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An optomechanical microcavity can considerably enhance the interaction between light and mechanical
motion by confining light to a subwavelength volume. However, this comes at the cost of an increased optical
loss rate. Therefore, microcavity-based optomechanical systems are placed in the unresolved-sideband regime,
preventing sideband-based ground-state cooling. A pathway to reduce optical loss in such systems is to engineer
the cavity mirrors, i.e., the optical modes that interact with the mechanical resonator. In our work, we analyze
such an optomechanical system, whereby one of the mirrors is strongly frequency dependent, i.e., a suspended
Fano mirror. This optomechanical system consists of two optical modes that couple to the motion of the
suspended Fano mirror. We formulate a quantum-coupled-mode description that includes both the standard
dispersive optomechanical coupling as well as dissipative coupling. We solve the Langevin equations of the
system dynamics in the linear regime showing that ground-state cooling from room temperature can be achieved
even if the cavity is per se not in the resolved-sideband regime, but achieves effective sideband resolution through
strong-optical-mode coupling. Importantly, we find that the cavity output spectrum needs to be properly analyzed
with respect to the effective laser detuning to infer the phonon occupation of the mechanical resonator. Our work
also predicts how to reach the regime of nonlinear quantum optomechanics in a Fano-based microcavity by
engineering the properties of the Fano mirror.

DOI: 10.1103/PhysRevA.109.043532

I. INTRODUCTION

Cavity optomechanical systems [1] find applications in
quantum technologies [2] and in the exploration of founda-
tional questions [3]. A pertinent regime in cavity optome-
chanics is sideband resolution, which enables manipulating
quantum states of mechanical motion, for example, realizing
ground-state cooling of mechanical modes [4,5], optome-
chanical state swapping [6], or nonclassical mechanical state
generation [7–9]. Sideband resolution has been achieved in a
variety of optomechanical systems, such as Fabry-Pérot based
cavities [10], microtoroids [11], or optomechanical crystals
[4]. Commonly, these setups exploit the coupling of a single
optical mode to a mechanical resonator.

A major challenge in the field is to combine sideband
resolution with large optomechanical coupling on the single-
photon level [12,13], where state-of-the-art systems fall two
orders of magnitude short to this regime [4,14]. Recently,
the concept of strongly frequency-dependent mirrors was
introduced in cavity optomechanics [15,16]. It was shown
theoretically that frequency-dependent mirrors can reduce the
optical linewidth and thereby enable ground-state cooling
[16,17] or even strong optomechanical coupling [18]. Such
frequency-dependent mirrors rely on Fano resonances [19,20]
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and are therefore also referred to as Fano mirrors. Examples
of such frequency-dependent mirrors supporting Fano res-
onances are suspended photonic crystal slabs [15,19,21] or
atomic arrays [22–24]. In a common theoretical description of
optomechanics with a Fano mirror, two coupled optical modes
[20] interact with a mechanical resonator [16,25]. The de-
scription of this interaction requires extension of the canonical
optomechanical approach [1,16] and enables new capabilities
for optomechanical control. Cavity optomechanics exploiting
the multimode nature of the optical cavity field has been ana-
lyzed in the context of back-action evasion [26], enhancement
of nonlinearities [27,28], and when considering the special
case of two coupled optical modes that each couple to a
mechanical resonator for membrane-in-the-middle systems
with realizations in Fabry-Pérot–based cavities [29], optome-
chanical crystals [28,30], or microtoroids [31]. Our work
focuses on a Fano-mirror optomechanical systems, where a
comprehensive model and analysis of such optically and op-
tomechanically coupled system is until now missing, thereby
blocking the exploitation of opportunities that this type of
system offers.

In our work, we provide an extensive analysis of a sus-
pended frequency-dependent mirror coupled to an optical
cavity. We consider both dispersive as well as dissipative
optomechanical couplings [32], which are both observed in
experiments with optomechanical microcavities [25]. We find
that the two optical modes, i.e., the Fano mode and cavity
mode, can strongly couple and will, as a result of this cou-
pling, have a vast impact on the effective cavity decay and
the optomechanical coupling. Properly choosing the param-
eters of this system allows access to various optomechanical
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regimes, including sideband resolution, single-photon strong
coupling, or even ultrastrong coupling, even though the op-
tically uncoupled system (namely, in the absence of a Fano
mirror) would not be able to reach these regimes. Further, the
cavity output spectrum is intricate and needs careful analysis
to infer the phonon occupation of the mechanical resonator.
Our work extends the theory of Ref. [16], which considers
dispersive optomechanics with a Fano mirror focusing on a
specific detuning regime only, and of Ref. [33], which con-
siders dispersive and two kinds of dissipative optomechanical
couplings but does not address the analysis of a coupled-
mirror mode. The advantage of the presented model is that
it is versatile and includes all possible mentioned couplings.
It hence allows us to express the effect of the Fano mirror
in terms of effective parameters in analogy to a standard op-
tomechanical cavity system and to identify parameter regimes
where ground-state cooling becomes possible thanks to the
Fano-mirror coupling. We also access the intricate connection
between the optical readout and the mechanical properties. As
required, our general model can be reduced to a specifically
chosen simpler experimental setup by simply setting irrelevant
couplings to zero. It, thus, also allows comparison to the
previously studied systems [16,33].

The paper is structured as follows. We start with a de-
tailed discussion of the model and its dynamics, starting from
the purely optical (Sec. II A) and then going to the full op-
tomechanical model (Sec. II B). In Sec. III, we analyze the
optomechanical properties of the system and illustrate them
with three sets of parameters. Then, in Sec. IV, we apply
the insights we have gained on the system to back-action
cooling, evidencing that a suitable engineering of the Fano
mirror allows for ground-state cooling at room temperature.
Finally, Sec. V details how the quantum nonlinear regime
could be reached with a microcavity-based optomechanical
device. We conclude in Sec. VI. The Appendix provides all
necessary theoretical details of the approach that were left out
in the main part of the paper for improved readability.

II. QUANTUM COUPLED-MODE MODEL

In this section, we introduce the model Hamiltonians and
analyze the dynamics of an optomechanical system with a
Fano mirror. We start with the purely optical part of this
coupled-mode system (Fano-mirror mode coupled to cavity
mode) and then introduce the mechanical mode and its cou-
pling to the optics. Compared to a previous analysis [16], we
add the dissipative optomechanical contributions [33,34] to
the coupled-mode model of a cavity with one Fano mirror and
the optomechanical modulation of the properties of the Fano
mirror.

A. Optical cavity with Fano mirror

1. Optical-modes model

We study a double-sided optical cavity, as depicted in
Fig. 1, but disregard the mechanical degree of freedom at
this initial stage. The cavity consists of a strongly frequency-
dependent mirror (Fano mirror), such as a photonic crystal
slab on the left and a standard, highly reflective mirror on the
right, inspired by Refs. [15,25,35]. We consider a single opti-

FIG. 1. (a) Sketch of the optomechanical setup, consisting of a
double-sided optical cavity with one movable frequency-dependent
mirror, and (b) the setup’s coupled-mode picture. The cavity mode
(â) is coupled to electromagnetic environments on each side of
the double-sided cavity (blue circles). The left mirror is frequency
dependent and its internal mode (d̂) is also coupled to the left elec-
tromagnetic environment. The left mirror has a mechanical degree of
freedom (q̂), which is coupled to a phonon environment (red circle).
The cavity is driven with a laser at frequency ωlas. See Secs. II A 1
and II B 1 for definitions of all indicated variables.

cal cavity mode of frequency ωa, associated with the photon
annihilation operator â. In addition, the frequency dependence
of the Fano mirror is modeled with another harmonic mode of
frequency ωd and photon annihilation operator d̂ . Due to the
overlap between this guided mirror mode and the cavity mode,
these two optical modes are coupled and they are described by
the Hamiltonian [16]

Ĥopt = h̄ωaâ†â + h̄ωd d̂†d̂ + h̄λ(â†d̂ + d̂†â), (1)

considering here the case of an even Fano mode.1 The cou-
pling strength λ can be engineered via the photonic crystal or
via the evanescent coupling of the two modes a and d . The
cavity mode is also coupled to the electromagnetic environ-
ments on both sides of the cavity, giving rise to the respective
loss rates κa and γa, while the mirror mode is only coupled to
the left-hand-side environment, giving rise to the loss rate κd .

2. Langevin equations

Here, we first present the Langevin equations [16,36] of
the optical system only, driven by a laser at frequency ωlas,
and obtain, in the frame rotating at the laser frequency,[ ˙̂a

˙̂d

]
= −i

[
�a − i(κa + γa) G

G �d − iκd

][
â
d̂

]
+ input fluct.

(2)

1More generally, this coupling is of the form h̄λ(â + â†)(d̂ + d̂†).
But, depending on the symmetry of the guided mirror mode, the dom-
inant term in the coupling is either the beam-splitter mode considered
here (even mirror mode) or the two-mode-squeezing term âd̂ + â†d̂†

(odd mirror mode) [16]. The analysis conducted in this article could
straightforwardly be adapted to an odd mirror mode as well.
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FIG. 2. Illustration of the relevant parameter regimes. Each box details one aspect of the different regimes for a specific set of parameters.
We have indicated in green in which regime the studied devices (see Sec. II D and Table I) are operating. In this article, where we focus on
strong optical coupling, the effective “−” mode (highlighted in red) has a small linewidth and therefore characterizes the physics of the device,
in contrast to the highly damped (and hence irrelevant) “+” mode. The optomechanical-coupling and sideband-resolution regimes in the lower
two boxes therefore refer to the “−” mode.

We have introduced the total optical coupling strength
G = λ − i

√
κaκd , including a contribution arising from the

dissipative coupling of the two modes to the same environ-
ment [16], as well as the detunings �c = ωc − ωlas, with
c = a, d . From the matrix characterizing the mode coupling,
we obtain the complex eigenvalues

�± = �̄ − iκ̄ ±
√

(δ� − iδκ )2 + G2, (3)

which correspond to the effective resonance frequencies
�± = Re(�±), namely, the real part of �±, and their effective
loss rates κ± = −Im(�±), namely, the imaginary part of �±.
We have defined the average detuning �̄ = (�a + �d )/2 and
the average loss rate κ̄ = (κa + γa + κd )/2, as well as the
difference in detunings δ� = (�a − �d )/2 and the difference
in loss rates δκ = (κa + γa − κd )/2.

From the expression of the eigenvalues, Eq. (3), we see that
we get the expected weak-coupling result for small G (small
compared to the difference in frequency and loss rate between
the optical modes a and d). However, this weak-coupling
regime is not relevant here since the dissipative part of G
is

√
κaκd which is close to the order of κ̄ . Furthermore, in

our recent experimental realization employing a Fano mirror
[25], it was found that λ is larger than κ̄ . In that case, the
eigenmodes differ significantly from the cavity and mirror
modes and it is rather the “−” eigenmode that gives an in-
tuition of the behavior of the experimental system. We will
now show that we can use this optical coupling to engineer the
effective optical loss rates and, in particular, make κ− several
orders of magnitude smaller than κd , κa. This is a prospective
way to reach the (effective) resolved-sideband regime in an
optomechanical system.

