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Abstract

We introduce the concept photophysical image analysis (PIA) and an associated pipeline

for unsupervised probabilistic image thresholding for images recorded by electron-multi-

plying charge-coupled device (EMCCD) cameras. We base our approach on a closed-

form analytic expression for the characteristic function (Fourier-transform of the probability

mass function) for the image counts recorded in an EMCCD camera, which takes into

account both stochasticity in the arrival of photons at the imaging camera and subsequent

noise induced by the detection system of the camera. The only assumption in our method

is that the background photon arrival to the imaging system is described by a stationary

Poisson process (we make no assumption about the photon statistics for the signal). We

estimate the background photon statistics parameter, λbg, from an image which contains

both background and signal pixels by use of a novel truncated fit procedure with an auto-

matically determined image count threshold. Prior to this, the camera noise model param-

eters are estimated using a calibration step. Utilizing the estimates for the camera

parameters and λbg, we then introduce a probabilistic thresholding method, where, for the

first time, the fraction of misclassified pixels can be determined a priori for a general image

in an unsupervised way. We use synthetic images to validate our a priori estimates and to

benchmark against the Otsu method, which is a popular unsupervised non-probabilistic

image thresholding method (no a priori estimates for the error rates are provided). For

completeness, we lastly present a simple heuristic general-purpose segmentation method

based on the thresholding results, which we apply to segmentation of synthetic images

and experimental images of fluorescent beads and lung cell nuclei. Our publicly available

software opens up for fully automated, unsupervised, probabilistic photophysical image

analysis.
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Introduction

Optical imaging, the acquisition of images using light in the visible or near visible range, and,

in particular fluorescence imaging, has wide-spread biological and biophysical application and

is therefore at the heart of science and engineering [1].

On the experimental side, fluorescence imaging experiments have undergone major

advances recently. First, experimental platforms have been brought to high-throughput [2–4],

which increases demands for automated analysis. Secondly, super-resolution fluorescence

microscopy, such as STORM and STED have emerged [5–7]. On the analysis side, deep learn-

ing techniques are gaining popularity [8].

The electron-multiplying charge-coupled device (EMCCD) [9] is often used in fluorescence

microscopy imaging as it has all the advantages of a camera (compared to detectors that

require scanning) and can detect photons even from single fluorophores.

When processing fluorescence images from EMCCD-camera-based setups one has to deal

with the unavoidable effects of different sources of noise [10]. These noise sources can be

separated into photon noise, which is described by Poisson statistics, and the subsequent

camera-induced noise. Fortunately, the process governing the camera noise present in the

image counts of images generated by EMCCD cameras has been studied before and is rather

well understood [11–13]. The noise model includes Poisson-Gamma distribution for elec-

tron multiplication [11], Gaussian read-out noise and also the rounding of the final image

counts [14]. Camera noise model parameters are typically estimated using a mean-variance

test along with a set of calibration experiments [15], or, using maximum likelihood estima-

tion (MLE) [16].

The over-arching purpose of this study is to shift the focus of common image analysis tasks

[17] (such as filtering, edge detection, registration, segmentation, thresholding and compres-

sion) from a purely mathematics-algorithm perspective to also utilize the physics for the

recorded intensity values to provide a priori misclassification rates for different image analysis

tasks. To this end, we here introduce the term photophysical image analysis (PIA), and we dem-

onstrate how to approach the common problem of image thresholding from a PIA perspective.

Image thresholding refers to the task of classifying image pixels as background or signal [18,

19]. Such thresholding techniques can be supervised (manual selection of threshold) or unsu-

pervised, such as the Otsu method [20]. The Otsu method, the workhorse of unsupervised

thresholding, works by separating the intensity histogram into two clusters by minimizing the

sum of within-class-variances for the pixel intensities in the image. In here, we introduce a

new PIA-based image thresholding method which, for the first time, allow us to do unsuper-
vised thresholding and at the same time provide a priori misclassification rates for general

images. We demonstrate that our a priori estimates of pixel misclassification rates are close to

ground-truth values in synthetically generated images. For completeness, we also introduce a

simple heuristic general-purpose segmentation method, which we apply to experimental

images of fluorescent beads and labeled cell nuclei. Image segmentation is the process of iden-

tifying meaningful signal regions (for instance, objects such as macromolecules or biological

cells) in the image.

