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Shapes and games
Reshaping distributions and images via ODEs

Carl-Joar Karlsson
Department of Mathematical Sciences

Chalmers University of Technology and the University of Gothenburg

Abstract. This thesis summarizes the four articles Decisions and disease,
Diversity strengthens competing teams, Shape analysis via gradient flows
on diffeomorphism groups and Team game adaptive dynamics. Each article
has a different context, but the mathematical aims are unified as we prove
optimality of solutions or well-posedness of dynamics. Moreover, the
modeling perspective is central to each investigation. In Decisions and
disease we combine the classic SIR and SIS models from epidemiology
with the prisoner’s dilemma game. Here, the steady state solutions are
interpreted in terms of cooperation during a pandemic. Another game
is studied in Diversity strengthens competing teams, namely the so-called
Game of Teams, for which all Nash equilibria are found. The optimal
solutions, i.e., the Nash equilibria, are characterized by teams withmaximal
diversity in the sense that the successful teams have as different members
as possible. Gradient flows are explored next, with a focus on an efficient
method for image matching. We prove well-posedness of a gradient flow
that is regularized by the deformation of the Riemannian metric of the
manifold which the images are defined on. Lastly, the adaptive dynamics
framework is applied to the Game of Teams. This model of evolution
pushes the strategies of the game in the direction of the selection gradient.
We have analyzed the well-posedness of the adaptive dynamics equations
and answered questions about the stationary solutions, that is which
solutions that do not display any dynamics despite the selection pressure
that the selection gradient forces on them. It is found that the stationary
solutions agree with the Nash equilibria.

Keywords: game theory, prisoner’s dilemma, equilibrium strategy, disease,
compartmental model, epidemiological model, shape analysis, differential
equations, differential geometry
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viii Notation, abbreviations and nomenclature

Notation, abbreviations and nomenclature

Z The integers ...,−2,−1, 0, 1, 2, ...
R The real numbers
C The complex numbers
𝔛(𝑀) The space of smooth vector fields on a manifold𝑀
g Riemannian metric
𝔤 Lie algebra
a.e. Almost Everywhere
game A collection of players, payoff functions and strategies
𝐸 Expectation, see §4.1; energy, see §5.1
𝑝 Expectation of normalized strategies, payoff
CA Competitive Ability
MCA Mean Competitive Ability
𝐶 The upper bound on MCAs; the cost in Donor-Recipient games
SIR A compartment model with categories susceptible, infectious and

removed
SIS A compartment model with categories susceptible and infectious.

Typically, this models a disease without immunity.
𝐴 Either the adaptive dynamics mapping, or the inertia operator.

There should be no risk for confusion; the inertia operator only
appears in the Lie group context.

∇𝐸 The selection gradient, see §4.1.4; the gradient of the energy func-
tional, see §5.1
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1
Introduction

I’m stepping through the door
And I’m floating in a most peculiar way
And the stars look very different today
—David Bowie (in Space Oddity)

The importance of modeling natural phenomena, societies, complex sys-
tems, etc. cannot be overstated. In order to understand the world, it is
helpful to reduce the level of detail, keeping the essential mechanisms
at the core of the model. For example, Newton’s theory of gravity can
be used to understand the motion of satellites and also how to launch
satellites into orbit. The theory explains the force which is needed for the
launch and why launching sites are usually close to the equator of the
Earth [18]. However, classical mechanics alone cannot explain why clocks
on satellites are out of sync with clocks on Earth’s surface. The theory
of relativity has been necessary in order to solve the synchronization
problem, and understanding the relativistic effects on satellites has been
crucial for the global positioning system (GPS) [3]. This does not mean
that Newtonian mechanics is wrong. Instead, the situation is a reminder
that every model of nature is a simplification with limitations. The effects
of relativity become apparent at high speeds when there are several ob-
servers measuring time or position in different directions in spacetime
[29]. Newton’s mechanics is still extremely useful in the right context, and
moreover, it highlights the essential interplay between force and motion.
If general relativity had been necessary to understand the motion of “slow”

1



2 Chapter 1. Introduction

objects, such as animals and trains, we would have a lot of trouble using
the theory. Einstein [22] said it wisely: “It can scarcely be denied that the
supreme goal of all theory is to make the irreducible basic elements as
simple and as few as possible without having to surrender the adequate
representation of a single datum of experience.”

Another scientist who emphasized the idea of modeling principles was
von Neumann, claiming [66] that truth “is much too complicated to allow
anything but approximations” but as he was also a strong advocate of
using the mathematics toolbox, contributing to the development of the
mathematical economics theory during the 1940’s and the early 1950’s.
In 1944, von Neumann and Morgenstern published their book Theory of
Games and Economic Behaviour [76], which is considered to have started
the interdisciplinary research field of game theory. Naturally, games had
been discussed and solved in mathematical contexts long before 1944, with
records going back to ancient times [69], but it was the Theory of Games
and Economic Behaviour that established the formalism of mathematical
game theory that we are used to seeing today. Here, strategic decisions
were analyzed under the assumption that players are rational in the sense
that they strive to maximize their individual payoff in the game at hand.
The payoff (which is quantified in currency, for example) is determined by
the rules of the game and the players’ collected choices of strategies. Some
of the basic games that were understood during these times highlighted
the mechanisms of trading and negotiation, which to some extent lacked
the consise and quantitative analysis that game theory provided.

Later during the 1900s, games were used to analyze phenomena in ecology
by re-interpreting the payoff to players in games as survival benefits.
Attempts were made to explain animal conflicts between members of
the same species as games that are repeated (as such animal conflicts
usually repeat in nature) and in that context, each strategy’s popularity was
developing over time such that the more successful strategies increase in
popularity. The changing popularity of certain strategies was interpreted
as an evolutionary process, namely the evolution and/or spreading of
phenotypes in animal populations.
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Today, game theory analysis is an essential part ofmodern decision-making.
Agreements such as the Kyoto protocol (on reducing the climate footprint
worldwide) undergo game theory analysis. Economy, negotiation, trade,
resource management, ecology and physics are just some examples of
applications of the modern game theory that was formalized during the
20th century [53].

Mathematics provides methods to discover structures and processes in
phenomena or ideas. Game theory highlighted how cooperation is depen-
dent on the payoff balance, that is how much advantage certain choices
give compared to making other decisions, for instance. Another field of
mathematics that has advanced our understanding of the structures of
phenomena is mechanics. First founded by Isaac Newton in the 17th cen-
tury, the laws of mechanics were hidden in latin and geometric notation.
The first translation to French, by Émilie du Châtelet, which she final-
ized on hospital and which was posthumously published in 1756, used
the modern mathematical language of differentials to describe the force
laws [60, 6]. Only a few years later, Italian-French mathematician and as-
tronomer Joseph-Louis Lagrange re-formulated the Newtonian mechanics:
the motion of objects are seen as extreme paths of an energy function that
is defined on a configuration space. This new perspective adds a layer of
understanding. For instance, light rays could be seen to take the path that
minimizes the time it takes from the light source to the observation point.
The trajectory is in this sense optimal. Einstein did also recognize the gen-
eralizations of Newton’s theory in his theory of general relativity, noting
that a weak gravitational field and slowly moving particles experience the
classical potential (the 1/𝑟 2 law) that Newton formulated [74].

Einstein’s theory of gravity emphasized that the standard reference of
movement was freely falling particles, rather than “free” particles as in the
classical mechanics theory [79]. Consequently, the “old” theory could only
be local; a freely falling particle in New Zeeland is a different reference
compared to a freely falling particle in Scandinavia, yet both situations are
bounded by the same physical laws. The physical laws have to transform
geometrically. And not just that: Einstein realized that physical objects
influence the geometry. He was the first to understand correctly how
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heavy bodies, such as planets, create a curved spacetime. By comparing
the apparent positions of stars which appear near the Sun on the sky (in
daylight during an eclipse) to their positions as determined at night (when
their light does not pass by the Sun), the light deflection that Einstein pre-
dicted could be observed. In 1919, the first experimental results confirmed
those predictions. These experiments produced the image in Figure 1.1,
showing a trace of light that curves around the Sun.

Figure 1.1: Obser-
vations of light de-
flection in 1919.1

The mathematical framework that made it possible for
Einstein and his collaborators2 to adequately describe the
physical laws of spacetime is differential geometry. In
short, spacetime is an object with “intrinsic” time and
length units, but the observations of time and length de-
pends on the position and movement of the observer.
Moreover, gravity distinguishes freely falling particles
from others; only the freely falling objects experience a
flat spacetime. In spacetime, “flat” roughly means that
space is measured against the up, right and forward direc-
tions, while time is a separate measurement. On Earth’s
surface as well as in many physically relevant situations,
however, space and time is not flat. General relativity makes sense of this
using a metric, that is, a (possibly curved) notion of directions and time,
coming from differential geometry. The only way to combine gravity and
spacetime geometry is through differential geometry.

Just shortly after the publication of general relativity in 1915, Einstein
and others formulated the laws of spacetime using the formalism that
Lagrange initiated in the late 18th century. The Einstein field equations in
vacuum, for instance, were discovered to be extreme paths of metrics to

1Image source: F. W. Dyson, A. S. Eddington, and C. Davidson, “A Determination of
the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the
Total Eclipse of May 29, 1919” Philosophical Transactions of the Royal Society of London.
Series A (1920): 291-333.

2There are still debates over how much Einstein worked together with others, espe-
cially his first wife Mileva Marić.
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the following integral:

𝑆 [g] =
∫
𝐷

𝑅`g,

where `g is the volume form associated to g, the integral runs over space-
time 𝐷 and 𝑅 is the spacetime (scalar) curvature [74]. The important note
to make is that mathematics that was developed for mechanics now ap-
plied to new physical theories. It could reveal new structure. Equations of
motion, which were of interest to Newton, Lagrange, Einstein and many
others, also had a meaning in the sense of optimality. They were the
shortest or fastest or least energy consuming motions. But how could
they know which integrals that were relevant? And which equations were
they looking for? The answers are usually complicated. In some instances,
the equation itself is the “first principle”, the starting point of the theory,
while in many – if not most – the leading argument for the theory is
the optimality; nature’s objects behave according to “least action” or to
minimize energy or maximize entropy.

In some cases, the equations of motions are well-known for a very long
time even if no one knows about their “optimality.” The Euler equations of
incompressible hydrodynamics, for instance, were one of the first partial
differential equations to be written down. They were derived from princi-
ples of mass conservation (that is, matter cannot disappear) and Newton’s
laws of motion. In the 1960s, Arnold found the optimality principle of
these equations: they are the shortest path, measured by a right-invariant
metric on the group of diffeomorphisms preserving the volume element
of the domain [1]. For a detailed description, see Chapter 5 of this thesis.

One fundamental problem, apart from deriving equations and assert their
validity based on physical principles or modeling considerations, is to
solve the equations. Solving equations might require special techniques
or the development of new techniques. In either case, if the equations are
solved, there could remain questions about the properties of the solutions.
Einstein encoutered these problems after publishing the field equations
of general relativity. Did the solutions behave physically? In particular,
would matter propagate at a speed that is bounded by the speed of light?
A number of scientists would spend many years to prove that Einstein’s
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field equations admit “nice” solutions. Some of the concerns that Einstein
and others were working on had to do with coordinates; it seemed as
if the equations could be expressed in two different coordinate systems
and separate into different solutions even if they had agreed up until
they did not anymore. The solution seemed to be non-unique. After a
couple of decades, the problem was resolved by writing the equations as
an initial value problem [68]. Even if that work required many years of
collaborative effort, it was logical; as Isenberg [37] writes: “Ever since
Newton’s formulation of particle mechanics over three hundred years ago,
one of the most widely used methods of modeling physical systems is
via an initial value formulation.” The basic initial value problem, much
simpler than what proved that the Einstein equations behaved nicely [24],
is usually written as

𝑦′(𝑡) = 𝑓 (𝑦, 𝑡), 𝑦 (0) = 𝑦0, (1.1)

where𝑦0 is the initial data and 𝑓 describes the rate of change of the solution
𝑦 (𝑡). In later chapters, such problems will emerge frequently, as there is
a very general, deterministic interpretation of the initial value problem:
If the current state, 𝑦, is known and it is known in which direction it is
heading at any time, then the future states can be predicted. At least, that
is what every scientist hopes that it will do. Considerable effort has been
made and is still made to ensure that initial value problems in fact make a
single (that is, unique), reliable prediction.3 Initial value problems are at
the heart of papers I, III and IV of the current thesis.

Among all ordinary differential equaions (ODEs) and initial value problems,
the following is probably considered the most basic starting point of the
theory:

𝑦′(𝑡) = 𝑎𝑦 (𝑡), 𝑦 (0) = 𝑦0, (1.2)

for some constant 𝑎. The unique solution is 𝑦 (𝑡) = 𝑦0𝑒
𝑎𝑡 , that is, if the rate

of change of the value 𝑦 is proportional to 𝑦 itself, then the solution is
exponential growth (for 𝑎 > 0) or decay (for 𝑎 < 0). It appears, however,

3Even so, if the predictions are reliable and unique, it could still happen that the
physical system itself is chaotic. Weather systems are good examples of that.
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that this equation limits our world far too much. In particular, based on
Newton’s laws of motion, it is necessary to write equations that govern
the acceleration of objects, which is a second order derivative of position
with respect to time. That is,

𝑦′′(𝑡) = 𝐹 (𝑦, 𝑡)

would be a very interesting problem. For instance, Hooke’s law for springs
says that the force is proportional to the spring’s extension, 𝐹 = −𝑘𝑦.
Combining this with Newton’s equations of motion, 𝑦′′ = −𝑘𝑦. In terms of
position and velocity, the equations of motion is a pair of equations: one
for the position and one for the velocity. Introduce the velocity 𝑣 = 𝑦′ and
write the equations:

𝑣′ = −𝑘𝑦
𝑦′ = 𝑣 .

Using matrix notation, as will be described in detail in Chapter 2, Hooke’s
law gives 𝒚′ = 𝐴𝒚. That is, the basic form of the initial value problem re-
mains. The solutions get more complex, since there are now two governing
equations. However, the criteria that determine if there exist well-behaved
solutions are formulated for systems of equations of any size just as well
as for the one-dimensional problem (1.2). Should the number of equations
be very large, the initial value problem could be difficult to analyze from
an algebraic point of view, but the idea still relies on the results from
the above weight-on-a-spring system. A greater challenge is posed by
inifinite-dimensional systems. Such systems appear naturally in some
modeling situations, such as dynamics of functions or shapes.

This thesis collects three articles that rely on game theory and one article in
shape analysis. Mathematicians at the division of applied mathematics will
probably argue that these articles are in “pure” mathematics, meaning that
they do not involve real-world data and can exist entirely as mathematical
investigations. But mathematicians in pure mathematics will probably
argue that the articles belong to the applied sciences, since the problems
and the analysis are formulated with the real world in mind. I will leave it
to the reader to decide on that matter. The two articlesDiversity strengthens
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competing teams and Decisions and disease: a mechanism for the evolution of
cooperation focus on the question about collaboration between individuals
or groups of individuals. Using game theory, they provide examples of how
individual-level interaction and collective-level dynamics are interfering
with each other. In Shape analysis via gradient flows on diffeomorphism
groups, we turn to another context. Here, the main question is how it is
possible to deform a shape and match it with another shape efficiently.
The fourth article, Team game adaptive dynamics, is again game theoretical
but the attention is on the dynamics of game strategies. This dynamics is
driven by the so-called “selection gradient” and it is not very far-fetched to
say that the ideas from shape analysis influenced the course of this work.

But what theoretical foundations are these articles based on? In each of
the articles, we argue for the existence of certain solutions to problems:
The first two articles prove the existence of equilibria, whereas the next
two articles prove the existence of a time evolution. The problems that
are solved in the articles are related to certain initial value problems or to
optimality. Two different initial value problems are solved: The evolution
away from an initial strategy and the evolution of shapes that deform
towards a “target shape”, for example a rectangle which is stretched and
squeezed into the shape of a disc. The next chapter provides a roadmap of
the mathematics that lead up to the articles of this thesis.



2
Background: linear algebra,
geometry and dynamics

You just take that one road the whole time... I hope they don’t
get lost. I’m so bad at giving directions.
—Glinda (inWicked, the musical)

This chapter introduces some of the ideas and the theory that underlies
the work behind this thesis’ articles. It begins with concepts from linear
algebra on the Euclidean space and game theory. The next sections sets the
notation and explains a few concepts from analysis and geometry. It is not
the intent to provide an extensive textbook on these topics, but I believe
that a background chapter might help the reader to see the connection
betweenwell-established results inmathematics and the results that belong
to this thesis. After all, mathematics is a very wide landscape and this
chapter should provide directions to make it easier to navigate.

2.1 Linear algebra

Consider a square matrix𝐴 with components in the complex numbers. Let
𝐼 be the identity matrix of size 𝑛 × 𝑛 with ones on the diagonal and zeroes

9
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elsewhere:

𝐼 =


1 0 . . . 0
0 1 . . . 0
...

. . . 0
0 0 . . . 1


.

If it acts on a vector in C𝑛 , it leaves the vector unchanged. In other words,
it represents the identity mapping 𝒚 ↦→ 𝒚. A vector in C𝑛 ,

𝒚 =


𝑦1
𝑦2
...

𝑦𝑛


,

is called an eigenvector of 𝐴 if there is a complex-valued number _ such
that the equation 𝐴𝒚 = _𝒚 has a solution 𝒚 which is not a zero vector.
Define the kernel of a matrix as the set of vectors {𝒚 ∈ C𝑛 : 𝐴𝒚 = 0},
where the 0 is the vector with all components zero. Rewriting 𝐴𝒚 = _𝒚

into (𝐴− _𝐼 )𝒚 = 0, eigenvectors are non-trivial vectors in the kernel space
of 𝐴 − _𝐼 .

The eigenvalues of a 𝑛 × 𝑛 square matrix 𝐴 are roots of the polynomial
det(𝐴 − _𝐼 ), which is of degree 𝑛. In general, any polynomial 𝑝 of degree
𝑛 has 𝑞 distict zeroes with 𝑞 ≤ 𝑛 and can be decomposed as 𝑝 (_) =

(_ − _1)𝑚1 (_ − _2)𝑚2 · ... · (_ − _𝑞)𝑚𝑞 , where each positive integer𝑚 𝑗 is
called the algebraic multiplicity of the eigenvalue _ 𝑗 . Then,

∑𝑞

𝑗=1𝑚 𝑗 = 𝑛.
The subspace of eigenvectors associated to the eigenvalue _ 𝑗 ,

𝐸_ 𝑗 = {𝒚 ∈ C𝑛 : 𝐴𝒚 = _ 𝑗𝒚},

is such that its dimension is less than or equal to the algebraic multiplicity
of _ 𝑗 . That is, dim ker(𝐴 − _ 𝑗 𝐼 ) ≤ 𝑚 𝑗 .

Generalized eigenvectors are vectors such that

(𝐴 − _𝐼 )𝑘𝒚 = 0, (𝐴 − _𝐼 )𝑘−1𝒚 ≠ 0 (2.1)

for some 𝑘 > 0. The vector in (2.1) would be called a 𝑘th order, or rank 𝑘 ,
generalized eigenvector. An eigenvector is a generalized eigenvector of
rank 1.
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Given an eigenvalue _ and a generalized eigenvector 𝒗𝑘 of rank 𝑘 , define
the set of vectors 𝒗1, ...𝒗𝑘 by

𝒗𝑘− 𝑗 = (𝐴 − _𝐼 ) 𝑗𝒗𝑘 , 𝑗 = 1, 2, ..., 𝑘 − 1.

This set is called a chain of generalized eigenvectors (of length 𝑘). Then,
the vector 𝒗 𝑗 is a generalized eigenvector or rank 𝑗 . One very useful
fact about chains of generalized eigenvectors is that they are linearly
independent sets. Moreover, if an eigenvalue _ has algebraic multiplicity
𝑚, then there exist ℓ chains of generalized eigenvectors, each of length
𝑘𝑞 , such that

∑
1≤𝑞≤ℓ 𝑘𝑞 = 𝑚 and such that the set of all these chains is a

linearly independent set.

2.1.1 Dynamical systems of ODEs

Models of mechanical systems are often formulated in the language of
linear algebra. The essential ingredients in these systems are – in particular
– masses and forces.

Figure 2.1: The force 𝐹 of a
spring is proportional to its ex-
tension 𝑥 .

One pioneer in the research field of mechan-
ics (and in many others, such as microscopy)
was Robert Hooke [65]. Hooke wrote “ut ten-
sio, sic vis” in 1678, meaning that the force
of a spring is proportional to its extension,
see Figure 2.1. By Newton’s laws, this would
mean that a weigth that is suspended on a
spring is accelerated at a rate proportional to
the displacement. Notice that the force is in
the opposite direction to the extension, that is, if 𝑥 is the extension, then
−𝑘𝑥 is the force. Here 𝑘 > 0 is the proportionality constant.

The dynamics of the weight-on-a-spring system is described by its position
and its velocity. The information given by 𝑥 at time 𝑡 reveals the state of the
system at this time; the available values of positions and velocities are the
possible configurations of the system. The time derivative of the position,
the velocity 𝑑𝑥/𝑑𝑡 , is denoted by ¤𝑥 , and the acceleration is 𝑑2𝑥/𝑑𝑡2 = ¥𝑥 .
Newton’s law of motion (𝑭 = 𝑚𝒂) and Hooke’s law conclude that the
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motion of the weight is described by𝑚 ¥𝑥 = −𝑘𝑥 . Introduce the notation
𝑎 = 𝑘/𝑚 and let 𝑥1 be the position, while the velocity is denoted by 𝑥2.
This leads to the equations

¤𝑥1 = 𝑥2

¤𝑥2 = −𝑎𝑥1.

The linear algebra formulation is given in terms of the matrix 𝐴 and the
vector 𝒙 whose components are 𝑥1 and 𝑥2. The dot over 𝒙 is the time
derivative applied to each component:

¤𝒙 = 𝐴𝒙, 𝒙 =

[
𝑥1
𝑥2

]
, 𝐴 =

[
0 1
−𝑎 0

]
.

Consider the spring and weight from the above example, this time with
an additional damping force, which is proportional to the velocity (that is,
a viscosity). The equations will be

¤𝑦1 = 𝑦2 (velocity)
¤𝑦2 = −𝑏𝑦2 − 𝑎𝑦1 (acceleration)

It is assumed that 𝑎, 𝑏 > 0. This system is equal to ¤𝒚 = 𝐴𝒚 for

𝐴 =

[
0 1
−𝑎 −𝑏

]
, 𝒚 =

[
𝑦1
𝑦2

]
The characteristic polynomial of 𝐴 is in this case det(𝐴 − _𝐼 ) = _2 +𝑏_ +𝑎.
In case the damping𝑏 is equal to 2

√
𝑎, the polynomial has only one real root

with algebraic multiplicity 2, namely _ = −
√
𝑎. The associated eigenvector

is

𝒗1 =

[
−1/

√
𝑎

1

]
.

One solution to the system ¤𝒚 = 𝐴𝒚 is therefore 𝒚(𝑡) = 𝒗1𝑒
−
√
𝑎𝑡 , since

then the time derivative is ¤𝒚(𝑡) = −
√
𝑎𝒗1𝑒

−
√
𝑎𝑡 = 𝐴𝒗1𝑒

−
√
𝑎𝑡 . Solving 𝒗1 =

(𝐴 − _𝐼 )𝒗2, a generalized eigenvector is obtained:

𝒗2 =

[
−1/𝑎

0

]
.
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It can be verified by direct computation that another solution to the system
¤𝒚 = 𝐴𝒚 is

𝒚(𝑡) = 𝑡𝒗1𝑒
−
√
𝑎𝑡 + 𝒗2𝑒

−
√
𝑎𝑡 .

There are now two solutions to the dynamical system, and if there are
initial conditions on the position and the velocity, that is on 𝑦1 and 𝑦2,
then it is necessary to include both solutions in the general solution. A
linear combination of the solutions is

𝒚(𝑡) = 𝑎1𝒗1𝑒
−
√
𝑎𝑡 + 𝑎2 (𝑡𝒗1 + 𝒗2) 𝑒−

√
𝑎𝑡

for two constants 𝑎1 and 𝑎2. At initial time, which is assumed to be 𝑡 = 0
for convenience,

𝒚(0) = 𝑎1𝒗1 + 𝑎2𝒗2 = 𝑎1

[
−1/

√
𝑎

1

]
+ 𝑎2

[
−1/𝑎

0

]
.

The velocity condition at 𝑡 = 0 will determine 𝑎1, since the second compo-
nent of 𝒗2 is zero, and then the position at 𝑡 = 0 determines 𝑎2.

In general, if 𝒗1, ..., 𝒗𝑘 is a chain of generalized eigenvectors to the matrix
𝐴, the following are solutions to ¤𝒚 = 𝐴𝒚 and they are linearly independent:

𝒚1(𝑡) = 𝒗1𝑒
_𝑡

𝒚2(𝑡) = (𝑡𝒗1 + 𝒗2)𝑒_𝑡
...

𝒚𝑘 (𝑡) =
(
𝑡𝑘−1

(𝑘 − 1)!𝒗1 + ... +
𝑡2

2
𝒗𝑘−2 + 𝑡𝒗𝑘−1 + 𝒗𝑘

)
𝑒_𝑡

A linear combination of these is a solution by the principle of superposition.
There is a very convenient way to write the general solution of a system of
linear ODEs with constant coefficients given initial conditions. The matrix
exponential𝑈 (𝑡) = 𝑒𝑡𝐴 of 𝐴 ∈ C𝑛×𝑛 is defined by

𝑒𝑡𝐴 =

∞∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐴𝑘 = 𝐼 + 𝑡𝐴 + 𝑡

2

2
𝐴2 + 𝑡

3

6
𝐴3 + ... (2.2)

where 𝐼 is the identity matrix of size 𝑛 × 𝑛. The series in (2.2) converges
for any matrix 𝐴 and 𝑡 . The matrix exponential 𝑒𝑡𝐴 is invertible for all 𝑡
and (𝑒𝑡𝐴)−1 = 𝑒−𝑡𝐴, and if 𝐴 is real-valued then 𝑒𝑡𝐴 is real-valued for all 𝑡 .
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Theorem: The solution to ¤𝒚 = 𝐴𝒚 with 𝒚(0) = 𝒚0 is 𝒚(𝑡) = 𝑒𝑡𝐴𝒚0.

In order to fully understand the matrix exponential and the properties
of the solution in this theorem, the next section introduces the Jordan
canonical form of the matrix 𝐴.

2.1.2 The Jordan canonical form

Every 𝑛 × 𝑛 matrix 𝐴 has a Jordan decomposition, 𝐴 = 𝑄𝐽𝑄−1, where 𝑄 is
an invertible matrix and 𝐽 is a block diagonal matrix. The columns of 𝑄
are generalized eigenvectors. Each block in 𝐽 is a so-called Jordan block.
If 𝑗 ≥ 1, define the Jordan block 𝐽 𝑗 (_) to be the 𝑗 × 𝑗 matrix with _s on the
main diagonal, 1s above the diagonal, and 0s elsewhere. That is,

𝐽1(_) =
[
_
]
, 𝐽2(_) =

[
_ 1
0 _

]
, 𝐽3(_) =


_ 1 0
0 _ 1
0 0 _

 , ... (2.3)

Putting the 1’s above the diagonal is a choice by convention, and it is
equally good to define these block matrices with 1’s below the diagonal.
The Jordan decomposition is unique up to reordering of the blocks and
the vectors in 𝑄 .

The matrix 𝐴 is diagonalizable when every Jordan block of 𝐴 is 1 × 1. In
that case, the characteristic polynomial of 𝐴 is a product of distinct factors
(_ − _ 𝑗 ), that is, in

det(𝐴 − _𝐼 ) = (_1 − _)𝑚1 (_2 − _)𝑚2 · ... · (_𝑞 − _)𝑚𝑞

all𝑚 𝑗 would equal 1 and 𝑞 = 𝑛. The algebraic multiplicity and the geomet-
ric multiplicity reveals some of the key information about the Jordan form
𝐽 .

• The algebraic multiplicity of _ 𝑗 is the number of _ 𝑗 ’s along the
diagonal of 𝐽 .

• The geometric multiplicity of _ 𝑗 is the number of Jordan blocks with
eigenvalue _ 𝑗 .
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In order to completely determine the Jordan form of a matrix, define the
“deficiency indices” 𝛿ℓ = dim ker(𝐴 − _𝐼 )ℓ . Let 𝑟 be the smallest integer
for which (𝐴 − _𝐼 )𝑟 = (𝐴 − _𝐼 )𝑟+1. Then compute 𝛿ℓ for ℓ = 1, 2, ..., 𝑟 . The
number of Jordan blocks of size ℓ is given by [64]

a1 = 2𝛿1 − 𝛿2, a𝑟 = 𝛿𝑟 − 𝛿𝑟−1

a 𝑗 = 2𝛿 𝑗 − 𝛿 𝑗+1 − 𝛿 𝑗−1 for 𝑗 = 2, 3, ..., 𝑟 − 1.

