
Thesis for The Degree of Licentiate of Engineering

Efficient Processing of Compact and Heterogeneous
Deep Neural Networks

Fareed Mohammad Qararyah

Division of Computer Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2024

Efficient Processing of Compact and Heterogeneous Deep Neural
Networks

Fareed Mohammad Qararyah

Copyright ©2024 Fareed Mohammad Qararyah
except where otherwise stated.
All rights reserved.

Technical Report No 193L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Computer Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2024.

ii

Abstract

The unprecedented success of Deep Learning (DL) algorithms, or Deep Neural
Networks (DNNs), is driving the trend toward deploying them in a variety of
environments including ones with tight resources and time constraints. This
has led to the emergence of compact DNNs. On the one hand, compact DNNs
have fewer operations and lower resource requirements, which makes them the
right choice for time-critical and energy-constrained applications. On the other
hand, they pose new challenges for the deep learning accelerator and library
design. First, these DNNs are composed of a set of operators with varying
computational requirements. This makes them more heterogeneous. Secondly,
they contain novel operators with computational requirements and bottlenecks
that differ from those of the operators in traditional DNNs. These characteristics
render the generic, accelerator architectures and library routines inefficient and
necessitate custom designs considering these DNNs characteristics.

The constant evolution of state-of-the-art DNNs and their use in domains
that have constantly changing algorithms and standards motivate deploying
them on flexible hardware. That is hardware that could be programmed or
reconfigured to support such variations. Moreover, the massive parallelism
present in these DNNs suggests that such hardware should support parallelism.
Field Programmable Gate Arrays (FPGAs), and General-Purpose Graphics
Processing Units (GPGPUs) are two widely used devices that offer flexibility
and support parallelism. This thesis presents hardware and software designs,
i.e. accelerators and library routines, that enable efficient processing of the
compact DNNs and their constituting operators on FPGAs, and GPGPUs.

The first contribution of the thesis is Fixed Budget Hybrid CNN Accelerator
(FiBHA). FiBHA is a hybrid architecture that combines both dedicated and
reusable processing engines in a way that enables striking a balance between
capturing DNN model heterogeneity and being resource-aware. The second
contribution is proposing Fused Convolutional Modules (FCMs), a set of GPU
kernels fusing various combinations of two core operators used in compact vision
DNNs, including convolutional neural networks (CNNs) and vision transformers
(ViTs). These operations are depthwise (DW) and pointwise (PW) convolutions.
FCMs alleviate these operators’ performance bottlenecks leading to low-latency
and energy-efficient execution.

FiBHA improves the throughput by up to 4x and 2.5x compared to the
prior art. It achieves up to 2x improvement in resource utilization. Moreover,
it improves the energy efficiency by up to 28%. FCMs achieve up to 3.7x
speedup over standard DL libraries layer-by-layer implementations, and up to
1.8x speedup in end-to-end implementations compared to a state-of-the-art DL
compiler. Moreover, FCMs-based implementations consume down to 34% of
the energy per inference compared to those of a DL compiler.

Keywords:

Deep Neural Networks (DNNs), Deep Learning Accelerators, FPGA, GPU,
Inter-Layer Pipelining, Layer Fusion

Acknowledgment

I would like first to thank my supervisor, Professor Pedro Petersen Moura
Trancoso, for giving me the opportunity to pursue my studies and providing
continuous guidance and support. And for having an open mind, and being
understanding whenever there is a difference in opinions. I would also like
to thank my co-supervisor, Muhammad Waqar Azhar, for his guidance and
advice, feedback, assistance, and patience.

I would also like to thank my examiner Ioannis Sourdis for his support. I
am also thankful for my friends and colleagues Mateo, Stavroula, Mo, Alessio,
Xu, Sonia, Konstantinos, Miquel, Monica, Arne, and others who have been
helpful and created a friendly environment.

Finally, I would like to give special thanks to my family for their unwavering
support and continuous encouragement.

This work would not have been possible without the research grants from
the VEDLIoT project, which received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No
957197. This work was also partially funded by the Swedish Foundation for
Strategic Research (contract number CHI19-0048) under the PRIDE project.

v

List of Publications

Appended publications

This thesis is based on the following publications:

I Fareed Qararyah, MuhammadWaqar Azhar, and Pedro Trancoso ”FiBHA:
Fixed Budget Hybrid CNN Accelerator”
2022 IEEE 34th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). (pp. 180-190). IEEE, 2022.

II Fareed Qararyah, Muhammad Waqar Azhar, and Pedro Trancoso ”An
Efficient Hybrid Deep Learning Accelerator for Compact and Heteroge-
neous CNNs”
ACM Trans. Archit. Code Optim. 21, 2, Article 25 (June 2024), 26
pages.

III Fareed Qararyah, Muhammad Waqar Azhar, and Pedro Trancoso ”FCMs:
Fusing Depthwise and Pointwise Convolutions for Efficient Inference on
GPUs”
Under review for ICS 2024: International Conference on Supercomputing.

The papers will be referred to in the thesis using their Roman numerals.

vii

viii

Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1
1.1 Background . 2

1.1.1 Convolutional Neural Networks (CNNs) 2
1.1.2 Compact CNNs and ViTs . 3
1.1.3 GPU architecture and programming model overview 4

1.2 Problem Statements . 4
1.2.1 Problem 1 . 4
1.2.2 Problem 2 . 4

1.3 Thesis Contributions . 5

2 Summary of the Papers 7
2.1 Summary of Paper I . 7
2.2 Summary of Paper II . 9
2.3 Summary of Paper III . 10

3 Conclusion and Future Work 13

4 Paper I 21

5 Paper II 33

6 Paper III 59

ix

x CONTENTS

Chapter 1

Introduction

Deep Learning (DL) algorithms’ unprecedented effectiveness in a variety of domains comes
usually at the cost of being resource demanding [1,2]. However, the desire to apply DL in
time-critical and resource-constrained environments has been driving the effort to design
resource-efficient or compact Deep Neural Networks (DNNs). Compact DNNs have fewer
weights and perform fewer operations which enables faster and less resource-demanding
DL [1,3–6]. An example from the computer vision field is the XCeption convolutional neural
network (CNN) that has an accuracy that surpasses ResNet-152’s [7] on the Imagenet dataset,
despite being roughly three times smaller [3].