MATLAB implementations of our PIA methods are made available as a MATLAB package

“EMCCD-PIA”, see Data availability statement. Our methods fulfill the requirements

demanded in the image analysis in conventional and high-throughput microscopy, namely

reproducibility, full automation and control over the error rate in pixel classifications. In addi-

tion, our method is computationally fast and robust.
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Materials and methods

In this section we introduce our PIA methodology for unsupervised probabilistic image

thresholding. The main novelties of our method appear in the subsections “Estimating the

background illumination strength, λbg” and “Unsupervised probabilistic image thresholding”.

In the first of these subsections, we show how one can estimate λbg from an image which con-

tains both background and signal pixels (at arbitrary fractions and signal-to-noise ratio, SNR).

In the second of these subsections we show how to, in addition, estimate the number of back-

ground and signal pixels in the image and use this information to estimate misclassification

rates when performing image thresholding. Subsection “Theory” contain the necessary theo-

retical background and subsection “Camera parameter estimations” shows how to, once for a

given camera, estimate the camera noise parameters. In the final subsection “Image segmenta-

tion” we present a simple heuristic but general-purpose image segmentation method which

uses the image thresholding result as input.

Theory

Under stationary conditions, the photons stemming from light emitting molecules, such as

those used in fluorescence imaging, are described by Poisson statistics. This statistics is con-

trolled by a single parameter—the number of emitted photons per time unit. Moreover, sums

of random numbers drawn from a Poisson distribution will again yield Poisson statistics. For a

detector exposed to light from multiple sources, the number of incoming photons is therefore

also described by a Poisson distribution.

The first step in the EMCCD camera response is converting photons to electrons. The num-

ber of input electrons nie approximately follows a Poisson distribution, such that

pðniejlÞ ¼ Pðnie; lÞ, with the Poisson parameter λ = QΛ + c, which is determined by the aver-

age number of photons Λ during the exposure time, the quantum efficiency Q, as well as the

extra spurious charge c generated in the conversion process.

In the next step, the electronic signals are typically amplified with a certain gain through

many electron multiplication steps. Each of these steps introduces noise, and the number of

output electrons, noe, after these steps is usually modeled by a Gamma distribution with shape

parameter nie and scale parameter g, such that [11]

pðnoejnie; gÞ ¼

dnoe;nie ; without gain

nnie � 1
oe

e� noe=g
G nieð Þgnie ; with gain and nie � 1

dnoe;0; nie ¼ 0

8
>><

>>:

ð1Þ

where g is the electronic gain factor, Γ(�) is the gamma function and dnoe;nie is the Kronecker

delta-function.

The electrons are then converted to a digital image count nic by the readout process. This

process is usually modeled by a normal distribution, such that

pðnicjnoe; f ; r;DÞ ¼
1
ffiffiffiffiffiffiffiffiffi
2pr2
p exp �

ðnic � noe=f � DÞ
2

2r2

� �

: ð2Þ

where f is the analog-to-digital conversion factor, r is the readout noise and Δ is an offset

which is added to ensure that nic> 0.

Finally, the image count is rounded to the nearest integer to get the rounded image count

nicr. The error introduced in this step is commonly assumed to be described by a uniform dis-

tribution [14]. Note that rounding was not included in the study by Ryan et al. [16].
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The set of distributions above determine the probability mass function (PMF) for the

rounded image count, nicr, in terms of the Poisson parameters λ and the chip parameters, chip-
Params = {g, f, r, Δ}. We here make use of the characteristic function, CF (the Fourier trans-

form of the PMF) for nicr. As we show in our derivation (see Sec. S1 in S1 Text), this CF takes a

simple analytic form:

heipnicri ¼ exp �
p2r2

2
þ ipD

� �

exp l
1

1 � ipðg=f Þ
� 1

� �� �
sin p=2

p=2
: ð3Þ

The PMF for nicr (here referred to as the EMCCD-PMF) is obtained by the inverse Fourier-

transform of Eq (3), see Sec. S2 in S1 Text for details.

