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Abstract

This thesis consists of two parts: statistical analyses of and models for epider-
mal nerve fibers (ENFs), and extensions of global envelope tests. In the first
part, the main goal was to improve our understanding of the ENF structure
changes that occur as a result of nerve damage due to neurological disorders,
such as diabetic neuropathy. For this purpose, different stochastic models were
proposed. The ENF data were treated as point patterns in three-dimensional
boxes, and samples from subjects suffering from diabetic neuropathy and
healthy volunteers were considered. In Paper I, we introduced a new sum-
mary that measured the volume of the epidermis covered by the nerves and
examined second-order properties of the underlying processes. Further, a three-
dimensional point process model for the nerve structure was developed. The
two-dimensional version of the model captured the planar spatial structure.
However, the complete model could not capture the attraction between the
nerve fiber endings in the data. Therefore, in Paper II a pairwise interaction
Markov model allowing neighboring nerve endings to interact was proposed.
In Paper III, we considered the two-dimensional projections of the ENF pat-
terns and developed spatial thinning models to study the nerve death process.
Insights from our analyses indicated that nerve mortality is guided by a biolog-
ical process that favors the removal of isolated nerve trees. The goodness-of-fit
of the models in Papers I-III was evaluated using global envelope tests. In
the second part, we extended the global envelope tests for quantile regression
and for comparison of distributions of n samples. In Paper IV, we proposed
non-parametric, permutation based global tests, that allowed for simultaneous
inference of the quantile regression process. In Paper V, we proposed graphical
n-sample tests for correspondence of distributions based on the global enve-
lope testing framework. Further, we presented a detailed discussion regarding
the graphical interpretation of the test results for each suggested test statistic.

Keywords: Anisotropy, death process, diabetic neuropathy, epidermal nerve
fibers, global quantile regression, permutation test, point processes.
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V. Konstantinou, K., Mrkvička, T. and Myllymäki, M (2024). The power of
visualizing distributional differences: Graphical n-sample tests. Submit-
ted to Computational Statistics.

v

http://dx.doi.org/https://doi.org/10.1002/sim.9194
http://dx.doi.org/ https://doi.org/10.1111/jmi.13142
http://dx.doi.org/https://doi.org/10.1002/sim.9851


vi

Author contributions

I. I developed the two-step NOC-like model and extended the concept
of reactive territories in three dimensions. I implemented the methods
and conducted all statistical analyses. I did most of the writing for the
publication.

II. I implemented the estimation methods of the pairwise interaction Markov
field model and carried out the simulation study. I conducted all statisti-
cal analyses and did most of the writing for the publication.

III. I developed the spatial thinning models, conducted the simulation study,
and performed the inference and evaluation of the models. I did most of
the writing for the publication.

IV. I co-developed the global quantile regression test and implemented some
of the permutation strategies in the GET package in R. I conducted the
simulation study and did most of the writing for the publication.

V. I developed and implemented the global permutation tests in the GET
package in R. I conducted the simulation study and did most of the
writing for the publication.



List of Figures

2.1 An illustration of the ENF data structure (left). An example of
the three-dimensional multitype point patterns of the ENF base,
branching, and end points (top right) and the corresponding
two-dimensional point pattern of the projections (bottom right).
The connections between the branching points and the base and
end points are also illustrated. . . . . . . . . . . . . . . . . . . . . 5

3.1 The three main types of point patterns: are clustered (left), com-
pletely spatially random (middle), and regular (right). . . . . . . 9

3.2 Example of edge effects. The points outside the observation
window W are not observed and therefore, if they are ignored
the estimators become biased. . . . . . . . . . . . . . . . . . . . . 12

3.3 Illustration of the translation (left), isotropic (middle) and minus
sampling (right) edge corrections . . . . . . . . . . . . . . . . . . 13

3.4 Illustration of potential differences in clustering in different di-
mensions. The projections of the "red" pattern are less clustered
in R2 but more clustered than the "purple" pattern in R3. The
structuring elements for the isotropic Ripley’s K in R2 (bottom)
and the cylindrical K function in R3 (top) are also illustrated. . 15

4.1 Illustration of the shift plots for two random variables that
are statistically indistinguishable (left) and from different dis-
tributions (right), with 95% confidence bands based on the
Kolmogorov-Smirvov statistic. . . . . . . . . . . . . . . . . . . . 24

vii



viii LIST OF FIGURES

4.2 A toy example for describing the different measures. According
to the unscaled MAD measure the black curve (1) is the most
extreme, according to the ERL measure the green curve (3) is
the most extreme and according to the continuous and area rank
measures the red curve (5) is the most extreme. . . . . . . . . . . 25

4.3 The L(r) − r function of a point pattern (solid line) with 95%
global envelope (shaded region) constructed under the null hy-
pothesis of CSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 The general framework of the permutations with removal of the
nuisance effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Original boxplot with the parameter estimates in Paper II. . . . 35



Acknowledgements
First and foremost, I want to express my sincere gratitude to my supervisor Aila Särkkä
for introducing me to the wonderful subject of spatial point processes, for always
being available to meet and advise me, and for always carefully reading and providing
constructive feedback on my manuscripts. Thank you Aila for your continuous support
and encouragement. Further, I want to thank Tomáš Mrkvička, Mari Myllymäki, and
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1 Introduction

In the first part of this thesis, statistical analyses and point process models
for the epidermal nerve fibers (ENFs) are presented. ENFs are dendroidal,
unmyelinated thin sensory nerve fibers found in the epidermis, the outermost
living layer of the skin. They pass across the dermis, the skin layer beneath the
epidermis, enter, and grow within the epidermis with or without branching
until they terminate (see Figure 2.1). The ENF endings are responsible for trans-
ferring signals such as pain and heat to the central nervous system. Peripheral
neuropathies, such as diabetic neuropathy, a neuropathic disorder caused by
diabetes, damage the nerves. This damage translates into symptoms such as
neuropathic pain and loss of sensation. As there is no current treatment able to
restore the nerve fibers functionality, diagnosis of the neuropathy at an early
stage is important.

The ENF data were treated as realisations of multitype point processes, con-
sisting of the locations where the nerve fibers enter the epidermis, branch, and
terminate observed in three-dimensional boxes. Throughout this thesis, those
points will be referred to as base, branching, and end points, respectively. One
of the main goals of this thesis was to further enhance our understanding of
the biological process that leads to the morphological alterations in nerve fibers
caused by neuropathy, and therefore data from healthy volunteers and patients
suffering from diabetic neuropathy were considered. A better understanding
of the underlying process can contribute to the development of more efficient
techniques for early identification of the disease. To achieve our objectives, in
Papers I and II we investigated the three-dimensional structure of the nerve
trees, and in Paper III we investigated the death process of the nerve trees. Un-
like the previous models that solely examine the base and end point locations,
we included the first branching points in the analyses.

In Paper I, the three-dimensional structure of the ENF endings was investi-
gated, to the best of our knowledge, for the first time. The nerve tree structure
within the individual nerve fibers and in each disease group was investigated.

1



2 1. Introduction

Our findings indicated that the segments connecting the end and branching
points in the two groups have significant distributional differences. Then, we
examined possible competitive behaviors between the nerve trees. For this pur-
pose, the concept of epidermal active territory (EAT), a tool that approximates
the volume of the epidermis covered by the nerve trees was introduced. The
EAT values for each nerve tree were then attached as marks to the base points.
No evidence was found to suggest that the nerve trees compete with each
other in terms of mark correlation, a summary statistic often used in the anal-
ysis of marked point processes. Finally, we constructed a three-dimensional
two-step spatial point process model for the end points that included some
ingredients from the earlier introduced models. In the first step, the branching
point locations were constructed towards open space, while in the second step,
the end point clusters were constructed around the branching points. The
two-dimensional version of the model fitted the data quite well while the 3D
version failed to capture the structure of the data at intermediate distances.

The model proposed in Paper I was further developed in Paper II. This ex-
tension allowed interaction between nerve fiber end points. In this model,
the planar point patterns were simulated using the 2D version of the model
proposed in Paper I. Then, the z-coordinates of the points were constructed
using a pairwise interaction Markov random field model (Christoffersen et al.,
2021). For evaluating the model we considered groupwise pooled second-order
summary statistics from the healthy and mild diabetic samples. To assess the
goodness of fit we used directional summary functions from spatial statistics
due to the anisotropic nature of the data. We found some indication of varia-
tions in the degree of interaction and the extent of the interaction zone between
the groups.

