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Variational quantum algorithms (VQAs)
represent a promising approach to uti-
lizing current quantum computing infras-
tructures. VQAs are based on a pa-
rameterized quantum circuit optimized in
a closed loop via a classical algorithm.
This hybrid approach reduces the quan-
tum processing unit load but comes at
the cost of a classical optimization that
can feature a flat energy landscape. Ex-
isting optimization techniques, including
either imaginary time-propagation, nat-
ural gradient, or momentum-based ap-
proaches, are promising candidates but
place either a significant burden on the
quantum device or suffer frequently from
slow convergence. In this work, we pro-
pose the quantum Broyden adaptive nat-
ural gradient (qBang) approach, a novel
optimizer that aims to distill the best as-
pects of existing approaches. By employ-
ing the Broyden approach to approximate
updates in the Fisher information ma-
trix and combining it with a momentum-
based algorithm, qBang reduces quantum-
resource requirements while performing
better than more resource-demanding al-
ternatives. Benchmarks for the barren
plateau, quantum chemistry, and the max-
cut problem demonstrate an overall sta-
ble performance with a clear improvement
over existing techniques in the case of
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Christian Schäfer: christian.schaefer.physics@gmail.com

flat (but not exponentially flat) optimiza-
tion landscapes. qBang introduces a new
development strategy for gradient-based
VQAs with a plethora of possible improve-
ments.

1 Introduction

Fostered by its anticipated potential, recent tech-
nological progress, and a surge of widespread in-
terest, quantum computing is approaching the
next level of popularity. Despite its impressive
progress over the past years [1, 2, 3, 4, 5] much
remains to be accomplished before a practical use
moves into reach [6, 7]. Two of the most severe
constraints are the limited number of qubits and
short coherence times [8]. In order to combat
those challenges, mixed quantum-classical algo-
rithms, labeled variational quantum algorithms
(VQAs) [1, 9, 10, 11, 12, 2, 3], have been de-
vised. VQAs split an optimization task into two
entwined steps: (i) an energy estimation using the
quantum processing unit (QPU) and (ii) a classi-
cal optimization of the characterizing parameters.
Due to the existing challenges, the aim of develop-
ing VQAs is to ensure convergence while limiting
the number of function evaluations on the QPU
to a minimum.

Classical optimizers have come a long way,
from vanilla gradient descent, over natural gra-
dient methods to the modern widely used adap-
tive gradient-based methods (Adam) [13]. Sim-
ilar gradient-based approaches have been intro-
duced for quantum algorithms [14, 15, 16]. The
nature of quantum mechanics implies that, as the
system size grows, the associated Hilbert space

Accepted in Quantum 2024-03-22, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

30
4.

13
88

2v
2 

 [
qu

an
t-

ph
] 

 4
 A

pr
 2

02
4

https://quantum-journal.org/?s=Optimizing%20Variational%20Quantum%20Algorithms%20with%20qBang:%20Efficiently%20Interweaving%20Metric%20and%20Momentum%20to%20Navigate%20Flat%20Energy%20Landscapes&reason=title-click
https://quantum-journal.org/?s=Optimizing%20Variational%20Quantum%20Algorithms%20with%20qBang:%20Efficiently%20Interweaving%20Metric%20and%20Momentum%20to%20Navigate%20Flat%20Energy%20Landscapes&reason=title-click
https://quantum-journal.org/?s=Optimizing%20Variational%20Quantum%20Algorithms%20with%20qBang:%20Efficiently%20Interweaving%20Metric%20and%20Momentum%20to%20Navigate%20Flat%20Energy%20Landscapes&reason=title-click
https://orcid.org/0000-0003-4268-5485
https://orcid.org/0000-0002-8235-3058
https://orcid.org/0000-0001-6479-1874
https://orcid.org/0000-0002-8557-733X
mailto:davidfi@chalmers.se
mailto:robejons@chalmers.se
mailto:werner.dobrautz@gmail.com
mailto:christian.schaefer.physics@gmail.com


grows exponentially. While it is our goal to
leverage this complexity, the majority of available
eigenstates are closely packed in energy, mimick-
ing de facto thermal behavior for a local opera-
tor according to the eigenstate thermalization hy-
pothesis [17]. Consequently, gradients, which re-
sult in small local changes in a high-dimensional
Hilbert space, decrease exponentially with in-
creasing system size, a feature known as a barren
plateau, making parametrized quantum circuits
(PQCs) prone to poor convergence. Albeit not
directly mitigating BPs [18, 19, 20, 21], higher-
order derivative information can aid in maneuver-
ing the optimization landscape by accounting for
its local curvature or metric [22, 23]. A quantity
related to local curvature is the quantum Fisher
information matrix (QFIM), which appears also
in the context of multi-parameter estimation [24].

Estimating gradients and higher-order deriva-
tives of quantum circuits is, unfortunately, costly,
and requires many function evaluations. Given
its quadratic form, for nθ parameters the QFIM
requires O(nθ2) function evaluations which, con-
sidering the cost of measurements, renders its
use for relevant problems challenging. Stokes
et al. [22] introduced for pure quantum states
the quantum natural gradient (QNG). Block-
diagonal approximations of the latter require only
a linear amount of function calls but discard es-
sential information about parameter correlation
which severely limits its performance [25]. Gen-
eralizations of QNG to non-unitary circuits [26]
as well as alternative approximation strategies
have been proposed [27, 28]. While the specific
cost of estimating the QFIM depends on the spe-
cific problem at hand, the cost for performing
O(nθ2) evaluations is particularly prohibitive in
systems that feature vanishing gradients due to a
quickly rising number of variables (e.g., the BP
circuit [18]). Practical use of VQAs requires the
availability of optimization strategies that pro-
vide reliable predictions with as few as possible
evaluations on the QPU.

In this work, we introduce the quantum Broy-
den adaptive natural gradient (qBang) approach
– an optimization strategy that augments the re-
liable momentum-based optimization Adam with
an efficient update of the local metric based on
the QFIM using the Broyden method [29]. After
initialization, qBang requires only O(nθ) evalu-
ations and, yet, shows considerable performance

gain over QNG, Adam, and even quantum imag-
inary time evolution (QITE) [30, 31, 32, 33] on
flat optimization landscapes.

The remainder of this article is structured as
follows: Section 2.1 recapitulates VQAs, com-
prising the quantum approximate optimization
algorithm (QAOA) and the variational quan-
tum eigensolver (VQE), followed by a brief re-
view of gradient-based optimization paradigms in
Sec. 2.2. Sec. 2.3 subsequently introduces the
newly developed qBang algorithm which is ex-
tensively benchmarked and discussed in Sec. 3
for BP, max-cut, and quantum chemical systems.
We finally conclude the discussion in Sec. 4 and
provide an outlook toward possible applications,
improvements, and future challenges.

2 Theory

2.1 Variational quantum algorithms

VQAs are a collection of practically applicable al-
gorithms that harness the computational capabil-
ities of programmable quantum devices [1, 9, 32].
These algorithms are well suited for the hard-
ware constraints imposed by the current gener-
ation of quantum computers, namely short co-
herence times, noisy operations, and the limited
number of qubits [8]. These near-term algorithms
have been proposed for a wide range of applica-
tions, including quantum chemistry [3], classical
optimization [2] and machine learning [1, 34].

VQAs are composed of three key elements,
which are represented in Fig. 1. The first com-
ponent is the objective/cost function to be mini-
mized. In our work, the cost function is expressed
as the expectation value of the Hamiltonian,

L(θ) = ⟨ψ(θ)| Ĥ |ψ(θ)⟩ , (1)

and provides information about the energy of the
ground state of the Hamiltonian Ĥ. Depending
on the complexity of the Hamiltonian, different
Pauli strings have to be measured to get an accu-
rate estimate of the energy. The state |ψ(θ)⟩ is
represented by a parametrized quantum circuit,
and the optimizable parameters of the circuit are
denoted as θ = (θ1, θ2, . . . , θnθ

)⊤. These parame-
ters commonly represent the angles of unitary ro-
tation operators. The Hamiltonian is composed
of quantum operators that encode information
about a chemical or classical system, such as a
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Input: Objective Ô & θ0

QPU

...
...Param. quantum

circuit Û(θ)

X

Rx(θ)

H

Y

Measure

〈ψ(θ)|Ô|ψ(θ)〉

CPU

Classical
optimizer

Update parameters θ

Quantum-classical loop

Output: Optimum L(θ∗)

Figure 1: A diagrammatic representation of a VQA con-
sists of three main elements: an objective function that
defines the problem to be solved, a PQC Û(θ) in which
parameters θ are adjusted to minimize the objective and
a classical optimizer that performs this minimization.
The inputs for a VQA are the circuit Ansatz and initial
parameter θ0 values, while the outputs are the optimized
parameter values θ∗ and the minimum value of the ob-
jective function, ⟨ψ(θ)| Ô |ψ(θ)⟩.

molecule or an optimization problem. The second
component is the problem-specific circuit ansatz,
|ψ(θ)⟩. These ansätze are tailored to the specific
problem, and numerous works focus on finding
optimal PQCs [35, 36, 37]. A shared aspect is the
use of only unitary operations, a limitation that
will become relevant in the subsequent sections.
The final component is the classical optimizer,
which is used to find parameters that minimize
the objective function [2, 38, 26, 22].

The task of VQAs is to optimize the cost func-
tion, Eq. (1), by adjusting the tunable parame-
ters θ of the circuit ansatz in a closed loop. This
is done by iterating between evaluating the cost
function on the quantum computer and updating
the parameters using a classical optimizer. The
objective is to find the set of parameters, θ∗, that
minimizes the cost function and provides a solu-
tion to the problem at hand. The process of eval-
uating the cost function and updating the param-
eters is repeated until the cost function converges
to its minimum value or a stopping criterion is
met. Current limitations in the available com-
plexity of circuits are thus circumvented by di-
viding the optimization problem into small sets of
quantum evaluations steered via classical param-
eter optimization. The circuit ansatz, cost func-
tion, and classical optimizer are problem-specific,
and the choice of these components can signifi-
cantly affect the algorithm’s performance.

VQAs offer a versatile framework that can be
broadly categorized into several areas of applica-
tion. While QAOA [36] is often employed for clas-
sical optimization problems and VQE [9, 35, 3] is
commonly used for solving quantum eigenvalue
problems, these categories are not exhaustive.

