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Due to the rapid adoption of Deep Neural Networks (DNNs) into larger software systems, testing of DNN-
based systems has received much attention recently. While many different test adequacy criteria have been
suggested, we lack effective test input generation techniques. Inputs such as images of real-world objects and
scenes are not only expensive to collect but also difficult to randomly sample. Consequently, current testing
techniques for DNNs tend to apply small local perturbations to existing inputs to generate new inputs. We
propose SINVAD (Search-based Input space Navigation using Variational AutoencoDers), a way to sample
from, and navigate over, a space of realistic inputs that resembles the true distribution in the training data. Our
input space is constructed using Variational Autoencoders (VAEs), and navigated through their latent vector
space. Our analysis shows that the VAE-based input space is well-aligned with human perception of what
constitutes realistic inputs. Further, we show that this space can be effectively searched to achieve various
testing scenarios, such as boundary testing of two different DNNs or analyzing class labels that are difficult
for the given DNN to distinguish. Guidelines on how to design VAE architectures are presented as well. Our
results have the potential to open the field to meaningful exploration through the space of highly structured
images.
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1 INTRODUCTION

Over the past decade, Deep Neural Networks (DNNs) have risen as the dominant scalable func-
tion approximators, starting with image classification [23]. As such, they were employed over a
diverse range of disciplines, from music generation [1] to board game play [25]. The seeming accu-
racy of DNNs in perception problems in turn led to use in safety-critical domains: one prominent
example being autonomous driving [7, 8].

However, one has reason to be concerned about widespread use of DNNs in safety-critical sys-
tems: their properties are difficult to determine, and even if a fault is uncovered, it is unclear what
one can do to fix them. Adversarial examples [6, 13, 24, 29] provide a good demonstration of this:
sophisticated noise is added to inputs, inducing incorrect behavior in DNNs. Adversarial exam-
ples are both widespread (appearing in multiple domains, including speech recognition [36] and
natural language processing [17]) as well as physically feasible [3].

This has made it increasingly clear that neural networks must be thoroughly tested; indeed,
much work has been dedicated to propose adequacy criteria for DNN testing. Pei et al. [30] check
the activation status of neurons over a test suite; they argue that a test suite should activate as many
of the neurons as possible. Ma et al. [27] suggest that a test suite should elicit a diverse range of
activations in the neurons. Kim et al. [20] approximate the distribution of activation values in the
training dataset, and posit that a test suite should have a balanced amount of inputs that elicit
in-distribution activations and out-distribution activations.

While some of the aforementioned work also suggests how to generate new tests based on their
adequacy criteria, a problem that has seen less light is that of generating realistic tests. We argue
that for DNNs, the utility of testing hinges on the realism of the generated tests. Recalling the
adversarial examples from above, there are two issues that are in need of answers. One issue is that
it is unclear what one can do to fix discovered erroneous behavior. The other, more important issue
is whether such falsifying inputs are important for DNN testing at all; it is unlikely the carefully
crafted noise that is used in adversarial images would appear in practice. The ultimate goal of
testing is to find realistic situations in which the system under test fails, which is a fundamental
principle that should also apply to DNNs. This is why we believe that when making new test
inputs, we should specifically search over the space of realistic images, instead of over a space
that encourages small perturbations. Such a search technique would allow us to focus our testing
resources on plausible usage scenarios that reflect the actual usage of our system.

To this end, we present SINVAD (Search-based Input space Navigation using Variational

AutoencoDers). SINVAD first learns the space of realistic images through Variational Autoen-

coders (VAEs) [21], an approach that can approximate the distribution of training images. Once
trained, we use the latent vector space of the trained VAE to navigate within the space of realistic
images. The aim of doing so is to be able to generate test data that is realistic to the human eye,
and by virtue of being so relevant to the task on hand. To motivate our approach, we perform
qualitative experiments demonstrating that optimization over the entire image space yields un-
interpretable images that look like static noise; meanwhile optimization with SINVAD results in
realistic images, which are thus more relevant to the target dataset.

The fact that SINVAD searches a space of realistic images is central to our academic contribution.
Therefore, we perform a large-scale human study to verify that SINVAD is capable of searching the
space of realistic images. To demonstrate that SINVAD’s search space is aligned with the realistic
image space throughout, we ask human evaluators to rate images that were specifically designed to
be confusing to a DNN, and check whether they are also confusing to the human eye. Specifically,
we devise a questionnaire that asks whether the presented image looks like a pair of categories.
This is to verify that SINVAD encodes a realistic space and is not simply memorizing images. The
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questionnaire’s results indicate that humans rate SINVAD-generated images as more confusing
than other image generation techniques. Specifically, they are identifiable as more than one class
of a given classification task, and are realistic in the sense that they would be identified with
both classes simultaneously. Furthermore, humans would take a longer time to process SINVAD-
generated images, as another indicator of their confusion. These results support the hypothesis
that SINVAD is indeed well-aligned with the realistic image space.

Knowing that SINVAD is capable of generating realistic images, more so than other image gen-
eration techniques, we demonstrate the flexibility of SINVAD by searching for inputs proximate
to the decision boundary of the DNN. Our results establish that SINVAD can aid the boundary
testing of DNNs by generating images on the semantic boundary of labels.

We discuss a specific case that demonstrates the usefulness of modelling realistic images. Noting
that abstract classes have a “perceptual distance” in practice (for example, one may have a difficult
time drawing a 3 that looks like a 4, but it is easier to draw a 4 that looks like a 9), and that search
using SINVAD can capitalize on such characteristics, a test generation technique that finds pairs
of labels that are prone to confusion by the DNN under test is presented. Our experiments verify
that the pairs that it finds roughly match the perceptual similarity between categories. Further, we
quantitatively find that when training data labels are mixed, the provided technique using SINVAD
can identify such issues more quickly than the default test dataset.

Additionally, we present SINVAD-generated results when the VAE architecture is varied, and
provide practical guidelines for how to construct VAEs when doing test generation for DNNs. We
conclude our article by providing a discussion of threats to validity and limitations of our work.

The contribution of the article is as follows:

— We introduce SINVAD, a novel method to search through the space of realistic images using
a VAE-based representation, and show it to be a valid way of searching for new inputs with
desirable properties while maintaining realism;

— We perform a large-scale human study to show that images made by SINVAD are realistic
and semantically confusing to people, indicating that the space SINVAD searches is close to
the realistic image space;

— We demonstrate the capability of SINVAD to perform boundary testing, illustrating the flex-
ibility of SINVAD as a space to help test generation;

— We present a technique using SINVAD that produces tests capable of identifying training
problems earlier than the provided test set;

— We propose guidelines on VAE architecture for test generation use.

