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P H Y S I C S

Quantum trapping and rotational self-alignment in 
triangular Casimir microcavities
Betül Küçüköz1†, Oleg V. Kotov1†, Adriana Canales1†, Alexander Yu. Polyakov1, Abhay V. Agrawal1, 
Tomasz J. Antosiewicz1,2, Timur O. Shegai1*

Casimir torque, a rotational motion driven by zero-point energy minimization, is a problem that attracts notable 
research interest. Recently, it has been realized using liquid crystal phases and natural anisotropic substrates. 
However, for natural materials, substantial torque occurs only at van der Waals distances of ~10 nm. Here, we use 
Casimir self-assembly with triangular gold nanostructures for rotational self-alignment at truly Casimir distances 
(100 to 200 nm separation). The interplay of repulsive electrostatic and attractive Casimir potentials forms a stable 
quantum trap, giving rise to a tunable Fabry-Pérot microcavity. This cavity self-aligns both laterally and rotation-
ally to maximize area overlap between templated and floating flakes. The rotational self-alignment is sensitive to 
the equilibrium distance between the two triangles and their area, offering possibilities for active control via elec-
trostatic screening manipulation. Our self-assembled Casimir microcavities present a versatile and tunable plat-
form for nanophotonic, polaritonic, and optomechanical applications.

INTRODUCTION
The quantum nature of van der Waals forces was initially revealed by 
London (1) and subsequently generalized by Casimir and Polder (2). 
Furthermore, Casimir (3) extended this concept to describe the at-
traction between two ideal mirrors, which brought a quantum elec-
trodynamics effect to the macroscopic scale. Following this, Lifshitz 
and co-authors (4, 5) developed a theory that allowed for the calcula-
tion of the Casimir effect between arbitrary planar mirrors, relying on 
the classical optical response of materials. This advancement paved 
the way for predicting both repulsive (6, 7) and lateral Casimir forces 
(8–10) in various contexts.

The introduction of asymmetry allows extending the Casimir ef-
fect to a new degree of freedom, rotation. In this respect, Casimir 
torque led by quantum fluctuations was first predicted by Kats (11) 
and Parsegian and Weiss (12) when considering dielectric media with 
in-plane anisotropy at short separation distances. Later, the approach 
was generalized to longer distances by Barash (13). However, the pre-
dicted torque was small and turned out to be challenging to observe. 
The first Casimir torque measurements were reported only recently 
(14, 15). In these measurements, a solid isotropic interlayer was used, 
which helped support two anisotropic materials at a fixed distance 
and in a parallel configuration. The torque was measured by optical 
characterization of the twist of a liquid crystal, which acted as one of 
the birefringent bodies. Such a setup allowed controlling the sign and 
strength of the torque by choosing an anisotropic substrate material 
and varying the interlayer thickness but did not allow to observe the 
torque directly, since the rotation was hidden inside the liquid crystal. 
Furthermore, the torque between two media with artificial in-plane 
anisotropy, such as lamellar gratings, was predicted to be substantially 
greater than in natural anisotropic materials (16, 17). In particular, 
Guérout et al. (16) obtained the torque per unit area for the infinite 
gratings and accounted for the finite-size effects using the overlap area 

approximation, which works well when the lateral size of the gratings 
is much larger than their characteristic length scales and the gap be-
tween them. Recently, Antezza et al. (17) calculated the Casimir 
torque between finite-sized metallic gratings beyond the overlap ap-
proximation. It turned out that a finite number of gratings periods 
leads to not only oscillations of the torque direction but also a much 
larger magnitude of the torque than intuitively expected. Moreover, 
because of a critical zero-order geometric transition between a two-
dimensional (2D) and a 1D periodic system, the torque per unit area 
can reach extremely large values, increasing without bounds with the 
size of the system, which paves the way to observation of the torques 
at truly Casimir distances ~100 nm and beyond.

An alternative way to observe Casimir torques is offered by the 
optical levitation of anisotropic dielectric nanoparticles (silica in 
particular) in vacuum (18–20). This method has ultrahigh sensitiv-
ity but requires high vacuum conditions and works only with rela-
tively small nanoparticles that can be captured using conventional 
optical tweezers. Therefore, this method does not allow direct im-
aging of the Casimir torque in an optical microscope but instead 
relies on polarization-dependent readout.

We note that the aforementioned works primarily focus on Casi-
mir interactions in dry or vacuum environments. However, the intro-
duction of liquids can be beneficial; in particular, repulsive Casimir 
forces have been successfully demonstrated using a combination of 
high refractive index liquid bromobenzene interfaced between two 
solids, gold and glass substrates (6), as well as in gold-ethanol-teflon 
systems (21). Furthermore, the liquid environment allows to use col-
loids as a platform for studying Casimir interactions. The theoretical 
framework for describing colloidal interactions in solution is often 
based on the DLVO theory, which typically involves electrostatic sta-
bilization to balance attractive van der Waals forces (22, 23). Recently, 
the DLVO theory has been extended to account for retardation effects 
(24, 25).

