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Abstract 
Sweden has committed to achieving net-zero greenhouse gas emissions by 2045. The construction 
sector, which accounts for approximately 10-15% of CO2 emissions, plays a significant role in this 
commitment. The sector’s emissions arise from the manufacture, processing, and transport of 
construction materials along with activities on the construction site.  

This thesis research thoroughly explores CO2 emission reduction potentials across building and 
transport infrastructure construction supply chains. Employing scenario analysis, extensive 
literature reviews, and involving broad stakeholder participation, these studies have identified and 
analyzed key abatement options throughout the construction supply chain. This culminates in a 
detailed roadmap, delineating reduction potentials and implementation timelines with increasing 
ambition over 5-year time steps towards close to zero CO2 emissions by 2045. 

The results indicate that it is possible to halve CO2 emissions associated with construction already 
today using currently available technologies and practices. Moreover, it is possible and feasible if 
all value chain actors do their parts to reach around 70% reduction by 2030 and close-to-zero 
emissions by 2045. Achieving these levels of reductions nationally necessitates implementation of 
comprehensive measures across the board, requiring extensive collaboration along the whole value 
chain.  

Key strategies include enhancing resource efficiency and circularity measures besides adopting 
electrified industrial processes and heavy vehicles. Deep reductions in CO2 emissions are possible 
through consideration of resource efficiency and circularity opportunities at all stages of the value 
chain. Optimization of structures and concrete mixes are emphasized alongside increased reuse 
and recycling, combined with substitutions to bio-based materials.  

For heavy transport and the construction process, progressive electrification is supported by digital 
and automated processes, strategic machine setups, and transport and on-site logistic optimization. 

Policy measures and procurement strategies should be tailored to support the aforementioned 
measures with a clear supply chain focus. This includes early involvement of contractors and 
suppliers in planning and design, facilitating balanced risk sharing. The studies also underscore the 
importance of avoiding pitfalls along the way, such as over-reliance on materials or solutions that 
cannot be scaled up to the levels required to reach deep emissions reductions on a national or 
international level. 

The studies included in this thesis offer insights for stakeholders to accelerate the climate transition 
in building and transport infrastructure construction and renewal to advance towards global climate 
goals. At the core of this is collective efforts, embracing solutions across the supply chain, and 
prioritizing the climate transition in the development of the built environment. 

By assessing supply chains with active involvement from value chain stakeholders and considering 
the time perspective, technical maturity, and scalability of emissions reduction measures, the 
research included in this thesis is laying the foundation for actionable roadmaps towards 
decarbonizing the embodied emissions of buildings and transport infrastructure. 
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1 Introduction 
1.1 Emissions associated with buildings and transport infrastructure 
The climate emergency demands immediate and urgent action to accelerate the transformation 
towards achieving net-zero CO2 emissions by 2050 and negative emissions thereafter [1]. The built 
environment sector holds a crucial role in addressing this crisis, as the construction, maintenance, 
renewal, and operations of built structures account for approximately 40% of global CO2 emissions, 
with construction alone contributing around 13% [2]. Despite the need to halve building and 
infrastructure emissions by 2030 to align with climate targets, implying an 8% reduction per year 
starting from 2020 [3], global emissions from the sector have remained constant over the past 5 
years [4]. This underscores the significant gap between the current state and the necessary 
decarbonization trajectory [5]. 

1.2 Operational versus embodied emissions – Current status and future 
development 

Until now, policy initiatives and progress within the building and transport infrastructure sector 
have primarily targeted CO2 emissions generated from the operations of built assets - specifically, 
heating, cooling, and lighting [6–8]. This focus is substantiated by the significant contribution of 
energy use in building to global and European Union (EU) emissions, as depicted in Figure 1.  

   
Figure 1. Comparison of global, EU, and Swedish CO2 emissions from buildings and transportation 
infrastructure. Global data for 2022 [2, 9], and data from the EU [10–12], and Sweden [13, 14] for 2021. 
Swedish data represents consumption-based emissions, with a similar share for territorial emissions (12 
Mt CO2). Estimates are used for EU transport infrastructure emissions due to data unavailability. 

Across various countries, there is a notable increase in minimum performance standards and 
building energy codes. Moreover, there is a growing adoption of more energy-efficient building 
technologies and renewable energy sources for electricity and heating [4]. Between 1990 and 2018, 
efficiency enhancements and the wider utilization of renewables have led to a 29% reduction in 
CO2 emissions from residential buildings in the EU during their use phase [15]. Concurrently, the 
proportion of operational emissions over the life cycle of new constructions is declining [16–22].  

This trend is exemplified at the national level by Sweden, where operational emissions have been 
cut by two-thirds since the 1990s (see Figure 2). The decrease is attributed to stringent energy 
efficiency mandates and the shift from individual oil heaters to heat pumps and bio- and waste-
based district heating systems [13].  
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The transport sector is witnessing the initial stages of parallel advancements, with a significant 
focus on reducing operational carbon emissions. This is evident in the expansion of public 
transportation, implementation of vehicle efficiency standards, imposition of fuel taxes, investment 
in alternative fuels, transition to electric vehicles, and the integration of smart transportation 
systems [23–26]. While this has not yet altered the curve of transport carbon emissions, there are 
indications that it could do so by 2030 [27]. 

 
Figure 2. Comparison of development of the greenhouse gas emissions associated with construction 
and refurbishment of buildings and infrastructure and heating of buildings. Adapted from the 2024 
environmental indicator reporting by The Swedish National Board of Housing, Building and Planning 
[13]. Note that the graph does not include emissions associated with other operational activities and 
maintenance, for which there is no separate historic data available from 1993-2008.  

However, solutions aimed at mitigating the “embodied” CO2 emissions of buildings and 
infrastructure — those emitted during manufacturing, transportation, construction, and end-of-life 
phases of built assets — have fallen behind [8]. Several studies suggest that if the current trend 
persists, the share of emissions related to embodied emissions from transportation and buildings 
could double compared to operational emissions in the coming decades [8, 28]. 

The global development appears to be trending towards a scenario akin to the current situation in 
Sweden, where embodied emissions have become the dominant factor in the impacts stemming 
from the built environment, as seen in Figure 2.  

Simultaneously, there is a rapid expansion of global floor area, particularly notable in developing 
countries [4]. In the EU, the increase in floor area per capita has offset half of the emissions 
reductions achievable through the enhanced energy efficiency and renewable energy adoption [15]. 
Projections also indicate that to 2050, half of the global buildings and urban infrastructure are yet 
to be built [28–30].  
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Additionally, to align with a net-zero scenario, it is essential to retrofit 2.5% of the existing building 
stock annually [31], compared to the current rate of 1% [31]. Moreover, substantial investments in 
upgraded infrastructure are crucial to establish an efficient and low-carbon transport system [32, 
33].  

Besides, considering budgetary limitations related to greenhouse gas (GHG) emissions, embodied 
emissions are particularly relevant as they predominantly occur upfront, and remain “locked in” 
over the lifetime of the built asset [6].  

1.3 Research context and aims 
From the above it is clear that there is an urgent need to reevaluate our approach to building and 
utilizing the built environment. The most effective means of reducing embodied carbon is through 
prevention. This entails exploring alternative strategies to achieve desired functions, such as, where 
possible, maximizing the use of existing assets [28, 34]. By averting new construction, potential 
embodied GHG emissions are eliminated. Therefore, the initial step should involve proactive 
efforts in all planning processes and collaboration among stakeholders to avoid new construction 
whenever feasible. If new construction is unavoidable, prioritizing the reuse of available existing 
assets should be pursued.  

While further work is required regarding planning measures [15, 35], this research focuses on 
scenarios where new construction or refurbishments is deemed necessary. To meet climate targets, 
it is crucial to outline how emission reduction measures can be allocated leading up to mid-century. 
This involves identifying measures applicable in the present and those requiring longer lead times 
for implementation [36]. The emphasis of this thesis is accordingly on the opportunities and 
challenges of achieving net-zero carbon emissions from construction and its supply chains within 
the next two to three decades. 