This article is an extension of our workshop paper [18] that introduced SINVAD. It has been
extended with the following contributions:

— We have performed a large-scale human study to verify that the images generated by SIN-
VAD are indeed realistic and meaningful to human perception, evaluating 800 images with
more than 500 human evaluators and 18,000 evaluations.

— We extend the existing results under different settings to verify that SINVAD can reliably
perform, in particular by performing experiments on the complex ImageNet-32 dataset of
down-scaled real-world images.

— We perform a study of how different VAE architectures can influence image generation
results.

The remainder of this article is organized as follows. Section 2 introduces the related literature,
providing background to this article. Section 3 presents nomenclature, and defines the problem
of searching the space of realistic inputs in a formal way. How SINVAD performs search in the
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realistic input space is subsequently explained. Section 4 presents the research questions we aim
to answer, with experiments that are described in Section 5. Section 6 presents threats to validity,
Section 7 provides limitations and future directions of our work, and Section 8 concludes.

2 BACKGROUND

2.1 Testing of DNNs

As emphasized in the Introduction, the increasingly widespread use of DNNs in safety-critical
domains has necessitated testing and verification algorithms that handle them. Much work has fo-
cused on providing adequacy criteria, and identifying which inputs are likely to reveal erroneous
behavior. The first work in this line introduced Neuron Coverage [30], in which the activation
status of each neuron in a DNN is measured. The authors go on to introduce various test gener-
ation strategies that can hopefully increase the neuron coverage. While neuron coverage used a
single threshold over all neurons, Ma et al. [27] argue that a good test suite would elicit diverse ac-
tivation values for each neuron; this is measured using their kMNC measure. Moving away from
pre-set threshold values, Kim et al. [20] suggest using the activation distribution caused by the
training dataset, and to use it to evaluate test suites. Specifically, the argument is that a test suite
should contain inputs of diverse levels of surprise, defined by the likelihood in the training activa-
tion distribution. All such work is different from ours, as they primarily use the raw pixel space
to search over images. Meanwhile, Zhang et al. [43] introduce DeepRoad, in which style trans-
fer techniques are used to generate new test images. Their approach requires separate datasets
for each situation to model. Another branch of work aims to augment inputs based on a certain
set of rules to enhance the training process. One example is Cubuk et al. [10], who describe Au-
toAugment, which uses reinforcement learning and a set of image augmentation rules to discover
which set of image rules leads to the best validation performance. A key difficulty with applying
AutoAugment is that a (potentially large) network needs to be trained hundreds to thousands of
times to yield good data augmentation results. Furthermore, for AutoAugment, a set of manually
defined image transformations must be provided, from which a reinforcement learning algorithm
will choose which transformations are most effective in improving neural network performance,
unlike SINVAD, which does not require such manual components.

More recently, Byun et al. [4, 5] propose a VAE-based framework to facilitate the testing of
DNN systems. While their work and ours share many components, there are key differences.
Most importantly, while Byun et al. [5] focus on generating tests using the VAE space and Byun
et al. [4] focus on how we can use the characteristics of the vector space, our focus is on how we
can use the VAE latent space as a search space. For example, Byun et al. [5] use conditional VAEs
(like Song et al. [38]’s AC-GAN use) that generate images of a specific class; thus it is difficult to
make semantically confusing images as SINVAD does. Further, Riccio and Tonella [32] use Bezier
curves to model image space and evaluate how well neural networks perform. While they also
attempt to model the realistic image space, we implement that space with VAEs and they imple-
ment it with Bezier curves. We argue that SINVAD does not require complex rule-based models of
the underlying data, and hence has the potential to be more general—e.g., it would be difficult to
model complex datasets such as ImageNet with manually specified models, whereas SINVAD can
operate on such datasets with the appropriate selection of generative model.

In addition to the dynamic techniques introduced above, there are several methods that aim
to verify properties of neural networks. Katz et al. [19] introduce ReluPlex, which utilizes SMT
solvers to provide theoretic guarantees for DNN properties. Huan et al. [16] suggest a technique
to prove that all images within an ϵ-ball of a certain image are classified in the same manner. More
general discussion of DNN verification techniques can be found in Zhang et al. [42].
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2.2 Difficulties of Input Search for DNNs

Among the greatest obstacles to DNN test generation is the semantic manifold problem [41]. In
short, the problem is due to the relatively miniscule valid input space when compared to the pos-
sible image space: if one samples an image from random from the full image space, the probability
that it will be a recognizable image of a 2, for example, is exceedingly small. This issue is further
exacerbated by the difficulty of defining a “boundary” of acceptable inputs in a rule-based manner,
making it difficult to use search-based techniques to find inputs with desirable properties. Then
how does existing work search for novel test inputs? By utilizing the metamorphic principle: most
test generation work starts from a seed image, and adds a certain perturbation that is assumed
to keep the semantic meaning of the image as is [20, 30, 39, 43]. In SINVAD, we take a different
path: by training and using a VAE that approximates the distribution of realistic images, we aim
to navigate the space of realistic images directly.

2.3 Generative Models

As universal function approximators, DNNs can be used to approximate distributions, i.e., act as
generative models. Generative models allow one to calculate the probability of each input and fur-
ther sample from the distribution. In our case, we can use the sampling to generate realistic images.
One example is Generative Adversarial Networks (GANs) [14], in which a generator network
tries to generate samples as close to the target distribution as possible, while a discriminator net-
work tries to find the discrepancies between the generator-made distribution and the true distri-
bution. Such a process guides the generator to generate samples as close to the true distribution
as possible. VAEs [21] maximize the evidence lower bound (ELBO), which is the lower bound
of the odds of an image, to approximate the target distribution. The family of deep generative
models is too large to describe in full here; Foster [12] provides many examples. For our purpose,
any generative model with latent variables (e.g., GANs or VAEs) that can function as a condensed
search space may be used.

3 SINVAD: SEARCH-BASED INPUT SPACE NAVIGATION USING VAES

This section presents the formal definition of the search-based input generation problem for DNN
and subsequently introduces SINVAD.

3.1 Problem Statement

A common application of DNNs is as image classifiers. In such applications, a neural network
N acts as a function that maps the space of images I = [0, 1]c×w×h to a space representing the
probability of each class P = {v ∈ [0, 1]n :

∑n
i=1vi = 1}, where there are n categories. Formally,

the DNN is a mapping Np : I → P, and a categorical mapping Nc (i) = arg maxNp (i) is derived
from an image i ∈ I.

