebi et al. (2015, 2018). The methods of type CPU are
computed using only CPU. The methods of type CPU/GPU use the GPU for the John transform
computations, but CPU resources for everything else. MOTR, the method of type GPU, uses
only GPU resources and executes asynchronously. ZH, IR, and SIGTT (Mumott 0.2) were run
on the workstation described in Paper I, with a 12-core AMD Ryzen 3900x CPU. The remaining
entries were run on the same workstation as described in Table 4.2.

𝑁 Time (min) Speedup Type

ZH (Liebi et al. 2015) 6 500 1 CPU
IR (Gao et al. 2019) 6 26.7 18 CPU

SIGTT (Mumott 0.2) 28 6.7 75 CPU
SIGTT (Mumott 2.0) 28 2.05 243 CPU/GPU
MITRA (Mumott 2.0) 72 1.97 254 CPU/GPU
MOTR (Mumott 2.0) 72 0.38 1304 GPU

This comparison is shown in Table 4.3. The speedups and timings are only intended
as a rough guide to the improvement in performance for SAXSTT throughout the
development of the methods. Because the different methods have different approaches
to optimization, termination and regularization as well as considerable differences in
their final result and the number of coefficients which are being optimized, it is difficult
to carry out a one-to-one comparisons of their performance. Some judgment is therefore
necessary in determining what parameters are “reasonable” for each reconstruction.
The timing differences are, however, several orders of magnitude, demonstrating that
Mumott provides a significant improvement in performance.
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Many assumptions are required for SAXSTT, including ones related to beam quality,
the applicability of reciprocal space mapping to a local area, smoothness in real and
reciprocal space, the first Born approximation holding, and so on. Not all of these
assumptions are easy to check, and it is even more difficult to verify that all assumptions
taken together hold. Thus, a set of validation techniques must be employed. Within the
context of this work, papers I and II are concerned with validation.
First, there are basic “sanity checks”, that is, checking that the problem is posed in

a reasonable way and that the reconstruction can recreate the measured data. Sanity
checking includes looking at slices of the reconstruction, and comparing synthetic data
computed from the reconstructions to the actual data (which may be real or simulated).
Sanity checks are a routine part of reconstruction, and examples can be seen in, e.g.,
Liebi et al. (2015) [21]. In this category we may also include robustness checks, that is,
seeing that the reconstruction behaves reasonably under perturbation and checking
whether it consistently converges toward a particular solution. Robustness is one of the
topics of Paper I, where we investigated reconstruction under added noise, and looked
at the variation within an ensemble of reconstructions.

Second, there is validation through simulation, where a simulated sample is created
and data is generated from it. The degree of accuracy to experiment can be variable -
generally, one would start out with a relatively simple simulation. Simulation validation
is important, because it can be used to explore the limits of the method under ideal, or
strongly controlled conditions. Moreover, it can be used to very precisely compute the
degree to which the reconstruction represents the simulated sample. Validation through
simulation is the principal topic of Paper I, as it investigates the accuracy of several
SAXSTT methods applied to simulated data.
Finally, the is experimental validation, which is necessary to account for all the

assumptions made with respect to experimental parameters. This category essentially
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includes all work where previous knowledge exists about the sample, such as the work
of Liebi et al. (2015) and Schaff et al. (2015) [20, 22], where one can see e.g. the trabecular
bone orientations line up with the gross structure of the sample. In particular, however,
we mean by experimental validation work such as that of of Guizar-Sicairos et al. (2020)
[49], which follows up on Liebi et al. (2015) and compares a SAXSTT reconstruction
of a whole sample to SAXSTT reconstructions of individual slices of the same sample.
Experimental validation is the topic of Paper II, where we look at the effects of the
missing wedge problem under typical experimental conditions, compared to a complete
data set.

5.1 Robustness
One of the basic ways that the reliability of a reconstruction can be checked is to carry out
the reconstruction multiple times, with small perturbations to the initial conditions, and
check whether the result is consistent across the resulting ensemble of reconstructions.
In this case, we are comparing the SIGTT method as implemented in Mumott 0.2 with
the zonal harmonics (ZH) method of Liebi et al. (2015, 2018) [21, 22] and the iterative
reconstruction (IR) method of Gao et al. (2019) [47], using the trabecular bone sample
labelled B in Liebi et al. (2015). We carry out 10 reconstructions, randomizing the angles
which are required for ZH, and adding small amounts of noise to the initial condition
of SIGTT and IR, since these methods do not depend on angle parameters. The 10
reconstructions are compared by computing the quotient

𝑄(𝒓) =
var(

1
10 ∑10

𝑛=1 𝒂𝑛(𝒓))
1
10 ∑10

𝑛=1 var (𝒂𝑛(𝒓))
(5.1)

where 𝒂𝑛(𝒓) is the spherical function representation in one voxel in a reconstruction
within each ensemble. The variance over the sphere, var (𝒂𝑛(𝒓)) is a measure of the
power of the anisotropic component of the reciprocal space map, and it is calculated
using the spherical harmonic cross-spectral theorem; see subsubsection 3.2.1.2 and
in particular Eq. (3.7). If the reconstructions are all identical, then 𝑄(𝒓) will equal 1
everywhere. If the reconstructions are different, then it will be smaller than 1, as some
of the anisotropic components will cancel out when the different iterations are summed
up before the variance is calculated. Orientations and relative anisotropies are computed
from the averaged reconstructions. The orientation determination for ZH and SIGTT,
and the conversion of the rank-2 tensor of IR to spherical harmonic form uses the
isomorphism to ℓmax = 2 spherical harmonics; see Eq. (3.9). The relative anisotropy is
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b) ZH c) IRa) SIGTT

1.000.500.00
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Figure 5.1: Experimental ensemble reconstructions. a) Virtual slice from ensemble of 10
reconstructions each with randomized initial conditions of a sample of trabecular bone using
SIGTT. b) Ensemble reconstruction using ZH. c) Ensemble reconstruction using IR. The glyphs
are scaled by the square root of the spherical variance, defined in Eq. (5.2). The quantity 𝑄,
defined in Eq. (5.1), is a measure of how much the anisotropy of each RSM changes across the
ensemble of reconstructions. The methods generally agree in terms of the orientation of each
RSM, but only ZH shows a change in the anisotropy across the ensemble.

the standard deviation over the sphere normalized by the mean,

𝜁(𝒓) =
√var (𝒂(𝒓))

𝜇 (𝒂(𝒓))
. (5.2)

where 𝜇 (𝒂(𝒓)) is the spherical mean, given by the spherical harmonic coefficient 𝑎0
0.