In recent years we have seen an explosion of application-specific DL accelerators [8].
These application-specific accelerators process certain classes of DNNs with low latency, high
throughput, and high energy efficiency. However, designing application-specific hardware
should not be the only strategy to achieve efficient DL for two reasons. The first reason
is that some application domains have constantly changing algorithms or standards, or a
combination of them, like telecommunication and autonomous cars [9]. Hence, these domains
rely heavily on flexible accelerators, i.e. reconfigurable or programmable. When targeting
such domains, DNNs should run efficiently on these flexible accelerators. The second reason
is that DL is expected to continue to play a significant role in the future, with continuously
evolving state-of-the-art DL models. This justifies the ongoing research to efficiently process
DNNs on accelerators that are relatively future-proof. Flexibility to support a variety of
applications is a strong predictor of being future-proof [10].

Field Programmable Gate Arrays (FPGAs), and General-Purpose Graphics Processing
Units (GPGPUs) are relatively flexible and have been heavily used to develop state-of-
the-art DL accelerators and libraries [11–25]. Moreover, GPUs have played a key role in
the resurgence of DL [26], and are the most widely-supported accelerators by various DL
frameworks [27–30]. This thesis presents hardware and software designs and techniques to
process compact DNNs efficiently on FPGAs and GPUs.

Most of the proposed FPGA-based model-specific accelerators targeting compact CNNs
fall into one of two categories. The first category’s accelerators are composed of reusable
engines, where a single engine computes multiple layers of the same type. We refer to such
accelerators as single-engine multiple-layer accelerators (SEML) [22,31–33]. But, CNN layers
of the same type have various arithmetic intensities, input and filter shapes and sizes, and
reuse patterns [34,35]. Consequently, when there is a dedicated engine per layer type, this
engine has to be optimized for the average case within that layer type. The second category’s
accelerators have a dedicated engine per layer [21,36–38]. We refer to such accelerators as
single-engine single-layer accelerators (SESL). They are known as streaming, or synchronous
dataflow (SDF), accelerators in the literature. Such accelerators are resource-demanding and
are challenging to scale for deep models [37, 39,40]. The first contribution of this thesis is a
hybrid architecture that is composed of SESL and SEML parts, namely Fixed Budget Hybrid
CNN Accelerator (FiBHA) [41, 42]. In FiBHA, the FPGA resources and the CNN layers
are partitioned among these two parts. FiBHA is more dedicated, or CNN model-aware,
compared to SEML which leads to higher efficiency. At the same time, FiBHA is more
resource-aware and easier to scale compared to SESL accelerators.

Standard GPU DL libraries provide sub-optimal performance in the case of compact

1

2 CHAPTER 1. INTRODUCTION

DNNs. Many state-of-the-art compact vision DNNs including CNNs and vision transformers
(ViTs) utilize Depthwise (DW) and pointwise (PW) convolutions [1, 3–6, 43]. DW and
PW convolutions have fewer operations but more memory access compared to standard
convolutions. In other words, they are more memory-bound than standard convolution.
Hence, to optimize their performance, the focus must be on reducing their off-chip memory
access. This makes the algorithms commonly used on GPUs like general matrix multiplication
(GEMM), Winograd, and Fast Fourier Transform (FFT) [44–48] inefficient. These algorithms
optimize or reduce the computations at the cost of more memory accesses and higher
bandwidth requirements [49,50]. The second contribution of the thesis is presenting Fused
Convolutional Modules (FCMs) a set of novel fused GPU kernels of DW and PW convolutions.
FCMs fuse pairs of PW and DW layers processing the intermediate results at fine granularity
and eliminating the need to communicate them to GPU’s global memory. This reduction
in global memory access alleviates the DW and PW performance bottleneck leading to
low-latency and energy-efficient processing of these layers.

Extensive experiments show that the proposed work enables efficient processing of
compact DNNs on FPGAs and GPUs. FiBHA improves the throughput by up to 4x and
2.5x compared to alternative representative SEML and SESL accelerators. FiBHA improves
FPGA’s resource utilization by up to 2x. It reduces the intermediate results memory
requirements considerably, allowing better scaling and avoiding off-chip communication.
Furthermore, it improves energy efficiency by up to 28%. FCMs achieve up to 3.7x speedup
over standard DL libraries’, cuDNN [47], layer-by-layer implementations, and up to 1.8x
speedup in end-to-end implementations compared to the state-of-the-art TVM [51]. Moreover,
FCM-based implementations consume down to 34% of the energy per inference compared
TVM based execution.

1.1 Background

1.1.1 Convolutional Neural Networks (CNNs)

IFMs OFMs

Filters

(a) Standard Convolution

Filters

(c) Pointwise Convolution

IFMs OFMs

Width

C
ha

nn
els

H
ei

gh
t

Width

C
ha

nn
els

H
ei

gh
t

Filters

(b) Depthwise Convolution

IFMs OFMs

C
ha

nn
els

H
ei

gh
t

Width

Figure 1.1: Standard, Depthwise, and Pointwise convolution.

Convolutional neural networks (CNNs) are feedforward Deep learning models designed
to capture features in 1D signals like language, 2D signals like images; or 3D like video
or volumetric images [52]. A CNN consists of a set of stacked layers performing feature
extraction and classification [53]. The primary layers in a CNN, both in terms of functionality
and computational intensity, are the convolutional layers [54]. Figure 1.1 shows different
forms of convolution that are found in CNNs. As the figure shows, a convolutional layer
has a set of filters, these filters are composed of trainable weights. The filters are applied
on input feature maps (IFMs) to extract embedded features from them, generating output
feature maps (OFMs). We use the term Feature Maps (FMs), or activations, to refer to
both IFMs and OFMs.

1.1. BACKGROUND 3

Convolution

Batch Normalization

ReLU

Depthwise
Convolution Block

Pointwise
Convolution Block

Input

Add
Standard Convolution

Block
Depthwise Separable

Convolution Block

Inverted Residual
Bottleneck

Depthwise
Convolution

Batch Normalization

ReLU

Depthwise Convolution
Block

Pointwise
Convolution

Batch Normalization

ReLU

Pointwise Convolution
Block

Pointwise
Convolution Block

Depthwise
Convolution Block

Pointwise
Convolution Block

(a) (b) (c)

Figure 1.2: Depthwise Separable Convolution and Inverted Residual
Bottlenecks.

1.1.2 Compact CNNs and ViTs

Compact CNNs are also referred to as heterogeneous, Resource-efficient, or edge CNNs in the
literature [34,55]; hence we use these terms interchangeably throughout this paper. These
CNNs are designed to balance the accuracy-efficiency trade-off. They either improve the
accuracy without increasing the model weights and computations [3] or reduce the model
weights and computations considerably at the cost of a negligible loss in accuracy [1,4,56–58].
The Depthwise separable convolution and inverted residual and linear bottlenecks are two
predominant building blocks of resource-efficient CNNs [1,3, 4, 56–58].