Van der Waals and Casimir interactions in colloidal solutions play 
an important role not only in their stability but also in self-assembly 
(21, 26–31). Recently, the formation of self-assembled, stable Fabry-
Pérot (FP) cavities has been achieved through a combination of at-
tractive Casimir and repulsive electrostatic interactions (25). This 
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development opens up possibilities for strong light-matter interac-
tions and highlights the intrinsic relationship between the original 
Casimir problem and the planar microcavity problem. Moreover, the 
electrostatic force in the system can be actively modified, enabling 
the tuning of the FP resonance within a certain range without com-
promising cavity stability. The repulsive electrostatic force in the Ca-
simir microcavity can be controlled by adjusting the ion concentration 
of the aqueous solution. This delicate balance between the attractive 
Casimir force and the repulsive electrostatic force not only stabilizes 
the FP cavity in the vertical direction but also enables the formation 
of laterally stable structures.

The Casimir self-assembly approach offers numerous advantages, 
but it also presents certain challenges. These challenges include slow 
diffusion-limited cavity formation, irreproducibility, unscalable fab-
rication, and a lack of integration with microfluidics. One potential 
solution to address these challenges is the use of templated struc-
tures. Substrates that are templated with various nanostructured pat-
terns are commonly used in self-assembled colloidal systems and 
plasmonic arrays (32–35). Implementing this approach could help 
overcome several problematic issues on the road toward realizing 
asymmetry-induced Casimir torques in liquid environments and 
scalable and stable formation of Casimir microcavities in vertical, 
horizontal, and rotational domains. However, to date, the templated 
self-assembly approach has not been explored for Casimir self-
assembly and Casimir torques.

Here, we introduce template-assisted systems for the self-assembly 
of Casimir microcavities, where patterned metallic surfaces on the 
substrate are crucial for achieving lateral Casimir forces and self-
alignment through Casimir torque. We specifically chose an equilat-
eral triangle geometry to realize the Casimir torque, as triangles’ 
symmetry provides the highest possible torque among other equilat-
eral microstructures. We investigate the self-alignment of triangular 
nanoflakes in an aqueous solution at room temperature by monitor-
ing the rotational motion induced by the lateral Casimir force, which 
strives to maximize the overlap area between the top colloidal flake 
and the bottom templated flake on the substrate. This rotational effect 
is substantial and can be observed in real time using an optical micro-
scope. In addition, we study the influence of thermal fluctuations, the 
separation distance between the flakes, and their areas on the stability 
of the obtained microcavities. Our approach not only enables the scal-
ability of the Casimir self-assembly and self-alignment but also paves 
the way for the integration of Casimir torque effects with colloidal 
science, nanophotonics, polaritonics, and self-assembly. On a broader 
account, it is important to mention that Casimir and Casimir torque 
effects studied here could be relevant for the design of micro-
electromechanical devices (36) and in future devices relying on an ef-
ficient and contactless transfer of angular momentum (37–40).

RESULTS AND DISCUSSION
The process of formation of stable Casimir microcavities in aqueous 
solution (25) can be substantially enhanced and more accurately con-
trolled by combining top-down nanopatterned gold areas (referred to 
as “seeds”) on the glass substrate and floating Au flakes in the solution 
(Fig. 1A). This approach allows to control the density, size, and shape 
of the seeds, which is unavailable for the previous method. Over time, 
the floating Au flakes, playing the role of “micromirrors,” diffuse to-
ward the seeds and form dimers due to lateral Casimir forces. More-
over, if the seeds are triangular, the floating flakes not only form stable 

cavities but also geometrically align with the seeds to maximize the 
overlap area (and hence minimize the Casimir potential; see Fig. 1C).

In this work, we focus specifically on equilateral triangles (Fig. 1A). 
Experiments are designed with two main components: (i) glass sub-
strates with the precisely fabricated seeds produced by electron beam 
lithography and (ii) single crystal Au flakes in aqueous solution pro-
duced by wet chemical synthesis (41). Triangular Au seeds with lat-
eral dimensions in the 4 to 10 μm range and 20 nm heights are shown 
in Fig. 1D (also see Methods). The seed approach allows us to control 
the Casimir force on the floating Au flake. Since it is difficult to con-
trol the colloidal growth with high precision (41), chemically synthe-
sized Au flakes are typically obtained in a range of sizes, thicknesses, 
and shapes. To simplify the self-alignment problem, we therefore pre-
select only equilateral triangle flakes of appropriate size by dragging 
them with optical tweezers to the seeds.

Stable dimers emerge as a result of the equilibrium between two 
opposing forces, the attractive Casimir force and the repulsive elec-
trostatic force, occurring at a specific distance denoted as Leq. Fur-
thermore, these dimers support optical FP resonances that can be 
modified by controlling Leq. This is illustrated in Fig. 1E, where varia-
tions in the reflected light’s color are depicted for different Leq values. 
The corresponding reflection spectra, as shown in Fig. 1F, serve as the 
basis for the experimental determination of Leq (see Methods). 
The variation of Leq not only affects the FP resonance but also sub-
stantially influences the Casimir potential, which scales approxi-
mately as L−2.6

eq
 for 30-nm-thick Au flakes (25). The manipulation of 

Leq can be achieved by adjusting the total ion concentration in the 
solution, due to altering the Debye-Hückel screening length of elec-
trostatic repulsion, described by κ−1 (see Methods, Eq. 4). Further-
more, the engineering of geometric patterns on the substrate allows 
to use diverse sizes of triangular Au seeds and flakes (Fig. 1D). This 
approach facilitates an investigation into the influence of overlap ar-
eas on the lateral Casimir force (Fig. 1B).