QAOA has been proposed to solve various clas-
sical optimization problems [36, 39, 1, 40, 41] and
is a candidate for hybrid quantum-classical com-
putation. Here, optimization problems are en-
coded into an Ising Hamiltonian [39]. QAOA
typically suggests a circuit ansatz |ψ(θ)⟩ com-
posed of the consecutive application of two non-
commuting operators. One operator encodes the
optimization problem and the other serves as a
mixing Hamiltonian. The goal is to optimize the
parameters, θ, of the quantum circuit to minimize
L(θ), and thereby find the solution to the opti-
mization problem. Once the quantum circuit has
been optimized, bitstrings are sampled to obtain
approximate solutions to the classical optimiza-
tion problem.

In contrast, the VQE is the most widely stud-
ied quantum algorithm to minimize a given cost
function, usually the energy, of a given quantum
system, Eq. (1). A prominent example is the
solution of Schrödinger’s equation for molecular
systems. A selected PQC is initialized, and the
corresponding energy of the output state is sub-
sequently evaluated on a quantum computer. In-
formation about energy, gradients, and the metric
can be inferred from multiple evaluations of the
circuit and then used to update the parameters
of the circuit with classical optimization meth-
ods [42]. This process is repeated until the ex-
pectation value converges to the ground-state en-
ergy of the system (see Section 2.1). The VQE
algorithm has been applied in various fields, in-
cluding quantum chemistry [43] and materials sci-
ence [44].

2.2 Existing optimization paradigms

Here we review the existing optimization
paradigms that inspire the qBang approach.

2.2.1 Gradient-based Optimization

A vital component of every variational algorithm
is the classical optimizer. Here, the task of
the classical computer is to iterate the parame-
ters from an initial guess θ0 such that the cost,
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Eq. (1), is minimized. Generally, this requires
several iterations, depending on the quality of the
initial guess. Assuming the cost function is dif-
ferentiable, this procedure can be realized with
gradient descent (GD). GD uses the parameter
update rule θk+1 = θk − η∇Lk, where the step
size η ∈ R+ controls how much each iteration
is allowed to change the parameters and ∇Lk ≡
∇L(θk) is the gradient of the cost function at iter-
ation k. The norm of the gradient ∥∇Lk∥2 can be
used as a criterion to determine when to stop the
GD algorithm, as a zero norm gradient implies a
stationary point. Gradients of quantum circuits
can be obtained via finite-difference methods, lin-
ear combination of unitaries [16] and without the
need for additional hardware by evaluating the
cost function at two shifted parameter positions
and using the rescaled difference of the results as
an unbiased estimate of the derivative [45, 38, 16].

GD-based methods have apparent limitations.
If the cost function is relatively flat, the gradient
will be small, and the GD may require unfeasi-
bly many iterations to converge, even on ideal
quantum devices. The noisy results on realis-
tic devices put additional strain on the optimizer
to escape flat energy landscapes as quickly as
possible. As long as the cost function gradients
are not completely vanishing, this problem may
be mitigated by the extension of GD to include
higher-order derivatives. For a second-order algo-
rithm, this introduces the Hessian H and results
in the Newton method, θk+1 = θk − ηH−1

k ∇Lk.
However, these higher-order methods are not al-
ways applicable, as the Hessian may not be pos-
itive semi-definite [46, 47]. Additionally, com-
puting the Hessian is computationally expen-
sive if the parameter space is large. To over-
come these challenges, there are several quasi-
Newton methods that can efficiently estimate the
Hessian, such as the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm or the Gauss-Newton
method [48, 29, 49, 50].

Other methods exist that are tailored to navi-
gate flat energy landscapes. For an intuitive pic-
ture, consider a ball rolling down in a friction-
less bowl. Instead of stopping at the bottom, the
accumulated momentum pushes it forward and
keeps the ball rolling back and forth. This idea is
used in momentum-based optimizers, illustrated

in a simplified form

mk = βmk−1 + (1− β)∇Lk (2)
θk+1 = θk − ηmk, (3)

where each step is a linear combination of the
previous update and the current gradient, with
mk being the momentum accumulated during
the optimization process, β the decay rate and
η the step size. Compared to GD, these methods
are more effective at escaping local minima [51].
The Adam [13] momentum-based optimizer is
widely used throughout different scientific disci-
plines and has proven versatile and consistent in
performance.

The optimization of VQAs can suffer when the
energy surface becomes flat. To handle this is-
sue, two directions can be taken. One approach
is to find a good initial state that can be eas-
ily obtained and prepared on the quantum de-
vice. A typical example for chemistry applica-
tions is the uncorrelated Hartree–Fock state, but
it can be expected that more complex systems
will require correlated initial states. In the sec-
ond approach, we utilize information about the
local metric to guide each step toward the min-
imum, which will be discussed in detail in the
following section. Overall, finding practical so-
lutions to this problem is crucial for successfully
implementing VQAs.

2.2.2 Metric-informed Optimization: quantum
imaginary time evolution and quantum natural gra-
dient

As stated above, VQAs rely on a parametrization
of the wave function in which the parameters rep-
resent phases of unitary gates acting on an input
state. A small change in a parameter δθi not only
results in changes in the observable of interest, as
utilized by GD, but also in the associated met-
ric ⟨ψ(δθj)|ψ(δθi)⟩. This additional information
can provide a more suitable direction for the opti-
mization trajectory. We will briefly review QITE
and QNG, representing the two most widely dis-
cussed metric-informed optimization strategies.

QITE [30, 31, 32, 33] is based on the “Wick-
rotated”(τ = it) [52] imaginary time Schrödinger
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equation

∂ |Ψ(τ)⟩
∂τ

= −Ĥ |Ψ(τ)⟩

or |Ψ(τ + ∆τ)⟩ = N(τ)−1e−∆τĤ |Ψ(τ)⟩ ,

with N(τ) =
√
⟨Ψ(τ)| e−2∆τĤ |Ψ(τ)⟩

(4)

and is a quantum algorithm to find the ground
and excited states [53] of a quantum system.
It is a variant of the imaginary time evolution
(ITE) algorithm [54, 55, 56, 57], which is a well-
established technique in “classical” computational
physics for finding the ground state of a system.
The iterative application of the exponential op-
erator with sufficiently small time-steps ∆τ [56]
is exponentially damping higher energy contribu-
tions, resulting in a convergence to the ground
state |Ψ0⟩ if the initial state |Ψ(0)⟩ has a non-
zero overlap with the ground state [30, 31]. How-
ever, since e−∆τĤ is not unitary, it is not straight-
forward to directly implement ITE on quantum
hardware. One option, which we will pursue in
this work, is to cast QITE into a hybrid quantum-
classical variational form (VarQITE) [31, 32]
(Fig. 1), where the target state |Ψ(τ)⟩ is encoded
by a PQC |ψ(θ(τ))⟩ = Û(θ(τ)) |ψ0⟩ and the time-
evolution is mapped to the parameters θ(τ) of the
variational ansatz. The rule to update the param-
eters θk for the next iteration k+1 at (imaginary)
time τ+∆τ is obtained by applying McLachlan’s
variational principle [58] to Eq. (4), minimizing
the difference of the time evolution of the ansatz
state |ψ(τ)⟩ ≡ |ψ(θ(τ))⟩ to the exact imaginary
time evolution

δ∥
(
∂/∂τ + Ĥ − Eτ

)
|ψ(τ)⟩∥2 = 0, (5)

where ∥|ψ⟩∥2 =
√
⟨ψ|ψ⟩ is the 2-norm of a quan-

tum state |ψ⟩ and Eτ = ⟨ψ(τ)| Ĥ |ψ(τ)⟩ is the
expected energy at time τ . Solving Eq. (5) yields
the imaginary-time derivative of the parameters

∂θ

∂τ
= −2 F−1∇L, (6)

where F is the QFIM and ∇L the cost gradient.
Eq. (6) allows updating the parameters for the
next iteration, i.e., with a fixed time-step ∆τ and
the Euler method

θk+1 = θk + ∆τ ∂θ
∂τ

= θk −
∆τ
2 F−1

k ∇Lk, (7)

or higher-order methods [59]. ∆τ is equivalent to
a step size, η, in the above mentioned GD update
rule. The elements of the QFIM are given by

Fij = 4Re
[〈
∂θi
ψ|∂θj

ψ
〉
− ⟨∂θi

ψ|ψ⟩
〈
ψ|∂θj

ψ
〉]
,

(8)
where, ∂θi

≡ ∂
∂θi

. There is a close relation be-
tween the QFIM and the Fubini-Study metric,
which is the metric of parametrized pure quan-
tum states |ψ⟩, see the Supplemental Information
(SI) Section E and Refs. numbers [60, 61, 62, 63,
64, 65, 24, 66, 67] for details. The QFIM F en-
codes the nontrivial geometry of the parameter
space [68, 67] and is the quantum-analog of the
classical Fisher information matrix, which is the
unique Riemannian metric associated to a prob-
ability density function [69, 70, 71].

QNG [22] is another metric-informed optimiza-
tion technique based on the principles of natu-
ral gradient descent by Amari et al. [72, 73, 74,
75, 69], initially developed for optimizing neu-
ral networks. As VarQITE, the natural gradi-
ent considers the geometry of the function’s pa-
rameter space and is calculated using the inverse
of the QFIM [24, 76]. Thus, using the QNG
results in steps that are more aligned with the
geometry of the parameter space and allows for
faster convergence, crossing of local minima, and
helps the algorithm to escape regions with van-
ishing gradients [22, 25, 23, 77, 18, 78, 20]. Var-
QITE and QNG are equivalent when the energy
of the system, E = ⟨Ĥ⟩, is used as the cost func-
tion [73, 46, 22, 26], as considered in this work,
see Eq. (1).

The major drawback of QITE and QNG is that
computing the entire QFIM for an ansatz with
nθ parameters is computationally expensive and
requires measuring O(n2

θ) terms every iteration.
Existing approximations such as the (block-) di-
agonal approximation of Stokes et al. [22] reduce
the scaling to linear in the number of parameters,
but discarding the off-diagonal elements omits es-
sential information about correlation within the
system and leads to an overall suboptimal perfor-
mance [25].

The metric F and the gradient ∇L can be di-
rectly evaluated on quantum hardware [16, 32,
79, 80]. It should be noted that the metric is fre-
quently singular due to over-parametrization of
the chosen circuit ansatz and requires regulariza-
tion [22, 25] or comparable strategies [81, 59].
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2.3 Quantum Broyden Adaptive Natural Gra-
dient

In this section, we introduce qBang, that com-
bines the Broyden quasi-Newton method with
the natural gradient and adaptive momentum ap-
proaches. We discuss the core components of
qBang, as well as its motivation, mechanics, and
resources required on the programmable quantum
device. We also introduce a simplified version of
our optimization approach, which we refer to as
qBroyden.