The results of this comparison are seen in Fig. 5.1. The figure shows that both SIGTT
and IR yield consistent results over the entire ensemble. However, ZH does not. This
is not surprising – the zonal harmonics do not span a linear subspace of the spherical
harmonics. This means that the sum of two expansions in zonal harmonics is not
necessarily itself zonal (only if the two zonal expansions have the same main axis). For
this reason, the ZH reconstruction is liable to get stuck in local minima.

5.2 Simulations
In order to make the simulated samples shown in Fig. 5.2 mimic real samples to a
reasonable extent, several elements needed to come together. First, the simulated
samples needed to be structured in reasonable ways – for example, they needed to have
some amount of continuity in real and reciprocal space, so some kind of correlation
needed to be enforced. Second, in order to permit the use of non-convex samples, the
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Figure 5.2: Superquadric glyph render of simulations. a) Sample “M” with its zonally
symmetric RSMs from one region (blue square), truncated at ℓ = 2, 4, 6, 12 respectively. b)
Sample “T” with its rank-2 tensor RSMs from one region (green square). c) Sample “mammoth”
with its unrestricted ℓmax = 8 RSMs from one region (orange square), truncated at ℓ = 2, 4, 6, 8,
respectively. The colors of the superquadric glyph renders show the largest eigenvalue of the
rank-2 tensor component of each simulated sample, and the upper and lower bounds of the color
mapping are individually set to reveal the texture of each sample. The colors of the RSM renders
show their amplitudes and are scaled to the maximum and minimum amplitude in the selected
region of each sample.

metric used to determine the continuity should be an interior metric – if the metric used
was simply, e.g., the euclidean norm, then it would not be possible to properly model
discontinuities in real space. Third, the real-space distribution of amplitudes should
have some kind of larger-scale structure, and not be too “random”. With these concerns
in mind, the following model was devised:

• A real-space mask of valid voxels was constructed from extruded letters in two
cases, and a three-dimensional render of a mammoth in one case.

• Using a variation on Dijkstra’s algorithm with a step size of 2.5 [50], combined
with a k-d tree to ensure that all points are checked in order of distance and each
point is checked only once [51], the approximate interior distance from every
source point to every other point was determined.

• A number of source points was chosen for each sample, and distributed at large
distances. Specifically, four sources for “M”, two source points for “T”, and five
source points for “mammoth”.

• A real-space distribution was assigned to each source point, with a Gaussian
decay, large enough that the different sources had substantial overlap.
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Figure 5.3: Correlations for sample “M” and “T”. a) Box plots of 𝑅2 as defined in Eq. (3.8),
with lines and symbols indicating the respective median of each box plot. Outlier dots each
represent 100 voxels. b)–d) Correlation coefficient distribution for each of the three methods. e)
Box plots of 𝑅2. f)–h) Correlation coefficient distribution for each of the three methods. The
signal-to-noise ratio (SNR) goes from 37 (“M”) or 36 (“T”), shown with the darkest lines, down
to to 4, shown with the lightest lines. The image inset shows a volume render of each simulated
sample.

• A model RSM was assigned to each source point. The RSM all had specific limits
on their band-limits - ℓmax = 12, 2, 8 for “M”, “T”, and “mammoth”, respectively.
In the case of “M”, the source points were all zonal, following a decaying power
law to ensure a single great-circle band of intensity.

• An optimization was then carried out with respect to a loss function combining
nearest-neighbour correlation, distance-weighted correlation to source points,
distance weighted-averaged similarity to source points in terms of the spectral
power, and in the case of “M”, enforcement of zonal symmetry.

The zonal symmetry in the case of “M” was enforced by requiring correlation with
the ℓ-weighted Dirac delta function,

𝑤(ℓ)𝛿ℓ
𝑚(𝜃, 𝜙) = (−1)ℓ/2𝑌 𝑚

ℓ (𝜃, 𝜙),

separately for each frequency band ℓ. The purpose of “M” and “T” was to follow
the types of symmetries assumed by the ZH and IR approaches respectively, whereas
“mammoth” represented a more general symmetry. Following this, the three samples
were reconstructed using each of the three methods.
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Figure 5.4: Comparison of virtual slices of “M”. a) Virtual slice of simulated sample “M”.
b) SIGTT reconstruction. c) ZH reconstruction. d) IR reconstruction. The glyphs are colored
according to the relative anisotropy, Eq. (5.2), and scaled according to the spherical mean of each
RSM. All three reconstructions follow the orientations of the model reasonably well on average.
The SIGTT reconstruction follows both the orientations and relative anisotropy of the model
closely. The ZH reconstruction has a lot of variation in the relative anisotropy, as well as many
orientations deviating from the overall tendency to follow the model. The IR reconstruction
follows the model almost as well as the SIGTT reconstruction.

The results of the reconstruction of “M” and “T” are showin in Fig. 5.3. In all cases,
SIGTT is the best performingmethod. In the case of “T”, ZH is clearly the best performing
method, but the case of “M” is more ambiguous, since ZH has a slightly higher median
for the lower SNR cases, but also a larger dispersion. IR is bounded above at a correlation
of around 𝑅2 = 0.5, since for sample “M”, the ℓ = 2 component, to which the rank-2
tensor of IR is isomorphic, contributes only about half of the variance of each RSM.
Although SIGTT performs better than IR for sample “T”, the representations used by
each method is in fact equivalent. The improvement in the reconstruction quality for
SIGTT is most likely due to its use of regularization.
In Fig. 5.4, glyph renders for each reconstruction of “M” are shown. SIGTT and IR

both follow the model closely, although the relative anisotropy of IR is low in some
places. ZH reconstructs the orientations of the model reasonably well, but performs
less well in terms of reconstructing the relative anisotropy.

We can finally see the quality of the reconstruction of “mammoth” in Fig. 5.5. In this
case, SIGTT performs by far the best. This is not surprising, since “mammoth” lacks
the zonal symmetry assumed by ZH, and only has a weak ℓ = 2 component for IR to
reconstruct.

5.3 The missing wedge problem
The so-called missing-wedge or limited-angle problem is an issue that occurs when
tomographic measurements are absent or not sufficiently dense along a particular
trajectory, which can be derived from the projection-slice theorem of tomographic
reconstruction [52, 53]. In order to investigate this effect in SAXSTT, we carried out
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Figure 5.5: Correlations for sample “mammoth”. a) Box plots of 𝑅2 as defined in Eq. (3.8),
with lines and symbols indicating the respective median of each box plot. Outlier dots each
represent 100 voxels. b)–d) Correlation coefficient distribution for each of the three methods.
The SNR goes from 53 (darkest lines) down to to 5 (lightest lines). The image inset shows a
volume render of the simulated sample.

an experiment with a novel acquisition scheme, designed to quantify the effect of
missing wedges in a typical acquisition. We chose human trabecular bone as the model
system, since it has regular symmetries and is continuous in the RSM, and is known to
reconstruct well even when the data has been reduced into only 8 segments (see Liebi
et al. (2015, 2018) and Paper I of this work [21, 22]). For the reconstruction, we used
the GaussianKernels representation and the pipeline MITRA, together with a Huber
norm and coefficent-wise total variation regularization.