The research novelty lies in: i) assessing supply chains with active involvement from value chain 
stakeholders; ii) considering the time perspective, technical maturity, and scalability of emissions 
reduction measures; iii) integrating outcomes and empirical data from practical implementations; 
and iv) laying the foundation for actionable roadmaps towards decarbonizing the embodied 
emissions of buildings and transport infrastructure. 

The research included in this thesis introduces an original approach to explore avenues for 
advancing the climate transition in the building and infrastructure sector. It focuses on identifying 
opportunities and barriers for reducing carbon emissions across industry supply chains, spanning 
from raw material inputs to final products and services demanded by end-users [37, 38]. This 
approach is particularly relevant given the construction sector’s intricate and multi-tiered supply 
base. Companies within this sector operate within fragmented supply networks, posing significant 
challenges in adopting a comprehensive lifecycle approach to construction and realizing shared 
goals [39].  

Integrating upstream segments of the construction supply chain, including subcontractors, 
suppliers, and manufacturers, has been identified as crucial for delivering sustainable built 
structures [40].  
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Furthermore, employing a supply chain perspective enables a broader examination of both 
opportunities and barriers, as these often manifest within the interconnections between economic 
sectors and individual stakeholders [41].  

The research has incorporated extensive stakeholder participation from across the value chain [42], 
as illustrated in Figure 3. This inclusive approach aims to co-develop solutions by leveraging the 
diverse, in-depth, and practical expertise of stakeholders.  

It facilitates the collaborative and iterative production of knowledge, roadmaps, and action plans. 
Importantly, these outputs are created with, by, and for those individuals and entities best 
positioned to utilize them effectively [43, 44]. 

 
Figure 3. Main value chain actors involved in the participatory process of the thesis research. 

The primary focus of the research has been collaborative mapping of emissions reduction measures 
and their potential across the construction supply chain. This has involved identifying barriers and 
enablers for implementation, supported by evidence from practical case studies. Additionally, the 
research has assessed how mitigation measures can be allocated, their potential for scaling up, and 
feasible timelines for enhanced implementation over time. 

When the research commenced, existing literature had identified specific hot spots for CO2 
emissions in construction, particularly at the project level [16–18, 45–51]. However, national-level 
estimates remained highly uncertain. Therefore, research included in this thesis prioritized efforts 
to enhance and validate current estimates of the climate impact from building and infrastructure 
construction processes in Sweden. This endeavor involved combining material and energy flow 
analysis with a comprehensive literature review.  

Studies focusing on current and future CO2 emissions reduction options are increasingly prevalent 
in literature, with a growing body of research dedicated to individual sectors. For instance, there 
are studies examining emissions reduction strategies for steel [52–56], cement/concrete [57–59] 
and heavy transport and construction equipment [60–64]. Cross-sectoral analyses, particularly in 
the gray literature, offer syntheses of perspectives from various industries [65–69]. However, 
studies providing a comprehensive view of abatement options along the entire construction supply 
chain are limited [70, 71]. Recent developments include emerging evidence of cross-sectoral 
perspectives that consider measures across the entire supply chain for building construction [8, 72–
74] and along with comprehensive reviews [75, 76]). 
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Nonetheless, there remains a lack of research that conducts detailed reviews across the various 
relevant material and activity categories linked with building and infrastructure construction, while 
also considering the time perspective of when and to what extent different emissions reduction 
measures are expected to be available for large-scale implementation. This is one of the unique 
features of the research included in this thesis, which has evolved to be more inclusive, integrative, 
experience-based, and holistic over the course of the research. 

The initial assessments conducted in this research provide an in-depth analysis of supply-side 
measures related to material production and heavy vehicle technologies [77–79]. These assessments 
are updated continuously and enhanced to align with technical progress in various sectors, such as 
the electrification of heavy vehicles and the use of bio-binders in asphalt.  

Throughout the thesis work, there has been a progression towards integrating more detailed 
analysis of demand-side measures linked to structures and their design. This includes exploring 
various types of circularity and material efficiency measures, such as structural optimization, 
element reuse, and improved site logistics. 

It is acknowledged that technological advancements alone will not suffice to achieve the goals of 
the Paris Agreement [80, 81]. Therefore, interdisciplinary collaboration is essential for the rapid 
and large-scale implementation of holistic emissions reduction pathways [80, 82]. As a result, the 
research has evolved to involve collaborative identification, utilization, and synthesis of practical 
experiences. 

The research is grounded in comprehensive knowledge and empirical data acquired through 
multiple channels. This includes insights from stakeholders across the value chain, gathered via a 
collaborative platform established within the interdisciplinary Mistra Carbon Exit (MCE) research 
program. Additionally, literature reviews encompassing academic and gray literature have been 
conducted. Practical experiences have been directly obtained from stakeholders or through 
involvement in industry research and innovation projects and platforms. By synthesizing 
information from these diverse sources, the research endeavors to compile a holistic and 
contemporary understanding CO2 emissions reduction measures relevant to the construction and 
renewal of building and transport infrastructure. 

Furthermore, despite the demonstrated potential to halve CO2 emissions in both buildings and 
transport infrastructure construction [83–89], current best-available technologies are often 
underutilized [90–93]. Barriers at the project level, such as technical maturity and financial 
constraints, impede successful implementation [94–96]. Collaborative efforts are essential to 
overcome these obstacles.  

As a result, the current focus of the research is moving even closer to implementation. This involves 
collaborating with stakeholders to integrate the knowledge developed throughout the thesis 
research into existing strategies, processes, tools, and templates. The aim is to expedite the 
implementation of identified reduction measures and accelerate progress towards emission 
reduction goals. 
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The primary focus of this work is on the Swedish context, which is considered apt given the 
country’s evolving emphasis from operational to embodied emissions reductions. Moreover, 
Sweden has set ambitious climate targets, aiming for net-zero emissions by 2045 [97], alongside 
large-scale renewal initiatives in building and transport infrastructure [98, 99], and a collaborative 
approach to the climate transition [100]. As such, results from investigating Swedish conditions 
may provide valuable insights for other countries on how to tackle embodied emissions.  

The analyses of abatement options, timelines and pathways in this thesis are expected to hold 
general relevance and applicability, particularly at the European level [28, 72]. Similarly, many 
challenges outlined in this research, essential for achieving a transition to zero-CO2 production, 
and the practices applied in building and infrastructure supply chains, are universal [6, 29, 30]. 

1.4 Outline of the thesis 
This thesis comprises five papers (referred to as Papers I–V) and an introductory essay. The 
introductory essay primarily highlights developments that have transpired throughout the research, 
in addition to those described in the appended papers. These developments encompass both 
research findings and contextual changes. Section 1 provides background information on the work 
and situates the appended papers within a broader setting. Section 2 offers an overview of the 
overall concepts and research methodology applied in the thesis work. To provide a comprehensive 
perspective, Section 3 detail technical and other developments linked to decarbonization across the 
construction value chain. This digest sets the stage for summarizing research results and progress 
in Section 4. Following this, Section 5 details developments related to the research moving towards 
efforts to accelerate implementation. Finally, the thesis will discuss a few central aspects moving 
forward in Section 6, before concluding with ideas for future research in Section 7. 
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2 Material and methods 
The work presented in this thesis has co-developed knowledge with stakeholders via participatory 
integrated assessments. This approach involves systematically involving key stakeholders in 
developing theoretically coherent and practicable decarbonization strategies [101, 102]. 
Quantitative analysis methods, including scenarios and stylized models, are integrated with 
participation via continuous dialogue, meetings and workshops that involve relevant stakeholders 
in the assessment process. The quantitative analysis uses spreadsheet-based models to track 
material flows and CO2 emission in an individual project or in the sector/supply chain. The 
participatory process aids in identifying main abatement options and adjusting decisions and 
assumptions regarding abatement portfolios and timelines to make them as realistic and feasible as 
possible.  