The algorithms qBang and qBroyden utilize
an adaptive approach to approximate the QFIM,
drawing inspiration from the works of Amari,
Park, and Fukumizu [75, 82]. The intuition be-
hind this approach can be understood as follows.
We would like to retain the benefits of the natural
gradient method without computing the QFIM at
each iteration. For this reason, we assume that
the QFIM varies slowly as the parameter space is
traversed. For time step k, we use a metric de-
noted by the matrix Bk. Between steps, the met-
ric is updated with a rank-1 perturbation given
by the current gradient. In particular, Bk+1 is
realized as a low-pass filter process with learning
rate εk, allowing the metric to pick up momen-
tum as the parameter space is traversed, given by
the relation

Bk+1 = (1− εk)Bk + εk∇Lk∇L⊤
k . (9)

Conceptually, this updates the local metric with
an approximation of the Hessian. In the classi-
cal setting, the Hessian is equivalent to the Fisher
information matrix for certain classes of optimisa-
tion problems, e.g., with Gaussian statistics or if
the connection between the probability of encoun-
tering a given state decreases exponentially with
its energy density (see SI Section E). More gen-
erally, the connection to curvature is also found
in the equivalence between the classical Fisher
information matrix and the Hessian of the rel-
ative entropy between two parametrically sepa-
rated distributions [83]. We want to note that
recently, Dash et al. [84] have related the QFIM
with the Hessian in the context of neural quan-
tum states by using the infidelity with respect
to the exact ground state as the cost function.
The famous BFGS algorithm uses similar ideas
as Eq. (9) but differs in approximating the Hes-
sian using two rank-1 updates.

Instead of updating and then inverting Bk+1,
we utilise the Sherman-Morrison formula to
equivalently perform the update on the inverse
as

B−1
k+1 =

[
1−

εkB−1
k ∇Lk∇L⊤

k

1− εk(1−∇L⊤
k B−1

k ∇Lk)

]
B−1

k

1− εk
.

(10)

We select the hyperparameter εk according to a
decaying filter εk = ε0/(k + 1) [73].

Algorithm 1 presents the pseudo-code of the
qBang optimizer, which will be briefly exercised
in the following. The algorithm takes as input
the learning rates η = 0.01 and ε0 = 0.2, the
decay rates β1 = 0.9 and β2 = 0.999, the conver-
gence criterion γ, and the PQC U(θ) with the ini-
tial parameter vector θ0 ∈ Rnθ . In the initializa-
tion step, the algorithm sets the iteration counter
k ← 0, the momentum vector m−1 ← 0 and the
biased variance vector v−1 ← 0, whose role will
become apparent in the following. The matrix
B0 is initialized using, either, the full Fisher in-
formation matrix (F) or an approximation as in-
troduced in [22]. Other choices for the matrix
B0 would result in variations of the algorithm.
The optimization starts with the estimation of
the cost function L(θk) and its gradient ∇L(θk)
through quantum circuits, followed by the update
of the momentum and variance vectors, similar to
the Adam algorithm [13]. Specifically, the algo-
rithm calculates a weighted average of past gra-
dients mk, with the weight given by a parameter
β1, and uses this as a moving direction. It incor-
porates a moving average of the squared gradient,
vk ← β2vk−1 + (1− β2)∇L(θk) ⊙ ∇L(θk), with
the weight given by a second parameter β2. The
vector vk can be interpreted as the variance un-
der the assumption of a vanishing average. Its
magnitude provides information about the relia-
bility of a gradient estimate. The moving aver-
ages are then adjusted for bias via division with
(1 − βk+1

(1/2)), delivering m̂k and v̂k. The vari-
ance vector v̂k is then used to rescale the effec-
tive momenta into a sliding trust region {pk}l ←
{m̂k}l/

(√
{v̂k}l + κ

)
, ∀l ∈ {1, 2, . . . , p}, i.e., in-

creasing the stability of the algorithm by shorten-
ing unreliable steps. Unless the convergence crite-
rion is reached, the algorithm updates the param-
eter vector and the metric based on the update
rule Eq. (10). It also rescales εk with the learning
rate schedule, resulting in smaller updates with
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increasing number of optimization steps. Other-
wise, if the convergence criterion is satisfied, the
algorithm stops the iteration and outputs the op-
timal parameter vector θ∗. We suggest reinitializ-
ing qBang once the update of the Fisher informa-
tion matrix becomes minute, which might appear
for particularly long optimization trajectories but
has not been encountered in this work.

Algorithm 2 presents a simplified version of
our optimization approach, which we refer to as
qBroyden. Unlike qBang, qBroyden does not in-
corporate momentum and variance update rules
and instead utilizes only the metric to update
the parameter vector at each optimization step.
Consequently, qBroyden is more closely related
to QNG and VarQITE than qBang.

Our framework surrounding Eq. (10) has sev-
eral advantages. Firstly, the Fisher infor-
mation matrix is guaranteed to be positive
semi-definite [24]. With the Gauss-Newton-
like update, we maintain the positive semi-
definiteness property through the optimisation,
see SI Section G and Martens et al. [46]. In
fact, we apply a small regularisation to the ini-
tial QFIM to ensure that B0 is positive definite.
This is an important feature since it can happen
that the QFIM is singular, particularly in over-
parameterized systems with multiple layers. Ad-
ditionally, because the QFIM is not recalculated
at each time step, this framework significantly
reduces the necessary number of circuit evalua-
tions. Lastly, incorporating momentum updates
not only results in superior speed but also in-
creases the stability with respect to hyperparam-
eter changes (illustrated in Sec. 3.4).

We want to note that a potential drawback
of approximating the QFIM is that the resulting
algorithms technically lose theoretically ensured
convergence properties of QITE [30, 31]. How-
ever, this was not an issue for all the problems
studied in this work. On the contrary, qBang en-
sured a faster and more stable convergence.

Regarding circuit evaluations, our proposed
method reduces cost and increases efficiency.
Each optimization step requires O(nθ) circuit
evaluations, which is on par with Adam due to
the parameter-shift rule [38, 45]. QNG without
any approximation scales as O(n2

θ) due to esti-
mating the full Fisher information matrix [76].
Our proposed optimizers, qBang and qBroyden,
require as many circuit evaluations in the first

step as QNG, and only O(nθ) circuit evaluations
per subsequent optimization step. The following
sections demonstrate that the most striking ad-
vantage of qBang is its efficiency.

Algorithm 1 qBang
1: Input: learning rates η = 0.01, ε0 = 0.2
2: Input: decay rates β1 = 0.9 and β2 = 0.999
3: Input: convergence criterion γ
4: Input: PQC U(θ)
5: Input: Initial parameter vector θ0 ∈ Rnθ .
6: Initialization: k ← 0, m−1 ← 0, v−1 ← 0,

B−1
0 via QNG, QFIM or Identity

7: not_converged←true
8: while not_converged do
9: QC: estimate L(θk)

10: QC: estimate ∇L(θk)
11: mk ← β1mk−1 + (1− β1)∇L(θk)
12: vk ← β2vk−1 +(1− β2)∇L(θk)⊙∇L(θk)
13: m̂k ←mk/

(
1− βk+1

1

)
14: v̂k ← vk/

(
1− βk+1

2

)
15: {pk}l ← {m̂k}l/

(√
{v̂k}l + κ

)
, ∀l ∈

{1, 2, . . . , p}
16: if ∥B−1

k pk∥2 > γ then
17: θk+1 ← θk − ηB−1

k pk/((k + 2)− 1)ϵ0

18: εk ← ε0
k+1

19: B−1
k+1 ← Eq. (10)

20: k ← k + 1
21: else
22: not_converged←false
23: θ∗ ← argmin

{θn}k
0

L(θn)

24: end if
25: end while
26: return θ∗
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Algorithm 2 qBroyden
1: Input: learning rates η = 0.01, ε0 = 0.2
2: Input: convergence criterion γ
3: Input: PQC U(θ)
4: Input: Initial parameter vector θ0 ∈ Rnθ .
5: Initialization: k ← 0, B−1

0 via QNG, QFIM
or Identity

6: not_converged←true
7: while not_converged do
8: QC: estimate L(θk)
9: QC: estimate ∇L(θk)

10: if ∥B−1
k ∇L(θk)∥2 > γ then

11: θk+1 ← θk − ηB−1
k ∇L(θk)

12: εk ← ε0
k+1

13: B−1
k+1 ← Eq. (10)

14: k ← k + 1
15: else
16: not_converged←false
17: θ∗ ← argmin

{θn}k
0

L(θn)

18: end if
19: end while
20: return θ∗

3 Results
This section presents numerical results from
noise-free simulations of the new optimizers ap-
plied to several important classes of problems.
We focus only on hybrid quantum-classical al-
gorithms, which combine quantum and classical
processing. The necessary quantum circuits for
this study are available on GitHub [85] and addi-
tional information is provided in the SI.

Considering that quantum circuit queries are
costly, our main goal is to reduce the number of
circuit evaluations to obtain the parameters en-
coding the ground state of the PQC. Therefore,
the key metric is the number of circuit evalua-
tions. See Section 2.3 for the scaling of the num-
ber of circuit evaluations for each optimizer. An-
other important metric to assess the performance
of the optimization is the approximation ratio. It
describes how close the energy of the optimized
quantum circuit is to the ground state energy.
Formally, the approximation ratio is defined as

r = Eopt − Emax
Emin − Emax

, (11)

where Eopt is the energy obtained after optimiza-
tion, and Emin and Emax are the theoretical min-

imum and maximum energy values, respectively.
We compare the optimizers Adam [13],

QNG [22] with the block-diagonal approximation,
as well as qBroyden and qBang using either the
full or block-diagonal Fisher information in the
first iteration. We largely exclude VarQITE in
the following due to its prohibitive cost but show
results for individual trajectories in SI Section A.
It should be noted that the computational over-
head for VarQITE might reduce in relation to
gradient estimates when using advanced sampling
techniques [86]. However, the cost of simulation
with sampling is considerably larger than the here
employed state propagation. For QNG and Var-
QITE, in case the QFIM is singular, we employ
a Tikhonov regularization [87] and add 10−7 to
its diagonal. Both algorithms of qBroyden and
qBang use an initial filter parameter of ϵ0 = 0.2.
For QNG and Adam, we use default parameters
provided in [88].