The characteristic function given in Eq (3) can, through Taylor-expansions in p, be used to

calculate cumulants and moments to any order. For instance, the mean is

m≔ E½nicr� ¼ l
g
f
þ D; ð4Þ

and the variance is given by

s2 ≔Var½nicr� ¼ 2l
g
f

� � 2

þ r2 þ
1

12
: ð5Þ

Note that this variance includes the readout noise and the rounding effect (the factor 1/12).

For EMCCD devices one can also turn off the gain (electron multiplication steps). For this

case (see Sec. S1 in S1 Text), we instead have:

mnogain ≔ E½nnogain
icr � ¼ l

1

f
þ D; ð6Þ

while

s2
nogain ≔Var½nnogain

icr � ¼ l
1

f

� � 2

þ r2 þ
1

12
: ð7Þ

Camera parameter estimation

For our unsupervised probabilistic image thresholding method (see next two subsections), we

need the four camera specific parameters, i.e. chipParams = {g, f, r, Δ}, as input. We here show

how to determine these parameters using a set of calibration experiments. To this end, we

adapt the image stacking method [11] as described below. Note that the calibration needs to be

done only once for a given camera setting.

We first generate experimental calibration data (see Sec. S3 in S1 Text for experimental

details). To that end, we record a stack of images of (non-moving) fluorescent beads with the

gain set to its lowest setting or turned off, and the illumination intensity ranging from 0% to

100%. We then record another image stack at a specific gain setting. For each pixel (here

labeled by j) we then have a time series of image counts. From these time series we compute

sample estimates for the mean �xðjÞ and for the associate variance S2(j) for each pixel.
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In order to extract the camera parameters, we next perform a mean-variance analysis of the

experimental data. For the no-gain case, Eqs (6) and (7) yield a mean-variance relation

s2
nogain ¼

1

f
mnogain �

D

f
þ r2 þ

1

12
: ð8Þ

For the case with gain, Eqs (4) and (5), give the mean-variance relation

s2 ¼ 2
g
f
m � 2

gD
f
þ r2 þ

1

12
: ð9Þ

Note that both expressions above yield a linear relation between the variance and the mean. To

extract the parameters we then fit straight lines to a variance versus mean plot for the experi-

mental data, i.e. to the dataset consisting of ð�xðjÞ; S2ðjÞÞ. In this step, we removed 40% intensity

value for the gain = 100 setting, as well as bottom and top 1% of pixels from each experiment

to reduce the number of outliers. The slope of the linear fit, y ¼ knogain�xnogain þ Cnogain, to the

no-gain data gives us an estimate knogain � 1

f (see Eq (8)). The slope of a linear fit,

y ¼ kgain�xgain þ Cgain, to the data obtained with gain, given an estimate kgain �
2g
f (see Eq (9)).

Additionally, the intersections at �xgain ¼ 0 and �xnogain ¼ 0 gives estimates of Δ and r,

D ¼ f
Cnogain � Cgain

2g � 1
; r2 ¼ Cnogain �

1

12
þ
D

f
ð10Þ

To estimate errors in the parameters, we use a random sub-sampling of the data into sub-sets

of 1000 pixels. As the output we calculate median and interquartile ranges for each of the

parameters. As an alternative to random subsampling one could use bootstrapping [21] of the

original data.

Estimating the background illumination strength, λbg

With the camera parameters, chipParams, estimated once and for all, we are set to perform

photophysical image analysis. To this end, we assume that the background pixels in the image

at hand are described by a single Poisson parameter λbg. For such an image, we estimate λbg
using a procedure which makes no assumptions about the signal-pixel intensity distribution in

the image.

In our method for estimating λbg, for an image which contains both background and signal

pixels, we fit a truncated EMCCD-PMF to the lower part of the image count histogram with

λbg as a fit parameter (chipParams are known). The lower part of is here defined as all image

counts below an optimal truncation point (threshold), Nbg
icr. This truncation point is chosen

such that the lower part of the histogram contain image counts with an overwhelming majority

coming from true background pixels. The remaining part of the histogram then contains “out-

liers” and consists of counts from signal and remaining (uncertain) background pixels. In

order to determine Nbg
icr , we combine maximum likelihood estimation of λbg for truncated data

with a χ2 goodness-of-fit tests at several different truncation points. The quantity Nbg
icr is then

the largest truncation point for which we obtained an acceptable fit.