If𝐴 is a real matrix, then the characteristic polynomial has real coefficients
and any complex eigenvalue would therefore occur together with its com-
plex conjugate. In the above Jordan form, if 𝛼 + 𝑖𝛽 occurs on the diagonal,
there would also be just as many 𝛼 − 𝑖𝛽 on the diagonal. The matrices[

𝛼 𝛽

−𝛽 𝛼

]
and

[
𝛼 + 𝑖𝛽 0

0 𝛼 − 𝑖𝛽

]
(2.4)

are similar via the transformation,[
𝛼 𝛽

−𝛽 𝛼

]
=

1
2

[
1 1
𝑖 −𝑖

] [
𝛼 + 𝑖𝛽 0

0 𝛼 − 𝑖𝛽

] [
1 −𝑖
1 𝑖

]
. (2.5)

Therefore, if 𝐴 is a real matrix, it admits a real Jordan form, which instead
of having eigenvalues 𝛼 ± 𝑖𝛽 on the diagonal and 1s above has[

𝛼 𝛽

−𝛽 𝛼

]
(2.6)

on the diagonal and 2×2 identity matrices above those blocks [64]. Assume
that 𝐴 is 2𝑘 × 2𝑘 and has precisely 2𝑘 distinct eigenvalues _ 𝑗 = 𝛼 𝑗 + 𝑖𝛽 𝑗
and _̄ 𝑗 = 𝛼 𝑗 − 𝑖𝛽 𝑗 with complex generalized eigenvectors𝒘 𝑗 = 𝒖 𝑗 + 𝑖𝒗 𝑗 and
�̄� 𝑗 = 𝒖 𝑗 − 𝑖𝒗 𝑗 for 𝑗 = 1, 2, ..., 𝑘 . Here, 𝒖 𝑗 and 𝒗 𝑗 are the real and imaginary
parts of𝒘 𝑗 . Then the square matrix with columns

𝑃 =

(
𝒖1 𝒗1 𝒖2 𝒗2 ... 𝒖𝑘 𝒗𝑘

)
(2.7)

is invertible and

𝑃−1𝐴𝑃 = diag
(
𝑅 𝑗

)
, with 𝑅 𝑗 =

[
cos 𝛽 𝑗𝑡 sin 𝛽 𝑗𝑡
− sin 𝛽 𝑗𝑡 cos 𝛽 𝑗𝑡

]
.

This yields the real Jordan form of 𝐴. Every square, real matrix has a real
Jordan form.
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2.1.3 The fundamental solution to the Cauchy problem

Let 𝐴 be a real 𝑛 × 𝑛 matrix and let 𝒚0 be a given, fixed vector in R𝑛 and
consider the initial value problem

¤𝒚 = 𝐴𝒚, 𝒚(0) = 𝒚0. (2.8)

This is called a Cauchy problem, after Cauchy who correctly stated the
conditions needed for such problems to have a well-defined solution [30].

Consider a real eigenvalue _ and a 𝑘 × 𝑘 Jordan block matrix 𝐽 with all _
on the diagonal, that is,

𝐽 =



_ 1 0 ... 0
0 _ 1 ... 0
0 0 _ ... 0

...
. . .

0 0 0 ... _


.

Decomposing this into 𝐽 = 𝐷 + 𝑁 , where 𝐷 is the diagonal part of 𝐽 and
𝑁 is the 1s on the diagonal above the main diagonal. Then, 𝑁 is nilpotent
[26] of order 𝑘 (that is, 𝑁 𝑘−1 is not the zero matrix, but 𝑁 𝑘 is the zero
matrix). Moreover,

𝑒𝑡 𝐽 = 𝑒_𝑡𝑒𝑡𝑁 = 𝑒_𝑡



1 𝑡 𝑡2

2 ... 𝑡𝑘−1

(𝑘−1)!
0 1 𝑡 ... 𝑡𝑘−2

(𝑘−2)!
0 0 1 ... 𝑡𝑘−3

(𝑘−3)!
...

. . .
...

0 0 0 ... 1


. (2.9)

Recall that 𝐴 is assumed to be a real, square matrix, and the complex
eigenvalues therefore occur in pairs of complex conjugates. If there is an
eigenvalue pair 𝛼 ± 𝑖𝛽 then this pair produces the Jordan block

𝑒𝑡 𝐽 = 𝑒𝛼𝑡



𝑅 𝑡𝑅 𝑡2

2 𝑅 ... 𝑡𝑘−1

(𝑘−1)!𝑅

0 𝑅 𝑡𝑅 ... 𝑡𝑘−2

(𝑘−2)!𝑅

0 0 𝑅 ... 𝑡𝑘−3

(𝑘−3)!𝑅
...

. . .
...

0 0 0 ... 𝑅


, (2.10)
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where 𝑅 is the “rotation” 2 × 2 matrix[
cos 𝛽𝑡 sin 𝛽𝑡
− sin 𝛽𝑡 cos 𝛽𝑡

]
.

These are the forms of the Jordan blocks that are produced by the real
matrix 𝐴. The number of blocks are determined by the multiplicities and
deficiency indices for each eigenvalue. To each eigenvalue, there is a
sequence of generalized eigenvectors, as explained in §2.1.1. In order to
write down the solution to the problem (2.8), let 2𝑛 − 𝑘 be the size of the
matrices, that is, assume that 𝐴 is (2𝑛 − 𝑘) × (2𝑛 − 𝑘). If there are 𝑘 real
eigenvalues _ 𝑗 for 𝑗 = 1, 2, ..., 𝑘 , and complex eigenvalues _ 𝑗 = 𝛼 𝑗 + 𝑖𝛽 𝑗 ,
_̄ 𝑗 = 𝛼 𝑗 − 𝑖𝛽 𝑗 , for 𝑗 = 𝑘 + 1, ..., 𝑛, then there exists a basis of R2𝑛−𝑘 , namely

{𝒖1, 𝒖2, ..., 𝒖𝑘 , 𝒖𝑘+1, 𝒗𝑘+1, ..., 𝒖𝑛, 𝒗𝑛}. (2.11)

Here 𝒖1, ..., 𝒖𝑘 correspond to _ 𝑗 , 𝑗 = 1, ..., 𝑘 while the complex eigenvalues
𝛼 𝑗 ± 𝑖𝛽 𝑗 have eigenvectors 𝒖𝑘+1 ± 𝑖𝒗𝑘+1, ..., 𝒖𝑛 ± 𝑖𝒗𝑛. Let 𝑃 be the square
matrix with the columns of (2.11). Then, the solution to the above Cauchy
problem is

𝒚(𝑡) = 𝑃 diag
(
𝑒𝑡 𝐽𝑘

)
𝑃−1𝒚0,

where 𝐽𝑘 are the Jordan blocks [64]. This implies that each component of
the solution 𝒚(𝑡) is a linear combination of either

𝑡 𝑙𝑒𝛼 𝑗 𝑡 cos(𝛽 𝑗𝑡) or 𝑡 𝑙𝑒𝛼 𝑗 𝑡 sin(𝛽 𝑗𝑡)

where 0 ≤ 𝑙 ≤ 𝑘 − 1 and _ 𝑗 = 𝛼 𝑗 + 𝑖𝛽 𝑗 produces a 𝑘 × 𝑘 block of type (2.9)
if 𝛽 𝑗 = 0 or, otherwise, a 2𝑘 × 2𝑘 block of type (2.10). If 𝑘 = 1 in all
these blocks, there are no polynomials 𝑡 𝑙 in the components and 𝐴 is
called semi-simple. That is, 𝐴 is called semi-simple if the Jordan form of 𝐴
contains only diagonal 1’s or 𝑅’s. Assuming 𝐴 is semi-simple and that its
eigenvalues have non-positive real parts, the Cauchy problem (2.8) has a
bounded solution for all 𝑡 > 0. On the other hand, even if the eigenvalues
of 𝐴 have non-positive real parts, if 𝐴 is not semi-simple then there exists
a 𝒚0 such that |𝒚(𝑡) | → ∞ as 𝑡 → ∞.



18 Chapter 2. Background: linear algebra, geometry and dynamics

2.2 Foundations of non-cooperative games

Game theory is the study of decision-making in a context with specific
rules. Decisions are made by players and these players have a notion
of payoff such that the rational choices from each player’s perspective
are increasing the payoff. Oftentimes, the rational choice from a player’s
perspective is not constituting the best collective action; what benefits
everyone themost is perhaps not achieved because it does not seem rational
from an individual perspective. These insights are highlighted by game
theory thanks to its simple rules.

One of the situations that were formalized in the founding work Theory of
Games and Economic Behaviour [76] was a 2-player game that is such that
one player’s win is the other’s loss, in other words, the payoff to either
player is the negative of the payoff to the other: If player𝐴 receives 𝑝 then
player 𝐵 receives −𝑝 . For this reason, the game is called zero-sum, as the
payoffs sum up to zero. More generally, some games are “constant sum
games” if the payoffs are adding up to the same number, or, say, 100%.

There are two formulations for two-person zero-sum games with a finite
number of alternatives for each player: the normal form and the extensive
tree form [32]. The normal form is also called strategic form [53]. The
payoffs can be arranged in a matrix in some games, giving the matrix
form games, and §2.2.1 will contain an example of this based on climate
agreements. The payoffs in normal form games are determined only on
the basis of the strategies that each player chooses “here and now”. In tree
form games, on the contrary, the players’ strategies and payoffs can be
determined or influenced in a time sequence and the choices of strategies
can depend on the previous events [53]. Only the normal form games are
considered in this thesis. Then, a payoff is a mapping that outputs a real
number based on all the players’ strategies. The set of possible strategies
may possess almost any structure, such as a finite set of values, a subset
of R𝑛 , a set of measurable functions, etc.

We continue this chapter with one of the most important results of game
theory, namely an explanation of the tragedy of the commons. In a group
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of decision-makers, the tragedy of the commons is in general a situation
where no participant seeks to cooperate for the common good even though
such cooperation would benefit every participant.

2.2.1 A motivating example in game theory

Climate change is a major issue that requires negotiation between coun-
tries. Consider a meeting between two countries that can either defect
from an issued agreement or decide to cooperate within the agreement.
If both cooperate, they each get a climate benefit of 6 (in some unit, e.g.
a monetary currency or natural resources), whereas if only one of them
cooperates they receive a lower climate benefit of 3. Cooperating requires
the country to take action to mitigate further global warming, and that
costs 4. That is, if both cooperate, both get 6 − 4 = 2. If both defect, both
get 0 − 0 = 0. If one cooperate and the other defects, the cooperator gets
3 − 4 = −1, and the defector gets 3 − 0 = 3. Here is a table summarizing
these payoffs:

Player A’s strategy Cooperate Cooperate Defect Defect
Player B’s strategy Cooperate Defect Cooperate Defect
Player A’s payoff 2 -1 3 0
Player B’s payoff 2 3 -1 0

Now each country has the following options to consider: If the other
country decides to cooperate, then defecting guarantees a benefit of 3
while cooperating gives 2. If the other country decides to defect, then
defecting comes with a benefit of 0 and cooperating gives −1. That is, if
the other’s strategy is not known then it is better to defect. Both players
will therefore defect as they do not trust the other player to cooperate
even tough the common good would benefit most if both would cooperate.
This situation is the essential mechanism of the tragedy of the commons.

A. Tucker named the above game the prisoners’ dilemma (PD) to popularize
game theory to the psychology community. M. Flood and M. Dresher
discussed games with the structure of prisoner’s dilemma in 1950, and so
did also Nash, but none of them published their ideas immediately [46].
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It is standard procedure to write these possible outcomes in a matrix as in
the figure below. Here, 𝐶 denotes the option “cooperate” and 𝐷 denotes
“defect”. Each box contains the gain to each player such that the top-right
number belongs to the player 𝐵 and the bottom-left number goes to player
𝐴. This example is symmetric since both players have the same set of
actions and are paid the same payoffs.

2 3

2 -1

-1 0

3 0

C D

C

D

player 𝐵
pl
ay
er
𝐴

Symmetric games are those games where every player can choose from
the same set of actions and the payoffs depend only on all the strategies
employed, not on which player is playing them. In a symmetric game, the
game payoffs can be represented by the matrix

𝑀 =

[
R S
T P

]
. (2.12)

The entries are the payoffs to player 𝐴, where the top row is the payoff if
𝐴 plays “cooperate” and the bottom row correspond to 𝐴 playing “defect”.
The payoff matrix for the other player is the transpose matrix. In the
above case, R = 2, S = −1, T = 3 and P = 0. Now we can define what the
prisoner’s dilemma is mathematically: It is the situation

T > R > P > S. (2.13)

2.2.2 Strategies and Nash’s concept of equilibrium

A distribution of probabilities over the set of possible actions is called a
mixed strategy. In the example above there were two options (𝐶 and 𝐷) for
each player, so if a player plays 𝐶 with probability 𝑥 then the same player
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chooses 𝐷 with probability 1−𝑥 . In this case we can compute what payoff
is expected. The payoff which 𝐴 expects when 𝐴 plays the mixed strategy
𝒙 = (𝑥, 1 − 𝑥) and 𝐵 plays 𝒚 = (𝑦, 1 − 𝑦) is then 𝑝𝑦 (𝑥) = 𝒙 · 𝑀𝒚, where
𝑀 is the matrix (2.12). A pure strategy assigns probability 1 to only one
option. In the prisoner’s dilemma, pure strategies correpond to chosing
either cooperate or defect with full certainty.

In non-cooperative game theory, players do not reveal their intentions to
other players and they therefore act only to maximize the individual payoff
that they receive. In contrast to this, cooperative games follow a different
set of rules. There are no individual payoffs but the game has an overall
value which is determined by the values of the “coalitions” that form in
the game. This thesis will only concern non-cooperative games, but the
interested reader is encouraged to consult the founding works by Shapley
[72] for an introduction to cooperative games.

In this thesis we consider repeated games with the possibility to change
action when a new turn is played as long as there is a fixed probability
distribution of choices. It is assumed that history is irrelevant in the sense
that the game stays in normal form, that is, the strategies are not dependent
on previous events.

The concept of rational decision from an individual’s point of view is
captured mathematically by the notion of equilibrium. In an equilibrium,
no player has incentive to change strategy. Borel formulated and studied
game equilibria in the early 20th century for two-player games and same
did von Neumann during the 20’s though the 40’s. The equilibrium concept
was extended to include 𝑛 players by J. Nash in the 50’s. [32] Nash proved
that any game with 𝑛 players has a symmetric equilibrium [58] and a
game’s equilibrium is therefore often called Nash equilibrium. In the above
example, there is an equilibrium when both players defect. Mathematically,
an equilibrium is defined as a set of strategies such that no player has
incentive to change strategy, assuming the other players’ strategies are
unchanged. If we let {𝑓𝑖}𝑛𝑖=1 denote a set of strategies and 𝑝𝑖 denotes the
payoff to player 𝑖 , then {𝑓𝑖}𝑛𝑖=1 is an equilibrium if for every 𝑖

𝑝𝑖 (𝑓1, ..., 𝑓𝑛) = max
𝑔𝑖∈𝑆

𝑝𝑖 (𝑓1, ..., 𝑓𝑖−1, 𝑔𝑖, 𝑓𝑖+1, ..., 𝑓𝑛). (2.14)
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Here, 𝑆 is the set of possible strategies. The strategies in an equilibrium
are called equilibrium strategies or sometimes just optimal [53]. As an
example, an equilibrium in a 2-player game is a pair of strategies (𝑓1, 𝑓2)
meeting the conditions

𝑝1(𝑓1, 𝑓2) ≥ 𝑝1(𝑔1, 𝑓2)
𝑝2(𝑓1, 𝑓2) ≥ 𝑝2(𝑓1, 𝑔2)

for arbitrary strategies 𝑔1 and 𝑔2. If the game is zero-sum, then 𝑝1(𝑓1, 𝑓2) +
𝑝2(𝑓1, 𝑓2) = 0.

In Chapter 3, the above symmetric matrix game plays a particularly impor-
tant role in the context of changing behaviors during a disease outbreak.
Chapter 4 of this thesis investigates the Nash equilibria of a game of
competing teams.

2.2.3 A motivating example in population dynamics

In 1973, almost thirty years after the publication of von Neumann and
Morgenstern’s founding work, Maynard Smith and Price [52] asked: “How
can one explain such oddities as snakes that wrestle with each other, deer
that refuse to strike ‘foul blows’, and antelope that kneel down to fight?”
They used game theory and their newly developed notion of evolutionarily
stable strategies (ESS) to explain why fighting between members of the
same species usually do not escalate unless the opponent aim to cause
severe injury. In this context, the strategies “cooperate” and “defect” are
termed “conventional conflict” and “dangerous conflict” and the fights
are represented by a matrix-game, similar to the prisoner’s dilemma. The
payoff is interpreted as a Darwinian fitness, that is, a survival advantage.

At an ESS, if a mutant appears then the resident (or “original”) population
performs better against the mutant than the mutant itself. In equations,
this means that there is an additional stability condition apart from the
equilibrium condition. Let 𝑝 (𝑓 , 𝑔) be the payoff to an individual playing
strategy 𝑓 against another strategy 𝑔. Then, 𝑓 is an ESS if [67]

• (Equilibrium condition.) 𝑝 (𝑓 , 𝑓 ) ≥ 𝑓 (𝑔, 𝑓 ) for all 𝑔,
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• (Stability condition.) If 𝑔 performs equally well against 𝑓 , then 𝑓
performs better against 𝑔 than 𝑔 against 𝑔, that is,

𝑝 (𝑔, 𝑓 ) = 𝑝 (𝑓 , 𝑓 ) =⇒ 𝑝 (𝑓 , 𝑔) > 𝑝 (𝑔,𝑔).

The importance of an ESS is understood in an ecological context; if the
strategies of the players are not rational choices but rather implications
of their characteristics, which adhere to the laws of evolution, then the
strategies should have the possibility to change in a way similar to the
genetic change that mutations introduce in nature. This process can result
in strategies that are different from the strategic games from the previous
section. The ESS conditions ensure that deviations from the equilibria gain
fitness from going back to the equilibrium. We will encounter a version
of these ideas in Chapter 3 when we consider games in combination with
epidemiological models and identify the stable steady state solutions. In
the next section, we specify some of the mathematical models of the laws
of evolution from the literature. Moreover, the ESS concept is revisited.

2.2.4 Evolutionary game theory

Recall that a mixed strategy is a probability distribution over the options
in a game. Consider a mixed strategy with two options, 𝒙 = (𝑥, 1 − 𝑥),
and denote by 𝑝𝑥 the payoff for playing “cooperate” when the opponent
assumes the strategy 𝒙 . Assuming that the other player in a 2-player game
can choose from the same set of actions, what is a reasonable change of
strategy if we start at the mixed strategy 𝑥?

Replicator equations of symmetric games

In most classical applications, game theory focuses on decisions made by
rational players using cognitive choice. On the contrary, the evolutionary
application of games specifies a process of natural selection—individuals
aremerely the performers of an inherited program. In a 2-player symmetric
game with two options, such as prisoner’s dilemma, a mixed strategy 𝑥
(meaning that the other option is chosed with probability 1 − 𝑥) could
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develop according to a “replicator’s equation”, which is formulated as

¤𝑥 = 𝐹 (𝑥) (2.15)

andwhich specifies the change of the strategy. Since the game is symmetric
and 2-player, only one payoff function is needed. A common assumption
is that the strategy changes in proportion to the payoff’s linear deviation
from the mean value of the payoff, that is 𝐹 (𝑥) = 𝑥 (𝑝𝑥 − ⟨𝑝⟩), where 𝑝𝑥 is
the payoff when the strategy 𝑥 is played by the other player and ⟨𝑝⟩ is the
mean value of the payoffs. Recall the payoff matrix from §2.2.1. Let 𝒙 be
the vector with components 𝑥 and 1 − 𝑥 and let 𝑒1 be the first unit vector:

𝒙 =

[
𝑥

1 − 𝑥

]
, 𝑒1 =

[
1
0

]
.

Then
𝑑

𝑑𝑡
𝑥 = 𝑒1 ·𝑀𝒙 − 𝒙 ·𝑀𝒙 .

The right hand side of this equation is the difference between playing
cooperate as a pure strategy and playing cooperate with probability 𝑥 .
Thus, in the symmetric 2 × 2 matrix-form game we have

¤𝑥 = 𝑥
(
R𝑥 + S(1 − 𝑥) − R𝑥2 − S𝑥 (1 − 𝑥) − T𝑥 (1 − 𝑥) − P(1 − 𝑥)2)

= 𝑥
(
R𝑥 (1 − 𝑥) + S(1 − 𝑥)2 − T𝑥 (1 − 𝑥) − P(1 − 𝑥)2)

= 𝑥 (1 − 𝑥)
(
R𝑥 + S(1 − 𝑥) − T𝑥 − P(1 − 𝑥)

)
= −𝑥 (1 − 𝑥)

(
(T − R)𝑥 + (P − S) (1 − 𝑥)

)
. (2.16)

We can write ¤𝑥 = −𝑥 (1 − 𝑥) (𝐷𝑔𝑥 + 𝐷𝑟 (1 − 𝑥)), where 𝐷𝑔 = T − R and
𝐷𝑟 = P − S. A special case of the PD game is the Donor-Recipient game
which has 𝐷𝑔 = 𝐷𝑟 , meaning that the payoff advantage of defection over
cooperation is independent of the opponent’s choice [75]. Denoting the
payoff disadvantage by 𝐶 (for “cost”) we write 𝐷𝑔 = 𝐷𝑟 = 𝐶 . In the donor
recipient game,

¤𝑥 = −𝑥 (1 − 𝑥)𝐶. (2.17)

Without loss of generality, one can assume that P = 0. In accordance with
the PD-condition (2.13) we require

−𝐶 < 0 < R < R +𝐶 (2.18)
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and the payoff matrix becomes[
R −𝐶

R +𝐶 0

]
. (2.19)

In the next sections, we will formulate the dynamics using R and 𝐶 only,
and forget S, T and P.

Network reciprocity

Networks in games represent contacts between players. The contacts
enable the players to interact, so for instance, in the context of disease
spreading there are a limited number of possible transmission paths of the
disease. We make the following assumptions:

1. What two-steps neighbors do is irrelevant.

2. We assume the graph is degree-regular, meaning that each node has
the same number, 𝑘 , of connecting edges.

Under these assumptions the cost𝐶 in the donor recipient game decreases
by 𝑁 (𝑘), where [75, 61]

𝑁 (𝑘) = R𝑘 − 2𝐶
(𝑘 + 1) (𝑘 − 2) , 𝑘 ≠ 2, 𝑁 (2) = R.

Notice that 𝑁 (𝑘) → 0 if 𝑘 → ∞, which reflects the fact that unlimited
network connectivity recovers the network-free, well-mixed situation.
Now the equation (2.16) modifies by the change of the payoff matrix to

¤𝑥 = −𝑥 (1 − 𝑥) (𝐶 − 𝑁 (𝑘)). (2.20)

By (2.18), the game is of PD type when 𝑁 (𝑘) − 𝐶 < 0 < 𝑅, which is
equivalent to

0 < 𝑅 < 𝐶 (𝑘 − 1). (2.21)

That is, the benefit of mutual cooperation compared to the cost of mitiga-
tion determines whether the game is of PD type. For example, when R/𝐶
is large, corresponding to low costs of mitigation and/or high benefit of
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mutual cooperation, the game may cease to be of PD type for values of
sufficiently small values of 𝑘 such that (2.21) breaks. For sufficiently large
values of 𝑘 , in particular for well-mixed populations, the game is always
of PD type.

2.2.5 Adaptive dynamics

The concept of ESS is limited to a “static” analysis; it says when an equilib-
rium enjoys stability, but it does not reveal if the ESS are established by any
dynamics over time. In order to use game theory as a model for natural
evolution, it is interesting to construct a game theoretical natural selection
process. This motivated the field of adaptive dynamics, which considers
the evolution of game strategies and whether the dynamics of the game
at hand can establish the equilibrium strategies. Several scenarios are
possible in a population which experiences evolution through the process
of mutations: the new mutations can lead to a complete trait exchange
of the population, or the population remains as is (that is, the mutation
goes extinct), or the species diverges into separate species, and so on. The
analysis by Geritz et al. [25] starts at the following assumptions:

• Individuals replicate, that is, their offspring is identical to the parent.

• The success of a mutation can be inferred from its growth rate inside
the resident population while the mutation is still very rare.

• Mutations are small but random.

The analysis proceeds via the assumption that a population is in a sta-
tionary state before the (rare) mutation appears, and it is further assumed
that the result of this mutation is known before the occurence of any new
mutations. This reflects a kind of scale-separation on the evolutionary
time axis [45]. The initial growth rate of a mutant is called the invasion
fitness. If the species can be characterized by a scalar-valued trait, let 𝑥 be
the resident population’s trait and denote by 𝑠𝑥 (𝑦) the invasion fitness of
a mutant having trait 𝑦. If 𝑠𝑥 (𝑦) > 0, the mutant experiences growth but if
𝑠𝑥 (𝑦) < 0 it will go extinct. The invasion fitness is usually represented in
a so-called pairwise invasibility plot, which displays the sign of 𝑠𝑥 (𝑦) as a
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function of both 𝑥 and 𝑦. Since the resident population is assumed to be in
a stationary state, the line 𝑥 = 𝑦 shows 𝑠𝑥 (𝑥) = 0. Referring to Figure 2.2,
the black lines show the zero level set of 𝑠𝑥 (𝑦). Whenever a line crosses
the diagonal, there is an evolutionarily singular strategy, 𝑥∗. If 𝑠𝑥∗ (𝑦) < 0
for all 𝑦 except 𝑥∗ in a neighborhood around 𝑥∗, the singular strategy is
locally ESS-stable in the sense of Maynard Smith [51]. This leads to the
criterion

𝜕2𝑠𝑥 (𝑦)
𝜕𝑦2 < 0

on the invasion fitness at 𝑥 = 𝑦 = 𝑥∗ for it to be ESS stable. Another
stability criterion is the convergence stability of a singular strategy 𝑥∗. It is
defined in a neighborhood around 𝑥∗ such that if 𝑥 < 𝑦 < 𝑥∗ or 𝑥∗ < 𝑦 < 𝑥

then 𝑠𝑥 (𝑦) > 0, which means that a strategy close to a singular strategy
would be invaded by mutants that approach the singular strategy. If 𝑠𝑥 (𝑦)
is at least twice differentiable, convergence stability is characterized by

0 <
𝜕2𝑠𝑥 (𝑦)
𝜕𝑥2 − 𝜕2𝑠𝑥 (𝑦)

𝜕𝑦2 .

Convergence stability and ESS stability are independent criteria in the
sense that there are singular strategies that are stable in either way but
not the other, and they could be both ESS stable and convergence stable.
In an initially monomorphic population, singular strategies that are con-
vergence stable but not ESS stable are evolutionary attractors, but as soon
as the singular strategy is established, the population tends diverge. It is a
branching point [25].

Dieckmann et al. [15] proposed a framework for adaptive dynamics on
function-valued traits based on approximations to stochastic models, as-
suming that (a) mutations make small changes to the traits, and that (b)
the natural selection occurs much faster than the typical time between the
appearance of novel mutations, so that each population is monomorphic.
The functions that represent traits belong to a trait space (a function space)
which is selected based on modeling principles. They consider functions
of a single, real variable.

The result of these considerations is that a trait function 𝑓 develops ac-
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Figure 2.2: A pairwise invasibility plot.

cording to the differential equation

𝑑

𝑑𝑡
𝑓 (𝑥) = 1

2
`𝑓𝑛 𝑓

∫
Ω
𝜎2
𝑓
(𝑥,𝑦)𝑔𝑓 (𝑦) 𝑑𝑦, (2.22)

which is called the canonical equation of function-valued adaptive dynam-
ics. It applies to rare mutations that make small and symmetric changes
to the function traits. Here, `𝑓 is the probability distribution of mutations
around the trait 𝑓 , and 𝑛 𝑓 denotes the equilibrium population size of the
resident population. The variance-covariance function 𝜎2

𝑓
captures cross-

dependences if changes at 𝑓 (𝑦) influence the change at 𝑓 (𝑥). The domain
of integration, Ω, is selected based on the model. The function 𝑔𝑓 is the
selection gradient

𝑔𝑓 (𝑥) =
𝑑

𝑑𝑡

����
𝑡=0
𝑠 𝑓 (𝑓 + 𝑡𝛿𝑥 ),

where 𝑠 𝑓 (ℎ) is the invasion fitness of ℎ in the resident population 𝑓 and
𝛿𝑥 is the Dirac delta centered at 𝑥 . The stability modes (ESS stability,
convergence stability, etc.) can now be characterized for the Hessian
matrix of 𝑠 𝑓 (ℎ) by taking functional derivatives with respect to 𝑓 and/or
ℎ. For details, see Dieckmann et al. [15].
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2.3 Analysis: Banach spaces, integration

One of the standard examples of a Banach space is the space of contin-
uous functions on the unit interval [0, 1]. The Euclidean space R𝑛 of
𝑛-dimensional vectors with the inner product

⟨𝒙,𝒚⟩ =
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

is also a Banach space. More generally, a Banach space is a normed,
complete vector space. A vector space 𝑉 is said to be normed if any point
𝑥 in 𝑉 can be associate to a non-negative number ∥𝑥 ∥ called the norm of
𝑥 via a norm function ∥ · ∥ such that

1. ∥𝑥 + 𝑦∥ ≤ ∥𝑥 ∥ + ∥𝑦∥ for all 𝑥,𝑦 ∈ 𝑉 ,

2. ∥𝑎𝑥 ∥ = |𝑎 | ∥𝑥 ∥ if 𝑥 ∈ 𝑉 and 𝑎 is a scalar, and

3. ∥𝑥 ∥ > 0 whenever 𝑥 ≠ 0.