We use identical step sizes for all algorithms to
ensure a fair comparison but emphasize that the
optimal step size will depend on the problem and
algorithm at hand. Our investigation is compre-
hensive, accounting for statistical features in the
random initialization, but not exhaustive, given
the infinite combinations of hyperparameters and
VQAs.

3.1 Barren plateau circuit

We start by illustrating the performance of the
newly proposed optimizers on the BP circuit in-
troduced in Ref. [18]. This quantum circuit was
initially designed to show that highly expressible
circuits come with a caveat, i.e., the more freedom
we give a quantum circuit, the more difficult the
optimization due to vanishing gradients in the ex-
ponentially growing Hilbert space [20]. The con-
sequence: simple gradient-based optimizers fail.

Our circuit consists of an initial fixed layer of
Ry(π/4) gates acting on 9 qubits, followed by l
layers of parameterized Pauli rotations with an
entangling layer of controlled-Z gates. The ob-
jective operator is Ĥ = Ẑ1Ẑ2 with a ground state
energy of −1. The relative quality of the opti-
mization will depend on the initial configuration,
i.e., drawing a meaningful conclusion for the per-
formance of an optimizer for a given problem re-
quires a statistical analysis. In this manuscript,
we obtain the expectation value ⟨ψ(θ)|Ĥ|ψ(θ)⟩
for a parametrization of the wavefunction which
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Figure 2: Comparison of optimization performance of Adam, QNG, qBroyden, and qBang in finding the ground state
of the BP circuit. ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is shown as a function of the number of circuit evaluations. The step size is fixed
at η = 0.01, and the results are averaged over 25 random initializations of parameters. The PQC used consists of 4
and 6 layers as depicted in subplots (a) and (b), respectively. The initial plateau in the optimization using qBroyden
and qBang arises from the significant cost of initially measuring the QFIM.

is to be optimized. Our plots show the mean and
variance of 25 trajectories with randomly initial-
ized parameters (the same for all algorithms) and
a step size of η = 0.01. The PQC considered has
4, 6, 8, and 10 layers, respectively. Figure 2 il-
lustrates the performance as a function of circuit
evaluations using 4 and 6 layers.

The QNG (block-diagonal) optimizer shows a
moderate improvement over Adam within the ini-
tial 5000 evaluations for a small set of parame-
ters but loses this initial advantage in the long
run. qBang, on the other hand, is substan-
tially faster. Approximating the QFIM as block-
diagonal reduces the computational cost for the
first iteration and explains the reduction in the
required number of evaluations for the conver-
gence of qBang (block-diag). The early plateau
observed in the performance of qBroyden and
qBang results from the upfront computational ef-
fort needed to estimate the QFIM. More relevant
in practice is the number of circuit evaluations
required to approximate the ground state accu-
rately. To evaluate this, we determine the num-
ber of circuit evaluations necessary to reach an
approximation ratio of 0.99 and present the re-
sults in Table 1. As shown in the table, qBang
(block-diag) substantially outperforms Adam and
QNG, requiring merely a third of the circuit eval-
uations.

While the BP circuit is of no practical use,
it illustrates that qBang is a highly competi-
tive optimizer when handling almost flat energy
surfaces. We will briefly discuss classical opti-
mization problems before moving on to quantum

Table 1: Comparison of the number of circuit evaluations
required for four optimizers to reach an approximation
ratio of r = 0.99 for the BP circuit, with the results
averaged over the 25 optimization trajectories. The PQC
used range from 4, 6, 8, to 10 layers. “bd” indicates the
block-diagonal approximation.

Layers
Optimizer 4 6 8 10
Adam 10700 10300 10200 13000
qBang 5980 9750 16900 25300
qBang (bd) 3290 3490 4150 5330
qBroyden 10300 13100 16100 25300
qBroyden (bd) 8990 11400 13800 17900
QNG (bd) 12300 17300 18500 26900

chemistry, arguably the most promising applica-
tion for quantum computing to this date.

3.2 Quantum Approximate Optimization Algo-
rithm

Classical combinatorial optimization can be just
as hard as the optimization of quantum systems.
QAOA represents a subclass of VQAs that han-
dles the question if quantum computing could as-
sist such classical combinatorial optimization.

We study the max-cut problem for which
the cost (or energy) of the classical problem is
mapped to an Ising Hamiltonian [39]. The Hamil-
tonian for the max-cut problem is encoded using
eight qubits on the quantum device. The opti-
mization performance of the different optimizers
is displayed in Fig. 3 against the number of cir-
cuit evaluations. The results are averaged over
five random initializations of parameters and a
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Figure 3: Ground state optimization performance of Adam, QNG with block-diagonal approximation, qBroyden with
full Fisher information matrix, and qBang with full Fisher matrix and block-diagonal approximation of the QAOA
circuit of an eight qubit max-cut problem instance using a PQC. The expectation value, ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is shown as
a function of the number of circuit evaluations. The step size is fixed at η = 0.06, and the results are averaged over
five random initializations of parameters. The PQC used consists of 4 and 6 layers as depicted in subplots (a) and
(b), respectively.

step size of η = 0.06. We show the optimization
trajectories for the 4- and 6-layered circuits in
subplots (a) and (b), respectively. In Table 2, we
compare the approximation ratios for the quan-
tum state with the lowest expectation value, ob-
tained by averaging over five trials for 4-, 6-, 8-,
and 10-layered quantum circuits.

The optimization trajectories shown in Fig. 3
are similar in convergence behavior. One notable
difference is the oscillations that qBroyden and
qBang exhibit after many circuit evaluations us-
ing the full Fisher information. The oscillations
result from incomplete updates of the off-diagonal
elements in the Fisher information, which pushes
the optimization away from the optimal direc-
tion. We elaborate on this feature in the SI
Section A.1. Using the block-diagonal approxi-
mation ensures a smoother optimization. Alter-
natively, qBroyden and qBang could be reinitial-
ized whenever instabilities occur.

Table 2 shows the approximation ratio aver-
aged over five trajectories. Our proposed algo-
rithms perform well on the 4- and 6-layered quan-
tum circuits, while Adam outperforms all opti-
mizers for 8- and 10-layers. Overall we observe
only minor differences in convergence behavior,
and the significant deviation from the optimal so-
lution demonstrates that QAOAs face a serious
challenge. It is important to note that the used
circuit ansatz is likely incapable of representing a
quantum state near the ground state of the clas-
sical optimization problem.

Table 2: Ground state energy approximation ratios of
Adam, QNG with block-diagonal approximation, qBroy-
den, and qBang with full Fisher information and block-
diagonal approximation for the max-cut Ising Hamilto-
nian. Results for PQCs with 4, 6, 8, and 10 layers
are shown. The values are obtained from the quantum
state with the expectation value closest to the ground
state averaged over the five optimization pathways with
a maximum length of 1100 optimization steps. “bd”
indicates the block-diagonal approximation.

Layers
Optimizer 4 6 8 10
Adam 0.787 0.832 0.896 0.91
qBang 0.829 0.866 0.872 0.832
qBang (bd) 0.813 0.83 0.826 0.86
qBroyden 0.816 0.89 0.846 0.879
qBroyden (bd) 0.814 0.833 0.881 0.888
QNG (bd) 0.814 0.833 0.87 0.879

3.3 Variational Quantum Eigensolver

Solving Schrödinger’s equation is challenging, yet
essential to understand chemistry. In this study,
we concentrate on investigating three prototyp-
ical molecular benchmark systems: hydrogen
four (H4), lithium hydride (LiH), and the water
molecule (H2O). We employed minimal basis sets
(STO-6G) for all quantum chemistry problems
and used a frozen core approximation for LiH and
H2O (with the 1s orbital of Li and O, respec-
tively, frozen) [89]. To construct the quantum
circuits, we used the Jordan-Wigner Fermion-to-
qubit mapping and employed a hardware-efficient
ansatz [35] that utilizes 8, 10, and 12 qubits for
H4, LiH, and H2O, respectively. This ansatz
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is composed of l layers, each comprising a tun-
able Ry(θ) gate on each qubit register, followed
by a closed ring of CNOT gates. We compare
the algorithm’s performance with random and
Hartree-Fock parameter initializations. Details of
the molecular geometries and the Hartree-Fock
parameter initialization can be found in the SI
Section C. We used Pennylane [88] with the
built-in PySCF interface [90] to setup our molec-
ular systems and perform the Fermion-to-qubit
mapping.

Our results provide insight into the feasibility
and limitations of hardware-efficient circuit an-
sätze for preparing the ground state of molecular
systems. In addition to assessing the optimiza-
tion performance, we also analyze the physical
soundness of the quantum states generated with
the lowest overall energy. To this end, we cal-
culate various observables, including the particle
number, N̂ , the total spin projection observable,
Ŝz, and the total spin observable, Ŝ2, based on
the optimized quantum state |ψ(θ)⟩.

3.3.1 Hydrogen square, H4

We studied four hydrogen atoms, H4, arranged in
a square geometry with a side length of 2.25 Å.
Figure 4 presents the mean energy as a function of
the number of circuit evaluations for circuits with
two and four layers. qBang requires substantially
fewer circuit evaluations, qBroyden is on par with
Adam and the performance of QNG is limited.
The latter is likely due to the importance of off-
diagonal components in the QFIM for correlated
systems.

Upon further analysis of the quantum states
generated by the PQCs, we find that, for all
optimizers, the particle number ⟨N̂⟩ and total
spin projection ⟨Ŝz⟩ observables are in proximity,
but not in precise agreement with, the physical
ground state (see Table 3). The deviations are
most severe for the total spin ⟨Ŝ2⟩ and illustrate
that the total energy is not the only observable
of interest for the optimization in VQEs. This is-
sue is a common challenge for hardware-efficient
ansätze and stems from the choice of the circuit
ansatz rather than the optimization algorithm it-
self (see also SI Section B.3). We verified the
numerics with an equivalent Qiskit implementa-
tion providing the same hyperparameter and ini-
tial conditions leading to the same optimization
trajectory.

3.3.2 Lithium hydride, LiH

We studied LiH at a bond distance of 1.59 Å with
the 1s orbital of Li frozen. Figure 5 clarifies that
the conclusions drawn for H4 can be largely trans-
ferred to LiH: qBang vastly outperforms its com-
petitors and consistently finds the best estimation
for the energy closest to the ground state. Fur-
thermore, once the optimum has been obtained,
the comparably small variance of the 10 trajec-
tories indicates a reliable optimization process.
Consistent with H4, ⟨Ŝ2⟩ challenges all optimiz-
ers (see Table 3).