The details of our procedure are:

• Sort the image counts for each pixel, thereby yielding a sorted image count list:

S ¼
n
nð1Þicr ; n

ð2Þ

icr ; . . . ; nðmÞicr

o
. Here, m is the total number of pixels.
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• Estimate λbg using maximum likelihood estimation applied to the truncated data for a set of

truncation points (lowest is set to 25% of data). In this step, we form the joint truncated

probability
Q

j
pmf ðnðjÞicr jyÞ

cdf ðNbg
icr j yÞ

, where the PMF is obtained by numerically evaluating the inverse

Fourier transform of the characteristic function in Eq (3), the CDF is the cumulative sum

over PMFs (see Sec. S1 and S2 in S1 Text) and θ = {chipParams, λbg}. In the truncated MLE

procedure, we set the initial estimate as lbg ¼ ðn
bm=2c

icr � DÞ=ðg=f Þ (see Eq 4).

• Calculate the goodness-of-fit χ2 score for each of the truncation points. In this procedure we

divide the data into five unique image count intervals, based on quantiles for the fitted PMF,

to keep the number of degrees of freedom in the test (see below) the same for each trunca-

tion point.

• Set as Nbg
icr the largest truncation point passing the χ2 test (with one estimated parameter)

[22] at a significance level set by a p-value threshold pGoF. In here, we use pGoF = 0.01.

As the output from the procedure above, we obtain an estimate for λbg, but also obtain an

intensity threshold, Nbg
icr, such that the truncated distribution fit is good (i.e., we are “certain”

that the image counts below Nbg
icr originate from background pixels).

Note that our procedure implicitly assumes that the image is acquired under uniform illu-

mination (so that λbg does not vary over the image region of interest).

Unsupervised probabilistic image thresholding

Image thresholding (binarization) is based on setting a threshold Nthresh
icr for the recorded image

counts. Pixels which have image counts� Nthresh
icr are turned “black” and pixels with an image

count> Nthresh
icr are turned “white”. As we illustrate in S9 Fig (panels c and d) in S1 Text, two

common unsupervised thresholding approaches, the Otsu method and adaptive thresholding,

for automatically determining Nthresh
icr can yield uncontrolled results.

The main novelty of our new thresholding method, as detailed below, is that we provide a
priori error estimates through two conditional probabilities: p(black|s)—the probability that

an actual signal (s) pixel is deemed black at a given intensity threshold, and p(white|bg)—the

probability that an actual background (bg) pixel is deemed white at this threshold. In Sec. S6 in

S1 Text, we relate these two quantities to commonly used statistical measures such as the false

positive rate (FPR) = fraction of incorrectly classified background pixels, the false negative rate

(FNR) = fraction of incorrectly classified signal pixels, the accuracy (ACC) = fraction of cor-

rectly classified pixels among all the pixels, FDR = fraction of false positives among positives

and FOR = fraction of false negatives among negatives.

Our unsupervised probabilistic image thresholding method uses as input a predetermined

p-value threshold, pbinarize (i.e. predetermined value of the “wanted” FPR in the thresholded

image). To convert pbinarize to an intensity threshold Nthresh
icr , we use the full PMF for the back-

ground photons (including camera-induced noise), see previous subsection. From this PMF,

we can calculate the probability that an actual background pixel (bg) would yield an image

count which exceeds Nthresh
icr (and hence be deemed to be a white pixel) as:

pðwhitejbgÞ ¼ 1 � cdfðNthresh
icr j yÞ: ð11Þ

By setting the left-hand-side above = pbinarize and inverting, we estimate the image count

threshold Nthresh
icr at which the probability (p-value, pbinarize) is no more than, say, 1%. Applying

the threshold Nthresh
icr onto the image at hand then yields a black and white (binarized) image,

where the error rate p(white|bg) is known a priori.
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Given the image binarization threshold Nthresh
icr , we can also estimate the other error rate, p

(black|s). To achieve this task, we first notice that the number of background pixels nbg in the

image can be determined through:

ð# pixels with an image count � NjÞ ¼ nbgcdfðNjj yÞ ð12Þ

for Nj < Nbg
icr. Hence, by plotting (# pixels with an image count� Nj) as a function cdf(Nj| θ),

we extract nbg as the slope of a fitted linear function. The total number of signal pixels is then

estimated through ns = m − nbg, where m is the total number of pixels in the image, as before.