In practice, the semantic meaning of most images is unclear, so the neural network is trained
on a subset of images from the space of realistic images D and maps to P. When we say “realistic
images,” we mean that for any image in D, a reasonable person could identify that the image would
naturally be part of a certain dataset. While this definition is not the most rigorous, generally there
is a boundary of D that people agree upon (see the human study results of Riccio and Tonella [32]),
albeit being difficult to pin down and somewhat subjective. In test generation, this becomes a
problem; the space of all images of a certain resolution is usually much larger than the space of all
such images that are within D. If one looks at the Modified National Institute of Standards

and Technology (MNIST) dataset, for example, the space of grayscale 28 by 28 images is clearly
larger than the space of digit images, for most random grayscale images look more like static
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Fig. 1. Diagram of SINVAD. SINVAD uses the VAE encoder (E) to encode images into a latent space (bars).
Search-based optimization is performed not on raw pixels, but on latent representations. A representation is
transformed back to an image using the VAE decoder (D). The use of VAE networks before and after keeps
search within the subset of realistic images.

noise than recognizable numbers [41]. Then, due to the vast size difference between I and D

and the complexity of the neural networks, it is often easy to obtain images that meet a certain
criteria, but at the same time are not particularly interesting or meaningful. For example, it is
relatively easy to construct an image that resembles noise, but is classified with high confidence as
a cheetah [28]. This points to an important factor regarding neural network robustness: in general,
we are less interested in robustness of the neural network over the entire image space, and are more
curious of the robustness over the realistic image space D. Test generation techniques for DNNs not
appreciating this factor will likely generate pixel-level perturbations. To emphasize, our concern
in this article is on the implications of when neural networks are released in the wild, e.g., in what
situations would there be a risk of failure? For such a goal, we believe that there is much benefit
to identifying and generating realistic test cases.

3.2 SINVAD

We propose to use DNN-based generative models, such as VAEs or GANs, to solve this problem.
A schema of our approach SINVAD is provided in Figure 1. Generative models estimate the dis-
tribution of a provided dataset over the space of all images I. In particular, VAEs effectively try
to find a mapping between Rd and D (where d is the dimension of the latent space); the encoder
(E : D → Rd ) maps from images to latent representations, and decoders (D : Rd → D) operate
vice versa. By executing traditional search-based optimization algorithms, but within the latent
representation space, we can effectively restrict our search space to D, instead of the full image
space I. Hence the result of search will mostly be images that closely resemble true images from
D. Note that since the VAE itself has only been trained on a small sub-sample of D, i.e., the train-
ing set, it may or may not be a good mapping to/from the actual D. We thus have to investigate
the practical value of our approach empirically.

As for the search algorithm used, depending on the objective, we use either hill climbing or a
genetic algorithm. In hill climbing, we attempt to obtain images that have a target Surprise Ade-
quacy [20]. In our hill climbing algorithm, SINVAD adds a random value sampled from the standard
normal distribution to a single element in the vector representation. The concrete algorithm is de-
scribed in Figure 2. Given S, a random sampling function, rep2img, a function that transforms an
image representation to an actual RGB image, and finally a fitness function, the algorithm per-
forms hill climbing and returns an image. In essence, a random neighbor is visited by modifying
one element of the vector image representation by adding noise ϵ ∼ N (0, 1). The fitness of this
neighbor is evaluated; if it has better fitness than the original representation, then the neighbor
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Fig. 2. Hill-climbing algorithm used to generate images for Figure 5.

is selected. The sampling function S is either one that samples N(0, 1) element-wise or one that
samples one of the test images, seen by neither the VAE nor the classifier.

Meanwhile, to construct images that look like one category, but are classified as a different
category, as in adversarial examples, we used the genetic algorithm, as it experimentally yielded
smaller changes. Using the fitness function in Equation (1) and starting from a seed image i0,

f (i) =

{
∞ Nc (i) = Nc (i0),

|E(i) − E(i0)| else,
(1)

the genetic algorithm could lead to images that are semantically ambiguous. The upper case de-
notes the case in which the new image’s classification has not changed; we do not want to accept
such images. The lower case is when the classification of the new image is different from the
original image; in such cases, we want the image to look as similar to the original image as possi-
ble. Using the fitness function defined above, we employ a genetic algorithm to find images that
satisfy our criteria. The algorithm is described in Figure 3. The seed representation R is obtained
by first sampling a random image from the test dataset, and passing it through the VAE encoder
to get the latent representation of the image. The rep2img function is the VAE decoder, as was
in the hill climbing case. In line 3, the initial population is constructed; in our experiment, we
simply sampled random vectors from N (0, Idim(R)) and added them to R. Lines 6–9 describe the
population evaluation; lines 10–24 describe how the next generation’s population is constructed.
Single-point crossover is used (line 18); mutation is performed by adding a small noise vector on
each genome (line 19). The dimensions that have the most impact are iteratively identified, and
mutations are only applied to those dimensions (lines 19–22). Here elementCompare compares
two vectors element-wise and returns 0 if they are different, 1 if they are equal (line 19), while we
randomly choose which dimensions to reset to the original representation R (lines 21 and 22). We
find this significantly speeds up convergence. Individuals with smaller fitness are selected for the
next generation.
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Fig. 3. Genetic algorithm used to generate images for Figure 6.

3.3 Feasibility Study

Using the hill climbing and genetic optimization algorithms that we described, we first qualita-
tively demonstrate that VAE-based optimizations yield more realistic images through qualitative
analysis.

To contrast the results of using different image representations (i.e., whether to use the raw
pixels or the VAE latent vector), we first show interpolation results in two representations. Specif-
ically, given two images, we interpolate over both raw pixels and the latent space of SINVAD;
specifically, we obtain raw pixel interpolations for a certain pixel [i, j] for images i0 and i1 through
it [i, j] = (1 − t) × i0[i, j] + t × i1[i, j], where t is the degree of mixture between the two images: for
t = 0, the image is the same as i0, while for t = 1 vice versa. Meanwhile, VAE interpolated images
for image i0 and i1 are obtained with: it = D((1 − t) × E(i0) + t × E(i1)). We compare these inter-
polated images side by side in Figure 4. Note that the raw representation has no understanding
of semantics, hence it mixes the images unnaturally. However, SINVAD tries to naturally interpo-
late between the images, keeping intermediate images realistic. This suggests that SINVAD can
generate realistic images more consistently.
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Fig. 4. Example of interpolation by SINVAD, done in the VAE latent space.

Fig. 5. Images produced by optimization either at the pixel level (a, b) or using SINVAD (c). For comparison,
real images sampled from the MNIST test dataset are provided (d). Despite having the same fitness value,
SINVAD-generated images resemble real dataset images to a greater extent.

Fig. 6. Ambiguous images generated through GA optimization using Equation (1) as the fitness function.