A specific example of Casimir self-alignment, depicted in Fig. 1G, 
demonstrates the nearly isolated nature of two distinct motions: lat-
eral and rotational (movie S3), enabling their separate analysis. 
Throughout the self-assembly and self-alignment process, the float-
ing Au flake initially exhibits predominantly lateral motion, moving 
toward the Au seed with minimal rotation. This lateral shift aims to 
increase the overlap area. Subsequently, in the second phase, the 
floating flake begins to rotate, ultimately achieving full overlap with 
the seed. It is intriguing to observe the individual contributions of 
these two motions to the overall increase in the overlap area and 
eventually forming a stable dimer (see movies S1 to S3).

In what follows, we analyze both, the dimer formation process and 
the stability of the self-assembled dimers to thermal fluctuations. Fur-
thermore, by using the seed concept, the system’s behavior can be 
controlled by both Leq and the total area of the Au seeds. The forth-
coming sections provide a detailed exploration of how both of these 
parameters affect the Casimir potential, the dimer formation, the self-
alignment process, and the robustness of these alignments to thermal 
fluctuations.

Accelerated dimer formation by lateral and rotational 
Casimir forces
Previously, we elucidated the advantages of using the seed approach 
for achieving lateral motion and enhancing stability in lateral align-
ment with the corresponding seed. In this section, we additionally 
note that the lateral motion of the flake exhibits varying speeds during 
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the dimer formation with the seed. This phenomenon is especially 
evident when the floating flake approaches the seed with the same 
orientation. The lateral Casimir force draws the floating flake toward 
the Au seed, which causes a concurrent increase in the overlap area 
between the flake and the seed, S(t). When the initial orientations of 
the triangles match, dimer formation occurs without any rotational 
motion, simplifying the observation of lateral motion acceleration 
and alterations in acceleration with increasing overlap area. This pro-
cess is evidenced in Fig. 2. Initially, when the overlap area is minimal, 
the flake’s motion is slow and of predominantly Brownian nature. 
Over time, the seed exerts a robust attraction on the floating flake, 
eventually leading to full area overlap, S0. The lateral and rotational 
motions stop when the two triangles achieve perfect overlap and 
alignment. Our data analysis involves extracting the overlap area of 
the seed and Au flake from each frame of the videos (movies S1 and 
S2) and normalizing it with the total area of the seed (or floating 
flake), S(t)/S0, as depicted in Fig. 2A.

Since the separation distance is intricately linked to the Casimir 
potential, the acceleration of the Au flake exhibits a direct dependence 
on Leq. This is demonstrated in Fig. 2A, where we present S(t)/S0 for 
two distinct Leq values. It is important to highlight the critical role 
played by Leq, given its strong influence on the lateral Casimir forces; 
even slight alterations in Leq yield a substantial impact on the accel-
eration dynamics of the Au flake. The inset pictures correspond to 
video frames depicting the exemplary data points. Furthermore, we 

calculate the position changes over time by tracing the displacement 
of the center of mass of the floating flake with respect to that of the 
seed, x(t).

Because of the viscous friction in the liquid and the small mass of 
the flake, the motion under the lateral Casimir force in our case oc-
curs deeply in the overdamped regime (Γx >> ωx, where Γx is the os-
cillator’s lateral damping constant normalized to the mass and ωx is 
the oscillator’s eigen frequency). In this regime, the role of the flake’s 
mass is negligible, and the general solution of the equation of motion 
(see Supplementary Theory and figs. S4 and S5) can be reduced to 
the sum of the fast e−Γ

x
t (microsecond scale) and slow −eω

2
x
∕Γx t (sec-

ond scale) decaying exponents with a negligible role of the former. 
Then, on a time scale of seconds, the lateral (and rotational) motion 
obeys the slow decaying exponential function x(t) = ã[1 − e ω̃(t−tmax)] , 
where ω̃ = ω2

x
∕Γx is a characteristic effective frequency and ã is close 

to the triangle’s edge size a as long as tmax >> ω̃−1 (see Supplementary 
Theory). Notably, the nonharmonic nature of the lateral overlap 
potential results in the inverse curvature of this exponential func-
tion, while in a harmonic case, the decaying solution exhibits an 
ordinary positive curvature x(t) ∼ ae−ω̃t . The effective frequency 
ω̃ =∣U0∣Dx

√

3∕2kBT ~1 Hz is determined by the total potential per 
unit area U0 (with Casimir and electrostatic contributions) and the 
lateral diffusion coefficient Dx. These contributions distinctly depend 
on Leq. Specifically, the absolute value of the total potential grows with 
a decrease in Leq as follows: ∣U0∣ ∼∣Ae−κLeq − BL