The number of black pixels among the background pixels is:

nðblackjbgÞ ¼ nbgcdfðNthresh
icr j yÞ ð13Þ

The number of black pixels in the binarized image is nblack ¼

ð# pixels with an image count � Nthresh
icr Þ and hence the number of black pixels among the

signal pixels is

nðblackjsÞ ¼ nblack � nðblackjbgÞ ð14Þ

As a consequence, we finally arrive at the probability that a signal pixel is deemed black in the

binarized image:

pðblackjsÞ ¼
nðblackjsÞ þ 1

ns þ 2
ð15Þ

The +1 and +2 terms in the numerators and denominators above are introduced in order to

avoid zero probabilities [23].

Image segmentation

The goal of the image segmentation is to identify “objects” (in here, fluorescently-labeled lung

cancer cell nuclei or fluorescent beads) in an image. These objects often correspond to contig-

uous regions of pixels, which one seeks to identify and to classify as signal (s) or background
(bg) regions. In here, to keep things at a general-purpose level, by an “object” we refer to a sin-

gle cell/bead, or to a cluster of touching cells/beads (separating touching objects would this

would be a post-processing step which will require knowledge of the geometry of the object).

Let us now, to illustrate how our image binarization result can potentially be used in down-

stream image analysis tasks, introduce a heuristic image segmentation method. This is not a

main novelty of this study, but included in our software package as an example application.

Our unsupervised image segmentation method assumes that erroneously classified pixels in

our binarized image (see above) have a short-range spatial correlation. This in effect forces

false background and false signal regions to be “small”. Our method makes use of one parame-

ter, allowedGapLength (set = 1 in all examples) and is:

1. Find connected components of white pixels in the thresholded image (white regions) and

connected components of black pixels (black regions).

2. Flip all the pixels in the white regions smaller than wwhite and flip all the pixels in black

regions smaller than wblack from the binarized image. By “flip” we refer to the operation of

turning a white pixel black, or turning a black pixel white. Our procedure for obtaining the

two thresholds, wblack and wwhite, is described below.

3. For each region, we calculate a p-value, pseg, based on the sum of image counts for all the

pixels in a region, see Sec. S1 in S1 Text for the characteristic function used to estimate the
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p-values for each of the regions. This p-value serves as a quality control of the

segmentation.

To determine wblack in step 2 above we find all black regions and sort these according to

size (with the smallest regions size first). We then proceed through the sorted list and stop

when the gap between the present region size (wblack) and the next region size exceeds allowed-

GapLength. The procedure for determining wwhite is analogous. For the case when there is no

gap larger than allowedGapLength we keep no connected components/objects.

Note that our method makes no assumption about the geometry or topology of the

“objects” in the image. For instance, in case the objects would have “doughnut” shapes, our

method should be able to detect the holes in these objects (however, we do not have any such

objects in our examples in Results).

Results

We here demonstrate our PIA method for unsupervised probabilistic image thresholding gives

a priori estimates for misclassification rates which are close to ground truth values (Fig 2).

Prior to this we determine the camera chip parameters using a mean-variance (MV) test and

estimate the background Poisson parameter directly for the image at hand (which contains

both signal and background image counts). We end the Results section by showing image seg-

mentation results using our heuristic general-purpose method. We apply our methods to both

synthetic (simulated) and experimental fluorescence microscopy images.

Estimating the camera chip parameters using calibration experiments

As a pre-processing step we need to determine the four camera chip parameters, gain g, ana-

logue-to-digital unit conversion factor f, read-out noise parameter r, and camera offset (bias)

parameter Δ (unless these are known from a previous calibration). To this end, we perform lin-

ear fits of the variance in image counts as a function of mean image counts for three different

gain settings (see Methods for details). This procedure yields parameter estimates (median and

the interquartile range) as reported in Table 1. Note that the accuracy (here quantified by the

interquartile ranges) of the estimates can be improved by using a larger set of calibration

experiment at different illumination intensities, or using an MLE approach [16]. It is, however,

not a main aim of this study to provide a new method for estimation of the camera parameters,

and we therefore settled at the current accuracy. Note that the data from differing gain settings

yield consistent estimates of r and Δ, as it should. Since the chip parameters, except the gain,

are static properties of the chip, these experiments only need to be performed once.