The effective modes discussed above are useful to interpret
experimental results [25] and to identify relevant parameter
regimes (Fig. 2). While the identified eigenvalues �± will oc-
cur in a number of analytical expressions in the remainder of
this paper, it is in general not convenient to use the performed
diagonalization in order to fully reformulate the Langevin
equations of the full optomechanical system. First, we have
not taken into account the optomechanical couplings of inter-
est here during the diagonalization, so the optomechanical part
of the equations would not become simpler. Second, while the

operators ĉ fulfill standard canonical commutation relations,
[ĉ, ĉ†] = 1, these “+” and “−” modes do not. The reason for
this is that the operators corresponding to the eigenmodes are
functions of the operators ĉ as well as of their detunings and
loss rates.

B. Optomechanical setup

1. Full optomechanical model

We now come to the optomechanical model, where the
Fano mirror is suspended. It hence also has a mechanical de-
gree of freedom of frequency �mec and dimensionless position
and momentum quadratures q̂ and p̂.

The overall system exhibits optomechanical effects both
through dispersive and dissipative couplings, namely, the re-
spective modulations of the optical frequencies ωa(q̂) and
ωd (q̂), and loss rates κa(q̂) and κd (q̂), by the mechanical
motion. The position dependence of ωa(q̂) comes from the
change in the cavity length caused by the mechanical motion.
But this change also modifies the reflection and transmission
coefficients of the left mirror at the cavity resonance, affecting
the loss rate κa(q̂), which therefore also becomes position
dependent. For photonic crystals, the mechanical-position de-
pendence of the mirror mode parameters ωd (q̂) and κd (q̂)
comes from the local deformation of the lattice period and
air-hole radius due to the mechanical vibrations. Furthermore,
in the case of microcavities [25], there can be an additional
effect due to evanescent electromagnetic fields making the
properties of the Fano mode dependent on the distance to
the fixed mirror. For most optomechanics experiments, the
dependence of the optical parameters on the mechanical po-
sition q̂ can be approximated as linear [1], leading to linear
optomechanical couplings κc(q̂) = κc + √

2gκ
c q̂ and ωc(q̂) =

ωc − √
2gω

c q̂. Taking into account both optical modes c = a, d
and dispersive gω

c as well as dissipative couplings gκ
c , we

define the four single-photon optomechanical couplings

gω
c = − 1√

2

(
∂ωc

∂q

)
q=0

, gκ
c = 1√

2

(
∂κc

∂q

)
q=0

. (4)

In the following ωc and κc will always denote the frequencies
and loss rates evaluated at zero mechanical displacement. The
sign convention we have chosen for the dispersive coupling is
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TABLE I. Parameters used for the three studied devices: (i) experimental device from Ref. [25], (ii) device with matching optical modes,
δ� = δκ = 0, and (iii) device with δ� = δκλ/

√
κ̃aκ̃d . For devices (ii) and (iii), we have chosen larger state-of-the art mechanical frequencies

and quality factors [39]. The optical loss rates given here are the ones evaluated at the average mechanical displacement q̄ (κ̃a, κ̃d ) but for all
three devices the difference with the parameters evaluated at zero displacement (κa, κd ) is negligible. The laser powers indicated for devices
(ii) and (iii) are chosen such that the devices are in the weak-coupling regime to show the blue and red sidebands in Figs. 5 and 7. Laser powers
required for achieving ground-state cooling, as discussed in Sec. IV B, are however larger, of the order of 10 W and 10 mW, respectively (see
Fig. 8) in Sec. V.

Parameter Description Device (i) Device (ii) Device (iii)

Optical modes
δ�/2π Effective detuning between the cavity and mirror modes (Hz) −1.42×1010 0 1.97×1013

γa/2π Coupling between the cavity mode and the right environment (Hz) 3.66×1011 1.30×105 6.00×108

κ̃a/2π Coupling between the cavity mode and the left environment (Hz) 2.12×1012 2.12×1012 1.00×1013

κ̃d/2π Coupling between the mirror mode and the left environment (Hz) 3.80×1012 2.12×1012 1.08×109

λ/2π Coupling between the cavity and mirror modes (Hz) 4.09×1012 4.09×1012 4.09×1011

Plas Laser power used in Figs. 3–7 (µW) 150 50 0.256

Mechanical mode
�mec/2π Bare mechanical frequency (Hz) 5.14×105 1.3×106 1.3×106

�mec/2π Bare mechanical damping rate (Hz) 17.1 9.3×10−3 9.3×10−3

Qmec Mechanical quality factor 3×104 1.4×108 1.4×108

Single-photon optomechanical couplings
gω

a/�mec Cavity dispersive optomechanical coupling 1.6 6.5×10−5 6.5×10−5

gω
d/�mec Mirror dispersive optomechanical coupling −3.5 −1.4×10−4 −1.4×10−4

gκ
a/�mec Cavity dissipative optomechanical coupling 1.5 6.0×10−5 6.0×10−5

gκ
d/�mec Mirror dissipative optomechanical coupling 6.3 2.5×10−4 7.1×10−8

Effective optical “−” mode
κ̃−/�mec Sideband resolution 5.4×105 0.05 0.05
gω

−/�mec Single-photon dispersive ultrastrong-coupling ratio −0.97 −3.8×10−5 −1.4×10−4

gκ
−/�mec Single-photon dissipative ultrastrong-coupling ratio 0.065 2.9×10−12 3.8×10−12

gω
−/κ̃− Single-photon dispersive strong-coupling ratio −1.8×10−6 −7.5×10−4 −2.8×10−3

gκ
−/κ̃− Single-photon dissipative strong-coupling ratio −1.2×10−7 5.7×10−11 7.7×10−11

such that the coupling strength for a standard Fabry-Pérot cav-
ity mode is positive. The mechanical mode and the dispersive
optomechanical effects are then described by the Hamiltonian

Ĥom = h̄�mec

2
( p̂2 + q̂2) −

√
2

∑
c=a,d

h̄gω
c ĉ†ĉq̂. (5)

The mechanical mode is of course coupled to a phononic
environment, giving rise to the damping rate �mec. However,
in most optomechanical setups, this damping rate is orders of
magnitude smaller compared to the other relevant frequencies.
So, we will not consider it at the level of the Hamiltonian, but
rather on the level of the Langevin equations, discussed in the
next subsection. Details about the microscopic modeling of
such an environment can be found, for instance, in Ref. [37].
Then, the whole setup is described by the total Hamiltonian
Ĥtot = Ĥom + Ĥopt + Ĥenv + Ĥint [16,34], with the optical en-
vironment Hamiltonian Ĥenv = ∑

μ=L,R

∫
dω h̄ωb̂†

ω,μb̂ω,μ and
the interaction Hamiltonian for the coupling between system
and optical environments

Ĥint =
∑

c

ih̄

[√
κc

π
+ gκ

c√
2πκc

q̂

] ∫
dω(ĉ†b̂ω,L − b̂†

ω,Lĉ )

+ ih̄

√
γa

π

∫
dω(â†b̂ω,R − b̂†

ω,Râ). (6)

The photon annihilation operators b̂ω,μ, with μ = L, R, relate
to the mode of frequency ω in the corresponding environment.
We do not explicitly include the laser drive of frequency
ωlas depicted in Fig. 1(a) in the Hamiltonian Ĥtot because we
model it as a part of the left environment, namely, taking
〈b̂ω,L〉 ∝ αlasδ(ω − ωlas ) (see next subsection). The amplitude
of the laser drive αlas is related to the laser power by Plas =
h̄ωlas|αlas|2. The expression (6) of the interaction Hamiltonian
Ĥint already contains several approximations. First, as com-
monly done for such systems [16,34,36], we have neglected
the two-mode-squeezing terms ĉ†b̂†

ω,μ + ĉb̂ω,μ. Second, we
have used the Markov approximation [36], namely, we have
assumed that the coupling of both modes a and d is frequency
independent. Note, however, that the effective dynamics of the
cavity mode, when integrating out the Fano mirror mode, is
non-Markovian [16]. Indeed, delays and memory effects arise
in the reduced evolution of mode a due to its interaction with
the Fano mirror since |G| is not negligible compared to κa.
This will not be our focus, though, and we always consider
the joint evolution of the two optical modes in the following,
which is Markovian.

We have, until here, expressed all optomechanical cou-
plings in terms of the original modes c = a, d . How-
ever, coming back to the coupled modes introduced in
Sec. II A, insights about the relevant coupling regimes can be
gained. The corresponding effective dispersive and dissipative
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optomechanical couplings are given by

gω
± = − 1√

2

(
∂�±
∂ q̄

)
q̄=0

, gκ
± = 1√

2

(
∂κ±
∂ q̄

)
q̄=0

. (7)

Interestingly, we can have κ− < �mec, even in microcavities
where the optical losses are many orders of magnitude larger
than the mechanical frequency.

First, in the simple case where the mirror mode and cav-
ity mode have identical characteristics, namely, δ� =δκ =0,
Eq. (3) becomes �± = �̄ ± λ − iκ̄ (1 ± √

1 − γa/κ̄ ). In the
limit γa � κ̄ , we then find that κ− � γa/2 and therefore
the optical linewidth can be significantly reduced, even
reaching the resolved sideband limit if2 γa < 2�mec. The cor-
responding effective dispersive and dissipative couplings then
become gω

− = (gω
a + gω

d )/2 and gκ
− � γa(gκ

d − gκ
a)/4κ̄ , leading

in most cases to a mainly dispersive optomechanical coupling
gω

− � gκ
−.

Furthermore, when δ� = δκλ/
√

κaκd , we can easily
compute the real and imaginary parts of Eq. (3),
�± = �̄ ± λ

√
1 + δ2

κ/κaκd and κ± = κ̄ ±
√

κ̄2 − γaκd .
In this limit and in the regime γa � κ̄ of interest here, we
have κ− � γaκd/2κ̄ . It is hence useful to study the case
where κd � κa when γa cannot be made of the same order
of magnitude as �mec. A summary of the possible parameter
regimes, focusing on the “−” effective mode, is given in
Fig. 2.

2. Langevin equations

Following the usual derivation for input-output equa-
tions [16,36] (see details in Appendix A 1), we obtain the
Langevin equations, in the frame rotating at the laser fre-
quency,

˙̂a = −(i�a + κa + γa)â +
√

2
(
igω

a − gκ
a

)
q̂â − iGd̂

−
√

2gκ,symq̂d̂ +
(√

2κa + gκ
a√
κa

q̂

)
b̂in,L +

√
2γab̂in,R,

˙̂d = −(i�d + κd )d̂ +
√

2
(
igω

d − gκ
d

)
q̂d̂ − iGâ

−
√

2gκ,symq̂â +
(√

2κd + gκ
d√
κd

q̂

)
b̂in,L,

˙̂q = �mec p̂,

˙̂p = −�mecq̂ − �mec p̂ + i
√

2gκ,asym(â†d̂ − d̂†â)

+
∑

c

[√
2gω

c ĉ†ĉ − i
gκ

c√
κc

(ĉ†b̂in,L − b̂†
in,Lĉ)

]
+

√
�mecξ̂ .

(8)

We have denoted the effective optomechanical couplings aris-
ing from the dissipative optomechanical effects combined
with the coupling of the mirror mode and cavity mode to the

2Note that one does not need to have perfectly identical optical
modes to reach this effective resolved-sideband regime. Instead it
needs to be in the regime κ̄ � λ, γa < 2�mec and δ2

�/κ̄, δ2
κ/κ̄ �

�mec.

same (left) environment as

gκ,sym =
√

κaκd

2

(
gκ

a

κa
+ gκ

d

κd

)
,

gκ,asym =
√

κaκd

2

(
gκ

a

κa
− gκ

d

κd

)
. (9)

The cavity is driven through the left mirror, therefore, the
average input amplitudes, in

√
Hz, are 〈b̂in,L〉 = αlas and

〈b̂in,R〉= 0.
The optical output fields of interest are given by the input-

output relations [36]

b̂out,L(t ) = b̂in,L(t ) −
∑

c

(√
2κc + gκ

c√
κc

q̂(t )

)
ĉ(t ),

b̂out,R(t ) = b̂in,R(t ) −
√

2γaâ(t ). (10)

In the limit gκ
a, gω

d , gκ
d → 0, with only dispersive optomechan-

ical effects on the cavity mode, Eqs. (10) and (8) give back the
results derived in Ref. [16].