3.3.3 Water, H2O

We studied H2O with an OH distance of 0.7 Å
and with an ∠(HOH) of 104.48◦ with the 1s or-
bital of O frozen. Figure 6 illustrates the mean
expectation value as a function of the number of
circuit evaluations for quantum circuits consist-
ing of two and four layers averaged over five tri-
als. As before, qBang outperforms Adam and
QNG. Interestingly, qBang with the full Fisher
information is the only optimizer that manages
to discover the exact ground state energy of the
system in one of the optimization trajectories for
two layers. The optimized circuits correspond-
ing to the state with the lowest overall energy
are analyzed in Table 4, showing an overall good
performance of qBang and Adam.

Overall, qBang deliver accurate results for
quantum chemistry applications at a discount.
An important question remains: How resilient
is this observation against changes in hyper-
parameters or noise?

3.4 Hyperparameter resilience

Hyperparameter resilience is important in ensur-
ing robust and reliable optimization outcomes,
especially in quantum chemistry, where the ob-
jective is to find a particular quantum state. A
hyperparameter-resilient optimizer increases the
chances of successfully finding the optimal solu-
tion and reduces the additional overhead of opti-
mizing hyperparameters.

In Fig. 7, we investigate the effect of varying
step size on the approximation ratio over the
number of optimization steps in the BP circuit
with 9 qubits and 5 layers. We use qBang, qBroy-
den, QNG with block diagonal, and Adam as the
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Figure 4: Comparison of optimization performance of Adam, QNG using the block-diagonal approximation, qBroyden
using the full Fisher matrix, and qBang with the full Fisher information and block-diagonal approximation in finding
the ground state of H4 using a PQC. The expectation value, ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is shown as a function of the number of
circuit evaluations. The step size is fixed at η = 0.01, and the results are averaged over 15 random initialization of
parameters. The PQC consists of 2 and 4 layers, as shown in subplots (a) and (b), respectively. The initial plateau
in the optimization using qBroyden and qBang arises from the significant cost of initially measuring the QFIM.
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Figure 5: Comparison of optimization performance for four optimizers in finding the ground state of LiH using
a PQC. The optimizers evaluated are Adam, Quantum Natural Gradient using the block-diagonal approximation,
qBroyden using the full Fisher information matrix, and qBang with the full Fisher information and block-diagonal
approximation. The expectation value, ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is shown as a function of the number of circuit evaluations.
The step size is fixed at η = 0.01, and the results are averaged over 5 random initializations of parameters. The PQC
used consists of 2 and 4 layers, as shown in subplots (a) and (b), respectively. The initial plateau in the optimization
using qBroyden and qBang arises from the significant cost of initially measuring the QFIM.
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Table 3: Converged optimization results for PQCs, representing H4 and LiH. Results for H4 are averaged over 15
optimization trajectories, while results for LiH are averaged over 10 optimization trajectories. The ground truth for
each observable is shown in the column ⟨Ô⟩Ψ. Observables are calculated for circuits with layers ranging from 1 to
4 based on the variational quantum state with minimum expectation value along the optimization trajectory. Bold
symbols indicate the optimizer that gets closest to the ground truth. The column labeled qBang shows results by
starting with the full Fisher information matrix, and the column to the right labeled F k=0

block-diag are results starting
with the block-diagonal approximation.

H4

Ô ⟨Ô⟩Ψ l Adam qBang F k=0
block-diag qBroyden QNG

Ĥ -1.665

1 -1.08 -1.05 -1.05 -1.03 -1.03
2 -1.15 -1.21 -1.25 -1.21 -1.18
3 -1.37 -1.34 -1.35 -1.35 -1.34
4 -1.46 -1.42 -1.41 -1.4 -1.37

N̂ 4

1 3.8 3.67 3.62 3.6 3.59
2 3.93 3.88 3.91 3.9 3.89
3 3.83 3.84 3.87 3.87 3.86
4 3.83 3.9 3.89 3.88 3.88

Ŝz 0

1 -0.5 -0.5 -0.5 -0.43 -0.39
2 -0.17 -0.19 -0.18 -0.18 -0.19
3 -0.09 -0.07 -0.09 -0.14 -0.14
4 -0.31 -0.17 -0.16 -0.14 -0.14

Ŝ2 0

1 1.52 1.73 1.81 1.63 1.54
2 1.48 1.39 1.4 1.45 1.46
3 1.79 1.74 1.84 1.83 1.82
4 1.56 1.49 1.46 1.42 1.44

LiH
Ô ⟨Ô⟩Ψ l Adam qBang F k=0

block-diag qBroyden QNG

Ĥ -7.972

1 -7.33 -7.35 -7.35 -7.36 -7.36
2 -7.75 -7.81 -7.84 -7.82 -7.79
3 -7.66 -7.69 -7.72 -7.67 -7.64
4 -7.73 -7.77 -7.81 -7.77 -7.74

N̂ 2

1 3.0 2.9 2.87 2.93 2.98
2 2.2 2.1 2.07 2.07 2.09
3 2.8 2.71 2.61 2.68 2.74
4 2.5 2.5 2.44 2.44 2.42

Ŝz 0

1 0.1 0.05 0.03 0.08 0.1
2 -0.3 -0.35 -0.37 -0.43 -0.44
3 -0.0 -0.01 -0.05 0.07 0.13
4 0.09 0.12 0.06 0.05 0.06

Ŝ2 0

1 1.65 1.53 1.48 1.41 1.37
2 1.25 1.13 1.02 1.14 1.25
3 1.6 1.82 1.78 1.77 1.75
4 1.13 0.93 0.76 0.84 0.94
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Figure 6: Comparison of optimization performance for four optimizers in finding the ground state of H2O using a
PQC. The optimizers evaluated are Adam, QNG using the block-diagonal approximation, qBroyden using the full
Fisher matrix, and qBang with the full Fisher information and block-diagonal approximation. The expectation value,
⟨ψ(θ)|H|ψ(θ)⟩ is shown as a function of the number of circuit evaluations. The step size is fixed at 0.01 and the
results are averaged over 5 random initializations of parameters. The PQC consists of 2 and 4 layers, as shown in
subplots (a) and (b), respectively. The initial plateau in the optimization using qBroyden and qBang arises from the
significant cost of initially measuring the QFIM.

optimization algorithms and optimize each cir-
cuit for 300 optimization steps. The approxima-
tion ratio, equal to one if the energy minimum
is reached [see Eq. (11)], is used to evaluate the
optimization performance. We show the approx-
imation ratio plotted against the number of opti-
mization steps for step sizes ranging from 0.01 to
0.7.

Fig. 7 demonstrates the greatest strength of
Adam – its extreme resilience. Even for large
step-sizes, such as 0.7, Adam remains stable and
provides reliable predictions. Approximate or
perturbative second order optimization methods,
such as QNG and qBroyden, are prone to instabil-
ities when using large steps. They tend to result
in unreliable predictions for the local curvature
which might even further amplify a large step, re-
sulting in oscillating or divergent behaviour. Let
us emphasize here that this is not a failure of
second-order informed optimization but rather its
approximation. Consider for example the step-
reducing influence of second-order information in
Newtons method for a steep harmonic potential.

Importantly, qBang can benefit from the mo-
mentum update that it inherits from Adam and
achieves a resilience located between Adam and
QNG/qBroyden. An even stronger resilience of
qBang could be realized by unifying the gradi-
ent update with the metric update or the use of
a more controlled step size depending on the lo-
cal gradient and cost function, based for example
on the Wolfé conditions [91]. Given the excel-

lent performance in the previous section, we con-
clude that qBang is a promising optimizer that
strikes the balance between low cost, high stabil-
ity, speed, and accuracy.

3.5 Noise resilience
Understanding the resilience of quantum algo-
rithms to various types of noise is crucial in the
noisy intermediate-scale quantum (NISQ) era.
Shot noise is one of the most fundamental con-
tributors and arises due to the statistical nature
of quantum measurements. Let us put our pre-
vious discussions in this context by considering
first a simple BP circuit with 9 qubits and 6 lay-
ers, similar to the setup in Sec. 3.1. The step size
is fixed at η = 0.01, and the results are averaged
over 15 random initializations of parameters with
500 shots for each circuit evaluation.

Figure 8 demonstrates that all optimizers ex-
hibit performance closely resembling that of exact
state vector simulations. Among them, qBang
consistently finds the solution most efficiently.
We note that with shot noise, the estimate of
the initial QFIM is not guaranteed to be pos-
itive semi-definite. If necessary, we ensure in-
vertibility (and thus positive definiteness) of the
initial QFIM by shifting the diagonal by the
most negative eigenvalue λmin < 0, as FPD =
F + (γreg − λmin) 1, see SI. Section H for details.
Here, γreg > 0 is a small regularising parameter
to ensure that FPD ≻ 0.

Next, we revisit quantum chemistry in the form

Accepted in Quantum 2024-03-22, click title to verify. Published under CC-BY 4.0. 14



Table 4: Converged optimization results for PQCs, representing H2O. Results are averaged over five optimization
trajectories. The ground truth for each observable is shown in the column ⟨Ô⟩Ψ. Observables are calculated for
circuits with layers ranging from 1 to 4 based on the variational quantum state with minimum expectation value
along the optimization trajectory. Bold symbols indicate the optimizer that gets closest to the ground truth. The
column labeled qBang shows results by starting with the full Fisher information matrix, and the column to the right
labeled F k=0

block-diag are results starting with the block-diagonal approximation.

Ô ⟨Ô⟩Ψ l Adam BANG F k=0
block-diag qBroyden QNG

Ĥ -75.36

1 -73.45 -73.23 -73.15 -73.34 -73.36
2 -74.82 -75.08 -75.02 -75.07 -75.0
3 -73.59 -74.01 -74.04 -74.11 -74.18
4 -74.5 -74.34 -74.46 -74.4 -74.44

N̂ 8

1 7.8 7.3 7.13 7.35 7.44
2 7.6 7.8 7.8 7.79 7.74
3 7.3 7.55 7.6 7.58 7.56
4 7.9 7.95 7.87 7.75 7.76

Ŝz 0

1 -0.1 -0.55 -0.7 -0.52 -0.48
2 -0.2 -0.1 -0.1 -0.09 -0.07
3 0.15 0.12 0.2 0.13 0.09
4 0.05 0.0 -0.04 -0.01 0.02

Ŝ2 0

1 2.95 3.28 3.38 2.89 2.86
2 0.5 0.25 0.28 0.26 0.32
3 2.63 1.99 1.9 1.66 1.53
4 1.53 1.46 1.32 1.27 1.29

of the H4 circuit featuring 2 layers, discussed in
Sec. 3.3.1. Circuit evaluations are performed us-
ing 500 shots and the results are averaged over
5 random initializations. We add the Simul-
taneous Perturbation Stochastic Approximation
(SPSA) [23] optimizer, often used in a noisy cir-
cuit setting, to our comparison. All optimiz-
ers are run for 700 steps, with the exception of
SPSA, which is run for 50000 steps. The step
size is fixed at η = 0.01. Figure 9 illustrates how
qBang outperforms Adam, while SPSA is failing
to find the minimum. Surprisingly, the perfor-
mance of qBang is even better when affected by
noise, likely due to a slightly larger effective step
when PD is enforced. Individual trajectories are
presented in SI Section A.2. We can expect the
improved performance of qBang to be thus of
practical relevance for NISQ devices.