The dynamics of the nerve mortality process were studied in Paper III. For this
purpose, we considered ENF patterns projected onto the plane, and developed
spatial thinning models for the healthy samples. Initially, we developed an
independent p-thinning model, i.e. a model where each nerve tree is retained
with probability p independently of the other nerves, to test the hypothesis of
random nerve tree mortality, that is there is no particular biological process
guiding the nerve removal. However, our results indicated that such a model
was not enough to capture the changes in the spatial structure of the base
and end points. Therefore, we developed a parametric dependent thinning
model in which the retention probability was given as a function of the dis-
tance between base points. In particular, the retention probability was high for
points with close neighbors and low for isolated points. To infer the distribu-
tion of the model parameter we used an approximate Bayesian computation
method(Sisson et al., 2018) and the model was evaluated with respect to spatial
and non-spatial summary statistics. According to our results, the dependent



3

thinning model could generate patterns that look like early-stage diabetic point
pattern replicates. As a result, this study indicated that as the neuropathy
advances, the isolated nerve trees die first. Therefore, this was the first model
that could explain the increased clustering observed in the diabetic patterns.

The goodness-of-fit of the models developed for the ENF data were evaluated
using the global envelope tests (Myllymäki et al., 2017). These tests were
initially developed for solving the multiple testing problem in spatial statistics,
and extended to other various areas since then. In the second part of this
thesis, we further extended the global testing framework. In Paper IV, global
quantile regression (GQR), an extension of the global envelope tests to the
quantile regression model (Koenker and Bassett Jr, 1978) was developed. The
GQR test is a Monte Carlo permutation test, that for any set of quantiles,
simultaneously tests if a covariate of interest has a significant effect on the
conditional quantile distribution of a response variable, even in the presence
of some nuisance covariates affecting the response distribution. We refer to
this procedure as simultaneous inference for the quantile regression process.
The test also allows for graphical interpretation, that is, it illustrates the set of
quantiles responsible for the rejection of the null hypothesis. As global envelope
tests are based on ranks, there are no parametric assumptions for the test to
be valid. The only assumption is the exchangeability of the test vector under
the permutation strategy. As this assumption is violated for some permutation
schemes when nuisance parameters are present, we conducted a simulation
study to investigate the empirical significance levels as well as the power of
the tests in different settings motivated by some applications. We showed that
the Freedman-Lane permutation (Freedman and Lane, 1983) was liberal when
extreme quantiles and significant nuisance effects were considered. For this
purpose, we proposed four permutation strategies that were close to exact. One
of the permutation strategies satisfied exchangeability but was valid only for
categorical nuisance. The other three permutation schemes assumed specific
nuisance effects. We showed that these schemes achieved correct nominal
significance levels, as long as the nuisance and interesting covariates were
not correlated. In the case of correlated covariates, the test was liberal under
permutation model misspecification, i.e., when the permutation assuming a
location shift nuisance effect was used when the real nuisance effect was not
a location shift, and conservative when the permutation model was correctly
specified. Finally, when the interesting covariate is categorical the GQR test
provides an n-sample graphical test of correspondence of distributions, even
in the presence of nuisance variables.

In Paper V, the global envelope tests were extended for comparing the distribu-
tions of n-samples. For this end, simple permutations, i.e., data permutations
between the n samples, were used, and functional test statistics capturing
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different distributional contrasts were considered. A simulation study was
conducted to evaluate the performance of the proposed tests with regard to
statistical power in different simulated scenarios. The performance of the
tests was further compared with the performance of the classical two-sample
Kolmogorov-Smirnov test. According to our results, the proposed global tests
were more powerful than the Kolmogorov-Smirnov test in all studied settings.
Finally, we provided detailed guidelines on how the graphical illustration of
the test result should be interpreted for each test statistic.

The thesis is structured as follows. In Section 2, we describe the epidermal
nerve fiber dataset and in Section 3, we briefly present some theoretical aspects
of the point process theory used in Papers I-III. In Section 4, we present some
additional statistical tools for simulation, estimation and hypothesis testing
used throughout the thesis. In Section 5, we present the permutation strategies
considered for the global tests proposed in Papers IV and V. A summary of the
appended papers is given in Section 6. Discussion about the main contributions
and future work are presented in Section 7.



2 Data

For the statistical analyses of Papers I-III, the epidermal nerve fiber data
(Kennedy and Wendelschafer-Crabb, 1993; Kennedy et al., 1996, 1999) were
considered. The epidermal nerve fiber data were collected through suction-
induced skin biopsies, a procedure where a portion of the epidermis was
removed, mounted on a slide, and stained for imaging. Then, confocal mi-
croscopy was used to manually trace the locations where the nerve fibers enter
the epidermis, branch, and terminate (Kennedy and Wendelschafer-Crabb,
1993). In this thesis, an epidermal nerve tree is represented by its base, first
branching, and end points. The structure of the ENF data, including the com-
plete nerve trees is presented in Figure 2.1. The three types of points used in
the analyses are marked with different colors.

D
er
m
is

Ep
id
er
m
is

Endpoints

First
branching
points

Basepoints

Figure 2.1: An illustration of the ENF data structure (left). An example of the three-
dimensional multitype point patterns of the ENF base, branching, and end points (top
right) and the corresponding two-dimensional point pattern of the projections (bottom
right). The connections between the branching points and the base and end points are
also illustrated.
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6 2. Data

The data were regarded as realisations of point processes in three-dimensional
boxes and the projections of the data as point processes in the correspond-
ing rectangles. Each point pattern contained three different types of points:
base, branching, and end points. Planar point process models for the base
point patterns were suggested in Andersson et al. (2019) and Andersson and
Mrkvička (2020). The base points were found to be clustered indicating that
the nerve fibers may branch prior to entering the epidermis. The second type
of points were the first branching points, which will be referred to as branching
points throughout the thesis. Those were the points where the fibers begin to
branch in the epidermis. The branching points were included in the analysis
for the first time in this thesis. The epidermal nerve fiber endings were the
third type of points. Those are the points responsible for feeling heat and pain
and hence their spatial structure is important. Earliest spatial analysis of the
ENFs, focused on studying the spatial structure of the ENF projections onto the
plane. The main findings suggested that there is a negative correlation between
the spatial intensity of the base and end point patterns with the degree of the
neuropathy (Kennedy et al., 1996, 1999; Myllymäki et al., 2012; Andersson et al.,
2016; Olsbo et al., 2013). Furthermore, several studies proposed clustered point
process models for the planar spatial structure of the ENFs end points (Olsbo
et al., 2013; Andersson et al., 2016; Ghorbanpour et al., 2021; Garcia et al., 2020).
In particular, in this thesis we used modelling ideas from the Non-Orphan
Cluster model developed in Olsbo et al. (2013) and the Uniform Cluster Centre
model developed in Andersson et al. (2016).

The ENF dataset is a hierarchically structured point pattern collection com-
prising data from healthy volunteers and patients suffering from diabetic
neuropathy. The main hierarchies are the degree of diabetic neuropathy, i.e.
healthy, mild, moderate, or severe, the different subjects, and samples within
the subjects. In this thesis, we concentrated on data collected from 8 mild
diabetic subjects and 32 healthy controls. Furthermore, we focused on samples
obtained from the foot since research has shown that changes in the physiology
of the ENFs occur at an early stage in the distant body regions (Kennedy et al.,
1999). For each subject, three to six skin samples were available.



3 Spatial point processes

This chapter aims to provide a brief introduction to the theoretical concepts
used in the first three papers. The basic concepts, definitions, and a brief
overview of spatial summary functions for spatial point processes are recalled
and discussed. For a more mathematically rigorous treatment of the topic, the
reader is referred to the literature (Illian et al., 2008; Møller and Waagepetersen,
2004; Chiu et al., 2013). The definitions and notations given here mainly follow
the book by Illian et al. (2008). Throughout this work, Rd and B(Rd), denote the
d-dimensional Euclidean space and its corresponding Borel sets, respectively.
Further, all the subsets under consideration are assumed to be Borel sets. The
indicator function is denoted by 1{·} and the ̸= above summation sign denotes
the summation over all distinct pairs of points. The probability of an event A is
denoted by P(A) and the Lebesgue measure by | · |.

3.1 Basic definitions

Spatial point processes are mathematical models suitable for characterizing a
random set of points. The process is usually defined in the entire space Rd but
is only observed in a bounded observation window W ⊂ Rd. Realizations of
point processes are called point patterns or point configurations and the points
of the process are often referred to as events. Point processes are central in many
applications and serve as models for a wide range of physical phenomena. Such
applications include astronomy, which involves modeling the spatial locations
of galaxies and stars, forestry, which involves modeling the spatial distribution
and interactions between e.g. different tree species, and medical applications,
for instance modeling the changes in the spatial structure of the termination
locations of epidermal nerve fibers as diabetic neuropathy progresses. The
latter application was investigated in this thesis.

7



8 3. Spatial point processes

Point processes are assumed to be simple, meaning that at every distinct location
the process places at most one point, and locally finite, indicating that for every
bounded set B, the random variable NX(B) associated with the number of
points of the process X = {Xi} in B, is finite. The notation Xi denotes the
locations of random points in D. In mathematical notation, this is written as
follows.