C. Linearized dynamics

From now on, we consider that the laser drive is rather
strong, such that the numbers of photons in the light fields
in the cavity and in the mirror are large compared to their
fluctuations. Furthermore, the optical frequencies are such
that h̄ωa, h̄ωd � kBTopt, therefore, we can consider that the
temperature Topt in optical environments is zero and ne-
glect thermal fluctuations. As a consequence, we can rewrite
b̂in,L = αlas + âin,L and b̂in,R = âin,R, where âin,μ corresponds
to the vacuum fluctuations and its only nonzero correlation
function is

〈âin,μ(t )â†
in,μ

(t ′)〉 = δ(t − t ′). (11)

In contrast, concerning the mechanics, we are in the high-
temperature limit h̄�mec � kBTmec. The input noise of the
mechanics is determined by 〈ξ̂ 〉 = 0 and by the correlation
function3

〈ξ̂ (t )ξ̂ (t ′)〉 = (2n̄mec + 1)δ(t − t ′), (12)

with the average phonon number in the mechanical environ-
ment n̄mec = [exp(h̄�mec/kBTmec) − 1]−1. We now split all
the operators into a semiclassical average value and a fluc-
tuation operator: â = ā + δâ, d̂ = d̄ + δd̂ , q̂ = q̄ + δq̂, and
p̂ = p̄ + δ p̂.

1. Semiclassical steady state

As a first step towards the solution of the Langevin
equations (8), we here present the semiclassical steady-state

3For simplicity, we approximate here the correlation function by
its classical value, but we checked that this does not impact our
results. In general, this approximation might give inconsistencies in
the quantum regime, even in the high-temperature limit, because it
does not preserve the commutation relations between q̂ and p̂ [38].
We discussed in particular the impact on the phonon number in the
mechanics in the Appendix of a previous work [17].
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solution. It is given by the expressions

ā = i
λ
√

2κ̃d − �̃d
√

2κ̃a

�̃+�̃−
αlas,

d̄ = i(λ
√

2κ̃a − �̃a
√

2κ̃d ) − γa
√

2κ̃d

�̃+�̃−
αlas,

q̄ =
√

2

�mec

∑
c

[
gω

c |c̄|2 − i
gκ

c√
2κc

(c̄∗αlas − c̄α∗
las )

]

+ i
√

2

�mec
gκ,asym(ā∗d̄ − d̄∗ā),

p̄ = 0. (13)

Here, we have introduced a tilde to indicate that parameters
are taken at the average mechanical displacement q̄. We con-
sider the most general situation of different optomechanical
couplings. In particular, the detunings are generally impacted
by dispersive optomechanical couplings �̃c = �c − √

2gω
c q̄,

while the loss rates κ̃c = κc + √
2gκ

c q̄ are impacted by dissi-
pative optomechanical couplings. Also the effective coupling
between cavity and Fano mirror G̃ = λ − i

√
κ̃aκ̃d has a contri-

bution due to the dissipative optomechanical couplings. Note,
however, that these shifts in the steady-state solution due to
the average mechanical displacement q̄ are negligibly small in
typical experiments considered in the remainder of this paper.
This also means that while the system of equations (13) is
nonlinear, we assume in the following that we are in a pa-
rameter regime where the displacement corrections are small
and the system is stable. Equations (13) hence give a single
well-defined steady state of the coupled system (see stability
analysis in Appendix A 2 a).

Importantly, in Eq. (13), we can clearly observe the mod-
ifications that arise with respect to a single optical cavity,
where one would have ā = αlas

√
2κa/[κa + γa + i�̃a], due to

the coupling to the Fano mirror and due to dispersive and dis-
sipative optomechanical couplings. The coupling via G̃ to the
Fano resonance modifies the effective environment coupling
of the cavity as well as the effective resonance frequency.

2. Linearized Langevin equations

We now linearize the Langevin equations (8) around this
semiclassical steady state (13), keeping terms only up to the
first order in the fluctuations (see Appendix A 2 b for a discus-
sion of the validity of this approximation),

δ ˙̂a = − (i�̃a + κ̃a + γa)δâ + i
√

2g̃aδq̂ − iG̃δd̂

+
√

2κ̃aâin,L +
√

2γaâin,R,

δ ˙̂d = − (i�̃d + κ̃d )δd̂ + i
√

2g̃dδq̂ − iG̃δâ +
√

2κ̃d âin,L,

δ ˙̂q = �mecδ p̂,

δ ˙̂p = − �mecδq̂ − �mecδ p̂ +
∑

c

√
2(g̃mec,cδĉ† + g̃∗

mec,cδĉ)

+ cX

√
2X̂in,L + cP

√
2P̂in,L +

√
�mecξ̂ . (14)

We have defined the effective optomechanical couplings

g̃a = gω
a ā + igκ

a

(
ā − αlas√

2κa

)
+ igκ,symd̄,

g̃d = gω
d d̄ + igκ

d

(
d̄ − αlas√

2κd

)
+ igκ,symā,

g̃mec,a = gω
a ā − igκ

a

αlas√
2κa

+ igκ,asymd̄,

g̃mec,d = gω
d d̄ − igκ

d

αlas√
2κd

− igκ,asymā, (15)

the effective couplings of the mechanical resonator to the left
optical environment

cX = −
∑

c

gκ
c√
κc

Im(c̄), cP =
∑

c

gκ
c√
κc

Re(c̄), (16)

and the quadratures of the optical input noises X̂in,μ =
1√
2
(â†

in,μ
+ âin,μ) and P̂in,μ = i√

2
(â†

in,μ
− âin,μ). Each effec-

tive optomechanical coupling defined in Eqs. (15) is divided
into three parts: the dispersive coupling contribution, the
dissipative coupling contribution, and a cross contribution
[see Eq. (9)], due to the combination of the dissipative op-
tomechanical effects and the coupling of the mirror mode and
cavity mode to the same bath. In the limit λ, κd → 0, we
recover the results for a standard Fabry-Pérot cavity with both
dispersive and dissipative optomechanical effects [34].

Finally, we linearize the input-output relation (10) and get

âout,L(t ) = âin,L(t ) −
∑

c

√
2κ̃cδĉ(t ) − (cP − icX )δq̂(t ),

âout,R(t ) = âin,R(t ) −
√

2γaδâ(t ). (17)

3. Solution in the frequency domain

To determine the properties of this complex system, which
will be analyzed in Sec. III, we solve the Langevin equa-
tions for δâ, δd̂, δq̂ [Eqs. (14)] in the frequency domain. The
full solution is given in Appendix A 3. Here, we present the
solution for the mechanical position fluctuations together with
the relevant susceptibilities

χ−1
mec,eff[ω]δq̂ =

∑
μ,c

(
g̃∗

mec,cC
c
μ[ω] + g̃mec,cC

c
μ[−ω]∗

)
X̂in,μ

+ i
∑
μ,c

(
g̃∗

mec,cC
c
μ[ω] − g̃mec,cC

c
μ[−ω]∗

)
P̂in,μ

+ cX

√
2X̂in,L + cP

√
2P̂in,L +

√
�mecξ̂ . (18)

We have defined

Ca
L[ω] = i

√
2κ̃d G̃ − √

2κ̃aχ
−1
d [ω]

(�̃+ − ω)(�̃− − ω)
,

Ca
R[ω] = −√

2γaχ
−1
d [ω]

(�̃+ − ω)(�̃− − ω)
,

Cd
L [ω] = i

√
2κ̃aG̃ − √

2κ̃dχ
−1
a [ω]

(�̃+ − ω)(�̃− − ω)
,

Cd
R[ω] = i

√
2γaG̃

(�̃+ − ω)(�̃− − ω)
, (19)
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with the optical susceptibilities χ−1
a [ω] = κ̃a + γa +

i(�̃a − ω) and χ−1
d [ω] = κ̃d + i(�̃d − ω).

The effective mechanical susceptibility χmec,eff can be writ-
ten

χ−1
mec,eff[ω] = χ−1

mec,0[ω] + χ−1
opt [ω], (20)

where χmec,0[ω] = �mec(�2
mec − ω2 − iω�mec)−1 is the me-

chanical susceptibility of the bare resonator and χopt[ω] the
optical contribution to the susceptibility, which reads as

χ−1
opt [ω] = −2

∑
c

(
g̃∗

mec,cC
c
q[ω] + g̃mec,cC

c
q[−ω]∗

)
, (21)

with

Ca
q [ω] = −i

χ−1
d [ω]g̃a − iG̃g̃d

(�̃+ − ω)(�̃− − ω)
,

Cd
q [ω] = −i

χ−1
a [ω]g̃d − iG̃g̃a

(�̃+ − ω)(�̃− − ω)
. (22)

These susceptibilities and their constituents deriving from
different contributions of the dynamics will play an important
role in the characterization of the optomechanical response of
the device in Sec. III.

D. Studied devices

To give concrete examples and illustrate some of the prop-
erties of this complex optomechanical setup, we choose three
sets of parameters, given in Table I: (i) the experimental de-
vice from Ref. [25] (see reference for details about obtaining
the parameters and confirming the optomechanical-coupling
strengths by other methods), (ii) a device with identical op-
tical modes, i.e., δ� = δκ = 0, and (iii) a device4 with δ� =
δκλ/

√
κ̃aκ̃d .

All three devices are in the strong-optical-coupling regime
(see Fig. 2 for a summary of the possible parameter regimes)
and the effective “−” mode hence characterizes the physics of
all three devices, while the highly damped “+” mode can be
disregarded in the interpretation of the results. More precisely,
devices (i) and (ii) are in the regime |G̃| > |δκ |, |δ�|, κ̃a, κ̃d

and, therefore, the effective modes “−” and “+” are very
different from modes a and d , both in terms of frequency
and loss rate. On the other hand, device (iii) is less strongly
coupled in the sense that |δκ |, |δ�|, κ̃a > |G̃| > κ̃d , such that
only the loss rate κ̃− is strongly modified. The parameters
from (ii) and (iii) are inspired from (i) but modified to reach
the effective resolved-sideband regime κ̃− � �mec (see also

4Reference [16] studies a different case. First, there are no optome-
chanical effects on the Fano mode and no dissipative optomechanical
effects on the cavity mode in [16]. Second, the cavity and mirror
modes in [16] are detuned by δ� = λ

√
κa/κd , which comes from

an assumption the authors made in their transfer matrix modeling,
amounting to enforcing �̃d � �̃− and given their parameters (espe-
cially the free spectral range), they focus on longer cavities and their
κd is a lot closer to the mechanical frequency compared to the values
we consider in the following. While this choice of parameters is not
specifically addressed in this work, it can however be covered by our
model.

the discussion in the end of Sec. II B 1), and such that κ̃
(ii)
− =

κ̃
(iii)
− . Furthermore, to make it easier to reach the effective

resolved-sideband regime and to enable ground-state cooling
at room temperature, we choose state-of-the-art mechanical
parameters Qmec = 1.4×108 and �mec/2π = 1.3 MHz from a
SiN two-dimensional (2D) phononic crystal membrane [39].
But similar numbers could be achieved with InGaP-based me-
chanics [40], which is fully compatible with the microcavity
from Ref. [25].