SPSA is a representative of a stochastic ap-
proach to optimization, closely related to ran-
dom walk algorithms, and we refer the reader to
Ref. [23, 92] for a detailed discussion and possi-
ble improvements. The isolated example shown
here is of anecdotal evidence and does not al-
low to draw any conclusion about the superiority
of stochastic or gradient-based approaches. We
are indeed convinced that a synergistic approach

could be the most promising.

4 Conclusion
Quantum computing has developed into a vi-
brant research domain, promising nothing less
than a revolution. If this ambitious target can
be met depends largely on the availability of
fault-tolerant hardware and efficient algorithmic
design. VQAs, merging quantum evaluations
on short circuits with classical optimization of
the parameterized state, are a promising frame-
work for the use of near-term quantum comput-
ing resources. However, associated energy land-
scapes often feature sizeable flat areas that are
challenging to maneuver. Here, we have intro-
duced qBang and qBroyden, curvature-informed
gradient-based algorithms that perform better
than previous approaches for relevant quantum
circuits while requiring comparably few evalua-
tions on the QPU. The reduction in quantum
evaluations is achieved by performing rank-1 up-
dates to the Fisher information matrix. Addi-
tionally, qBang utilizes a momentum-based up-
date rule, providing an additional boost in perfor-
mance and resilience to changes in hyperparame-
ters. We provide access to qBang and qBroyden
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Figure 7: Dependence of convergence behavior on the learning rate by comparing the effects of different step sizes
on the optimization process. Four optimization algorithms, including qBang, qBroyden, QNG with block-diagonal
approximation, and Adam, are evaluated with step sizes ranging from 0.01 to 0.7. The optimization performance is
assessed using the approximation ratio, which equals one if the energy minimum is reached (see Equation Eq. (11)).
A dotted line at a step size of 0.01 is included to facilitate comparison with other simulations.
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|ψ

(θ
)〉

Adam
QNG (block-diag)
qBroyden

qBang
qBang (block-diag)
Ground state

Figure 8: Comparison of optimization performance of
Adam, QNG, qBroyden, and qBang in finding the ground
state of the BP circuit under the influence of shot noise.
⟨ψ(θ)|Ĥ|ψ(θ)⟩ is shown as a function of the number of
circuit evaluations. The step size is fixed at η = 0.01,
and the results are averaged over 15 random initializa-
tions of parameters. The PQC used consists of 6 lay-
ers. For each evaluation 500 shots are used. The initial
plateau in the optimization using qBroyden and qBang
arises from the significant cost of initially measuring the
QFIM.
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Figure 9: Comparison of optimization performance of
SPSA, Adam, and qBang with the block-diagonal ap-
proximation in finding the ground state of H4 using a
2-layer PQC. The expectation value, ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is
shown as a function of the number of circuit evalua-
tions. The step size is fixed at η = 0.01, and 500 shots
are used for each evaluation. The results are averaged
over 5 random initializations. Individual trajectories are
presented in SI Section A.2.
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via the freely accessible repository [93].

Our benchmarks, including QNG and Adam,
are evaluated on a broad range of VQAs. First,
we demonstrated for a set of BP circuits [18] that
qBang is able to tackle flat energy landscapes ef-
ficiently. Second, we investigate classical opti-
mization on QAOA circuits in the form of the
max-cut problem, resulting in an overall under-
whelming performance of all optimizers. Third,
we moved on to quantum chemistry, arguably the
most promising application for quantum comput-
ing. The associated VQEs have been investigated
for three chemical compounds, namely H4, LiH,
and H2O, where qBang is consistently more effi-
cient than its competitors. Lastly, we illustrate
that qBang, i.e., the combination of qBroyden
and Adam, does indeed lead to a more noise- and
hyper-parameter-resilient optimizer than QNG or
qBroyden itself. qBang is an efficient and capable
optimizer, yet the strongest aspect of our work is
that it inspires a new generation of optimizers –
qBang representing a first step in an evolution-
ary process. Such an evolution will be fostered
by understanding the consequences of locality,
complexity, and entanglement on the existence of
BPs [94, 95].

With the increasing number of qubits and their
connectivity, the number of quantum Ansatz pa-
rameters will grow, resulting in increasing pres-
sure on the classical optimizers. With this in
mind, we suggest using qBang as a “convergence
starter” for optimization problems that involve a
sizeable number of Ansatz layers. One potential
approach is to optimize the first few layers and
then keep those optimized layers with their pa-
rameters as an initial guess for the next few lay-
ers to optimize. This process can be repeated re-
cursively until all layers are optimized and could
significantly reducing the number of optimization
steps required to find an acceptable ground-state
energy. For a last refinement, one could use the
VarQITE algorithm or restart the qBang algo-
rithm by wiping the memory. Furthermore, the
Fisher information matrix encodes information
about the degree of linear dependence, i.e., it can
be used to maximize the efficiency of additional
layers and improve stability by controlling over-
parametrization [96]. To this end, it should be
noted that an application to relevant problems
with real-world devices remains a considerable
challenge.
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Appendix

A Single trajectories including QITE

In this section, we compare the performance of qBang, qBroyden, QNG, and Adam optimizers, includ-
ing QNG using the full quantum Fisher information matrix (QFIM) at each step. We consider a barren
plateau (BP) circuit with 4 layers and 9 qubits, resulting in 36 tunable parameters. We optimize for
700 steps, resulting in varying circuit evaluations since the QFIM requires n2

θ circuit evaluations while
approximations such as diagonal or block-diagonal approximation require only nθ + l circuit evalua-
tions, where nθ is the number of variational parameters and l is the number of layers in the circuit.
QNG using the QFIM is equivalent, up to a constant factor, to VarQITE [31]. QNG, qBang, and
qBroyden require the QFIM in the first step, explaining the initial plateau in the number of circuit
evaluations compared to Adam or the approximated versions. All optimizers, except for QNG with the
block-diagonal approximation, converge to the exact ground state solution. The results in Fig. 10 show
that a single estimate of the QFIM, in combination with an appropriate cost-efficient metric update,
is sufficient to speed up convergence to the desired ground state.
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Figure 10: Comparison of optimization performance of Adam, QNG, qBroyden, and qBang in finding the ground
state of the BP circuit. ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is shown as a function of the number of circuit evaluations. The step size
is fixed at η = 0.01. The PQCs used consist of 4 layers. All optimizers perform 700 steps, which results in a wide
range of circuit evaluations due to the expensive estimation of the Fisher information. The initial plateau in the
optimization using QNG, qBroyden and qBang arises from the significant cost of initially measuring the QFIM.

A.1 Why updating the metric is important (ablation study)

In this subsection, we perform an ablation study to investigate the impact of the update rule formula
on optimization performance. We use a BP circuit with 9 qubits and 6 layers and average over 10
random parameter initializations.

We show in Fig. 11 that, for the first iterations, both algorithms perform similarly, but in the long
run, without a metric update, oscillations appear in the system, leading to no convergence of the
optimization. To understand this behavior, let us recall that the Fisher information is a measure of
how much a parametrized state changes under a change of a parameter [76]. This information can
be understood as an adaptive step size for each parameter to optimize. However, since the energy
landscape changes during optimization, we need to adjust the Fisher information to ensure proper
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Figure 11: Effect of metric update on the optimization performance in a 6-layer, 9-qubit BP circuit. The performance
of qBroyden is compared for ε0 = 0 and ε0 = 0.2. When ε0 = 0, the update rule Eq. (10) is not used. For both
settings, the algorithms are initialized with the full Fisher information matrix. Results are averaged over 10 random
parameter initializations with 300 optimization steps each.

convergence. As shown in Figure 11, if we do not correct the metric, oscillations start after a few
optimization steps when the energy landscape has undergone a sufficient change and is no longer
described by the initial QFIM. On the other hand, the quasi-Newton updates to the initial metric
ensure that the gradient descent is more consistent and qBroyden find the ground state quickly.

The update rule is thus crucial and provides the necessary correction to adjust the curvature of the
Fisher information matrix based on the current point in the energy landscape. This has two significant
advantages. First, it reduces the number of circuit queries required, and second, it simplifies the
algorithm’s execution on the hardware because we only need to estimate the Fisher information once
on the quantum device.

In summary, the ablation study in Fig. 11 shows that correcting the metric is essential to avoid
oscillations and ensure convergence of the optimization process.

A.2 Analysis of H4 optimization trajectories under shot noise

Revisiting the H4 circuit with 2 layers, as discussed in Section 3.5 of the main document, we now
shift our focus from averaged results to an examination of individual optimization trajectories. This
approach provides a more granular view of the optimizer performance under shot noise conditions.
Each circuit evaluation is performed using 500 shots, and we observe the behavior across 5 random
initializations.
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Figure 12: Individual optimization trajectories for the H4 circuit with a 2-layer PQC. The expectation value,
⟨ψ(θ)|Ĥ|ψ(θ)⟩, is shown for each circuit evaluation. The step size is fixed at η = 0.01. Each line represents a
separate optimization run, illustrating the variability among trajectories.

Accepted in Quantum 2024-03-22, click title to verify. Published under CC-BY 4.0. 24



Ry(π/4) Rx,y,z(θ1) • •
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Figure 13: The BP circuit ansatz. The ansatz consists of an initial layer of Ry(π/4) gates followed by l layers of
parameterized Pauli rotations and a controlled-Z entangling layer, initialized in the state |0⟩n for all n qubit registers.

In the analysis, represented in Fig. 12, qBang demonstrates reliable performance in finding the
ground state and outperforms the Adam and Simultaneous Perturbation Stochastic Approximation
(SPSA) optimizer. Notably, SPSA, despite running for 50000 steps, struggles to locate the minimum
in several cases.