This difference manifests in optimization results as well. Specifically, using hill climbing, we op-
timized images to have a target surprise adequacy with different starting conditions, as in Figure 5.
Images in Figures 5 (a) and 5(b) used “raw” pixel representations, where the precursor represen-
tation r has the same dimension as normal images. Meanwhile, images from SINVAD-based opti-
mization are presented in Figure 5(c), and real test images are presented in Figure 5(d). Notice the
contrast between Figures 5(a), 5(b) and 5(c), 5(d): While images using pixel search look like some
noise has been added to an image (or the image itself looks like noise), SINVAD-generated images
and naturally occurring data images both look like natural digits. This qualitatively suggests that
the representation used when optimizing images has a significant impact on the quality of the
results of the search algorithm.

Finally, using the genetic algorithm, we could generate semantically ambiguous images that
represented the edge cases of classification, and which can thus play an important role when
testing neural network classifiers, as shown in Figure 6. Observe that while the images resemble
digits, precisely which digit they are is slightly ambiguous. However, raw pixel search does not
yield realistic results as in Figure 5, reducing the utility in terms of analyzing and reasoning about
the network.
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4 RESEARCH QUESTIONS

We evaluate SINVAD via the following five research questions.
RQ1. Human Perception: How confused are humans when SINVAD generated images

are presented, relative to other image generation techniques? To support our hypothesis that
SINVAD restricts the search space so that it resembles the true data distribution D, we perform
a human study. In particular, we perform search using both SINVAD and pixel-based methods to
find images close to a trained neural network’s decision boundary. We then ask human evaluators
how much the image resembles the class on each side of the decision boundary; the difference
between these two scores indicates the level of evaluator confusion. The underlying assumption
is that well-constructed search spaces resembling D will generate images that are confusing to
humans as well, while uninformed search spaces will not, because when search is performed on
unrestricted search spaces, optimization techniques find a way to fool neural network classifiers
without actually changing the semantics of the image; however, when search is restricted to a
well-constructed space that is similar to D, the only way to generate an image confusing to a
neural network classifier is to generate a semantically confusing image. For example, pixel-based
search techniques would mostly fool the neural network without changing the image semantics,
while SINVAD, which search space resembles D, would generate images that are recognizable but
confusing.

RQ2. Boundary Testing: How close are SINVAD generated images to the decision bound-

aries of neural networks, as measured by class probability similarity? We employ the clas-
sifier probabilities of the two most likely classes of an input to confirm that SINVAD is capable
of generating images close to the decision boundary of a neural network. If the probabilities of
the top two classes have little difference, then an image can be rightfully said to be on or near
the decision boundary, as the classifier is not “confidently” declaring that an image is of a certain
class; however, if the class probabilities are significantly different, then the image is likely far from
the decision boundary. We explore this property to check whether SINVAD can indeed generate
images on the boundary of neural networks, enabling boundary testing.

RQ3. Problem Detection: How much more quickly does SINVAD identify problems in

training data when compared to dataset-provided test data? We find pairs of categories that
a given DNN image classifier is potentially vulnerable to using the semantic approximation that
SINVAD provides. For example, given an image classifier, is it more prone to errors between cat-
egories 0 and 1, or 4 and 9? By identifying these “weak spots” of a neural network, a developer
could perform next steps, such as gathering more data or training the classifier further. To find
these pairs, we use SINVAD and attempt to find images that look like class A but are classified as
class B. The success rate of such an operation differs based on the (A, B) pair, and we suggest that
this success rate is related to the risk of a classifier making this type of error. We experimentally
verify this point by generating a “polluted” training dataset in which some images are purposely
mislabeled, and check if SINVAD finds these issues more quickly than the test error rate.

RQ4. VAE Architecture: How does the architecture of the VAE influence input realism?

Meanwhile, the VAE architecture can have significant impact on the realism of an input. We inves-
tigate the impact that two architectural factors have on the output quality: the size of the latent
space, d , and the choice of VAE layer (fully connected or convolutional). As a means of evaluation,
we focus on how well a VAE can reconstruct an image. Reconstruction results are evaluated both
qualitatively (via showing actual output images) as well as quantitatively, by measuring classifier
accuracy on reconstructed images. While we could not retrain the VDVAE models used for the
generation of ImageNet-32 images due to their high training cost (requiring up to 99 GB of GPU
memory [15]), we compare them with linear VAEs to suggest and compare VAE architectures. We
hope to provide guidelines on how to construct VAEs for SINVAD via this research question.
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5 EMPIRICAL ANALYSIS

5.1 Experimental Setup

Four datasets are used throughout the article. MNIST [26] is a grayscale digit image dataset, each
28× 28 pixels large. There are 50,000 training, 10,000 validation, and 10,000 test images, but in this
article all training and validation images are used for training. Two closely related datasets are
also used: Extended MNIST (EMNIST) [9] for alphabet letters, and Fashion-MNIST (FMNIST)

[40] for various fashion items. Both have the same image size and a similar data size to MNIST.
ImageNet-32 is a widely used dataset containing RGB real-world images derived from the Ima-
geNet [11] image classification benchmark, which has 1,000 categories, with images downscaled
to a 32 × 32 pixel size from the original ImageNet data. There are 1,281,167 training images and
50,000 test images.

For MNIST, a VAE that has one hidden layer of size 1,600 for both encoder and decoder structures
is used. The encoding vector size is 400. For our VAE architecture experiment in RQ4, we also
employ a network with 8 hidden convolutional layers and encoding vector size 800 in both the
encoder and decoder. VAEs for both datasets are trained for 50 epochs, which was sufficient for
training to convergence. Finally, we use a pre-trained Very-Deep VAE (VDVAE) model [15] for the
ImageNet-32 dataset that we use, as the ImageNet dataset is structurally complex and consequently
requires significant more complexity to model using a VAE.

Regarding the neural networks to emulate the DNNs under test, a convolutional neural network
with 6 hidden layers is used for MNIST, EMNIST, and FMNIST. Meanwhile, we use the AlexNet [23]
architecture as a classifier for the ImageNet-32 dataset. The likelihood-based surprise adequacy
(LSA) metric is calculated using the activation traces of the penultimate layer, i.e., the input vector
to the final neural network layer, which produces softmax logits.

SINVAD is implemented in Python version 3.6, using PyTorch version 1.5.1 to implement all
neural networks. Code and model data are available from https://github.com/coinse/SINVAD. Any
experiment requiring computational resources was done on machines with Intel Core i7 3.4 GHz
CPU, 32 GB RAM, and a NVIDIA Titan X GPU.