A norm induces a distance, or metric, between points in the vector space
via 𝜌 (𝑥,𝑦) = ∥𝑥 − 𝑦∥. Given a metric 𝜌 on 𝑉 , the open ball with radius 𝑟
centered at 𝑥 is the set 𝐵𝑟 (𝑥) = {𝑦 ∈ 𝑉 : 𝜌 (𝑥,𝑦) < 𝑟 }. A topological space
is a set with a definition of open sets in the set, for example normed vector
spaces, since a distance function provides a natural topology to a vector
space [71].

A linear map from a set 𝑉 into (possibly another set) 𝑈 is a mapping
𝐴 : 𝑉 → 𝑈 such that 𝐴(𝑎𝑥 + 𝑏𝑦) = 𝑎𝐴(𝑥) + 𝑏𝐴(𝑦) for all 𝑥,𝑦 ∈ 𝑉 and all
scalars 𝑎 and 𝑏. Linear maps of 𝑉 into the scalars of 𝑉 are called linear
functionals. Given two normed vector spaces (or more generally two
topological vector spaces) 𝑉 and𝑈 and a linear map 𝐴 : 𝑉 → 𝑈 , this map
is said to be bounded if it maps bounded sets into bounded sets. In other
words, 𝐴 is bounded means that 𝐴(𝐸) is a bounded subset of𝑈 for every
bounded set 𝐸 in 𝑉 . The space of bounded linear mappings on 𝑉 can be
given the structure of a vector space under the addition operation and
multiplication by scalars. A special case is the bounded linear mappings
from𝑉 into the scalars, denoted by𝑉 ∗ and which is usually called the dual
space of 𝑉 .
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If𝑉 and𝑈 are normed spaces and 𝐴 is a bounded, linear mapping𝑉 → 𝑈 ,
the operator norm can be defined by ∥𝐴∥ = sup{∥𝐴𝑣 ∥ : 𝑣 ∈ 𝑉 , ∥𝑣 ∥ ≤ 1}.
Then the space of bounded linear mappings from 𝑉 into 𝑈 is a normed
space, and it is a Banach space if also𝑈 is a Banach space.

2.3.1 Measurable functions

Let (𝑋,M) and (𝑌,N) be measurable spaces and let 𝑓 : 𝑋 → 𝑌 be a
function. Define the set 𝑓 −1(𝐸) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ∈ 𝐸}. The function
𝑓 is said to be (M,N) measurable if 𝑓 −1(𝐸) ∈ M for every 𝐸 ∈ N . In
particular, 𝑓 is called Lebesgue measurable when 𝑓 : R→ C and N = BC
is the Borel 𝜎-algebra andM is 𝜎-algebra of Lebesgue measurable sets.

A so-called simple function on a set 𝐸 is a measurable function that takes
only finitely many (real) values. It is usually written as a sum over its level
sets. Let 𝑎𝑖 with 𝑖 = 1, 2, ..., 𝑛 be the values that a simple function𝜓 takes
on 𝐸. Then𝜓−1(𝑎𝑖) = 𝐸𝑖 are the level sets, and

𝜓 =

𝑛∑︁
𝑖=1

𝑎𝑖 𝜒𝐸𝑖 .

Here, 𝜒𝑈 is defined as the indicator function: 𝜒𝑈 (𝑥) = 1 whenever 𝑥 ∈ 𝑈
and if 𝑥 is not in𝑈 then 𝜒𝑈 (𝑥) = 0. The integral of𝜓 is defined as∫

𝐸

𝜓 =

𝑛∑︁
𝑖=1

𝑎𝑖` (𝐸𝑖),

where ` is the Lebesgue measure. If 𝑓 is a bounded, real-valued function
defined on a set 𝐸 of finite measure, define the lower and upper Lebesgue
integral of 𝑓 over 𝐸 to be

sup
{∫

𝐸

𝜓 : 𝜓 is simple and𝜓 ≤ 𝑓 on 𝐸
}
,

and
inf

{∫
𝐸

𝜓 : 𝜓 is simple and𝜓 ≥ 𝑓 on 𝐸
}
.

If the lower and upper Lebesgue integral coincide, their value is the
Lebesgue integral of the function 𝑓 over 𝐸, and 𝑓 is said to be integrable.
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Whenever 𝑓 is a bounded function on a closed, bounded interval on the
form [𝑎, 𝑏], then 𝑓 is Riemann integrable over [𝑎, 𝑏] and it is also Lebesgue
integrable over [𝑎, 𝑏]. Moreover, the two integrals are equal [70]. The
integral is in this case denoted in the usual way by

∫ 𝑏

𝑎
𝑓 𝑑𝑥 , where 𝑑𝑥 is

the Lebesgue measure. Also, if 𝑓 is a bounded, measurable function on
a set of finite measure 𝐸, then 𝑓 is integrable over 𝐸. If 𝑓 is not defined
on a set of finite measure, one approximates 𝑓 with functions which are
defined on sets of finite measures. In that case, 𝑓 is called integrable if the
Lebesgue integral of 𝑓 is finite.

The Lebesgue dominated convergence theorem states that a pointwise con-
vergence can be moved inside an integral under the following conditions:
Assume that {𝑓𝑛} is a sequence of measurable functions on 𝐸 and that
there exists an integrable function 𝑔 on 𝐸 such that |𝑓𝑛 | ≤ 𝑔 on 𝐸 for all
𝑛. If 𝑓𝑛 → 𝑓 pointwise almost everywhere on 𝐸, then 𝑓 is integrable on 𝐸
and

lim
𝑛→∞

∫
𝐸

𝑓𝑛 =

∫
𝐸

𝑓 .

A consequence of the Lebesgue dominated convergence theorem is the
following condition for differentiating under the integral. Let 𝑓 (𝑥, 𝑡) be
defined on the square domain Ω = {(𝑥, 𝑡) : 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1}
and assume that it is a measurable function of 𝑥 for each fixed value of
𝑡 . Assume that 𝜕𝑓 /𝜕𝑡 exists and that there is a function 𝑔 ∈ 𝐿1 [0, 1] such
that ����𝜕𝑓𝜕𝑡 (𝑥, 𝑡)���� ≤ 𝑔(𝑥) on Ω.

Then

𝑑

𝑑𝑡

∫ 1

0
𝑓 (𝑥, 𝑡) 𝑑𝑥 =

∫ 1

0

𝜕𝑓

𝜕𝑡
(𝑥, 𝑡) 𝑑𝑥.

The existence of 𝜕𝑓 /𝜕𝑡 can be ensured if 𝑓 (𝑥, ·) is absolutely continuous
[23]. Moreover, if 𝜕𝑓 /𝜕𝑡 is continuous as a function of 𝑡 for each fixed 𝑥 ,
then 𝐹 (𝑡) =

∫ 1
0 𝑓 (𝑥, 𝑡) 𝑑𝑥 is continuous.
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2.3.2 The Lp spaces

Now fix a measure space (𝑋,M, `). Let 𝑓 be an integrable function on 𝑋
and define, for 𝑝 in the range 1 ≤ 𝑝 < ∞,

∥ 𝑓 ∥𝑝 =
(∫

𝑋

|𝑓 (𝑥) |𝑝 𝑑`
)1/𝑝

. (2.23)

We define the 𝐿𝑝 functions on 𝑋 to be the set of integrable functions on
𝑋 for which ∥ 𝑓 ∥𝑝 is finite, and upon identifying 𝑓 = 𝑔 whenever 𝑓 = 𝑔

almost everywhere. The norm (2.23) makes 𝐿𝑝 (𝑋 ) into a normed vector
space. The norm for 𝑝 = ∞ is

∥ 𝑓 ∥∞ = inf{𝐶 ≥ 0 : |𝑓 (𝑥) | ≤ 𝐶 for almost every 𝑥}.

For every 𝑝 ≥ 1, these 𝐿𝑝 spaces of functions are Banach spaces [23].

The following is the Hölder inequality: For any 𝑝 in the range 1 < 𝑝 < ∞,
define 𝑝′ by 1/𝑝 + 1/𝑝′ = 1. If 𝑓 and 𝑔 are measurable functions on 𝑋 , then

∥ 𝑓 𝑔∥1 ≤ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑝′ .

In particular, if 𝑓 ∈ 𝐿𝑝 (𝑋 ) and 𝑔 ∈ 𝐿𝑝
′ (𝑋 ), then 𝑓 𝑔 ∈ 𝐿1(𝑋 ). Hölder’s

inequality holds with equality if and only if 𝑎 |𝑓 |𝑝 = 𝑏 |𝑔 |𝑝′ for non-zero
constants 𝑎 and𝑏. The result ∥ 𝑓 𝑔∥1 ≤ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑝′ can be extended to 𝑝 = ∞
with 𝑝′ = 1.

The inclusion 0 < 𝑝 < 𝑞 ≤ ∞ =⇒ 𝐿𝑝 [0, 1] ⊃ 𝐿𝑞 [0, 1] holds on [0, 1]
and on any set of finite measure. For instance, if 𝑓 has support on the
(finite) interval 𝐼 , by taking the indicator function on 𝐼 , 𝜒𝐼 , the Hölder
inequality gives ∥ 𝑓 ∥1 = ∥ 𝑓 𝜒𝐼 ∥1 ≤ ∥ 𝑓 ∥2∥𝜒𝐼 ∥2, meaning that if 𝑓 ∈ 𝐿2 [0, 1]
then 𝑓 ∈ 𝐿1 [0, 1]. Similarly, ∥ 𝑓 ∥2 ≤ 𝐶 ∥ 𝑓 ∥∞, for some 𝐶 > 0, on finite
sets. The converse is not true. For instance, 𝑓 (𝑥) = 1/

√
𝑥 is in 𝐿1 [0, 1] but

𝑓 2 = 1/𝑥 is not.

If 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑝′ = 1 then for every bounded, linear functional
𝐴 on 𝐿𝑝 (𝑋 ), there exists 𝑔 ∈ 𝐿𝑝′ (𝑋 ) such that𝐴(𝑓 ) is given by the integral
against 𝑔, that is

𝐴(𝑓 ) =
∫
𝑋

𝑓 𝑔 𝑑`.



§2.3 Analysis: Banach spaces, integration 33

Let𝑋 and𝑌 bemetric spaces with metrics 𝜌 and 𝜎 , respectively. Amapping
𝑓 from 𝑋 to 𝑌 is said to be uniformly continuous if for every Y > 0 there
is a 𝛿 > 0 such that 𝜌 (𝑥, 𝑥′) < 𝛿 implies that 𝜎 (𝑓 (𝑥), 𝑓 (𝑥′)) < Y for all 𝑥
and 𝑥′ in 𝑋 . Let 𝑋 be the interval [𝑎, 𝑏] with possibly 𝑎 = −∞ and with
the Lebesgue measure and the usual metric. Let 𝑓 ∈ 𝐿1 [𝑎, 𝑏] and define 𝐹
on [𝑎, 𝑏] by

𝐹 (𝑥) =
∫ 𝑥

𝑎

𝑓 (𝑦) 𝑑𝑦.

Then 𝐹 is uniformly continuous and has finite variation [34]. Conversely,
if −∞ < 𝑎 < 𝑏 < ∞ and 𝐹 is absolutely continuous then 𝐹 is differentiable
a.e. and 𝐹 (𝑥) − 𝐹 (𝑎) =

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 for some 𝑓 ∈ 𝐿1 [𝑎, 𝑏].

Let (𝑋,M, `) and (𝑌,N , a) be two measure spaces and consider the inte-
gral operator 𝐾 : 𝐿𝑞 (𝑌 ) → 𝐿𝑝 (𝑋 )

𝐾𝑓 (𝑥) =
∫
𝑌

𝐾 (𝑥,𝑦) 𝑓 (𝑦) 𝑑a (𝑦).

Here, we denote the integral kernel as well as the operator by 𝐾 . Let
H𝑝𝑞 (𝑋,𝑌 ) be the set of integral operators 𝐾 such that

𝑘 (𝑥) = ∥𝐾 (𝑥, ·)∥𝑞′ < ∞

for `-almost all 𝑥 ∈ 𝑋 and 𝑘 ∈ 𝐿𝑝 (𝑋 ). Then, for finite 𝑝 and 𝑞 > 1 the 𝐿𝑝

norm of 𝑘 makesH𝑝𝑞 (𝑋,𝑌 ) a Banach space [38]. This norm is the “double
norm”

∥𝐾 ∥ =
(∫

𝑋

(∫
𝑌

|𝐾 (𝑥,𝑦) |𝑞′ 𝑑a (𝑦)
)𝑝/𝑞′

𝑑` (𝑥)
)1/𝑝

.

If 1 ≤ 𝑝 < ∞ and 1 < 𝑞 ≤ ∞ then every 𝐾 ∈ H𝑝𝑞 (𝑋,𝑌 ) is a compact
operator 𝐿𝑞 (𝑌 ) → 𝐿𝑝 (𝑋 ). This applies in particular to H22(𝑋,𝑌 ) which
are the so-called Hilbert-Schmidt operators [38].

Let𝑊 𝑠,𝑝 (𝑈 ) be the Sobolev space of functions on the open subset𝑈 ⊂ R𝑛
such that their (weak) derivatives of 𝑠 th order are contained in 𝐿𝑝 (𝑈 ). Here,
𝑝 ≥ 1 and 𝑠 is a positive integer. Let 𝛼 be a multi-index 𝛼 = (𝛼1, ..., 𝛼𝑛)
that defines

𝜕𝛼 =
𝜕𝛼1

𝜕𝑥𝛼1
· · · 𝜕

𝛼𝑛

𝜕𝑥𝛼𝑛
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and |𝛼 | = 𝛼1 + ... + 𝛼𝑛 . The usual norm on𝑊 𝑠,𝑝 (𝑈 ) is

∥ 𝑓 ∥ =
∑︁
|𝛼 |≤𝑠

∥𝜕𝛼 𝑓 ∥𝐿𝑝 .

Now𝑊 𝑠,𝑝 (𝑈 ) is a Banach space. If 𝑝 = 2, it is also a Hilbert space and it is
usually denoted by 𝐻 𝑠 (𝑈 ).

2.4 The theory of ordinary differential equa-
tions

In section 2.1, the subject of study was the linear system ¤𝒚 = 𝐴𝒚, where 𝐴
was a matrix. More generally, consider the equation

¤𝒚 = 𝐹 (𝒚) (2.24)

where 𝐹 could be non-linear and as usual ¤𝒚 = 𝑑𝒚/𝑑𝑡 . The properties of 𝐹
will impact properties of the system, such as whether there is a unique
solution or not. The system (2.24) is called autonomous, since 𝐹 does
not depent explicitly on 𝑡 . A non-autonomous system is on the form
¤𝒚 = 𝐹 (𝒚, 𝑡).

Example 2.1. Consider the 1-dimensional variable 𝑦 and the mapping
𝐹 (𝑦) = 3𝑦2/3. Given the initial value 𝑦 (0) = 0 and the ordinary differential
equation ¤𝑦 = 3𝑦2/3, there is not a unique solution. Indeed, both 𝑦 = 0 and
𝑦 (𝑡) = 𝑡3 solve the equation and satify the initial condition.

The derivative ¤𝒚 is of first order, which might seem like a restriction,
but higher order derivatives can be “removed” by the introduction of
more variables. In section REF, the second order differential equation
𝑦′′ + 𝑏𝑦′ + 𝑎𝑦 = 0 that represents a damped oscillation on the position-
variable 𝑦 was reformulated as a system of first order equations:

¤𝑦1 = 𝑦2 (velocity)
¤𝑦2 = −𝑏𝑦2 − 𝑎𝑦1 (acceleration)

where 𝑎 and 𝑏 are constants. (The constants 𝑎 and 𝑏 are temporary in the
sense that they will have a different meaning in possibly every paragraph.)
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If there is a system of 𝑘 equations of order ℓ , it is equivalent to a system of
𝑘ℓ first order equations.

The system (2.24) has a unique solution starting at 𝒚0 under certain con-
ditions. A solution is a differentiable curve 𝒚(𝑡), which maps 𝑡 in some
interval 𝑎 < 𝑡 < 𝑏 to a vector 𝒚(𝑡) such that (2.24) is satisfied identically.
Given a solution 𝒚 of (2.24) defined on some open interval 𝐼1 and another
solution 𝒙 defined on some open interval 𝐼2 such that 𝐼1 ⊊ 𝐼2, then 𝒙 is
called a proper extension of 𝒚 if 𝒙 (𝑡) = 𝒚(𝑡) for all 𝑡 ∈ 𝐼1. If a solution
curve has no proper extension, it is called a maximal solution.

Definition 2.1. If 𝐹 maps from a normed linear space 𝑉1 into another
normed linear space 𝑉2 then 𝐹 is said to be continuous at 𝒚 ∈ 𝑉1 if for all
Y > 0 there exists a 𝛿 > 0 such that 𝒙 ∈ 𝑉1 and ∥𝒙 −𝒚∥ < 𝛿 implies that

∥𝐹 (𝒚) − 𝐹 (𝒙)∥ < Y.

Continuity of 𝐹 is sufficient to ensure that (2.24) admits a solution, but
it might not be unique. There is a stronger condition, which guarantees
uniqueness:

Definition 2.2. Let 𝑈 be an open subset of R𝑛 . A function 𝐹 : 𝑈 → R𝑛 is
said to satisfy a Lipschitz condition on𝑈 if there is a constant 𝐾 > 0 such
that for all 𝒚, 𝒙 ∈ 𝑈

∥𝐹 (𝒚) − 𝐹 (𝒙)∥ ≤ 𝐾 ∥𝒚 − 𝒙 ∥.

In particular the latter of the above definitions will help to solve the
question about when there exists a solution to the initial value problem
¤𝒚 = 𝐹 (𝒚), 𝒚(0) = 𝒚0. The following is the famous Picard-Lindelöf theorem,
proving existence and uniqueness [8].

Theorem: If 𝐹 : 𝐸 → 𝐸 satisfies a Lipschitz condition globally on 𝐸,
∥𝐹 (𝒚) − 𝐹 (𝒙)∥ ≤ 𝐾 ∥𝒚 − 𝒙 ∥ for all 𝒚, 𝒙 ∈ 𝐸, then given any 𝒚0 ∈ 𝐸, there
exists a solution𝒚 : [0,∞) → 𝐸 to the initial value problem ¤𝒚 = 𝐹 (𝒚), with
initial data 𝒚(0) = 𝒚0.
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In the case of non-autonomous systems, ¤𝒚 = 𝐹 (𝒚, 𝑡), the above theorem
holds with a small modification. The Lipschitz condition is in that case
usually not global. Local existence and uniqueness is however also in-
teresting, and as the next theorem shows, a local solution continues to
infinite time if there is no “blow up” scenario within finite time.

Theorem: If 𝐹 : 𝑈 × R → R𝑛 satisfies a Lipschitz condition on the first
variable, there exists a maximal solution 𝒚 : 𝐼 → 𝐸 with 𝐼 = (𝑎, 𝑏), and

• either 𝑏 = ∞ or one has ∥𝒚(𝑡)∥ → ∞ as 𝑡 → 𝑏−

• either 𝑎 = −∞ or one has ∥𝒚(𝑡)∥ → ∞ as 𝑡 → 𝑎+.

Example 2.2. Consider 𝑑𝑦/𝑑𝑡 = 𝑥2 with 𝑦 (0) = 1/𝑏, where 𝑏 > 0 is a
constant. Then

𝑦 (𝑡) = 1
𝑏 − 𝑡

and the maximal solution is defined on 𝑡 < 𝑏, since 𝑦 (𝑡) → ∞ as 𝑡 → 𝑏.

Notice that 𝐹 (𝑦) = 𝑦2 does not satisfy a Lipschitz condition globally on R,
but on bounded subsets of R it does.

A function 𝜙 : 𝑈 × 𝐼 → R𝑛 is called a flow if 𝜙 (𝑥, 0) = 𝑥 and 𝜙 (𝑥, 𝑡 + 𝑠) =
𝜙 (𝜙 (𝑥, 𝑠), 𝑡) whenever both sides of this equation are defined. In particular,
if 𝑡 ↦→ 𝜙 (𝑥, 𝑡) is a family of solutions of the autonomous differential
equation ¤𝑥 = 𝐹 (𝑥) with 𝑥 (0) = 𝑥0 such that 𝜙 (·, 0) is the identity mapping,
then 𝜙 is a flow [13].

2.4.1 Linear stability analysis

A system of ODEs, ¤𝑦 = 𝑤 (𝑦), where 𝑤 is a function R𝑛 → R𝑛 , with a
stationary point𝑦0 may be analyzed close to the stationary point by Taylor
expansion. Write 𝑠 = 𝑦 − 𝑦0. Then ¤𝑠 = ¤𝑦 and since 𝑦0 is a stationary point
𝑤 (𝑦0) = 0, so

¤𝑠 ≈ 𝑤 (𝑦0) + 𝐷𝑤 (𝑦0) (𝑦 − 𝑦0) + ... = 𝐷𝑤 (𝑦0)𝑠 + ... (2.25)

Here, 𝐷𝑤 is a square matrix. By the results in §2.1.2, the solution to the
linear equation ¤𝑠 = 𝐷𝑤 𝑠 has components on the form

𝑡𝑘𝑒_ 𝑗 𝑡 .
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For such components, |𝑡𝑘𝑒_ 𝑗 𝑡 | → 0 when 𝑡 → ∞ if Re(_ 𝑗 ) < 0. Linear
stability analysis of ODEs concludes that if the eigenvalues of 𝐷𝑤 at 𝑦0
has negative real parts then the perturbations 𝑠 decay and the stationary
point 𝑦0 is stable.

2.4.2 ODEs on general Banach spaces

Much of the above theory applies to functions on Banach spaces in general.
Consider a Banach space 𝐸 and an open set𝑈 in 𝐸. A mapping 𝐹 : 𝑈 → 𝐸

which is at least𝐶1-smooth will be called a (time-independent) vector field
on𝑈 . At each point on𝑈 , its value is interpreted as a vector. Let 𝑢0 ∈ 𝑈 .
An integral curve for 𝐹 with initial condition 𝑢0 is a function 𝛼 : 𝐼 → 𝑈

which is at least 𝐶1-smooth and maps some open interval 𝐼 onto a curve
in𝑈 , solving

𝛼′(𝑡) = 𝐹 (𝛼 (𝑡)), with 𝛼 (0) = 𝑢0.

We state the Picard-Lindelöf theorem in the context of Banach spaces.
The vector field 𝐹 is said to satisfy a Lipschitz condition on𝑈 if there is a
constant 𝐿 > 0 such that

∥𝐹 (𝑢) − 𝐹 (𝑣)∥ ≤ 𝐿∥𝑢 − 𝑣 ∥ for all 𝑢, 𝑣 ∈ 𝑈 .

Theorem: Let 𝐹 : 𝑈 → 𝐸 satisfy a Lipschitz condition on𝑈 with constant
𝐿 > 0. Let 𝑢0 ∈ 𝑈 , 0 < 𝑎 < 1 and assume that the closed ball of radius 2𝑎,
𝐵2𝑎 (𝑢0) is contained in 𝑈 , and that 𝐹 is bounded by a constant 𝐾 > 0 on
this ball. If 𝑏 is a positive number such that 𝑏 < 𝑎/𝐾 and 𝑏 < 1/𝐿, then
there exists a unique local flow 𝜙 : 𝐵𝑎 (𝑢0) × (−𝑏, 𝑏) → 𝑈 of 𝐹 , that is, for
each 𝑢 ∈ 𝐵𝑎 (𝑢0) the map 𝛼 : 𝑡 ↦→ 𝜙 (𝑥, 𝑡) satisfies

𝛼′(𝑡) = 𝐹 (𝛼 (𝑡))

and 𝛼 (0) = 𝑢.

In order to prove this theorem, define the set of continuous maps from
[−𝑏,𝑏] into 𝐵2𝑎 (𝑢0) starting at 𝑢 ∈ 𝐵𝑎 (𝑢0),

𝛼 : [−𝑏, 𝑏] → 𝐵2𝑎 (𝑢0), 𝛼 (0) = 𝑢.
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This is a complete metric space when equipped with the supremum norm.
Denote it by𝑀 and define the mapping 𝑇 by

𝑇𝛼 (𝑡) = 𝑢 +
∫ 𝑡

0
𝐹
(
𝛼 (𝑠)

)
𝑑𝑠.

Then 𝑇𝛼 is continuous and 𝑇𝛼 (0) = 𝑢. Moreover,

∥𝑇𝛼 (𝑡) − 𝑢∥ ≤ 𝑏𝐾 < 𝑎

so 𝑇𝛼 is bounded. Thus 𝑇 : 𝑀 → 𝑀 . It is also a contraction map, since for
any two curves 𝛼, 𝛽 ∈ 𝑀 ,

∥𝑇𝛼 −𝑇𝛽 ∥ ≤ 𝑏 sup ∥ 𝑓 (𝛼) − 𝑓 (𝛽)∥ < 𝑏𝐿∥𝛼 − 𝛽 ∥ < ∥𝛼 − 𝛽 ∥ .

Therefore, there exists a fixed point 𝛼 = 𝑇𝛼 , which proves the theorem.

Just like before, the “blow up” criterion holds for maximal solutions.

The flow of a vector field is as smooth as the vector field itself. That is, if
the vector field 𝐹 is of class 𝐶𝑝 with 1 ≤ 𝑝 ≤ ∞, then the flow of 𝐹 is also
of class 𝐶𝑝 on its domain of definition [47].

2.5 Differential geometry and Lie groups

A vector in R𝑛 is typically represented by an 𝑛-tuple, where the 𝑖th coor-
dinate in this tuple is the coefficient of the 𝑖th unit vector in R𝑛 . The 𝑖th
unit vector is of course 𝑒𝑖 = (0, 0, ..., 1, ..., 0), that is, the vector with zeroes
everywhere except at position 𝑖 , where it is 1. The inner product in R𝑛 is
defined via ⟨𝑒𝑖, 𝑒 𝑗 ⟩ = 𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝛿𝑖𝑖 = 1. That is, for two
vectors 𝒙,𝒚 ∈ R𝑛 ,

⟨𝒙,𝒚⟩ =
𝑛∑︁

𝑖, 𝑗=1
𝑥𝑖𝑦 𝑗 ⟨𝑒𝑖, 𝑒 𝑗 ⟩ =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 . (2.26)

The “length” of a vector 𝒙 is defined as ∥𝒙 ∥ =
√︁
⟨𝒙, 𝒙⟩. In R2 there is an

intuitive formula for the inner product of two vectors: Let \ be the angle
between the vectors 𝒙 and 𝒚. Then ⟨𝒙,𝒚⟩ = ∥𝒙 ∥∥𝒚∥ cos\ . In short, the
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inner product gives the space the structure of geometry via distances and
angles.

Euclidean geometry is based on the space R𝑛 with the inner product (2.26).
The idea in Riemannian geometry is to impose the Euclidean structure on
sets locally (at every point). The circle, for example, can be equipped with
coordinates and an inner product – but the coordinate expressions might
change along the circle. Therefore, it is essential to differential geometry
to define how coordinates transform over the sets. This is the motivation
for the following definitions.

Given a set𝑀 , a chart on𝑀 is a subset𝑈 of𝑀 together with a bijective,
continuous map 𝜙 : 𝑈 → R𝑛. Two overlapping charts (𝑈 ,𝜙) and (𝑉 ,𝜓 )
are said to be compatible if 𝜙 (𝑈 ∩𝑉 ) and 𝜓 (𝑉 ∩𝑈 ) are open subsets of
R𝑛 and if the composite maps 𝜓 ◦ 𝜙−1 and 𝜙 ◦ 𝜓−1 are smooth. Charts
provide R𝑛-coordinates on𝑀 and many properties are to be understood
from their properties on R𝑛 . For instance, the smoothness of function 𝑓 on
𝑀 is defined via 𝑓 (𝜙−1(𝑥)) on a neighborhood of 𝑥 ∈ R𝑛 . The composite
maps𝜓 ◦ 𝜙−1 and 𝜙 ◦𝜓−1 are change-of-coordinates mappings.

If the following two conditions are met, 𝑀 is said to be a differentiable
manifold: (a) The set𝑀 is covered by a set of charts. (b)𝑀 can be written
as a union of compatible charts. Condition (b) defines what it means that
there exists an atlas on𝑀 . If the charts map to R𝑛 the manifold is called
𝑛-dimensional.