B Circuit layouts and Hamiltonians
This section collects all the circuit ansätze and Hamiltonian descriptions used for the benchmarks.
All of the circuits are built with l layers. The more layers the larger the expressivity of the circuit
which allows for potentially more accurate solutions but also increases the linear dependence of param-
eters. All circuits are optimized in a closed-loop with a classical optimization algorithm to minimize
⟨ψ(θ)| Ĥ |ψ(θ)⟩, where ψ(θ) describes the circuit ansatz.

B.1 Barren plateau circuit
BPs are a major obstacle in quantum computing, hindering its potential for solving complex prob-
lems [11, 20]. The BP circuit is an example of this phenomenon and utilizes the objective operator
Ĥ = Ẑ1Ẑ2 with a ground state energy of −1. The circuit is initialized in the state |0⟩n and consists of
an initial fixed layer of Ry(π/4) gates acting on n qubits, followed by l layers of parameterized Pauli
rotations with an entangling layer of controlled-Z gates, as shown in Figure 13. This circuit is a critical
benchmark for understanding and addressing the BP problem in quantum computing.

B.2 Quantum approximate optimization algorithm circuit ansatz
The Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm that can be
used to solve combinatorial optimization problems. One such problem is the max-cut problem, which
involves partitioning a set of vertices in a graph into two disjoint subsets such that the number of edges
between the subsets is maximized [36].

The max-cut problem is mapped onto a quantum optimization problem by constructing a cost
Hamiltonian ĤC that encodes the objective function of the max-cut problem. The cost Hamiltonian
is defined as follows:

ĤC =
∑

(i,j)∈E

1
2(1̂− ẐiẐj), (12)

where E is the set of edges in the graph, and Zi and Zj are the Pauli Z operators acting on the
qubits corresponding to vertices i and j, respectively. The cost Hamiltonian penalizes states in which
neighboring vertices are in the same subsets since the corresponding edge contributes 1 to the energy
in these states.

The quantum circuit uses two non-commuting operators, the cost Hamiltonian and the mixing Hamil-
tonian, to evolve the system towards states that optimize the cost function. The mixing Hamiltonian
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Figure 14: The QAOA circuit ansatz. It is composed of alternating layers of the cost Hamiltonian and the mixing
Hamiltonian. The circuit is initialized in the state |0⟩n, where n is the number of qubits required by the cost
Hamiltonian. The parameters of the circuit are optimized to maximize the expected value of the cost function.

Ry(θ1) •

Ry(θ2) •

Ry(θ3) •

Ry(θ4) •

Figure 15: The hardware efficient circuit ansatz is composed of l layers of parametrized single qubit Ry rotations
and a ring of CNOT gates to entangle the qubits. The circuit is applied to n qubits, with the parameters optimized
to minimize the energy of the molecular system.

is typically a sum of Pauli X operators, acting as a “driver” that moves the system away from the
initial state and encourages exploration of different states.

Figure 14 shows a QAOA circuit ansatz with one layer, applying the cost and mixing Hamiltonians.
The circuit is initialized in the state |0⟩n, which is transformed into the uniform superposition state
|+⟩n via the Hadamard gate. The QAOA provides an approximation to the optimal solution, with the
quality of the approximation expected to improve as the number of layers l is increased.

B.3 Chemistry applications

We employed minimal basis sets (STO-6G) for all quantum chemistry problems and used a frozen
core approximation for LiH and H2O (with the 1s orbital of Li and O, respectively, frozen) [89]. We
used a hardware-efficient ansatz (HEA) [35] that utilizes 8, 10, and 12 qubits for H4, LiH, and H2O,
respectively. This ansatz is composed of l layers, each comprising a tunable Ry(θ) gate on each qubit
register, followed by a closed ring of CNOT gates. A 1-layer motif of the HEA for 4 qubits can be
seen in Fig. 15. In the following, we list the geometries of all the studied molecular problems (in the
xyz-format and atomic units):

Listing 1: H4 geometry in xyz-format and atomic units
4
∗
H 2.1213 2 .1213 0 .0
H 2.1213 −2.1213 0 .0
H −2.1213 2 .1213 0 .0
H −2.1213 −2.1213 0 .0

Listing 2: LiH geometry in xyz-format and atomic units
2
∗
Li 0 .0 0 .0 0 .0
H 0 .0 0 .0 3 .0
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Listing 3: H2O geometry in xyz-format and atomic units
3
∗
O 0.0 0 .0 0 .0
H 0.8081 1 .0437 0 .0
H 0.8081 −1.0437 0 .0

We provide a python implementation of the circuits and Hamiltonians used in this work in [85].

B.3.1 Hardware-efficient Ry Ansatz

HEAs, like the Ry Ansatz shown in Fig. 15, are commonly used in quantum computing studies of
chemical and physical systems. It is, however, not trivial and thus an active field of research how
increasing the number of layers affects the “expressivity” – how well |ψ(θ)⟩ can approximate the target
|Ψ⟩ – of a HEA [37, 97, 98, 99, 100]. This effect can be seen in the slow convergence of the total energy
of H4 with the number of ansatz layers, see Fig. 15. Nevertheless, we chose to study HEA in this work
since (a) they are desirable to use as they lead to smaller errors due to hardware noise [35]. However,
especially because it was proven that the gradient exponentially vanishes for deep, randomly initialized
HEA [18, 19].

C Initialization using Hartree-Fock parameters

We present the performance starting from the Hartree-Fock parameter initialization in Fig. 16. We
compare the optimization performance of four different optimizers, namely Adam, Quantum natural
gradient (QNG) with block-diag approximation, qBroyden with full QFIM and qBang with block-diag
and full QFIM, for finding the ground state of H4 using a variational quantum circuit. The step size
for each optimizer is set to 0.01. We employ a parameterized quantum circuit (PQC) with varying
numbers of layers, from 1 to 4, to explore the impact of circuit depth on the optimization performance
of each optimizer. To ensure the robustness of our results, we perform 15 independent optimization
runs, each with a randomly perturbed Hartree-Fock parameter initialization. Overall we see stable
convergence behavior for the chosen circuit ansatz. All optimizers converge to the same minimum.

D Collection of Algorithms

This section summarizes all the optimization algorithms introduced in this work.
qBroyden is a quasi-Newton method that approximates the QFIM matrix using rank-one updates.

In each iteration, the inverse QFIM is updated using an updating rule that depends on the gradient
and parameter differences between the current and previous iterations. Algorithm 2 presents the
pseudo-code for qBroyden.

qBang is an extension of qBroyden that incorporates both the approximation of the QFIM and
momentum. In each iteration, the gradients are first normalized using the adaptive moment estimation
(Adam) method, and then a preconditioned gradient step is taken using the inverse QFIM. Similar
to qBroyden, qBang can also incorporate QNG, QFIM, or the identity matrix as a preconditioner.
Algorithm 1 presents the pseudo-code for qBang.

Momentum QNG combines momentum optimization with QNG. In each iteration, we utilize an
Adam [13] inspired update for the momentum and then take a natural gradient step by using both
the momentum and the QNG approximation of the QFIM. Algorithm 5 presents the pseudo-code for
Momentum QNG.

A Python implementation for all three optimization algorithms can be found in [93].
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Figure 16: Comparing the optimization performance for the four optimizers, Adam, Quantum natural gradient (QNG)
with block-diag approximation, qBroyden with full QFIM and qBang with block-diag and full QFIM for finding the
ground state of H4 with a variational quantum circuit. The step size is set to 0.01. We average over 15 randomly
perturbed HF-parameter initializations. We use a PQC with 1, 2, 3, and 4 layers.

Algorithm 3 qBroyden
1: Input: learning rates η = 0.01, ε0 = 0.2
2: Input: convergence criterion γ
3: Input: PQC U(θ) with initial parameter vector θ0 ∈ Rp.
4: Initialization: k ← 0, B−1

0 via QNG, QFIM or Identity
5: not_converged←true
6: while not_converged do
7: QC: estimate L(θk)
8: QC: estimate ∇L(θk)
9: if ∥B−1

k ∇L(θk)∥2 > γ then
10: θk+1 ← θk − ηB−1

k ∇L(θk)
11: εk ← ε0

k+1
12: B−1

k+1 ← Eq. (10)
13: k ← k + 1
14: else
15: not_converged←false
16: θ∗ ← argmin

{θn}k
0

L(θn)

17: end if
18: end while
19: return θ∗
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Algorithm 4 qBang
1: Input: learning rates η = 0.01, ε0 = 0.2
2: Input: decay rates β1 = 0.9 and β2 = 0.999
3: Input: convergence criterion γ
4: Input: PQC U(θ) with initial parameter vector θ0 ∈ Rp.
5: Initialization: k ← 0, m−1 ← 0, v−1 ← 0, B−1

0 via QNG, QFIM or Identity
6: not_converged←true
7: while not_converged do
8: QC: estimate L(θk)
9: QC: estimate ∇L(θk)

10: mk ← β1mk−1 + (1− β1)∇L(θk)
11: vk ← β2vk−1 + (1− β2)∇L(θk)⊙∇L(θk)
12: m̂k ←mk/

(
1− βk+1

1

)
13: v̂k ← vk/

(
1− βk+1

2

)
14: {pk}l ← {m̂k}l/

(√
{v̂k}l + κ

)
, ∀l ∈ {1, 2, . . . , p}

15: if ∥B−1
k pk∥2 > γ then

16: θk+1 ← θk − ηB−1
k pk

17: εk ← ε0
k+1

18: B−1
k+1 ← Eq. (10)

19: k ← k + 1
20: else
21: not_converged←false
22: θ∗ ← argmin

{θn}k
0

L(θn)

23: end if
24: end while
25: return θ∗
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Algorithm 5 Momentum QNG
1: Input: learning rates η = 0.01, ε0 = 0.2
2: Input: decay rates β1 = 0.9 and β2 = 0.999
3: Input: convergence criterion γ
4: Input: PQC U(θ) with initial parameter vector θ0 ∈ Rp.
5: Initialization: k ← 0, m−1 ← 0, v−1 ← 0
6: not_converged←true
7: while not_converged do
8: QC: estimate L(θk)
9: QC: estimate ∇L(θk)

10: QC: estimate Bk

11: mk ← β1mk−1 + (1− β1)∇L(θk)
12: vk ← β2vk−1 + (1− β2)∇L(θk)⊙∇L(θk)
13: m̂k ←mk/

(
1− βk+1

1

)
14: v̂k ← vk/

(
1− βk+1

2

)
15: {pk}l ← {m̂k}l/

(√
{v̂k}l + κ

)
, ∀l ∈ {1, 2, . . . , p}

16: if ∥B−1
k pk∥2 > γ then

17: θk+1 ← θk − ηB−1
k pk

18: k ← k + 1
19: else
20: not_converged←false
21: θ∗ ← argmin

{θn}k
0

L(θn)

22: end if
23: end while
24: return θ∗

E Relation between Fisher information and Hessian

For certain classes of classical optimization problems, the natural gradient method is equivalent to the
Newton method. Here, we describe a class of problems where the Fisher information matrix (FIM)
and Hessian are related. This relationship is well known in the literature, see, e.g., Ref. [101].