Stakeholders, including industry representatives, experts along the supply chain, material suppliers, 
contractors, consultants, clients, and governmental agencies, provide input and feedback 
throughout the research. The overall method and workflow of the thesis work are depicted in 
Figure 4. 

 
Figure 4. Outline of the overall methodological approach and research workflow. In the study approach, 
the superscript letters indicate attributes or activities only performed in some of the research studies, 
where the specific studies are indicated by its number (refer to the List of publications or Figure 5).  
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In the preparation stage (Stage A), the research team defined the initial scope of the assessment 
and engaged stakeholders. Framing with stakeholders (Stage B) implied a high-level classification 
of the challenges and potential solutions associated with the low-carbon transition in the 
construction sector, together with identification of suitable benchmark cases. The outcomes from 
the two first stages are detailed in a conference paper presented by Rootzén and Johnsson in 2018 
[103]. The studies in stages C-E, has so far resulted in the five appended papers (see Figure 5).  

This thesis refers to both supply chains and value chains. In this research context, the supply chain 
is the network of entities that source raw materials and transform them into finished assets. The 
value chain refers to creating or adding value to the end product at every step, from conception 
through to delivery. As such, it also includes for example planning entities, financial providers, 
third-party institutions, and governmental authorities.  

 
Figure 5. Illustration of the study objects for the five studies included in the thesis. 

The five papers all apply the same basic methodological approach, which integrates analyses of 
material and emissions flows with the identification and analysis of potential CO2 abatement 
options relevant to the respective construction supply chains. The latter are informed by inputs 
from supply chain stakeholders and comprehensive literature reviews, encompassing estimates of 
abatement potential and expected implementation timelines.  

The literature reviews draw from a wide range of academic and gray literature, including industry 
decarbonization roadmaps, company plans, and findings from case studies and industry research 
and development projects (see Figure 6). This includes evidence from practical experiences 
obtained directly from stakeholders or via industry research and innovation projects and platforms. 

 

Figure 6. Examples of the types of academic and gray literature included in the literature reviews 
conducted as part of the research. 
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The primary research question addressed in these papers concerns the potential reduction in CO2 
emissions across different timeframes through the combination of identified abatement 
technologies along the supply chain. This question is answered by evaluating potential 
implementation timelines associated with the technical maturity of the abatement technologies and 
the expected extent of their implementation.  

The case studies conducted in stage C, as illustrated in Figure 4, analyze road construction and 
multi-family buildings, as reported in Papers I and III, respectively. The benchmark material and 
emissions accounts utilized in these analyses have a comprehensive scope. For example, the 
building case study encompasses all materials and components down to the “bolts and nuts” level, 
while all on-site energy usage is included and based on actual data from construction companies, 
except for groundwork or soil stabilization. 

The outcomes from the case studies serve as inputs to the development of decarbonization 
roadmaps (Stage D), which are produced for the Swedish cement and steel industries, in addition 
to the roadmap for the supply chains of buildings and infrastructure, as reported in Paper II.  

These papers also provide scenario analyses exploring parameters that influence strategic 
considerations, including structural optimization via supply chain collaboration (Paper III), access 
to biofuels (Paper I) and enactment of transformative measures, such as electrification and carbon 
capture (Paper I and II). Key barriers and enables towards the implementation of the identified 
abetment measures are defined and detailed in all three papers. Additionally, associated technical 
reports [77–79] to the national roadmap in Paper II contain more detailed assessments of pathway 
choices, along with barriers, risks, and enablers. In the context of this thesis research, a scenario 
involves exploring abatement portfolios by testing certain parameters, while a pathway refers to an 
abatement portfolio comprised of emission reduction measures assessed as the most feasible for 
implementation in specific industry sectors. 

The first two papers provide detailed analysis predominantly on supply-side abatement options 
that involve changes in energy supply, production technologies and deployment of carbon dioxide-
removal technologies while maintaining end-user demand unchanged. The studies in Paper III-V 
build further on these analyses, complementing this approach with analyses of demand-side 
solutions linked to the design and structure of the built assets.  

Demand-side solutions are generally categorized into three groups: Avoid, Shift, and Improve 
[104]. The distinction between these categories varies depending on whether the perspective is on 
products and the material industry or on built assets. The perspective of built assets is primarily 
relevant for the construction supply chain, as exemplified in Figure 7. 
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Figure 7. Simple analytical framework for demand-side carbon mitigation options with examples for 
built assets based on Creutzig et al [104] and results from literature reviews performed within this thesis 
research. 

‘Avoid’ denote mitigation options that reduce unnecessary consumption. In the context of built 
assets, ‘avoid’ measures implies sufficiency and planning measures. The planning measures of the 
‘avoid’ categories are explored briefly in Paper V, while the primary focus of the research included 
in this thesis has been in the ‘Shift’ and ‘Improve’ categories. The ‘Shift’ category involves 
transitioning to available competitive low-carbon technologies and service-provisioning systems, 
incorporating optimization and material efficiency measures [15, 35]. On the other hand, ‘Improve’ 
refers to enhancing efficiency in existing technologies, where adoption by end users is crucial. The 
research in Papers III-V delves into the ‘Shift’ and ‘Improve’ measures in detail.  

Simplified schematics of the calculations performed in the material and emissions flow analysis, 
and the buildup of mitigation measure portfolios applied in the research, are illustrated in illustrated 
in Figure 8 and Figure 9, respectively. Developments in the background systems can impact 
emission factors, particularly when electricity or district heating is utilized, whether in material 
production, transportation, or the construction process. When feasible, the emissions intensity 
factors are divided into components, to enable assessments of different mitigation measures. 

  
Figure 8. Simplified schematic of the calculations of embodied CO2 emissions. The parameters include 
material use in unit of material for all the materials included in each specific study (M), energy use for 
transport and the construction process per energy carrier (E), material waste at the construction site (W), 
and the emission factor per unit for each material and energy carrier included in the analysis (EF). 
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Figure 9. Simplified schematic of impacts on the calculation parameters in Figure 8 from the 
compositions of different mitigation measure portfolios along the supply chain. The orange circles 
denote parameters impacted by the specific mitigation measures.  
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The demand-side measures explored in Papers II-IV are material efficiency and optimization 
measures that restrict the material and energy use along the construction supply chains. 

A combination of scenarios developed in the national roadmap has been chosen for further 
pathway development, deemed the most feasible future technical orientations for the individual 
sectors assessed. This involves a focus on electrification for most material production and heavy 
vehicles, complemented by an emphasis on biofuel substitution with carbon capture for cement 
clinker production.  

The resulting pathways for the construction and renewal of buildings and transport infrastructure, 
respectively, have been continually refined based on new insights into technical advancements, 
roadmaps, strategies, plans, successful applications, and achieved emissions reductions. 

The refinement and update process has revealed that certain categories, such as asphalt production 
and heavy transports, have experienced faster development and/or implementation of emissions 
reduction measures than anticipated in 2020, while forecasts for other categories remain 
unchanged. Additionally, the pathways have been augmented with more detailed analysis for 
additional material and activity categories, as well as with the inclusion of new abatement measures. 

The pathway for buildings is a work in progress, with some of the results presented in this thesis. 
For transport infrastructure, knowledge gained from practical experiences by actors within and 
beyond the MCE program has been synthesized with a comprehensive literature review in Papers 
IV and V. These papers focus on actionable project-specific carbon reduction measures, i.e., 
measures and requirements within a project’s domain of influence. The emphasis on practical 
implementation and applied knowledge aims to bridge the gap between achievable emissions 
reductions and current implementation. The study employed an integrative review method [105, 
106] to identify carbon emissions reduction measures applicable within the project’s influence, with 
potential to be upscaled and strengthened over time towards zero or close-to-zero CO2 emissions. 