Per the discussion in Sect. 2.2, we can expect to reconstruct components within a 45∘

cap around the main tomographic axis. The quality of the remaining reconstruction can
be quantified by computing a quality factor – if we assume that the densely sampled
parts of the sample are well-sampled, we can define a sample density as

𝜌( ̂𝒑′) =
⎧⎪
⎨
⎪⎩

1 if the direction ̂𝒑 of the nearest
measurement satisfies Δ( ̂𝒑′, ̂𝒑) < 𝛿,

0 otherwise.
(5.3)
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where Δ(𝒗, 𝒖) is the Friedel symmetric great-circle distance, defined as

Δ(𝒗, 𝒖) = arccos(
|𝒗 ⋅ 𝒖|

‖𝒗‖ ‖𝒖‖) , (5.4)

The limitation in measurement can be overcome by introducing a third rotation axis,
about the direction of projection, ̂𝒑. This was done by taking the sample off the holder,
turning it by 90∘ about ̂𝒑, and putting it back on a new needle. The quality factor is
computed from this density by subjecting it to the Funk-Radon transform, which has
the general definition

𝐹 [𝑔]( ̂𝒗) = ∫𝐿
d ̂𝒍𝑔( ̂𝒍) with { ̂𝒍 ∈ 𝐿 ∣ ̂𝒍 ⟂ ̂𝒗} (5.5)

In other words, the Funk-Radon transform consists of taking the line integral over all
great circles, and mapping the result of each of those integrals to the point on the sphere
orthogonal to that great circle [29]. Thus we obtain the missing wedge quality factor

𝜅( ̂𝒗) = 𝐹 [𝜌]( ̂𝒗). (5.6)

Because SAXS probes points on the RSM perpendicular to the direction of the im-
pinging beam, the Funk-Radon transform of 𝜌 in Eq. 5.3 will indicate how complete the
tomographic data set of each point in the RSM is. We thus define this quantity 𝐹 [𝜌] as
our RSM quality factor.

Fig. 5.6a)–c) shows the distribution of individual and combined measurements - data
set 1 before the rotation and remounting, data set 2 after the remounting, and the full,
combined data set. The panels d)–f) show the quality factor, indicating that for data
set 1, the quality is lower near the equator 𝑞𝑦 = 0, whereas for data set 2, the quality is
lower along the meridian 𝑞𝑥 = 0. For the full data set, there is no loss in quality, since
the measurements have been carried out over the entire sphere.
In Fig. 5.7 we see the distribution of errors in reciprocal space, both in terms of the

coefficients of the basis functions, and in terms of the amplitude of the RSM. Pearson’s
𝑅2 is, as before, given by Eq. 3.8, which is valid in general, and not just for a spherical
harmonic representation. The basis functions are overlaid the quality factor from Fig. 5.6.
By necessity, the error for the basis functions is higher due to their non-orthogonality;
some of the errors cancel out when each basis function is projected onto the sphere.

We can see the full reconstruction of the sample in Fig. 5.8, using a spherical function
glyph render with the shape given by the Funk-Radon transform of the amplitude.
Viewing the three reconstructions from a distance, we can observe that they are very
similar, thus suggesting that the missing wedge problem has a limited overall impact
on the reconstruction. However, viewed close up, the impact of the problem becomes
more apparent, as certain spherical functions are distorted relative to the full data set.
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5.3. The missing wedge problem

Figure 5.6: Points on hemisphere of projection and theoretical quality factors. a) Probed
points on sphere of projection in first measurement. b) Probed points in second measurement.
c) Combined points from both measurements. d)Quality factor in reciprocal space from first
data set. e)Quality factor from second data set. f)Quality factor from combined data sets.

In particular, smearing and amplitude reduction (which is also reflected in a reduction
in the elongation of the shapes) along the directions where the quality factor is lower is
observed.

In Fig. 5.9, we see a comparison of orientation errors for data set 1 and 2. The orienta-
tions are quite robust in general, especially for places where the relative anisotropy is
hig, such as for the straight, pillar-like structures. There are more errors in flatter and
interface-like areas, where the relative anisotropy also tends to be lower. The zoom-in
shows an interface area where the orientation error is relatively high; at the center, the
orientations appear almost scrambled. The more horizontal (𝑥-aligned) orientations
appear better determined in data set 1, while the more vertical (𝑦-aligned) orientations
appear better determined in data set 2. This is consistent with the 𝑦-component of the
RSM being better determined in data set 1, and the 𝑥-component being better determined
in data set 2.
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Figure 5.7: Error distribution for each RSM basis function. a) Coefficient errors for data
set 1. b) Coefficient errors for data set 2. c) RSM errors for data set 1. d) RSM errors for data set
2. The markers have been placed over the corresponding theoretical quality factor from Fig. 5.6.
The errors in a) and b) were calculated by computing the overall Pearson correlation coefficient
for each basis function coefficient when comparing the partial and full data sets. In c) and d) the
correlation coefficients were computed for the RSM amplitude at each coordinate.

We can conclude from this investigation that the missing wedge problem is present
in SAXSTT, and that its effect on reconstructions can be inferred from tomographic
theory, by considering the density of measurements in each area. However, we note
that the impact of the missing wedge problem is limited on derived properties, e.g.,
the main orientation of anisotropic RSMs (as can be seen from the glyph scaling in
Fig. 5.9). Moreover, its effect can apparently be limited by considering the orientation of
the nanostructure during data acquisition, and accounting for the when mounting the
sample, such that part of the amplitude of the RSM ends up in a high-quality region.
Finally, it is plausible that the imposition of stronger symmetry constraints on the RSM,
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5.3. The missing wedge problem

Figure 5.8: Spherical function glyph render of reconstructions. a) Partial data set 1,
and a reciprocal space sphere showing the error distribution compared to the full data set.
b) Partial data set 2. c) Full data set. d) Error distribution in reciprocal space for data set 1.
e) Error distribution for data set 2. The color of each spherical function indicates the RSM
amplitude, whereas the shape indicates the orientation. The shape is computed from the Funk-
Radon transform of the RSM amplitude. The zoom-ins show two sets of RSMs that the partial
reconstructions each have difficulty reconstructing, compared to the full data.

similar to those of the model in Liebi et al. (2015, 2018) [21, 22], could improve this issue
in some instances.
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Figure 5.9: Orientation errors. a) Glyph render of orientations and errors of partial data set
1 b) Glyph render of data set 2 c) Probability density plot of orientation errors of partial data
set 1. d) Probability density plot for partial data set 2. The color of each glyph indicates the
orientation error in that voxel, with each glyph being scaled by the relative anisotropy in the
partial reconstruction. The zoom-ins highlight an interface area where the orientation error is
large. The density plots show the orientation errors for high (greater than 0.6) and low (less
than 0.6) relative anisotropy, showing that the error is greater in low relative anisotropy regions.
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6
Visualization techniques
for tensor tomography

Visualization is an especially important aspect of any field of study that involves many-
dimensional data. On a basic level, SAXSTT is the reconstruction of 6-dimensional
fields. The three real-space dimensions have a natural interpretation – they map to
the ordinary image coordinates in any three-dimensional image representation. The
three reciprocal-space dimensions, however, must be treated with more consideration,
because one cannot simply encode a three-dimensional field in every image coordinate,
in a way that can be parsed by humans. There are in effect three approaches to dealing
with this issue.