5.2 Human Perception (RQ1)

It is important to thoroughly investigate whether SINVAD can actually induce a search space that
resembles the realistic image distribution. To this end, we perform a quantitative human study
to verify that SINVAD’s search space resembles the realistic image space more than pixel-based
methods. To do so, we evaluate how much each image generation technique is confusing to human
evaluators, instead of directly asking users how realistic an image is.

The rationale behind this experiment setting is as follows. When one performs search over the
unrestricted pixel space (or for that matter, a space that does not resemble D), the search process
simply exploits the inner workings of a neural network to generate an image that does not resemble
any image in D and hence looks semantically unchanged (i.e., is clearly the same class identity with
some noise added), while the subject neural network will classify it incorrectly. Such problems have
been explored by Nguyen et al. [28], who demonstrate that unrestricted optimization can yield
images meaningless to humans. Meanwhile, a search space that is closely tied to the underlying
data distribution D will yield images that are confusing to humans as well, as the search process
cannot simply find shortcuts to fool the neural network, assuming the neural network performs
well enough on images from D. Determining whether a technique can generate a recognizable
image that is also confusing to humans also testifies to the robustness of the search space: the fact
that a technique can generate such realistic confusing images that are clearly not in the original
dataset suggests that the technique is a robust representation of the realistic data distribution D
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Fig. 7. Screenshot of a question posed to the human evaluators.

Fig. 8. Diagram of the human study performed.

and not simply memorizing images. In turn, such a technique should be able to provide test cases
that data-agnostic pixel-based techniques could not easily find.

A diagram explaining how the human study was performed is presented in Figure 8. The im-
ages used in the survey are constructed as follows. First, we sample a seed image (Figure 8(a)). The
original class of this image is called the source class (7 for the example in Figure 8(a)). Next, we use
SINVAD and the fitness function from Equation (1) to generate an image that is on the decision
boundary of a certain trained network. After doing so, the image will have a most probable class
and a second most probable class based on the confidence of the classifier; we keep the record of
these (the final optimized image and the two most probable categories (7 and 9) are depicted in
Figure 8(b)). Among these two, the one that was not the source class is called the target class. We
now employ two adversarial attack techniques, Fast Gradient Sign Method (FGSM) [13] and
Carlini and Wagner’s (C&W) [6], that start from the same seed image as SINVAD and gener-
ate images that are on the decision boundary of the same source and target classes, as shown in
Figure 8(c). We repeat this process 100 times to obtain 400 images overall (Figure 8(c)). Each image
is shown to a human evaluator, and the human will evaluate how much each image resembles the
source and target class, respectively, answering on a Likert scale from one to five (Figure 8(e)). An
example screenshot of the question form, as shown to users, is provided in Figure 7. Each partic-
ipant was asked to evaluate a total of 33 images, which were randomly assigned. Specifically, we
took 10 random images from SINVAD, FGSM, and C&W, while 3 test images are used to verify that
the workers understood the task.
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Fig. 9. Confusion score distribution by image generation method.

We use two datasets, MNIST and EMNIST, for these experiments, as it is relatively easy from
the human perspective to imagine confusing images for these datasets, while it is difficult to grasp
what constitutes confusing images in some other datasets (if we think of FashionMNIST for exam-
ple, it is difficult to think of an image that is plausibly both a sneaker and a t-shirt). Three hundred
participants were recruited, and combined with the fact that each participant evaluates 3 real im-
ages and 30 potentially confusing images, each real image was evaluated about 10 times on average,
while the confusing images were evaluated 30 times on average. The survey was performed via the
Amazon MTurk platform.1 Our human study was approved to be exempt from review by KAIST
Institutional Review Board as it poses minimal risk for participants (IRB-21-208).

Images that are perceptually “in between” the classes, and thus confusing, should have little
absolute difference in their user-rated resemblance. We call the maximum score minus the absolute
difference in the ratings of the categories the confusion score:

Confusion score = 5 − |target score − source score|. (2)

Using the images provided in Figures 8(a)–8(c) as examples, we show how the confusion score
is calculated. A user presented with the sample image from Figure 8(a) will be asked whether this
image looks like a 7 or a 9. Suppose the user gave a score of five to class 7 and a score of one to
class 9. The confusion score is then 5 − |5 − 1| = 1, its lowest possible value - for the participant
was sure that the image was a 7 and not a 9. However, suppose the participant saw the image in
Figure 8(b) and gave a score of three to class 7 and a score of three to class 9. The confusion score
is then 5 − |3 − 3| = 5, its highest value, as the participant was not sure of the image’s identity.

Note that confusion score measures the interclass confusion, as opposed to semantic confusion,
i.e., it measures how confusing an image is between two valid categories, and is not directly mea-
suring whether an image is within the realm of semantic validity or not.

Figure 9 shows the distribution of the average confusion score for the 100 evaluated images of
each technique. As these results show, SINVAD’s confusion score distribution is shifted more to-
ward the confusing side than any other image generation technique. This shows SINVAD’s search
space is more closely coupled with human perception of valid images when compared to other
techniques. Statistical tests also back this point: by performing the Welch’s test on the confusion
score data, we could find that the difference with the second most confusing compared approach
(FGSM) was statistically significant for both datasets (p < 0.001). Measuring the effect size of us-
ing SINVAD over FGSM using Cliff’s delta, we found an effect size of 0.259 and 0.297 for MNIST

1https://www.mturk.com/
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Fig. 10. Boxplots for the target score subtracted from the source score. A high value means that the image
significantly resembles the original label; a lower value means that the image more closely resembles the
target label.

and EMNIST, respectively, corresponding to a small to medium effect size [34]. Ultimately, these
results demonstrate that SINVAD is indeed providing a better alternative to the pixel-based search
space.

Meanwhile, we analyze how much influence the seed image has on human perception of the
appropriate category. Recall that we started with the same seed image for SINVAD, FGSM, and
C&W to generate images that are on the decision boundary of a given neural network. A method
that indeed well models the perceptual space of the data, when making confusing images, would
not be biased toward either the seed image category or the target category. However, a method
that has a similar average confusion score might still only be inching toward the semantics of a
target class, mostly retaining the characteristics of the seed image. To investigate this issue, for
each generated image, we subtract the target image score from the source image score. The closer
the average value of this is to zero, the closer the image is to be truly perceptually confusing.

As the results depicted in Figure 10 show, SINVAD can generate images that are less likely to be
skewed toward the seed image that it started with. Again, this shows that SINVAD indeed defines
a search space that is closer to human perception, generating images that are more perceptually
balanced than other methods.