In the above construction, R𝑛 is called the modeling space. To gener-
alize the manifold concept to infinite dimensional modeling spaces, R𝑛

is replaced by a topological vector space. Typical choices are Hilbert
spaces, Banach spaces or Fréchet spaces. Further discussion about infinite-
dimensional geometry will be postponed to the end of this chapter.

Let F𝑚 be the set of smooth functions defined on a neighborhood of𝑚 ∈ 𝑀 .
If a linear map 𝑣 : F𝑚 → R satisfies the derivation property (Leibniz rule,
or “the product rule”) at𝑚,

𝑣 (𝑓 𝑔) = (𝑣 𝑓 )𝑔(𝑚) + 𝑓 (𝑚) (𝑣𝑔),
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then 𝑣 is called a tangent vector at𝑚 ∈ 𝑀 . The tangent space of𝑀 at𝑚 is
denoted by 𝑇𝑚𝑀 and it is defined as the set of derivations of F𝑚 . In any
chart (representing𝑚) the coordinate expression for 𝑣 is given by

𝑣 𝑓 = 𝑣𝑖
𝜕𝑓

𝜕𝑥𝑖
, (2.27)

where 𝑣𝑖 = 𝑣 (𝑥𝑖) and 𝑥𝑖 is the coordinate function that maps𝑚 to the 𝑖th
coordinate of the chart. Given a differentiable curve 𝛾 (𝑡) on𝑀 such that
𝛾 (0) =𝑚 ∈ 𝑀 , the curve defines a vector 𝑣 ∈ 𝑇𝑚𝑀 by 𝑣 = ¤𝛾 (0), meaning
that

𝑣 𝑓 =
𝑑

𝑑𝑡
𝑓 (𝛾 (𝑡))

����
𝑡=0

and in components, 𝑣𝑖 = 𝑑𝛾 𝑖/𝑑𝑡 |𝑡=0, where 𝛾 𝑖 is the 𝑖th coordinate of 𝛾 .
The tangent space 𝑇𝑚𝑀 may therefore be defined as equivalence classes
of curves sharing the same tangent vector at𝑚 ∈ 𝑀 , and this agrees with
the above definition of the tangent space.

Let 𝜑 be a𝐶1-smooth map from a neighborhood𝑈 of𝑚 ∈ 𝑀 to a manifold
𝑁 (which could be the same manifold𝑀). The tangent map of 𝜑 at𝑚 ∈ 𝑀
is defined as the map [48]

𝜑∗ : 𝑇𝑚𝑀 → 𝑇𝜑 (𝑚)𝑁

given by relation (𝜑∗𝑣) (𝑓 ) = 𝑣 (𝑓 ◦ 𝜑) for any 𝑓 ∈ F𝜑 (𝑚) . This map is
sometimes called the push-forward of 𝜑 since it “pushes” the vector at
𝑇𝑚𝑀 to a vector at 𝑇𝜑 (𝑚)𝑀 . If 𝜑 is a bijective and invertible map such that
also the inverse map 𝜑−1 is differentiable, it is called a diffeomorphism.

The tangent bundle of𝑀 is the disjoint union

𝑇𝑀 =
⋃
𝑚∈𝑀

{𝑚} ×𝑇𝑚𝑀

together with a projection map 𝜋 : 𝑇𝑀 → 𝑀 onto the basepoint, that is,
𝜋 (𝑣) = 𝑚 for any 𝑣 ∈ 𝑇𝑚𝑀 . The tangent bundle contains vector fields,
which define vectors at each point𝑚 ∈ 𝑀 . A vector field is a linear map
from on the space of𝐶∞-smooth functions on𝑀 such that this linear map
satisfies the derivation property

𝑣 (𝑓 𝑔) = 𝑔𝑣 (𝑓 ) + 𝑓 𝑣 (𝑔).
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A Riemannian metric on a differential manifold 𝑀 is an inner product
g𝑚 ( , ) on each tangent space 𝑇𝑚𝑀 that may vary smoothly with the
basepoint𝑚 ∈ 𝑀 . That means that in a chart with coordinate 𝑥1, ..., 𝑥𝑛 ,

g𝑚

(
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑖

)
= g𝑖 𝑗 (𝑥1, ..., 𝑥𝑛)

is a smooth function. Equivalently, if 𝑢, 𝑣 are vector fields on 𝑀 , it is
required that𝑚 ↦→ g𝑚 (𝑢, 𝑣) is a smooth function on𝑀 .

Consider, for example, the product metric. Let𝑀1 and𝑀2 be two smooth
manifolds with metrics g1 and g2. The Cartesian product manifold,𝑀1×𝑀2,
has a natural metric defined via the projections 𝜋1 : 𝑀1 ×𝑀2 → 𝑀1 and
𝜋2 : 𝑀1 ×𝑀2 → 𝑀2. Then

g(𝑞,𝑝) (𝑢, 𝑣) = g𝑞 (𝑑𝜋1𝑢,𝑑𝜋1𝑣) + g𝑝 (𝑑𝜋2𝑢,𝑑𝜋2𝑣)

for all (𝑞, 𝑝) ∈ 𝑀1 ×𝑀2 and 𝑢, 𝑣 ∈ 𝑇(𝑞,𝑝) (𝑀1 ×𝑀2). Here, 𝑑𝜋1 and 𝑑𝜋2 are
the tangent maps of 𝜋1 and 𝜋2. The 𝑛-dimensional torus T𝑛 with the metric
here is called the flat torus.

A co-vector is a linear map𝑇𝑚𝑀 → R. Co-vector fields are linear mappings
of vector fields which are F -linear in the sense that a co-vector 𝜔 satisfies
𝜔 (𝑓 𝑣) = 𝑓 𝜔 (𝑣) for 𝑓 ∈ F (𝑀) and a vector field 𝑣 . It turns out that
𝜔 (𝑣) (𝑚) at a point 𝑚 ∈ 𝑀 only depends on 𝑣𝑚 ∈ 𝑇𝑚𝑀 . Rank 2 tensor
fields of type (0, 2) are bi-linear maps

𝑇𝑀 ×𝑇𝑀 → F (𝑀),

which is F -linear in each variable. One important example on the Eu-
clidean space R𝑛 is the dot-product. Mixed tensor fields of type (𝑟, 𝑠) are
multilinear maps on 𝑟 copies of the co-tangent bundle 𝑇 ∗𝑀 of co-vectors
and 𝑠 copies of the tangent bundle 𝑇𝑀 , see Ilisie [36] for details.

The differential of a function 𝑓 : 𝑀 → R is a map 𝑑 𝑓 (the “differential of
𝑓 ”) defined locally by 𝑑 𝑓𝑚 (𝑣) = 𝑣 𝑓 for any vector 𝑣 ∈ 𝑇𝑚𝑀 . The map 𝑑 𝑓𝑚
is linear on 𝑇𝑚𝑀 and is called a co-vector or a 1-form. If 𝑓 is smooth then
𝑑 𝑓 is a smooth co-vector field. The local coordinates of 𝑑 𝑓 are the partial
derivatives (in a chart) of 𝑓 . Define the map 𝜑∗ by 𝜑∗(𝑑 𝑓 ) = 𝑑 (𝑓 ◦ 𝜑),
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where 𝜑 is a diffeomorphism. This defines the so-called pullback map,
which is the adjoint map of the push-forward map 𝜑∗. The Lie derivative
of a tensor field 𝜏 in direction of a vector field 𝑣 is defined by

𝐿𝑣𝜏 =
𝑑

𝑑𝑡
𝜑∗
𝑡 𝜏

��
𝑡=0

where 𝜑𝑡 is the flow generated by 𝑣 , that is, the solution to ¤𝜑 = 𝑣 ◦ 𝜑 .

Given a Riemannian metric g and a vector field 𝑣 , a corresponding 1-form
g(𝑣, ·) is defined by the mapping 𝑢 ↦→ g(𝑣,𝑢). The components of the
1-form of 𝑣 are usually written as 𝑣𝑖 . Consequently, the inner product of
two vector fields 𝑢 and 𝑣 , via the metric g can be written as 𝑢𝑖𝑣𝑖 , where the
summation over 𝑖 is understood. This is the so-called Einstein notation.
For a 1-forms 𝜔 with components 𝜔𝑖 , the corresponding vector field has
the components 𝜔𝑖 = g𝑖 𝑗𝜔 𝑗 , where (g𝑖 𝑗 ) is the inverse matrix of (g𝑖 𝑗 ). The
metric extends to tensors of type (𝑟, 𝑠) by

g(𝑄, 𝑃) = g𝑖1, 𝑗1 ...g𝑖𝑟 , 𝑗𝑟g
𝑘1,𝑙1 ...g𝑘𝑠 ,𝑙𝑠𝑄𝑖1,...,𝑖𝑟

𝑘1,...,𝑘𝑠
𝑃
𝑗1,..., 𝑗𝑟
𝑙1,...,𝑙𝑠

The tangent map 𝜑∗ defines a transport of the metric called the pushfor-
ward metric. It is given by

(𝜑∗g)𝑝 (𝑢, 𝑣) = g𝜑−1 (𝑝)
(
𝑑𝜑−1𝑢,𝑑𝜑−1𝑣

)
for any 𝑢, 𝑣 ∈ 𝑇𝑝𝑀 .

The gradient of a function 𝑓 on𝑀 is the unique vector field∇𝑓 that satisfies

𝑑 𝑓 (𝑣) = g(∇𝑓 , 𝑣) for all vector fields 𝑣 ∈ 𝑇𝑀.

The gradient in Euclidean coordinates coincides with the gradient from
elementary calculus.

A 𝑘-form on a manifold𝑀 is a (0, 𝑘)-tensor which is antisymmetric under
the exchange of any pair of indices. The space of 𝑘-forms on𝑀 is denoted
by Ω𝑘 (𝑀). The so-called wedge product of a 𝑘-form 𝜔 and an 𝑙-form [

is denoted by 𝜔 ∧ [. As a product, it is associative and bilinear, and it
satisfies the commutation relation 𝜔 ∧ [ = (−1)𝑘𝑙[ ∧ 𝜔 . If 𝜔 is defined on
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an open subset𝑈 of R𝑛 then it can be written using the wedge product of
the differentials 𝑑𝑥𝑖 ,

𝜔𝑥 = 𝜙 (𝑥)𝑑𝑥1 ∧ 𝑑𝑥2 ∧ ... ∧ 𝑑𝑥𝑛,

where 𝜙 : 𝑈 → R is a function. The integral of 𝜔 is then defined as∫
𝑈

𝜔 =

∫
𝑈

𝜙 (𝑥) 𝑑𝑥1𝑑𝑥2... 𝑑𝑥𝑛 .

One proceeds to defined the integral over 𝑀 by means of an atlas on 𝑀
and partition on unity [48]. The Riemannian metric induces an 𝑛-form,
which in local coordinates is

`g =

√︃
det(g𝑖 𝑗 ) 𝑑𝑥1 ∧ ... ∧ 𝑑𝑥𝑛 .

Here, det(g𝑖 𝑗 ) is the determinant of the metric in coordinates.

2.5.1 Affine connection, tensors

A vector bundle over a topological space𝑀 is a topological space 𝐸 with
a surjective, continuous map 𝜋 : 𝐸 → 𝑀 that satisfies (a) the fiber 𝐸𝑚 =

𝜋−1(𝑚) has the structure of a vector space, and (b) there exists a local
trivialization of 𝐸 over any neighborhood𝑈 around𝑚 ∈ 𝑀 . One special
vector bundle is the tangent bundle 𝑇𝑀 over a smooth manifold 𝑀 . A
section of a vector bundle 𝜋 : 𝐸 → 𝑀 is a continuous map 𝑓 : 𝑀 → 𝐸 such
that 𝜋 (𝑓 (𝑚)) =𝑚 for all𝑚 ∈ 𝑀 . Then, a vector field on𝑀 is a section of
the tangent bundle of𝑀 . The set of all smooth (global) sections of a vector
bundle is a vector space under pointwise addition and scalar multiplication
[48]. The set of smooth sections of a vector bundle 𝜋 : 𝐸 → 𝑀 is usually
denoted by Γ(𝐸), except for some sections of special importance, like the
vector fields.

Let𝔛(𝑀) be the set of𝐶∞-smooth vector fields on𝑀 . An affine connection
is a mapping

∇ : 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀)

which is denoted (𝑢, 𝑣) ↦→ ∇𝑢𝑣 and satisfies the following properties: For
any smooth functions 𝑓 , 𝑔 ∈ F (𝑀) and any vector fields 𝑢, 𝑣,𝑤 ∈ 𝔛(𝑀),
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(i) ∇𝑓 𝑢+𝑔𝑣𝑤 = 𝑓 ∇𝑢𝑤 + 𝑔∇𝑣𝑤

(ii) ∇𝑢 (𝑣 +𝑤) = ∇𝑢𝑣 + ∇𝑢𝑤

(iii) ∇𝑢 (𝑓 𝑣) = 𝑓 ∇𝑢𝑣 + 𝑢 (𝑓 )𝑣

In other words, ∇𝑢𝑣 is a vector fields depending linearly on 𝑢 and 𝑣 . The
affine connection is F -linear in the first variable. It can be extended
to tensor fields, which leads to the notion of curvature and torsion (see
Straumann [74]).

Let𝛾 be a differentiable curve on𝑀 . There exists a correspondence between
a vector field 𝑣 along 𝛾 and another vector field, 𝐷𝑣/𝑑𝑡 , along the same
curve such that

(i) 𝐷
𝑑𝑡
(𝑢 + 𝑣) = 𝐷𝑢

𝑑𝑡
+ 𝐷𝑣

𝑑𝑡

(ii) 𝐷
𝑑𝑡
(𝑓 𝑣) = 𝑓 𝐷𝑣

𝑑𝑡
+ 𝑑 𝑓

𝑑𝑡
𝑣

(iii) If 𝑣 is induced by a vector field 𝑤 , that is 𝑣 (𝑡) = 𝑤 (𝛾 (𝑡)), then
𝐷𝑣
𝑑𝑡

= ∇𝑑𝛾/𝑑𝑡𝑤 .

The vector field 𝐷𝑢
𝑑𝑡

is called the covariant derivative [16] of 𝑢 along 𝛾 . The
curve 𝛾 is called a geodesic of the connection ∇ if ¤𝛾 is parallel along 𝛾 , that
is 𝐷 ¤𝛾/𝑑𝑡 = 0. Geodesics are optimal paths in the sense that they minimize
arc length. The arc length of a curve 𝛾 that joins the points 𝛾 (𝑎) and 𝛾 (𝑏)
is given by

∫ 𝑏

𝑎

√︁
g( ¤𝛾, ¤𝛾) 𝑑𝑡 . Conversely, if a piecewise differentiable curve

minimizes arc length, then it is a geodesic.

Let g be a metric on𝑀 . A connection on𝑀 is said to be compatible with
the metric if for any smooth curve 𝛾 the following holds: given any two
vectors 𝑢, 𝑣 along 𝛾 , the inner product g(𝑢, 𝑣) is constant along 𝛾 . The
motivation for this definition is that there follows a “product rule”

𝑑

𝑑𝑡
g(𝑢, 𝑣) = g

(𝐷𝑢
𝑑𝑡
, 𝑣

)
+ g

(
𝑢,
𝐷𝑣

𝑑𝑡

)
if and only if the connection is compatible with the metric.

A connection∇ on𝑀 is said to be symmetric if it satisfies∇𝑢𝑣−∇𝑣𝑢 = [𝑢, 𝑣]
for any two vector fields𝑢, 𝑣 . If a Riemannian metric is given, there exists a
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unique connection that is both symmetric and compatible with the metric.
Such a connection is called a Levi-Civita connection.

The space of smooth vector fields, 𝔛(𝑀), can be equipped with the inner
product

⟨𝑢, 𝑣⟩ =
∫
𝑀

g(𝑢, 𝑣) `g.

Similarly, for (𝑟, 𝑠)-tensor fields the inner product is
∫
𝑀
g(𝑄, 𝑃)`g and in

evenmore generality, if (·, ·) is an inner product on fibers of a vector bundle,∫
𝑀
(𝑢, 𝑣)` for some volume form ` is an inner product on (global) sections

on the vector bundle. Let 𝑇 be a differential operator 𝑇 : Γ(𝐸) → Γ(𝐹 )
between sections of vector bundles 𝐸 and 𝐹 . A pair of differential operators
𝑇 and 𝑇 ∗ are called formally conjugate if∫

𝑀

(𝑇𝑢, 𝑣) ` =
∫
𝑀

(𝑢,𝑇 ∗𝑣)`.

For example, define the covariant divergence 𝛿g on the space of symmetric
(0, 2)-tensors by the local coordinate expression 𝛿g(ℎ)𝑖 = ∇ 𝑗ℎ

𝑖 𝑗 . Here, ∇ 𝑗

is the coordinate expression of the covariant derivative in the direction
of the vector 𝜕/𝜕𝑥 𝑗 . Then consider the Lie derivative 𝐿𝑣 in the direction
of the vector field 𝑣 applied to the space of (0, 2)-tensor fields. If ∇ is the
Levi-Civita connection associated with g, then 𝐿𝑣g = ∇𝑖𝑣 𝑗 + ∇ 𝑗𝑣𝑖 . Define
ℓg : 𝑣 ↦→ −1

2𝐿𝑣g. In this case, by Stokes’ theorem [48],∫
𝑀

g(𝛿gℎ, 𝑣)`g =
∫
𝑀

g(ℎ,−1
2𝐿𝑣g) `g

that is ⟨𝛿gℎ, 𝑣⟩ = ⟨ℎ, ℓg𝑣⟩, so 𝛿g is formally conjugate to ℓg.

2.5.2 Lie groups

A set of smooth transformations of a manifold𝑀 into𝑀 itself is called a
group, usually denoted by 𝐺 , if the following conditions are met:

1. For all 𝑔, ℎ ∈ 𝐺 , the composition 𝑔 ◦ ℎ belongs to 𝐺 .

2. There exists an inverse map, 𝑔−1, to every 𝑔 ∈ 𝐺 which also belongs
to 𝐺 .
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It follows that every group contains the identity transformation (the unit),
usually denoted by 𝑒 . A Lie group is a group such that the above operations
are smooth.

Example 2.3. Consider 𝑛 × 𝑛 real matrices that are invertible, with the
regular multiplication of matrices and the identity matrix as given in
section 2.1. This set of matrices and their multiplication is called the
general linear group 𝐺𝐿(𝑛,R).

A (real) Lie algebra, 𝑋 , is a real vector space together with a bi-linear
map called the Lie bracket on 𝑋 , denoted by [ , ], such that the following
identities hold:

• [b, b] = 0 for any b ∈ 𝑋

• (Jacobi identity) For all b, [, Z ∈ 𝑋 ,

[b, [[, Z ]] + [Z , [b, []] + [[, [Z , b]] = 0.

The tangent space to the Lie group at 𝑒 ∈ 𝐺 is called the vector space
of the Lie algebra and it is usually denoted by 𝔤. It receives its algebraic
structure from the vector commutator [b, [] = b[ − [b .

A Lie group𝐺 can act on amanifold𝑄 . That is, elements of𝐺 can transform
points on 𝑄 . Denote by 𝑔 · 𝑞 the action of 𝑔 ∈ 𝐺 on 𝑞 ∈ 𝑄 . By definition,
a left action of a Lie group is a smooth map of a pair (𝑔, 𝑞) ∈ 𝐺 ×𝑄 to an
element 𝑔 · 𝑞 ∈ 𝑄 such that (i) the identity transformation 𝑒 ∈ 𝐺 leaves 𝑞
unchanged and (ii) if𝑔, ℎ ∈ 𝐺 are two transformations then𝑔ℎ ·𝑞 = 𝑔 · (ℎ ·𝑞),
where 𝑔ℎ is the composition 𝑔 ◦ ℎ. A right action of a Lie group 𝐺 on 𝑄 is
denoted by 𝑞 · 𝑔 and instead of the second condition, the composition 𝑔ℎ
acts on 𝑄 following the opposite order: 𝑔ℎ applied to 𝑞 equals first acting
on 𝑞 with 𝑔 and then with ℎ.

For example, a Lie group acts on itself by composition from the left or
right. Denote by 𝐿𝑔 the map 𝐿𝑔ℎ = 𝑔ℎ and let 𝑅𝑔 be the map 𝑅𝑔ℎ = ℎ𝑔.
These maps are, respectively, left and right actions. Another example of an
action is the action of 𝐺𝐿(𝑛,R) on R𝑛 from the left by the regular matrix
multiplication, that is (𝐴, 𝒗) ↦→ 𝐴𝒗 .
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The mapping 𝑅𝑔−1𝐿𝑔 on𝐺 defined by ℎ ↦→ 𝑔ℎ𝑔−1 is a diffeomorphism on𝐺 .
Its derivative at the identity is a linear map from the vector space of the Lie
algebra to itself. It is usually denoted by Ad𝑔 : 𝔤 → 𝔤. This map induces
a map Ad : 𝑔 ↦→ Ad𝑔 called the adjoint representation of the group. It
maps group elements of 𝐺 into 𝐺𝐿(𝔤), the Lie group of all bijective linear
maps on 𝔤. The derivative of Ad at the identity is a mapping of vectors,
ad : 𝔤 → 𝔤𝔩(𝔤), where 𝔤𝔩(𝔤) is the Lie algebra of linear maps from 𝔤 to
itself. For a linear group, it can be verified that

adb ([) = [b, [] .

An action is said to be

• transitive if for every two points on 𝑄 , say 𝑞 and 𝑞′, there is a
transformation 𝑔 ∈ 𝐺 such that 𝑔 · 𝑞 = 𝑞′,

• effective (or faithful) if only the identity transformation 𝑒 ∈ 𝐺 defines
the identity action, and

• free if for every 𝑞 ∈ 𝑄 , if 𝑔 · 𝑞 = 𝑞 then 𝑔 = 𝑒 .

The orbit of a group action starting at 𝑞 is the set𝐺 ·𝑞 = {𝑔 ·𝑞 : 𝑔 ∈ 𝐺} ⊂ 𝑄 .
The so-called group adjoint orbits of the group 𝐺 are the orbits of the Ad-
action in the Lie algebra.

The mapping ad has a corresponding dual map defined on the dual of the
Lie algebra, 𝔤∗. The dual 𝔤∗ is the space of linear, real functionals on the
Lie algebra. One defines left and right translation maps, 𝐿∗𝑔 and 𝑅∗𝑔 , via
their actions on the primal space 𝔤:

𝐿∗𝑔𝜏 (b) = 𝜏 (𝑔 · b), 𝑅∗𝑔𝜏 (b) = 𝜏 (b · 𝑔),

where 𝑔 · b is the tangent map of the left multiplication applied to b and
b · 𝑔 is the tangent map of the right translation. Similarly, Ad∗ is defined1

via Ad∗𝑔 𝜏 (b) = 𝜏 (Ad𝑔 b), and the Ad∗ operator satisfies Ad∗
𝑔ℎ

= Ad∗
ℎ

Ad∗𝑔 for
all 𝑔, ℎ ∈ 𝐺 . Thus it forms a representation, which is called the co-adjoint
representation. The Ad∗ action on 𝔤∗ produces the co-adjoint orbits of

1These definitions might be subject to sign conventions [44].
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𝐺 . Moreover, ad∗[ 𝜏 (b) = 𝜏 (ad[ b). The mapping ad∗
b

: 𝔤∗ → 𝔤∗ is a linear
operator on the dual space to the algebra [2].

Unfortunately, the dual space of a Fréchet space is not necessarily a Fréchet
space and the co-adjoint actions could be degenerate. The analysis in
this case can be conditioned on the dual space to ensure the appropriate
properties of the dual space (for instance, that the co-adjoint action is
uniquely determined by Ad∗𝑔 𝜏 (b) = 𝜏 (Ad𝑔 b)). The resulting subspace is
usually called the “smooth duals” [44].

Left translation on a Lie group defines a left-invariant metric via the inner
product on the Lie algebra. The metric at any 𝑔 ∈ 𝐺 , denoted by ⟨⟨𝑢, 𝑣⟩⟩𝑔 is
determined by translation of the vectors 𝑢, 𝑣 ∈ 𝑇𝑔𝐺 to the tangent space at
the identity element 𝑒 ∈ 𝐺 ,

⟨⟨𝑢, 𝑣⟩⟩𝑔 = ⟨⟨b, [⟩⟩𝑒, 𝑢 = 𝑔 · b, 𝑣 = 𝑔 · [.

Here, 𝑔 · b is the tangent map of the left translation map 𝐿𝑔. Completely
analogous is the construction of a right-invariant metric on 𝐺 . In general,
a Riemannian metric ⟨⟨·, ·⟩⟩ : 𝑇𝐺 ×𝑇𝐺 → R on𝐺 is called right-invariant if

⟨⟨b, [⟩⟩𝑒 = ⟨⟨b · 𝑔, [ · 𝑔⟩⟩𝑔, ∀𝑔 ∈ 𝐺, ∀ b, [ ∈ 𝔤,

where b · 𝑔 denotes the tangent lifted right action of 𝑔 on b . Next, let ⟨ , ⟩
be the inner product on 𝔤 = 𝑇𝑒𝐺 and let 𝐴 be a differential operator such
that it is symmetric in the inner product on 𝔤, that is ⟨𝐴b, [⟩ = ⟨𝐴[, b⟩
for all b, [ ∈ 𝔤. If 𝐴 is a positive, symmetric, bijective pseudo-differential
operator, the above inner product can be defined by ⟨⟨b, [⟩⟩𝑒 = ⟨𝐴b, [⟩. With
𝐴, one associates a linear mapping of vectors in 𝔤 defined via b ↦→ ⟨𝐴[, b⟩.
This provides an identification of 𝐴[ with an element of 𝔤∗ and we write
𝐴 : 𝔤 → 𝔤∗.

For example, consider the motion of a rigid body that is rotating around
some fixed point. Then the configuration of the body is determined by the
angles of rotation. Euler rightly figured out that the rotations of a rigid
body have a group structure. The group is SO(3), as any rotation in R3 can
be represented by an orthogonal matrix with determinant +1. Let 𝝎 be
the angular velocity of the body and 𝒎 its angular momentum. If 𝝎 and
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𝒎 are expressed in components with respect to the principal axes of the
rotating body, they are related via the moment of inertia matrix

𝐴 =


𝐼1 0 0
0 𝐼2 0
0 0 𝐼3


and𝒎 = 𝐴𝝎. The constants 𝐼1, 𝐼2 and 𝐼3 depend only on the shape andmass
distribution of the rigid body and they represent the inertia of rotation. The
rotational energy is 𝐸 (𝝎) = ⟨𝝎, 𝐴𝝎⟩, where the inner product is the usual
dot product. The Lie algebra of SO(3) is denoted by 𝔰𝔬(3) and consists of
all skew-symmetric 3 × 3 matrices, which are “infinitesimal generators of
rotation”. If a small rotation by an angle \ occurs about the axis (𝑥,𝑦, 𝑧),
then the rotation matrix can be represented as

𝑅\ =


1 0 0
0 1 0
0 0 1

 + \


0 −𝑧 𝑦

𝑧 0 −𝑥
−𝑦 𝑥 0

 .
The Lie algebra is therefore identified with R3 via the “hat isomorphism”

𝑥

𝑦

𝑧

 = 𝜔 ↦→ �̂� =


0 −𝑧 𝑦

𝑧 0 −𝑥
−𝑦 𝑥 0

 .
Via this identification of 𝔰𝔬(3) with R3, the Lie bracket on 𝔤 is the vector
cross product [𝒖, 𝒗] = 𝒗 × 𝒖. The Euler-Arnold equation [44] gives the
equations of motion in terms of 𝒎 = 𝐴𝝎:

¤𝒎 = 𝒎 ×𝐴−1𝒎.

The generalization of momenta to an abstract group setting is provided by
the so-calledmomentummapping. Given a left action𝑔·𝑞 on a configuration
𝑞 ∈ 𝑄 , the infinitesimal action is the tangent map of the action map at the
identity 𝑒 ∈ 𝐺 . It is denoted 𝑣 ·𝑞, where 𝑣 ∈ 𝔤. Lifting this to the dual gives
the cotangent lifted momentum map of the left action:

𝐽 : 𝑇 ∗𝑄 → 𝔤∗, ⟨𝐽 (𝑞, 𝑝), 𝑣⟩ = ⟨𝑝, 𝑣 · 𝑞⟩.
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Here, the pairings and the group actions define the momentum mapping 𝐽 .
The infinitesimal generator of the SO(3) action onR3 is given by �̂�𝑞 = 𝜔×𝑞,
and with the dot product pairing, ⟨𝐽 (𝑞, 𝑝), 𝜔⟩ = ⟨𝑝, �̂�𝑞⟩ = ⟨𝜔,𝑞 × 𝑝⟩, that
is,

𝐽 (𝑞, 𝑝) = 𝑞 × 𝑝.

Thus, in classical mechanics description of a rigid body, the momentum
map of the rotation group action is the angular momentum vector [49, 35].