The frequency and loss rates of the mirror mode can be
engineered by changing the photonic crystal pattern (lattice
constant, hole radius) [19,35], which makes it possible to
realize the conditions δ� = δκ = 0 and δ� = δκλ/

√
κ̃aκ̃d for

devices (ii) and (iii). In addition, in order to reach the effective
resolved-sideband regime, we need to identify appropriate
damping rates γa for the cavity-environment coupling via
the right mirror. For device (ii), we have κ̃

(ii)
− � γa/2 (see

Sec. II B 2), meaning that we need to take γa � �mec. While
this might be challenging to achieve in specific microcavity
setups of the type of Ref. [25] (where in practice it would
need to include not only the transmission through the right
mirror, but also all other losses like absorption or scattering),
Device (ii) still constitutes an intriguing alternative setting to
device (iii). For device (iii), we have the weaker constraint
κ̃

(iii)
− � γaκ̃d/2κ̄ (see Sec. II B 2), so by taking κ̃a � κ̃d we

obtain a device reaching the resolved-sideband regime with
parameters for γa that are realistic for experimental realiza-
tions as in Ref. [25]. Indeed, with a highly reflective right
mirror, such as a distributed Bragg reflector, one can achieve a
very low transmission of around 10 ppm and ideally get total
losses (transmission through the right mirror, absorption, and
scattering) of 20 ppm. This would give a realistic value of
γa/2π � 600 MHz for device (iii).

The optomechanical couplings in devices (ii) and (iii) were
decreased by four orders of magnitude compared to device
(i). While this might deviate from expected values for cur-
rently realized microcavities, it ensures that those effectively
sideband-resolved devices are in the linear regime (Sec. II C)
and hence fulfill the stability criteria of Appendix A 2 a. In
device (iii), gκ

d was further decreased to match the decrease in
κ̃d compared to device (ii). In Sec. V, we show how larger, and
possibly even more realistic values for the optomechanical
couplings, can allow for reaching the effective strong- and
ultrastrong-coupling regimes.

Finally, in the following, we call “standard device” (de-
noted with superscript std) a canonical optomechanical setup
with identical frequency-independent mirrors and the same
sideband resolution as devices (ii) and (iii), namely, κstd

a =
γ std

a = κ̃
(ii)
− /2, no mirror mode d , and only a dispersive op-

tomechanical coupling gω
a .

III. OPTOMECHANICAL PROPERTIES

In this section, we study the optical and mechanical prop-
erties of the setup that can be measured in experiments so as
to find signatures of the different optomechanical parameter
regimes. We provide expressions to fit experimental data and
determine the parameters characterizing the device.

043532-7



JULIETTE MONSEL et al. PHYSICAL REVIEW A 109, 043532 (2024)

FIG. 3. Effective couplings [Eq. (15)] as functions of detuning
for (a) device (i), (b) device (ii), and (c) device (iii). The couplings are
complex numbers and the top panels show the absolute values of the
couplings while the bottom panels show the phase g̃ = |g̃|eiφ . The
dotted black line corresponds to the effective coupling g̃std = gω

a ā of
a standard optomechanical device with the same sideband resolution
as devices (ii) and (iii). The parameters are given in Table I.

A. Effective optomechanical couplings

The values of the effective optomechanical couplings,
Eq. (15), vary a lot depending on the system’s parameters.
First, they are all proportional to αlas and therefore increase
like the square root of the input laser power Plas. For purely
dispersive optomechanics, namely, gκ

a = gκ
d = 0, one gets

g̃c = g̃mec,c = gω
c c̄. In this case, like in standard optomechan-

ics, each coupling strength is simply enhanced by the square
root of the average photon number in the corresponding mode
c = a, d . However, the picture is more complicated for purely
dissipative coupling. Even in the simple case gω

a = gω
d = gκ

d =
0, g̃a and g̃mec,a are different while g̃d = −g̃mec,d �= 0 since

gκ,asym = gκ,sym = 1
2

√
κd
κa

gκ
a.

In Fig. 3, we show how the (complex-valued) couplings
change with the “−”-mode detuning �̃− for each device. The
change in their phases directly originates from the change of
phase in ā and d̄ due to the modification of �̃a and �̃d [see
Eq. (13)]. We see that device (i) is in the ultrastrong-coupling
regime |g̃| > �mec as determined in Ref. [40], while devices
(ii) and (iii) are not, which is due to our choice of single-
photon optomechanical-coupling strengths (see Sec. II D and
Table I). For a standard optomechanical device with only
dispersive optomechanical coupling and without mirror mode
d [dotted black line in Figs. 3(b) and 3(c)], the optomechanical
coupling is g̃a = g̃mec,a = gω

a ā ≡ g̃std. Since, in this case, there
is a single effective coupling, the phase of g̃std does not matter

and g̃std can always be made real by changing the laser phase
(in αlas). This is clearly not the case for device (ii) as there
are four distinct effective couplings and some relative phases
will always remain. Conversely, for device (iii), the effective
optomechanical coupling of the mirror mode dominates, and
since g̃d � g̃mec,d , it behaves effectively like a standard de-
vice: the curves for |g̃d |, |g̃mec,d | and |g̃std| are superimposed
in Fig. 3(c).

B. Mean optical response

The mean steady-state optical output of the system
can be measured in an experiment, especially the in-
tensity transmission and reflection coefficients T (ωlas ) =
|t (ωlas )|2 and R(ωlas) = |r(ωlas)|2. Here, we have denoted t =
〈b̂out,R〉/〈b̂in,L〉 the amplitude transmission coefficient, from
left to right, since we have 〈b̂in,R〉 = 0, and the amplitude re-
flection coefficient r = 〈b̂out,L〉/〈b̂in,L〉. Using the input-output
relation (10), we obtain

t = −
√

2γa
ā

αlas
= −

√
2γaC

a
L[0],

r = 1 −
∑

c

√
2κ̃c

c̄

αlas
= 1 −

∑
c

√
2κ̃cC

c
L[0], (23)

with the steady-state amplitudes given in Eq. (13) and the
coefficient Cc

L defined in Eqs. (19). With this, the intensity
transmission becomes

T = 2γa

D
(
√

2κ̃a�̃d −
√

2κ̃dλ)2, (24)

with

D = |�̃−|2|�̃+|2 = (�̃2
− + κ̃2

−)(�̃2
+ + κ̃2

+). (25)

The intensity transmission is modulated by the average me-
chanical displacement in the following way:

dT

dq̄
=

√
2

∑
c

(
−gω

c

∂T

∂�̃c
+ gκ

c

∂T

∂κ̃c

)
(26)

(see Appendix B for the full expressions of the derivatives).
In Fig. 4, we plot the constituents of Eq. (26), namely, the

partial derivatives associated with each kind of optomechani-
cal coupling. We first notice that the main response takes place
around �̃− = 0, that is when the laser is close to resonance
with the “−” effective optical mode. We have normalized
∂T /∂x, with x = �̃a, �̃d , κ̃a, κ̃d , by the maximum transmis-
sion of the optical setup Tmax. The motivation for this is that
the devices have very different γa and, in particular, device
(ii) barely transmits any light since the coupling to the right
environment is many orders of magnitude smaller than the
couplings to the left environment (see Table I). Figure 4 shows
that the transmission of device (i) is affected very little by the
mechanics since it is very far from the effective sideband-
resolved regime, unlike for the other devices. We also see
that, for devices (i) and (ii), all the derivatives have similar
magnitudes though different shapes, while, for device (iii)
in Fig. 4(c), the derivatives with respect to the Fano-mirror-
mode quantities largely dominate, as already observed for the
effective optomechanical couplings. For a standard optome-
chanical device, the only relevant derivative is ∂T std/∂�̃a,
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FIG. 4. Optical response to the variation of different detunings
and bath couplings as a function of the “−”-mode detuning for
(a) device (i), (b) device (ii), and (c) device (iii). We have plotted each
partial derivative from Eq. (26). The hatched areas indicate detunings
for which the respective devices are unstable due to heating [see
Fig. 5(a) and Appendix A 2 a]. The parameters are given in Table I.

which is similar to ∂T /∂�̃d for device (iii) [dashed-dotted
green line in Fig. 4(c)], with two off-resonant sidebands [33].
The main difference between the two is that ∂T std/∂�̃a is an
odd function of the detuning �̃a, while ∂T /∂�̃d is not exactly
an odd function of �̃− due to the coupling between the optical
modes. Similarly, there is an asymmetry in the dominant dissi-
pative derivative ∂T /∂κ̃d while dissipative derivatives would
be even functions of the detuning in the absence of coupling
between the optical modes [33].

C. Mechanical response

After studying how the mechanical motion impacts the
mean optical transmission, we now do the opposite and an-
alyze the effects of the optomechanical couplings on the
mechanical motion. To do so, we write the effective mechan-
ical susceptibility, Eq. (20), in the usual form for a harmonic
oscillator [1], that is χmec,eff[ω] = �mec(�eff

mec[ω]2 − ω2 −
iωγ eff[ω])−1, identifying the effective mechanical frequency
�eff

mec[ω] = �mec + δ�mec[ω] and damping rate γ eff[ω] =
�mec + �opt[ω], where we have defined the optical contri-
bution to the mechanical damping rate and the mechanical
frequency shift, in the limit δ�mec � �mec:

�opt[ω] = −�mec

ω
Im

(
χ−1

opt [ω]
)
,

δ�mec[ω] = 1

2
Re

(
χ−1

opt [ω]
)
. (27)

We have plotted δ�mec[�mec] and �opt[�mec] for device
(ii) (in blue) and device (iii) (in orange) as a function of
the detuning �̃− in Fig. 5(a). They give the frequency shift
and optical contributions to the mechanical damping rate
in the weak-optomechanical-coupling regime |g̃| < �mec, κ̃−,
which is relevant for the laser powers considered here (see

FIG. 5. (a) Mechanical frequency shift δ�mec (top panel) and
optical contribution to the mechanical damping rate �opt (bottom
panel) as a function of the detuning �̃− for devices (ii) and (iii).
The plots were obtained by evaluating Eqs. (27) at ω = �mec. The
hatched areas indicate detunings for which the respective devices
are unstable due to the heating. The dotted black lines represent a
standard resolved-sideband optomechanical device where the laser
power has been adjusted to get a similar cooling on the red sideband.
(b), (c) Components of the mechanical frequency shift δ�mec (top
panels) and optical contribution to the mechanical damping rate �opt

(bottom panels) as a function of the detuning �̃− around the red
sideband [gray dotted box in (a)] for device (ii) and device (iii) at
ω = �mec [see Eq. (28)]. The parameters are given in Table I.

values in Table I and Fig. 3 for |g̃|/�mec). We see frequency
shifts on both sidebands, i.e., around �̃− = ±�mec, which
are similar to the ones of a standard optomechanical device,
indicated by the dotted black line. Similarly, we observe the
expected peaks in �opt indicating, respectively, cooling on
the red sideband and heating on the blue sideband. For the
considered laser powers, this heating effect is large enough
to make the system unstable (hatched areas) (see stability
analysis in Appendix A 2 a for more details). This means that
while the theory developed in this article, and in particular the
linearization from Sec. II C, is not valid in those hatched areas,
it still predicts an overall negative mechanical damping rate.5

All in all, both devices behave like a standard optomechanical
device. However, while the behavior of device (iii) is really

5See, e.g., Ref. [1] for a discussion of this lasing effect, that we will
not study in this work, for a standard optomechanical device.
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FIG. 6. Noise power spectra of (a) device (i), (b) device (ii), and
(c) device (iii). Upper row of each panel: Noise power spectrum of
the mechanical position Sq[ω] and light output quadratures on the left
side SXout,L [ω] and SPout,L [ω] as functions of the effective detuning �̃−
and of the frequency ω. The dotted red line shows the mechanical
frequency shift δ�mec[�mec]. Lower row of each panel: Area corre-
sponding to the integral over ω of the corresponding spectrum in the
upper row. All the plotted quantities have been normalized by their
maximum values; all parameters are given in Table I.

identical to the one of a standard device, device (ii) has a
different behavior around zero detuning.