Estimating the Poisson parameter for the background

The results obtained from our novel method for estimating the Poisson parameter of the back-

ground (λbg) directly from an input image which contains both background and signal is

Table 1. Estimates of the chip parameters for an EMCCD camera at different gain settings. The calibration data shown in S1 Fig in S1 Text was used, and the chip

parameters were calculated using Eqs (4)–(7) in Materials and Methods.

Gain f (interquartile range) g r Δ

0 35.17 (33.46–36.84) - - -

50 - 11.54 (10.98–12.13) 1.45 (1.44–1.47) 27.03 (25.31–28.80)

100 - 18.82 (17.88–19.73) 1.45 (1.43–1.46) 26.37 (24.57–28.21)

300 - 46.44 (44.22–48.71) 1.46 (1.44–1.47) 27.17 (25.42–29.25)

https://doi.org/10.1371/journal.pone.0300122.t001
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shown in Fig 1. As input we use an experimental image of 250 nm diameter fluorescent poly-

styrene beads adsorbed onto a surface, where the image was split into several tiles. Panel a)

shows an example of such an image acquired with the settings labeled “Gain 100” in Table 1.

In panel b), we show image count histogram for one of the tiles in panel a). In order to estimate

λbg from this histogram, we fit a truncated PMF to the data at several different truncation

points. For each truncation point, we run a goodness-of-fit test and choose the optimal thresh-

old, Nbg
icr, as the largest truncation point which passed the tests, see Methods for details. Our

estimate of λbg is the value obtained by the fit to the data at a threshold Nbg
icr. In the histogram,

blue bars represent intensities below Nbg
icr (“certain” background pixels). The orange bars repre-

sent the outliers, i.e. image count values which are not certain to be background (remaining

background or signal pixels). Our procedure yields an estimate λbg = 22, i.e., in this particular

tile on average 22 photons are incident on each background pixel during the exposure time

(assuming quantum efficiency = 1, and neglecting the spurious charge, see Methods). Notice

that our novel procedure automatically makes estimates of the statistical properties of the

background, although the image contains both background and signal pixels. The fitted

EMCCD-PMF, extended to the full image count range, is given by the black curve in Fig 1(b).

The reason that we split the image into tiles is that the illumination intensity varies slightly

over the image at hand, thus violating the model assumptions from Methods. By tiling the

Fig 1. Estimating λbg for an image which contains both background and signal. (a) Experimental fluorescence

microscopy image of fluorescent beads. Here, the image is split into tiles of size 64x64 pixels, where each tile is given a

label {row, column}, where in this example row, column = 1, . . ., 8. The contrast is set to better display the background

noise and glass slide artifacts. (b) Estimating λbg: A histogram of the image counts for a single tile, here tile {4, 1}. The

blue bars represent pixels regarded as true background, while the orange bars represent the outliers (not true

background or signal pixels). The image counts threshold, Nbg
icr ¼ 50, separating the blue and orange bars was

determined using a p-value threshold, pGoF = 0.01, for the goodness-of-fit tests. The dashed black curve shows the fitted

PMF for the estimated λbg, extended to the full range of image counts (in our method, we fit a truncated PMF to the

blue bars). In S5 Fig in S1 Text, we provide the estimates of λbg and Nbg
icr for all tiles in panel a). In S8 Fig in S1 Text, we

also provide two more examples of image count histograms with overlaid fits. Examples of fits to histograms for

synthetic images at varying SNR is found in Sec. S7 in S1 Text. A major novelty of our method is that we are able to

estimate λbg for a arbitrary fluorescence image even though the image contains signal pixels.

https://doi.org/10.1371/journal.pone.0300122.g001
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image we get roughly constant illumination over each tile, thereby making sure that the model

assumptions are satisfied and, as a consequence, most of the tiles pass the goodness-of-fit p-

value threshold, see S5 Fig in S1 Text. We leave it as a future challenge to extend our approach

to situations of strong non-uniform illumination.

In the experimental image in Fig 1, the vast majority of the pixels are background pixels

and the signal-to-noise ratio is rather high. To show that our procedure works also for smaller

SNR, S4 Fig in S1 Text show examples of fits to histograms for synthetic images at varying

SNR, where we demonstrate that our procedure for estimating λbg works also for smaller

SNRs.