One group of particular importance to Paper III is the group of diffeomor-
phisms on a compact2 𝑛-dimensional manifold 𝑀 . Denote by D(𝑀) the
smooth diffeomorphisms on𝑀 . It is an open subspace of all smooth maps
from𝑀 to𝑀 , which is a Fréchet manifold. It is a Lie-Fréchet group [31] un-
der the composition map (both the composition map and the inversion map
are smooth). The Lie algebra of D(𝑀) is the set of smooth vector fields
on𝑀 with the usual vector field commutator. On (infinite-dimensional)
Fréchet manifolds, tangent spaces and vector fields are defined as in the
usual finite-dimensional case, see Khesin and Wendt [44], with some no-
table exceptions [9]. Therefore, the group of smooth diffeomorphisms on
𝑀 is suitable for a geometric treatment. However, several analytical tools
are lost on Fréchet manifolds, such as the inverse function theorem and
the fixed point theorem. Some of the implications cause deep problems
for existence of solutions to certain differential equations. The exponen-
tial map, for instance, is the time-one solution to the following ordinary
differential equation: Let 𝑣 be the left-invariant vector field 𝑣 = 𝑔 · 𝑣 for
some 𝑣 ∈ 𝔤. If it exists, the flow 𝜙𝑣 is a map 𝐺 × R→ 𝐺 that satisfies

𝜕

𝜕𝑡
𝜙𝑣 (𝑔, 𝑡) = 𝑣 (𝜙𝑣 (𝑔, 𝑡))

with 𝜙𝑣 (𝑔, 0) = 𝑔. Then, the exponential map exp : 𝔤 → 𝐺 is defined
as 𝑣 ↦→ 𝜙𝑣 (𝑒, 1). In order to re-gain control of such analytical tools, it is
convenient to set up a larger group of diffeomorphisms: the Sobolev class
diffeomorphisms.

2The group of diffeomorphisms on a non-compact manifold is not complete [44].
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2.5.3 Sobolev class diffeomorphisms

Here, we follow the presentation by Ebin and Marsden [21]. Based on
Arnold’s [1] geometric description of hydrodynamics, Ebin and Marsden
developed analysis tools that enabled a set of existence and uniqueness
results (see [41, 4, 42] for modernized developments).

Let 𝑀 be a compact, smooth, oriented manifold possibly with smooth
boundary, and let 𝜋 : 𝐸 → 𝑀 be a vector bundle over 𝑀 . Define the
Hilbert space 𝐻 𝑠 (𝐸) of sections of 𝐸 whose distributional derivatives up to
order 𝑠 are square integrable (in charts). Let𝐶𝑘 (𝐸) be the space of sections
of 𝐸 of class 𝐶𝑘 . This is a Banach space under a norm which induces the
topology of uniform convergence of all derivatives of order less than 𝑘 .
Also, 𝐶𝑘 (𝐸) is the completion of 𝐶∞(𝐸) under this norm. By the Sobolev
embedding theorem, for 𝑠 > 1

2 dim𝑀 + 𝑘 , where 𝑘 is non-negative, the
space 𝐻 𝑠 (𝑀) is continuously included in 𝐶𝑘 (𝑀).

If 𝑀 and 𝑁 are compact manifolds and 𝑠 > 1
2 dim𝑀 then consider the

space 𝐻 𝑠 (𝑀, 𝑁 ) of 𝐻 𝑠 maps from𝑀 to 𝑁 . Similary, the Banach manifold
𝐶𝑘 (𝑀, 𝑁 ) is defined. The set𝐶1D(𝑀) of𝐶1-diffeomorphisms on𝑀 is open
in𝐶1(𝑀,𝑀) and is a topological group under the composition map. Define
the group of 𝐻 𝑠-diffeomorhpisms as D𝑠 (𝑀) = 𝐻 𝑠 (𝑀,𝑀) ∩𝐶1D(𝑀). It is
an open set, a topological group and

D𝑠 (𝑀) = {𝜑 ∈ 𝐻 𝑠 (𝑀,𝑀) : 𝜑 is bijective and 𝜑−1 ∈ 𝐻 𝑠 (𝑀,𝑀)}.

Since D𝑠 (𝑀) ⊂ 𝐻 𝑠 (𝑀,𝑀) is open, 𝑇𝑒D𝑠 (𝑀) is the space of all 𝐻 𝑠 vector
fields on𝑀 . Here, 𝑒 ∈ D𝑠 (𝑀) is the identity mapping on𝑀 .

The group of 𝐻 𝑠-diffeomorphisms is a topological group because not all
group actions are smooth. The inversion map 𝜑 ↦→ 𝜑−1 is continuous,
but not smooth. The right composition map 𝑅𝜓 : 𝜑 ↦→ 𝜑 ◦𝜓 is smooth.
However, the left composition map 𝐿𝜓 : 𝜑 ↦→ 𝜓 ◦ 𝜑 is continuous, but not
even Lipschitz continuous [20]. In general, if 𝜓 ∈ 𝐻 𝑠+𝑙 (𝑀, 𝑁 ) defines a
map 𝜔𝜓 : 𝜑 ↦→ 𝜓 ◦ 𝜑 then 𝜔𝜓 is a 𝐶𝑙 -map. This is known as the “omega
lemma.”

Theorem: (Theorem 3.1 of Ebin and Marsden [21].) Let 𝑀 be a compact
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𝑛-dimensional manifold without boundary and 𝑠 > (𝑛/2) + 2. Then, if 𝑣
is an 𝐻 𝑠 vector field on 𝑀 , its integral curve 𝛼 is a 𝐶1 curve on D𝑠 (𝑀)
and a one-parameter subgroup of D𝑠 (𝑀). Moreover, the exponential map
𝑣 ↦→ 𝛼 (1) is continuous, but not 𝐶1.

From the omega lemma we get that if 𝑣 is 𝐻 𝑠+𝑙 , the integral curve is 𝐶𝑙+1-
smooth.

In order to retrieve the smooth 𝐶∞ topology of the diffeomorphism group,
define the smooth diffeomorphisms by

D(𝑀) =
⋂
𝑠>𝑛/2

D𝑠 (𝑀).

This groups is an inverse limit Hilbert group [63]. Both composition and
inversion are smooth mappings on D(𝑀), which recovers the group of
diffeomorphisms as a Lie group. Its Lie algebra is the space of smooth
vector fields, 𝔛(𝑀) with the usual bracket [21].



3
Decision-making and disease
outbreaks

We have it under control. It’s going to be just fine.

—Donald Trump (in a CNBC interview Jan 22, 2020)

How many people will be infected during a disease outbreak within, say,
a week, given the current conditions such as the number of infected indi-
viduals and transmission rates? These types of questions are effectively
answered by diving the population into compartments (or categories) such
as “susceptible” and “recovered”. The flow of people between compart-
ments model the process of catching a disease and recovery, and in more
advanced models, it can describe vaccinations, incubation times, etc. [17]
Mathematically, we solve a non-linear initial value problem. Theoretically,
we contribute to the understanding of what drives the spreading of dis-
eases. This chapter introduces some of the standard models and presents
our contribution to the field.

The COVID-19 pandemic outbreak in the beginning of 2020 issued many
questions about people’s behavior during disease outbreaks, such as “What
difference does it make if this large a portion of the population complies
with recommendations while the rest do not?” My supervisor and I incor-
porated ideas from game theory with the disease spreading models SIR
and SIS in order to provide some insights to these questions. We realized
that the individual decisions during a pandemic resemble the prisoner’s

53
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dilemma (PD) game and we investigated what happens when the popula-
tion is under the influence of the PD game while also being aware of the
risk of catching the disease. It was discovered how cooperation emerges
when the game’s payoff is a trade-off between the PD and the effect on
disease spreading through changes to the infection transmission rate.

3.1 Modeling disease outbreaks

Some diseases infer immunity after an infection, while some do not. Im-
munity can last very long, sometimes as long as a lifetime, and sometimes
much shorter. Examples of the former is the measles [78]. Common colds
and many STIs are examples of diseases that do not confer immunity; it
is probable that one can catch the disease again almost immediately after
recovery [59, 81].

3.1.1 The SIR model

The following model was an early attempt at describing the dynamics
among the population during an outbreak of a disease that confers lifetime
immunity or immediate death. Assume that the population is divided
into three categories, each consisting of individuals that are in one of the
following states:

• Susceptible

• Infectious

• Removed (dead or immune)

Denote by 𝑆 , 𝐼 and 𝑅 the number of susceptible, infectious and removed
individuals, respectively. The model cannot differentiate between dead and
immune because both types mean that the individual – dead or immune –
does not participate in the disease spreading. Let 𝑁 denote the size of the
population, so that 𝑆 + 𝐼 + 𝑅 = 𝑁 . Dynamics in this model are captured
by the change of state within the population, that is if, say, a susceptible
individual gets sick then it moves to compartment 𝐼 and correspondingly
there would be an increase by 1 of 𝐼 while 𝑆 decreases by 1.
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The classic SIR model assumes that all individuals in the population has
equal probability to get in contact with any of the other individuals. It
further introduces the probability of disease transfer from an infectious
individual to a susceptible individual as a positive parameter 𝛽 . This
parameter can vary with time. The number of susceptible individuals can
only decrease since the infected individuals eventually become removed
(by death or – hopefully – by becoming immune). At each time, the
expected decrease is proportional to the risk of a susceptible individual
meeting with an infectious individual, that is, 𝑆 would decrease by 𝛽𝑆𝐼 . Let
𝑆 (𝑡𝑘) be the number of susceptible individuals at time 𝑡𝑘 . Then 𝑆 (𝑡𝑘+1) −
𝑆 (𝑡𝑘) = 𝛽𝑆 (𝑡𝑘)𝐼 (𝑡𝑘) would describe this situation.1

Susceptible Infectious Removed

In large populations, it is usually feasible to approximate the integer num-
bers 𝑆 , 𝐼 and 𝑅 with continuous real values. Therefore we describe the
dynamics of 𝑆 by means of the ordinary differential equation ¤𝑆 = −𝛽𝑆𝐼 ,
where the dot over 𝑆 means differentiation with respect to the time vari-
able. Then the flow scheme above says the the amount subtracted from
𝑆 should be added to the compartment 𝐼 . The rate at which individuals
transfer to the removed state is such that ¤𝑅 = 𝛾𝐼 for a constant 𝛾 > 0.We
obtain

¤𝑆 = −𝛽𝑆𝐼 (3.1)
¤𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼 (3.2)
¤𝑅 = 𝛾𝐼 (3.3)

Notice that ¤𝑆 + ¤𝐼 + ¤𝑅 = 0 meaning that the size of the population is constant.
This assumption is realistic for many common diseases as the number of
deaths are not usually changing the population size very much. The birth
rate is assumed to be negligible or effectively the same as the death rate.

A sketch of typical time dynamics in the SIR model is pictured below. The
1Notice that 𝛽 is dimensionless, although, since each timestep is indexed, we may

argue that it has dimensions 1/(time).
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portion of susceptible individuals (full line) decreases as the portion of
infectious (dashed line) increases during the outbreak of the disease. After
some time, there is a portion of removed individuals (dashed dotted line).
The dynamics stabilize after long time to a steady state with no infectious
individuals. Notice that there might be susceptible individuals at steady
state, because with 𝐼 = 0 there is no flow between the compartments.

0%
0 𝑡

50%

100%

portion of susceptible, 𝑆

portion of infectious, 𝐼
portion of removed, 𝑅

If we rewrite (3.2) as ¤𝐼 = (𝑅0𝑆 − 1)𝛾𝐼 with 𝑅0 = 𝛽/𝛾 we see that the ratio
𝑅0 determines whether there is a disease outbreak at small times. Above it
is assumed that 𝑅0𝑆 (0) > 1 because otherwise there would be no increase
of 𝐼 at small times.

3.1.2 The SIS model

Instead of being “removed” as in the SIR model we may assume that
recovery from the disease is immediately followed by the risk of catching
the same disease again. In other words, recovery from the disease does
not infer immunity for the individual. This situation is correctly modeled
if the recovered individuals flow back to the susceptible compartment.

Susceptible Infectious

That is, the portion 𝛾𝐼 is added at each time to the change of 𝑆 , giving
¤𝑆 = −𝛽𝑆𝐼 + 𝛾𝐼 . In total,

¤𝑆 = −𝛽𝑆𝐼 + 𝛾𝐼
¤𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼
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Since 𝑆 + 𝐼 = 1 in this situation, we can eliminate 𝑆 from the equations.
The full dynamics is described by

¤𝐼 = 𝛽 (1 − 𝐼 )𝐼 − 𝛾𝐼 (3.4)

A sketch of typical time dynamics in the SIS model is pictured below. The
portion of susceptible (full line) decreases as the number of infectious
(dashed line) increases during the outbreak of the disease. After some time,
the dynamics stabilize to a steady state which is characterized by a balance
between recovery and infection, that is, 𝛽𝑆𝐼 = 𝛾𝐼 .

0%
0 𝑡

50%

100%

portion of susceptible, 𝑆 = 1 − 𝐼

portion of infectious, 𝐼

Using (3.4) we compute

𝑑

𝑑𝑡

1
𝐼
= −

¤𝐼
𝐼 2 =⇒ 𝑑

𝑑𝑡

1
𝐼
+ (𝛽 − 𝛾) 1

𝐼
= 𝛽. (3.5)

If 𝛽 ≠ 𝛾 then

𝐼 (𝑡) = 𝛽 − 𝛾
𝑣0𝑒−(𝛽−𝛾)𝑡 + 𝛽

(3.6)

for some 𝑣0 ∈ R (see Hethcote [33] for the same result with different
notations). If 𝛽 = 𝛾 then 𝐼 (𝑡) = 1/(𝛽𝑡 +𝑤0) for some𝑤0 ∈ R. If 𝛽 > 𝛾 then
𝐼 (𝑡) → 1 − 𝛾/𝛽 as 𝑡 → ∞ and if 𝛽 ≤ 𝛾 then 𝐼 (𝑡) → 0 as 𝑡 → ∞. The ratio
between 𝛽 and 𝛾 plays an important role in the dynamics, similar to the
case of the SIR model.

3.1.3 More complex models

There is vast literature on more advanced models that the ones outlined
above. For instance, one may assume that there is an incubation period
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for the disease. Then the susceptible individuals will not contribute to
the disease spreading immediately after becoming infected, so there is a
time delay between catching the disease and moving to the compartment 𝐼 .
Further examples of models are found in, e.g., Vynnycky and White [77].

3.2 The game theoretical beta-parameter

In the previous section we encountered the equations of the SIR model
and the SIS model, which both assume that there is a infection rate 𝛽 such
that 𝛽𝑆𝐼 is the portion of susceptible individuals that catch the disease at
each timestep. The parameter 𝛽 need not be constant. In our work, we
have assumed that some individuals in the population are more effective
at disease spreading, meaning that we associate a larger infection rate to
them. We denote those individuals by 𝐷 and the rest get the label 𝐶 , so
that 𝛽𝐷 is the infection rate of individuals of class 𝐷 and 𝛽𝐶 is the infection
rate of individuals of class𝐶 . By assumption 𝛽𝐶 < 𝛽𝐷 . Let 𝛽 be the average
over the population, that is if 𝑥 is the portion of 𝐶-individuals then

𝛽 = 𝑥𝛽𝐶 + (1 − 𝑥)𝛽𝐷 . (3.7)

Assuming that the infection rate is determined by individual choice, we
may interpret 𝐷 as the game theoretic strategy “defection”. Similarly, 𝐶
stands for “cooperation”.

In order to model trends in the choice between cooperation and defection
within the population, we assumed that the portion 𝑥 is governed by a
replicator’s equation. The payoffs that each individual perceive is assumed
to be a balance between contributing to the common good (by cooperating)
or gaining personal benefits (by defecting). In this situation 𝑥 depends on
time and we write 𝑥 = 𝑥 (𝑡).

By interpreting 𝑥 as the portion of cooperators there is a flow of the
defectors becoming cooperators given by

¤𝑥 = 𝛼𝑥 (1 − 𝑥) (𝛽𝐷 − 𝛽𝐶)𝐼 , (3.8)
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where 𝛼 ≥ 0 is a parameter. The factor 𝑥 (1 − 𝑥) ensures that 𝑥 remains in
the range 0 ≤ 𝑥 ≤ 1. We may interpret (3.8) as a risk assessment managed
by each individual: If there are many more infectious individuals that do
not cooperate, then there is more risk of catching the disease and more
individuals will decide to cooperate, that is, 𝑥 will increase.

3.2.1 The combined SIR-PD and SIS-PD models

We would like to consider the total contribution of (3.8) and (2.20). Notice
that both equations are on the same form as (2.17). Individuals are assumed
to consider the total cost as the sum of −𝛼 (𝛽𝐷 − 𝛽𝐶)𝐼 and 𝐶 − 𝑁 (𝑘). The
portion𝑥 is thus determined by the choices of individualsmaking conscious
decisions based on the risk of catching the disease on the one hand, and
on the other hand the benefits of the PD-game. These decisions determine
the total transmission rate of the disease, which the entire population
experiences. In the SIR-PD model,

¤𝑆 = −
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 (3.9)

¤𝐼 =
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 − 𝛾𝐼 (3.10)

¤𝑅 = 𝛾𝐼 (3.11)
¤𝑥 = 𝑥 (1 − 𝑥)

(
𝛼 (𝛽𝐷 − 𝛽𝐶)𝐼 − (𝐶 − 𝑁 (𝑘))

)
(3.12)

whereas in the SIS-PD model,

¤𝐼 =
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
(1 − 𝐼 )𝐼 − 𝛾𝐼 (3.13)

¤𝑥 = 𝑥 (1 − 𝑥)
(
𝛼 (𝛽𝐷 − 𝛽𝐶)𝐼 − (𝐶 − 𝑁 (𝑘))

)
(3.14)

Notice that the portion of cooperators is influenced by 𝐼 which is itself
dynamic. This results in a feedback mechanism. If a member of the
population decides to change strategy from defect to cooperate, then the
effective disease transmission rate (3.7) is decreased which causes 𝐼 to
shrink which in turn causes 𝑥 to increase. Nevertheless, there are steady
state solutions to the SIR-PD model and the SIS-PD model as we will see
in the next section.

The parameter 𝛼 balances the contribution from the term (𝛽𝐷 − 𝛽𝐶)𝐼 with
that of the term 𝐶 − 𝑁 (𝑘). We interpret this as a timescale difference. If
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an individual gets updates on the portion of infectious, 𝐼 , on the timescale
“days” whereas the PD game payoff can be received on the timescale “hours”
then the PD payoffs have more influence on this player’s decision. In that
case, 𝛼 is small. Conversely, if 𝛼 is large then the information about 𝐼 is
acquired frequently and the player acts accordingly. In this interpretation,
the non-negative sign on 𝛼 can be thought of as correctness in the player’s
risk assessment. If the player thinks that a disease is dangerous and if the
source of information is reliable, then the rational and conscious player
acts with 𝛼 ≥ 0.

3.3 Main results of Paper I

Paper I explores the steady state solutions to the combined SIS-PD and
SIR-PD models. In the SIR-PD model at steady state, no one cooperates.
This can probably be understood by the fact that the SIR model sees an end
to the disease outbreak, so that once there is no spreading of disease there
is also no will to cooperate. In the SIS-PD model, however, the balance
parameter 𝛼 plays a crucial role. The higher it is, the more individuals will
cooperate, starting from 0% and going all the way to 100%. Since 𝛼 can be
interpreted as the perceived severity of having infected indivudals in the
population or the rate at which individuals receive information about the
number of infectious people, this is a quite interesting observation.

3.3.1 SIS-PD equilibrium points

Recall that the SIS-PD model is defined by the set of equations (3.13)–(3.14)
with 𝛽𝐶 < 𝛽𝐷 .

Theorem 3.1. The equilibrium points of the SIS-PD system are

(𝑥, 𝐼 ) ∈
{
(0, 0), (1, 0),

(
0, 1 − 𝛾

𝛽𝐷

)
,

(
1, 1 − 𝛾

𝛽𝐶

)
, (𝑥∗, 𝐼 ∗)

}
, (3.15)

where

𝑥∗ =
𝛽𝐷

𝛽𝐷 − 𝛽𝐶
− 𝛾

(𝛽𝐷 − 𝛽𝐶) (1 − 𝐼 ∗)
, 𝐼 ∗ =

(𝐶 − 𝑁 (𝑘))
𝛼 (𝛽𝐷 − 𝛽𝐶)

(3.16)
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The equilibrium poins are well-defined and stable under the conditions given
in the following table.

Equilibrium Condition
(0, 0) 𝛽𝐷 < 𝛾, 𝛼 (𝐶 − 𝑁 (𝑘)) > 0
(1, 0) 𝛽𝐶 < 𝛾, 𝛼 (𝐶 − 𝑁 (𝑘)) < 0
(0, 1 − 𝛾/𝛽𝐷) 𝛽𝐷 > 𝛾, 𝛼 ≤ 𝛼
(1, 1 − 𝛾/𝛽𝐶) 𝛽𝐶 > 𝛾, 𝛼 ≥ 𝛼
(𝑥∗, 𝐼 ∗) 𝛼 < 𝛼 < 𝛼, 0 < 𝐼 ∗ < 1, 0 < 𝑥∗ < 1

Here,

𝛼 =
𝛽𝐷

𝛽𝐷 − 𝛾
𝐶 − 𝑁 (𝑘)
𝛽𝐷 − 𝛽𝐶

and 𝛼 =
𝛽𝐶

𝛽𝐶 − 𝛾
𝐶 − 𝑁 (𝑘)
𝛽𝐷 − 𝛽𝐶

. (3.17)

Since 𝐼 denotes a portion we must have 0 ≤ 𝐼 ≤ 1 which is one main
criterion for the steady states to be well-defined. The same holds for 𝑥 .
Proving the stability of each steady state solution also involves comput-
ing the Jacobian matrix of the SIS-PD equations. They are stable if the
eigenvalues of the Jacobian matrix are negative [13].

Following the values of 𝛼 , the equilibrium transitions between the asymp-
totically stable equilibrium points of Theorem 3.1. The following table
shows the equilibria in three regions of 𝛼 assuming 𝛾 < 𝛽𝐶 < 𝛽𝐷 . The
transitions occur at 𝛼 and 𝛼 , which are defined in (3.17).

Range Equilibrium
𝛼 ≤ 𝛼 (0, 1 − 𝛾/𝛽𝐷)

𝛼 < 𝛼 < 𝛼 (𝑥∗, 𝐼 ∗)
𝛼 ≤ 𝛼 (1, 1 − 𝛾/𝛽𝐶)

The following figure is a visualization of the values in the above table.
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0 𝛼
0%

50%

100%
𝑥 at steady state

𝐼 at steady state

𝛼 𝛼

As 𝛼 increases, the population moves from defection (𝑥 = 0) to partial
cooperation to cooperation (𝑥 = 1). At the same time, 𝐼 , the portion
of infectious individuals is decreasing. If 𝛼 is sufficiently large and the
transmission rate for cooperating individuals, 𝛽𝐶 , decreases (still keeping
𝛾 < 𝛽𝐶 ) then the portion of infectious individuals tends to zero.

3.3.2 SIR-PD equilibrium points

Recall that the SIR-PD model is defined by the set of equations (3.9)–(3.12).
Computing the Jacobian of this system, we identify the stable steady states
precisely like in the above SIS-PD situation. Since 𝑆 +𝐼 +𝑅 = 1, the quantity
𝑅 at equilibrium is given by 𝑅∗ = 1 − 𝑆∗ in the following theorem.

Theorem 3.2. The SIR-PD model always stabilizes to a set of equilibrium
points (𝑥∗, 𝐼 ∗, 𝑆∗) with

𝑥∗ ∈ {0, 1}, 𝐼 ∗ = 0, 0 ≤ 𝑆∗ ≤ 1. (3.18)

All of these are possible; the exact values are determined by initial conditions.
The equilibrium points with 𝑥 = 0 are stable if 𝛽𝐷𝑆 < 𝛾 . If 𝛽𝐷𝑆 > 𝛾 the
equilibrium point is unstable. All equilibrium points with 𝑥 = 1 are unstable.

Only the outcome with no cooperation whatsoever, 𝑥∗ = 0, is stable in the
SIR-PD model, which is actually expected because the SIR model “empties”
the 𝐼 -compartment. At steady state there are no infectious individuals left;
the SIR model terminates at a no-disease state. Therefore, there is nothing
to gain from cooperating. Looking at the dynamics before steady state,
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however, there is an increase of cooperators during the outbreak of the
disease.

3.3.3 What if we get used to the news?

Humans can get used to the current state (of knowledge, of financial status,
etc.) and it is possible that changes are more important to peoples’ choices
than absolute values. It is therefore interesting to investigate what happens
when the portion of “cooperating” individuals is dependent on the change
of the infectious portion rather than the portion itself. In other words,
what if ¤𝑥 depends on ¤𝐼 rather than 𝐼 . Instead of the SIR model equations
(3.10) and (3.12), consider

¤𝐼 =
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 − 𝛾𝐼 (3.19)

¤𝑥 = 𝑥 (1 − 𝑥)
(
𝛼 (𝛽𝐷 − 𝛽𝐶) ¤𝐼 − (𝐶 − 𝑁 (𝑘))

)
(3.20)

For the sake of simplicity, assume that 𝑁 (𝑘) = 0. It can be re-introduced
later by changing 𝐶 to 𝐶 − 𝑁 (𝑘). Then,

¤𝑥 = 𝑥 (1 − 𝑥)
(
𝛼 (𝛽𝐷 − 𝛽𝐶)

( (
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 − 𝛾𝐼

)
−𝐶

)
= −𝑥 (1 − 𝑥)𝑥𝛼 (𝛽𝐷 − 𝛽𝐶)2𝑆𝐼 + 𝑥 (1 − 𝑥) (𝛼𝛽𝐷 (𝛽𝐷 − 𝛽𝐶)𝑆𝐼 −𝐶)
= 𝑥 (1 − 𝑥)

(
𝛼𝛽𝐷 (𝛽𝐷 − 𝛽𝐶)𝑆𝐼 −𝐶 − 𝑥𝛼 (𝛽𝐷 − 𝛽𝐶)2𝑆𝐼

)
.

The stationary points are found by solving ¤𝑥 = 0 and ¤𝐼 = 0. By equa-
tions (3.19) and (3.20), that is equivalent to

0 =
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 − 𝛾𝐼 (3.21)

0 = 𝑥 (1 − 𝑥)𝐶 (3.22)

By the latter of these, either 𝑥 = 0, 𝑥 = 1 or 𝐶 − 𝑁 (𝑘) = 0 if we bring back
𝑁 (𝑘) to the equations. The condition on 𝐶 − 𝑁 (𝑘) is, by the definition of
the payoffs and the network correction 𝑁 (𝑘), equivalent to

0 = T(𝑘 − 1) − R𝑘.

In particular, for a well-mixed environment and Prisoner’s dilemma payoffs,
T > R, which leaves only the options 𝑥 = 0 or 𝑥 = 1. Recalling the
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equation for 𝑅 in the SIR model, ¤𝑅 = 𝛾𝐼 , the stationary points are such
that 𝐼 = 0 which implies that Equation (3.21) is always satisfied. Moreover,
𝐼 = 0 =⇒ ¤𝑆 = 0. By analyzing the perturbations away from the equilibria,
it is concluded that 𝑥∗ = 0 is an equilibrium if 𝐼 ∗ = 0 is stable, which it
is under the condition 𝛽𝐷𝑆∗ < 𝛾 . The equilibrium with 𝑥∗ = 1 is never
stable. To sum up, the results of Theorem 3.2 are recovered also when the
population reacts to the rate of that of 𝐼 .

In contrast to the SIR-PD model, the steady state for the SIS-PD model
changes if the ratio of collaborators react to the rate of change of 𝐼 . In this
case, again,

¤𝑥 = 𝑥 (1 − 𝑥)
(
𝛼 (𝛽𝐷 − 𝛽𝐶) ¤𝐼 − (𝐶 − 𝑁 (𝑘))

)
.

Therefore, at steady state when ¤𝐼 = 0, then 𝑥 is either one or zero. The
only stable equilibrium is 𝑥∗ = 0, 𝐼 ∗ = 1 − 𝛾/𝛽𝐷 . The equilibrium at
intermediate values of 𝑥 , which could be observed in the SIS-PD model
in Section 3.3.1, disappear under the assumption that the change of the
number of infectious individuals determine the will to collaborate in the
population.



4
The Game of Teams

They say: Winners and losers are two of a kind.

—Hamilton, Joe Frank & Reynolds (1976)

The Game of Teams has been developed during the last couple of years as
a model to explain why certain compositions of team members are more
advantageous than others. Central to this game is the assumption that
competition occurs on an individual level whereas strategies are defined on
a team-level. This applies in a wide range of situations such as economy
(portfolio theory, management etc.), research, sports, behaviorological
sciences and ecology. It has been demonstrated that diversity is beneficial
in all these contexts. Results from ecology shows that diversity is healthy
for a biological system, for instance as protection against extinction of
species. Similarly, a diverse portfolio of investments protects the investor
from financial backlash in case individual investments are unstable. Teams
of scientists perform better if they are diverse in all senses they can be.