−α
eq
∣ , where A and B 
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Fig. 1. Self-assembled triangular Casimir microcavities composed through a combination of top-down lithography and colloidal chemistry. (A) Schematic illus-
tration of the triangular seed approach on the glass substrate and Casimir self-assembly forming a stable Fabry-Pérot (FP) microcavity. (B) The seed approach allows ex-
ploring the effect of overlap area on Casimir self-alignment and its stability to thermal fluctuations. (C) Illustration of the rotation angle (θ) variation as the flakes self-align. 
The angle θ is defined as the angle between the edges of the seed and the floating flake. When the floating flake is fully aligned to the seed θ = 0. (D) Optical bright-field 
image of the templated Au seed arrays on a glass substrate with a = 4, 5, 7, and 10 μm edge lengths, respectively. (E) True-color reflectivity images of self-aligned Casimir 
microcavities using 5-μm seeds recorded at distinct Leq values, denoted as Li for i = 1,2, …,6. (F) Reflection spectra of the self-aligned FP microcavities used to determine 
Leq by the transfer-matrix method. L1 > L3 > L6, i.e., L1 = 199, L3 = 161, and L6 = 123 nm, respectively. (G) Selected video frames of the self-alignment process. The floating 
flake initially approaches the seed in the opposite orientation and begins rotating around t = 9.37 s. The rotation continues until the flakes are fully aligned, after which 
the configuration remains stable.
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are distance-independent constants of the electrostatic and Casimir 
potentials, κ−1 is the Debye-Hückel screening length, and α ≈ 2.6 is 
the Casimir potential power law for 30-nm-thick Au flakes (25). On 
the contrary, the lateral diffusion coefficient decreases with a decrease 
in Leq as D

x
∼ L

β
eq . However, according to previous hydrodynamic 

simulations, it exhibits a slower dependence with distance, with β < 1 
(31). Consequently, the effective frequency ω̃ is expected to increase 
with a decrease in Leq, so the lateral motion occurs faster when Leq is 
smaller, as illustrated by the exponential fits depicted in Fig. 2B (the 
fitting procedure is described in Methods).

In Fig. 2C, we use the same method as in Fig. 2A but for a different 
dimer configuration. As depicted in the plot, lateral motion plays a 
dominant role until ≈7 s mark, at which point the floating flake is 
found exactly on top of the seed but with an opposing orientation 
(θ ≈ 60°). From that point on, the rotational motion becomes dominant, 
causing the floating flake to rotate around the vertical axis under the 
influence of the Casimir torque until it achieves full alignment (see 

movie S3). Since the lateral motion becomes negligible after the first 
7 s, we find it reasonable to analyze solely rotational motion by tracking 
changes in θ(t) over time, as depicted in Fig. 2D. Similar to the lateral 
displacements, this rotational motion conforms to decaying exponen-
tial function with an effective ~1 Hz frequency (see Supplementary 
Theory and Methods), starting from a state of complete misalignment 
(θ ≈ 60°) and culminating in a state of perfect alignment (θ = 0°). It is 
worth mentioning that in general, the lateral and rotational motions 
are coupled and in most cases occur simultaneously, creating a system 
that is too complex to analyze (see fig. S8). However, in a few particu-
lar cases (such as the ones illustrated in Figs. 1 and 2), we observed the 
two motions in a nearly isolated fashion, which allowed for their inde-
pendent analysis.

Thus, our method results in the precise positioning (trapping) of 
floating Au flakes within three-dimensional space, offering control 
over their vertical, horizontal, and rotational orientations. This unique 
quantum trapping approach harnesses quantum vacuum fluctuations, 
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Fig. 2. Formation of stable Casimir microcavities along lateral (x) and rotational (θ) coordinates. (A) Evolution of the overlap area with time, S(t)/S0, due to the Casimir 
self-alignment at two distinct equilibrium distances, Leq = 160 nm and Leq = 110 nm. The Au seed size is 7 μm in both cases. Insets depict exemplary video frames corre-
sponding to data points marked on the S(t)/S0 graph. (B) Evolution of lateral displacement between the centers of mass of the floating flake and the seed with time, x(t), 
for the dimers shown in (A), eventually leading to a complete overlap, i.e., x = 0, in both cases. Black curves are exponential fits of the experimental displacement data. 
(C) Evolution of the overlap area between the seed and Au flake with time, S(t)/S0, marking distinct phases of lateral and rotational motions for an Leq = 118 nm dimer. The 
Au seed size is 7 μm. Insets depict exemplary video frames corresponding to data points marked on the S(t)/S0 graph. (D) Evolution of angle between the seed’s and the 
floating flake’s edges with time, θ(t), illustrating the self-alignment process. Black line marks an exponential fit of the experimental alignment data.
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rather than real fields (as in, e.g., optical tweezing), for particle ma-
nipulation (21, 25). Despite the inherent influence of thermal fluctua-
tions, the trapping potential created by the Casimir effect exhibits 
stability, enabling controlled particle confinement. In the subsequent 
sections, we delve into an in-depth investigation of thermal fluctua-
tions, specifically focusing on their magnitude and the resulting par-
ticle displacement, especially concerning rotational motion around 
the vertical axis.

Calculation of the lateral and rotational Casimir effect 
between two triangular flakes
To improve our understanding of the observed phenomenon and 
confirm its primary association with the Casimir effect, we conducted 
both analytical and numerical computations focusing on the in-plane 
motion of flat triangular Au flakes induced by vacuum fluctuations. 
The analytical calculations were performed using the Lifshitz formal-
ism (4, 5) and involved several critical approximations to model the 
underlying dynamics.

First, the Casimir-Lifshitz potential ULif per unit area for the sys-
tem comprising two identical infinite Au planar mirrors immersed in 
an aqueous solution and separated by a gap of thickness L was calcu-
lated using the following expression

where the integration was performed over the imaginary frequencies 
ξ = iω/c, normalized by the speed of light c, and the wave vector 
components along the mirrors k∥. The summation involved both p- 
and s-polarizations. Here, rp,s(iξ, k∥, dAu) are the Fresnel reflection 
coefficients for the gold plates evaluated at various wave vectors, po-
larizations, and mirror thicknesses dAu. The dielectric functions of 
gold εAu(iξ) and water εH2O(iξ) were evaluated at the imaginary 
frequencies.