It is also illuminating to compare how confusing images from different techniques are when
they started with the same seed image. Using the confusion score we compare the evaluation
results of images starting from the same seed image for each of the 100 seed images. The results
are presented in Figure 11. The dotted red squares represent seed images in which SINVAD was
the most confusing method; as one can see, controlling for seed images, we find that SINVAD
was again the most confusing method. While some real images were rated as most confusing, this
is not due to a flaw in the experiment, as some of these real images had an actually dubious identity,
as presented in Figure 12. To establish the significance of these results, we performed a two-sided
Welch’s unequal variances t-test on the confusion score results of each technique with a power of
0.05 and colored them darker in Figure 11. While the standard student’s t-test assumes the sample
means of each population would have equal variance, in our case (i) the number of evaluations for
each image in the sample could differ, and (ii) we had no reason to think a priori the evaluation
variance would be similar between methods: hence our use of Welch’s test, which is suggested
in these circumstances. Note that in over half of the cases, the difference in the confusion score
between categories was statistically significant.
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Fig. 11. For each quadruple of images starting from the same seed image (Figures 8(a)–8(c)), a colored square
is presented signifying which method’s image was the most confusing within that quadruple. Boldly col-
ored/outlined results signify that the difference in confusion was statistically significant.

Fig. 12. Example real images rated as “most confusing.”

Table 1. Average Acceptability of Images for Each Method

Dataset Test C&W FGSM SINVAD
MNIST 6.24 6.24 6.15 6.12

EMNIST 6.44 6.49 6.38 6.55

One may argue that using the confusion score alone would be a misleading measure. For exam-
ple, simply showing static noise-like images would get a low rating for both classes, and thus the
confusion score would be high. This can be mitigated by looking at the sum of the responses to the
questions instead of just looking at the difference between the scores: we call this the acceptability

of the image. The acceptability of all responses, averaged over each method, is presented in Table 1.
The results show that SINVAD is comparable to other techniques and indeed real test images when
it comes to image acceptability, demonstrating that SINVAD is not just making meaningless images,
but rather is making meaningful images that are more confusing than baseline techniques while re-
maining semantically valid. Meanwhile, the difference between SINVAD and real images in terms
of acceptability was not statistically significant under Welch’s test in both datasets (p > 0.05).

Finally, we present indirect evidence that human evaluators found SINVAD’s images confusing:
the image evaluation time. One can assume that for confusing images, participants would generally
take longer to answer, as they are presented with a difficult situation. The average time it took
to evaluate images from each generation technique is presented in Table 2. SINVAD, on average,
took more time than any other method to evaluate, providing indirect evidence that SINVAD could
generate more confusing images. Statistical tests indicate that for MNIST, there is a statistically
significant difference between SINVAD and FGSM processing time (p < 0.05), with an effect size of
0.045. However, for the EMNIST dataset, while SINVAD-generated images took longer to evaluate
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Table 2. Average Time in Seconds Respondents
Took to Evaluate an Image from Each Method

Dataset Test C&W FGSM SINVAD
MNIST 6.13 6.69 6.90 7.20

EMNIST 6.64 6.93 7.19 7.35

on average, the difference is no longer statistically significant (p > 0.05), and the effect size is lesser
than that for MNIST (0.036). While it is difficult to clearly ascertain the reason behind this, we note
that the EMNIST dataset is slightly more ambiguous than MNIST (note the number of real images
labeled most confusing is greater in EMNIST), which causes all derivative images to be confusing
and thus reduces their overall difference.

To conclude, the results of the human studies show both directly and indirectly that the images
that SINVAD generates are perceptually the most confusing to humans. This in turn implies that
the search space that SINVAD induces is more closely aligned to human perception than the pixel
search space, supporting the conjecture that existing test generation techniques would benefit
from searching in this space, rather than operating in the pixel space.

Answer to RQ1: A human study comparing human judgment on images reveals that SINVAD
generates perceptually confusing images; SINVAD-generated images were evaluated as most
confusing in 55% and 58% MNIST and EMNIST evaluations, respectively. This suggests that
SINVAD is indeed searching using a search space that is aligned to human understanding of
what constitutes a valid image.

5.3 Boundary Testing (RQ2)

The objective of the function provided in Equation (1) was to obtain images close to the decision
boundary of corresponding neural networks. To verify whether this is actually the case, we com-
pare the prediction probabilities of the top two most likely classes. If an image is actually at the
decision boundary, then the final prediction probabilities should be similar; in contrast, an image
that the classifier deems very likely to be in one specific class is likely not at the decision bound-
ary of the classifier. Using the objective function in Equation (1), we first sample 10,000 images
for MNIST and FashionMNIST datasets, and 200 for ImageNet, as inference takes a significantly
longer time. Subsequently, we measure the prediction variability using the following metric:

U (x∗) = max(ŷ∗) − max(ŷ∗\{max(ŷ∗)}), (3)

where ŷ∗ is the set of the network’s confidence values for each class on image x∗. We use this
metric as it continuously measures how close an image is to the decision boundary of a neural
network; when the difference is smaller, the image is closer to the decision boundary. Table 3 shows
the comparison results for this experiment, conducted on MNIST, FMNIST, and the ImageNet-32
dataset.

As the table shows, the boundary images cause the probabilities of the top two classes to be more
similar than when the same neural network is exposed to the default test images of each dataset.
In turn, this shows that the SINVAD-generated images are close to the neural network’s decision
boundary itself. It is noteworthy that the images in the ImageNet-32 dataset are in general closer to
the decision boundary. This is likely due to the greater complexity of the ImageNet dataset, as well
as the greater number of categories (1,000). Consequently, the difference in boundary proximity
between test set images and SINVAD-generated images is lesser than in the simpler MNIST-based
datasets. Nonetheless, SINVAD can consistently generate images that are on the boundary of this
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Table 3. Comparison of the Difference in Top-two Category
Probabilities Between Provided Test Images and SINVAD-Generated

“Boundary” Images

Dataset SINVAD Test set p-value Cliff’s Delta
MNIST 0.0638 0.9957 p < 10−4 −0.98

FashionMNIST 0.1330 0.9186 p < 10−4 −0.92
ImageNet-32 0.0423 0.1953 p < 10−4 −0.56

The SINVAD-generated images have smaller differences, suggesting that they
are closer to the decision boundary.

Fig. 13. PCA-projected location of SINVAD-generated boundary images in the activation vector space. Red
and green dots are vectors of each image class, while blue dots are SINVAD-generated boundary images.

more complex dataset as well. When using Welch’s t-test to determine the significance of these
differences, for all three datasets the difference was statistically significant (p < 10−4). The effect
size was large as well: for the ImageNet dataset, the difference was a large −0.56 (the minus indicat-
ing that SINVAD generated images that have a smaller probability difference between the top-two
predictions); for MNIST and FashionMNIST, the effect size was even more substantial at −0.98 and
−0.92, respectively.