2.1 Scope and limitations of the research 
The primary focus of this work is on GHG emissions from materials production, transport, and 
the construction process up to the completion of a new construction or major refurbishment [7], 
encompassing lifecycle stages A1–A5 and B5 in the European lifecycle assessment standard, EN 
15978:2011 [28], as illustrated in Figure 9. [107] 
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Figure 10. Depiction of the lifecycle stages of built assets according to the European lifecycle standard. 
The lifecycle stages in black are within the scope of the research, i.e. A1-A5 plus B5, where the latter is 
included only in the national assessments. Adapted from Boverket Climate Declaration Handbook 
[107]. 

Although embodied emissions occur during other life cycle stages, a recent European review study 
found that approximately two-thirds of the embodied emissions of buildings are emitted upfront 
during lifecycle stages A1-A5 [108]. This emphasizes the need to prioritize reduction efforts on 
upfront carbon emissions rather than future end-of-life scenarios. 

The national assessments in Papers II, IV, and V include refurbishment components, while the 
case studies on building and road infrastructure (Papers I and III) primarily address new 
construction. In literature, terms such as renewal, renovation, or maintenance are sometimes used 
interchangeably with refurbishment. For the purposes of this research, refurbishment or renewal 
refers to significant technical or functional alterations to a built asset beyond routine maintenance 
or predictable repairs. These modifications may also fall within modules A1 to A5 if they are not 
initially considered in a life-cycle assessment (LCA).  

Biogenic carbon is evaluated as carbon neutral in this research, aligning with common practice in 
LCAs. However, this approach tends to underestimate the benefits of storing carbon in long-lived 
products while overestimating the benefits of short-lived products, such as biofuels incinerated 
shortly after harvest [109–112]. To qualify as a temporary carbon sink, a stable carbon pool in the 
forests from which the products are harvested is necessary, which has not been the case in Swedish 
forests over the last 10 years [113]. The assumption of carbon sequestration in the forest occurring 
before or after material manufacturing also impacts the results [114]. Therefore, temporary carbon 
sequestration has not been included in this thesis work. 

The assessment of mitigation measures has been broadened throughout the research to cover a 
wider range of materials and activities. The most updated national pathways developed within this 
thesis work, includes assessment for the components depicted in Figure 15. 
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Figure 11. Components of the annual embodied greenhouse gas emissions associated with the 
construction and renewal of buildings and transport infrastructure in Sweden. The size of the respective 
pie charts reflects the relative magnitude of emissions. Adapted and updated from Paper II. 

For buildings, the primary focus lies on the foundation, building structure, and building envelope, 
encompassing materials like concrete, metals, insulation, gypsum, and glass. Analysis of installations 
and piping is limited to main incorporated materials such as steel and plastic, while interior fittings 
and furnishings are excluded from the mitigation analysis. 

In the case of transport infrastructure, attention is directed towards site preparation, substructures, 
bridges, tunnel structures, and superstructures like asphalt paving and railway tracks. This category 
also encompasses urban development, associated site preparation, and local transport 
infrastructure construction and renewal. Groundwork for buildings falls within a gray area between 
buildings and civil engineering, with some of its impacts potentially allocated to the construction 
process of transport infrastructure. 

The national assessment outlined in Paper II utilizes 2015 as its reference year, covering material 
and energy usage along with emission factors applied to materials and energy carriers. It assumes a 
consistent level of construction and renovation activity through 2045. However, this assumption 
carries uncertainty, as various sources present divergent forecasts regarding the development of 
demand for building and transport infrastructure construction and renewal [115–119]. Economic 
progress stands as a pivotal factor influencing demand. Consequently, the national assessment 
detailed in Paper II is supplemented with a sensitivity analysis, exploring the potential impact of 
reductions or increases in construction demand. 

There are evidently numerous carbon emissions mitigation measures available or under 
development linked to the construction supply chain. This thesis research does not intend, or see 
the feasibility, to be all-encompassing regarding both current and possible future mitigation 
measures.  
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Based on comprehensive literature reviews and stakeholder input, the aim is to further explore 
emissions reduction measures identified as having significant potential for upscaling and 
widespread use, with the potential to be strengthened over time, thus contributing towards zero or 
close-to-zero GHG emissions. The assessment encompasses various material substitutions, and 
where such substitutions are made for structural materials, it also implies additional use of 
plasterboards for fireproofing. In the context of renovation, the research assesses material 
production and substitutions, but does not encompass measures such as alternative renovation 
strategies.  

As mentioned previously, the assessment does not encompass sufficiency measures and only briefly 
touches upon planning measures, such as those that limit the need for construction by exploring 
alternatives or maximizing the use of existing assets. These aspects are proposed to be explored in 
future research. 

The assessment uses a transition of the energy system as a background system. The research thus 
considers decreasing emission factors for electricity and district heating over time. Future emission 
factors are based on data and analysis from Morfeldt et al [81], the Swedish Energy Agency [120] 
and estimates made by the European Energy Agency [121] (before the revised EU-ETS target of 
net-zero by 2040 [122]), suggesting that GHG emissions related to electricity generation in the EU 
will reach zero by 2050. 
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3 Developments across the construction value chain 
Since the inception of this thesis research in 2018, the construction sector has made concerted 
efforts to address embodied carbon emissions within the supply chain. The ongoing participatory 
process throughout the research has gathered extensive insights into developments taking place 
across the construction value chain since the beginning of the MCE research program.  These 
developments span both the buildings and transport infrastructure value chains, with some 
developments specific to each respective chain. Figure 11 aims to encapsulate the insights garnered 
throughout the thesis research concerning the construction value chains in general. Additionally, 
Figure 12 gives a snapshot of anticipated developments. Alongside the insights acquired for the 
individual building and transport construction value chains, as delineated in Figure 13 and Figure 
14, respectively, these summaries provide a contextual backdrop for the subsequent section on 
research progress.  

 
Figure 12. Sector and context developments linked to the Swedish construction value chain. 
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• Identified hotspots: Concrete, steel, and diesel use.
•Overspecification of materials and limited alternative binder usage.
•Electrification of heavy vehicles perceived as unfeasible
•Full scale fossil-free steel expected by 2035-2040.
•Pilot projects testing innovative solutions.
•Goal setting and analysis of barriers.
•Climate mitigation efforts a priority mainly for environmental manages/specialists.
•Collaboration in the construction supply chain to create a national roadmap.
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2018

•Knowledge of key abatement measures and the need for early integration
•Sector roadmap with commitments for supply chain actors.
•Local and regional initiatives driving developments.
•Fast development for electrification of heavy vehicles.
•Large-scale tests of electrified construction equipment.
•Commercial fossil-free steel production planned for 2026.
•First cement clinker manufacturing plant with carbon capture online in Norway. 
•Mainstream adoption of concrete with at least 10-20% alternative binders.
•Products with high recycling rates and initiatives promoting reuse.
•Projects demonstrating 50% reduction → first mover client requirements.
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•Overall sector emissions remain unchanged, but decreasing emissions intensity 
compared to production value.

•Lack of detailed data for monitoring sector development.
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Initially, the construction industry pinpointed hotspots like concrete, steel, and diesel use for 
carbon emissions. Challenges include overspecification of materials and limited alternative binders 
in concrete. Efforts focused on pilot projects and supply chain collaboration. By 2024, significant 
progress is made, with key abatement measures identified and an upgraded roadmap launched. 
Local initiatives drive progress, emphasizing early integration of climate considerations. 
Electrification of heavy vehicles advances rapidly, especially for trucks. Concrete with alternative 
binders gains mainstream adoption, alongside large-scale reuse projects and high-recycling-rate 
products. Challenges remain with climate goals not integrated into wider business arrangements, 
limited scaling of solutions, and a need for capacity building on carbon reduction across the value 
chain. 

 
Figure 13. Anticipated developments linked to the construction supply chain and its context over the 
next few years.  