Second, to account for the shape and size of the floating flakes and 
seeds, we used the overlap approximation. This approximation as-
sumes that the Casimir-Lifshitz potential is proportional to the overlap 
area between the flake and the seed while neglecting any edge effects. 
In this approach, the lateral potential can be expressed as follows

where x and y are the in-plane displacements, θ is the in-plane rota-
tion angle, S(x, y, θ) is the overlap area between the flake and the 
seed, and ULif is the Casimir-Lifshitz potential per unit area evalu-
ated at Leq.

Third, we assume that the lateral displacements (along x or y) 
and rotations (around z by angle θ) are independent of each other, 
allowing for factorization. Certainly, this assumption is valid only in 
some particular cases, e.g., the ones analyzed in Figs.  1 and 2. In 
general, lateral and rotational motions are not independent and re-
quire more involved numerical simulations, as discussed below. In 
the independent scenario, however, we arrive at simplified forms for 
the potentials: Ex(x) ≈ S(x)ULif(Leq) for lateral displacement (along 
x) of perfectly aligned triangles and Eθ(θ) ≈ S(θ)ULif(Leq) for rota-
tion of triangles with the same position of the center of mass. In our 
experiments, we focused on equilateral triangles, where the corre-
sponding overlap areas are expressed as follows

where S0 is the area of an equilateral triangle with the edge a. Lateral 
Casimir forces and Casimir torques can be obtained by differentiat-
ing Ex and Eθ, correspondingly, along their respective motions (see 
Supplementary Theory).

To assess the significance of the edge effects, we conducted a com-
parative analysis between the analytical calculations within the overlap 
approximation and numerical simulations using the code SCUFF-EM 
(42, 43). Specifically, we simulated the relative rotation and in-plane 
translation of two vertically trapped Au equilateral triangles immersed 
in an aqueous solution, where the Casimir and electrostatic forces at 
Leq are balanced. Figure  3 presents the simulation results alongside 
analytical calculations. Because of the symmetry of the equilateral tri-
angles, we considered rotation angles ranging from 0° to 60°. Examin-
ing the rotational dependence of the Casimir energy normalized to the 
corresponding triangle surface area at zero x and y displacements, it is 
evident that the numerical curve approaches the analytical approxima-
tion as the triangle size increases. For triangles with a ~ 8 μm, the over-
lap approximation performs exceptionally well for θ > 10° (Fig. 3A). 
As mentioned earlier and detailed in Supplementary Theory, the lat-
eral Casimir potential has a nonharmonic shape in the overlap ap-
proximation. However, at small angles, the edge effects captured by 
SCUFF-EM simulations become prominent, resulting in a quasi-
harmonic potential, as shown in Fig. 3A (see also Supplementary The-
ory and figs. S6 and S7). This effect is even more pronounced for the 
Casimir torque, normalized to the overlap area S(θ,0) (Fig. 3B). Here, 
the overlap approximation performs well at ~θ > 20°. However, at 
small angles, the edge effects become considerable. The torque cannot 
surpass the limit set by the overlap approximation at any angle. Fur-
thermore, the torque reaches its maximum at an angle where an opti-
mal balance between edge effects and increased overlap area is attained. 
With increasing triangle size, the role of edge effects diminishes, caus-
ing the optimal angle to decrease, and eventually approach zero for 
infinite triangles. Notably, unlike the anisotropic finite-sized systems 
considered by Antezza et al. (17), we observe high accuracy of the 
overlap approximation for large triangles owing to their isotropy.

For nonzero in-plane displacements of the triangles, the discussed 
phenomena become even more intricate. Figure 3 (C and D) shows 
the combined influence of translation and rotation on the Casimir 
energy and torque, respectively. The energy’s dependence on displace-
ments consistently reaches a minimum in the center at x = y = 0 
(Fig. 3C), corresponding to the stable configuration of the system and 
the lateral Casimir trapping. As rotation is introduced (θ ≠ 0), the 
energy colormap undergoes a shape transition from hexagon to tri-
angle forms, although this does not lead to qualitative changes. The 
role of rotation is evident in the torque colormaps (Fig. 3D). For a 
nonzero rotation angle, in the region of zero displacements, a pro-
nounced spot of maximum torque emerges, aligning with the earlier 
discussed scenario of rotation at zero displacements. Even at zero ro-
tation, the interplay between the system’s geometry and relative dis-
placements may lead to nonvanishing torques. This effect disappears 
on the symmetry axes of the rotated triangle, having different signs on 
opposite sides of these axes. In addition, at θ = 60°, the rotated system 
becomes so symmetric that the torque is entirely compensated in the 
large area around zero displacements. For all intermediate angles (ad-
ditional data shown in the Supplementary Materials) between 0° and 

(1)

Elat(x, y, θ) ≈ S(x, y, θ)ULif(Leq) (2)

S(x)∣θ=0 = S0

�

a−x

a

�2

, S(θ)∣x=0 = S0
tg(π∕3 − θ∕2) − tg(θ∕2)

√

3
(3)
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60°, a mixed pattern emerges, with maximum torque at the center, 
surrounded by areas of effective torque induced by displacements and 
rotations. These areas deviate from the symmetry axes of the rotated 
triangle but maintain alternating torque signs around the central 
maximum. Consequently, as the flake moves with simultaneous dis-
placement and rotation, additional torque in the opposing direction 
may arise, resulting in a crawling-like motion.