The Depthwise Separable Convolution (DSC) is a form of convolution that is based on
decoupling the spatial and the cross-channel correlations in the feature maps [3]. This is
achieved by replacing the standard convolution with two operators: (a) Depthwise convolution
(DW) and (b) Pointwise convolution (PW). As Figure 1.2(b) shows, a Depthwise Separable
Convolution is composed of Depthwise followed by Pointwise convolution. Figure 1.1(b)
shows that the Depthwise convolution applies a filter to each feature map and sums each
feature map results individually (no across-FMs summation). This is followed by a Pointwise
convolution with 1 × 1 filters. Pointwise convolution, as shown in 1.1(c), applies a filter and
sums the results across different feature maps but not within a single feature map. Depthwise
Separable Convolution is a more efficient way to use the model parameters compared to the
standard convolution [3, 59].

The inverted residual with linear bottlenecks is a module designed to significantly reduce
the CNN model weights and operations while maintaining the accuracy [56]. As shown in
Figure 1.2(c) this module combines three convolutional layers. The first layer is a 1 × 1
Pointwise convolution that expands the IFMs by increasing their depth. The second is a
Depthwise convolution that processes the expanded FMs. The third is another 1×1 Pointwise
convolution that squeezes the FMs again. There could be a shortcut connection in the module
that forwards the input of the module to be added to the outputs of the last convolutional
layer of the module, this shortcut is represented by the dashed arrow connecting the module
input to an Add layer in Figure 1.2. The reduction in weights and computations that the
inverted residual with bottlenecks module permits is a result of performing heavy operators
like the Pointwise convolution on a relatively low-dimensional representation, that is, the
unexpanded or the squeezed FMs. And a light operation like Depthwise convolution on the
expanded representation.

Since the modules used to design resource-efficient CNNs have different types of convolu-
tional layers compared to the conventional CNNs that have only one type of convolution,
we say that the resource-efficient CNNs have more heterogeneity. Note that even conven-
tional CNNs have one form of heterogeneity which is intra-layer-type. This is because even
convolutional layers of the same type have variations in inputs, output, and filter shapes.

Transformer models are based on a self-attention mechanism that learns the relationships
between elements of a sequence [60]. In vision transformers (ViTs), self-attention allows
modeling contextual information of the full image and long-range dependencies both in space
and time [61]. In this paper, we focus on convolutional ViTs that combine self-attention with
convolutions [5, 6, 43].

4 CHAPTER 1. INTRODUCTION

1.1.3 GPU architecture and programming model overview

A GPU architecture consists of a scalable array of streaming multiprocessors (SMs) [62].
An SM is a Single-Instruction-Multiple-Thread (SIMT) architecture that runs groups of 32
parallel threads called warps in a lockstep fashion. A CUDA kernel is processed by a grid
of threads which is composed of a set of thread blocks. Threads in a block run on the same
SM. GPU has a memory hierarchy of multiple levels with different access constraints. Each
thread has private local registers. Each SM has a low-latency L1 cache, a variable-sized
portion of that cache can be configured to serve as programmer-managed shared memory.
The shared memory is visible to all threads in a block and has the same lifetime of the block.
The next level of memory is L2 cache which is shared across all threads of the entire CUDA
kernel. The last level is a DRAM which is accessed when the required data is not in any of
the above levels.

1.2 Problem Statements

1.2.1 Problem 1

Compact CNNs contain layers or operations of varying arithmetic intensities, reuse pat-
terns, filters, and input/output shapes and sizes which makes them heterogeneous. This
heterogeneity is present at two levels: (1) heterogeneity among layers of the same type,
or intra-layer-type heterogeneity; and (2) heterogeneity among layers of different types, or
inter-layer-type heterogeneity. On the one hand, ignoring this heterogeneity by processing
these CNNs using a single computing engine, or a single engine per layer type, leads to
sub-optimal performance. On the other hand, capturing the heterogeneity to the fullest by
designing an engine per layer is resource-demanding, not scalable, and suffers from high
latency. The challenge lies in striking a balance between being CNN model-aware and being
resource-aware while maintaining a low latency. That is, capturing the heterogeneity in the
model, given the commonly available or a reasonable resource budget.

The search for an architecture that balances being model-aware and resource-aware is
done under a set of assumptions. First, the targeted hardware is an FPGA as it offers the
required flexibility to generate model-specific architecture. Secondly, to support a wide range
of compact CNN models that vary considerably in size, the design should not assume that
the CNN model fits on-chip. Thirdly, all the engines must be mapped to the device without
reconfiguration. This is because the average latency of processing many compact CNNs on
common FPGAs, using - for example - a single-engine design, is in milliseconds, making
reconfiguration overhead prohibitive. Finally, the design targets inference where low latency
is usually crucial, hence the objective is to optimize throughput and latency simultaneously.

Problem statement 1: Given a heterogeneous CNN and FPGA resources, how to
map the CNN to the FPGA in a way that captures the heterogeneity, to improve dynamic
resource utilization and reduce the running time overheads.

1.2.2 Problem 2

Convolutions are core operators of computer vision algorithms including the DL based ones.
The effort to optimize the convolutions in DNNs, to reduce their resource requirements, and
to use them to design more compact DNNs, has resulted in separating them into depthwise
and pointwise convolutions. Depthwise and pointwise convolutions have fewer operations
and parameters (weights) compared to standard ones. However, separating a standard
convolution into depthwise and pointwise increases the overall size of intermediate results. In
other words, the reduction ratio in the number of operations is higher than that of the weights
and intermediate results. This means these convolutions have lower arithmetic intensity and
are more often memory-bound than standard ones.

Operator or layer fusion is an optimization where the fused operators process the
intermediate values while being in the small and low-latency memories in the hierarchy.
This avoids access to the main memory that has orders of magnitude higher latency. Hence
fusing depthwise and pointwise convolutions should lead to alleviating their memory-access
bottlenecks. Fusing these operators on GPUs poses a set of challenges. GPUs’ low-latency
memories have limited lifespan as well as capacity. But fusion increases the working set

1.3. THESIS CONTRIBUTIONS 5

size and requires the fused operators’ weights to be used over a longer lifespan. Hence, an
efficient fusion should optimize the trade-off between these limitations and requirements.
Moreover, when fusing layers there is a large space of fusion parameters to explore to arrive
at configurations that optimize the memory accesses while maintaining an acceptable level
of compute unit utilization. This requires designing a simple and efficient cost model to
estimate memory accesses as a function of the fusion configurations. Such a model should
enable identifying whether fusion results in reducing memory access or not and which fusion
parameters minimize the memory accesses.