(i) X is simple, i.e. P(Xi ̸= Xj) = 1, ∀ i ̸= j

(ii) X is locally finite, i.e. for any bounded set B, we have that NX(B) <∞

The intensity measure of a point process, Λ(B) : B(Rd)→ [0,∞), is defined as
the expected number of points of the process X in B, i.e Λ(B) = E[NX(B)].
The intensity measure Λ(B) can typically be expressed as

Λ(B) =

∫
B

λ(x)dx, (3.1)

where the function λ : Rd → [0,∞), is called the intensity function.

A point process X is stationary if its distribution is invariant under translations.
For stationary point processes, the intensity measure is Λ(B) = λ | B |. This
implies that the intensity function λ(x) ≡ λ is constant, and hence it is called
the intensity of the process, which is interpreted as the mean number of points
per unit volume. A point process with constant intensity function is called
homogeneous and a point process with non-constant intensity function is called
inhomogeneous. Therefore, all stationary point processes are automatically
homogeneous. On the other hand, testing for the stationarity assumption of
the underlying process from just one realization is statistically impossible, and
justifying stationarity is mainly based on application related arguments. Lastly,
a point process X is isotropic if its distribution is invariant under rotations
around the origin. In the appended Papers, the point patterns containing the
projections of the ENF base, branching, and end points onto the plane, are
assumed to be subsets of realizations from stationary planar point processes.
The three-dimensional point patterns are assumed to be subsets of realizations
from stationary three-dimensional point processes.

There are three main types of point processes, namely clustered, regular, and
completely spatially random (CSR) processes. In a clustered process, the points
are arranged in clusters, in a regular process, there are repulsive dependencies
between the points, and in the CSR process, there is no structure, i.e. the points
are uniformly and independently distributed in space. An illustration of the
three main types of point processes is given in Figure 3.1. More complicated
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types of point processes may be created by incorporating different types of
dependencies at different scales, for instance, a clustered process with repulsion
between the clusters. Therefore, characterizing the structure of the point pattern
data at hand is one of the main topics in point process theory.

Figure 3.1: The three main types of point patterns: are clustered (left), completely
spatially random (middle), and regular (right).

It is important to note that the spatial structure of a three-dimensional pattern
and the pattern consisting of the events projected onto the plane might have
different clustering behaviors. An example of such a case is illustrated in Figure
3.4. The pattern on the left (purple) is more clustered than the right pattern
(red) in R2 but less clustered in R3.

3.1.1 Poisson point process

A Poisson point process is a mathematical model describing the complete
spatial randomness case. A point process is a homogeneous Poisson point
process with intensity λ ≥ 0 if

(i) the random number of points of the process in a set B follows a Poisson
distribution with the expectation λ|B|, i.e NX(B) ∼ Pois(λ|B|), and

(ii) given NX(B) = n, the n points are uniformly and independently allo-
cated in B.

Despite its simplicity, the Poisson process plays a fundamental role in the
characterisation of the spatial structure of spatial point patterns. As many
theoretical properties and spatial summary functions can explicitly be derived
for the Poisson point process, it is used as a reference model. That is, the
summary functions estimated from empirical point patterns are compared to
the theoretical values under CSR.
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Furthermore, it serves as a basic building block for constructing more complex
clustered and regular point processes. For instance, it serves as a model for
the parent process in Neyman-Scott point processes, a family of models for
clustered point patterns (see Section 3.4.1), as well as an initial model in the
hardcore type of processes, a family of models for regular point patterns.

3.2 Functional summary statistics

We recall that the ENF base, branching, and end points were treated as re-
alisations of stationary point processes in a three-dimensional box and their
projections as stationary point processes in a rectagular window. In this section,
functional summary statistics for stationary point processes are briefly recalled.

3.2.1 Summary functions

The empty space distribution function F (r) : [0,∞)→ [0, 1] gives the probability
that the open ball around an arbitrary point x ∈ Rd with radius r, b(x, r), con-
tains at least one event of the point process X . For stationary point processes,
since the probability P(NX(b(x, r)) = 0) does not depend on x, it is sufficient
to consider x to be the origin o. In mathematical notation, F (r) is expressed as

F (r) = 1− P(NX(b(o, r)) = 0). (3.2)

Similarly, the nearest neighbor distance distribution function G(r) : [0,∞)→ [0, 1]
gives the probability that the ball around an arbitrary point x of the process
with radius r, b(x, r), contains its nearest neighboring point x of the process X .
Assuming that the process is stationary we can assume that x is the origin. The
nearest neighbour function G(r) is given by

G(r) = 1− Po(NX(b(o, r) \ {o}) = 0) (3.3)

where Po is the Palm distribution of X , a conditional probability distribution
given that there is an event in the origin.

The J function can be constructed from the nearest neighbor function G(r) and
empty space function F (r). The J function is given by

J(r) =
1−G(r)

1− F (r)
, when F (r) < 1.
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The values for the summary functions for the three main types of point patterns
are interpreted as follows

(i) For CSR point patterns the following is true for r ≥ 0

F (r) = G(r) = 1− e−λπr2 and J(r) ≡ 1. (3.4)

(ii) For regular point patterns, we have that for r ≥ 0

G(r) < 1− e−λπr2 < F (r) and J(r) > 1. (3.5)

(iii) For clustered patterns, we have that for r ≥ 0

F (r) < 1− e−λπr2 < G(r) and J(r) < 1. (3.6)

It is important to note that the G, F, and J functions are appropriate for
describing the spatial structure at small scales, since they consider the nearest
events, but cannot provide any information about the structure at larger scales.
Further, we should be careful when interpreting values of the J function as
J ≡ 1 does not imply that X is the homogeneous Poisson process (Bedford
and Van den Berg, 1997). Moreover, since lim

r→∞
1− F (r) = 0 the variance of the

estimate Ĵ(r) increases with increasing r.

3.2.2 Second-order characteristics

Ripley’s K function proposed by Ripley (1977) is a second-order summary
function that can characterize the structure of a point process at different
scales. For stationary and isotropic point processes with intensity λ, Ripley’s
K function has a straightforward interpretation. In particular, λK(r) gives the
expected number of further points of the process X within distance r from an
arbitrary point x of the process. As X is stationary, we can assume that x is the
origin o. In mathematical terms, Ripley’s K function is defined as

λK(r) = Eo[NX(b(o, r) \ {o})] (3.7)

where Eo is the expectation with respect to the Palm distribution, which is
interpreted as the conditional expectation given that there is an event in the
origin. The values of Ripley’s K function for point patterns in Rd can be
interpreted as follows
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(i) For CSR patterns, K(r) = |b(o, r)|, r ≥ 0

(ii) For regular patterns, K(r) < |b(o, r)|, r ≥ 0

(iii) For clustered patterns, K(r) > |b(o, r)|, r ≥ 0

where b(o, r) is the d-dimensional ball centered at the origin o with radius r.
A more interpretative version of the K function is the so-called centered L
function. The centered L function is given by

L(r)− r = d

√
K(r)

|b(o, 1)|
− r, r > 0. (3.8)

The theoretical value for the CSR case is L(r) − r ≡ 0, and hence we can
determine if a pattern is clustered or regular by comparing the value of the
summary function directly with zero.

3.2.3 Edge corrections

Naive estimators of the summary functions ignore neighboring points that
might not have been observed, i.e. points outside the observation window W ,
which makes the naive estimators biased. In point process literature, this issue
is referred to as edge effects. An illustration of this issue is displayed in Figure
3.2.

Figure 3.2: Example of edge effects. The points outside the observation window W are
not observed and therefore, if they are ignored the estimators become biased.

Therefore, to construct unbiased estimators, some edge correction weights
C(xi, xj) are included in the estimators. Even though all the summary func-
tions introduced earlier need to be edge corrected, this Section presents edge
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correction schemes only for the K function. The most common corrections for
Ripley’s K function are the translation, isotropic and minus sampling corrections.
For a stationary point process, the translation correction weights C(xi, xj) are
defined as follows.

C(xi, xj) =
1

|W ∩Wxi−xj
|

(3.9)

where Wxi−xj
denotes the translated window Wxi−xj

and | · | the Lebesgue
measure. If the process is also isotropic, the isotropic correction is defined as

C(xi, xj) =
ν1(∂b(xi, || xi − xj ||) ∩W )

2π || xi − xj ||
(3.10)

where ν1 denotes the length of a curve, || · || denotes the Euclidean metric,
and ∂ denotes the boundary of a set. The above expression can be interpreted
as the proportion of the perimeter of the ball that lies within the window W .
In the minus sampling correction, only the points that have a distance larger
than r from the boundary of the window are used as reference points in the
estimation of the summary function. A visual interpretation of the different
edge correction schemes is given in Figure 3.3

r

Figure 3.3: Illustration of the translation (left), isotropic (middle) and minus sampling
(right) edge corrections

Therefore, an estimator for Ripley’s K function corrected for edge effects is
given by the following formula

K̂(r) =
1

λ̂n

̸=∑
x1,x2∈X∩W

C(x1, x2)1{|| x1 − x2 ||≤ r}, r ≥ 0, (3.11)

where C(xi, xj) is one of the edge correction weights, λ̂ an estimator of the
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process intensity and n the total number of events.