The game of teams do not treat teams as individuals and herein lies its im-
portance. We construct a simple game in this chapter and we show that the
success of a team depends heavily on the distribution of resources among
its members. This provides an explanation to the strength of diversity
without restricting the results to a specific context, such as ecology. The
Game of Teams is developed to emphasize the difference between mem-
bers in successful teams without the detailed knowledge of the underlying
biological system (such as which food chains or geographic considerations
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that would influence the fitness of individuals). Of course, this simplifica-
tion can be questioned. As a professor in biology once told me at a poster
session: “I think this is a situation when mathematicians think that the
world is simpler than it really is.”

4.1 The evolution of the Game of Teams

This section introduces the Game of Teams, which was first defined by
Menden-Deuer and Rowlett [54, 55] and later revised and refined in their
follow-up collaborations [56]. Originally designed to explain the vast
diversity among asexually reproducing (cloning) microbes and microbial
subspecies, this game has a terminology of biology: The “players” are indi-
viduals and “teams” are species. We may also see terms such as population
sizes and traits. In particular, the Game of Teams (or just the team game)
identifies strategies in the game with traits.

In a well-mixed population, every member has a constant probability of
meeting every other member. There are no closed groups but everyone has
the same chance of meeting everyone. In a well-mixed population we may
consider “teams” or “species” as labels and assign different characteristics
to these teams. Imagine that two such teams constitute a population and
that for each timestep the members of the population meet with a member
from the other species and compare “strength”, meaning that

• if one member is stronger than the other, the stronger one defeats
the weaker and then replicates, or

• if both members are equally strong, it is a draw and both players
remain in the game.

A draw results in no change to the size of each team, but if a member
of one team defeats a member from the other team there is an increase
by one to the first team while the other team is reduced by one member.
Imagine that these indivual competitions take place simultaneously. If
a member cannot be paired with another member, it waits until the rest
of the members have compared strength. This is a timestep, or turn, in



§4.1 The evolution of the Game of Teams 67

the game of teams. To paraphrase a famous author [50], when you play
the game of teams, you win or die or nothing happens. There is usually a
middle ground.

Strength is here a positive, real number. An individual’s strength is re-
ferred to as its competitive ability, in short CA. It should be assumed that
the competing species, or teams, are on average not stronger than some
positive number 𝐶 . Otherwise it would be easy to win: just let all mem-
bers of your team grow stronger. Thus, teams are characterized by the
distribution of strength among the team members.

Example 4.1. Assume that two teams of three players each are playing
cards with a special kind of deck: the cards can have five values 1, 2, 3, 4
or 5 and each team member can select one card as long as the average card
value over the team is 3. Two or more players can select the same value.
Each member pairs up with a member from the other team and the one
having the highest value wins. What is the best strategy in this situation?
Let 𝐴 be one team and 𝐵 be the other. If 𝐴 always plays with the number 3
while 𝐵 selects 4 for two of its members and 1 for the remaining member,
which team is expected to win? In each turn, the number of players in 𝐴
that are expected to win are the number of players in 𝐵 that play 1 or 2
and those players in 𝐵 playing 4 or 5 will always win. Let 𝑛𝐵 (𝑥 𝑗 ) be the
number of members of 𝐵 that play 𝑗 . Then

𝑛𝐵 (𝑥1) + 𝑛𝐵 (𝑥2) − 𝑛𝐵 (𝑥4) − 𝑛𝐵 (𝑥5) (4.1)

is the increase of members to team 𝐴 at each turn. This sum equals
1 + 0 − 2 − 0 = −1 meaning that 𝐴 wins one player but also loses two
players; 𝐵 wins the first turn. The teams are not equally strong even
though their average strength is the same. Team 𝐵 wins because it has a
smarter distribution of competitive ability among its members.

Let 𝑁𝐵 denote the number of individuals in 𝐵. Interpreting 𝑛𝐵 (𝑥 𝑗 )/𝑁𝐵
as the probability that a random player in 𝐵 has the strength 𝑥 𝑗 , we can
say that 𝑛𝐵 is a strategy. It is in fact the number of players in 𝐵 that are
expected to play 𝑥 𝑗 . The team 𝐴 in this example plays with the strategy
𝑛𝐴 (𝑥3) = 3 and 𝑛𝐴 (𝑥 𝑗 ) = 0 for 𝑗 = 1, 2, 4, 5.
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We should think of strategies as assignment rules. At each turn, the strategy
is the distribution of CA over the population in the sense that each player
gets a CA randomly following the probability distribution given by the
normalized strategy under the constraint that the average of the CAs is not
greater than some number (which is 3 in the above example). Sometimes
we do not distinguish a team from its strategy but rather we use strategy
and team interchangeably. Next, some of the central mathematical notions
are introduced in order to help answer the question about which team is
the best.

4.1.1 Analytical tools and definitions

In the first publications on the Game of Teams, the stratgy of a team 𝐴

was defined to be non-negative numbers 𝑛𝐴 (𝑥𝑖) for each fraction 𝑥𝑖 = 𝑖/𝑀
with 𝑖 = 0, 1, 2, ..., 𝑀 such that at least one of them is non-zero [55]. Here,
𝑀 is a positive integer. Then the fractions range from 0 to 1. A strategy
could look like in Figure 4.1. This one is symmetric about the midpoint
value 1/2.

𝑛𝐴 (𝑥𝑖)

𝑥𝑖0 1/5 2/5 3/5 4/5 1

Figure 4.1: A strategy on the CAs 𝑥𝑖 = 𝑖/𝑀 for𝑀 = 5 and 𝑖 = 0, 1, 2, 3, 4, 5.

As the theory evolved into a better, more general set of conclusions and
results, these assumptions were removed and the fraction values were
allowed to be many more than𝑀 + 1 and𝑀 did not need to be an integer.
Thus, let𝑀 be a real, positive number and let 𝑎 be an integer. Define for
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all non-negative integers 𝑗 the fractions

𝑥 𝑗 =
𝑗 + 𝑎
𝑀

. (4.2)

It will be shown later that 𝑎 = 0 without loss of generality. If we consider
strategies from this set of 𝑥 𝑗 , we say that the game is the discrete game of
teams. In this case we define strategies as follows.

Definition 4.1. Let 𝐴 be a team. A discrete strategy of 𝐴 is a mapping 𝑛𝐴
from {𝑥 𝑗 } 𝑗≥0 into the non-negative, real numbers such that 𝑛𝐴 (𝑥 𝑗 ) is not
identically zero and only finitely many 𝑛𝐴 (𝑥 𝑗 ) are non-zero.

In general in the discrete game, the species𝐴 expects a population increase
(or decrease) in competition with 𝐵 given by

𝐸 [𝑛𝐴, 𝑛𝐵] =
min{𝑁𝐴, 𝑁𝐵}

𝑁𝐴𝑁𝐵

∑︁
𝑖≥0

𝑛𝐴 (𝑥𝑖)
(∑︁
𝑖> 𝑗

𝑛𝐵 (𝑥 𝑗 ) −
∑︁
𝑖< 𝑗

𝑛𝐵 (𝑥 𝑗 )
)

(4.3)

where an empty sum is interpreted as zero. The factor in front of the sums
accounts for the situation that one team is smaller than the other. If, say,
𝑁𝐴 = 100 and 𝑁𝐵 = 99 then

𝐸 [𝑛𝐴, 𝑛𝐵] =
∑︁
𝑖≥0

𝑛𝐴 (𝑥𝑖)
𝑁𝐴

(∑︁
𝑖> 𝑗

𝑛𝐵 (𝑥 𝑗 ) −
∑︁
𝑖< 𝑗

𝑛𝐵 (𝑥 𝑗 )
)

so then 𝐸 [𝑛𝐴, 𝑛𝐵] is ranging from −99 to 99, which is exactly the min-
imal and maximal number of “lose” and “win” that the team 𝐴 could
experience, since one member of 𝐴 cannot be paired with a member of
𝐵. If we are interested in the relative increase, we compute 𝑝 [𝑛𝐴, 𝑛𝐵] =
𝐸 [𝑛𝐴, 𝑛𝐵]/min{𝑁𝐴, 𝑁𝐵} or equivalently

𝑝 [𝑛𝐴, 𝑛𝐵] =
∑︁
𝑖≥0

𝑛𝐴 (𝑥𝑖)
𝑁𝐴

(∑︁
𝑖> 𝑗

𝑛𝐵 (𝑥 𝑗 )
𝑁𝐵

−
∑︁
𝑖< 𝑗

𝑛𝐵 (𝑥 𝑗 )
𝑁𝐵

)
. (4.4)

Game-theoretically, 𝑝 [𝑛𝐴, 𝑛𝐵] is the payoff to team 𝐴 in competition with
𝐵. The relative expectation, 𝑝 , ranges from −1 to 1. Passing between 𝐸 and
𝑝 simply means that we normalize the strategies. The expectation 𝐸 and
the payoff 𝑝 satisfy the zero-sum property 𝐸 [𝑛𝐴, 𝑛𝐵] + 𝐸 [𝑛𝐵, 𝑛𝐴] = 0.
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If more than two teams compete, every team experience competition from
all the other teams. Let now 𝑓 , 𝑔1 and 𝑔2 be three strategies according to
Definition 4.1. Since the payoff 𝑝 is a linear function of strategies,

𝑝 [𝑓 , 𝑔1 + 𝑔2] = 𝑝 [𝑓 , 𝑔1] + 𝑝 [𝑓 , 𝑔2], (4.5)

we may define the expectated payoff to 𝑓 in competition with a collection
of strategies {𝑔𝑖}𝑛𝑖=1 as 𝑝 [𝑓 , 𝑔1+...+𝑔𝑛]. The linearity property (4.5) does not
hold for 𝐸 due to the factor 𝛼 , but nevertheless we define the expectation of
𝑓 in competition with a collection of species {𝑔𝑖}𝑛𝑖=1 as 𝐸 [𝑓 , 𝑔1+...+𝑔𝑛] since
any species competes against all the others. The notation 𝑓 is motivated
by the function-valued game that is introduced below; it has the same
definitions as here.

An equilibrium (or equilibrium point) in the game of teams is defined as
a collection of strategies {𝑓𝑖}𝑛𝑖=1 that satisfy the following condition: For
each 𝑘 ∈ {1, 2, ..., 𝑛}, if team no. 𝑘 changes its strategy but all other teams
retain their strategies then the payoff to team no. 𝑘 does not increase. This
means that for all 𝑘 ∈ {1, 2, ..., 𝑛},

𝑝 [𝑓𝑘 , 𝑓1+ 𝑓2+ ...+ 𝑓𝑘−1+ 𝑓𝑘+1+ ...+ 𝑓𝑛] ≥ 𝑝 [𝑔, 𝑓1+ 𝑓2+ ...+ 𝑓𝑘−1+ 𝑓𝑘+1+ ...+ 𝑓𝑛]

for any strategy 𝑔 of the same type as all 𝑓𝑖 . The strategies that comprise
an equilibrium point are known as equilibrium strategies.

One further defines the non-exploitable strategies [55] as those strategies 𝑓
that satisfy 𝐸 [𝑓 , 𝑔] ≥ 0 for all strategies𝑔. In otherwords, a non-exploitable
strategy never looses. One remark can be made about the definition of
𝐸. It is never important to retain the pre-factor min{𝑁 𝑓 , 𝑁𝑔}/𝑁 𝑓 𝑁𝑔 in its
definition and neither is it important to normalize the strategies, since any
equation on the form 𝐸 [𝑓 , 𝑔] ≥ 0 is equivalent to 𝑝 [𝑓 , 𝑔] ≥ 0.

A team could always get better if all members would be stronger, that is,
if the CAs of the members were allowed to grow without any constraint it
would be trivial to construct a winning team. Assume therefore that only
teams with an average CA of less than or equal to some positive number
𝐶 are allowed to compete. We will refer to this as the constraint on the
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mean competitive ability, or MCA, and we define

MCA(𝑛𝐴) =
∑
𝑘≥0 𝑥𝑘𝑛𝐴 (𝑥𝑘)∑
𝑘≥0 𝑛𝐴 (𝑥𝑘)

(4.6)

in the discrete game for a team𝐴. It is usually assumed that MCA(𝑛𝐴) ≤ 1
2

for all teams, but there are interesting results that deserve to be presented
with a more general constraint MCA(𝑛𝐴) ≤ 𝐶 in some cases.

In nature, resources are limited and advantageous phenotypes usually
come at a cost for the organism. If an organism gains the ability to resist,
say, certain chemicals then it might sacrifice growth rate or efficiency in
reproduction [39]. The MCA constraint reflects this need for compromise
in nature.

4.1.2 The linear algebra formulation

In the discrete Game of Teams, the CA values (4.2) are set. In other words,
they create the playground and shall not change even if it might be tempt-
ing to re-define the set of CAs. One implication of this is that strategies are
equally well represented by vectors with non-negative components in the
Euclidean space. The standard interval for the competitive abilities (4.2)
is the unit interval, which amouts to choosing 𝑎 = 0 and 𝑗 = 0, 1, 2, ..., 𝑀 .
Then, a discrete strategy (Definition 4.1) can be thought of as a vector-
valued map 𝑓 from R𝑀+1 into R𝑀+1. Define the matrices

𝑓 =



𝑓 (𝑥0)
𝑓 (𝑥1)
𝑓 (𝑥2)
...

𝑓 (𝑥𝑀 )


, 𝐿 =



0 −1 −1 ... −1
1 0 −1 ... −1
1 1 0 ... −1
...

1 1 1 ... 0


, (4.7)

where 𝐿 is a square matrix of size (𝑀 + 1) × (𝑀 + 1). Then the payoff to a
strategy 𝑓1 in competition against 𝑓2 is

𝑝 [𝑓1, 𝑓2] = 𝑓1 · 𝐿𝑓2, (4.8)

where 𝑓1 · 𝐿𝑓2 = 𝑓 ⊤1 𝐿𝑓2. Here, 𝑓1 and 𝑓2 are suitably normalized.
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4.1.3 Function-valued games

If the CAs that are available to the teams are many, it seems like a discrete
strategy could approximate a function. Indeed, the payoff (4.4) would be a
Riemann sum that converges to integrals as𝑀 → ∞ (if the strategies are
bounded). Conversely, it is possible to think about the discrete strategies
as samples of a function-valued strategy. Let 𝑓 be a function and let 𝑓 (𝑥𝑖)
be its value at the CA with label 𝑖 . Then 𝑛𝐴 (𝑥𝑖) = 𝑓 (𝑥𝑖) defines a discrete
strategy. This motivates the following definition.

Definition 4.2. A bounded strategy is a Lebesgue-measurable, bounded,
non-negative function 𝑓 : [0, 1] → R that is not identically zero.

If the strategies are as in Definition 4.2, we call this the bounded game of
teams or the bounded measurable game of teams. We refer to the continuous
game of teams if in addition to the requirements in Definition 4.2 it is
required that strategies are continuous functions.

There is a probabilistic way to think about the function-valued strategies.
If a continuous strategy 𝑓 is given and is such that

∫ 1
0 𝑓 (𝑥) 𝑑𝑥 = 1 then

the integrals ∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

over intervals (𝑎, 𝑏) are the probabilities that an individual’s CA is in the
range between 𝑎 and 𝑏. This is the gray area in Figure 4.2. To be able to
define these probabilities, the functions could be unbounded. It would
be fine to work with functions of class 𝐿1, since the interpretation of
samples in this case would be the integral over an interval. In this class, a
strategy can be defined as a Lebesgue-measurable, non-negative function
𝑓 ∈ 𝐿1 [0, 1] such that

∫ 1
0 𝑓 (𝑥) 𝑑𝑥 > 0. If

∫ 1
0 𝑓 (𝑥) 𝑑𝑥 = 1, these functions

are representing probability density functions of the CAs.1

1Notice that if an integrable real random variable 𝑋 has a distribution 𝑃𝑋 with density
𝑓 with respect to the Lebesgue measure, then the expectation of 𝑋 is the MCA of 𝑓 . This
expectation is not related to the expectation in competition as defined in this chapter.
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𝑥
0

𝑦

𝑎 𝑏 1

𝑦 = 𝑓 (𝑥)

Figure 4.2: Function-valued strategies can be thought of as distribution of com-
petitive ability. If the function is normalized then the integral over the interval
(𝑎, 𝑏) is the percentage of individuals with competitive ability between 𝑎 and 𝑏.

Since the functions of interest are closely related to the 𝐿𝑝 spaces 𝐿1 and
𝐿∞, it is also motivated to study the general 𝐿𝑝 spaces for any integer
𝑝 ≥ 1. This is central to Paper IV.

For function-valued strategies, we define the expectatation of a strategy 𝑓
in competition with another strategy 𝑔 as

𝐸 [𝑓 , 𝑔] = 𝛼
∫ 1

0
𝑓 (𝑥)

(∫ 𝑥

0
𝑔(𝑦) 𝑑𝑦 −

∫ 1

𝑥

𝑔(𝑦) 𝑑𝑦
)
𝑑𝑥 (4.9)

where 𝛼 is the prefactor

𝛼 =

min
{∫ 1

0 𝑓 (𝑥) 𝑑𝑥,
∫ 1

0 𝑔(𝑥) 𝑑𝑥
}(∫ 1

0 𝑓 (𝑥) 𝑑𝑥
) (∫ 1

0 𝑔(𝑥) 𝑑𝑥
) . (4.10)

Againwe define 𝑝 as 𝑝 [𝑓 , 𝑔] = 𝐸 [𝑓 /𝐹, 𝑔/𝐺] where 𝐹 and𝐺 are the integrals
of 𝑓 and 𝑔 over [0, 1], that is, we normalize them with respect to the
𝐿1 norm. Integration here means integration with respect to Lebesgue
measure. Both 𝐸 and 𝑝 satisfy the zero-sum property

𝑝 [𝑓 , 𝑔] + 𝑝 [𝑔, 𝑓 ] = 0 (4.11)

in the bounded, the continuous and the discrete game.

In Paper II, we use the notation ℘ (this symbol is called the “Weierstrass p”)
for the expectation 𝐸 with 𝛼 = 1. We also use the notation ℘[𝑓 ;𝑔1, ..., 𝑔𝑛] =
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℘[𝑓 , 𝑔1 + ... + 𝑔𝑛]. Again, using 𝐸 or ℘ does not change which strategies
are equilibrium strategies, so we may use ℘ instead of 𝑝 .

In the bounded game as well as in the continuous game we define the
mean competitive ability of a team with strategy 𝑓 to be

MCA(𝑓 ) = 1∫ 1
0 𝑓 (𝑥) 𝑑𝑥

∫ 1

0
𝑥 𝑓 (𝑥) 𝑑𝑥 . (4.12)

The game is invariant to scaling and translating the unit interval, see
Section 4.2, which implies that the above definitions are readily made for
functions on any interval [𝑎, 𝑏] for 𝑎 < 𝑏. In Paper II, we assume that the
strategies are defined onRwith support on some compact subset of [𝑥0,∞)
for some real number 𝑥0. This number, 𝑥0, is the same for all strategies in
a competition. The equivalent of

∫ 1
0 𝑓 (𝑥) 𝑑𝑥 is then

∫ ∞
𝑥0
𝑓 (𝑥) 𝑑𝑥 and so on.

That is, all integrals are taken over the real line R.

4.1.4 Adaptive dynamics

In the game of teams, as traits are described by a distribution of strength,
we think of a mutation as a sudden change to the shape of the distribution,
see figure 4.3. The mutation process is assumed to be separated from the
natural selection; the spread of a mutation within a species is assumed
to be instantaneous compared to the timescale of the evolutionary game
between species [57, 25, 7]. In other words, if a mutant has lower fitness
than the resident population then it disappears, but if the mutant’s fitness is
higher than the resident population’s then it is assumed that the mutation
spreads into the entire resident population. This leads to a so-called trait
exchange, leaving the entire population with the new trait. Referring to
figure 4.3, if the subpopulation of mutated individuals having the slightly
altered distribution (the blue line) perform better in competition against
the resident population (the black line), then the evolution proceeds in the
direction of the mutation.

As the game of teams is not only defined for discrete strategies but also for
strategies that are functions, we consider the adaptive dynamics framework
by Dieckmann, Heino and Parvinen [15]. In addition to the application of
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Figure 4.3: Mutations in the team game alters the strategy of the “resident”
population and introduces a new “mutant” distribution.

their theory, the intent of Paper IV was to subject adaptive dynamics to a
more rigorous mathematical treatment.

Since the expectation 𝐸 [𝑓 , 𝑔] in the team game is interpreted as the ex-
pected growth rate of 𝑓 in competition with 𝑔, it also defines the invasion
fitness of a mutant in a resident population. Following the presentation of
Chapter 2, the initial growth rate of the mutant subpopulation is given by
the formula

∇𝐸 (𝑓 ) (𝑥) = 𝑑

𝑑𝑡

����
𝑡=0
𝐸 [𝑓 + 𝑡𝛿𝑥 , 𝑓 ] . (4.13)

The map ∇𝐸 takes a strategy 𝑓 and returns a function called the selection
gradient. It defines the direction of change of the resident population’s
traits via the canonical equation of function-valued traits, Equation (2.22).
From the definition of 𝐸 in (4.9), ignoring the pre-factor, it follows that

∇𝐸 (𝑓 ) (𝑥) =
∫ 𝑥

0
𝑓 (𝑦) 𝑑𝑦 −

∫ 1

𝑥

𝑓 (𝑦) 𝑑𝑦. (4.14)

In order to complete the description of the evolution of traits, the variance-
covariance function of Equation (2.22) has to be specified. In particular,
the MCA constraint MCA(𝑓 ) ≤ 1

2 is encoded into 𝜎2
𝑓
. One would like to

generalize this to constraints on the form𝑤 (𝑓 ) = 0 for some𝑤 mapping
from the set of strategies to the real numbers.

Since Paper IV explains how𝑤 (𝑓 ) ≤ 0 is incorporated in the dynamics on
the function-valued strategies, let us do it for the vector-valued strategies
here. Let 𝑓 be a vector as in Section 4.1.2. The constraint MCA(𝑓 ) ≤ 1

2
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can be expressed as

𝑤 (𝑓 ) ≤ 0 for 𝑤 (𝑓 ) =
𝑀∑︁
𝑘=0

(𝑥𝑘 − 1
2 ) 𝑓 (𝑥𝑘) (4.15)

The projection onto the tangent of the boundary 𝑤 (𝑓 ) = 0 is the vector
𝑃 (𝑓 ) with components

𝑃 𝑗 (𝑓 ) =
⟨𝑓 ,∇𝑤⟩
∥∇𝑤 ∥2 (𝑥 𝑗 −𝐶).

Here, ⟨ , ⟩ is the ℓ2 inner product

⟨𝑓 , 𝑔⟩ = 𝑓 ⊤𝑔 =

𝑀∑︁
𝑘=0

𝑓 (𝑥𝑘)𝑔(𝑥𝑘)

and ∥∇𝑤 ∥2 = ⟨∇𝑤,∇𝑤⟩. The idea is that 𝐼 − 𝑃 maps a strategy into the
regime of MCA equal to 1

2 , so if a strategy increases its MCA, then it will
do so until its MCA equals 1

2 and then 𝐼 − 𝑃 is applied to the selection
gradient to ensure that the MCA does not increase further. This ensures
that the constraint in (4.15) is respected at all times.

The resulting adaptive dynamics of the team game can be described by a
time-dependent strategy 𝑓 and the evolution equation

𝑑

𝑑𝑡
𝑓 = 𝐴𝑓 (4.16)

where 𝐴 = 𝐿 whenever MCA(𝑓 ) < 1
2 and 𝐴 = (𝐼 − 𝑃)𝐿 whenever

MCA(𝑓 ) ≥ 1
2 . With an initial value on the strategy, 𝑓0, that is a “cur-

rent” strategy at time 𝑡 = 0, this is an initial value problem. The strategies
and the mapping 𝐴 will have the same meaning in the vector-valued game
as in the function-valued game. For the function-valued game, define the
right hand side of the adaptive dynamics equation (4.16) to be the funtion
𝐴𝑓 given by

𝐴𝑓 (𝑥) =
∫ 𝑥

0
𝑓 (𝑦) 𝑑𝑦 −

∫ 1

𝑥

𝑓 (𝑦) 𝑑𝑦

− 12𝐻 (𝑤 (𝑓 )) (𝑥 − 1
2 )

∫ 1

0

(
𝑦 − 1

2

) (∫ 𝑦

0
𝑓 (𝑧) 𝑑𝑧 −

∫ 1

𝑦

𝑓 (𝑧) 𝑑𝑧
)
𝑑𝑦.

(4.17)
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This is simplified using the notation for the projection 𝑃 and the definition
of the selection gradient:

𝐴𝑓 (𝑥) =
(
𝐼 − 𝐻 (𝑤 (𝑓 ))𝑃

)
∇𝐸 (𝑓 ) . (4.18)

In the discrete game, the selection gradient is 𝐿𝑓 , where 𝑓 is a vector of
strategy values at each CA. Then

𝐴𝑓 =
(
𝐼 − 𝐻 (𝑤 (𝑓 ))𝑃

)
𝐿𝑓 . (4.19)

Notice that the Heaviside function introduces a non-linearity.

4.2 Main results of Paper II

It might seem like, at this point, the game has been restricted a lot due
to the assumption that the strategies are supported on [0, 1] and that
the MCA constraint is MCA(𝑓 ) ≤ 1

2 . However, the game of teams is
translation invariant and scale invariant. This means that given a collection
of strategies we may assume that they are defined on [0, 1] or some other
interval, say [−1, 1]. If 𝑓 and𝑔 are two strategies, their support is contained
in a closed interval [𝑎, 𝑏] such that 𝑎 < 𝐶 < 𝑏. Defining ℓ = 𝑏 − 𝑎,
𝐶 = (𝐶 − 𝑎)/ℓ and

𝑓 (𝑡) = ℓ 𝑓 (ℓ𝑡 + 𝑎), 𝑔(𝑡) = ℓ𝑔(ℓ𝑡 + 𝑎) for 𝑡 ∈ [0, 1] (4.20)

we have

MCA(𝑓 ) ≤ 𝐶 ⇐⇒ MCA(𝑓 ) ≤ 𝐶,
MCA(𝑔) ≤ 𝐶 ⇐⇒ MCA(𝑔) ≤ 𝐶

and 𝑝 [𝑓 , 𝑔] > 0 ⇐⇒ 𝑝 [𝑓 , 𝑔] > 0. This implies that the value of 𝐸 and 𝑝
are unchanged under the translations

𝑥 ↦→ 𝑥 + 𝑥0, 𝐶 ↦→ 𝐶 + 𝑥0, (4.21)

with 𝑥0 ∈ R in the bounded or continuous game, and correspondingly for
the discrete game 𝑗 ↦→ 𝑗 + 𝑎, 𝐶 ↦→ 𝐶 + 𝑥𝑎 with 𝑎 ∈ Z. Therefore, if the
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strategies are defined on a compact subset of [𝑥0,∞) for some 𝑥0, one may
assume that 𝑥0 = 0. If the strategies are supported in [𝑎, 𝑏] then they are
also supported in [𝑎, 𝑏′] for some 𝑏′ > 𝑏, so it is possible to assume that
𝐶 ≤ 1

2 (𝑏−𝑎). In other words, it is only the distance to𝐶 that matters for the
outcome of the game and assuming 𝐶 = 1

2 is not a very strict assumption.

One may of course ask whether it is necessary to have a lower bound at
all on the CAs. The answer is: Yes, that is, if we want the game to be
interesting, because if there is no lower bound on the CAs then we may
always construct a species similar to the winning species in Example 4.1
and easily win. That is, any team could win in that case, just by sending
one player to very low CAs and assign to the rest of its members a CA
which is just slightly higher than those of the competing species’ CAs.
A winning team is trivial to construct if the CAs are not bounded from
below.

The definition of non-exploitable strategies agrees with the definition of a
Nash equilibrium. By the following proposition, it is equivalent to non-
negative expectation in competition with any other strategy. A proof of
this proposition is found in Paper II.

Proposition 4.1. Assume that a collection of strategies {𝑓𝑖}𝑛𝑖=1 is an equi-
librium point. Then they satisfy

𝑝 [𝑓 𝑗 , 𝑓𝑘] = 0 for all 𝑘, 𝑗, and 𝑝 [𝑓𝑘 , 𝑔] ≥ 0 for any strategy 𝑔. (4.22)

Equivalently, each 𝑓𝑘 is an equilibrium strategy for the two-player game.
Conversely, if {𝑓𝑖}𝑛𝑖=1 satisfy (4.22) then {𝑓𝑖}𝑛𝑖=1 is an equilibrium of the game.

4.2.1 Equilibrium strategies

In Paper II we identified the equilibria for the game of teams. In the
bounded game of teams, a strategy is an equilibrium strategy if and only
if it is almost everywhere equal to, for some constant 𝐾 > 0,

𝑓 (𝑥) =
{
𝐾, 𝑥 ∈ [𝑥0, 2𝐶 − 𝑥0]
0, otherwise.