• First, one can extract an invariant or derived property of the reciprocal space
fields – for example, a mean value, the orientation, a scalar parameter, or some
combination of these, and plot this using volume or glyph rendering.

• Second, one can remove one dimension – e.g., extract a single 𝑞 or integrate over
a q-range, and then plot a two-dimensional surface representing each RSM.

• Three, one can reduce the real-space dimensionality of the reconstruction and
look at only a single RSM at a time. Then the RSM can be rendered using, e.g.,
volume rendering.

In addition to covering these points, it is also necessary to discuss how we represent
and conceptualize SAXSTT reconstructions, i.e., what we consider one RSM in the
reconstruction to represent.
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6.1 Visualization representations
Generally speaking, three-dimensional visualization techniques require the definition
of a grid, in addition to providing the data. A grid consists of nodes, and an implicit
or explicit geometry describing how these nodes are connected. Node or point data
specifies a value at one specific point. In addition, it may contain cells, which define
volumes (or surfaces) between nodes. For example, a network of 4 × 4 equidistant nodes,
connected in a rectilinear grid, would typically contain 3 × 3 cells. Cell data, unlike
point data, specifies a value in a volume or area (which may be understood as an average
value in that region).

Different softwares approach these issues differently, which is an easy source of off-
by-one errors (e.g., defining one node too many or too little). In this work, the primary
software used for three-dimensional visualization is ParaView, which is a frontend for
VTK [54]. While it may seem intuitive to treat voxel-by-voxel reconstructions as cell
data, we will in fact treat it as node data. There are two reasons for this — the simpler
reason is that node data is generally more efficient to work with than cell data. The more
complicated reason is that per the discussion on the definition of the RSM in Sect. 2.1
and the John transform in Sect. 3.3, we do in fact to good approximation probe and
reconstruct the RSM at each point within the volume. Thus, it is consistent to approach
our data as node data, rather than as cell data.

6.2 Volume rendering
Volume rendering, see Fig. 6.1, is a common way to visualize scalar fields. It involves
the integration of an transfer function over a field 𝑓( ̂𝒓), which may be written roughly,

𝑆( ̂𝒓 + d ̂𝒑) − 𝑆( ̂𝒓) = 𝑇 (𝑆( ̂𝒓), 𝑓 ( ̂𝒓 + d ̂𝒑), 𝜵𝑓( ̂𝒓 + d ̂𝒑), …) ,

where 𝑇 is some function of the probe 𝑆 and the value and derivatives of the field 𝑓. The
John transform, Algorithm 2, is an example of a very simple transfer function, which
simply accumulates the value of the sample, and the resultant value can be mapped
directly to, e.g., a color. The idea behind a transfer function is that the probe passes
through the sample at a given viewing direction, regularly samples it, and changes its
value to reflect different regions of the sample. The transfer function maps different
scalar values to different colors and opacities, and the final color of the probe at a given
point then reflects the field viewed from that direction, giving an impression similar to
that of looking through a semi-transparent object. For example, to visually emphasize a
skeleton inside a body, soft tissue can be made semi-transparent, while the skeleton is
made more opaque.
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Figure 6.1: Volume render of trabecular bone, using the relative anisotropy as the scalar, after it
has been thresholded to zero in areas where the mean falls below a pre-determined threshold.
This is necessary, because the relative anisotropy, Eq. (5.2), goes to infinity as the mean goes to
zero.

6.3 Glyph rendering

Glyphs are an alternative to volume rendering when we prefer to render discrete points,
rather than a continuous volume. Each node in the volume is mapped to a glyph (a
geometric shape, e.g., a cylinder, arrow or box). In Fig. 6.2, we see an example of a
superquadric glyph render, where the superquadric has been shaped into a slightly
squared elongated pill shape. Each glyph can be individually scaled, colored and rotated,
in order to encode multiple modes of information. Many frontends for, e.g., VTK, such
as ParaView, give only limited control of glyphs beyond this, even though the glyphs
could in principle be scaled individually across each direction. Regardless of this, glyphs
remain extremely useful for illustrating basic orientations of samples.

Flow-based orientation rendering options, such as line integral contours and stream-
lines, generally work best for relatively uniform orientation fields, since flows are
unidirectional, while orientations are bidirectional (i.e., there is no forward or reverse
orientation). For relatively uniform fields, it is then possible to constrain the orientation
vector to a particular hemisphere; an example of this is shown in Fig. 6.3, where the
streamlines from the unrestricted orientation vectors in panel b) can be compared to
the ones from hemisphere-restricted vectors in panel c).
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Figure 6.2: Superquadric glyph render of trabecular bone reconstruction, using the main
orientation of each RSM to orient the glyphs, the mean amplitude to scale the glyphs, and the
relative anisotropy, Eq. (5.2), as the color.

Figure 6.3: a) Cylinder glyph render showing orientation in trabecular bone. b) Streamline
render. c) Streamline render after restricting orientations to one hemisphere, by restricting strict
positivity of the orientation vector component orthogonal to the large loop.

6.4 Tensor field render
It is possible to use a tensor projected onto a spherical surface (or in the case of an RSM
at a single q, to directly use that RSM) as a texture, and/or to morph the shape of a glyph,
and thus directly render a tensor field. Within a framework such as VTK, glyphs filters
are effectively a kind of Cartesian product of a glyph geometry and a node-valued field.
In other words, each node in the field is replaced by a glyph geometry (with its own
nodes and cells), and the values of the node are duplicated across every node in the
glyph. This comes with both advantages and disadvantages. One of the basic problems
of many such frameworks, including ParaView, is that they have no higher level of
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Figure 6.4: Tensor glyph render, using icosahedral spherical glyphs as the base glyphs, the Funk-
Radon transform (Eq. (5.5)) of the RSM amplitude to shape the glyphs, and the RSM amplitude
to color the glyph. The Funk-Radon transform is useful to ensure that the amplitude distribution
is clearly visible, and in this case serves the skeuomorphic purpose of giving each tensor an
elongated shape that indicates the directions of the fibers.

organization. That is, once the glyphs are created, they replace the original mesh, rather
than being appended to it, requiring the duplication of values. The problem associated
with this is that we cannot easily load a tensor field with hundreds of coefficients per
voxel-node, then expand each voxel-node into a glyph, and then modify the glyphs to
represent a tensor field, because the memory requirement associated with this is too
great. We must instead go through a more involved process.