3.2.4 Extensions of the K function

Bivariate K function

The K function can be extended for multitype point processes. Let Xa and Xb

be two stationary, possibly dependent, point processes observed in W , and let
λa, λb be the intensities of Xa and Xb, respectively. Then, λbKa,b(r) gives the
expected number of further points of the process Xb in the d-dimensional ball
with radius r centered at an arbitrary point x of the process Xa. If the process
is stationary, x can be assumed to be the origin o. In mathematical notation,
this is expressed as

λbKa,b(r) = Ea[NXb
(b(o, r) \ {o})], (3.12)

where Ea is a conditional expectation given there is an event of Xa in the
origin o. Important to note that the bivariate Ka,b(r) function coincides with
the original Ripley’s K function when Xa and Xb are the same processes. An
estimator for Ka,b(r) corrected for edge effects can be obtained by

K̂a,b(r) =
1

λ̂bλ̂a|W |

na∑
i=1

nb∑
j=1

C(xa
i , x

b
j)1{0 <|| xa

i − xb
j ||≤ r}, r ≥ 0, (3.13)

where C(xa
i , x

b
j) is an edge correction term, na and nb are the numbers of points

and λ̂a and λ̂b the intensity estimates of Xa and Xb, respectively.

Cylindrical K function

The isotropic K function is not an appropriate summary statistic for non-
isotropic point patterns due to its symmetric structuring element, i.e. a d-
dimensional ball. Directional K functions with non-symmetric structuring ele-
ments have been suggested as extensions of Ripley’s K function for anisotropic
point processes (see e.g Stoyan and Stoyan (1994); Rajala et al. (2018)). The
three-dimensional ENF end point clusters are anisotropic, as the behavior in
the xy plane differs from the behavior in the z direction, and therefore, we
considered the cylidrical K function. The cylindrical K function Ku

cyl(r) is a
directional K function that uses a cylindrical structuring element (Møller et al.,
2016). Similar to Ripley’s K function the values of the cylindrical variant can
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be interpreted as the expected number of further events within distance r from
an arbitrary event x, that are within Bu(r, w), i.e. the shape created by the in-
tersection of a cylinder with fixed half-width w and direction u with spheres of
radius r > 0, divided by the process intensity. Choosing appropriate directions
u mainly depends on the nature of the application. For instance, the cylindrical
Ku

cyl(r) function can be estimated towards directions of the coordinate axes to
test the assumption of isotropy. If Ku

cyl(r) is not the same in each direction u,
it is an indication of anisotropy. An estimator for Ku

cyl(r) corrected for edge
effects is given by

K̂u
cyl(r) =

1

λ̂2

̸=∑
x1,x2∈X∩W

C(x1, x2)1[x1 − x2 ∈ Bu(r, w)], r > 0, (3.14)

where C(x1, x2) is an edge correction term, Bu(r, w) denotes the shape created
by the intersection of a cylinder with fixed half-width w and direction u with
spheres of radius r > 0 and λ̂2 is an estimator for the process squared intensity.
As the half width w is fixed, Ku

cyl(r) is defined as a function of distance r. In a
similar fashion as for the usual K function, more interpretative variants can
be defined for both the bivariate and cylindrical K functions. The structuring
elements of the isotropic K function and the cylindrical K function oriented
towards the z-axis are illustrated in Figure 3.4.

 

 

Figure 3.4: Illustration of potential differences in clustering in different dimensions.
The projections of the "red" pattern are less clustered in R2 but more clustered than
the "purple" pattern in R3. The structuring elements for the isotropic Ripley’s K in R2

(bottom) and the cylindrical K function in R3 (top) are also illustrated.
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Pooled K function

The aforementioned spatial summary functions are appropriate for describing
the spatial structure of a single point pattern. When point pattern replicates
are available, the summary functions can be pooled to characterize the aver-
age spatial structure (Diggle et al., 1991; Baddeley et al., 1993; Diggle et al.,
2000). For instance, the ENF data set is hierarchically structured into groups
depending on the neuropathy severity, subjects within those groups, and sev-
eral samples within each subject, and we want to compare the average spatial
structure of the ENF patterns between the groups. The following methodology
can be applied to extend the samplewise summary functions to subjectwise
and groupwise functions. Firstly, samplewise summary functions Kij(r) for
sample j ∈ {1, ...,mi} of subject i can be estimated for each point pattern, as
introduced in Section 3.2.2. Then, subject specific K̄i(r) functions can be ob-
tained as a weighted mean of the Kij(r) functions for all subjects i ∈ {1, ...,m}
as

K̄i(r) =

mi∑
j=1

wijKij(r). (3.15)

Finally, the subjectwise K̄i(r) functions are combined to obtain the groupwise
K̄g(r) function for the group g ∈ {healthy, diabetic}

K̄g(r) =

m∑
i=1

wiK̄i(r). (3.16)

Several weighting schemes can be applied to calculate the weights. As our
samples cannot be assumed to have the same intensity, we used a square
number weight scheme (Diggle et al., 2000). An explicit description of this
weighting scheme is as follows. Let nij be the number of points in sample j of
subject i, and let ni =

∑mi

k=1 nik be the total number of points in the samples
from subject i ∈ {1, ...,m}. Then the square point number weights for the
subjectwise K̄i(r)and groupwise K̄g(r) are given by

wij =
n2
ij∑mi

k=1 n
2
ik

, wi =
n2
i∑m

k=1 n
2
k

. (3.17)

3.2.5 Mark correlation function

Often in applications additional information, often referred to as marks, are
attached to the points. Generally, the marks are either integers, i.e. different
types of points in multitype point patterns, or real-valued numbers, i.e. size-
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related features such as height, diameter, or width, even though the mark
space can be any Polish space, i.e., a complete and separable metric space
(Eckardt and Moradi, 2024; Cronie et al., 2024). The mark correlation function
is a second-order characteristic for marked point processes that is used to
detect spatial dependencies between the marks. The classical mark correlation
function Kmm(r) for quantitative marks is defined as follows.

Kmm(r) =
cmm(r)

µ2
r ≥ 0 (3.18)

where cmm(r) = Eo,r[mo ·mr] is the two-point (Palm) conditional expectation
given that there is an event in the origin and an event distance r away and
µ2 = cmm(∞) is the squared mean mark. The mark correlation function can be
interpreted as follows

(i) If there is no correlation between the marks (given two associated spatial
locations distance r apart), then Kmm(r) ≡ 1.

(ii) If there is a negative correlation between the marks, for instance, there is
competition between the points, we expect smaller than average marks
for close points and hence Kmm(r) < 1.

(iii) If there is a positive correlation between the marks, for instance, the
points benefit from being close together, we expect larger than average
marks and hence Kmm(r) > 1.

In general, the mark correlation function can be defined naturally through a
test function t(mo,mr), through the summary statistic ct(r) = Eo,r[t(mo,mr)].
For instance, the classical mark correlation function (Stoyan, 1984) above is
obtained with the test function t(mo,mr) = mo ·mr. An estimator of the mark
correlation Kt(r) based on test function t, for r ≥ 0 and corrected for edge
effects is given by

K̂t(r) =
1

λ̂2µ̂2

̸=∑
x1,x2∈X∩W

C(x1, x2)t(m(x1),m(x2))1{|| x1 − x2 ||≤ r}, (3.19)

where λ̂ is an estimator for the process intensity, µ̂ is an estimator for the mean
of the mark distribution, and C(x1, x2) is an edge correction term.

Often the null hypothesis of random labeling, i.e., the marks have a common
mark distribution and are independent of the point locations and each other, is
of interest. Simulation envelopes under random labeling, can be constructed
using a Monte Carlo method where at each iteration the marks are randomly
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permuted between the points, the locations of the points are kept fixed, and
the mark correlation function for the permuted marked patterns is computed
(D’Angelo et al., 2023). Simulations using this method construct marked point
patterns with randomly labeled marks which are then used to create simulation
based envelopes, i.e. an acceptance region under the null hypothesis of random
labeling of the marks.

3.3 Spatially thinned processes

Spatial thinning of a point process X is one of the fundamental operations for
point processes. A thinned process Xth ⊂ X is a point process obtained after
a thinning operation was applied to X , i.e., a probabilistic rule determining
which points x ∈ X should be retained in Xth. For each point x ∈ X , a prob-
abilistic model defines the retention probability π(x). Independent thinning
models are the thinning models in which π(x) is independent of other points
in X . A special case is the p-thinning model in which for every point x ∈ X
the retention probability p is constant. When X is stationary, second-order
properties such as Ripley’s K and L functions are invariant under independent
thinning operations. On the contrary, this invariance property does not hold
under a dependent thinning operation, a thinning operation in which the re-
tention probability depends on other points in X , that is π(x) = π(x | X). In
paper III, a dependent thinning model for the ENF data was proposed.