Let the random variable X ∈ DX be distributed according to the probability density function
p(X;θ), where the distribution is parametrized by the continuous parameter vector θ. Through the
Cramér-Rao lower bound, the FIM describes how well θ can be estimated, ideally, from observations
of X. The FIM is defined as

Ii,j = EX

[
(∂θi

ln p(X;θ))
(
∂θj

ln p(X;θ)
)]
, (13)

or Ii,j =
∫

DX
dX

(∂θi
p(X;θ))(∂θj

p(X;θ))
p(X;θ) . A required condition of regularity permits us to exchange the

order of integration and differentiation1 and the FIM can then be described with the second order

derivatives, as Ii,j = −EX

[
∂2

∂θi
∂θj

ln p(X;θ)
]
.

Let us assume we are dealing with a stochastic optimization problem, where the task is to minimize
some loss function L. That is, we want to minimize the expectation over X of some parametrized error
function l(X;θ), as L = EX [l(X;θ)]. Newton-based optimization involves the Hessian of L, which has

1Specifically, the required condition is that
∫

Dx
dX∂θi ∂θj p(X;θ) = 0, which is satisfied if DX is independent of θ.
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elements Hi,j = ∂2

∂θi
∂θj
L, or

Hi,j = ∂2

∂θi
∂θj

EX [l(X;θ)] (14)

=
∫

DX

dX ∂2

∂θi
∂θj

l(X;θ)p(X;θ) (15)

because we require that we can exchange order of integration and differentiation. Assume now that the
error function can be written as l(X;θ) = b(θ)− ln c(X;θ), for some functions b and c. If l(X;θ) ≥ 0
for all X,θ, this implies 0 ≤ b(θ) and 0 < c(X;θ) ≤ 1. As a consequence,

Hi,j =
∫

DX

dX ∂2

∂θi
∂θj

b(θ)p(X;θ) (16)

−
∫

DX

dX ∂2

∂θi
∂θj

ln c(X;θ)p(X;θ). (17)

Using ∂θi

∫
p(X;θ)) = 0, the Hessian reduces to the FIM in the particular case that

c(X;θ) = p(X;θ), (18)
∂2

∂θi
∂θj

b(θ) =
∫

DX

dX ln p(X;θ) ∂2

∂θi
∂θj

p(X;θ), (19)

i.e., the Hessian and Fisher information matrix overlap exactly. In practice, this means that a class of
problems where the natural gradient method is equivalent to the Newton method are those where the
probability density function is exponential in the error function, i.e., p(X;θ) = exp(b(θ) − l(X;θ))).
The connection between Fisher information and Hessian has been utilized before in the domain of
neural network optimization with Gaussian statistics [73, 83].

The above relation for the classical Fisher information matrix and Hessian takes for variational
quantum algorithms the form L =

∫
dX p(X;θ)l(X;θ) with probability density function p(X;θ) =

Ψ∗(X;θ)Ψ(X;θ) and energy density l(X;θ) = Ψ∗(X;θ)ĤΨ(X;θ)/p(X;θ).

F Properties of the approximate metric
For the optimization algorithms we have introduced, the update rule

Bk+1 = (1− εk)Bk + εk∇Lk∇L⊤
k . (20)

is applied to iterate on the metric. If the initial matrix B0 is positive semi-definite (B0 ⪰ 0), the
update rule preserves this property for all Bk. To see this, first assume Bk ⪰ 0. Then it holds that
(1− εk)Bk ⪰ 0 for all εk ∈ (0, 1). Next, εk∇Lk∇L⊤

k ⪰ 0 for all εk > 0, because

x⊤∇Lk∇L⊤
k x = ⟨x,∇Lk⟩⟨∇Lk,x⟩ (21)

= ⟨∇Lk,x⟩2 ≥ 0 (22)

for all x. The sum of two matrices that are positive semi-definite is again positive semi-definite.
Additionally, if we initialise B0 ≻ 0, we preserve Bk ≻ 0 for all k. Consequently, it follows that B−1

k

exists and is positive definite for all k.
To provide further intuition for the algorithm, we study the long-term behavior of the metric under

the update rule. Each step taken in the parameter space is defined by the vector ∆k = B−1
k ∇L(θk).

Now, we insert in the ∆k+1 explicitly the expression

B−1
k+1 =

[
1−

εkB−1
k ∇Lk∇L⊤

k

1− εk(1−∇L⊤
k B−1

k ∇Lk)

]
B−1

k

1− εk
(23)
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to get

∆k+1 =
[
1−

εkB−1
k ∇L(θk)∇L(θk)⊤

1 + εk(∇L(θk)⊤B−1
k ∇L(θk)− 1)

]
B−1

k ∇L(θk+1)
1− εk

(24)

=
[
B−1

k −
εk∆k∆⊤

k

1 + εk(∆⊤
k∇L(θk)− 1)

]
∇L(θk+1)

1− εk
. (25)

Since limk→∞ εk = 0, for sufficiently large k the effective step is ∆k ≈ B−1
k−1∇L(θk). Let us denote the

second term inside the parenthesis of Eq. (25) by γk = εk∆k∆⊤
k /(1 + εk(∆⊤

k∇L(θk)− 1)) and refer to
it as the innovation at each step. Expanding from the initial point and defining ε−1 = 0, the generic
step can be written

∆k =
[
B−1

0 − Γk

] ∇L(θk)∏k−1
m=0(1− εm)

, (26)

where Γk =
∑k−1

m=0 γm
∏m

n=0(1 − εn−1) is the matrix of corrections to the metric picked up by the
innovations from the first k − 1 steps. We have that

∏n
k=0(1 − ε0

k+1) = (1−ε0)
Γ(2−ε0) ·

Γ(n+2−ε0)
Γ(n+2) and that

Γ(n+2−ε0)
Γ(n+2) ∼ n−ε0 as n → ∞. Since εk = ε0/(k + 1), the innovations are attenuated ∝ k−1, and, for

some number of steps k′ ≫ 1, the innovations can be considered negligible. In this regime, where
k > k′, the step taken is ∆k ∝ (k−1)ε0

[
B−1

0 − Γk′

]
∇L(θk), where the approximate metric B−1

0 −Γk′

can be considered constant.
This behavior invites a possible modification to the algorithms, where, if convergence has not been

achieved after k′ steps, the metric is reinitialized at the current parameters by computing the full FIM
matrix at θk′ and the algorithm restarted.

G Connection of VarQITE and QNG

As stated in the main text, there is a close relationship between the QFIM, F, and the Fubini-Study
metric, A, which is given by

Aij = Re
{〈
∂θi

Φ|∂θj
Φ

〉
− ⟨∂θi

Φ|Φ⟩
〈
Φ|∂θj

Φ
〉}

, (27)

where, ∂θi
≡ ∂

∂θi
. The Fubini-Study metric [60, 61, 62, 63, 64], is the metric of parametrized pure

quantum states |Φ(θ)⟩. A can be expressed as the real part of a more general quantum geometric
tensor (QGT) [102, 63, 103, 104]

Gij =
〈
∂θi

Φ|∂θj
Φ

〉
− ⟨∂θi

Φ|Φ⟩
〈
Φ|∂θj

Φ
〉
, (28)

whose imaginary part corresponds to the Berry geometrical phase [105, 106, 71, 63].
For pure states – as we consider exclusively in this work – the Fubini-Study metric (in matrix form)

is (up to a factor of 4) equivalent to the QFIM [65, 24, 66, 67], i.e., F = 4A. The factor of 4 could,
however, be absorbed by a change of variables [71] or in the time-step δτ = η

4 as we did in the main
text. Thus we use the terms Fubini-study metric/QFIM and variables A and F interchangeably in the
main text.

The matrices A and F describe the geometry of the parameter space rather than the energy land-
scape. The second term of Eq. (8) resolves a possible arbitrary overall phase mismatch between
|Φ(θ(τ))⟩ and the target state |Ψ(τ)⟩ along the imaginary time propagation [59, 32]. Using differ-
ent variational principles (time-dependent/Dirac-Frenkel) [32, 107] yields slightly different equations
for the metric and gradient resulting in possibly complex values of the parameters θ (see Ref. num-
ber [32] for details). As θ usually refers to real-valued angles of rotational gates in a PQC, solving
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Eq. (3) from the main text using McLachlan’s variational principle is preferred in the VarQITE set-
ting, as it ensures real-valued solutions for ∂θ

∂τ . If |Φ⟩ and ∂θi
|Φ⟩ are real (not to be confused with real

parameters), the second term in Eq. (8) vanishes, due to the normalization of |Φ⟩ , ⟨Φ|Φ⟩ = 1

⟨∂θi
Φ|Φ⟩+ ⟨Φ|∂θi

Φ⟩ = ∂θi
1 = 0. (29)

Due to the above-mentioned relation between the Fubini-Study metric and QFIM, F = 4A, Eq. (6)
from the main text reveals that QNG is equivalent to VarQITE when the energy of the system is used
as the cost function, L = ⟨Ĥ⟩, and η = 4δτ .

Additionally, VarQITE is closely related to the stochastic reconfiguration (SR) method of
Sorella [108, 109, 110], which is a second-order iterative approximation to the “classical” ITE.

H Ensuring Positive Definiteness of the Quantum Fisher Information Matrix
In the presence of noise, especially shot noise, the method used to estimate the QFIM may produce
a matrix that is not positive semi-definite. This is problematic as it could adversely affect the op-
timization process, potentially leading to unstable or divergent behavior. To mitigate this issue, we
employ a diagonal loading to ensure that the QFIM remains positive definite (PD). The method is
straightforward but crucial for the robustness of our optimization algorithms. We first compute the
eigenvalues of the QFIM. If the matrix has any negative eigenvalues, we identify the most negative
one, say λmin. We then add (γreg− λmin) times the identity matrix to the QFIM, where γreg is a small
regularising parameter. Mathematically, this can be expressed as:

FPD =
{

F + (γreg − λmin)1 if λmin < 0,
F otherwise.

Here, F is the original QFIM and 1 is the identity matrix of the same dimension as F.
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