Problem statement 2: Given a sequence of pointwise and depthwise convolutions and
GPU architecture specifications, how to identify and implement the convolution-fusions that
optimize the execution efficiency by mitigating memory access bottlenecks while maintaining
compute resource utilization.

1.3 Thesis Contributions

This thesis presents techniques to improve the efficiency of processing compact DNNs and their
operators on widely used and flexible hardware, i.e. GPUs and FPGAs. More specifically,
the thesis tackles the challenges presented in Section 1.2. This section discusses the thesis
contributions and how it addresses these challenges concisely.

The first contribution is an FPGA-based hybrid CNN accelerator for Compact and
heterogeneous CNNs, namely Fixed Budget Hybrid CNN Accelerator (FiBHA). FiBHA
represents a middle ground between the resource-aware and scalable accelerators and the
highly dedicated streaming accelerators. The thesis focuses on two accelerator categories that
target heterogeneous CNNs. The first category is referred to as single-engine multiple-layer
(SEML) accelerators, which use a single engine to process multiple layers of the same type.
The second is single-engine single-layer (SESL) accelerators, which process each layer using
its dedicated engine. The key to designing the hybrid accelerator is to identify the layers in
a CNN that benefit the most from being processed using dedicated engines and then design
as many dedicated engines as the resource budget allows. Analyzing a set of representative
compact CNNs has shown that their initial layers have varying input and output shapes
and sizes and reuse opportunities. The rest of the layers are more homogeneous. This trend
motivates a design that processes the initial layers using per-layer dedicated engines, and the
rest using a minimum number of reusable engines.

Once the CNN layers are categorized, the challenge is to map them to the parts of the
hybrid accelerator. To tackle this challenge, a heuristic to split CNN layers (SplitCNN)
is proposed. SplitCNN splits the resources, more specifically the processing elements (PEs)
among the CNN layers. Since FiBHA is an alternative to the SEML and SESL accelerators,
it should improve over them given a practical resource budget. Moreover, as the hybrid
accelerator is composed of SEML and SESL parts, SplitCNN uses an existing design of such
accelerators as a starting point. Note that the proposed accelerator targets inference, where
latency is crucial. Hence, a batch size of 1 is used to guarantee that the throughput and
latency are optimized simultaneously. Exploring the mentioned two accelerator families
shows that the SEML accelerators provide superior performance compared to SESL when
using a batch size of 1. Hence, the chosen starting point to derive a FiBHA instance is a
SEML baseline. The baseline accelerator is progressively transformed into a hybrid one by
incorporating dedicated engines. SplitCNN allocates resources between the original and the
newly added engines, considering the workloads of the CNN layers assigned to these engines,
to ensure that their execution times are balanced. It then estimates the throughput using a
batch size of 1. The process of adding engines, distributing the available PEs, and estimating
the performance is repeated as long as the performance is improving. The process terminates
with the hybrid accelerator that is estimated to deliver the best performance using the given
PEs budget.

The compute engines in a SESL accelerator are pipelined to maintain a high throughput
and resource utilization. In a traditional implementation of the pipeline, a tile of the FMs of
each layer needs to be stored on-chip and double-buffered for concurrent access, introducing a
non-negligible overhead. This overhead scales with the pipeline length as more double buffers
must be added. Meanwhile, the majority of the state-of-the-art compact CNNs are composed
of inverted residual bottlenecks (Section 1.1.2). The structure of these bottlenecks gives room
for reducing the mentioned pipeline overhead. Fused Inverted Residual Bottlenecks
(FIRB) module is proposed to achieve this goal. FIRB applies fine-grained pipelining within

6 CHAPTER 1. INTRODUCTION

the inverted residual bottleneck module, resulting in a considerable reduction in the required
buffers. This approach processes the intermediate results of the Depthwise (DW) layer
within the bottleneck while they are in registers. This method reduces the need for the
majority of buffers that would otherwise be used for communication between this layer and
its neighboring layers. FIRB-based pipelines have less area, power consumption, and latency
compared to traditional ones.

The second contribution of this thesis is a set of fused convolutional kernels, or
fused convolutional modules (FCMs), that improve the efficiency of compact DNNs’ core
operators on GPUs. These operators are pointwise (PW) and depthwise (DW) convolutions
which are used in many state-of-the-art computer vision DNNs including CNNs and ViTs. In
FCMs, unlike the traditional layer-by-layer (LBL) implementation, the intermediate values
between the fused layers are processed while being in the GPU’s L1 cache/shared memory
avoiding frequent access to the global memory that has orders of magnitude higher latency.
Fusing convolutional layers involves loading their weights simultaneously and accessing them
for the duration required to compute their dependencies across both layers by each Streaming
Multiprocessor (SM). This puts pressure on the limited per SM private L1 Cache/shared
memory(Section 1.1.3) and could make fusion either infeasible or result in more memory
accesses than the LBL implementation.

To evaluate the feasibility and trade-offs of fusing DW and PW convolutions, a simple and
fast cost model that estimates the global memory accesses of convolution on a GPU, namely
FuseEstimator, is proposed. FuseEstimator takes as inputs GPU specifications, mainly the
number of SMs, L1 size, and the portion that could be configured as shared memory. It also
takes the sequence of layers and their specifications. These specifications include weights
and FMs tensors dimensions. FuseEstimator has two components, layer-by-layer LBL GM
access estimator and FCMs GM access estimator. FuseEstimator does a first pass over the
layer sequence and estimates their minimum GM access using the LBL GM access estimator.
Then it examines the possible fusions and evaluates their GM access using the FCMs GM
access estimator. Based on the LBL and FCM estimates, FuseEstimator outputs: (1) which
layers are to be fused and which are not, (2) which FCMs to use, and (3) the tiling that
minimizes the GM access in each case.

Chapter 2

Summary of the Papers

2.1 Summary of Paper I

Compact CNNs are heterogeneous workloads
A CNN consists of a set of stacked layers performing feature extraction and classification [53].
The core layers in a CNN, the convolutional layers, have various inputs and filter shapes and
sizes, reuse patterns, and arithmetic intensities [34, 55]. We designate these variations as
intra-type-heterogeneity, as they exist among layers of the same type. On top of that, compact
CNNs are composed of modules containing different types of convolutions including depthwise
separable convolution (DSC) and the inverted bottlenecks [3,59,63]. This introduces another
form of heterogeneity, which we refer to as inter-layer-type heterogeneity.
Prior art model-specific accelerators

To capture compact CNNs’ heterogeneity, and hence improve the performance and effi-
ciency, custom or model-specific accelerators have been proposed. We categorize the custom
accelerators in the literature into four categories:

• Monolithic accelerators: accelerators in which all the core layers are executed
using the same engine [54,64].