3.4 Point process models for ENF patterns

This Section focuses on point process models for the ENF patterns, i.e. clustered
point process models. The Neyman-Scott family of cluster point process models
is described first, followed by cluster models developed specifically for the
ENFs.

3.4.1 Neyman-Scott point processes

Neyman-Scott point processes are cluster processes originally introduced by
Neyman and Scott (1952) to model the locations of galaxies in space. The
construction of a Neyman-Scott point process is rather simple. Initially, the
process for the cluster centers, i.e. the so-called parent process, should be
specified. Typically, a Poisson point process P with intensity λp is used as the
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parent process. Then, a distribution for the number of daughter points Nc per
cluster center c ∈ P is chosen. The daughter points x ∈ Xc are distributed in
space according to a scattering distribution δ independently of each other. The
final process X is then X = ∪cXc, hence the parent points are not included.

A Neyman-Scott process X is stationary and if the scattering distribution
is isotropic then X is also isotropic. Moreover, the first and second-order
properties of X can be derived explicitly. Let α = E[Nc] be the expectation of
the distribution of the number of offsprings Nc, then the intensity of X is

λ = λpα (3.20)

Now let pk = P(Nc = k), for k ∈ N∪{0} and Fd(r) be the distribution function
of the random distance between two independent points in the same cluster
Xc. Then, Ripley’s K function for X is given by

K(r) = πr2 +
1

λα

∞∑
i=2

pii(i− 1)Fd(r), r ≥ 0. (3.21)

The most notable examples of Neyman-Scott point processes are the Matérn
and Thomas cluster point processes. In both point process models, the dis-
tribution of the random number of offsprings follows a Poisson distribution
with expectation α, that is Nc ∼ Poisson(α). In the Matérn cluster process, the
scattering distribution δ is a uniform distribution in the ball b(c,R), for c ∈ P
and some radius R. In the Thomas cluster process, δ is a Gaussian distribution
with variance σ2. In both cases, δ is isotropic, and hence X is a stationary and
isotropic process. When the distribution of Nc is considered to be a discrete
distribution other than Poisson, generalizations of the Matérn and Thomas
processes can be obtained (see e.g Andersson and Mrkvička (2020)).

3.4.2 Cluster models for ENFs

In earlier studies on the nerve fibers, different types of cluster models for the
planar spatial structure of the endpoints were suggested. The models presented
here are models for the end points and are constructed conditioned on the
observed base point patterns. Each model consists of three main components,
namely the length of the segments L, the angle Φ between the segments con-
necting base and end points and the x axis, and the tree size S, i.e. number of
end points per base point. For every component, distributions are suggested.
The main assumption that is common in both models is the independence
between the different components, which simplifies the parameter estimation
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procedure significantly.
The Non-Orphan Cluster (NOC) model (Olsbo et al., 2013) is given by

L∼Gamma(α, β)

Φ | µ∼V onMises(µ, κ)

S∼Jonquiere(δ, γ)
(3.22)

where µ is the so-called open space direction, defined for each base point as
the direction opposite to the closest other base point.

The Uniform Cluster Centre (UCC)(Andersson et al., 2016) is given by

L∼Gamma(α, β)

Φ | µ∼V onMises(µ, κ)

S − 1∼NegativeBinomial(k, p)

(3.23)

where there is no preference for µ, i.e. µ ∼ Unif(0, 2π).

Both models use two parameter distributions for the tree size as the one param-
eter Poisson distribution was not flexible enough. On the other hand, the main
difference between the models is the direction in which the end point clusters
are sent towards. In the NOC model, this direction depends on the base point
pattern as the clusters are sent towards open space, while in the UCC model
the clusters are sent towards a random direction.



4 General statistical tools

In this Section, some statistical tools used for simulation and estimation through-
out the thesis are briefly described.

4.1 Metropolis-Hastings algorithm

Markov Chain Monte Carlo (MCMC) methods are statistical methods for infer-
ence and simulation from a target density π(x) (see e.g Brooks et al. (2011)).
If certain conditions are satisfied, a Markov chain Y0, Y1, ... having the target
distribution as its limiting distribution can be constructed. The Metropolis-
Hastings algorithm is an MCMC algorithm, that requires the target distribution
to have probability density (or probability mass) function to be known up to
a constant (Metropolis et al., 1953; Hastings, 1970). Hence, the Metropolis-
Hastings algorithm is also useful for simulating spatial point processes with a
density function that has an intractable normalizing constant. The algorithm
described in this section conditions on the number of points in the point pattern,
i.e NX(B) = n. Therefore, we are interested in simulating from the conditional
unnormalized density hn such as

π(x1, x2, ..., xn) ∝ hn(x1, x2, ..., xn). (4.1)

If certain conditions are satisfied, the algorithm creates a Markov chain of
point processes Y0, Y1, ... whose stationary distribution converges to the target
distribution π. In a systematic updating scheme (Møller and Waagepetersen, 2004)
we cycle through each point in every iteration.

Given the state at iteration k, Yk = xk = (x1, ..., xn), assume that for the i-th
coordinate xi of xk we propose a new point ξ ∼ qi(xk, ·) from a proposal

21
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density qi. The Hastings ratio ri(xk, ξ) is given by

ri(xk, ξ) =
hn((xk \ xi) ∪ ξ)qi((x1, ..., xi−1, ξ, xi+1, ..., xn), xi)

hn(xk)qi(xk, ξ)
. (4.2)

Choosing a symmetric proposal, i.e. a proposal density such that qi(x, y) =
qi(y, x), simplifies the Hastings ratio ri(xk, ξ) to

ri(xk, ξ) =
hn((xk \ xi) ∪ ξ)

hn(xk)
. (4.3)

A proposed state ξ is accepted with acceptance probability ai(xk, ξ) given by

ai(xk, ξ) = min(1, ri(xk, ξ)) (4.4)

otherwise xi is left unchanged. Moreover, properties of the Markov chain
created by the specific algorithm, such as irreducibility and reversibility can
be proved. For a more mathematically rigorous treatment of the topic you
are referred to Chapter 7 in Møller and Waagepetersen (2004). In Paper II, a
Metropolis-Hastings algorithm with a uniform proposal was used to simulate
from the model. A pseudo-algorithm for a generic Metropolis-Hastings for
point processes with conditional density hn and a fixed number of points is
given in Algorithm 1 below.

Algorithm 1

Input: A point pattern Y0 = (x1, ..., xn) and M the number of iterations
Output: A realisation from X given NX(B) = n
for m← 0, ...,M do

Given that Ym = xm

for j ← 1, ..., n do
Draw ξ ∼ qj(xm, ·)
Calculate rj(xm, ξ) using (4.2)
Calculate aj(xm, ξ) using (4.4)
Draw U ∼ Uniform(0, 1)
if U < aj(xm, ξ) then

Set Ym = (x1, ..., xj−1, ξ, xj+1, ..., xn)
else

Set Ym = xm

end if
end for

end for
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4.2 Approximate Bayesian computation

Approximate Bayesian computation (ABC) (Sisson et al., 2018; Marin et al.,
2012) refers to a family of methods for Bayesian parameter inference of a statis-
tical modelM(θ) when the likelihood of the model is unknown or when the
likelihood is computationally expensive to approximate, but given a vector
of parameters θ, data can efficiently be simulated fromM(θ). ABC methods
require the specification of a prior distribution P (θ) for the parameter vector
θ. Furthermore, a set of informative summary statistics S(·) and a tolerance
parameter ϵ need to be specified. Unfortunately, choosing S(·) is often not
a straightforward task. Recently, machine learning methods for learning the
summary statistics for ABC have been developed (Jiang et al., 2017; Wiqvist
et al., 2019). A pseudocode for a simple ABC acceptance-rejection sampling
(Pritchard et al., 1999), is given in Algorithm 2. This method samples parame-
ters from the approximate pseudo-posterior

Pϵ(θ | S(y)) ∝ P (θ)

∫
1||s∗−s||<ϵP (s|θ)ds∗

where s∗ = S(y∗) and s = S(y) are obtained from the simulated data y∗ and
empirical data y, respectively.