• Load necessary data for thresholding (e.g., mean value of each RSM) at each node
in the mesh.

• Threshold the mesh, removing all nodes which, e.g., fail to meet a threshold mean
amplitude.

• Take note of the coordinate at each node in the mesh, if not already recorded.

• Apply a spherical glyph filter, preferably using a relatively uniform spherical
mesh, e.g., one based on icosahedra.

• Record every coordinate in the new mesh.
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• Sort the mesh so that it can be grouped into two dimensions, [𝑁, 𝑀] for 𝑁 nodes
in the original mesh, and 𝑀 nodes in the spherical glyph mesh.

• Compute the reciprocal space projection matrix from every basis function to every
point in the spherical glyph mesh.

• For each of the 𝑁 node coordinates, load the corresponding RSM from the recon-
struction, and compute the projection of the amplitude onto the 𝑀 nodes in the
spherical mesh, and store in an array of size [𝑁, 𝑀].

• Modify the coordinates of each point in the glyph-filtered mesh by subtracting
the original node coordinates, multiplying the difference by the (normalized or
re-scaled) projected amplitudes, and add the original node coordinates back. The
result should be glyphs which have been morphed by the RSM amplitudes. Finally,
use the amplitudes to texture the glyphs.

• Adapt as needed, by, e.g., computing the Funk-Radon transform prior to morphing
the glyphs, or by only using the amplitudes as texture rather than shape.

In Fig. 6.5, we can see an example of how the tensor glyph filter can be implemented in
ParaView, using a programmable filter. This approach cannot necessarily be seamlessly
copied to other visualization software, as it depends on range of assumptions about
how the data is structured inside ParaView (e.g., that one can reshape the glyph filtered
mesh into a contiguous row-major matrix with 𝑁 rows, and 𝑀 columns, where 𝑁 is the
number of nodes in the thresholded mesh, and 𝑀 is the number of nodes in each glyph).
Thus, any adaptation of this approach needs to be complemented with commensurate
knowledge about the framework to which it is adapted.

6.4.1 Rendering individual reciprocal space map
In addition to the rendering of three-dimensional fields with primarily real-space geom-
etry, it is interesting to consider how to render individual three-dimensional reciprocal
space maps. A single reciprocal space map is a function of 𝒒, and it is natural to consider
it in spherical coordinates, since a single value of ‖𝑞‖ corresponds to a single length
scale. Thus, one relatively straight-forward way in which reciprocal space maps can be
represented is on a structured curvilinear grid, which is locally homeomorphic to a cubic
grid (i.e., there is an invertible isomorphism between a cubic grid and the curvilinear
grid, except at the poles). In ParaView, such a structured grid can be implicitly defined
using a so-called custom source, and carrying out the following steps:
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import numpy as np
from mumott.methods.basis_sets import GaussianKernels
from mumott.core.probed_coordinates import ProbedCoordinates
import h5py

source_size = 2562 # your source size
inp = inputs[0] # Paraview input node
nodes = inp.PointData['grid'] # Original node coordinates
q_dir = inp.PointData['PointLocations'] - nodes # Subtract node coordinates
mesh_size = q_dir.shape[0] // source_size # get number of points in mesh
one_glyph = q_dir[:source_size] # All glyphs have the same mesh
pc = ProbedCoordinates(vector=one_glyph.reshape(1, -1, 1, 3))
g = GaussianKernels(grid_scale=5, probed_coordinates=pc) # Basis set

coefficients = np.zeros((geo_size, len(g)))
stride = nodes.shape[0] // (geo_size)

# Load coefficients, one-by-one
with h5py.File(f'my_reconstruction.h5') as f:

c = f['basis_set/coefficients'][...]
for i in range(mesh_size):

p = tuple(nodes[i * stride].astype(int)) # Ravel index
coefficients[i] = c[p]

amplitudes = g.get_amplitudes(coefficients, probed_coordinates=pc)

new_coordinates = q_dir * amps.reshape(-1, 1, 1) + nodes

output.SetPoints(new_coordinates.reshape(-1, 3))
output.PointData.append(amplitudes.ravel(), 'amplitudes')

Figure 6.5: Example of code necessary to do a tensor render in ParaView, here using a Python
programmable filter.

1. Choose an angular resolution, e.g., 32 azimuthal points and 16 polar points. Add
1 to the number of azimuthal points to account for the degeneracy 𝑓(𝜃, 𝜙) =
𝑓(𝜃, 𝜙 + 2𝜋); an additional point at 2𝜋 is needed to make the field continuous1.

2. Load all values of individual q-bins. Decide how to space each radial shell rel-
ative to each q-bin. You may wish to use logarithmic spacing, or to multiply
the q-spacing by a constant so that the spacing is closer to 1 for, e.g., camera
manipulation purposes. In this work, I have used simple linear spacing in nm−1,
multiplied by a constant 75, yielding a maximum span of 240 length units in
ParaView.

3. Enumerate each coordinate in a nestedmanner. For example, for each 𝑞, enumerate
every 𝜃, and for each enumerated 𝜃, enumerate every 𝜙. The order of enumeration
is not important, as long as you are consistent about it. Compute the Cartesian
coordinates corresponding to (𝑞𝑎, 𝜃𝑏, 𝜙𝑐) and append sequentially to a list.

1It can even be advantageous to add more than one extra point, for the purpose of computing normal
vectors, if the goal is to render surfaces.
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Figure 6.6: Volume renders of a RSM from highly oriented collagen-rich region of chameleon
tongue. a) shows a volume render of the logarithm of the RSM amplitude, similar to how
detector images are typically shown. The RSM has been cut along the middle and is viewed
from the bottom of the hemisphere, in order to improve clarity. b) shows a Kratky plot-like
render, scaling the amplitude by 𝑞2, which is commonly done for SAXS data applied to biological
systems. This makes it easier to see higher-𝑞 parts of the RSM. c) shows the amplitude scaled by
𝑞3 instead, which emphasizes high-𝑞 regions even more. Each of the plots has advantages and
disadvantages.