We would like to note that device (i) is not sideband re-
solved, therefore, the relevant detuning scale for the atypical
frequency shift δ�mec[�mec] is κ̃− and not �mec (discussed in
detail in Ref. [25]). The damping rate �opt[�mec] of device (i)
is negligible, therefore, there is no significant cooling or heat-
ing. These findings are reflected in the noise power spectrum
of the mechanical position [Fig. 6(a)], discussed in Sec. III D.

In order to better understand the contribution of the dif-
ferent optical modes to the mechanical damping rate and
frequency shift, we now split the optical contribution to the
mechanical susceptibility, using Eqs. (21) and (22), into

χ−1
opt [ω] = χ−1

opt,a[ω] + χ−1
opt,d [ω] + χ−1

opt,ad [ω], (28)

with

χ−1
opt,a[ω] = −2i

g̃∗
mec,ag̃aχ

−1
d [ω]

(�̃+ − ω)(�̃− − ω)
+ (ω → −ω)∗,

χ−1
opt,d [ω] = −2i

g̃∗
mec,d g̃dχ

−1
a [ω]

(�̃+ − ω)(�̃− − ω)
+ (ω → −ω)∗,

χ−1
opt,ad [ω] = −2

(g̃∗
mec,ag̃d + g̃∗

mec,d g̃a)G̃
(�̃+ − ω)(�̃− − ω)

+ (ω → −ω)∗.

(29)

The notation · · · + (ω → −ω)∗ means that we replace ω by
−ω in · · · and take the complex conjugate. We can apply
the same decomposition to the damping rate and the me-
chanical frequency shift, �opt = �opt,a + �opt,d + �opt,ad and
δ�mec = δ�mec,a + δ�mec,d + δ�mec,ad , by applying the def-
initions (27) to the components of χ−1

opt . From the effective
coupling perspective, χ−1

opt,c[ω] is a pure contribution from
the optical mode c = a, d , but note that g̃c and g̃mec,c contain
some cross terms in gκ,asym or gκ,sym [see Eqs. (15)]. However,
in the limit of purely dispersive optomechanical couplings,
namely gκ

a, gκ
d → 0, the factor g̃∗

mec,cg̃c becomes (gω
c |c̄|)2.

These three components of δ�mec[�mec] and �opt[�mec]
are plotted around the red sideband in Figs. 5(b) and 5(c). For
device (ii) in Fig. 5(b), the components have similar magni-
tudes and partially cancel each other out, giving rise to a lower
total quantity (dotted red line). On the other hand, Fig. 5(c)
confirms that the dominant contribution to the optomechanics
in device (iii) comes from the effective d coupling since the
dashed-dotted green line representing the d contribution is
superimposed with the dotted red line of the total quantity.

D. Quadrature output power spectra

In experiments, one typically measures the noise power
spectrum of the light transmitted (âout,R) or reflected (âout,L)
by the cavity, for instance, with a homodyne detection scheme
[25], with the goal to also deduct information about the me-
chanics. Using the input-output relations (17), we compute the
power spectra of the quadratures of the light leaking out of the
cavity, defined by6

SQout,μ[ω] =
∫ +∞

−∞

dω′

2π
〈Q̂out,μ[ω]Q̂out,μ[ω′]〉, (30)

with Q = X, P and μ = L, R. Here, X̂out,μ = (âout,μ +
â†

out,μ)/
√

2 and P̂out,μ = (âout,μ − â†
out,μ)/i

√
2 are the position

and momentum quadratures of the output light. We obtain

SXout,L [ω] = SXin,L [ω] + 2c2
PSq[ω] + 4

√
κ̃aκ̃d SXaXd [ω]

+
∑

c

(
2κ̃cSXc [ω] + 4

√
κ̃ccPSXcq[ω]

)
,

SPout,L [ω] = SPin,L [ω] + 2c2
X Sq[ω] + 4

√
κ̃aκ̃d SPaPd [ω]

+
∑

c

(
2κ̃cSPc [ω] + 4

√
κ̃ccX SPcq[ω]

)
SXout,R [ω] = SXin,R [ω] + 2γaSXa [ω],

SPout,R [ω] = SPin,R [ω] + 2γaSPa [ω], (31)

6Note that the spectra relevant for measurements such as homo-
dyne detection are the symmetrized spectra. Due to the noise model
considered in this work, we have SQout,μ [−ω] = SQout,μ [ω] and the
result of Eq. (30) hence is identical to the symmetrized version
(see Appendix C).
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with SQ[ω] the spectrum of δQ̂ for Q = Xc, Pc, q and the input
vacuum noise spectra SXin,μ

[ω] = SPin,μ
[ω] = 1

2 . We have also
defined the cross terms

SQ1Q2 [ω] = 1

2

∫ +∞

−∞

dω′

2π
〈δQ̂1[ω]δQ̂2[ω′] + δQ̂2[ω]δQ̂1[ω′]〉.

(32)

These spectra can be computed from the solution of the
Langevin equations (14) (see analytical expressions in Ap-
pendix C). In particular, for the mechanical position spectrum
Sq[ω], using Eq. (18), we get

Sq[ω] = ∣∣χ eff
mec[ω]

∣∣2
(Sth[ω] + Som[ω]), (33)

where Sth[ω] � 2�mecn̄mec is the thermal noise spectrum in
the high mechanical temperature limit (h̄�mec � kBTmec) rel-
evant here (see Ref. [41] for a more general expression).
Finally,

Som[ω] = 1

2

∣∣∣∣∣
∑

c

2g̃∗
mec,cC

c
L[ω] +

√
2(cX − icP )

∣∣∣∣∣
2

+ 1

2

∣∣∣∣∣
∑

c

2g̃∗
mec,cC

c
R[ω]

∣∣∣∣∣
2

(34)

is the noise power spectrum due to the optomechanical
effects.

In the high mechanical temperature limit, the part of the
noise power spectra coming from the optical environments
(vacuum noise) is negligible compared to the thermal noise
from the mechanical environment. As a consequence the
spectrum given in Eq. (33) can be approximated by Sq[ω] �
2�mecn̄mec|χ eff

mec[ω]|2. The noise spectra SXout,μ[ω] and SPout,μ[ω]
are proportional to the factor �mec|χ eff

mec[ω]|2 as well and,
therefore, exhibit a peak at the effective mechanical frequency,
as shown in Fig. 6 for all three devices (the effective mechan-
ical frequency is indicated by the dotted red line). However,
the noise spectrum SQout,μ[ω], with Q = X, P, in general also
has additional frequency-dependent factors and hence its area∫

dω
2π

SQout,μ[ω] does not give direct access to the mechani-

cal fluctuations 〈δq̂2〉 = ∫ +∞
−∞

dω
2π

Sq[ω] (see Appendix C for
details on how to compute 〈δq̂2〉 from the optical output
spectra).

For the devices we consider here, the frequency de-
pendence of these factors can be neglected on the range
of values of ω relevant for mechanical features, such that∫

dω
2π

(SQout,μ [ω] − SQin,μ
[ω]) ∝ 〈δq̂2〉. But this proportionality

factor is strongly dependent on the detuning �̃−, which ex-
plains the difference between the area plots of optical and
mechanical noise power spectra (lower row of each panel) in
Fig. 6. In particular, for device (i), these additional detuning-
dependent contributions have an important effect that should
not be confused with optomechanical cooling. In Fig. 6(a),
both SXout,L [ω] and SPout,L [ω] exhibit dark blue lines at distinct
values of �̃−, where the optical spectra are suppressed. This is
in qualitative agreement with the experimental measurements
[25]. Note that this is a pure optical effect, as can be seen from
the area of the mechanical spectrum Sq[ω],

∫
dω
2π

Sq[ω], in the
lower-left panel of Fig. 6(a), which is constant. Conversely,

for the other two devices, the cooling observed as a dip of the
area of Sq[ω] around �̃− = �mec is still visible on top of the
optical contributions to the areas of SXout,μ [ω] and SPout,μ[ω]. In
Fig. 6(b), for device (ii), the optical contributions manifest as
an approximately constant shift of the area while for device
(iii), in Fig. 6(c), the cooling dip is visible, even though only
faintly, on top of the �̃−-dependent optical features.

IV. BACK-ACTION COOLING

After having demonstrated the general properties of the op-
tomechanical Fano-mirror system, we now focus on a widely
used application, namely, cooling of the mechanical resonator
using optomechanical back-action. It is well known that this
cooling scheme allows to bring sideband-resolved standard
optomechanical systems into the mechanical ground state
[4,5,42]. In this section, we show that similar achievements
are possible for our system, even if κd , κa + γa � �mec [de-
vice (ii)] or κd , κa, γa � �mec [device (iii)]. This is possible
since these devices are in the effective sideband-resolved
regime κ̃− � �mec.

We start this section by analyzing the underlying cool-
ing mechanisms in the weak-coupling regime, where the
optomechanical-coupling strengths are significantly smaller
than the mechanical frequency and the (effective) optical
loss rates, which is the case for the laser powers given in
Table I.

A. Stokes and anti-Stokes scattering processes

The steady-state phonon number in the mechanical fluctu-
ations,

n̄fin = 1
2 (〈δq̂2〉 + 〈δ p̂2〉 − 1), (35)

results in the weak-optomechanical-coupling limit, from the
competition between the Stokes and anti-Stokes scattering
processes, which respectively create and annihilate phonons
in the mechanical resonator. The respective rates A+ and A− of
those processes are given by A± = 1

2 SFF [∓�mec] [1], where

SFF [ω] = ∫ +∞
−∞

dω′
2π

〈δF̂ [ω]δF̂ [ω′]〉 is the noise power spec-
trum of the optical back-action on the mechanical resonator,

δF̂ =
∑

c

√
2(g̃mec,cδĉ† + g̃∗

mec,cδĉ)

+ cX

√
2X̂in,L + cP

√
2P̂in,L, (36)

obtained from the steady-state solution of the Langevin equa-
tions [see the last two lines of Eq. (14)]. In the weak-coupling
limit, the effect of the mechanics on the optics can be ne-
glected and we compute SFF [ω] by solving the Langevin
equations (14) for the optics only [see also Eq. (2)]. This
yields δĉ[ω] = Cc

L[ω]âin,L[ω] + Cc
R[ω]âin,R[ω] and, hence,

A± =
∣∣∣∣∣
∑

c

(
g̃∗

mec,cC
c
L[∓�mec] − gκ

cα
∗
las√

2κc
Cc

L[0]

)∣∣∣∣∣
2

+
∣∣∣∣∣
∑

c

g̃∗
mec,cC

c
R[∓�mec]

∣∣∣∣∣
2

. (37)
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FIG. 7. Optomechanical cooling in the weak-coupling limit and
resolved-sideband regime κ̃− � �mec. We show results for (a) device
(ii) and (b) device (iii) (see parameters in Table I). Top panels:
average photon numbers in the cavity (|ā|2, solid blue) and in the
Fano mirror (|d̄|2, dashed orange); center panels: anti-Stokes (solid
green) and Stokes (dashed red) rates; bottom panels: obtained aver-
age phonon number in the mechanical fluctuations (solid purple), the
gray line indicates the thermal phonon number n̄mec. All functions
are plotted in dependence of the detuning between the laser and
the effective “−” mode. The dotted black lines correspond to the
result for a standard optomechanical device with the same sideband
resolution (we have only plotted A− in the middle panel), and the
hatched areas indicate detunings for which the system is unstable
due to heating.