Impact of equilibrium distance, seed area, and thermal 
fluctuations on stability of Casimir self-alignment
The self-alignment experiments are conducted in the Leq range 
spanning ~100 to 200 nm, where conditions allow establishing a 
stable equilibrium and a sufficiently deep trapping potential. In 
each self-alignment measurement, Leq is precisely determined by 
assessing the reflection spectrum of the stable FP microcavity, 
Fig. 1F, and subsequently fitting the spectrum using the transfer-
matrix method (see Methods).

To investigate the impact of Leq on self-alignment, we maintain a 
fixed seed size, a = 4 μm, while choosing a floating flake that matches 
this seed size. Optical tweezers are used to bring the flake into close 
proximity with the seed and then allow it to freely diffuse until the 
Casimir potential ensures the formation of a stable dimer. Subse-
quently, we track the dynamics of the angle between the triangles over 
time, θ(t). When θ = 0, the floating Au flake perfectly aligns with the 
seed, and the Casimir potential is minimized, thus corresponding to 
the equilibrium position, as illustrated in Fig. 3A.

Figure 4 (A to D) illustrates the variations in θ(t) for four dis-
tinct Leq values: 195, 180, 138, and 114 nm, respectively, as a result 

of thermal fluctuations. Specifically, in Fig. 4A, the fluctuations in θ 
are the strongest among situations presented in Fig. 4. This is at-
tributed to the fact that at this Leq, the thermal energy (kBT) ap-
proaches the depth of the trapping potential, leading to more 
pronounced deviations in θ(t) from its equilibrium position due to 
thermal fluctuations. As a result, the floating flake exhibits fluctua-
tions of up to ±20° at different points in time [see θ distributions 
and standard deviations (SDs) to the right of the corresponding 
θ(t) plots].

The fluctuations of θ decrease upon reduction in Leq. To demon-
strate that, we fit the experimental histograms of θ(t) to the normal 
distribution functions and find that the variances, denoted as σθ, 
grow with Leq, as depicted in Fig. 4E. The reason for this lies in the 
steep dependence of the trapping Casimir potential on the distance, 
UC ∝ L−2.6

eq
 (25) as discussed above. Furthermore, we determine σθ 

theoretically by substituting the analytical Casimir-Lifshitz potential 
from Eq. 1 into the equation for the mean square displacement using 
Gibbs formalism (see Methods, Eq. 5). Combined with the overlap 
approximation and the Casimir potential from SCUFF-EM simula-
tions, we arrive at results that are qualitatively similar to experimen-
tal observations. Our theoretical results are especially close to the 
experimental findings at small Leq; however, they underestimate σθ 
approximately twofold (for SCUFF-EM simulations) at large Leq. 
This discrepancy can be attributed to electrostatics, which was not 
included in our calculations and modeling, given its relatively weak 
contribution compared to Casimir forces. The relative contribution 
of the electrostatic part to the total potential increases with Leq, con-
tributing to the growing mismatch at large separations. Furthermore, 

A C

B

R

R

D

Fig. 3. Calculation of the lateral Casimir interactions of two gold equilateral triangles. The triangles that have edge a, thickness 40 nm, and surface area S0 are verti-
cally trapped at Leq = 200 nm and immersed in aqueous solution, for the relative rotation by angle θ and/or translation by r = (x, y). (A) Casimir energy versus the rotation 
angle of one triangle around the center of mass. The energy normalized to triangle surface area S0 increases with size until the limit determined by the overlap area, S(θ, 
r = 0), of two mutually rotated triangles. (B) Casimir torque Tz around an axis normal to the triangle surface and going through the center of mass normalized to the overlap 
area S(θ, 0) versus θ, exhibiting an asymmetric increase toward small angles. (C and D) Casimir energy and torque for two triangles (a = 4 μm) as a function of both rotation 
around the center of mass (θ = 0°,  30°,  and 60°) and translation (x, y). The dashed lines mark the symmetry axes of therotated triangle.
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Fig. 4. Impact of equilibrium distance and flake’s area on stability of self-alignment to thermal fluctuations. Variation of angle θ(t) in time for stable dimers of a = 4 μm 
seed and a floating flake of similar size for Leq = 195 nm (A), Leq = 180 nm (B), Leq = 138 nm (C), and Leq = 114 nm (D). The distributions of θ are shown on the right of the 
corresponding time traces and are fitted to a normal distribution. Insets depict exemplary video frames corresponding to data points on the graph. (E) SD (σθ) versus Leq. 
Variation of angle θ(t) in time for stable dimers at Leq ≈ 195 nm and seeds with lateral sizes of 4 (F), 5 (G), 7 (H), and 10 μm (I). In all cases, the sizes of floating flakes were 
approximately the same as the corresponding seeds. The normal distribution of the θ is shown on the right side of each panel. Insets images indicate the video frames to 
the corresponding data points on the graph. (J) SD, σθ, for various Au seed areas. In (E) and (J), the simulation points are obtained using SCUFF-EM and the calculation 
curves, with the Lifshitz formalism in the overlap approximation.
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the difference between the analytical and numerical results reflects 
the significance of the edge effects, especially at small deviations 
from equilibrium. In addition, the accuracy of the overlap approxi-
mation not only increases with the size of the flakes (a), as we dis-
cussed earlier, but also with a decrease in Leq. In other words, the 
analytical approximation’s accuracy increases with the ratio a/Leq. 
Last, it is important to note that at small displacements (x and y), the 
Casimir torques [and hence θ(t)] are almost independent of displace-
ments (see Fig. 3D), justifying our analysis.