Using the PCA dimensionality reduction technique, we can also qualitatively assess that the im-
ages that SINVAD makes are close to the decision boundary. We first gather the activation vectors
of the test images of a chosen class pair. We use PCA to generate a projection that maximizes the
projected variance of these vectors. Next, we obtain the activation vectors of the images that are
between the selected class pair, and use the same PCA projection to see where the intermediate
images are with respect to the test images. The projection results of a few example pairs are pre-
sented in Figure 13. Observe that the boundary images are indeed between the two clusters of each
class in all cases, implying that the images that SINVAD generated are indeed nearby the decision
boundary of the neural network.

Answer to RQ2: The images generated by SINVAD were closer to the decision boundaries of
DNNs than default test set images by a statistically significant degree (p < 10−4). Thus, SINVAD
can indeed generate images that are difficult for neural networks to classify by being on their
decision boundary.

5.4 Problem Detection (RQ3)

To answer RQ3, we use SINVAD to identify pairs of classes that a given neural network finds
particularly difficult to distinguish. We design a targeted fitness function shown in Equation (4),
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Fig. 14. Comparison between (a) the error matrix of the provided MNIST test set and (b) the number of
successful optimizations of the GA algorithm out of 1,000 attempts. Note that the differences are more pro-
nounced in the GA algorithm’s matrix.

where i0 is a seed image and t is a target class different from that of i0:

f (i) =

{
∞ if Nc (i) � t ,

|E(i) − E(i0)| otherwise.
(4)

The results show that this optimization quite often fails to find an image of target class t starting
from the seed image i0, which is what we actually anticipate in this research question. Our focus
is not on whether it succeeds or fails, but how often it succeeds, i.e., the proportions of successes.
We posit that attacks on potentially confusing image pairs have a higher success rate, while image
pairs that are clearly distinguished have a lower success rate. Concretely, we define a GA class

escape rate as the number of times an attack successfully finds a solution that causes the DNN
to classify an image as the target class divided by the number of all attempts. We can compare
this to the targeted error rate, which is the number of times an image in the dataset test set with
the source class is classified as the target class. The change in GA class escape cases for MNIST
is more pronounced than the targeted error cases of the test cases, as is showcased in Figure 14,
which shows the number of successful “escape attempts” by the optimization technique out of 1,000
attempts. It juxtaposes the confusion matrix using provided test cases and the GA class escape
count for a simple neural network classifier.

To show the effectiveness of the GA class escape rate in detecting weaknesses of a given neural
network, target labels are artificially mixed during the training phase according to a proportion α .
For each α , a corresponding neural network is trained. For each such neural network, we measure
the error rate between the mixed pair and the GA class escape rate. For the MNIST dataset, data
between three pairs that are usually not confused per Figure 14(b) (Specifically, (0, 1), (2, 5), and
(6, 7)) are mixed with varying αs; we use a similar procedure to identify pairs to mix in the
ImageNet-32 dataset, namely, (spider, Siamese cat), (jellyfish, maze), and (airliner, dog). The de-
tection rate is defined as follows: for the SINVAD-led method, we calculate the success rate when
there was no mixture s0. For the success rate at mixture level α sα , the detection rate is defined as
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Fig. 15. Performance change when labels are mixed. GA class escape rate increases more rapidly than error
rate when labels are mixed.

sα − s0. Meanwhile, the detection rate for test accuracy is defined as errors
number of images . The ensuing

detection rate results are presented in Figure 15.
As evident from the figure, SINVAD-led detection rate has a tighter correlation relationship

with the gradual mixing of labels in both the MNIST and ImageNet datasets; default test cases
only pick up this change when labels have been polluted a great deal. This shows the effectiveness
of SINVAD-generated test cases in finding potential flaws in neural networks. Further inspection
reveals that while specific scale in escape rate may differ by class pair, the pattern in which escape
rate is more sensitive to polluted data than usual test accuracy is clear. This is not just an issue
of the detection rates being at a different scale; the average Pearson correlation coefficient for the
MNIST dataset between SINVAD-led detection rate and α at the earlier stages of up to α ≤ 0.1 is
0.877, while the correlation between test error rate is 0.525; for the ImageNet-32 dataset, SINVAD-
led detection had a correlation of 0.829, while test error rate had a correlation of 0.454. Test error
rate only catches up when the dataset is extremely polluted (α ≥ 0.2), after which the correlations
between SINVAD-led detection rate and test error rate and α become similar (in MNIST, SINVAD’s
0.977 to test error rate’s 0.952; in ImageNet-32, SINVAD’s 0.911 to test error rate’s 0.930).

One can imagine this property being used in many contexts; for example, when there are many
categories and it is difficult to think of all potentially confusing cases, one can use SINVAD to
identify which category pairs are particularly at risk, and verify whether there may be any safety-
critical confusions in each case. As such, we can conclude through this study that SINVAD can
indeed be useful in testing and can reveal important properties of neural networks under test.

Answer to RQ3: Using images generated from SINVAD, problems in the network caused by
inaccuracies of training data labels could be more consistently detected in weaker (alpha ≤ 0.1)
levels of pollution, as indicated by the correlation (0.877 for SINVAD versus 0.525 for test images
in MNIST). This highlights the potential of SINVAD to identify problems in neural networks.

5.5 VAE Architecture (RQ4)

To answer RQ4, we evaluate the output quality of VAEs when the dimension d of the latent space
or the layer type (fully connected or convolutional) is changed, we consider the reconstruction
performance of different VAEs. We first present qualitative reconstruction results in Figure 16,
with Figures 16(a) and 16(b) being images from the MNIST dataset, while Figures 16(c) and 16(d)
are from the FashionMNIST dataset. For typical images, the VAEs will usually successfully recon-
struct the image successfully even with very small latent spaces, as can be seen in Figures 16(a)
and 16(c). However, for atypical images, VAEs with smaller latent spaces struggle to capture the
characteristics of the image. For example, in Figure 16(b), the original image is a 7, but VAEs with
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Fig. 16. Reconstruction examples by VAE architecture and latent dimension size.

Fig. 17. Classifier accuracy on original test set and a “reconstructed” test set that went through the VAE.

smaller latent spaces reconstruct it as a 3 (Linear-1), 9 (Conv.-1), or 4 (Linear-2). However, we do
not find a significant quality difference between linear and convolutional VAEs qualitatively.