Looking ahead, the focus shifts to upscaling, resource efficiency, sufficiency, and planning 
measures. Standardized digital information chains are central, fostering a combination of 
collaboration, competitiveness, and emissions reduction. Long-term procurement roadmaps, zero-
emission vehicle requirement, alongside business models and infrastructure for large-scale reuse 
are on the rise. Tightening EU regulations and municipalities and firms with net-zero by 2030 
targets drive developments. 

As indicated in Figure 13, a lack of open data and harmonized calculation methods hindered 
progress early on related to building construction. Wood frames emerged as a primary mitigation 
measure. At present, mandatory climate declarations have been implemented for new 
constructions, though quality challenges exist. Optimization leads to cost-neutral projects with up 
to 50% reduction, with increased focus on renovations and emergence of wood-concrete hybrid 
frames. National limit values for new construction could be introduced by 2025, albeit initially at a 
low level, alongside efforts for voluntary higher standards. Accelerated renovation activities are 
prompting calls for associated carbon reduction. 
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Figure 14. Sector and context developments linked to the building construction value chain. 

Regarding transport infrastructure, as described in Figure 14, climate reduction requirements were 
integrated early on into large state-owned projects, along with efforts to transition asphalt 
production to biofuels. Since 2018, the emphasis on circularity around excavation masses has 
grown, but regulatory obstacles persist. Carbon emission requirements for asphalt and vehicle fuels 
are set with a downward trajectory toward 2030. Going forward, sharper measures will be needed 
to meet increasing carbon reduction requirements. 

  
Figure 15. Sector and context developments linked to the transport infrastructure construction value 
chain. 

B
ui

ld
in

gs
• Limited knowledge of detailed embodied emission aspects, e.g. renovation and  installations.
• Absence of harmonized calculation methods and open databases.
• Inadequate incentives to reduce embodied carbon.
• Wood frames primary mitigation measure.

2018

• National climate database, EPDs and harmonized calculation method, with local variations.
• Mandatory climate declarations for new construction - but challenges with low-quality.
• Array of guidelines and support for calculations and carbon requirements.
• Cost-neutral projects with up to 50% reduction through optimization.
• More data on renovations.
• Mainstream adoption of brick reuse and Large-scale tests of concrete and steel element reuse.
• Emergence of wood-concrete hybrid frames.

2024

• Potential introduction of national limit values in 2025, albeit at a low requirement level.
• Progress towards voluntary, higher amibition limit values.
• Growing emphasis on embodied emissions in groundwork.
• Accelerated rate of renovation activities and emerging requirements for reducing embodied carbon
• Sustainable forestry requirements.
• Increased focus on planning processes to enable climate-optimized construction.

Next 3-5 years

Tr
an

sp
or

t i
nf

ra
st

ru
ct

ur
e

• Harmonized calculation method with open database and tool
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• Increased emphasis on circularity and mass handling - but obstacles to circular mass management 
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• Shift from climate calculations and goals to measures and goal conflicts.
• Rising reduction requirements in transport administration projects necessitate sharper measures.
• Specific asphalt and vehicle fuel requirements.
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4 Developments over the course of the research 
4.1 Identification and potential of assessed emissions reduction measures 
A brief overview of the types of CO2 emissions abatement measures related to building and 
infrastructure construction explored throughout the thesis research is offered in Figure 8 in Section 
2. When considering new construction or renovation, pivotal mitigation options tied to the product 
stage encompass material efficiency, circularity measures, and material substitution towards 
alternatives with reduced embodied carbon levels (for reviews, see e.g. [7, 8, 17, 73, 123–126]).  
Moreover, strategies like shifting fuels and enhancing energy efficiency within material production 
facilities represent significant avenues for action [127–131].  

These approaches are further complemented by direct or indirect electrification initiatives 
(including hydrogen/power-to-X) and/or the integration of carbon capture technologies within 
material production facilities [128, 130–133].  Likewise, electrification or the adoption of fuel cells 
in heavy-duty trucks and construction equipment offer viable methods for substantially reducing 
emissions [132, 134–137].  

Efforts in material efficiency may alleviate transport requirements, consequently lowering 
emissions linked with transportation systems. Additional contemporary measures for material 
transportation abatement comprise optimizing logistics and transport distances, substituting fuels, 
or altering transportation modes [134, 138, 139]. 

In construction processes, alongside electrification, primary mitigation measures involve 
heightened levels of prefabrication coupled with improving construction efficiency through 
optimizing mass and material handling requirements, site layout, vehicle utilization, and selection 
of construction equipment tailored the intended use [17, 123, 137, 140, 141]. Fuel substitution and 
hybridization emerge as crucial technical abatement measures for the heavier construction 
machinery types [64, 142, 143]. 

To ensure the validity of the measures and timelines employed in the thesis research, they are cross-
referenced with pertinent climate neutrality or net-zero roadmaps and pathways outlined by 
authoritative sources such as the European Commission [144], the International Energy Agency 
[145], other research institutes [8, 72, 73, 128, 130, 131, 133, 134, 146], the Swedish Energy Agency 
[116], and industry roadmaps developed as part of the Fossil Free Sweden initiative on fossil-free 
competitiveness [147]. There are detailed descriptions of the mitigation measures in the earlier 
Licentiate thesis [148], combined with a deep dive for project-level measures for transport 
infrastructure in Paper IV. 

4.2 Towards a more holistic approach 
The research conducted in the two case studies, focusing on the construction of a road segment 
with associated bridge structures and the construction of a multi-family building (featuring various 
building system options [149]), revealed comparable reduction potentials in their respective 
scenarios when the most comprehensive mitigation portfolios were implemented, as illustrated in 
Figure 15 (a and b).  
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Significant differences in the mitigation measures contributing to reduction potentials exist 
between the two case studies, as illustrated in Figure 15 (c and d). Although this contrast stems 
partly from the distinct nature of the projects, it is also influenced by the specific assessments’ 
emphasis on certain types of measures. In the road construction case, the focus is on supply-side 
measures, whereas the building case also includes demand-side measures (‘shift’ and ‘improve’ as 
per Figure 7). 

In the road construction scenario, over half of the current emissions reduction potential comes 
from replacing diesel with transport biofuel. Conversely, in the building case, approximately 60% 
of the reduction stems from material efficiency measures to streamline construction, optimized 
concrete recipes, and cement clinker substitution in concrete. 

  

  
Figure 16. Overall embodied greenhouse gas emissions reduction potentials for a road construction case 
(a) and a concrete-frame multi-family building system (b), respectively, with best-available technologies 
and practices (BAT 2020) and over time until 2045 with the types of mitigation measures contributing 
to the GHG emissions reductions over time (c and d). The concrete frame building is based on a common 
building system with in-situ cast concrete and lightweight wood/steel outer walls. The building 
emissions are reported per square meter gross floor area (GFA). 
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Achieving the reduction in the road infrastructure case hinges on the availability of sustainably 
produced second-generation drop-in biofuels, such as hydrogenated vegetable oil (HVO). While 
biofuels are crucial for transitioning away from fossil fuels, especially in the short term, there are 
constraints on the supply of truly sustainable biomass [132, 150].  

Therefore, while transport biofuels play a significant role in short-term climate mitigation, greater 
efforts are required to expedite the adoption of alternative measures. These include optimizing 
materials, design, mass handling, and transport systems, increasing recycling of steel, asphalt, and 
aggregates, and advancing the use of alternative binders in concrete. 

The evolving nature of the research toward a more holistic approach, coupled with technical 
advancements over the last five years, is evident when applying the mitigation measures, reduction 
potentials, and timelines developed in Paper IV and V to the initial road construction case. The 
assessment format is not completely comparable with the transport infrastructure synthesis and 
roadmap studies of Paper IV and V being national assessments applying estimated national average 
reduction potentials. Still, Figure 16 showcases the potential for resource efficiency and circularity 
type measures to complement measures in material production and vehicle technologies. 