• Single-Engine Multiple-Layer (SEML): accelerators in which all the layers of a
certain type are executed using the same engine [22,31,32,59,64–66].

• Single-Engine Single-Layer (SESL): accelerators in which each layer is mapped
to a distinct engine. In these accelerators, the chain of engines is pipelined to work
concurrently and maintain a high throughput [21,36–38].

• Multiple-Engine Multiple-Layer (MEML): accelerators in which a single layer is
processed by multiple engines, where each engine processes a tile of that single layer,
and these multiple engines are reused across multiple layers [39,67].

We mainly focus on the second and third categories, i.e., SEML and SESL. This is
because the MEML is more tailored for resource-demanding scenarios like having large
DNNs or the training phase. Figure 2.1 shows examples of both SEML and SESL mapping
approaches. We use the term hybrid to describe an accelerator that uses more than one
mapping technique between CNN layers and the compute engines. The figure shows an
example that maps each of the first 5 convolutional layers to its engines and uses a SEML
mapping technique for the rest of the layers.
Fixed budget hybrid CNN accelerator (FiBHA)
Neither SEML nor SESL accelerators address the CNN and resource awareness trade-
off. While SEML accelerators do not capture intra-layer-type heterogeneity, pure SESL
accelerators are resource-demanding and do not scale well. In this paper, we propose FiBHA,
a fixed budget hybrid architecture that combines both SESL and SEML accelerators in a way
that captures more heterogeneity than SEML accelerators can while being more resource-
efficient than pure SESL. The hybrid mapping of FiBHA is shown in Figure 2.1. The SESL
part of FiBHA computes the initial layers of a CNN, and the SEML part computes the
rest. We also propose a heuristic ”Split a CNN” (SplitCNN) that derives a FiBHA instance
under a fixed resource budget and splits the CNN layers and the resources between that

7

8 CHAPTER 2. SUMMARY OF THE PAPERS

St
an

da
rd

C
on

vo
lu

tio
n

Bl
oc

k

Ad
d

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Ad
d

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Fu
lly

 C
on

ne
ct

ed
La

ye
r/s

Depthwise
Engine

Pointwise
Engine

St
an

da
rd

C
on

vo
lu

tio
n

Bl
oc

k

Ad
d

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Ad
d

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Fu
lly

 C
on

ne
ct

ed
La

ye
r/s

SEML

SESL
Engine

0
Engine

1
Engine

3
Engine

4
Engine

2
Engine

5
Engine

6
Engine

7
Engine

8
Engine

9

St
an

da
rd

C
on

vo
lu

tio
n

Bl
oc

k

Ad
d

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Ad
d

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

D
ep

th
w

is
e

C
on

vo
lu

tio
n

Bl
oc

k

Po
in

tw
is

e
C

on
vo

lu
tio

n
Bl

oc
k

Fu
lly

 C
on

ne
ct

ed
La

ye
r/s

Engine
0

Engine
1

Engine
3

Engine
4

Engine
2

Depthwise
Engine

Pointwise
Engine

Hybrid

Figure 2.1: High-level overview of the SEML, SESL, and Hybrid accelerators.
The figure focuses on the mapping from the convolutional layers of a CNN
to the compute engines of the accelerators, the internals of the engines, their
connectivity, and the memory system are omitted for simplicity.

2.2. SUMMARY OF PAPER II 9

instance SESL and SEML parts. We evaluated FiBHA instances using HLS implementation
targeting an FPGA (Xilinx ZCU-102) using state-of-the-art heterogeneous CNNs [4, 56,58].
FiBHA achieves 1.7x and 4.1x of the throughput achieved by state-of-the-art, SEML [31]
and SESL [21] accelerator, respectively, under the same hardware budget. In this paper, we
focus on accelerating inference [50].

The contributions of this paper are as follows:

• We propose FiBHA (Fixed budget hybrid accelerator), a novel hybrid architecture
composed of a SESL part and a SEML part, each computing a part of a CNN model.

• We propose SplitCNN, a heuristic that derives a FiBHA instance given a fixed resource
budget and splits a CNN and the computational resources between its SESL and
SEML parts in a way that maximizes the throughput.

• We evaluate FiBHA comparing its performance to pure SESL and SEML accelera-
tors. FiBHA instances achieve throughput of 1.7x and 4.1x compared to these two
accelerators, respectively.

2.2 Summary of Paper II

This paper is an extension of Paper I, in which we conduct more extensive experiments using
the hybrid architecture presented there (FiBHA). We propose optimized FiBHA engines,
named Fused Inverted Residual Bottlenecks(FIRB). FIRB reduces the required memory
by up to 54%, and energy requirements by up to 35% compared to traditional inter-layer
pipelining. We analyze the impact of FiBHA on the buffering requirements and show how it
eliminates the intermediate results in off-chip communication when the on-chip memory is
relatively small. We synthesize and use FiBHA to deploy end-to-end CNN implementations
and compare and study the impact of the hybrid architecture on energy efficiency.

Fused Inverted Residual Bottlenecks(FIRB)
In a traditional implementation of pipelined SESL accelerators, a tile of the feature maps
(FMs) of each layer is stored on-chip and double-buffered for concurrent access [11, 40]. This
introduces a non-negligible overhead. This overhead scales with the pipeline length as more
double buffers must be added. Hence, we introduce the Fused Inverted Residual Bottlenecks
(FIRB) module. FIRB applies fine-grained pipelining within the inverted residual bottleneck
modules that are used in most compact CNNs, resulting in a considerable reduction in the
required buffer sizes.

BNBN

ReLU ReLU

BNBN

ReLU ReLU

Weights
(DW)

Weights
(PW)

Bu
ffe
r_
1

Bu
ffe
r_
2

Bu
ffe
r_
1

Bu
ffe
r_
2

Bu
ffe
r_
1

Bu
ffe
r_
2

BNBN

ReLU ReLU

Weights
(PW)

Bu
ffe
r_
1

Bu
ffe
r_
2

(a)

BN

ReLU

BN

ReLU

BN

ReLU

Bu
ffe
r_
1
Bu

ffe
r_
2

BN

ReLU

Bu
ffe
r_
1
Bu

ffe
r_
2

BN

ReLU

BN

ReLU

Bu
ffe
r_
1

(b)

Figure 2.2: (a)Traditional inter-layer pipelining-based implementation of an
Inverted Residual Bottleneck module. (b) FIRB-based implementation of an

Inverted Residual Bottleneck module.