The magnitude of the trapping potential scales with the area 
overlap of the seed and the floating Au flake. This is a fundamental 
reason for the rotational self-alignment observation in the seed 
configuration; Au flakes in the aqueous solution strive to maximize 
their overlap areas with the seeds due to strong Casimir attraction. 
As previously, we preselect the flakes such that they match the 
shape and size of the corresponding seed, which simplifies experi-
ments and allows for precise tracking of the rotational motion of 
the floating flake θ(t) (see movie S4).

In the subsequent study, we probe the stability of the trapping po-
tential to thermal fluctuations for a fixed Leq ≈ 195 nm, as a function 
of the total area of the seed, S0 (Fig. 1B). We specifically investigate 
four different seed sizes in the range between 4 and 10 μm, depicted 
in Fig. 4 (F to I). As expected from the Casimir energy calculations 
(see Fig. 3A), increasing the area of Au seeds increases the Casimir 
energy (and the depth of the trapping potential), which results in 
more stable microcavities.

The stability dependence on the overlap area is shown in Fig. 4 (F 
to I) by plotting the dynamics of θ(t) caused by thermal fluctuations 
for a = 4, 5, 7, and 10 μm triangle seed sizes. The SDs, σθ, obtained 
from fits of θ(t) histograms to the normal distribution function, indi-
cate that the stability strongly depends on the area overlap. In par-
ticular, the biggest flakes display the most pronounced stability, i.e., 
the stability is inversely proportional to the flake area, or more accu-
rately, σθ ∝ S−1.2

0
 (Fig. 4J). This aligns with the analytical calculations 

and numerical simulations discussed in the previous paragraphs. 
However, in this case, the difference between the calculations and 
measurements remains consistent across different overlap areas. This 
further validates that the discrepancy is caused by the contribution of 
the electrostatic potential. These results demonstrate that control of 
lateral stability of the FP cavity can be achieved by selecting various 
seed sizes while maintaining the same separation distance (see 
movie S5).

Last, we note that the stability of the self-alignment process is not 
notably affected by the Au flake (or seed) thickness within the range 
of 20 to 35 nm used in our experiments. The resulting variance of 
the Casimir potential is less than 5% (see fig. S9, where we present a 
theoretical calculation based on Lifshitz formalism).

In conclusion, vertically and laterally stable self-assembled and 
rotationally self-aligned Casimir microcavities can be formed by 
equilibrating two opposing forces: attractive Casimir and repulsive 
electrostatic. The so-formed microcavities exhibit optical FP reso-
nances in the visible spectral range, observed as pronounced reflec-
tion colors. Control of the self-alignment of the cavity is demonstrated 
by using triangular templated substrates and is studied upon variation 
of two independent parameters: (i) the equilibrium distance, Leq, be-
tween the floating flake and the templated substrate, and (ii) the flake 
area, S0, by varying the seed and the floating flake sizes. These two 
parameters are straightforward to control; therefore, our method 
offers flexibility to achieve the desired conditions for liquid-phase 

Casimir torque experiments. Furthermore, we investigated the stabil-
ity of self-alignment to thermal fluctuations, which was assessed by 
examining θ(t) as a function of Leq and S0. We find that our experi-
mental observations are in good agreement with Casimir-Lifshitz 
theory and with SCUFF-EM numerical modeling. This work presents 
a self-assembly and self-alignment platform based on quantum trap-
ping and templated substrates that is suitable for Casimir torque ex-
periments. Furthermore, the presented FP microcavities are stable at 
room temperature for as long as they have been monitored, which 
offers a possibility of their future use in nanomachinery (21), self-
assembly (28), optomechanics (44), polaritonic chemistry (45), and 
other potential cavity-inspired applications (46–48).

METHODS
Seed fabrication
All seed samples were prepared on thin (170 μm) microscope glass 
coverslips. The glass coverslips were cleaned in acetone, 2-propanol, 
and water at 50°C in an ultrasonicator for 15 min for each solvent. 
Subsequently, the coverslips were dried using compressed nitrogen, 
followed by oxygen plasma cleaning. Triangular Au seed arrays with 
various edge sizes were fabricated using standard electron-beam li-
thography (Raith EBPG 5200). To provide the adhesion of the Au to 
the glass substrate, first, a 2-nm Cr layer was evaporated. Subsequent-
ly, a 20-nm Au layer was evaporated. Both layers were evaporated us-
ing the Kurt J. Lesker PVD 225 tool.