From these rates, we identify the characteristics of the ef-
fective phonon bath created by the optical part of the setup
[1,17]: its effective damping rate �wc

opt = A− − A+ [coinciding
with �opt[�mec] from Fig. 5(a) in this limit] and its effective
average phonon number n̄opt = A+/�opt. As a result of the
coupling to this effective phonon bath created by the optical
setup, the steady-state phonon number in the mechanical fluc-
tuations is then given by

n̄wc
fin = �mecn̄mec + �wc

optn̄opt

�mec + �wc
opt

. (38)

In the middle panels of Fig. 7, we see that the Stokes rate
A+ (dashed red) and anti-Stokes rate A− (solid green) exhibit
peaks at the blue and red sidebands, respectively, correspond-
ing to heating and cooling. Device (ii) [Fig. 7(a)] has similar
features as a standard resolved-sideband optomechanical de-
vice but with a slight asymmetry between A+ and A−, which
explains why �opt is not an odd function of the detuning
in Fig. 5(a). For both devices, the weak-optomechanical-
coupling approximation gives a good estimate of n̄fin [see
purple diamonds in Figs. 8(a) and 8(b)]. Figure 7 confirms the
observation from Fig. 5(a) that, despite the large parameter
differences between devices (ii) and (iii), their behavior on
both sidebands is very similar, almost identical to the one
of a standard device (dotted black line). Differences mainly
occur close to zero detuning, which is not relevant for cooling
applications.

The effective optomechanical couplings g̃mec,c are propor-
tional to the laser drive amplitude αlas [see Eqs. (13) and (15)],
such that A± and �wc

opt are proportional to the laser power

FIG. 8. Steady-state phonon number in the mechanical fluctua-
tions [Eq. (35)]. Results as function of the laser power at �̃− = �mec

are shown for (a) device (ii) and (b) device (iii) at room tempera-
ture, Tmec = 300 K (solid blue line), and at cryogenic temperature,
Tmec = 4 K (dashed-dotted green line). For the room-temperature
case, the dotted gray line indicates the thermal phonon number, the
dashed orange line the weak-coupling approximation [Eq. (38)], and
the solid gray line the minimum reachable phonon number. The
purple diamonds indicate the laser powers used in the other figures as
indicated in Table I. (c) Minimum steady-state phonon number in
the mechanical fluctuations (minimized on �̃− and Plas) as function
of the sideband resolution, where κ̃− is tuned via κ̃d and �̃d . The
solid blue line was obtained with a device differing from device
(iii) only by the laser power with δ� = δκλ/

√
κ̃aκ̃d . The purple star

indicates devices (ii) and (iii) and the dotted black line corresponds
to the minimum n̄fin for a standard optomechanical device, with the
ideal parameters γa = κa = κ̃−/2. The dashed gray line indicated
the ground-state cooling threshold. All other parameters are given
in Table I.

as well. Consequently, increasing Plas brings the steady-state
phonon number n̄wc

fin [Eq. (38)] closer to n̄opt. Since n̄opt �
6.3×10−4 � 1 for devices (ii) and (iii), ground-state cool-
ing is expected to be possible. However, the weak-coupling
approximation typically breaks down well before n̄fin reaches
n̄opt. We therefore need to study the steady-state phonon num-
ber beyond the weak-coupling limit, as will be done in the
following subsection IV B.

B. Ground-state cooling

In the limit where the weak-optomechanical-coupling ap-
proximation fails, the phonon number in the mechanical
fluctuations n̄fin can be computed from Eq. (35) by solving
the Lyapunov equation for the system in the steady state, as
detailed in Appendix A 4.

We plot n̄fin obtained with optomechanical cooling as
a function of the laser power for devices (ii) and (iii) in
Figs. 8(a) and 8(b), where we choose the detuning �̃− =
�mec due to the weak-coupling results from Sec. IV A. We
see that both Fano-mirror devices (ii) and (iii) can achieve
ground-state cooling, both for cryogenic temperature, at

043532-12



DISSIPATIVE AND DISPERSIVE CAVITY … PHYSICAL REVIEW A 109, 043532 (2024)

Tmec = 4 K (dashed-dotted green lines) and for room tem-
perature (solid blue lines). The phonon number reaches a
minimum of n̄fin � 0.41 at room temperature, while a lower
phonon occupation n̄fin � 0.01 can be reached at cryogenic
temperature. In Appendix D, we additionally show that energy
equipartition 〈δq̂2〉 � 〈δ p̂2〉 is satisfied close to the lowest
phonon occupation. As shown by the dashed orange line for
the room-temperature case, the weak-coupling approximation
eventually breaks down at large laser powers.

Even though devices (ii) and (iii) have very different op-
tical parameters for modes a and d , Figs. 8(a) and 8(b)
are almost identical, showing that the key optical parameter
determining the cooling limit is the effective sideband resolu-
tion κ̃−/�mec. Therefore, we have also plotted the minimum
phonon number as a function of the sideband resolution in
Fig. 8(c), showing that devices differing from device (iii) in
Table I only by the tunable laser power (solid blue line) have
identical cooling performances as a standard optomechanical
device (dotted black line). This further confirms the results
from Figs. 5 and 7, namely, that around the red sideband, this
complex engineered device behaves like a simple standard
resolved-sideband optomechanical device, where the ideal
sideband resolution has been achieved thanks to the Fano-
mirror engineering.

Evidently, the mechanical frequency and quality factor also
play a major role in determining the cooling limit. Room-
temperature ground-state cooling is made possible here by
the large mechanical frequency and high mechanical quality
factor (see Table I). In addition, note that we have assumed
the drive laser to be shot noise limited, that is in a coherent
state, while in an experiment, one would need to account
for the laser phase noise and make sure it does not prevent
the setup from reaching the mechanical ground state [43,44].
Finally, the only difference between Figs. 8(a) and 8(b) is the
laser power at which the minimum n̄fin is reached. Device
(ii) requires a laser power two orders of magnitude larger
than device (iii). This comes from the difference in the op-
tical parameters, in particular giving rise to different effective
optomechanical couplings gω

− and different laser frequencies
giving �̃− = �mec. Therefore, identical laser powers corre-
spond to different input photon rates Plas/h̄ωlas.

V. TOWARDS NONLINEAR OPTOMECHANICS

In this section we show that a system, as realized by
a microcavity with a frequency-dependent Fano mirror, can
reach the effective resolved-sideband, strong- and ultrastrong-
coupling regimes simultaneously. To that end, we introduce
two additional model systems, Devices (iv) and (v), with pa-
rameters that are close to situations that can be experimentally
achieved with microcavities [35,40] (see Table II). These sys-
tems are based on state-of-the-art mechanical parameters [39]
and, like device (iii), fulfill the condition δ� = δκλ/

√
κ̃aκ̃d . It

allows them to be in the effective resolved-sideband regime
with κ̃− < �mec obtained from Eq. (3).

Compared to the previous sections, where the device
parameters were based on Table I, we now chose more
realistic optomechanical couplings for modes a and d for
experimental microcavity implementations like in Ref. [25]
[device (i)]. Concretely, comparing to Ref. [25] we only

TABLE II. Experimentally achievable devices in the effective
resolved-sideband regime (κ̃−/�mec < 1), thanks to the condition
δ� = δκλ/

√
κ̃aκ̃d , going toward both the strong- (gω

− > κ̃−) and
ultrastrong- (gω

− > �mec) coupling regimes. See Table I for the de-
scription of the parameters. Like for devices (ii) and (iii), the effective
dissipative coupling gκ

− is negligible, gκ
− � gω

− (see Sec. II B 1).

Parameter Device (iv) Device (v)

Optical modes
δ�/2π (Hz) 1.13×1013 1.97×1013

γa/2π (Hz) 1.00×109 6.00×108

κ̃a/2π (Hz) 1.00×1013 1.00×1013

κ̃d/2π (Hz) 3.25×109 1.08×109

λ/2π (Hz) 4.09×1011 4.09×1011

Mechanical mode
�mec/2π (Hz) 1.3×106 1.3×106

�mec/2π (Hz) 9.3×10−3 9.3×10−3

Qmec 1.4×108 1.4×108

Single-photon optomechanical couplings
gω

a/�mec 0.065 0.65
gω

d/�mec −0.14 −1.4
gκ

a/�mec 0.060 0.60
gκ

d/�mec 2.1×10−4 4.2×10−4

Effective optical “−” mode
κ̃−/�mec 0.25 0.05
gω

−/�mec −0.14 −1.4
gω

−/κ̃− −0.56 −28

decrease the optomechanical couplings by a factor 10 for
device (iv) and keep the same values as in device (i) for
device (v). Note that we further decreased gκ

d to reflect the
smaller value of κ̃d in devices (iv) and (v) compared to de-
vice (i). Despite the stronger optomechanical coupling, the
modeling from Sec. II A remains valid for devices (iv) and
(v), in particular for the calculation of the effective opti-
cal modes from Sec. II A 2 since κ̃a, κ̃d � gω

a , gω
d , gκ

a, gκ
d . We

can therefore make quantitative statements about the relevant
effective coupling parameters, given in the last section of
Table II.

Here, we find that device (iv) is close to reaching both
the effective strong-coupling regime |gω

−| > κ̃− and the ef-
fective ultrastrong-coupling regime |gω

−| > �. Indeed, we see
in the last rows of Table II that |gω

−| = 0.56κ̃− and |gω
−| =

0.14�, compared to the devices in Table I, where these
parameters typically differ by several orders of magnitude.
The situation is even more favorable for device (v) reach-
ing both the effective strong-coupling regime |gω

−| = 28κ̃−
and the effective ultrastrong-coupling regime |gω

−| = 1.4�.
The required parameters of the mirror mode, ωd and κd ,
can be realized by engineering the photonic crystal pat-
tern and the right-hand-side cavity loss rate γa is achievable
with distributed Bragg reflectors. Our work thus predicts that
reaching simultaneously the resolved-sideband, strong- and
ultrastrong-coupling regimes is within reach of optical micro-
cavities with a frequency-dependent mirror such as a photonic
crystal, paving the way for the experimental exploration of the
nonlinear regime of cavity quantum optomechanics.
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FIG. 9. Steady-state phonon number in the mechanical fluctua-
tions [Eq. (35)] as function of the laser power at �̃− = �mec for
device (iv). The curves have been plotted on the laser power range
where the device’s dynamics can be linearized (Sec. II C).