(4.23)
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This is a constant, positive function with support on an interval centered
around 𝐶 . There are no equilibrium strategies in the continuous game of
teams, because it would need to equal (4.23) which is not continuous.

Remark. Considering the continuous game, it is important to pay atten-
tion to the definition. If the functions are defined on any compact support
on [0,∞) as in Paper II, then there are no continuous Nash equilibrium
strategies. In Paper IV, the functions are defined on [0, 1] and then the
Nash equilibrium point in the function-valued game consists of constant
functions on [0, 1].

Corollary 3.7 of Paper II, says that if MCA(𝑓 ) ≤ 1
2 for all function-valued

strategies, all equilibrium strategies in the bounded measurable game of
teams for functions supported in [0, 1] are positive constants on the unit
interval, and conversely, all equilibrium points comprise positive constant
functions. In the continuous game of teams restricted to a fixed interval
[𝑎, 𝑏] with constraint value 𝐶 = (𝑏 + 𝑎)/2 all equilibrium strategies are
positive constant functions on [𝑎, 𝑏].

Recall the definition of the fractions 𝑥 𝑗 in (4.2). In the discrete game,
assume that theMCA-constraint is such that𝐶 lies on some CA or precisely
between CAs, that is,

𝐶 =
𝑎 + 1

2𝑘

𝑀
for some integer 𝑘 > 0. (4.24)

A team 𝐴 has an equilibrium strategy 𝑛𝐴 if and only if it is given by a
constant 𝑏 > 0 and if 𝑘 is odd,

𝑛𝐴 (𝑥 𝑗 ) =
{
𝑏, 0 ≤ 𝑗 ≤ 𝑘
0, otherwise

(4.25)

or if 𝑘 is even, for 𝑎 and 𝑏 non-negative constants that are not both zero
(and where 𝑎 is not necessarily the same constant as in the definition of𝐶),

𝑛𝐴 (𝑥 𝑗 ) =


𝑎, 0 ≤ 𝑗 ≤ 𝑘, 𝑗 even
𝑏, 1 ≤ 𝑗 ≤ 𝑘 − 1, 𝑗 odd
0, otherwise

(4.26)
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𝐶 = 𝑥3, 𝑘 even
𝑦

𝑥 𝑗𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Figure 4.4: A Nash equilibrium in the discrete game with 𝑘 even.

𝐶 =
𝑎+5/2
𝑀

, 𝑘 odd
𝑦

𝑥 𝑗𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Figure 4.5: A Nash equilibrium in the discrete game with 𝑘 even.

In (4.26), not all 𝑛𝐴’s are zero by definition of a strategy but either 𝑎 or
𝑏 can be zero. Conversely, when there exists an equilibrium in the game
of teams, it is comprised of the above strategies. A vizualisation of these
equilibrium strategies are provided in Figure 4.4 and Figure 4.5.

Figure 4.6 is a visualization of the equilibrium strategies of the bounded
game with 𝑥0 = 0, which is no limitation due to translation invariance.
Notice that this is a discontinuous function. In fact, this is the reason that
there are no equilibrium strategies in the continuous game of teams. Any
continuous function will lose against a continuous function that better
mimics the equilibrium of the bounded game, but then no function will
ever be protected against losing the game, so there is no equilibrium. As
already remarked, if the game would be defined on [0, 1] for functions
with MCA(𝑓 ) ≤ 1

2 rather than any compact subset of [𝑥0,∞), then the
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𝑓 (𝑥) = 𝐾 a.e.
for 𝐾 > 0 and 𝑥 ∈ [0, 2𝐶]

2𝐶

𝑦

𝑥

𝑓 (𝑥) = 0 a.e. for 𝑥 > 2𝐶 .

Figure 4.6: The unique Nash equilibrium in the bounded game.

constant functions on [0, 1] are equilibrium strategies.

Proving these results requires computing the expectation between pairs
of strategies and using Proposition 4.1. In the bounded game we show
that 𝐸 [𝑓 , 𝑔] ≥ 0 for 𝑓 given by (4.23) and any other strategy 𝑔 by direct
computation of 𝐸. As mentioned above, given any collection of strategies
one can assume that they are defined on the interval [0, 1] with 𝐶 ≤ 1/2
by the change of variables in (4.20). Then the continuous strategies and
the discrete strategies satisfy the conditions of Theorem 1 in [56]. These
are some of the main arguments that prove the results of Paper II.

Equilibrium strategies are positive and constant on an interval centered
around 𝐶 . In Paper II we note that such functions distribute the CAs
without favoring any values in particular. Every CA is equally probable,
so the teams will have “maximal distribution” of team members and all
members are treated equally. This motivates the title of the paper, Diversity
strengthens competing teams.

How well does an equilibrium strategy perform? Even if it is, in the sense
of Nash equilibria, the best strategy, it does not win against every other
strategy. In fact, what makes it an equilibrium strategy is the fact that it
never looses. Consider the non-negative, measurable functions on the unit
interval [0, 1]. A quick calculation shows that

𝐸 [𝑢,𝑔] = min{𝑁𝑢, 𝑁𝐵}
𝑁𝑢𝑁𝑔

(
1
2
− MCA(𝑔)

)
(4.27)
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where 𝑢 is a constant function (the 𝑢niform distribution). That is, all func-
tions that satisfy MCA(𝑔) = 1

2 will co-exist with 𝑢. The Nash equilibrium
has infinitely many friends!

One bit of critique of the wording “strength” has been proposed to me. Let
𝑢 be a constant function. If the CA is a resource such as money, then the
“richest one percent” will have

∫ 1
1−0.01 𝑥 𝑢 (𝑥) 𝑑𝑥 = 9.9% of the resources,

which is a lot compared to the other end of the spectrum: The “poorest
one percent” has only

∫ 0.01
0 𝑥 𝑢 (𝑥) 𝑑𝑥 = 0.005% of the resources. The Nash

equilibrium is very unfair.

4.3 Main results of Paper IV

Paper IV formalizes the adaptive dynamics framework and applies it to
the team game. The evolution of the game’s strategies are described both
for the discrete game and for the function-valued game. One major result
is the agreement between stationary points and the Nash equilibria.

Many of the results in Paper IV derive properties of the adaptive dynamics
map 𝐴 defined in §4.1.4. This mapping can be written on the form 𝐴 =

(𝐼 − 𝑃)𝐿, where these components of 𝐴 are matrices for the vector-valued
game while they are integral operators in the function-valued game. The
projection 𝑃 applies to strategies with MCA equal to 1

2 , while it is removed
if their MCA is less than 1

2 . The map 𝐴 takes a strategy and maps it to the
derivative of the strategy with respect to time: 𝒚′(𝑡) = 𝐴𝒚(𝑡). Therefore,
if a strategy 𝒚 is such that 𝐴𝒚 = 0 then it is a stationary solution. It might
seem like a complicated manner to solve 𝐴𝒚 = 0 by considering the more
general eigenvalue problem 𝐴𝒚 = _𝒚, but it turned out that we could
derive some results for both _ = 0 and some of the non-zero eigenvalues
whenever they exist.

The mapping properties of 𝐴 acting on functions are important to ensure
that the problems are well-defined. Paper IV shows that 𝐴 maps from
𝐿𝑝 [0, 1] into 𝐿𝑝 [0, 1] for any 𝑝 ≥ 1, including 𝑝 = ∞. Moreover, 𝐴 :
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𝐿𝑝 [0, 1] → 𝐿𝑝 [0, 1] is bounded and

𝐴 : 𝐿𝑝 [0, 1] →𝑊 1,𝑝 [0, 1], 1 ≤ 𝑝 ≤ ∞,
𝐴 : 𝐶𝑘 [0, 1] → 𝐶𝑘+1 [0, 1], 1 ≤ 𝑘 < ∞.

For the discrete game, we prove the following eigenvalue property of the
matrix 𝐴.

Proposition 4.2. For both 𝐴 = 𝐿 and 𝐴 = (𝐼 − 𝑃)𝐿, the eigenvalue problem
𝐴𝒚 = _𝒚 is solved either by _ = 0 or _ = ±𝑖𝛽 for some non-zero, real 𝛽 .

The algebraic multiplicities are unknown, except in case one considers
strategies such that MCA(𝒚) < 1

2 . Then 𝐴 = 𝐿. Let 𝐿 be of size (𝑀 + 1) ×
(𝑀 + 1). The eigenvalue problem 𝐿𝒚 = _𝒚 admits _ = 0 with algebraic and
geometric multiplicity one if𝑀 + 1 is odd. The reason why we know this
is that we derived the characteristic polynomial of 𝐿. It is expressed in
terms of binomial coefficients:

det(𝐿 − _𝐼 ) =
(𝑀+1)/2∑︁
𝑘=0

(
𝑀 + 1

2𝑘

)
_2𝑘

whever𝑀 + 1 is even, or if𝑀 + 1 is odd,

det(𝐿 − _𝐼 ) = −_
𝑀/2∑︁
𝑘=0

(
𝑀 + 1
2𝑘 + 1

)
_2𝑘 .

The most important question is which strategies that are stationary, that
is, on which strategies the adaptive dynamics do not impose evolution.
In case MCA(𝒚) < 1

2 is assumed, so that 𝐴 = 𝐿, and the size of 𝐿 is even,
the above characteristic polynomial reveals that there are no stationary
solutions at all. The matrix is full-rank. If the size of 𝐿 is odd, however,
then _ = 0 with algebraic multiplicity one, and its eigenspace is spanned
by

(1,−1, 1,−1, ..., 1,−1, 1). (4.28)

The dynamics 𝒚′ = 𝐿𝒚 has only one stationary solution, namely the vector
in (4.28). Since it will never have only non-negative components, it is not
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a strategy, but still a stationary solution. For the case MCA(𝒚) = 1
2 , when

𝐴 = (𝐼 − 𝑃)𝐿, the geometric multiplicities are

dim Ker (𝐼 − 𝑃)𝐿 =

{
2, 𝑀 + 1 odd
1, 𝑀 + 1 even.

Moreover, the vectors that span this eigenspace were determined, meaning
that a basis for the stationary solutions could be obtained. The next
theorem provides the details.

Theorem 4.3. The only stationary solutions to the initial value problem
𝒚′(𝑡) = 𝐴𝒚(𝑡), 𝒚(0) = 𝒚0, 𝐴 = (𝐼 − 𝑃)𝐿, are in each case: If𝑀 + 1 is even,

𝒚 = (1, 1, 1, ..., 1)

or any constant times this 𝒚. If𝑀 + 1 is odd,

𝒚 = (1, 0, 1, 0, ..., 0, 1) or 𝒚 = (0, 1, 0, 1, ..., 1, 0)

or any linear combination of these. If 𝐴 = 𝐿, the only stationary solution
is (4.28) or any constant times this vector.

The stationary solutions for 𝐴 = (𝐼 − 𝑃)𝐿 have good properties in the
context of the team game. Linear combinations of the stationary solutions
with non-negative coefficients fulfil the criteria to define strategies: The
components are non-negative and MCA(𝒚) = 1

2 .

The most important implication of the above theorem is that for discrete
strategies, the stationary solutions are precisely the Nash equilibria. In-
deed, the Nash equilibria for the discrete game in Section 4.2.1 are linear
combinations of the stationary solutions of the above theorem. The con-
verse statement is to say that whenever the initial data 𝒚0 is a stationary
solution and is a strategy, then it is a Nash equilibrium. There are station-
ary solutions to the initial value problem that have negative components,
for instance 𝒚 = (−1,−1,−1, ...,−1), which is not a strategy due to the
condition that strategies have non-negative components.

If MCA(𝒚0) < 1
2 , then the dynamics is determined by 𝐴 = 𝐿. To the

problem ¤𝒚 = 𝐴𝒚 with 𝒚(0) = 𝒚0, there is a stationary solution on the



§4.3 Main results of Paper IV 85

form (4.28) if𝑀 is even, but it does not satisfy MCA(𝒚0) < 1
2 . Instead, its

MCA equals a half. Moreover, its components have opposite signs.

A number of other results were found, for instance that for strategies such
that MCA(𝒚) = 1

2 , the sum of the components
𝑀∑︁
𝑖=0

𝑦𝑖

is constant as a function of time. This implies that a normalized strategy
with MCA(𝒚) = 1

2 can be interpreted as a probability density over the CAs.
That is, it is a mixed strategy for all 𝑡 > 0.

For the function-valued game, the adaptive dynamics equation (4.29) is
better written in terms of a curve 𝛼 : 𝐼 → 𝐿𝑝 [0, 1], where 𝐼 is an interval on
the real line containing zero. For each 𝑡 in this interval, 𝛼 (𝑡) is a function
of 𝐿𝑝 class. Assume that 𝑓0 is a fixed element in 𝐿𝑝 [0, 1]. Then 𝛼 is the
integral curve of 𝐴 starting at 𝑓0 if

𝑑

𝑑𝑡
𝛼 (𝑡) = 𝐴

(
𝛼 (𝑡)

)
with 𝛼 (0) = 𝑓0. (4.29)

It is showed in Paper IV that there is an integral curve to each initial data.

Theorem 4.4. Let 𝑝 ≥ 1. Let 𝐴 be as in (4.17) and 𝑓0 ∈ 𝐿𝑝 [0, 1]. Then the
initial value problem (4.29) admits a solution 𝛼 : [0,∞) → 𝐿𝑝 [0, 1], which is
𝐶1-smooth, except at 𝑡 if𝑤 (𝛼 (𝑡)) = 0 and𝑤 (𝛼 (𝑡 ′)) < 0 for all 𝑡 ′ < 𝑡 (there
is one or no such 𝑡). If 𝑓0 ∈ 𝐶𝑘 ( [0, 1]) then the solution is also 𝐶𝑘 at every
time. If in addition

∫ 1
0 𝑓0(𝑥) 𝑑𝑥 ≠ 0 and MCA(𝑓0) = 1

2 then MCA(𝛼 (𝑡)) = 1
2

for all 𝑡 > 0. If furthermore 𝑓0 ∈ 𝐿𝑝 [0, 1] with 𝑝 ≥ 2 and MCA(𝑓0) = 1
2 then

the 𝐿2 norm of the solution is constant with respect to time.

This theorem is proved using Lemma 3.7 of Paper IV and the Picard-
Lindelöf theorem for the cases 𝑤 (𝑓 ) < 0 and 𝑤 (𝑓 ) ≥ 0. Introduce the
notation 𝛼𝑡 = 𝛼 (𝑡) and 𝐻 (𝑓 ) = 𝐻 𝑓 in order to avoid excessive use of
parentheses. Lemma 3.7 shows that a solution 𝛼𝑡 for the adaptive dynamics
equation is such that 𝑤 (𝛼𝑡 ) is a strictly increasing function of 𝑡 , were it
not for the Heaviside function 𝐻 in the definition of 𝐴. Precisely,

𝑑

𝑑𝑡
𝑤 (𝛼𝑡 ) = (1 − 𝐻𝑤 (𝛼𝑡 ))

∫ 1

0

(
𝑥 − 𝑥2) 𝛼𝑡 (𝑥) 𝑑𝑥. (4.30)
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The integral on the right hand side of (4.30) is positive if 𝛼𝑡 (𝑥) ≥ 0 and∫ 1
0 𝛼𝑡 (𝑥) 𝑑𝑥 > 0, and 1 − 𝐻𝑤 (𝛼𝑡 ) = 1 if 0 < MCA(𝛼𝑡 ) < 1

2 . The Heaviside
function activates the projection map 𝑃 . Thus, the solution transitions
from𝑤 (𝛼𝑡 ) < 0 to𝑤 (𝛼𝑡 ) = 0 at some 𝑡 and then stays at𝑤 (𝛼𝑡 ) = 0.

The continuity of the dynamics ensures that the solutions do not sud-
denly deviate from the initial condition. For functions in 𝐿∞ [0, 1], this
ensures that initial strategies that are positive stay positive at least for
some (possibly short) time.

Theorem 4.5. Consider function-valued strategies in the bounded game.
Let 𝐴 be as in (4.17) and 𝑓0 a bounded strategy such that 𝑓0(𝑥) > 0 for
all 𝑥 ∈ [0, 1]. Then the initial value problem (4.29) admits a solution 𝛼 ,
which is 𝐶1-smooth as a function of time, except at 𝑡 if MCA(𝛼 (𝑡)) = 1

2 and
MCA(𝛼 (𝑡 ′)) < 1

2 for all 𝑡 ′ < 𝑡 (there is one or no such 𝑡). If 𝑓0 ∈ 𝐶𝑘 ( [0, 1])
then the solution is also 𝐶𝑘 at every time. If in addition MCA(𝑓0) = 1

2 then
MCA(𝛼 (𝑡)) = 1

2 for all 𝑡 > 0 and the 𝐿2 norm of the solution is constant
with respect to time. The maximal time 𝑇 is either 𝑇 = ∞ or it is the largest
time for which 𝛼 (𝑡) is a positive function on [0, 1].

Remark. The solution 𝛼 in Theorem 4.5 is possibly satisfying the MCA
constraint with strict inequality, MCA(𝛼 (𝑡)) < 1

2 , for all 𝑡 ≤ 𝑇 . This is
because the positivity condition could be broken before the MCA grows to
1
2 . However, if that is not the case, then (4.30) implies that the MCA grows
until MCA(𝛼𝑡 ) = 1

2 and then it stays at 1
2 .

Collecting the results both for the discrete (vector-valued) game and the
function-valued game, it can be concluded that there is a corresponence
between the Nash equilibria and the stationary solutions of the dynamics.
This applies in the space of strategies and in particular, the values of the
strategies at any CA are non-negative. Then we obtain the following
powerful statement:

Theorem 4.6. Consider a strategy in the team game and the evolution of
strategies which is outlined in the above. Then:
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The strategy is a stationary
point of the adaptive dynamics.

⇔ The strategy is a Nash
equilibrium of the game.

Remark. The statements in this equivalence theorem starts with “the
strategy”. This is to emphasize that stationary points are Nash equilibrium
strategies assuming that they are strategies to begin with. As already
remarked, there are stationary solutions that are not strategies.

Remark. The definition of a function-valued strategy contains that the
strategy is defined on the unit interval [0, 1] and again, this means that
both the bounded game and the continuous game admit a Nash equilibrium
of constant functions. If instead the functions are defined on any compact
support on [0,∞) as in Paper II, then there are no continuous Nash equi-
librium strategies. It has not been investigated how the adaptive dynamics
would evolve such functions. The selection gradient would probably need
to be restricted to some compact support, which implies that there is a
need for modeling choices, since there is no standard compact support for
all functions.

While Theorem 4.6 connects the game theoretical optimality with the
dynamic optimality, it does not reveal anything about the stability of the
dynamics. In particular, it does not say whether the stationary point of
the adaptive dynamics is convergence stable or connected. Of course, the
linearity of the team game implies that the adaptive dynamics classifica-
tion by Geritz et al. [25] does not apply, even if the phenomenological
classification does, since their criteria are based on the convexity of the
fitness function in a neighborhood of the stationary points.

All the real parts of the eigenvalues in the discrete game (for the cases
𝑤 (𝒚) < 0 and 𝑤 (𝒚) ≥ 0, respectively) are zero, which means that the
dynamics never shrinks exponentially to zero as time 𝑡 → ∞. In other
words, the evolution contiues indefinitely for any strategy that is not a
stationary point. Biologically, this is reasonable in a model that claims to
reflect any type of realistic evolution, since the evolutionary process by
random mutations never ceases. Even species that appear to be “living
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fossils” and look almost the same as they did millions of years ago have
been and are still evolving [80].

One mathematical question which was left open for future researchers
was the question about boundedness of the solutions. In every example of
the discrete game with MCA(𝒚) = 1

2 , we observed that there are no poly-
nomials (of order ≥ 1) in the components of𝒚(𝑡). The approach to analyze
the Jordan forms of 𝐴 could answer this question, but since the algebraic
multiplicities of the eigenvalues are unknown in general, it cannot be ex-
cluded that the components of 𝒚(𝑡) could grow indefinitely in magnitude.
In fact, we know that the Jordan blocks do introduce polynomials of order
1, at least, but they are removed from the solution in a surprising manner
by the change of basis matrix 𝑄 (or 𝑃 ). In other words, all examples show
that the change of basis matrix 𝑄 (or 𝑃 ) encodes the MCA condition in a
way that higher-order generalized eigenvectors are mapped to zero.

To conclude, Paper IV explores the question about evolution in the Game
of Teams, but it further formalizes the adaptive dynamics framework. It
defines the dynamical process in a more rigorous way than the original
articles. The main result is the correspondence between Nash equilibria in
the team game and the stationary points of the adaptive dynamics.



5
Geometry and shape analysis

Den som söker, han letar.

—L. Wiktorsson (S.N.U.T. MC, philosophy department)

Applications of shapes have been explored across many fields such as
computer graphics and design, computer vision, and medical imaging. For
instance, the anatomical manifestations of diseases are studied in the field
of computational anatomy, initially pioneered by Grenander and Miller
[27, 28]. Specifically, the alterations that diseases induce in the shapes of
organs is tracked in order to provide early-stage diagnosis and scientific
characterizations of the anatomical change. Shape analysis has proven to
be a potent method for characterizing brain degeneration associated with
neuro-cognitive impairments like Alzheimer’s or Huntington’s disease.

Shapes are usually expressed as curves, surfaces or images, and in such
representations, the mathematical definition of a shape necessitates an
infinite number of parameters. This requires the application of mathemati-
cal tools involving infinite-dimensional spaces, such as functional analysis,
differential manifolds on general vector spaces and group theory. One
such tool, which captures the infinite dimensionality as well as the group
structure is the group of diffeomorphisms, that is, the set of “reversible”
shape deformations.

Consider the shapes that are formed by deformations of a fixed template
shape. Given another shape, called the target shape, one particular chal-
lenge is to identify the deformation that transforms the template into the

89
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target. This target shape could for instance be an magnetic resonance
imaging (MRI) image of tissue and the template which is supposed to
match the target could be an older image of the same tissue region. For
diseases such as Alzheimer’s, following the shape changes of the tissue
can help the diagnostic procedure [10]. The mathematical challenge is to
create a suitable framework such that it is possible to construct a dynamics-
driven process to find a shape transformation which sends the template
close enough to the target while keeping the dynamics stable and pro-
ducing a unique solution. To be geometrical, a transformation of a shape
into another shape needs to follow a geometric dynamics. In this thesis,
transformations of shapes are generated by an ODE problem, which is
formulated on a differential manifold in such a way that the geometry is
respected.

5.1 Template matching of images

This thesis focuses mainly on images as representations of shapes. A
template image may describe gray-scale values for an image generated by
MRI or computed tomography (CT). Given a real-valued image 𝐼 , which is
a assumed to be a smooth function on some manifold𝑀 , let

𝐼 ◦ 𝜑−1

be a deformation. Here, 𝜑 is an invertible map (a diffeomorphism) on𝑀 .
The map 𝜑−1 can be thought of as a change-of-coordinates, for instance
with stretches and bends of some regions of the image. Let D(𝑀) denote
the group of all diffeomorphisms of𝑀 , namely smooth maps from 𝑀 to
itself with smooth inverses. The problem is to make sure that there is a
way to find a single diffemorphism 𝜑 among all diffeomorphisms inD(𝑀)
such that 𝐼 ◦ 𝜑−1 matches a given target. It is achieved in two steps:

1. A reasonable similarity measure is defined for every transformation
𝜑 ∈ D(𝑀). A natural, but crude, choice is a function that is minimal
if the target and the template are identical.

2. A differential equation is formulated on D(𝑀). It is written using
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notions from differential geometry, such that a template shape “flows”
towards the target shape.

There are plenty of challenges: First, the action of D(𝑀) on the space of
functions in general is not transitive. That is, for any two given images,
there is no guarantee that there exists a transformation such that they
match perfectly. Moreover, in trying to find the best deformation of a
template, the problem could be ill-posed if there are no restrictions on how
crazy the diffeomorphisms are allowed to be.

Challenges such as these motivate the choice of similarity measure. Let 𝑆 :
D(𝑀) → R be a function that is minimized when a template is completely
deformed into the target. Then define another function 𝑅 : D(𝑀) → R
that is minimal at the identity transformation. Let

𝐸 (𝜑) = 𝑆 (𝜑) + 𝜎𝑅(𝜑), 𝜎 > 0, (5.1)

where 𝜎 is a parameter. This is the function which is to be minimized. The
function 𝑆 is a similarity term and 𝑅 is a regularizer, and if 𝜎 is increased
then the diffeomorphism 𝜑 is expected to be more regular in the sense
that it is closer to the identity map in D(𝑀). Assume the𝑀 is equipped
with a Riemannian metric, g. Probably the most common function with
the structure of (5.1) is

𝐸 (𝜑) =
𝐼0 ◦ 𝜑−1 − 𝐼1

2
𝐿2 + 𝜎 dist(𝜑, id)2 (5.2)

where 𝐼0 is the template image, 𝐼1 is the target image, ∥ ∥𝐿2 is the 𝐿2 norm
on functions and dist(𝜑, id) is the geodesic distance on D(𝑀) from the
identity map to 𝜑 . Unfortunately, it is costly to use the geodesic distance
as a regularizer on the group of diffeomorphisms. The main reason for
this is that there is no closed form expression for the geodesic distance, so
every time the diffeomorphism𝜑 is changed, dist(𝜑, id) has to be computed
algorithmically. Mathematically, however, (5.2) is beautifully connected to
hydrodynamic-type partial differential equations via calculus of variations.
Indeed, take the inner product on vector fields to be Sobolev 𝐻𝑘

⟨⟨𝑣𝑡 , 𝑣𝑡 ⟩⟩ =
∫
𝑀

g(𝐴𝑣𝑡 , 𝑣𝑡 ) `g, 𝛼 > 0, 𝑘 ∈ N, 𝐴 = (1 − 𝛼Δ)𝑘 . (5.3)
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The geodesic distance dist(𝜑, id) is the infimum of
∫ 1

0 ∥𝑣𝑡 ∥2𝑑𝑡 over all paths
that connect 𝜑 and the identity map and for which 𝑣𝑡 is the vector field
along the path. Via calculus of variations, an optimal 𝑣 must fulfill the
Euler-Poincaré equation on the diffeomorphism group (or EPDiff equation)

¤𝑚 + 𝐷𝑚 · 𝑣 + 𝐷𝑣⊤𝑚 + div(𝑣)𝑚 = 0, 𝑚 = 𝐴𝑣, (5.4)

where𝐴 = (1−𝛼Δ)𝑘 . The EPDiff equation with only one spatial dimension
and 𝐴 = 1 − Δ is the Camassa–Holm model for shallow water motion [11].
Geometrically these equations arise from the geodesic equation on D(𝑀)
with respect to the right-invariant Riemannian metric on D(𝑀) induced
by the inner product (5.3). Regularizing the problem using the geodesic
distance dist(𝜑, id) is called large deformation diffeomorphic metric match-
ing or LDDMM. Although computationally expensive, it provides a fully
geometric solution to the matching problem. In an abstract group setting,
the EPDiff equation can be written in terms of the co-adjoint action of
a Lie group 𝐺 , namely ¤𝑣♭ = ad∗𝑣 𝑣♭. It solves an an abstract minimization
problem which is formulated as (5.2) on general Lie groups, see Bruveris
and Holm [10].

In order to avoid the lack of closed expressions in the matching problem,
Paper III develops a numerical method via gradient descent. Assuming that
the variational derivative of the energy function 𝐸 on D(𝑀) is given by
explicit formulae one can consider the Riemannian gradient flow, defined
by

¤𝜑 = −∇𝐸 (𝜑) (5.5)
with 𝜑 (0) = 𝜑0

for some initial data 𝜑0 ∈ D(𝑀). The simplest case, where 𝐸 does not
contain a regularization term, i.e., 𝜎 = 0 in (5.1), is called greedy matching.
Typically greedy matching algorithms search for increasingly complicated
diffeomorphisms in trying to achieve 𝐼0 ◦ 𝜑−1 = 𝐼1 regardless whether
that is possible or not. On the other hand, the gradient flow can be very
well-behaved if 𝐸 is equipped with a reasonable regularizer. Gradient
descent methods are not new to the matching problem [14, 5] but the



§5.1 Template matching of images 93

current setting identifies new structure in the gradient flow and derives
new analytical results.

It turns out the a reasonable regularizer is the distance between the original
metric g and its push-forward 𝜑∗g using the 𝐿2-distance in the space of
symmetric 2-forms,

𝑅(𝜑) = 1
2
∥𝜑∗g − g∥2

𝐿2 . (5.6)

By computing the variational derivative of 𝑅(𝜑) we can avoid the costly
algorithms associated with regularization via the Riemannian distance
as in LDDMM. Still, we are able to retain the geometric properties, in
particular that diffeomorphisms are generated by vector fields.

The regularization (5.6) is in a sense an outer distance on the space of
diffeomorphisms, induced by the action of diffeomorphisms on the metrics.
The distances are derived from an 𝐿2-metric on the space of Riemannian
metrics and an 𝐻 1 metric on D(𝑀), respectively [40, 12].