Gold flake synthesis and KBr preparation
Single-crystal Au flakes were synthesized using an aniline-assisted 
method in ethylene glycol (EG) (41). This synthesis method is pre-
ferred because of its ability to produce colloidal microflakes with a 
large aspect ratio between their lateral size and thickness. In brief, the 
synthesis protocol includes the following steps. First, a 0.72 mM 
HAuCl4 ⋅ 3H2O solution in 50 ml of EG is prepared in a glass bottle 
and heated to 95°C in a water bath for 20 min. Second, a 0.1 M aniline 
solution in EG is added to the heated solution under mild stirring 
until the molar ratio reaches 2:1 of aniline to gold. To reach this molar 
ratio, a 0.72 ml of 0.1 M aniline is added in our case, since our initial 
solution contained a 50 ml of 0.72 mM HAuCl4 ⋅ 3H2O. When the 
aniline is mixed homogeneously, the reaction is kept undisturbed in a 
water bath at 95°C for 3 hours. This synthesis protocol yields Au flakes 
with a high aspect ratio, with flake thicknesses ranging from 20 to 35 nm 
and lateral dimensions varying from 3 to 15 μm. After successful 
synthesis, the solution contains a large number of precipitated Au 
flakes on the bottom or walls of the bottle. In addition, the synthesis 
yields a large amount of by-product, quasi-spherical Au particles in 
the solution. Therefore, it is important to remove the spherical parti-
cles and to replace the EG with cetyltrimethylammonium bromide 
(CTAB) aqueous solution. This replacement requires several steps of 
washing. Specifically, after the Au flakes sediment, half of the volume 
of the supernatant is removed and replaced with the same volume of 
pure 20 mM CTAB aqueous solution. The new mixture is shaken to 
disperse the CTAB and form a double layer on the surface of the Au 
flakes. This step is repeated several times until most of the spherical 
particles are removed and EG is replaced with the 20 mM CTAB solu-
tion. Once the replacement of EG is completed, the CTAB concentra-
tion in the solution is further diluted to the 1 mM level. The final 
synthesis batch is stored at this CTAB concentration for subsequent 
use. In self-alignment experiments, the CTAB concentration was 
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further diluted to 0.1 mM and the final ionic environment was ad-
justed with an aqueous solution of potassium bromide (KBr). To do 
that, KBr salt is dissolved in deionized water in the desired concentra-
tion and subsequently mixed with the 0.1 mM CTAB. The total ion 
concentration in solution is a parameter that is directly connected to 
the Debye-Hückel screening length, defined as

where εH2O(0) is the static permittivity of water, ε0 is the vacuum per-
mittivity, q0 is the elementary charge, Ctot is the total ion concentra-
tion with valence z (in this case, ions are CTA+ and Br− from CTAB 
and K+ and Br− from salt; therefore, z = 1 in all cases).

Optical measurements
All reflectivity and self-alignment measurements were performed 
using an inverted microscope (Nikon Eclipse TE2000-E) equipped 
with an oil immersion 100× objective with an adjustable numerical 
aperture (NA = 0.5 to 1.3). All reflection spectra are taken at quasi-
normal incidence using NA = 0.5 and a halogen light source, and the 
reflected spectrum is directed to the fiber-coupled spectrometer 
(Andor, Shamrock 500i), equipped with a charge-coupled device 
camera (Andor, Newton 920). The equilibrium distance, Leq, was as-
sessed by fitting the experimentally measured reflectivity spectra 
with the transfer-matrix method (see figs. S1 to S3).

For the selection of the Au flakes with the correct size and shape, 
the optical tweezers method was used. To trap the Au flakes, a λ = 
447 nm continuous-wave laser with a power of 9 mW was focused on 
the desired flake through a 100× objective (NA  =  1.3). All self-
alignment data are collected through recording videos using a Thor-
labs DCC1645C-HQ camera and each video frame is analyzed using 
MATLAB, allowing to extract the dynamics of angle, θ(t), for subse-
quent analysis of the Casimir self-alignment process.

Fitting procedure
To fit the experimental observations of lateral and rotational micro-
cavity formation observed in Fig. 2, we used the decaying exponen-
tial solution described in detail in the Supplementary Theory. The 
expression for the lateral motion reads: x(t) = ã[1 − e ω̃(t−tmax)] , where 
ã = a(1−e−ω̃tmax )−1 and a is the triangle’s edge size. The fitting pa-
rameters for the lateral motion shown in Fig.  2B are as follows: 
ã160 = 6.2 μm, ω̃160 = 0.25s−1 , and tmax = 10.3 s for Leq = 160 nm 
cavity; and ã110 = 7.7 μm, ω̃110 = 0.33s−1 , and tmax = 11.7 s, for Leq = 
110 nm cavity, respectively. For rotational motion, shown in Fig. 2D, 
we similarly use θ(t) = θ̃0[1 − e ω̃(t−tmax)] , where θ̃0 = θ0(1−e−ω̃tmax )−1 
and θ0 = 60°. The extracted parameters are: θ̃0 = 66◦ , ω̃ = 0.7s−1 , and 
tmax = 3.5 s.

Calculations of the angular spread
To theoretically determine the SD of angle θ describing rotations un-
der the lateral Casimir potential E(θ) and subjected to thermal fluc-
tuations at temperature T, we used the expression for the mean 
squared displacement in Gibbs formalism

where we account for the symmetry of the potential, implying 〈θ〉 = 
0. Substituting the analytical Casimir-Lifshitz potential from Eq. 1, 
combined with the overlap approximation E(θ) ≈ S(θ)ULif(Leq) and 
the Casimir potential from the SCUFF-EM simulations, we obtained 
the final results denoted as calculations and simulations, respectively, 
in Fig. 4.

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Note S1
Legends for movies S1 to S5
Supplementary Theory

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S5
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