Algorithm 2 ABC acceptance-rejection sampler

Input: prior P (θ), model M(θ), summary statistic S(·), threshold ε > 0,
positive integer N .
Output: posterior draws (θ1, ..., θN ).
for i← 1, ..., N do

repeat
Draw from prior θ∗ ∼ P (θ)
SimulateM(θ∗)→ y∗

Compute S(y∗)
until ∥S(y∗)− S(y)∥ < ϵ

θi ← θ∗

end for

On the other hand, when the posterior is not similar to the prior, this method
has a very small acceptance rate, and hence it is computationally inefficient.
Therefore, the tolerance parameter ϵ should be chosen to balance both the
precision of the approximate posterior and acceptance rates. To this end,
methods for tuning ϵ have been proposed (Simola et al., 2021; Drovandi and
Pettitt, 2011). To address this issue, in Paper II we used a more sophisticated
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ABC rejection sampler in which we (i) simulated a large number of θ∗ ∼
P (θ); (ii) conditionally of θ∗, simulated data y∗ asM(θ∗) → y∗; (iii) reduced
both y∗ and y to a low-dimensional set of summary statistics S(y∗) and S(y),
respectively, and evaluated their proximity using the Euclidean distance, i.e.
|| S(y∗)− S(y) ||; and finally, (iv) retained θ∗ if || S(y∗)− S(y) ||< ϵ, for some
small ϵ > 0, and rejected otherwise.

4.3 Shift plots and qq plots

The shift function introduced in Doksum and Sievers (1976) is a statistical tool
for comparing two distributions, graphically. Letting X ∼ F and Y ∼ G, the
shift function is defined as the function ∆(x) such as F (x) = G(x + ∆(x)).
Solving for ∆(x) we get that ∆(x) = G−1(F (x))− x. Hence, ∆(·) expresses the
amount of ’shift’ required so that X and Y coincide. Further, ∆(x) ≡ 0 implies
that X and Y have the same distribution. The qq (quantile quantile) plot is
closely related to the shift function. When comparing two random samples
with a qq-plot, the quantiles of one sample are plotted against the quantiles
of the other. If they have the same distribution, the points should fall on the
line y = x. The shift function ∆(x) is the shortest distance between the qq-plot
points and the line y = x.

Simultaneous 95% confidence bands for ∆(x) can be created using the Kolmogorov-
Smirnov statistic. Hence, if the line y = 0 lies within the confidence bands
of the estimated shift function ∆̂(x) then F and G are statistically indistin-
guishable. One advantage of this statistical tool is that if F and G differ, visual
inspection of the shift plot can provide information on how the distributions
differ. Examples of how shift plots can be used to compare the distribution of
two random random variables are shown in Figure 4.1.
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Figure 4.1: Illustration of the shift plots for two random variables that are statistically
indistinguishable (left) and from different distributions (right), with 95% confidence
bands based on the Kolmogorov-Smirvov statistic.
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4.4 Global envelope tests

Global envelope tests are graphical, Monte-Carlo based tests for multivariate
or functional data introduced in Myllymäki et al. (2017) originally developed
to solve the multiple comparison problem in spatial statistics. Let T (r) denote
the statistic of interest, e.g. Ripley’s K function, and R = (r1, . . . , rd) be a d-
dimensional vector containing the values where T (·) is evaluated. Further,
let the d-dimensional discretization of the empirical statistic be denoted by
T0 = (T0(r1), . . . , T0(rd)) and the corresponding statistics for s simulated data
sets under the “null model” by T1, ...,Ts.

Global envelopes are non-parametric test as they are constructed by ranking the
extremeness of the test vectors T0, . . . ,Ts. The rankings are obtained through
a ranking measure E. Some common ranking measures are the unscaled MAD
measure (Ripley, 1981), the pointwise rank measure (Myllymäki et al., 2017), the
extreme rank length (ERL) measure (Narisetty and Nair, 2016), the continuous
rank measure (Hahn et al., 2015) and the area measure (Mrkvička et al., 2022).
Figure 4.2 illustrates a toy example with five test statistics T1, . . . ,T5 where
large values are considered extreme. In this example, the variance of the test
statistic increases from the left to the right.
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Figure 4.2: A toy example for describing the different measures. According to the
unscaled MAD measure the black curve (1) is the most extreme, according to the ERL
measure the green curve (3) is the most extreme and according to the continuous and
area rank measures the red curve (5) is the most extreme.

According to the unscaled MAD measure, T1 is the most extreme as it obtains
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the overall highest value. According to the rank measure all test statistics are
the most extreme as they obtain the largest value at some range. The ERL, area
and continuous measures were proposed as solutions to breaking the ties in
the rank measure. According to the ERL measure, T3 is the most extreme as it
is above the other statistics over a longer domain of ranges. According to the
continuous rank and area measures T5 is the most extreme. The continuous and
area measures consider the deviation and the area between the test statistics,
respectively. Then both of them adjust for the variance of the test statistic, i.e.,
smaller variance gives more extreme measure. For a more rigorous treatment
to the topic see Myllymäki and Mrkvička (2019) and references therein.

Let α be the significance level and let Ei < Ej be interpreted as Ti is more
extreme than Tj . Now, let E(α) ∈ R be the largest Ei such that

s∑
i=0

1(Ei < E(α)) ≤ α(s+ 1)

and let I(α) denote the set of vectors less than or as extreme as E(α). Then, a
100(1− α)% global envelope is the band (T

(α)
low,T

(α)
upp) given by

T
(α)
low(rk) = min

i∈I(α)

Ti(rk) and T (α)
upp(rk) = max

i∈I(α)

Ti(rk) for k = 1, ..., d.

where Tα
low = (Tα

low(r1), . . . , T
α
low(rd)) and Tα

upp =
(
Tα
upp(r1), . . . , T

α
upp(rd)

)
.

The global envelope can be interpreted as the acceptance region of the test, that
is the test rejects the null hypothesis if and only if the empirical statistics T0

goes outside the global envelope at any point r ∈ R. Moreover, it allows for
graphical interpretation as the range of values responsible for the rejection of
the null hypothesis are graphically illustrated. An example of a 95% global
envelope (shaded area) constructed under the null hypothesis of CSR for the
centered L function, i.e. L(r)− r, is shown in Figure 4.3. The null hypothesis is
rejected as the empirical test statistic (solid line) does not lie completely within
the envelope (shaded area), indicated by red points. Moreover, the reason for
rejecting the null hypothesis is the clustering observed at small ranges.
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Figure 4.3: The L(r)−r function of a point pattern (solid line) with 95% global envelope
(shaded region) constructed under the null hypothesis of CSR.

The validity of global envelope tests does not depend on the distribution of
the test statistic. Therefore, any test statistic may be used for testing. However,
in order for the global envelopes to achieve desired type I errors, the test
statistics T0, ...,Ts must be exchangeable, that is for any permutation σ and
any measurable set A the following property must hold

P ((T0, T1, . . . , Ts) ∈ A) = P
(
(Tσ(0), Tσ(1), . . . , Tσ(s)) ∈ A

)
.

Note, that exchangeability depends on the permutation strategy or statisti-
cal model used to obtain the replications of the test statistic under the null
hypothesis.

In Papers I-III, global envelope tests were applied to summary functions, e.g.
the K function, for goodness-of-fit evaluation of the proposed models. In
Papers IV and V, global tests for quantile regression and for comparing the
distibutions of n populations were proposed.

4.5 Quantile regression

Quantile regression, a statistical model developed in Koenker and Bassett Jr
(1978), models the quantiles of the conditional response variable Y ∈ Rn×1
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given a set of covariates X ∈ Rn×p linearly on X as detailed in Equation (4.5)

QY |X(τ) = inf{y : FY |X(y) ≥ τ} = XTβ(τ) for τ ∈ [0, 1]. (4.5)

For instance, for the τ = 0.5 quantile this model corresponds to median re-
gression, a model for the conditional median of the response Y given a set of
covariates X. Estimating the regression coefficients β(τ) = (β1(τ), . . . , βp(τ))
involves solving the optimization problem

β̂(τ) = min
β

n∑
i=1

ρτ (Yi −XT
i β)

where ρτ : R→ R+ such that ρτ (u) = uτ if u ≥ 0 and ρτ (u) = −u(1−τ) if u < 0.
This optimization problem can be efficiently solved using linear programming
methods (Dantzig, 2016; Portnoy and Koenker, 1997).

For a fixed quantile τ , there exist three main approaches for constructing
confidence intervals for βj(τ), j ∈ {1, . . . , p}, in the literature. The first ap-
proach constructs confidence intervals using asymptotic results (Koenker and
Machado, 1999), the second approach, by inverting rank-scores (Gutenbrunner
et al., 1993), and the third approach uses resampling methods(Efron, 1992). For
a more rigorous description of the methods see Koenker (2005) and references
therein.

The aforementioned inference methods are suitable only for local inference,
i.e., testing the null hypothesis H0 : βj(τ) = 0, for fixed τ . On the other hand,
simultaneous inference of the quantile regression process, β(τ) for τ ∈ [0, 1],
might often be of interest. In this problem, the following null hypothesis is of
interest

H0 : β(τ) = 0, for all τ ∈ [0, 1]. (4.6)

In paper IV, global quantile regression, a statistical framework allowing for
global inference of the quantile regression process was proposed. The tests
presented are global envelope tests (Myllymäki et al., 2017).