 
Figure 17. Updated CO2 emissions reduction potentials and measure types for the road construction 
case compared to the original assessment depicted in Figure 15. This updated assessment applies the 
mitigation portfolio developed in the transport infrastructure synthesis and roadmap studies of Paper 
IV and V. Note the different time steps on the x axis compared to Figure 15 c. 

In the updated assessment shown in Figure 16, the emission reductions from biofuels for 2030 
have decreased to approximately 15%, compared to 30% in the original assessment. Conversely, 
emissions reductions from material and resource efficiency measures, (corresponding to material 
efficiency and energy efficiency/ optimization in Figure 15 c), have risen from 13% to 23%. 
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To fully harness the potential of resource efficiency measures, extensive collaboration across the 
entire construction value chain is essential. Taking concrete as an example, achieving the potential 
benefits of cement clinker substitution, optimized concrete recipes, and structural element 
slimming requires close collaboration among all relevant stakeholders. This includes cement 
producers, concrete producers, structural engineers, procurers, clients, and architects, beginning 
from the design and early procurement phases and maintaining continuous communication 
throughout planning and construction [151].  

This collaborative approach also necessitates coordination between demand-side actors, such as 
investors, developers, and designers, and those on the supply side, including contractors and 
materials manufacturers. 

While material efficiency measures can lead to reduced material costs, they also entail intangible 
costs associated with the adapted working methods and project and production planning required 
for its implementation [152, 153]. To facilitate the necessitated collaborations, incentives must be 
revamped, including adjustments to procurement requirements and contract forms that enable 
balanced risk sharing and involve contractors early in the planning and design stages [154, 155]. 
This transformation should be accompanied by robust policy and regulatory support initiatives, 
improved access to finance, and measures that promote risk distribution along the value chains [28, 
128, 156]. 

The findings from the building case study also contribute valuable insights into the ongoing debate 
between wood and concrete. Transitioning to bio-based construction materials can significantly 
reduce embodied CO2 emissions, as evidenced by various case studies in the literature (see, for 
example [17, 124, 157, 158]).  

However, many municipalities adopt a narrow approach by mandating the use of wood frames to 
lower embodied carbon in building construction, instead of assessing environmental performance 
based on calculated embodied carbon [159]. This restrictive approach may hinder the substantial 
scaling up of a diverse portfolio of mitigation options necessary to achieve climate targets [160]. 

Looking at Figure 17, two lines are drawn across the graph to illustrate the comparison between a 
wood- and concrete-building system for the same building. The first line (1) indicates that the wood 
frame building system has approximately 25% lower embodied carbon emissions in the reference 
setup. However, with mitigation measures applied for both building systems (denoted BAT 2020), 
the second line (2) shows that the embodied emissions become comparable.  

Moreover, the concrete frame with mitigation measures applied exhibits 30% lower embodied 
carbon emissions than the reference wood-framed building system. This suggests that there are 
optimization opportunities available to reduce embodied impacts regardless of the building system 
or frame type, emphasizing that these factors should not be the sole determinants in 
decarbonization efforts. 
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Figure 18. Overall embodied GHG emissions reduction potentials for the same multi-family building 
with a concrete-frame compared to a wood frame, with best-available technologies and practices (BAT 
2020) and over time until 2045. The emissions are reported per square meter gross floor area (GFA). 

A more pertinent focus lies in selecting the right material for the right purpose. This entails 
optimizing resource efficiency by matching specific material properties with the desired or 
necessary function of a building product, system, or entire building. 

Traditionally, building systems and designs have been developed independently within each 
material industry, often relying on single materials [161]. However, recent trends indicate a shift in 
focus from the material itself to its function. There is potential in solutions that combine materials, 
such as timber, concrete, and steel for structural frames. Combining timber with concrete, for 
instance, can achieve structural performance, high fire resistance, acoustic behavior, thermal inertia, 
and durability, while steel adds ductility to the structure [162]. Moreover, hybrid and composite 
elements can be designed to fulfill multiple functions within the same product. 

By incorporating conscious design principles that prioritize circularity and the ability to disassemble 
and reuse, combinations of materials and their properties can lead to reduced material volumes. 
This approach has the potential to simultaneously decrease emissions and costs.  
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4.3 Advancing emissions reduction potentials 
As mentioned earlier, a consolidated pathway stemming from the national assessment in Paper II 
has undergone further refinement and regular updates, integrating new technical insights, strategies, 
successful applications, and achieved emissions reductions. This merged pathway prioritizes 
electrification alongside biofuel adoption and carbon capture in cement clinker production. 

The update process has revealed accelerated emissions reduction measures, particularly notable in 
biofuel conversion for asphalt production and electrification of heavy vehicles, both exceeding 
expectations for 2020.  

Furthermore, the pathways for buildings and transport infrastructure have been enriched through 
detailed analysis and the introduction of new abatement measures. These include a blend of 
material efficiency and optimization measures, material replacements, and strategies for recycling 
and reusing materials. For transport infrastructure, the refined pathway is detailed and reported in 
Papers IV and V, while for buildings, it is work in progress developed as decision support for 
progressive municipalities and building companies. The outcome of these updates and 
enhancements is illustrated in Figure 18. 

  
Figure 19. Comparison of greenhouse gas emissions reduction potentials related to Swedish national 
transport infrastructure and building construction and renovation between the original publication 
assessment of 2020 (Paper II) and the updated and enhanced assessment of 2024 (Paper IV- V, and 
reported in this introductory essay, respectively). 

The reduction potentials have evolved, particularly over the short to medium term up to 2035. 
Predominant shifts stem from the electrification of heavy vehicles, accelerated advancements in 
material manufacturing plants, and increased focus on and potential for reuse and improved 
recycling. Figure 19 illustrates the contribution of the main measure types to these reduction 
potentials. This highlights the potential impact of resource efficiency and circularity measures, 
which could contribute to a 25%-30% reduction in emissions by 2030 and a 40%-45% reduction 
by 2045. 
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Figure 20. Comparison of the main types of greenhouse gas emissions reduction measures contributing 
to the mitigation of Swedish national transport infrastructure and building construction and renovation, 
respectively, in the updated and enhanced assessment of 2024. 

In comparison, a recent European assessment of “circular economy actions” in the building sector, 
which included not only resource efficiency and circularity measures but also optimizing space use 
and prioritizing renovation over new construction, demonstrated a potential reduction of around 
60% between 2015 and 2050 [72]. Moreover, when considering material substitution from concrete 
to timber in structures (included as a bio-based measure in Figure 19), the potential increased to 
65%. 

Details on the enhanced transport infrastructure assessment are provided in Paper IV and V. The 
updated building assessment is ongoing and will be substantiated by empirical data from practical 
implementation as part of future research. Still, Table 1 presents the current details of the included 
emissions reduction measures in the assessment up to 2030, in comparison to the baseline and the 
original analysis. Additionally, Figure 20 illustrates the components of the baseline building 
emissions and how these components evolve over time. 

 
Figure 21. Components of the embodied greenhouse gas emissions from the Swedish building sector 
over time to 2045 in the updated pathway assessment of 2024 (developed for this introductory essay). 
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5 Current work to accelerate implementation 
Throughout my thesis work, I have actively participated in research utilization efforts. These 
endeavors have involved providing decision support to various stakeholders. Table 2 provides an 
overview of continuous research utilization efforts effected during this thesis work. 

Table 2. Overview of the research utilization efforts conducted during the thesis research, along with 
selected outcomes. 

Research utilization efforts Results 
Assisting the Swedish Transport 
Administration (STA) in defining achievable 
climate reduction requirements toward carbon 
neutrality over time. 

Augmented carbon emissions reduction goals 
incorporated in the STA procurement 
requirement framework [163]. 

Collaborating with a government commission 
to expedite the implementation of limit values 
for the climate impact of buildings. 