4. Specify the dimensions of the grid as (𝑁𝜙, 𝑁𝜃, 𝑁𝑞) (assuming that 𝜙 is the inner-
most coordinate of your enumeration). Given that you have specified a Structured
Grid and supplied the necessary metadata 2, ParaView/VTK will now automati-
cally infer the structure - each cell will be a distorted cube, consisting of 8 nodes.
This connectivity allows the visualization backend to make the proper inferences
and interpolations which make it possible to apply further visualization steps.

The structured grid cannot be rendered directly, but it can be sliced and resampled to
images. For example, this is the way in which the Ewald sphere cut illustration, Fig. 2.1
in Chapter 2, was made. We see three ways to volume-render a RSM in Fig. 6.6. Render
a) is the most immediately familiar, being similar to a detector image, but also the most
difficult to discern higher-𝑞 components in. In b) we see a Kratky-style render, which
shows medium- and high-𝑞 components more clearly. Finally in c), which scales the
amplitude by 𝑞3, we see high-𝑞 components very clearly, but at the expense of lower-𝑞
components.

2Ensuring that the correct metadata is provided by a custom source in ParaView is highly technical
and likely to change in future versions; the reader is thus referred to the VTK user’s guide for details on
this.
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Using SAXSTT to study the

chameleon tongue

The chameleon tongue is a very interesting biological system, due to the extremely
high acceleration and velocity that the tongue undergoes when the chameleon catches
insects. In fact, it was believed in antiquity that the chameleon fed on air, perhaps due
to the high velocity of the tongue, making it hard to see with the naked eye [55]. The
forces that must be exerted on the tongue in order to undergo extreme acceleration defy

Figure 7.1: Transmission tomography of the chameleon head. The arrow indicates the
approximate region from where the SAXSTT sample was taken.
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Chapter 7. Using SAXSTT to study the chameleon tongue

conventional biomechanical explanations, such as simple muscle action. Instead, the
tongue must be looked at as a complex biomechanical system consisting of multiple
interacting parts. For this reason, it is an excellent case study to demonstrate the power
of SAXSTT as a “bridging” method, probing multiple scales at a time. In Paper III, we
study the chameleon tongue using multiple modalities, and in this section we will look
in-depth at the SAXSTT investigation of a section of the tip of the chameleon tongue,
shown relative to a chameleon head in Fig. 7.1.

7.1 Reconstruction
The chameleon tongue presents a particularly challenging reconstruction case, for
several reasons:

• The samples are quite large, at approximately one million voxels each.

• There are multiple tissue regions within each sample – collagen, fibro-cartilage,
mineralized cartilage, and hyalocartilage, meaning that the reconstruction needs
to accomodate a range of symmetries and a large amount of variability in both
amplitude and texture.

• The collagen layer is extremely well aligned. This leads to very sharp scattering
from the fibril diameter. Due to limitations in the angular resolution of the
measurement, this scattering is only clearly captured at one measurement angle.
This means that the overall smoothness constraints on tensor tomography are
not likely to be satisfied, making reconstruction difficult.

• The RSMs in the chameleon tongue do not appear to have simple rotational
symmetries. Some parts of the tongue show indications of multiple orientations,
which makes it unsuited for reconstruction with basis functions that depend on a
single orientation, such as the ZH model in Liebi et al. (2015, 2018) [21, 22].

These problems were alleviated by a range of actions. The diffraction images were
integrated with relatively high resolutions (16 segments per half-circle), and a very high
resolution in the reconstructed reciprocal space map was used (578 Gaussian kernel
functions), in order to effectively capture a wide range of textures. The reconstruction
was carried out using a relatively large number of iterations (100 per q-bin) and a reduced
step size, along with two regularizers, for the coefficient-wise total variation and for the
𝐿1 norm. Due to the very sharp scattering in certain areas, the reconstruction was also
deliberately thresholded so that no coefficient had a lower value than 0. This is because
the reconstruction may otherwise attempt to make certain coefficients negative in order
to allow for a sharper increase, leading to overfitting. In total, the reconstruction of one
sample took approximately 10 minutes per q-bin, using the asynchronous reconstruction
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7.2. q-resolved analysis

Figure 7.2: a)Measured two-dimensional projection of the SAXSTT sample with orientation
analysis performed between 0.273 – 0.314 nm−1. This shows the four primary layers: 1 – hyaline
cartilage (hc), 3 – mineralised cartilage (mc), 3 – fibro-cartilage (fc), and 4 – collagen layer (coll).
b) SAXS curves from the different layers. The collagen layer in longitudinal view is taken from
the sample rotated 90 degrees about the 𝑦-axis, where the d-spacing of the collagen gap is in
Bragg conditions for the collagen aligned in the longitudinal direction.

pipeline motr in Mumott, or approximately 32 hours across all 194 ‖𝒒‖-bins, using an
Nvidia A100 GPU.

7.2 q-resolved analysis
The reconstruction of the chameleon tongue across 194 𝑞-bins allows different tissues
to be differentiated based on their characteristic scattering signals. The most prominent
one is thereby collagen typ I, as it exhibits distinct diffraction peaks (see Fig. 7.2, green
curve) from the supramolecular staggered structure, with a periodicity of about 67 nm
along the fiber axis, i.e., in meridional direction, while exhibiting scattering from the
packing of the collagen fibrils in the equatorial direction [56]. We know from histology
(paper III) that other tissue types present are different types of cartilage, i.e., hyalo-
cartilage, fibrocartilage and mineralized cartilage. The scattering signature of those
tissue types show less distinct scattering features as shown in Fig. 7.2. The power-law
in a low to intermediate q-range 0.13– 0.2 nm−1, can be used as a general-purpose
tool to differentiate between tissues with different scattering characteristics. In the
SAXS theory of isolated particles, the slope in the log 𝐼 vs. log 𝑞 curve is related to the
fractal dimension. For example, a slope of −2 corresponds to a disk-shape, and −1
corresponds to a rod-shape. However, the interpretation is less clear in solid complex
tissues, where form- and structure factor of several nanostructures contribute to the
total scattering. Thus, the interpretation is not necessarily clear, but the slope can still be
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Chapter 7. Using SAXSTT to study the chameleon tongue

used to identify different tissue types. It is thereby a valuable quantity for segmentation.
In the scattering analysis of bone, this power-law is often referred to as the G-exponent.
It is used to identify regions where so called T-parameter analysis can be applied to
to estimate the thickness of the mineralized platelets. In a SAXS curve of bone, the
hydroxy-apatite mineral signature can be seen in a shoulder appearing at high-q values
[4]. This signature is weakly visible in the selected point from one projection through
the sample (Fig. 7.2, orange curve). The T-parameter analysis assumes a two-phase
system with a mineral fraction of 50 % with predominantly platelet-shaped particles
and has also been used to characterize mineralized cartilage [57]. While it is unclear
whether these assumptions hold for the mineralized cartilage of the chameleon tongue,
we use this analysis to investigate how uniform the mineral component in the layer is.
The T-parameter analysis includes the determination of the scattering invariant from
the Krakty plot, which is only possible when the slope of the scattering signal at low-q
is lower or equal to 2. Consequently, this the analysis is only performed where the
G-exponent is ≤ 2. The G-exponent was computed through a fit, using the power-law
approximation [58]

rsm(𝒓, 𝒒) ≈ 𝑎(𝒓) ‖𝒒‖−𝐺(𝒓) ,

in the q-range 0.13 – 0.20 nm−1 and the T-parameter using the integral [59]