5 Permutation strategies

This Section describes the permutation strategies developed to simulate "null
data", i.e., data under the null hypothesis, for global testing. For instance,
in Paper IV testing the null hypothesis (4.6) was of interest. Throughout
this section Y ∈ Rn×1 denotes the response variable, X ∈ Rn×p denotes
the interesting covariates, Z ∈ Rn×q denotes the nuisance covariates and
T = {τ1, . . . , τd} a discrete set of quantiles.

A simple permutation scheme permutes the rows of a data vector Y while
keeping the covariates fixed. Assuming there exist no nuisance covariates
affecting the response distribution, this permutation generates new data so
that X does not affect the distribution of the response variable Y, i.e., data
under the null hypothesis (4.6). On the other hand, the statistical power of this
permutation test is low when the response distribution is affected by nuisance
covariates. For this purpose, more sophisticated permutation strategies were
developed in Paper IV.

In particular, we are interested in performing inference for β(τ) in the quantile
regression model

QY|X,Z(τ) = Xβ(τ) + Zγ(τ) for all τ ∈ T . (5.1)

The general framework for constructing the global tests is detailed in Algorithm
(3). In this Section, the permutation strategies developed for the global tests
(step 2 of Algorithm (3)) are presented.
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Algorithm 3 Global inference for quantile regression (5.1) using permutation
schemes
Input: Response Y, interesting covariates X, nuisance covariates Z.
Output: A global envelope test.

1. For observed data, compute the test vector

T0 = (β1(τ1), . . . , β1(τd), . . . βp(τ1), . . . , βp(τd)) (5.2)

containing all the coefficients of the vectors β(τ1), . . . ,β(τd), rearranged
for better visualization.

2. Simulate s replicates of data under the null hypothesis (4.6).

3. Compute the test vectors for the s simulated data, and obtain T1, . . . ,Ts.

4. Apply a global envelope test to T0,T1, . . . ,Ts.

5.1 Within categorical Nuisance

This permutation strategy can be used when Z contains only one categorical
nuisance covariate with K levels. In this setting, new data Y∗ under the null
model (4.6) are generated as follows.

1. Split the data into subsets based on the K levels of Z. Let (Y(k),X(k),Z(k))
be the K subsets, with k = 1, . . . ,K.

2. Within each subset k, permute Y(k) using a simple permutation, while
keeping X(k) and Z(k) fixed. Then new data Y∗ are obtained by append-
ing the permuted subsets Y∗(k).

5.2 Freedman-Lane based permutations

The main idea of the Freedman-Lane permutation proposed in (Freedman
and Lane, 1983) for general linear models, is to generate new data Y∗ by
applying a simple permutation on the residuals of the reduced model, i.e., the
regression model with only the nuisance covariates. In Paper IV, we adapted
the Freedman-Lane permutation for the quantile regression using the following
steps.
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1. Fit the reduced model QY|Z(τ) = Zγ(τ) for all τ ∈ T . Let γ̂(τ) be the
estimated coefficients.

2. Compute the residuals of the reduced model ϵZ(τ) = Y − Zγ̂(τ) for all
τ ∈ T .

3. Apply a simple permutation to the residual matrix ϵZ. Let ϵZ∗ be the
permuted residual matrix.

4. The new data Y∗ are obtained by Y∗(τ) = Zγ̂(τ) + ϵZ
∗(τ).

Then, the following d quantile regression models for the data Y∗(τ1), . . . ,Y
∗(τd)

are considered.

QY∗(τ1)|X,Z(τ1) = Xβ(τ1) + Zγ(τ1), . . . , QY∗(τd)|X,Z(τd) = Xβ(τd) + Zγ(τd).

5.3 Removal of nuisance effects

Three of the permutation strategies in Paper IV, construct global tests for β(τ)
using Algorithm (3) but considering the model

QϵZ|X(τ) = Xβ(τ) for all τ ∈ T (5.3)

instead of the full model (5.1), where ϵZ denotes the data after the estimation
and removal of the nuisance effect. Then new data ϵZ

∗ are generated by simple
permutations of ϵZ. An illustration of this procedure is shown in Figure 5.1.

Y = Data εz* = Permuted εzεz = Data without 
nuisance effect

Estimate and remove
 the nuisance effect

Simple permutation of εz

Figure 5.1: The general framework of the permutations with removal of the nuisance
effect.

The first permutation is obtained if a location shift nuisance effect is assumed,
i.e. the nuisance covariates affect only the location of the response distribution.
The second permutation is obtained if a location and scale shift nuisance effect
is assumed, i.e. the nuisance covariates affect both the location and scale of
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the response distribution, and the third permutation is obtained if a general
quantile nuisance effect is assumed.



6 Summary of papers

6.1 Paper I

In this paper, we studied the 3D spatial structure of epidermal nerve fibers by
representing each nerve tree by the base point, first branching point and end
points. For the analysis, we considered skin samples obtained from the right
feet of 32 healthy volunteers and 8 mild diabetic neuropathy subjects. Unlike
earlier models that included only the base and end points, we included the first
branching points into the analysis. Our analyses indicated that the branching
points are naturally better choice for endpoint cluster centers than the base
points, and unlike the base points, that are clustered, they are indistinguishable
from completely spatially random processes. Moreover, we compared the
three-dimensional structure of the end point patterns between the two disease
groups using summary functions for point patterns. Even though the planar
point patterns of the mild group are more clustered than the point patterns in
the healthy group, no significant difference in clustering was found between
the three-dimensional point patterns of the two groups in terms of second-order
summary statistics.

To study the tree structure within the individual nerve trees, we considered the
branch lengths and angles of the first segments, the tree segment connecting
the base to the branching points, and the later segments, the tree segments
connecting the branching points to the end points. We used shift plots to
compare the branch lengths and angular distributions of the two tree segments.
Our statistical analysis suggested that the first segment length is significantly
larger and the first segments grow more vertically than the later segments.
Further, we compared the tree structure between the groups. Our results
indicated that there are significant differences between the angular distributions
of the later segments of the two groups.

Moreover, we extended the concept of reactive territories, in our paper called

33



34 6. Summary of papers

epidermal active territories (EAT), introduced in Andersson et al. (2016) for 2D
point patterns, to 3D point patterns. The epidermal active territory is defined as
the volume of the area in the epidermis covered by individual nerve fibers. Our
results showed that the total volume of the epidermis covered by the nerve trees
was larger in the healthy group than in the mild group. In addition, possible
competitive behavior between individual nerves was examined by using the
mark correlation function of the base point process with the epidermal active
territories as marks. No mark correlation was detected between the marks.

Finally, we proposed a two-step point process model for the end points con-
ditioned on the base point patterns. In the first step, we conditioned on the
base points and sent the first branching points towards open space, as in the
NOC model in Olsbo et al. (2013). In the second step, the endpoint clusters
are constructed around the simulated branching points. The two-dimensional
version of the model fitted the data quite well, while the three-dimensional
version revealed that there are interactions between the endpoints that were
not captured by the model. After the paper had published, we noticed that
the shift plots presented in the Paper are misinterpreted, as we ignored the
cumulative nature of the plots.

6.2 Paper II

Inspired by Christoffersen et al. (2021) we developed a 3D point process model,
that allowed the end points to interact with each other. The model consisted of
two steps. In the first step, the planar point patterns were obtained using the
two-dimensional version of the model introduced in Paper I. In the second step,
the process in the z-direction Xz given the planar process Xp was constructed
using a pairwise interaction Markov random field model. In the model, two
points are considered neighbors if they lie within a cylindrical interaction
region, i.e. a cylinder with halfwidth w and height 2t centered in one of the
points. The conditional density consisted of two parts, one modelling the
cylindrical interaction (γ) between the endpoints and a hardcore ball of radius
h not allowing points to be closer than the points in the data. The parameters of
the model, θ = (h,w, t, γ), were estimated by maximizing the pseudolikelihood
over a grid of values for the cylinder parameters (w, t) using the minimum
distance between the endpoints in the data multiplied by n−1

n as an estimate
for the hardcore distance h. To reduce the bias due to edge effects, minus
sampling was used. The parameter estimates suggest that in both groups, after
a hardcore radius h the end points attract each other. The attraction is larger in
the healthy group than in the mild diabetic group.
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Furthermore, a Markov chain Monte Carlo algorithm, where the number of
points in the planar process Xp are fixed, was used to simulate from the model.
We used a systematic updating scheme cycling over the point indexes 1 to n
and using a uniform proposal for a new point in Wz . Due to the anisotropic
nature of the data, the goodness-of-fit of the model was evaluated using the
cylindrical K function. Simulations from the model were able to capture
both the complete spatial structure of the endpoints and the structure of the
endpoints with respect to their branching points. After the publication of the
paper, we noticed that the reviewer’s suggestion of changing Figure 3 from
a boxplot (see Figure 6.1) to a dotplot made the interpretation of the results
harder.
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Figure 6.1: Original boxplot with the parameter estimates in Paper II.