In general, the theoretical approach to analyze the dynam-
ics presented here, namely, the linearization from Sec. II C,
does not apply for this strong-coupling regime. However, for
strong enough laser powers, the dynamics of device (iv) can
be linearized since |c̄|2 � 〈δĉ†δĉ〉 (see also Appendix A 2).
Hence, for those laser powers, we are able to show results for
the phonon number that can be reached via optomechanical
cooling, using the theoretical framework given in Sec. II. The
result is shown in Fig. 9, displaying the steady-state phonon
number in the mechanical fluctuations at �̃− = �mec, evi-
dencing that ground-state cooling is possible with this device
too (see Appendix D for the energy equipartition). The lin-
earization is valid for a smaller range of laser powers at room
temperature (solid blue line) than at cryogenic temperature
(dashed-dotted green line) since the thermal fluctuations of
the mechanics, which give rise to optical fluctuations due to
the optomechanical couplings, increase with temperature. An
analysis of the full nonlinear dynamics of devices (iv) and (v)
is postponed to future work.

VI. CONCLUSION

Our work highlights that optomechanical systems with a
Fano mirror can reach an effective resolved-sideband regime.
Thanks to the strong interaction between the two optical
modes, i.e., the Fano and the cavity modes, a significant
reduction of the effective optical linewidth is achievable by
matching the resonance frequencies and loss rates of these
two modes. Therefore, sideband-based ground-state cooling
of the mechanics is expected to become possible even for a
microcavity with high optical losses κ̃a � �mec and at room
temperature.

We have established a complex but versatile theoretical
model, taking into account both dispersive and dissipative
optomechanical couplings for a cavity with one frequency-
dependent mirror. The full analytical description makes it
possible to investigate different effects separately, namely,
couplings not relevant to a chosen specific experimental setup
can easily be set to zero. Furthermore, the cavity output
spectrum is not trivially related to the noise spectrum of the
mechanical resonator and our work gives the required expres-
sions to make this inference. We therefore expect this model to
be a useful tool for all similar or analogous setups, where cou-
pled optical modes interact with mechanical modes. This can

be applied to various systems ranging from optomechanical
cavities studied here to magnon modes coupled to mechan-
ical deformation [45,46], molecular optomechanics [47], or
cavity-enhanced chemistry, etc. (see, e.g., Refs. [48,49]).

Finally, we have demonstrated that this complex optome-
chanical system can be mapped to a canonical optomechanical
setting with ideal coupling and loss parameters. Importantly,
this shows that the advantage of strong single-photon coupling
of microcavities and the designed reduced loss rates of ef-
fective optical modes due to a Fano mirror are a promising
route for implementing both strong coupling and ultrastrong
coupling in optomechanics, paving the way for nonlinear
quantum optomechanics.
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APPENDIX A: DYNAMICS

In this Appendix, we provide derivations and technical
background for the (linearized) Langevin equations and the
resulting Lyapunov equations, which are used throughout the
main paper to describe the dynamics of the optomechanical
system.

1. Derivation of the Langevin equations

From the microscopic model described in Sec. II B 1, we
derive the dynamics of the system in the Heisenberg picture,

˙̂bω,L = −iωb̂ω,L −
√

κa

π

(
1 + gκ

a√
2κa

q̂

)
â

−
√

κd

π

(
1 + gκ

d√
2κd

q̂

)
d̂, (A1a)

˙̂bω,R = −iωb̂ω,R −
√

γa

π
â, (A1b)

˙̂a = −iωaâ − iλd̂ + igω
a

√
2q̂â

+
√

κa

π

(
1 + gκ

a√
2κa

q̂

) ∫
dω b̂ω,L

+
√

γa

π

∫
dω b̂ω,R, (A1c)

˙̂d = −iωd d̂ − iλâ + igω
d

√
2q̂d̂

+
√

κd

π

(
1 + gκ

d√
2κd

q̂

) ∫
dω b̂ω,L, (A1d)

˙̂q = �mec p̂, (A1e)
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˙̂p = −�mecq̂ +
∑

c

(
gω

c

√
2ĉ†ĉ − i

gκ
c√

2πκc

×
∫

dω(ĉ†b̂ω,L − b̂†
ω,Lĉ )

)
. (A1f)

We formally integrate Eqs. (A1a) and (A1b) with respect to
an initial time t0 < t , and insert the obtained expression in the
other equations of the system (A1). Defining the input fields

b̂in,μ(t ) = 1√
2π

∫
dω b̂ω,μ(t0)e−iω(t−t0 ), (A2)

with μ = L, R, and following the same procedure as in
Ref. [36], we obtain the Langevin equations (8). We have
added the terms −�mec p̂ and

√
�mecξ̂ in the evolution of p̂

to take into account the thermal mechanical noise, assuming
that �mec � �mec, gω

a , gκ
a, γa, κa, κd .

The output fields are defined by taking a reference time in
the future t1 > t :

b̂out,μ(t ) = 1√
2π

∫
dω b̂ω,μ(t1)e−iω(t−t1 ). (A3)

Comparing the formal integration of Eqs. (A1a) with respect
to t0 and t1 gives the input-output relations (10).

2. Validity of the linearization

For the linearized dynamics described in Sec. II C to
be valid, two key conditions need to be fulfilled. First,
we have assumed the existence of a well-defined stable
classical steady-state solution of the nonlinear system of
equations (13), which can be verified by applying the Routh-
Hurwitz criterion (see below). Second, we have neglected
terms at the second order in the fluctuations in the Langevin
equations (14) and it needs to be guaranteed that the neglected
terms are indeed sufficiently small. In the following, we do
not discuss device (i) since the linearization for this device is
valid for all the considered detunings due to the large effective
optical losses κ̃− � gω

c , gκ
c,�mec (see Table I).

a. Stability of the system

We apply the Routh-Hurwitz criterion to determine
whether the system, described by the Langevin equations (8),
is stable for the studied parameters. Focusing on the equa-
tion for the quadratures and following the procedure described
in Ref. [50], we construct the sequence (rk )0�k�6 based on the
characteristic polynomial of A [Eq. (A10)], det(A − XI ) =∑6

k=0 a6−kX k . If all the elements of this sequence have the
same sign, then the system is stable. The elements are defined
in the following way: r0 = T0, r1 = T1, and rk = Tk/Tk−1 for
k = 2, . . . , 6 with T0 = a0, T1 = a1, and Tk>1 = det Mk . Here,
Mk is the k × k matrix with coefficients (Mk )i j = a2i− j and we
take a2i− j = 0 if 2i − j is not between 0 and 6. In particular,
r0 = 1, r1 = 2(γa + κa + κd ) + �mec, and r6 = a6 = det(A)
but the full analytical expressions of the other coefficients
are rather complex and not very informative. However, by
evaluating numerically rk>1 we can find that devices (ii) and
(iii) have instabilities (see hatched regions in relevant plots of
the main paper) which coincide very well with the places at
which n̄fin becomes negative.

FIG. 10. Steady-state phonon number n̄fin (in blue, left axis) and
relevant stability condition (in orange, right axis) as a function of
(a) the detuning �̃− and (b) the laser power Plas for devices (ii) and
(iii). See Table I for the other parameters.

In particular, the instability regions in Figs. 4, 5(a), and
7 as a function of the detuning �̃− for a fixed laser power
coincide with negativities of r5 [see Fig. 10(a)]. However,
when the system is driven on the red sideband, at �̃− = �mec,
the relevant criterion, namely, the first one to become negative,
for the stability of the system as a function of the laser power
is r6 = det(A) > 0, as illustrated in Fig. 10(b). Similar results
are obtained for the other devices.

b. Negligibility of the second order in the fluctuations

We compare the fluctuations in the photon numbers
〈δĉ†δĉ〉, with the average photon numbers in the classical
steady state |c̄|2 from Eq. (13), for both the cavity mode
(c = a in green) and mirror mode (c = d in red) in Fig. 11.
The photon-number fluctuations 〈δĉ†δĉ〉 are obtained by nu-
merically solving the steady-state Lyapunov equations for the
second-order moments (see Appendix A 4). While |c̄|2 is in-
dependent of the temperature Tmec, since thermal fluctuations
average to zero, 〈δĉ†δĉ〉 decreases by several orders of mag-
nitude when going from room temperature (dashed lines) to
cryogenic temperature (dotted lines). Indeed, the thermal fluc-
tuations in the mechanical resonator create optical fluctuations
due to the optomechanical coupling; therefore, having a colder
mechanical environment reduces these thermal fluctuations.
Figures 11(a) and 11(b) correspond to the positive detuning
part of Fig. 7 and it shows that apart from around ā ≈ 0,
which happens at ωlas = ωd − √

κ̃d/κ̃aλ [see Eq. (13)], the
linearization is valid for devices (ii) and (iii).

Figures 11(c)–11(e) show that, at �̃− = �mec, the lin-
earization is valid if the laser power is sufficiently large for
devices (ii)–(iv), which is the case in all figures presented in
this paper. The laser powers used in most figures (see Table I)
for devices (ii) and (iii) are indicated by the vertical dotted
black line in Fig. 11(b). However, the linearization for device
(v), in Fig. 11(f), is never valid, which is expected since this
device is in the strong-coupling regime gω

− > κ̃−.
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FIG. 11. Steady-state photon numbers, for the cavity mode in
green and the mirror mode in red, in the classical steady state |c̄|2
(solid lines) and in the fluctuations 〈δĉ†δĉ〉 (dashed lines at Tmec =
300 K and dotted lines at Tmec = 4 K) as a function of (a), (b) the
detuning �̃− and (c)–(f) the laser power Plas (at �̃− = �mec) for the
device indicated on top of each panel. The dotted vertical black lines
in (c) and (d) indicate the laser powers used in all the figures where
Plas is not on the x axis. See Table I for the other parameters of devices
(ii) and (iii) and Table II for the parameters of devices (iv) and (v).

3. Solution of the linearized Langevin equations

In the frequency domain, using the convention f̂ [ω] =∫ +∞
−∞ dt eiωt f̂ (t ) for the Fourier transform, the linearized

Langevin equations (14) become

χ−1
a [ω]δâ = i

√
2g̃aδq̂ − iG̃δd̂ +

√
2κ̃aâin,L +

√
2γaâin,R,

χ−1
d [ω]δd̂ = i

√
2g̃dδq̂ − iG̃δâ +

√
2κ̃d âin,L,

δ p̂ = − i
ω

�mec
δq̂,

χ−1
mec,0[ω]δq̂ =

√
2

∑
c

(g̃mec,cδĉ† + g̃∗
mec,cδĉ ) +

√
�mecξ̂

+ cX

√
2X̂in,L + cP

√
2P̂in,L. (A4)

The susceptibilities χa, χd , and χmec,0 are given in Sec. II C 3.
From these equations, we obtain

δĉ =
√

2Cc
q[ω]δq̂ + Cc

L[ω]âin,L + Cc
R[ω]âin,R, (A5)

with the coefficients Cc defined in Eqs. (19) and (22). Then
we get Eqs. (18) and (21) by putting Eq. (A5) in the last
equation of (A4).