Unsupervised probabilistic image thresholding

The estimates of the camera parameters and our automatically determined λbg allow us to per-

form unsupervised probabilistic image thresholding, as described in Methods. To quantita-

tively test out our image thresholding approach (see Methods), we apply it to synthetically

generated images of fluorescent beads. Our procedure for generating such images is described

in Sec. S4 in S1 Text. The SNR in these images is defined [24], such that SNR ¼

lsig=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lsig þ lbg

q
Þ where λsig is the Poisson parameter for a signal pixel. Since we use synthetic

images, we know the ground truth, i.e., which pixel is a background pixel and which is a signal

pixel, and can use this information to estimate the quality of the thresholding. To this end, we

use five observables: FPR, FNR, ACC, FDR, FOR. The main novelty of our method is that we

can estimate all of these rates a priori, i.e., even if the ground truth is not known.

Our thresholding (binarization) method uses a p-value threshold, pbinarize (not to be con-

fused with the p-value threshold used in the goodness-of-fit test, pGoF) which controls the FPR.

The results for the FPR, FNR, 1-ACC, FDR and FOR are shown in Fig 2 where we compare to

our a priori predictions (see Methods) and to the Otsu method. Notice that with our probabi-

listic thresholding method, we have excellent control over the FPR and, unlike the Otsu

method, can predict the other statistical observables a priori. The details of our procedure for a
priori estimation of the FPR, FNR, 1-ACC, FDR and FOR is described in the Methods section

and in Sec. S6 in S1 Text. The success of our unsupervised probabilistic thresholding method

is quantified by the good agreement between the blue marks (binarization at a threshold set by

pbinarize vs ground truth) and the orange curves (a priori estimates).

In S9 Fig in S1 Text, we applied our image thresholding method to the experimental data

from Fig 1. Compared to two common unsupervised thresholding approaches, the Otsu

method and adaptive thresholding, it is visually clear (no ground truth is here available) that

our method gives good control over the FPR.

Image segmentation

The first application of our unsupervised image segmentation method is the image in Fig 1.

The result is shown in Fig 3(a), where we see that, visually (no ground truth is available here),

our method performs very well. Our segmentation method uses the binarized image in S9 Fig

(panel b) in S1 Text as input. For the image in Fig 3(a), the p-values for the regions, pseg, were

all below 0.01.

We next apply our image segmentation framework to more challenging images, namely

images of stained lung adenocarcinoma A549 cell nuclei. These images are taken with a lower

magnification (20 X) and the gain setting “Gain 100” in Table 1. At this magnification, the illu-

mination varies across the field of view, violating our assumption of constant background. In

addition, the non-uniform staining of such cell nuclei, as well as their varying shapes and sizes,
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should make the image harder to segment. Despite these challenges, our method, after tiling of

the image (see Materials and methods), visually performs very well, as the segmentation results

shown in Fig 3(b) illustrate.

To illustrate that our method is insensitive to the geometry of the objects, S10 Fig in S1 Text

shows segmentation results for a synthetic image with objects of more complicated shapes.

Summary and discussion

In this study, we introduced EMCCD Photophysical Image Analysis methods and tools which

make full use of the physical knowledge of photon statistics and the physical mechanisms

underlying EMCCD cameras. Our image thresholding method is unsupervised (no training

data set required) and probabilistic (number of wrongly classified pixels can be estimated a
priori).

Fig 2. Photophysical image binarization. Synthetic images of fluorescent beads were generated as described in Sec. S4

in S1 Text at different signal-to-noise ratios (with known values of λbg and λsig). For these images we know the ground

truth pixel identity, i.e., which pixels are background and which are signal. (a) Estimated λbg compared to the ground

truth value. (b-f) Our image binarization method was applied to the synthetic images (with binarization threshold

pbinarize). The result was then compared to ground truth pixel identity, with success rates quantified through five

statistical observables (blue). The orange marks correspond to our a priori prediction of the same observables

(obtained without the knowledge of the ground truth). We also show Otsu’s method compared to ground truth pixel

identities (red). In our method we have excellent control over the FPR, i.e., the fraction of white pixels in background

regions. We also have good control over the FNR. Particularly important to notice is that our a priori prediction