Analysis included in the regulation proposed 
for introduction in 20205, out on referral as 
per May 2024 [164]. 

Supporting Gothenburg City and Älvstranden 
Development in determining feasible 
reduction requirements for building project to 
2030. 

Not yet finalized and published.  

Contributing to the enhancement of 
roadmaps for the concrete and aggregate 
industries, and the building and construction 
sector as part of the Swedish government's 
Fossil-free Sweden initiative 

Upgraded roadmaps launched for the 
concrete industries [165], and the building and 
construction sector [166]. The latter with clear 
commitment for each link in the construction 
supply chain. Upgrading process ongoing for 
the aggregates industry as per May 2024. 

Engaging with numerous companies across 
the construction value chain, including 
material producers, contractors, consultants, 
property developers, property owners, and 
financial institutions. 

In addition to dedicated dialogue, workshops 
etc., engagements such as an external 
representative in a climate strategic council, a 
knowledge group for climate leadership [167] 
and in various national and international 
outreach forums [168, 169], including a 
podcast [170].  

Participating in various industry research and 
development projects. 

Reference group representative in, and 
analysis provided to, various projects, e.g. 
[171, 172]. 

 

Building on the research conducted in Paper IV-V, I am currently collaborating with leading 
technical consultants to leverage the detailed pathways developed in this thesis research to support 
the construction industry's climate transition. 

Feedback from stakeholders in the value chain highlights the pathway’s value in providing insights 
derived from roadmaps, industrial plans, pilot projects, and industry research and development 
results. The knowledge gained may serve as a foundational resource for projects of all scales, fosters 
dialogue in collaborative efforts, and acts as a checklist throughout project phases. Additionally, it 
can act as a benchmark for companies, prompting consideration of costs and cost-effectiveness. 
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To actualize these insights, the ongoing collaboration aims to integrate pathway information into 
existing tools used in daily construction project work, such as technical handbooks and reference 
materials. A schematic of the process for the ongoing collaboration is provided in Figure 21. Case 
studies in three municipalities will test the hypothesis that integrating climate change scenarios into 
existing tools and processes accelerates the transition to a climate-neutral construction industry. 
Additionally, the project involves exploring industry-wide tools to understand their purpose, 
content, update mechanisms, and how the knowledge developed can be integrated into these tools. 

 
Figure 22. Schematic representation of the current collaboration project aiming to accelerate 
implementation based on the pathway towards decarbonization developed as part of this thesis 
research, here denoted MCE Pathway.  

The initial project workshops and mapping have led to the identification of three key preconditions 
The optimal conditions for accelerated implementation seem to be where organization, knowledge 
and tools are available and supportive, as per Figure 22. Upon completion, the project aims to be 
able to address the following key questions: 

• Identifying the most critical tools and processes for different municipalities. 
• Understanding how municipal organization influences the usage of tools and governance 

in construction projects. 
• Exploring opportunities to integrate climate change scenario information into relevant 

tools and processes. 
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Figure 23. Illustration of the identified sweet spot between organization, tools and knowledge 
showcasing the enablers and relevant factors identified to date. 

Overall, the project aims to drive tangible progress towards a climate-neutral construction industry 
by integrating climate change scenarios into industry practices and tools. Finally, an example 
illustrating how pathway information has been adapted into a more easily digestible format is 
displayed in Figure 23. 

 
Figure 24. Example of target group adapted presentation of pathway details on reduction measures with 
estimated implementation and reduction potential in 2025 compared to the embodied emissions of an 
average infrastructure project in 2015. 
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6 Discussion 
The research presented in this thesis focuses on reducing CO2 emissions in Sweden’s construction 
sector, aiming to align with the country’s commitment to achieving net-zero greenhouse gas 
emissions by 2045. By combining top-down and bottom-up assessments and adopting a 
participatory approach, the research presents a holistic and comprehensive assessment of emission 
reduction potential in construction supply chains. The studies assess various strategies for reducing 
emissions across the construction supply chain, including material efficiency, circularity measures, 
and the adoption of electrified vehicles and industrial processes.  

The results indicate that significant reductions are feasible with current technologies, reaching 
around 70% reduction by 2030 and close to zero emissions by 2045 if all stakeholders collaborate 
effectively. Overall, the research provides valuable insights for stakeholders to accelerate the 
climate transition in infrastructure construction, emphasizing collective action and holistic 
approaches to carbon reduction.  

Over the course of the research, the construction industry and its surrounding conditions have 
evolved. While this work reveals favorable conditions for transition, it also underscores obstacles 
and enablers. Some obstacles have been addressed, while others persist, or new ones emerge. The 
same applies to enablers. In this concluding discussion, I will briefly outline a few key challenges 
and opportunities anticipated in the coming years for buildings and transport infrastructure 
construction supply chains. 

The impact of EU Climate Regulations on construction supply chains 

In recent years, the EU has significantly strengthened its climate regulations in response to the 
growing urgency of addressing climate change [173]. Related to the construction industry, the EU 
has revised or introduced regulations and initiatives that will address emissions throughout the 
supply chain [174], as illustrated in Figure 24.  

The phase-out of free allowances for manufacturing industries under the original emission trading 
system (EU-ETS) from 2026 to 2035 is expected to enhance cost efficiency in investing in 
emissions reduction measures. Additionally, stringent new emissions standards for heavy vehicles 
will drive progress in freight transport, while the new EU ETS2 will extend coverage to 
construction equipment. 

In terms of project design, the Ecodesign for Sustainable Products Regulation (ESPR) establishes 
a framework for setting ecodesign requirements, alongside requirements for digital product 
passports providing information about products’ environmental performance. Specifically for 
buildings, the recast Energy Performance for Buildings Directive mandates Member States to 
introduce limit values on whole-life cycle carbon from 2030, with a progressive downward trend. 
National targets will also be required for the circular use of materials. 

As a result, the implementation of more stringent and comprehensive climate regulations by the 
EU is anticipated to catalyze significant changes within the construction value chain. 
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Figure 25. Interpretation of the central EU regulations impacting the emissions linked to the 
construction and renovation of buildings and transports infrastructure along with the parts of the 
supply chain most impacted by the respective regulation.  

Carbon budgets 

While the research included in this thesis begins with the CO2 emissions reduction potential across 
the construction supply, identified through measures, technologies, commercialization, and scale-
up, several studies take a different approach. These studies focus primarily on the emission space 
available to the construction sector from a carbon budget perspective. Predominantly 
concentrating on new housing construction and utilizing various methodologies, these studies find 
that reductions of 56% to 80% from 2020 to 2030 are required [175–177]. Reduction requirements 
increase when considering renovation alongside new construction [178]. 

While combining perspectives holds potential, there is a risk in solely relying on carbon budget 
limits without a comprehensive action plan defining scalable measures necessary for national or 
international implementation. Large emissions reductions can be achieved on a project level by 
replacing traditional materials with alternatives such as reused concrete or steel elements, wood-
based products, foam glass, natural insulation, or recycled packaging building boards [8, 179]. 
However, implementing these solutions without considering resource efficiency, limits to 
upscaling, or other impacts such as land use change or biodiversity, could outweigh their benefits.  

Existing or proposed regulations on construction and renovation limit values underscore a gap 
between adopted approaches and climate science imperatives [180].  

Basic 
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Construction 
products Logistics Construction Design Planning
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Abbreviations:
• CBAM - Carbon Border Adjustment Mechanism
• CPR - Construction Products Regulation
• CSRD - Corporate Sustainability Reporting Directive
• EPBD - Energy Performance of Buildings Directive
• ESPR - Ecodesign for Sustainable Products Regulation
• EU-ETS - Original EU Emissions Trading System – power sector and manufacturing industries
• EU-ETS2 - EU Emissions Trading System for buildings, road transport and additional sectors
• EU Taxonomy – Classification system to support financing of environmentally sustainable activities
• LULUCF - EU rules on land use, land use change and forestry
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The proposed Swedish regulation, for instance, is partly based on the tolerance of cost-sensitive 
actors in the construction industry [164]. Proposed limits imply no improvement in upfront 
embodied emissions by 2025 and only a 25% reduction by 2030, falling short of carbon budget 
limitations. 