6.3 Paper III

In this paper, we investigated the dynamics of the nerve mortality process
caused by the progression of the severity of the neuropathy. For the statistical
analyses, we considered bivariate planar point patterns consisting of the loca-
tions of base and end points of ENFs from diabetic patients diagnosed with
mild and moderate diabetic neuropathy as well as healthy controls. To study
the nerve death process, we developed spatial thinning models for the base
point patterns, where whole nerve trees, i.e. base points and the end points
connected to them, are removed according to a probabilistic model.

Initially, we tested the hypothesis of random nerve mortality, i.e., there exists no
particular biological process guiding the nerve removal and hence the nerves
are removed completely at random and independently of the removal of other
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points. In this case, the null model corresponds to an independent p-thinning
model, a model in which each nerve tree is retained with constant probability
p. To obtain simulated mild diabetic ENF data, this model was applied to the
healthy ENF data with retention probability estimated as the ratio between the
corresponding mean mild group and mean healthy group base point intensities.
Goodness-of-fit assessment of the model was performed using global envelope
tests with the centered Ripley’s L function as the test statistic. Our findings
indicated that the simulated mild diabetic patterns, i.e., the thinned healthy
patterns, did not capture the spatial structure in the mild diabetic ENF patterns.

To further investigate the behavior of the nerve mortality process, we developed
a parametric dependent thinning model in which the retention probability
for each nerve tree depended on the distance to the closest other nerve tree.
In particular, the retention probability was larger for nerve trees with close
neighboring trees and lower for isolated trees. The parameter of the model
controlled the behavior of those retention probabilities. More specifically,
it favored the removal of isolated trees for small values of the parameter,
and for large parameter values, the model converged to an independent p-
thinning. The model parameter was estimated by an approximate Bayesian
computation method. For the ABC method, we used an exponential prior and
chose as the summary statistic the scale for which the estimated empty space
function for the base point configurations evaluates to 30%. The quality of the
proposed inference procedure was assessed in a simulation study. According
to our results, the 95% predictive envelopes for several spatial and non spatial
statistics obtained from simulations from the posterior predictive distribution
of the model captured the structure in the mild ENF data well. Therefore,
the increased ENF clustering in the diabetic patterns can be explained by the
model, as the isolated nerve trees tend to die first. Finally, we investigated
thinning models applied to mild ENF data. We observed that an independent
p-thinning of the base points, and hence dependent thinning of endpoints, was
sufficient to capture the structure in the ENF data from the moderate diabetic
neuropathy group. On the other hand, the sample size for this analysis was
small and therefore further studies are required.

6.4 Paper IV

In this paper, we extended the global envelope tests used for goodness-of-fit
purposes, e.g. in Papers I-III, to perform simultaneous inference for quantile
regression (Koenker and Bassett Jr, 1978) . To this end, we developed global
quantile regression, a statistical framework suitable for testing whether a co-
variate has an effect on any set of quantiles of the response distribution. The
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proposed method is based on the quantile regression model and the global en-
velope tests (Myllymäki et al., 2017) with permutations to simulate data under
the "null model", that is the quantile regression process β(τ) ≡ 0 for τ ∈ [0, 1].
To the best of our knowledge, this is the first method in the literature suitable
for simultaneous inference of the quantile regression process that requires no
regularity assumptions to be valid.

Initially, we considered the case in which there are no nuisance covariates
affecting the response distribution. In this case, a simple permutation strategy
permuting the response variable is sufficient to construct an exact global test.
On the other hand, when nuisance covariates are present simple permutation
breaks the dependence between the interesting covariates X and the nuisance
covariates Z, and hence simple permutation is no longer valid. For this pur-
pose, we proposed five different permutation strategies and investigated their
performance under different settings in a simulation study. When the nuisance
covariate is categorical, permuting the response variable within the levels of
the nuisance provides a permutation scheme that satisfies exchangeability and
hence is exact.

When both continuous and categorical nuisance covariates are present, we
investigated the performance of Freedman-Lane (FL) (Freedman and Lane,
1983) based permutations as this permutation is considered the best for gener-
alized linear models. Our findings indicated that FL-based permutations are
liberal in the presence of significant nuisance effects when extreme quantiles
are considered in the global test. Therefore, we proposed three permutation
strategies that are close to exact even when extreme quantiles are considered.
Two of the permutations assume a specific nuisance effect, i.e. location or
location-scale shift of the response distribution, while the third permutation
estimates the nuisance quantile effect from the data. Even though the latter
is always valid, it has lower power for small datasets as the quantile effect is
badly estimated.

Furthermore, we investigated the validity of the methods when the nuisance
and interesting covariates are correlated. Our findings suggested that the global
test is liberal for a permutation under model misspecification and conservative
otherwise. Finally, one should point out that the choice of the permutation strat-
egy should follow the proposed guidelines, and therefore an initial exploratory
analysis is suggested. In the paper, we illustrate this procedure through two
data examples from forestry and economics. Last but not least, in the special
case where the interesting covariate is categorical the global test corresponds
to a graphical n-sample correspondence of the distribution test even when
nuisance covariates are present. This problem was further investigated in
Paper V.
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6.5 Paper V

In this paper, we extended the global envelopes to test the equality hypothesis
of distributions of n samples. The proposed tests are permutation tests and
assume that the underlying distributions are not affected by any nuisance
covariates. Therefore, new data under the null hypothesis of equality of the n
distributions are simulated using data permutations between the n samples.

For testing, we used five test statistics capturing different distributional con-
trasts. Firstly, we considered test statistics in the form of empirical cumulative
distribution functions and kernel-estimated density functions of the distribu-
tions of the samples. Secondly, we proposed test statistics expressing pairwise
deviations between the empirical cumulative distribution functions and be-
tween the empirical quantiles of two samples. Lastly, we applied the global
quantile regression framework developed in Paper IV. We considered a quan-
tile regression model with a categorical interesting covariate and the quantile
regression process as our test statistic. Furthermore, we proposed global tests
based on combinations of the previously mentioned statistics.

The proposed tests are graphical as they are based on the global envelope
testing framework. Therefore, in addition to a p-value of the test results,
they also provide a graphical illustration of the reason for rejecting the null
hypothesis. As the graphical interpretation is dependent on the test statistic
used, we provided detailed guidelines on how to interpret the test results
correctly.

The performance of the proposed tests with regard to statistical power was
evaluated through a simulation study. The suggested tests were further com-
pared with the performance of the classical two-sample Kolmogorov-Smirnov
test, a graphical test for comparing the distributions of two samples. The
performance of the tests was investigated in five simulated experiments. In
each experiment, we considered a different distributional difference between
the two samples. According to our results, the proposed tests outperformed
the classical test in all studied settings. Further, the combined tests,i.e. test
combining different test statistics, performed quite well in all settings, even
though they were outperformed by some other test in each case. However,
since distributional differences are usually unknown apriori, we recommended
using combined tests as they provide balanced performance and rich graphical
interpretation. Finally, we applied the recommended test to two data examples,
one from ecology and one from auxology.



7 Conclusion and future work

This thesis contributes to a better understanding of the biological mechanisms
guiding changes in the nerve structure due to the progression of diabetic
neuropathy. In contrast to the planar point process models for the base and end
points in the literature, in this thesis the first three-dimensional point process
models for the complete nerve structure were developed. Moreover, a possible
description of how the healthy ENF trees die due to neuropathy progression,
as well as an explanation for the increased clustering observed in the diabetic
patterns was given for the first time. Finally, even though the methods and
models in this thesis had been developed having the ENF data in mind, they
can be used for point patterns in general.

This thesis further contributes to the general statistical literature as extensions of
the global envelope tests for inference in quantile regression and for comparison
of n distributions were developed. To the best of our knowledge, the former
extension was the first test that could perform global inference of the quantile
regression process without making any regularity assumptions. The framework
is generic and can be used to study the quantile effects of a covariate on
the response distribution at different sets of quantiles or for comparing the
distributions of n populations. The latter test was further investigated and
graphical n sample tests were developed.

There are several potential paths for future research. For instance, extending
the proposed three-dimensional models by considering interactions between
the different types of points or by considering approximating the open space
direction using multiple neighbouring base points. Another future direction is
training machine learning models to diagnose the severity of the neuropathy.
For instance, training a convolutional neural network model for the original
microscopy images, or using a random forest with nerve information such as
counts, lengths, or cluster radius of the ENFs. On the other hand, such models
require a larger ENF dataset. Therefore, if data collection is expensive, one may
simulate artificial data from the models described in this thesis. Another future
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path is further developing the permutation strategies for the global quantile
regression test to study interactions or random effects. For instance, the latter
will allow the test to be used for the ENF data. In this setting, potential nuisance
variables to be considered are age, gender, and BMI. The dependencies within
the ENF samples, may also be reduced by either considering the average nerve
lengths of each ENF sample, or by using a sophisticated sampling strategy.
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