𝑇 (𝒓) = 𝑟
𝜋𝑃 ∫

∞

0
d𝑞 ‖𝒒‖2 rsm(𝒓, ‖𝑞‖),

in the q-range 0.2– 1.2 nm−1, and where where 𝑃 is the Porod constant, which was
determined from the q-range 0.77 – 1.2 nm−1. These scalar parameters have previously
been studied in SAXSTT reconstructions by Liebi et al. (2021) and Casanova et al. (2023)
[60, 61]. The T-parameter was only computed from the mineralized areas, which were
identified based on the Porod constant.

The computed G-exponent and T-parameter can be seen in Fig. 7.3.
The chameleon tongue reconstruction was segmented into 4 components, aided by

tissue characterization through histology, scanning SAXS, and birefringence microscopy
(see Paper III). The components, shown as a telescope figure in Fig. 7.4a), were identified
as an outer collagen sheath, a fibrocartilage layer, a mineralized tissue layer, and an
innermost hyalocartilage layer.
The collagen layer was identified by its large G-exponent and extremely sharp scat-

tering in both the equatorial (from the packing of the collagen fibrils) and meridional
directions (from the staggered spacing of collagen fibers). The mineralized layer was
identified by its Porod constant, and the fibrocartilage layer was then found as the part
between the mineralized layer and the collagen layer. Finally the hyalocartilage layer
was the remaining, weakly scattering part.

It was observed that the collagen layer and the fibrocartilage layer did not separate
completely, and that there appeared to be an interface layer between them, which can
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7.2. q-resolved analysis

Figure 7.3: a) G-exponent and b) T-parameter of chameleon tongue. The T-parameter is
computed from the part of the sample where the G-exponent is no greater than 2.

also be seen as a narrow green band between the thicker blue and orange-purple bands
in the G-exponent plot, Fig. 7.3a).

Fig. 7.5 shows volume renders of RSMs from four regions, viewed from a central cut
orthogonal to the viewing direction. The horizontal direction is the long axis of the
chameleon tongue, whereas the vertical direction is the main tomographic axis. We
observe in Fig. 7.5b) (interface) and to a lesser extent in c) (fibro-cartillage) meridional
collagen peaks both in the horizontal and vertical direction. This indicates that each
RSM in the interface region has multiple orientations. However, because the collagen
meridional scattering occurs in the lower-quality direction (see Sect. 5.3), 90∘ from the
main tomographic axis, it is difficult to say to what extent this reflects a real feature in
the sample.
More traditional ways of illustrating the RSM are shown in Fig. 7.6. In panel a) a

standard log-log plot of 𝐼(𝑞) as a function of 𝑞 is shown for a mineralized RSM, along
with the three regions used for the T-parameter analysis. In panel b), a Kratky plot of
the same area is shown. Panels c)-e) show the three characteristic q-ranges used for the
segmentated render in Fig. 7.4, and the locations of the four RSMs shown in Fig. 7.5.

In Fig. 7.7 we see the same views as in Fig. 7.5, but the amplitudes are scaled by ‖𝒒‖2
2,
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Figure 7.4: Telescope view of chameleon tongue reconstruction. a) The four principal
layers of the tongue section, labelled i through iv. b) Collagen layer (𝑞 = 0.095 nm−1). c)
Fibrocartilage layer (𝑞 = 0.126 nm−1). d) Mineralized cartilage layer (𝑞 = 0.733 nm−1). e)
Hyalocartilage layer (𝑞 = 0.041 nm−1). The glyphs are oriented according to the principal
orientation of the reciprocal space map in each voxel, scaled according to the relative anisotropy
in characteristic q-ranges. They are coloured according to their deviation from the long axis of
the tongue. The collagen layer i. and the fibrocartilage layer ii. do not separate completely in
the segmentation, which is consistent with the existence of an interface layer.

as in a Kratky plot, which is used in the characterization of biological systems [62]. Here
we employ it to improve contrast in the rendering of the RSM. We observe in Fig. 7.5b)
(interface) and to a lesser extent in c) (fibro-cartillage) meridional collagen peaks both
in the horizontal and vertical direction. The RSM amplitude which results from the fiber
diameter (vertical) in a) can be seen to be extremely sharp, which causes difficulties
during reconstruction as discussed in Sect. 7.1. Note also that the orthogonality of the
orientation of the amplitude minimum in c) and d) is clear in this view.

7.3 Multi-orientation analysis
One of the advantages of the complex texture reconstruction introduced in Paper I is that
it enables the retrieval of complex features of the RSM which would not be possible to
reconstruct with symmetry-constrained or lower-order models. However, it is necessary

86



7.3. Multi-orientation analysis

Figure 7.5: Volume renders of RSMs from a) the main collagen layer, b), the interface layer
between collagen and fibrocartilage, c), the fibrocartilage layer, and c) the mineralized cartilage
layer. e) shows the missing-wedge quality factor given by Eq. 5.6. The color and opacity transfer
functions of the RSMs are individually adjusted to reveal their individual features, but all are
shown using a logarithmic scale.

to take other reconstruction limitations into account, principally the missing wedge
problem, as discussed in Paper II and Sect. 5.3. With this in mind, we must interpret the
indications of multiple orientations seen in e.g., Fig. 7.7b) with caution.
The collagen-fibrocartilage interface was extracted by finding a contiguous layer

with values of the G-exponent and relative anisotropy between those of the collagen
and fibrocartilage layers. This layer appears to have multiple orientations, and an
analysis was carried out to extract these orientations. For this analysis, we selected the
5th reflection of the collagen meridional peak, in the q-range 0.536 – 0.677 nm−1. The
meridional peaks were extracted by computing the difference integral over this peak

𝑀(𝒓) = ∫
𝑏

𝑎
d𝑞 [rsm′(𝒓, 𝒒) − 𝑢(𝒓, ̂𝒒) ‖𝒒‖𝑤(𝒓, ̂𝒒)] ,

where rsm′ is the RSM after subjecting it to convolution by a low-pass filter, in order
to reduce the extraction of spurious peaks due to, e.g., noise. The intercept 𝑢(𝒓) and
exponent 𝑤(𝒓, ̂𝒒) are extracted by fitting a power-law to the end-points rsm′(𝒓, 𝑎 ̂𝒒) and
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Chapter 7. Using SAXSTT to study the chameleon tongue