(orange) for all statistical observables agree very well with ground truths (blue). This agreement is the strength of our

novel thresholding method, which hence opens up for unsupervised image thresholding where the error for the

classification for each pixel is obtained a priori. The image count threshold for the binarization was determined

through a p-value threshold pbinarize = 0.01.

https://doi.org/10.1371/journal.pone.0300122.g002
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Any image originating from fluorescence imaging technologies, will contain both signal

and background. The signal consists of the photons from the dyes of interest. The background

can have several origins. For instance, ambient light may leak into the microscope and reach

the detector. Autofluorescence from the sample as well as from the optical setup is a common

problem when working with short excitation wavelengths. Optical filters are not perfect and

may transmit unwanted light. However, as long as all these background photon sources follow

stationary Poisson statistics, our PIA pipeline applies. This fortunate fact follows from the fact

that the sum of random numbers drawn from different Poisson distributions (with parameter

values λi, i = 1, . . ., number source types) follow another Poisson distribution (with parameter

λbg = ∑i λi). Note that within our PIA methods, we make no particular assumption about the

statistics for the signal pixels. The signal can, for instance, be time-varying, spatially varying, or

be described by image count histograms which are multimodal, etc.

A few future challenges remain. As already mentioned, the assumption of uniform back-

ground illumination is sometimes violated, which, for stronger gradients in the illumination,

requires adaption of our procedure for estimating λbg using a model also for the illumination

profile. A second future challenge is to deal with the fact that the gain factor cannot be

expected to be perfectly uniform across the range of pixels. This may lead to a broadening of

the distribution under certain conditions, which we, however, have not observed.

To increase the utility of our method further, the framework should be generalized to han-

dle images acquired via complementary metal-oxide-semiconductor (CMOS) [25] type cam-

eras. The theoretical challenge is that the response function for CMOS cameras differ from the

one presented in Methods. We plan to tackle this challenge in a future study.

Even though our application in this study have been on fluorescence images, we expect var-

iants of our methodology to apply to other types of optical imaging technologies where control

over the error rates in classification are important. In particular, we expect our approach, with

appropriate modifications for each application, to be useful especially in those cases where

image quality is poor (cellphone microscopy, USB microscopy) [26] or where the photon bud-

get is tight (various super resolution microscopies, especially STED). Furthermore, there

Fig 3. Photophysical image segmentation. (a) Beads image with detected regions (connected components of white

pixels). The original image can be found in Fig 1a). The yellow pixels are boundary points to the detection regions. The

binarized image used as input to our segmentation approach is found in S9 Fig (panel b) in S1 Text (b) Lung cell nuclei

image with detected regions. The original image can be found in S7 Fig in S1 Text (a). Segmenting larger object with

lower magnification is more challenging, since the background illumination will vary. We here tile the image and set p-

value thresholds pGoF = 0.01 and pbinarize = 0.01 and region size gap threshold = 1. An example of the associated image

count histogram with an overlaid fit is found in S7 Fig in S1 Text. Notice that our image segmentation method

performs visually well on both experiments.

https://doi.org/10.1371/journal.pone.0300122.g003
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might be microscopies where fluctuations associated with the staining can be leveraged, for

example STORM/FPALM with blinking statistics and/or photoswitching statistics contribut-

ing, as well as PAINT where the binding and unbinding of dye molecules contribute to the

fluctuations in the signal.

Since our image analysis pipeline is fast and unsupervised (no training required), it is ideal

for optical imaging technologies in high-throughput settings [2–4]. Unlike many other image

analysis tools, our method does not include any parameters which need to be manually

adjusted by the user and hence opens up for full reproducibility in image analysis where no

manual decisions need to be made. In addition, our method is probabilistic, and allows a priori
estimation of the expected number of wrongly classified pixels, which, in turn, is crucial infor-

mation for downstream error analysis and corrections.

Image analysis is a scientific discipline traditionally considered as a branch of mathematics.

We hope this study will inspire further work in the field of photophysical image analysis. In this

field, we seek to make full use of physical modeling to develop automated, unsupervised meth-

ods and provide a priori error rates for different image analysis tasks.

Supporting information

S1 Text. Detailed description of our methods and supporting figures. We here provide all

necessary details of our PIA methods and supporting figures.

(PDF)
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