Figure 2.2a and 2.2b show two implementations of an Inverted Residual Bottleneck
module. The implementation in figure 2.2a is a variant of a traditional inter-layer pipelining.
The main advantage of FIRB is eliminating the need for three out of the four internal buffers
in the inverted residual bottleneck module which reduces latency and energy consumption of
these modules.
Minimizing FMs memory requirements

10 CHAPTER 2. SUMMARY OF THE PAPERS

The memory consumption of Deep Learning algorithms represents a major bottleneck both in
training and inference [67, 68]. In some state-of-the-art accelerators, on-chip buffers consume
up to 70% to 87% of the chip area [54, 67]. As a result, reducing memory requirements is a
crucial part of designing an efficient accelerator. Unlike SEML where the outputs need to be
fully stored in memory and then loaded when the next layer is computed, in SESL data flows
between the pipelined engines and is processed almost immediately. As a result, if SESL is
used to process the initial layers, smaller on-chip buffers are needed to store the FMs. On
the other hand, the rest of the layers have small FMs meaning that storing them fully is
relatively cheap. By implementing the CNN layers that have large FMs using SESL, FiBHA
reduces the buffering requirements by up to 75% compared to pure SEML or monolithic
accelerators.

The contributions of this paper are as follows:

• We propose FIRB, a fine-grained and memory-light pipeline building block and evaluate
its impact on implementing a SESL architecture in terms of improving energy and
memory efficiency.

• We analyze the impact of FiBHA on the memory requirements of a CNN. FiBHA
reduces the intermediate results memory requirements considerably allowing bet-
ter scaling and avoiding off-chip communication, especially on memory-constrained
hardware.

• We evaluate FiBHA comparing its performance to a dedicated accelerator on three
evaluation boards representing various resource budgets in the compute continuum,
namely ZC706, KCU105, and ZCU102.

• We evaluate FIBHA’s energy efficiency, comparing it to a SESL accelerator, a SEML
accelerator, and two GPUs using a set of heterogeneous CNNs.

2.3 Summary of Paper III

Due to their relatively high accuracy-per-parameter and accuracy-per-operation, depthwise
(DW) and pointwise (PW) convolutions are increasingly replacing standard convolutions
leading to state-of-the-art accuracy results using smaller models [1, 3–6, 43]. However,
separating a standard convolution into DW and PW increases the size of the intermediate
results which results in lower arithmetic intensity and makes memory access a bottleneck.
Hence, optimizing DW and PW efficiency must consider reducing memory access.

Layer-fusion is an optimization that reduces off-chip memory accesses considerably,
compared to the traditional layer-by-layer (LBL) approach. The intermediate results of
the fused layers are processed immediately instead of storing and loading them from the
off-chip memory [18, 69–71]. On GPUs, the prior art on layer fusion focuses on fusing
a single convolutional layer with element-wise layers or fusing multiple non-convolutional
layers [51,72–74].

In this paper, we propose Fused Convolutional Modules (FCMs) a set of novel fused
GPU kernels of DW and PW convolutions. FCMs improve latency and energy efficiency
by reducing global memory access. A Fused Convolutional Module (FCM) combines up
to 6 layers, two convolutional layers, and the normalization and activation layers following
each of them. We present three main types of FCMs, namely DWPW, PWDW, and
PWPW. These combinations cover the most widely-used DNN modules that combine DW
and PW convolutions, i.e. depthwise separable convolutions (DSC) and the inverted residual
with linear bottlenecks [3, 59, 63]. The communication among the fused layer utilizes the
GPU L1/shared memory. The limited size and lifespan of the shared memory pose a set of
trade-offs when fusing convolutional layers that need to be evaluated to decide when fusion
is advantageous.

To evaluate fusion tradeoffs and decide when to use FCMs and when not to, we propose
FuseEstimator. FuseEstimator is a cost model that estimates the global memory accesses
of the DW and PW kernels on GPUs. FuseEstimator takes as inputs GPU specifications,
mainly the number of SMs, L1 size, and the portion that could be configured as shared
memory. It also takes the sequence of layers and their specifications. These specifications
include weights and FMs tensors dimensions. This sequence could be a model topology, we
support generating model typologies from Tensorflow. FuseEstimator has two components,
layer-by-layer LBL GM access estimator and FCMs GM access estimator. FuseEstimator
does a first pass over the layer sequence and estimates their minimum GM access using

2.3. SUMMARY OF PAPER III 11

the LBL GM access estimator. Then it examines the possible fusions and evaluates their
GM access using the FCMs GM access estimator. Based on the LBL and FCM estimates,
FuseEstimator outputs: (1) which layers are to be fused and which are not, (2) which FCMs
to use, and (3) the tiling that minimizes the GM access in each case.

Our FCM kernels achieve up to 1.8x speedup over a custom layer-by-layer (LBL) imple-
mentation and up to 3.7x over the best cuDNN implementations using representative CNNs
and ViTs. End-to-end implementations of four CNNs using the proposed kernels achieve up
to 1.8x speedup compared to TVM implementations and consume as little as 34% of the
energy consumed by TVM-optimized models.

The contributions of this paper are as follows:

• We propose a set of novel fused convolutional modules (FCMs), which are GPU
kernels comprising PW and DW convolutions. Our kernels serve as low-latency and
energy-efficient building blocks of DNNs that use these convolutions.

• We propose FuseEstimator, a cost model that estimates global memory accesses of
LBL and FCM implementations given a target GPU architecture. FuseEstimator
decides which layer to fuse and which not to, and if to be fused which FCMs to use.

• We evaluate the proposed FCMs comparing them to both custom and standard DL
library-based (cuDNN) implementations using representative CNNs and ViTs on
multiple GPUs. We also compare end-to-end implementations of the CNNs built with
modules to TVM-optimized models.

12 CHAPTER 2. SUMMARY OF THE PAPERS

Chapter 3

Conclusion and Future
Work

Compact DNNs, which have fewer weights and perform fewer operations are being increasingly
used. While they offer faster and less resource-demanding training and inference, these
DNNs are composed of a variety of novel operators with characteristics that differ from those
of the operators of traditional DNNs. As a result, processing these DNNs using generic,
accelerator architectures and library routines offers sub-optimal performance. This motivates
the designing of custom hardware and software considering these DNNs characteristics.
Compact DNNs, as DNNs in general, are continuously evolving and are used in domains with
constantly changing standards and constraints. This motivates optimizing their performance
on devices that could be programmed or reconfigured to support such variations as Field
Programmable Gate Arrays (FPGAs), and General-Purpose Graphics Processing Units
(GPGPUs).