Figure 7.6: a) Mean RSM amplitude for mineralized part of tissue, with Guinier (orange),
T-parameter (green), and Porod (purple) regions highlighted. b) Same curve, but in a Kratky
plot which suggests the underlying bell-shaped curve which is integrated over to yield the T-
parameter. c)Mean scattering at collagen characteristic 𝑞, with the location of the collagen RSM
in Fig. 7.5a) annotated as i. d) Fibrocartillage characteristic 𝑞, with the interface and fibrocartillage
RSMs in Fig. 7.5b) and c) identified as ii and iii respectively. e)Mineral characteristic 𝑞, with the
RSMs in Fig. 7.5d) identified as iv.
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7.3. Multi-orientation analysis

Figure 7.7: Kratky-rescaled RSMs from a) the main collagen layer, b), the interface layer between
collagen and fibrocartilage, c), the fibrocartilage layer, and c) the mineralized cartilage layer.
e) shows the missing-wedge quality factor given by Eq. 5.6. The color and opacity transfer
functions of the RSMs are individually adjusted to reveal their individual features, but all are
shown on a linear map.

rsm′(𝒓, 𝑏 ̂𝒒). The result of the multiply-oriented collagen peak extraction can be seen
in Fig. 7.8. It appears that there is a very consistent network of orientations aligned
with both the long axis of the tongue as well as with the tangential direction (wrapping
around the axis). The consistency we observe in the network within the well defined
interface layer, in the same position where we found an interface layer with scanning
SAXS and birefringence (see Paper III), makes us confident that even accounting for
the limitations indicated by the quality factor of the RSM, which are introduced by
the missing wedge problem, the extracted multiple orientations reflect real structural
features.

In Fig. 7.9, an illustration of the integrals over, respectively, rsm′ and ‖𝒒‖𝑤 is shown.
The amplitude of the reciprocal space map was integrated over the 5th collagen peak,
and the integral of a power law fitted under this peak was subtracted. Note that the
integrated RSM have considerable amounts of amplitude going in the radial direction,
although there are no apparent spurious peaks in this direction, suggesting the extraction
procedure is relatively robust.
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Chapter 7. Using SAXSTT to study the chameleon tongue

Figure 7.8: Interface layer with multiple orientations. a) Tensor glyph renders of extracted
collagen meridional peak reciprocal space map. b)Multiple orientations extracted from collagen
peak shown using oriented superquadric glyphs, scaled by the relative amplitude of the extracted
peaks in each direction. c)Multiple orientations shown using streamlines.

Figure 7.9: Detail showing scaled and colored by the amplitude of the power-law integral
under the collagen peak (solid, white-to-blue, metallic) and the total integral including the peak
(translucent, dark-blue-to-yellow). The integral including the peak is consistently slightly larger
in two directions, which is where the extracted peaks in Fig. 7.8 comes from.
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8
Conclusions and outlook

This work has detailed advances in the theoretical characterization and scope of SAXSTT
as a method, as well as improvements in the speed and usability of reconstruction imple-
mentations. The algorithms and optimization theory underlying these improvements,
and their implications, have been described and discussed in detail. The robustness and
extent of validity of the reconstruction methods implemented in Mumott have been
demonstrated using both simulated and experimental data. Furthermore, these advances
have been leveraged in a case study of SAXSTT applied to a chameleon tongue sample,
where multiple orientation analysis illustrates the advantages of parameterizing the
RSM as a general function on the sphere.
The improvements to reconstruction speed, quality and robustness that have been

obtained for SAXSTT within the scope of this work open up for commensurate improve-
ments in data acquisition. Not only do the many orders of magnitude of improvements
in speed while maintaining support for complex RSM textures enable larger and more
detailed samples to be reconstructed, the improvements in robustness and better theo-
retical understanding open up for further development in sparse acquisition schemes. It
remains to be investigated to what extent the amount of acquired data can be reduced
while maintaining a sufficiently high quality of the reconstructions. The use of suit-
able regularization terms and representations for the RSM is likely to be key in this
investigation.

A topic related to sparse acquisition is the possibility of online reconstruction, where
the SAXSTT reconstruction is carried out simultaneously with the acquisition of data.
The acquisition could then be guided by the reconstruction and terminated when the
reconstruction has converged. An example of data-driven sampling would be for the
acquisition to adapt to regions with very sharp scattering, such as the equatorial fiber
scattering from collagen fibrils in the chameleon tongue (see, e.g., Fig. 7.5), and measure
additional directions adjacent to those of the sharp scattering maximum.
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While not directly related to algorithmic improvement or performance optimization,
the visualization of the reconstructed 5- or 6-dimensional fields is an interesting avenue
for research. It is difficult to combine, e.g., a scalar volume render with oriented glyphs
into a render that is clear and visually appealing, and translucent surfaces are difficult
to render well even with ray tracing. However, it is likely possible to not only write
implementations specifically for showing combined glyph-and-volume renders, but
possibly also for directly rendering SAXSTT reconstructions. For example, streamlines
could be generated based directly on the RSM (as a function of the unit sphere), rather
than derived vectors, and the render could be textured based on how much streamlines
diverge, intersect, and so forth. Realizing this and similar ideas would likely require
specialized expertise in visualization. This would greatly improve and accelerate the
interpretation of results from SAXSTT.

Further improvements to the structure of Mumott could enable users to take advan-
tage of the speed gains of asynchronous reconstructions, while preserving themodularity
and interactivity of an object-oriented framework. While this requires careful imple-
mentation and thorough testing, it is well within the capabilities of Numba-CUDA and
could greatly improve the user experience. Moreover, the adoption of hardware-agnostic
frameworks like SyCL could enable the use of GPUs from vendors besides Nvidia. An-
other area with room for improvement concerns the implementation of explicit support
for 𝑞-resolved reconstruction, including regularization or preconditioning which uses
neighbouring 𝑞-bin reconstructions to accelerate and otherwise improve reconstruction.
Finally, the intended scope of Mumott stretches beyond any individual modality,

such as SAXS. Future development should consider not only how to improve support
for SAXSTT as a method, but also how aspects of the SAXSTT implementation can be
re-used for, e.g., wide-angle x-ray scattering tensor tomography (WAXSTT). Taking a
wider perspective still, support for still more general modalities can be considered, such
as 3D x-ray diffraction or dark-field diffraction grating tomography. This would include
systems which can not necessarily be reduced to linear computed tomography problems,
and which would require further improvements still to the implemented optimization
algorithms.
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