A carbon budget analysis for transport infrastructure performed in Paper V of this thesis research 
show that only pathways with full supply chain measures have potential to remain within budgetary 
limits. Accordingly, integrating budgetary limitations with comprehensive bottom-up mitigation 
analysis is crucial to aligning the building and transport infrastructure sectors with climate science 
requirements. 

Emissions reduction measure prioritization 

To facilitate the necessary reduction of carbon emissions associated with the built environment, 
planning measures that restrict the levels of new construction could offer support. CO2 emissions 
reductions can be achieved through the consideration of resource efficiency and circularity 
opportunities across all stages of the value chain. However, the earlier in a project’s lifecycle, the 
greater the opportunity to reduce climate impact.  

Along with various other research [28, 125, 165, 181], I propose employing a cascade principle, 
akin to the “waste hierarchy”, as a straightforward approach to maximize the potential for carbon 
emissions reduction. Drawing on the concept of demand-side measures proposed by Creutzig et al  
[35] (illustrated in Figure 7 in Section 1.3), and combining elements of both demand-side and 
supply-side mitigation measures, an adapted version of this cascading principle developed for this 
introductory essay is illustrated in Figure 25. 

 

Figure 26. Illustration of a resource hierarchy for the building and transport infrastructure value chains 
combining demand-side and supply-side carbon emissions reduction measures. Inspired by various 
sources, e.g. [28, 125, 165]. 

The first step in the resource hierarchy involves rethinking and addressing needs without significant 
changes. This is where sufficiency comes into play, challenging the root cause of the need to build. 
Alternative approaches aim to achieve desired outcomes by maximizing existing assets.  
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Reuse
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Applying sufficiency principles to housing includes capping per-capita floor area, prioritizing multi-
family buildings, constructing smaller dwellings with shared spaces, and implementing co-housing 
strategies [182–185].  

Optimizing existing structures through maintenance, repairs, and adaptations further extends their 
lifespan and reduces material demand. Research suggests that untapped sufficiency potential could 
lead to a 30% reduction in emissions in wealthy countries [15]. This could thus ease the required 
downward curve regarding limits values for new constructions and renovation while still observing 
carbon budgets. Material efficiency measures also cut down on transportation needs, lowering the 
carbon footprint of heavy transport. Improving logistics and increasing vehicle utilization support 
this effort.  

Next, maximizing component reuse is crucial, necessitating business models that integrate existing 
suppliers and utilize digital support systems to establish databases for, and track, material 
availability [186, 187].  

Replacement involves selecting appropriate materials, in the structural frame but also including 
alternative binders in concrete, wood tubes instead of steel joists, natural fiber-based insulation or 
building boards or advanced bio-based products, such as resins, plastics, and bitumen. 
Electrification of production processes and heavy vehicles are also included in the concept of 
‘Replace’.  

Recycling measures follow, essential for most materials including metals, asphalt, insulation, glass, 
and building boards. 

In the last step of the resource hierarchy, the use of bio-based fuels in production processes and 
heavy vehicles is considered. Due to sustainability concerns and competition for food production 
and land use, the overall potential of bioenergy is constrained [188, 189]. Therefore, biofuels are 
primarily viewed as relevant for reducing fossil fuel use during a transition period until 
electrification reaches its full potential [134]. 

Circularity as a means to counteract restricted supply 

Net carbon storage in growing trees in Sweden has halved over the past decade [113], prompting 
a reevaluation of forest resource utilization. Currently, only 20-25% of harvested trees in Sweden 
are transformed into long-lasting products [190]. To meet increasing demands while ensuring 
sustainability [191], wood usage must align with the cascading principle [192]. 

Wood should primarily be used for durable long-lived materials and products, replacing carbon-
intensive and fossil-based counterparts like those in buildings and furniture. [160]. The cascading 
use of wood maximizes utility and carbon storage via reuse and recycling before energy generation. 
[160, 162]. Research and innovation focusing on utilizing low-grade wood and enhancing cascading 
use, are crucial for advancing circularity.[192]. 
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Cost efficiency via resource efficiency 

Finally, there are large opportunities related to resource-efficient design. A recent review study 
highlighted a significant variation in material intensities among buildings, measured in tons of 
materials per square meter of gross floor area (GFA) [193].  

In a Swedish national reference value study, it was discovered that around 1.5 tons of concrete are 
needed per square meter of gross floor area (GFA) for multi-family buildings. Conversely, the most 
common building system studied in Paper III utilized 1 ton of concrete per square meter of GFA. 
A resource efficient design could thus potentially save 500 kg/m2 of concrete, resulting in carbon 
emissions reduction of approximately 75 kg CO2e/m2 GFA [194]. equivalent to about a 20% 
reduction based on baseline values [108, 195].  

Another case object studied as an ongoing extension of this thesis research, showcases the potential 
of cost efficiency via resource-efficient design based on a multi-family building constructed with a 
prefabricated concrete frame. By implementing slimmed concrete elements, optimized concrete 
recipes, and substituting to lighter walls where possible, this project achieved upfront embodied 
emissions of 207 kg CO2e/m2 GFA. This represents a 36% reduction compared to comparable 
reference projects, as shown in Figure 26.  

 
Figure 27. Comparison of the material intensity and embodied CO2 emissions per square meter and per 
capita for comparable concrete-framed multi-family buildings and a case object studied in the 
development of this introductory essay. Sector reference data based on Malmqvist et al [195]. 

Partly due to a collaborative approach initiated early in the project, these reductions were achieved 
while lowering the cost of the structural frame by around 5%. Further, compared to reference 
projects, the case object halved embodied CO2 emissions per person for whom the building is 
designed.  

To ensure both cost and carbon efficiency, it is crucial to consider the impact of material intensity 
in building typology and design [108]. Moving forward, metrics on emissions per square meter (or 
per kilometer for infrastructure) should be complemented by emissions per capita that the asset 
was designed for. This additional metric provides relevant information on the asset’s contribution 
to decarbonization and carbon efficiency. 
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7 Future research 
As indicated in this introductory essay, my ongoing research extends beyond the five appended 
papers. There is a range of prospective challenges and potential enablers to delve further into, 
particularly those discussed in the preceding discussion section. 

I am enthusiastic about continuing collaborative efforts aimed at expediting the implementation of 
carbon emissions reduction measures by tailoring knowledge to supply chain actors and integrating 
it into tools and resources utilized by the target audience in their daily work. This may include 
guiding reference materials, procurement documents, and design instructions. While the current 
focus is on the transport infrastructure sector, I would like to undertake similar research initiatives 
related to buildings. 

By leveraging the research included in this thesis alongside practical experiences and data from 
pilot projects and other initiatives, this synthesized knowledge can be adapted into an accessible 
format. Such resources can play a pivotal role in addressing many of the challenges identified by 
the sector and supporting efforts toward carbon emissions reduction. 

There will likely be a notable focus on renovation and optimizing the use of existing assets moving 
forward. It would thus be appealing to gather contemporary knowledge and practical evidence 
specifically focusing on carbon reduction measures related to renovation projects, with a particular 
emphasis on energy efficiency renovations. 

Exploring sufficiency and planning measures, such as those that limit the need for new construction 
through alternatives or maximize the use of existing assets, would also be relevant to further 
complement and enhance the national pathway progressed throughout this thesis research. 

Finally, no scenario in the various studies included in this thesis achieves zero carbon emissions. 
Therefore, it is important to further investigate the potential for and limitations of negative 
emissions (such as carbon capture of biogenic emissions) and carbon sinks (such as the use of long-
lived wood products in construction). This exploration will enable an approach towards achieving 
net-zero emissions by 2045. 
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