This thesis presents both i.e. accelerators and library routines, that enable efficient
processing of the compact DNNs and their operators on FPGAs, and GPGPUs. The first
presented contribution in the thesis is Fixed Budget Hybrid CNN Accelerator (FiBHA).
FiBHA is a hybrid architecture that targets the balance between capturing DNN model
heterogeneity and being resource-aware. The second contribution is Fused Convolutional
Modules (FCMs), a set of GPU kernels that fuse different combinations of depthwise (DW) and
pointwise (PW) convolutions, two core operators utilized in compact vision DNNs, including
convolutional neural networks (CNNs) and vision transformers (ViTs). FCMs mitigate these
operators’ memory access bottlenecks leading to low-latency and energy-efficient inference.

There are several research directions to explore following up on the work done so far. One
direction is to widen the scope of the presented hybrid architecture to support non-compact
CNNs. FiBHA, support is limited to compact CNNs. However, the presented analysis shows
the potential impact of such architecture on the required buffering and data movement of
CNNs in general. This requires an exhaustive analysis of the prior art and exploring if such
hybrid architecture could offer a more optimal CNN-to-FPGA mapping in some scenarios. A
second direction is exploring the possibility of reusing modules of the presented architecture
to augment the state-of-the-art and offer higher efficiency in processing specific operations.
A third direction is integrating the optimized Fused Convolutional Modules (FCMs) into a
state-of-the-art DL compiler like TVM. FCMs offer additional design points for such compilers
to explore. They could either be used as a backend when they offer a performance advantage
or used as starting points and auto-tuned to achieve even higher efficiency. Another direction
is exploring other DNNs including graph neural networks (GNNs) and large language models.
This could lead either to generalizing some of the presented modules to support a wider
variety of applications, or designing new modules and ending up having a library of efficient
DL modules for programmable and reconfigurable devices.

13

14 CHAPTER 3. CONCLUSION AND FUTURE WORK

Bibliography

[1] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International conference on machine learning. PMLR, 2019, pp. 6105–
6114.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[3] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.
1251–1258.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

[5] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le, “Primer: Searching for
efficient transformers for language modeling,” arXiv preprint arXiv:2109.08668, 2021.

[6] K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu, “Incorporating convolution designs
into visual transformers,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 579–588.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[8] S. R. Sukumar, J. A. Balma, C. Xu, and S. Serebryakov, “Survival of the fittest amidst
the cambrian explosion of processor architectures for artificial intelligence,” in 2021
IEEE/ACM Programming Environments for Heterogeneous Computing (PEHC). IEEE,
2021, pp. 34–43.

[9] O. Mencer, D. Allison, E. Blatt, M. Cummings, M. J. Flynn, J. Harris, C. Hewitt,
Q. Jacobson, M. Lavasani, M. Moazami et al., “The history, status, and future of fpgas:
Hitting a nerve with field-programmable gate arrays,” Queue, vol. 18, no. 3, pp. 71–82,
2020.

[10] M. Horowitz, “Reconfigurable future,” ACM Queue vol1, no. 7, 2003.

[11] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator efficiency through
resource partitioning,” ACM SIGARCH Computer Architecture News, vol. 45, no. 2,
pp. 535–547, 2017.

[12] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman, L. Adams, M. Ghandi et al., “A configurable cloud-scale dnn processor for
real-time ai,” in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 1–14.

[13] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “Flowgnn: A dataflow
architecture for real-time workload-agnostic graph neural network inference,” in 2023
IEEE International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 1099–1112.

[14] M. Véstias, “Processing systems for deep learning inference on edge devices,” Conver-
gence of Artificial Intelligence and the Internet of Things, pp. 213–240, 2020.

15

16 BIBLIOGRAPHY

[15] A. C. Elster and T. A. Haugdahl, “Nvidia hopper gpu and grace cpu highlights,”
Computing in Science & Engineering, vol. 24, no. 2, pp. 95–100, 2022.

[16] J. Hao, P. Subedi, L. Ramaswamy, and I. K. Kim, “Reaching for the sky: Maximizing
deep learning inference throughput on edge devices with ai multi-tenancy,” ACM
Transactions on Internet Technology, vol. 23, no. 1, pp. 1–33, 2023.

[17] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based
accelerator design for deep convolutional neural networks,” in Proceedings of the 2015
ACM/SIGDA international symposium on field-programmable gate arrays, 2015, pp.
161–170.

[18] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accelerators,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–12.

[19] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation and dataflow in
fpga acceleration of deep convolutional neural networks,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017, pp.
45–54.

[20] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping convolutional
neural networks on fpgas: A survey and future directions,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[21] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu,
M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-learning framework for fast
exploration of quantized neural networks,” ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), vol. 11, no. 3, pp. 1–23, 2018.

[22] D. Wu, Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie, and Y. Shan, “A high-
performance cnn processor based on fpga for mobilenets,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 2019, pp.
136–143.

[23] J. Ngadiuba, V. Loncar, M. Pierini, S. Summers, G. Di Guglielmo, J. Duarte, P. Harris,
D. Rankin, S. Jindariani, M. Liu et al., “Compressing deep neural networks on fpgas to
binary and ternary precision with hls4ml,” Machine Learning: Science and Technology,
vol. 2, no. 1, p. 015001, 2020.

[24] T. Aarrestad, V. Loncar, N. Ghielmetti, M. Pierini, S. Summers, J. Ngadiuba, C. Pe-
tersson, H. Linander, Y. Iiyama, G. Di Guglielmo et al., “Fast convolutional neural
networks on fpgas with hls4ml,” Machine Learning: Science and Technology, vol. 2,
no. 4, p. 045015, 2021.

[25] Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: Generating high throughput gnn
training implementation on cpu-fpga heterogeneous platform,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
2022, pp. 123–133.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
2017.

[27] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins,
D. Warde-Farley, I. Goodfellow, A. Bergeron et al., “Theano: Deep learning on gpus
with python,” in NIPS 2011, BigLearning Workshop, Granada, Spain, vol. 3, no. 0.
Citeseer, 2011.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings
of the 22nd ACM international conference on Multimedia, 2014, pp. 675–678.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, 2019.

BIBLIOGRAPHY 17

[31] J. Su, J. Faraone, J. Liu, Y. Zhao, D. B. Thomas, P. H. Leong, and P. Y. Cheung,
“Redundancy-reduced mobilenet acceleration on reconfigurable logic for imagenet classi-
fication,” in International Symposium on Applied Reconfigurable Computing. Springer,
2018, pp. 16–28.