These qualitative observations are further validated by our quantitative results, in which we
evaluate how often a DNN classifier could recognize an image after the VAE reconstructs it from
the latent space, in Figure 17. At smaller latent space sizes, VAEs fail to effectively reconstruct
images, and consequently the classifier accuracy drops significantly. As the latent space becomes
larger, VAEs can capture more details of the image, and consequently reconstruction accuracy
increases and plateaus, until the dimension of the VAE becomes larger than the dimension of the
image itself (d > 784), at which point the reconstruction accuracy starts to drop. It is worth noting
that smaller latent spaces may have benefits, as computation is quicker on smaller spaces and
they are less likely to suffer from the curse of dimensionality [2]. Thus, provided reconstruction
accuracy has plateaued, it may be advantageous to use VAEs with low-dimensional latent spaces
when exploring the space with SINVAD. Meanwhile, we note that linear VAEs were slightly better
at reconstructing images than convolutional VAEs for these datasets.

However, for more complex datasets, different VAE architectures can lead to substantially differ-
ent results. While we could not perform similar retraining experiments with the VDVAE architec-
ture due to its high training cost, on the ImageNet-32 dataset, we find that the VDVAE architecture
that we used for our experiments leads to qualitatively superior reconstruction results (Figure 18).
In addition, when evaluating the accuracy of our 10-class ImageNet classifier from RQ3, we find
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Fig. 18. Reconstruction of the ImageNet-32 dataset using linear VAE and VDVAE architectures.

that its accuracy on the original test images was 67.4%, while the reconstructed image accuracy
using VDVAE and linear VAEs was 59.5% and 32.6%, respectively. Thus, we can conclude that for
more complex datasets, using more advanced and complex VAE architectures is recommended.

Answer to RQ4: For simpler image datasets like MNIST, it is sufficient to use simple VAE archi-
tectures consisting of fully connected layers. As long as the latent vector size is not excessively
small (d < 10), VAEs appear robust to different latent vector space sizes as well—reconstruction
accuracy did not differ by more than 10%. For more complex datasets like ImageNet-32, the
use of complex VAE architectures that can sufficiently model the inputs, such as the VDVAE
architecture, is recommended.

6 THREATS TO VALIDITY

Internal validity is threatened when there are alternative factors that could explain our experi-
mental results. One possible threat to our feasibility study is that optimization over raw pixels
is perhaps not the best representation of all images. While this is possible, to construct better
representations of images that incorporate global structures, one may need increasingly complex
models, which may end up to being similar to search in the VAE latent space eventually. The hu-
man study results in RQ1 may be due to individual evaluator perception difference or mistakes. To
mitigate such concerns, we performed the study on a large number of participants (ca. 300 for each
dataset). The results presented in RQ2 and RQ3 are based on stochastic experiments; to ensure that
these results are not from pure chance, we ran the corresponding experiments over a large number
of images (n ≥ 100).

External validity is threatened when the findings of a study may not generalize. In this work,
we used a fixed number of neural network architectures for convenience; whether the results pre-
sented in this work will generalize to other neural networks is a question that requires further
research. Meanwhile, the datasets used in this study were chosen as it was easier to discern the
semantics of them, against datasets with a large number of categories that may be confusing to
untrained humans. The results of SINVAD on other datasets must be verified with further experi-
mentation.

7 DISCUSSION

7.1 Limitations

While SINVAD has demonstrated its capability to generate tests and help understand/diagnose the
behavior of neural networks, it does not come without its own limitations. For one, there is the
risk that SINVAD may be sensitive to the particular architectural details of the underlying VAE. As
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shown in RQ4, SINVAD is resilient to different values of hyperparameters such as the dimension-
ality of the latent layer. Nonetheless, as we recommend in RQ4, one may try changing the VAE
architecture depending on the complexity of the underlying data. A related limitation is the ca-
pacity of the VAE; our experience indicates that as more complex datasets must be modeled, more
complex VAE architectures must be used. In our article, we used multi-layer perceptron-based
simple VAEs for the simpler MNIST-related datasets, while we used more complex VDVAE archi-
tectures for the more complex datasets (ImageNet-32). As complex VAEs often are more expensive
to train, it may take some time to find the appropriate architecture for a target dataset.

As VAEs must be trained and thus learn from a given dataset, they may reflect any bias or prob-
lem that the original dataset may have. For example, if a face recognition dataset has only a small
proportion of faces from a certain ethnicity or gender, then the VAE will reflect that distribution,
and only rarely make such images. As such, it may be difficult to use SINVAD to identify such
fairness issues. Nonetheless, there is a wide field of literature that deals with this issue [22], and
we believe SINVAD can provide a complementary role with these techniques.

7.2 Future Directions

While our work focuses on DNNs that classify images, future work could potentially explore differ-
ent modalities and different generative models. The generative model used in our work, Variational
Autoencoders, are also capable of modeling non-image data such as text [33]. Indeed, work that
uses VAEs in the context of multi-modal datasets [35] or test suites [31] have also been proposed.
As such, a promising venue of future work would be to investigate whether performing search
on generative models that induce a latent space is a general method for synthesizing meaningful
software input and data, as other and more powerful generative models are introduced they can
also be used. Extending further, one could investigate how SINVAD could be used to test non-DNN
machine learning techniques. As long as the fitness function we use in our search is agnostic to the
model under test (as was generally the case in our studies), i.e., the results do not rely on internal
computations of the model, our method should be able to generalize without modification.

While we have demonstrated the ability to make confusing inputs (RQ1), the VAEs we experi-
mented with are not producing labeled inputs. That is, we cannot directly ask the model to pro-
duce an image of a certain label. However, there are different VAE architectures that can tackle
this problem, such as conditional variational autoencoders [37], and such architectures could be
applied to SINVAD depending on the specification of the problem. Such an ability could lead to
other interesting ways of probing the capabilities of neural networks.

8 CONCLUSION

This article introduces SINVAD, a technique that uses generative models to focus the search for
images so that more realistic tests can be generated. Our qualitative analysis and quantitative
human study verify that the space induced by our method is indeed similar to human perception
of acceptable input space for neural networks.

Along with the results of the human study, our quantitative and qualitative experiments suggest
that SINVAD is capable of generating inputs that are more likely to provide guidance to DNN devel-
opers under a variety of testing scenarios. Specifically, we also show that SINVAD can find images
close to decision boundaries, which can be used for boundary value testing and for diagnosing
whether the boundary is actually where it is expected to be; experiments also show that SINVAD
is capable of providing unique insights into the behavior of DNNs by providing interpretable re-
sults through targeted class escape rate analysis. Finally, we experiment with VAEs of different
architectures, and provide a few guidelines on how to select the appropriate VAE architecture for
a given domain.
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In summary, we believe that the shifting of focus from the low-level, “syntactic,” here pixel-level,
perturbations to semantically meaningful changes that search coupled with SINVAD allows can
benefit many interesting software engineering and testing applications.
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