5.1.1 Greedy matching illustrates the idea

Consider the case that our configuration space is the space of smooth
functions on𝑀 . The left action of D(𝑀) on the smooth functions is the
push-forward action

(𝜑, 𝐼 ) ↦→ 𝐼 ◦ 𝜑−1.

By differentiating the action map at the identity diffeomorhpism, the
infinitesimal action is obtained as b · 𝐼 = −]b𝑑𝐼 . The associated momentum
map is then [10]

𝐽 (𝐼 , 𝑃) = −𝑃∇𝐼 , (5.7)

where ∇𝐼 is the gradient of 𝐼 . As a similarity measure between images (or
any functions), the 𝐿2 type function 𝑓 (𝐼 ) = 1

2 ∥𝐼 − 𝐼1∥
2 is chosen, where 𝐼1

is the fixed target function. Then 𝑑 𝑓 = 𝐼 − 𝐼1. To define an energy function
on D(𝑀), we choose 𝐸 (𝜑) = 𝑓 (𝐼0 ◦ 𝜑−1) for a fixed template 𝐼0, that is,

𝐸 (𝜑) = 1
2
∥𝐼0 ◦ 𝜑−1 − 𝐼1∥2.
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Then we differentiate 𝐸 to find the differential 𝑑𝐸 and the corresponding
gradient via the metric

⟨⟨ ¤𝜑, ¤𝜑⟩⟩𝜑 = ⟨⟨b ◦ 𝜑, b ◦ 𝜑⟩⟩𝜑 = ⟨⟨b, b⟩⟩𝑒, (5.8)

where ⟨⟨ , ⟩⟩𝑒 is the inner product (5.3). Working on the 𝐿2-function space
that defines the norm in the definition of 𝐸, one isolates b = ¤𝜑 ◦ 𝜑−1 and
identifies the gradient ∇𝐸 as the vector that pairs with b . By this procedure,
it turns out that

∇𝐸 (𝜑) =
(
− (1 − 𝛼Δ)−𝑘 (𝐼0 ◦ 𝜑−1 − 𝐼1)∇(𝐼0 ◦ 𝜑−1)

)
◦ 𝜑. (5.9)

The gradient is defined by a vector b on the tangent space𝑇𝑒D(𝑀), which
is transported by𝜑 , that is, ∇𝐸 (𝜑) = b◦𝜑 for𝐴b = −(𝐼0◦𝜑−1−𝐼1)∇(𝐼0◦𝜑−1),
where 𝐴 = (1 − 𝛼Δ)𝑘 .

In Paper III, the structure of this gradient is identified for a general Lie
group.

5.1.2 Sobolev setting in shape analysis

There is a tradeoff between the smoothness of operations and the analyti-
cal tools that are allowed on the group of diffeomorphisms (and in general
for infinite-dimensional groups [62]). The smooth diffeomorphisms is a
Fréchet Lie group, and it does not come with a fixed-point theorem and the
consequential existence or uniqueness theorems for ordinary differential
equations. In particular, the gradient flow equation ¤𝜑 = −∇𝐸 (𝜑), where
∇𝐸 is given by (5.9) is not guaranteed to have a well-defined solution even
though that would be immediate in a finite-dimensional Lie group setting.
In order to retain a Hilbert manifold setting, the group of smooth diffeo-
morphisms is extended via Sobolev completions. The resulting completion,
D𝑠 (𝑀), is a Hilbert manifold if 𝑠 > dim(𝑀)/2 + 1, but the Lie group
structure is lost. For instance, the composition map is only continuous.
This tradeoff situation implies that the existence of a gradient flow (which
is one of the main results of Paper III) is not a trivial application of the
general Lie group theory.
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The idea that saves the situation is that even though the group structure is
not smooth, the gradientmay still be a smooth vector field. The smoothness
of the gradient is a consequence of its geometric structure. It can be
deomposed into vector fields, which are smooth “transportations” on the
group of diffeomorphisms. Such transportations are very suitable for
building compositions, a fact that was well explored by Ebin and Marsden
[21] and which Paper III applies to the current gradient flow problem.

The tangent bundle of D𝑠 (𝑀) is the union of tangent spaces on the form

𝑇𝜑D𝑠 (𝑀) = {𝑢 ∈ 𝐻 𝑠 (𝑀,𝑇𝑀) : 𝜋 ◦ 𝑢 = 𝜑},

where 𝜋 is the natural projection. That is, every vector on𝑇D𝑠 (𝑀) can be
represented as 𝑣 ◦𝜑 for some 𝑣 ∈ 𝔛𝑠 (𝑀). To the right translation 𝜑 ↦→ 𝑣 ◦𝜑
applies the “omega lemma” [21], which seems to imply that the vector
fields need sufficient smoothness to be transported by right translation.
Moreover, gradients such as (5.9) involve the inversion map 𝜑 ↦→ 𝜑−1,
which is only continuous on the Sobolev class diffeomorphisms D𝑠 (𝑀).
However, it is the composition structure of the gradient flow that provides
the smoothness that is needed for existance theorems. It is illustrated by
the following lemma, which is from Paper III.

Lemma 5.1. Let 𝑇D𝑠−𝑘 (𝑀) ↾ D𝑠 (𝑀) denote the restriction of the tan-
gent bundle 𝑇D𝑠−𝑘 (𝑀) to the base D𝑠 (𝑀). Given a (non-linear) 2nd order
differential operator 𝐹 : D𝑠 (𝑀) → 𝔛𝑠−2(𝑀), define

𝐹 : D𝑠 (𝑀) → 𝑇D𝑠−2(𝑀) ↾ D𝑠 (𝑀) (5.10)
𝜑 ↦→ (𝜑, 𝐹 (𝜑−1) ◦ 𝜑). (5.11)

If 𝑠 > 2 + 1
2 dim𝑀 then 𝐹 is smooth.

Remark. The inversion map on D𝑠 (𝑀) is not smooth, so it is indeed
the composition structure of 𝐹 that saves the day. If 𝐹 is of 𝑘 th order, the
condition on 𝑠 would be 𝑠 > 𝑘 + 1

2 dim𝑀 with similar results.

Proof. In local coordinates given by smooth functions 𝑓𝑖 on some open
subset of R𝑛 × R𝑛×𝑛 × R𝑛×𝑛×𝑛 ,

𝐹 (𝜑−1) (𝑥)𝑖 = 𝑓𝑖
(
𝜑−1(𝑥), 𝐷𝜑−1(𝑥), 𝐷2𝜑−1(𝑥)

)
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where 𝑛 = dim𝑀 , and 𝐷𝜑−1 is (in coordinates) the matrix of derivatives:
𝐷𝜑−1(𝑥)𝑖𝑗 =

𝜕𝜑−1
𝑖

𝜕𝑥 𝑗
(𝑥). Now, consider the composition 𝐹 (𝜑−1) ◦ 𝜑 . The

mapping

D𝑠 (𝑀) → 𝐻 𝑠−1(𝑀), 𝜑 ↦→
𝜕𝜑−1

𝑖

𝜕𝑥 𝑗
◦ 𝜑

is smooth because 𝐷𝜑−1 ◦ 𝜑 = (𝐷𝜑)−1 and matrix inversion is a smooth,
point-wise operation. Similarly, the second-order derivatives can be writ-
ten as matrix inversions and multiplications: 𝐷2𝜑−1◦𝜑 = 𝐷 (𝐷𝜑)−1(𝐷𝜑)−1.
Now 𝜑 ↦→ 𝜕2𝜑𝑖/𝜕𝑥 𝑗 𝜕𝑥𝑘 ◦ 𝜑 as a mapping D𝑠 (𝑀) → 𝐻 𝑠−2(𝑀) is smooth if
𝑠 > 2 + 𝑛/2 since in that case 𝐷 (𝐷𝜑)−1 is above the Sobolev embedding
threshold, which implies that it can be smoothly multiplied with elements
in𝐻 𝑠−1(𝑀). Since the coordinate maps 𝑓𝑖 are smooth mappings, the omega
lemma implies that 𝐹 is a smooth bundle map. □

This lemma has an equivalent for operators on densities in Lemma 27
of Modin and Bauer [4]. Ebin and Marsden [21] worked out the same
smoothness results for, among other operators, the differential 𝑑 and the
co-differential 𝛿 .

The deformations imposed by diffeomorphisms are quantified in the space
of symmetric (0, 2)-tensor fields. Let 𝑆𝑠−1

(0,2) (𝑀) be the space of symmetric
2-forms of class𝐻 𝑠−1 with 𝑠 > 1+ 1

2 dim𝑀 . Then, if𝐶0Met(𝑀) is the space
of continuous Riemannian metric on𝑀 , define

Met𝑠−1(𝑀) = 𝐶0Met(𝑀) ∩ 𝑆𝑠−1
(0,2) (𝑀).

Metrics on 𝑀 of class 𝐻 𝑠−1 constitute an open set of the bundle of sym-
metric tensor fields of type (0, 2) on𝑀 . In particular, it is a smooth Hilbert
manifold [73]. The tangent space is 𝑇Met𝑠−1(𝑀) ≃ Met𝑠−1(𝑀) × 𝑆𝑠−1

(0,2) .
Instead of using the canonical metric on Met𝑠−1(𝑀), the so-called Ebin
metric [19], the framework in Paper III is using an 𝐿2 type distance to
make the computations less costly in applications such as image matching.
This 𝐿2 distance is based on the 𝐿2 inner product on 𝑆𝑠−1

(0,2) ,

⟨ℎ, 𝑘⟩ =
∫
𝑀

g(ℎ, 𝑘) `g =
∫
𝑀

ℎ𝑖 𝑗𝑘𝑖 𝑗 `g
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and the distance dist(ℎ, 𝑘) = ∥ℎ−𝑘 ∥2 for any twometricsℎ, 𝑘 ∈ Met𝑠−1(𝑀).
As alreadymentioned, the distance which is used to regularlize the gradient
flow is the distance from the “background metric” to the pushforward
metric, that is dist(𝜑∗g, g).

In the above setup, we have defined diffeomorphisms of class 𝐻 𝑠 and
metrics of class 𝐻 𝑠−1, though 𝑠 is a smoothness parameter of choice. It
makes sense, however, to reserve 𝑠 for the diffeomorphims and keep track
of the −1 in the notation, because in the current application, the action
of the diffeomorphisms on the metrics determine the smoothness of the
metrics. The original metric g is smooth, but the pushforward metric
(that is, the modelled deformations) are 𝐻 𝑠−1 smooth. The smoothness
reduction by one integer unit is due to the differentials in the definition of
the pushforward metric.

5.2 Main results of Paper III

One main result of Paper III concerns the existence and uniqueness of a
gradient flow for the matching problem of images. Another central result
is the geometric structure of certain gradient flows on Lie groups. That
is, the matching problem is approached as in the above sections but also
with generalizations of the equations such as (5.9). To that end, let 𝑄 be a
shape representation, which can be selected according to the application,
as shapes can be represented in multiple ways. To model a deformation
of a shape, 𝑞, let the (left) action of a group element 𝑔 ∈ 𝐺 on the shape,
𝑔 · 𝑞, represent a deformation of the original shape. The goal is to identify
which transformation 𝑔 that generates a shape such that it is similar to a
given target.

A central technique is the analysis on Sobolev spaces, with methods in-
spired by the works of Ebin andMarsden [21] on hydrodynamics equations,
which in Paper III is applied to a gradient system. The first step towards
analysing the gradient flow is to identify the geometric components of it.
The second step is to analyze the Sobolev space regularity of the gradient
flow. In idetifying the geometric structure of the gradient flow, it is found
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that the gradient of 𝐸 : 𝐺 → R is a composition of mappings:

∇𝐸 (𝑔) = b · 𝑔, where 𝐴b = 𝐽 (𝑔 · 𝑞0, 𝑑 𝑓 (𝑔 · 𝑞0)) (5.12)

where 𝑓 : 𝑄 → R is a function on the configuration manifold 𝑄 , 𝐴 is
the inertia operator on the Lie algebra and 𝐽 is the momentum map of
the cotangent lifted left action of D(𝑀) on 𝑄 . To carry on the procedure,
Equation (5.12) is decomposed into smooth vector fields from which the
existance and uniqueness of the gradient flow can be derived. See Section 5
of Paper III for details on the proofs. Section 5.2.1 outlines the structure of
Equation (5.12) and Section 5.2.2 describes the existance and uniqueness
results.

5.2.1 The gradient flow geometry on a Lie group

From the recent works of K. Modin and collaborators, including Paper III,
the geometric structure of Riemannian gradient flows confined to group
orbits has been uncovered [43]. In this section, we leave out the analytical
questions in order to focus on the geometric strcuture of the gradient
flow. To that end, let 𝐺 be a Lie group (or a Fréchet–Lie group in the
infinite-dimensional case) acting from the left on a “shape space”, which is
another manifold 𝑄 , possibly infinite-dimentional. Assume that the action
map is smooth.

The infinitesimal action corresponding to a Lie algebra 𝔤 is given by dif-
ferentiating the action map 𝑔 · 𝑞 with respect to 𝑔 at the identity in the
direction of some vector field 𝑣 . The resulting infinitesimal action of 𝑣 ∈ 𝔤

on 𝑞 ∈ 𝑄 is denoted 𝑣 · 𝑞. Keeping 𝑣 ∈ 𝔤 fixed defines a vector field
𝑄 → 𝑇𝑄 , given by 𝑞 ↦→ 𝑣 · 𝑞. On the other hand, the mapping 𝑣 ↦→ 𝑣 · 𝑞 is
linear and it motivates the following:

Definition 5.1. The momentum map 𝐽 : 𝑇 ∗𝑄 → 𝔤∗ is defined by

⟨𝐽 (𝑞, 𝑝), 𝑣⟩ = ⟨𝑝, 𝑣 · 𝑞⟩ ∀ 𝑣 ∈ 𝔤, (5.13)

where 𝑇 ∗𝑄 denotes the cotangent bundle of 𝑄 .
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Here, if𝑄 is an infinite-dimensional Fréchetmanifold, the cotangent bundle
𝑇 ∗𝑄 is given in terms of the regular dual [44], defined so that 𝑇 ∗

𝑞𝑄 ≃ 𝑇𝑞𝑄 .

If the tanget space𝑇𝑒𝐺 at the identity of𝐺 (i.e. the Lie algebra) has an inner
product ⟨⟨·, ·⟩⟩𝑒 , then it determines a right invariant metric on𝑇𝐺 by means
of the right action. We remark that 𝑄 is not assumed to be Riemannian,
but the orbit 𝐺 · 𝑞 = {𝑔 · 𝑞 | 𝑔 ∈ 𝐺} will inherit a Riemannian metric from
𝐺 , as shown by Khesin and Modin [43].

Let 𝑞0 ∈ 𝑄 and let 𝑓 : 𝑄 → R be a function which is to be minimized on𝑄 .
Specifically, we are interested in finding the minimum of 𝑓 on the 𝐺-orbit
starting at 𝑞0 and thereby minimize the function 𝐸 : 𝐺 → R defined by

𝐸 (𝑔) = 𝑓 (𝑔 · 𝑞0). (5.14)

If 𝐺 is equipped with a right-invariant Riemannian metric ⟨⟨·, ·⟩⟩ defined
by

⟨⟨𝑢 · 𝑔, 𝑣 · 𝑔⟩⟩𝑔 = ⟨𝐴𝑢, 𝑣⟩

where 𝐴 is the inertia operator 𝐴 : 𝔤 → 𝔤∗, the corresponding gradient
vector field ∇𝐸 on 𝐺 is given by

⟨⟨∇𝐸 (𝑔), ¤𝑔⟩⟩𝑔 = ⟨𝑑𝐸, ¤𝑔⟩ . (5.15)

The aim is to solve the minimization problem by considering the gradient
flow

¤𝑔 = −∇𝐸 (𝑔). (5.16)

Theorem 5.2. The gradient ∇𝐸 is given by

∇𝐸 (𝑔) = b · 𝑔. (5.17)

where b ∈ 𝔤 is given by

b = 𝐴−1𝐽 (𝑔 · 𝑞0, 𝑑 𝑓 (𝑔 · 𝑞0)) . (5.18)

Proof. Let ¤𝑔 = b · 𝑔. By definition of the gradient and the chain rule

⟨⟨∇𝐸, ¤𝑔⟩⟩𝑔 = ⟨𝑑𝐸, b · 𝑔⟩ = 𝑑

𝑑𝑡
𝐸 (𝑔) = ⟨𝑑 𝑓 , b · (𝑔 · 𝑞0)⟩ .
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From the definition of the momentum map it follows that

⟨⟨∇𝐸, ¤𝑔⟩⟩𝑔 = ⟨𝐽 (𝑔 · 𝑞0, 𝑑 𝑓 ), b⟩ = ⟨⟨𝐴−1𝐽 (𝑔 · 𝑞0, 𝑑 𝑓 ), b⟩⟩𝑒

The result follows since the metric is right invariant. □

This theorem provides the geometry of the gradient flow. As shown by
Khesin andModin [43], the resulting gradient flow (5.16) induces a gradient
flow on the 𝐺-orbit of 𝑞0, given by

¤𝑞 = −𝑢 (𝑞) · 𝑞 (5.19)

where 𝑢 (𝑞) = 𝐴−1𝐽 (𝑞, 𝑑 𝑓 (𝑞)). Khesin and Modin derives a double-bracket
flow of vorticity functions for the incompressible Euler equations on the
2-dimensional sphere using this result.

The gradient flow that follows this treatment will have some of the proper-
ties that are well-known in similar settings, such as the following. Consider
the Riemannian distance on 𝐺 , given by integration along the geodesic
between two group elements 𝑔0, 𝑔1 ∈ 𝐺 ,

𝑑 (𝑔0, 𝑔1) = inf
𝛾

∫ 1

0
∥𝑣 (𝑡)∥𝐴 𝑑𝑡, ¤𝛾 = 𝑣 ◦ 𝛾, (5.20)

where the infimum is taken over all smooth curves 𝛾 : [0, 1] → 𝐺 con-
strained by 𝛾 (0) = 𝑔0 and 𝛾 (1) = 𝑔1. Here, ∥𝑣 ∥𝐴 is the norm induced by
the inner product (5.3). Then, using the right-invariance of the metric,

𝑑

𝑑𝑡
𝐸 (𝛾) = ⟨⟨∇𝐸 (𝛾), ¤𝛾⟩⟩𝛾 = −⟨𝐴𝑣, 𝑣⟩ = −∥𝑣 ∥2

𝐴 . (5.21)

It follows that the gradient flow decreases the energy 𝐸 along its path.
From a computational point of view, it is reasonable to have a stopping
criteria based on the decrease. In Section 5.2.3, this will be discussed.

5.2.2 Well-posedness of the gradient flow

The above derivation of the gradient flow equation’s structure in terms of
the momentum map does not specify when the gradient flow exists, but
this section will. Theorem 2.7 in Paper III proves the well-posedness of
this gradient flow. Here, we repeat it:
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Theorem 5.3. Let 𝐸 : 𝐺 → [0,∞) be such that the gradient vector field ∇𝐸
on𝐺 satisfies a local Lipschitz condition. Then the gradient flow ¤𝛾 = −∇𝐸 (𝛾)
with initial data 𝛾 (0) ∈ 𝐺 admits a unique global solution.

Key to the proof of this theorem is to show that the flow is Hölder contin-
uous. For details, see Paper III.

In the case when𝑄 is the manifold of images and metrics,𝑄 = 𝐻 𝑠 (𝑀,R) ×
Met𝑠−1(𝑀), the push-forward action is, respectively,

(𝜑, 𝑓 ) ↦→ 𝑓 ◦ 𝜑−1 and (𝜑, g) ↦→ 𝜑∗g,

where the push-forward metric is as in Section 2.5. The momentum map
associated to the action on functions in 𝐻 𝑠 (𝑀,R) is (5.7) while the mo-
mentum map associated to the action on the metrics in Met𝑠−1(𝑀) is

𝐽 (ℎ, 𝜋) = 2trℎ (div𝜋) + tr𝑢,𝑣
(
2𝜋 (𝑢, 𝑣)∇ℎ(𝑢, ·, 𝑣) −𝜋 (𝑢, 𝑣)∇ℎ(·, 𝑢, 𝑣)

)
. (5.22)

This can be seen as a bi-linear divergence-type differential operator. In Pa-
per III, divℎ (𝜋) = trℎ (div𝜋) + 1

2 tr𝑢,𝑣
(
2𝜋 (𝑢, 𝑣)∇ℎ(𝑢, ·, 𝑣) −𝜋 (𝑢, 𝑣)∇ℎ(·, 𝑢, 𝑣)

)
is called the divergence of (0, 2)-tensors.

Next, consider

𝐸 (𝜑) = 1
2
∥𝐼0 ◦ 𝜑−1 − 𝐼1∥2 + 𝜎

2
∥𝜑∗g − g∥2

where the norms are defined on 𝐻 𝑠 (𝑀,R) and Met𝑠−1(𝑀), respectively.
This is the energy functional that balances between the similarity of 𝐼0◦𝜑−1

and 𝐼1 on the one hand and the regularity of 𝜑∗g on the other hand. If
the parameter 𝜎 is increased then 𝐸 gets more sensitive to deviations of 𝜑
from the identity mapping.

Theorem 5.4. Let 𝔛𝑠−2(𝑀) be the vector fields on𝑀 of Sobolev type 𝐻 𝑠−2

and let 𝑆𝑠−1
0,2 (𝑀) be the space of summetric (0, 2)-tensor fields on𝑀 of Sobolev

type 𝐻 𝑠−1. The gradient of 𝐸 with respect to the right-invariant Riemannian
metric on D𝑠 (𝑀) defined by (5.3) and (5.8) is

∇𝐸 (𝜑) = 𝑣 ◦ 𝜑, 𝐴𝑣 = 𝐽 (𝜑∗𝐼0, 𝜑∗g, 𝛿𝐼 𝑓 , 𝛿ℎ 𝑓 )
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e

g

C∞(M)I0 ◦ ϕ
−1I0

g

ϕ∗g

Met(M)

D(M)

min E

(g, I1)

Figure 5.1: The gradient flow translates the identity 𝑒 ∈ D(𝑀) into 𝜑 ∈ D(𝑀),
and the diffeomorhism 𝜑 acts on both metrics and functions.

where 𝐽 : 𝑇 ∗𝑄 → 𝔛∗(𝑀) is identified as the mapping

𝐻 𝑠 (𝑀,R) × Met𝑠−1(𝑀) × 𝐻 𝑠 (𝑀,R) × 𝑆𝑠−1
0,2 (𝑀) → 𝔛𝑠−2(𝑀)

(𝐼 , ℎ, 𝑃, 𝜋) ↦→ −𝑃∇𝐼 + 2 divℎ (𝜋).

Here, −𝑃∇𝐼 is the momentum map of the action of D𝑠 (𝑀) on functions,
Equation (5.7), while 2 divℎ (𝜋) is defined by 𝐽 (ℎ, 𝜋) = 2 divℎ (𝜋) in Equa-
tion (5.22).

The momentum map of Theorem 5.4 is a sum of two separate momentum
maps. That is, the structure of the direct product bewteen functions
and metrics is carried over to the cotangent space by summation. The
flow evolves on the group of diffeomorphisms and traces a path on the
configuration space, see Figure 5.1. The target is (g, 𝐼1) ∈ 𝑄 but the action
orbit can usually only achieve to come close to it.

Corollary 5.4.1. Applying 5.4 to 𝐸 (𝜑) = 𝑓 (𝐼0 ◦ 𝜑−1, 𝜑∗g), where

𝑓 (𝐼 , ℎ) = 1
2
∥𝐼 − 𝐼1∥2 + 𝜎

2
∥ℎ − g∥2,
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the gradient flow is defined by ¤𝜑 = −∇𝐸 (𝜑) where

∇𝐸 (𝜑) = 𝑣 ◦ 𝜑
(1 − 𝛼Δ)𝑘𝑣 = −(𝐼0 ◦ 𝜑−1 − 𝐼1)∇(𝐼0 ◦ 𝜑−1) + 2𝜎 div𝜑∗g(𝜑∗g − g)

Theorem 5.4 provides a closed expression for the momentum map of the
pushforward action on the configuration manifold 𝐻 𝑠 (𝑀,R) × Met𝑠−1(𝑀).
One important implication is that the gradient flow ∇𝐸 (𝜑) = 𝑣 ◦ 𝜑 can
be computed at any time along the integration curve, starting from, say,
𝜑 (0) = id. Compared to the LDDMM setting, as explained above, it is
computationally faster to solve the gradient flow using these formulas.
The setting in Proposition 5.4 allows these closed expressions much due
to the choice of regularization, that is, the 𝐿2-type distance ∥ℎ1 − ℎ2∥ on
the space of metrics.

The next result is the existence of the gradient flow. For this, assume that
the fixed functions 𝐼0 and 𝐼1 are 𝐶∞-smooth. Let 𝑠 > 2 + 1

2 dim𝑀 .

Theorem 5.5. For each initial datum 𝜑0 ∈ D𝑠 (𝑀), there exists a maximal
𝑇 > 0 and unique curves 𝜑 : [0,𝑇 ) → D𝑠 (𝑀) and 𝑣 : [0,𝑇 ) → 𝑇idD𝑠 (𝑀)
with 𝜑 (0) = 𝜑0 that fulfills the gradient flow equation in Corollary 5.4.1.
The solution depends smoothly on the initial data (in the Hilbert manifold
topology of D𝑠 (𝑀)). Furthermore, if 𝑘 ≥ 𝑠 then the maximal time 𝑇 is
infinite, that is, the flow is globally well posed.

Remark. The well-posedness does not depend on 𝜎 . However, the value
of 𝜎 significantly impacts how the images appear along the gradient flow.

Remark. It is very useful that the order of the inertia operator 𝐴 =

(1 − 𝛼Δ)𝑘 , determines whether the flow is globally well-posed or only
locally. The inertia operator is freely chosen to suit this requirement; it is
part of the computational framework. Note that 𝐴 can be any invertible
elliptic differential operator of order ≥ 2.

The key to the proof of Theorem 5.5 is to show that ¤𝜑 = −∇𝐸 (𝜑) from
Corollary 5.4.1 is an ordinary differential equation defined by a smooth
vector field on the infinite-dimensional Hilbert manifoldD𝑠 (𝑀). Once this



104 Chapter 5. Geometry and shape analysis

is established, local existence follows from the Picard–Lindelöf theorem
on Banach manifolds [47]. Global well-posedness follows precisely by the
same steps as in the finite-dimensional case. If 𝑘 ≥ 𝑠 then the Riemannian
metric defined by the inertia operator 𝐴 is strong enough to dominate the
topology of D(𝑀). The estimates obtained as in the finite-dimensional
case exclude the possibility of blowup as 𝑡 → 𝑇 . Since the general theory
of maximal solutions of ODEs is valid also in the Banach category, we
conclude that 𝑇 = ∞ in this case.

5.2.3 Example on the 2-dimensional flat torus

For 𝑀 = T2, the 2-dimensional flat torus, the image matching methods
in this chapter can be implemented to produce figures such as Figure 5.2.
Here, the toy example matching problem is the deformation of the letter I
with target letter C. The pixel values of the image are moved around via
the map 𝜑−1, then displayed. The warp figure in Figure 5.2 is the original
coordinate system (horizontal and vertical lines) mapped via 𝜑−1. Since
𝜑 is a diffeomorphism, it does not destroy structures that would make
the warp impossible to reverse. For instance, two of the corners of the
letter I are still visible on the sides of the letter C in the warped image:
one on the upper-left side and one on the lower-left side. The flow, which
starts at 𝜑 = id, is allowed to evolve until the energy 𝐸 (𝜑) stabilizes at a
significantly lower value compared to 𝐸 (id). As can be seen in Figure 5.3,
which corresponds to the deformation in Figure 5.2, the energy decreases
rapidly during the first 100 iterations. This rapid decrease of 𝐸 is usually
caused by linear translations in the case of the flat torus. After the first
100 iterations there is a region of slower decay of energy, which often
corresponds to non-rigid deformations which are “impossible” on the space
of diffeomorphisms, such as the removal of corners, or in other examples
the disappearance of entire regions. If this matching algorithm should
be applied to, say, medical image analysis, it can be expected that the
stopping criteria need to be automatic. They could be taken on the rate
of decrease of the energy 𝐸 (𝜑). The convergence of 𝐸 is fast compared
to the LDDMM method. Beg et al. [5] compared the LDDMM method
to the greedy matching algorithm and found that the LDDMM method
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Figure 5.2: The warp of a template function, trying to replicate the target.

is about ten times slower for rigid deformations and around 100 times
slower for non-rigid image matching. The gradient flow method of Paper
III experiences a slow-down due to the regularization on the order of the
greedy matching. That is, the non-rigid image matching in Paper III is
orders of magnitudes faster than the LDDMM.
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Figure 5.3: The energy 𝐸 (𝜑) as the gradient flow 𝜑 evolves.
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