[32] J. Liao, L. Cai, Y. Xu, and M. He, “Design of accelerator for mobilenet convolutional
neural network based on fpga,” in 2019 IEEE 4th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), vol. 1. IEEE, 2019, pp.
1392–1396.

[33] G. Li, J. Zhang, M. Zhang, R. Wu, X. Cao, and W. Liu, “Efficient depthwise separable
convolution accelerator for classification and uav object detection,” Neurocomputing,
vol. 490, pp. 1–16, 2022.

[34] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira, X. Ma, E. Shiu,
and O. Mutlu, “Google neural network models for edge devices: Analyzing and mitigating
machine learning inference bottlenecks,” in 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 2021, pp. 159–172.

[35] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha, A. Jagannathan, A. Durg,
D. Nagaraj, B. Kaul, P. Dubey et al., “Scaledeep: A scalable compute architecture for
learning and evaluating deep networks,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017, pp. 13–26.

[36] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers,
“Finn: A framework for fast, scalable binarized neural network inference,” in Proceedings
of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays,
2017, pp. 65–74.

[37] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high performance fpga-based
accelerator for large-scale convolutional neural networks,” in 2016 26th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 2016, pp.
1–9.

[38] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for mapping convolutional
neural networks on fpgas,” in 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 2016, pp. 40–47.

[39] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, “Scalable and modularized rtl
compilation of convolutional neural networks onto fpga,” in 2016 26th international
conference on field programmable logic and applications (FPL). IEEE, 2016, pp. 1–8.

[40] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram: Optimized coarse-
grained dataflow for scalable nn accelerators,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 807–820.

[41] F. Qararyah, M. W. Azhar, and P. Trancoso, “Fibha: Fixed budget hybrid cnn accel-
erator,” in 2022 IEEE 34th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). IEEE, 2022, pp. 180–190.

[42] ——, “An efficient hybrid deep learning accelerator for compact and heterogeneous
cnns,” ACM Transactions on Architecture and Code Optimization.

[43] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang, “Cvt: Introducing
convolutions to vision transformers,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 22–31.

[44] V. Podlozhnyuk, “Fft-based 2d convolution,” NVIDIA white paper, vol. 32, no. 1, 2007.

[45] J. Cong and B. Xiao, “Minimizing computation in convolutional neural networks,” in
International conference on artificial neural networks. Springer, 2014, pp. 281–290.

[46] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4013–4021.

[47] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-
hamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint arXiv:1410.0759,
2014.

[48] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun,
“Fast convolutional nets with fbfft: A gpu performance evaluation,” arXiv preprint
arXiv:1412.7580, 2014.

18 BIBLIOGRAPHY

[49] G. Lu, W. Zhang, and Z. Wang, “Optimizing depthwise separable convolution operations
on gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 1, pp.
70–87, 2021.

[50] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, 2017.

[51] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu,
L. Ceze et al., “TVM: An automated End-to-End optimizing compiler for deep learning,”
in 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 578–594.

[52] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[53] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in
vision,” in Proceedings of 2010 IEEE international symposium on circuits and systems.
IEEE, 2010, pp. 253–256.

[54] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ACM SIGARCH computer architecture
news, vol. 44, no. 3, pp. 367–379, 2016.

[55] R. Xu, S. Ma, Y. Wang, and Y. Guo, “Hesa: Heterogeneous systolic array architecture
for compact cnns hardware accelerators,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 657–662.

[56] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 4510–4520.

[57] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional
neural network for mobile devices,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 6848–6856.

[58] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on target
task and hardware,” arXiv preprint arXiv:1812.00332, 2018.

[59] J. Xiao, Y. Chen, and T. Su, “A mobilenet accelerator with high processing-element-
efficiency on fpga,” in 2021 China Semiconductor Technology International Conference
(CSTIC). IEEE, 2021, pp. 1–3.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[61] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers
in vision: A survey,” ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1–41, 2022.

[62] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
cuda: Is cuda the parallel programming model that application developers have been
waiting for?” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[63] X. Xie, G. Zhao, W. Wei, and W. Huang, “Mobilenetv2 accelerator for power and speed
balanced embedded applications,” in 2022 IEEE 2nd International Conference on Data
Science and Computer Application (ICDSCA). IEEE, 2022, pp. 134–139.

[64] L. Bai, Y. Zhao, and X. Huang, “A cnn accelerator on fpga using depthwise separable
convolution,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65,
no. 10, pp. 1415–1419, 2018.

[65] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An fpga-based cnn accelerator
integrating depthwise separable convolution,” Electronics, vol. 8, no. 3, p. 281, 2019.

[66] S. Yan, Z. Liu, Y. Wang, C. Zeng, Q. Liu, B. Cheng, and R. C. Cheung, “An fpga-
based mobilenet accelerator considering network structure characteristics,” in 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL). IEEE,
2021, pp. 17–23.

[67] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and efficient
neural network acceleration with 3d memory,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2017, pp. 751–764.

BIBLIOGRAPHY 19

[68] F. Qararyah, M. Wahib, D. Dikbayır, M. E. Belviranli, and D. Unat, “A computational-
graph partitioning method for training memory-constrained dnns,” Parallel Computing,
vol. 104, p. 102792, 2021.

[69] D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and A. Mirhoseini,
“A full-stack search technique for domain optimized deep learning accelerators,” in
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 27–42.

[70] X. Cai, Y. Wang, and L. Zhang, “Optimus: towards optimal layer-fusion on deep
learning processors,” in Proceedings of the 22nd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems, 2021, pp. 67–79.

[71] H.-J. Jeong, J. Yeo, C. Bahk, and J. Park, “Pin or fuse? exploiting scratchpad memory to
reduce off-chip data transfer in dnn accelerators,” in Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization, 2023, pp. 224–235.

[72] L. Jia, Y. Liang, X. Li, L. Lu, and S. Yan, “Enabling efficient fast convolution algorithms
on gpus via megakernels,” IEEE Transactions on Computers, vol. 69, no. 7, pp. 986–997,
2020.

[73] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing memory efficiency for
deep convolutional neural networks on gpus,” in SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. IEEE,
2016, pp. 633–644.

[74] S. Dong, X. Gong, Y. Sun, T. Baruah, and D. Kaeli, “Characterizing the microar-
chitectural implications of a convolutional neural network (cnn) execution on gpus,”
in Proceedings of the 2018 ACM/SPEC International Conference on Performance
Engineering, 2018, pp. 96–106.

20 BIBLIOGRAPHY