Furthermore, we can write each quadrature Q̂, with Q =
Xa, Pa, Xd , Pd , q, p, as

δQ̂[ω] =
∑

η

cQ
η [ω]η̂[ω], (A6)

where we are summing over the input noises η̂ =
X̂in,L, P̂in,L, X̂in,R, P̂in,R, ξ̂ , and we have defined the coefficients

cq
Xin,μ

[ω] = χmec,eff[ω]
∑

c

(
g̃∗

mec,cC
c
μ[ω] + g̃mec,cC

c
μ[−ω]∗

)
+ δμ,Lχmec,eff[ω]cX

√
2,

cq
Pin,μ

[ω] = χmec,eff[ω]
∑

c

i
(
g̃∗

mec,cC
c
μ[ω] − g̃mec,cC

c
μ[−ω]∗

)
+ δμ,Lχmec,eff[ω]cP

√
2,

cq
ξ [ω] = χmec,eff[ω]

√
�mec,

cp
η[ω] = − i

ω

�mec
cq
η[ω],

cXc
Xin,μ

[ω] = (
Cc

q[ω] + Cc
q[−ω]∗

)
cq

Xin,μ
[ω]

+ Cc
μ[ω] + Cc

μ[−ω]∗

2
,

cXc
Pin,μ

[ω] = (
Cc

q[ω] + Cc
q[−ω]∗

)
cq

Pin,μ
[ω]

+ i
Cc

μ[ω] − Cc
μ[−ω]∗

2
,

cXc
ξ [ω] = (

Cc
q[ω] + Cc

q[−ω]∗
)
cq
ξ [ω],

cPc
Xin,μ

[ω] = i
(
Cc

q[−ω]∗ − Cc
q[ω]

)
cq

Xin,μ
[ω]

+ i
Cc

μ[−ω]∗ − Cc
μ[ω]

2
,

cPc
Pin,μ

[ω] = i
(
Cc

q[−ω]∗ − Cc
q[ω]

)
cq

Pin,μ
[ω]

+ Cc
μ[ω] + Cc

μ[−ω]∗

2
,

cPc
ξ [ω] = i

(
Cc

q[−ω]∗ − Cc
q[ω]

)
cq
ξ [ω]. (A7)

4. Evolution of the second-order moments

Due to the linearization in Sec. II C, the system is Gaussian.
Therefore, the evolution of the second-order moments of the
quadratures can be put in the form of a Lyapunov equation

dV

dt
= AV + VAT + B (A8)

for the covariance matrix V of the quadratures. The elements
of the covariance matrix V are defined as

Vi j = 1
2 〈{Yi,Yc}〉 − 〈Yi〉〈Yc〉, (A9)

with �Y = (δX̂a, δP̂a, δX̂d , δP̂d , δq̂, δ p̂). We have de-
fined the optical quadratures δX̂a = (δâ + δâ†)/

√
2,

δP̂a = (δâ − δâ†)/i
√

2, δX̂d = (δd̂ + δd̂†)/
√

2, and
δP̂d = (δd̂ − δd̂†)/i

√
2. The expressions of the matrices

043532-16



DISSIPATIVE AND DISPERSIVE CAVITY … PHYSICAL REVIEW A 109, 043532 (2024)

A and B,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−κ̃a − γa �̃a −√
κ̃aκ̃d λ −2 Im(g̃a) 0

−�̃a −κ̃a − γa −λ −√
κ̃aκ̃d 2 Re(g̃a) 0

−√
κ̃aκ̃d λ −κ̃d �̃d −2 Im(g̃d ) 0

−λ −√
κ̃aκ̃d −�̃d −κ̃d 2 Re(g̃d ) 0

0 0 0 0 0 �mec

2 Re(g̃mec,a) 2 Im(g̃mec,a) 2 Re(g̃mec,d ) 2 Im(g̃mec,d ) −�mec −�mec

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

κ̃a + γa 0
√

κ̃aκ̃d 0 0 cX
√

κ̃a

0 κ̃a + γa 0
√

κ̃aκ̃d 0 cP
√

κ̃a√
κ̃aκ̃d 0 κ̃d 0 0 cX

√
κ̃d

0
√

κ̃aκ̃d 0 κ̃d 0 cP
√

κ̃d

0 0 0 0 0 0
cX

√
κ̃a cP

√
κ̃a cX

√
κ̃d cP

√
κ̃d 0 c2

P + c2
X + �mec(2n̄mec + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A10)

are obtained from the Langevin equations (14) and the cor-
relation functions of the noise, Eqs. (12) and (11). Solving
numerically the Lyapunov equation (A8) for the steady state,
AV̄ + V̄ AT + B = 0, gives access to, among other quantities,
the phonon number in the mechanical fluctuations [Eq. (35)]

n̄fin = 1
2 (V̄55 + V̄66 − 1). (A11)

APPENDIX B: DETAILED ANALYTICAL EXPRESSIONS
FOR THE MEAN OPTICAL RESPONSE

The optical response of the optomechanical system is dis-
cussed in Sec. III B. Here, we provide explicit analytical
expressions, which are not given in Sec. III B.

The derivative of the intensity transmission T in Eq. (26)
can be explicitly expressed as

∂T

∂�̃a
= − ∂D

∂�̃a

T

D
,

∂T

∂�̃d
= − ∂D

∂�̃d

T

D
+ 8γa

D
(κ̃a�̃d − √

κ̃aκ̃dλ),

∂T

∂κ̃a
= − ∂D

∂κ̃a

T

D
+ 4γa�̃d

D

(
�̃d −

√
κ̃d

κ̃a
λ

)
,

∂T

∂κ̃d
= − ∂D

∂κ̃d

T

D
− 4γaλ

D

(√
κ̃a

κ̃d
�̃d − λ

)
, (B1)

with

∂D

∂�̃a
= 2�̃d (κ̃aκ̃d − λ2) − 4λκ̃d

√
κ̃aκ̃d + 2

(
�̃2

d + κ̃2
d

)
�̃a,

∂D

∂�̃d
= 2�̃a(κ̃aκ̃d − λ2) − 4λ(κ̃a + γa)

√
κ̃aκ̃d

+ 2
(
�̃2

a + (κ̃a + γa)2
)
�̃d ,

∂D

∂κ̃a
= 2

[
�̃d −

√
κ̃d

κ̃a
λ

]
[�̃aκ̃d + �̃d (κ̃a + γa) − 2λ

√
κ̃aκ̃d ],

∂D

∂κ̃d
= 2

[
�̃a −

√
κ̃a

κ̃d
λ

]
[�̃aκ̃d + �̃d (κ̃a + γa) − 2λ

√
κ̃aκ̃d ]

+ 2γa(λ2 + γaκ̃d − �̃a�̃d ). (B2)

APPENDIX C: POWER SPECTRA

In this Appendix, we compute the power spectra of the
mechanical position fluctuations and some of the optical
quadratures. In the following, the power spectrum of an op-
erator δQ̂ is denoted SQ[ω], with

SQ[ω] ≡
∫ +∞

−∞
dt eiωt 〈δQ̂(t )δQ̂(0)〉

=
∫ +∞

−∞

dω′

2π
〈δQ̂[ω]δQ̂[ω′]〉, (C1)

and we will also use the notation

SQ1Q2 [ω] = 1

2

∫ +∞

−∞

dω′

2π
〈δQ̂1[ω]δQ̂2[ω′] + δQ̂2[ω]δQ̂1[ω′]〉

(C2)

for correlators between two operators δQ̂1 and δQ̂2.
For measurements such as homodyne detection, the rel-

evant spectrum is the symmetrized spectrum 1
2 (SQ[ω] +

SQ[−ω]). Using Eq. (A6), we get

SQ[−ω] =
∑
η,η′

∫ +∞

−∞

dω′

2π
cQ
η [−ω]cQ

η′ [ω′]〈η̂[−ω]η̂′[ω′]〉,

(C3)

and, given the noise correlations functions (11) and (12),
we have 〈η̂[−ω]η̂′[ω′]〉 ∝ δ(ω′ − ω). Therefore, SQ[−ω] =
SQ[ω] and the symmetrized spectrum is also given by
Eq. (C1).

1. Mechanical position spectrum

We first compute the mechanical position power spectrum
Sq[ω]. Using Eq. (18) and the noise correlation functions (12)
and (11), in the frequency domain, we get Eq. (33). In the
limit of a purely dispersive optomechanical coupling gκ

a → 0,
we recover Eq. (D10) from [17]. The effective susceptibility,
which appears in Eq. (33), is defined by Eq. (20) and the
related coefficients Ca/d

μ by Eqs. (19). The phonon number in
the mechanical fluctuations, Eq. (35), can also be computed
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from the position spectrum [41] since

〈δq̂2〉 =
∫ +∞

−∞

dω

2π
Sq[ω],

〈δ p̂2〉 =
∫ +∞

−∞

dω

2π

(
ω

�mec

)2

Sq[ω]. (C4)

Note that, in practice, these integrals only need to be evaluated
on a frequency range [0,�max], with the cutoff frequency
�max one or two orders of magnitude larger than �mec, since
the integrands are even functions of ω and Sq[ω] is sharply
peaked at the effective mechanical frequency.

2. Output light spectrum

As a next step, we compute the power spectra, as defined in
Eq. (C1), of the quadratures of the light leaking out of the cav-
ity, i.e., SXout,μ and SPout,μ , where X̂out,μ = (âout,μ + â†

out,μ)/
√

2

and P̂out,μ = (âout,μ − â†
out,μ)/i

√
2 are the position and mo-

mentum quadratures of the output light. The input-output
relation for these quadratures is

X̂out,L = X̂in,L −
√

2κ̃aδX̂a −
√

2κ̃dδX̂d +
√

2cPδq̂,

P̂out,L = P̂in,L −
√

2κ̃aδP̂a −
√

2κ̃dδP̂d +
√

2cX δq̂,

X̂out,R = X̂in,R −
√

2γaδX̂a,

P̂out,R = P̂in,R −
√

2γaδP̂a (C5)

[see Eq. (17)]. Therefore, we get the output spectra given
in Eq. (31). Using the solutions of the Langevin equations,
Eq. (A6), and the noise correlation functions, we compute the
fluctuation spectra

SQ[ω] = 1

2

∑
μ

∣∣cQ
Xin,μ

[ω] − icQ
Pin,μ

[ω]
∣∣2

+ (2n̄mec + 1)
∣∣cQ

ξ̂
[ω]

∣∣2
,

SQ1Q2 [ω] = 1

2

∑
μ

[
Re

{(
cQ1

Xin,μ
[ω] − icQ1

Pin,μ
[ω]

)
× (

cQ2
Xin,μ

[ω] − icQ2
Pin,μ

[ω]
)∗}]

+ (2n̄mec + 1)Re
{
cQ1

ξ̂
[ω]cQ2

ξ̂
[−ω]

}
, (C6)

with Q, Q1, Q2 ∈ {Xa, Pa, Xd , Pd , q}. The coefficients cPc
η are

defined in Eqs. (A7) and note that cQ
η [−ω] = cQ

η [ω]∗.
In many cases, including all devices considered here, the

part of the noise power spectrum coming from the optical
environments (vacuum noise) is negligible compared to the
thermal noise from the mechanical environment. As a conse-
quence, we have

SQ[ω] � 2n̄mec

∣∣cQ
ξ̂

[ω]
∣∣2

,

SQ1Q2 [ω] � 2n̄mecRe
{
cQ1

ξ̂
[ω]cQ2

ξ̂
[−ω]

}
, (C7)

and, in particular, Sq[ω] � 2�mecn̄mec|χ eff
mec[ω]|2. The expres-

sion for cQ
ξ̂

[ω] always contains the factor
√

�mecχ
eff
mec[ω] [see

Eqs. (A7)]. Therefore, SXout,L [ω] and SPout,L [ω] can be approxi-
mated by �mec|χ eff

mec[ω]|2 times a frequency-dependent factor

FIG. 12. Factor DQout,L [�mec] for Q = X (solid orange) and Q =
P (dashed blue) for devices (i)–(iii) as a function of the detuning �̃−.
See Table I for the parameters.

and they hence exhibit a peak at the effective mechanical
frequency. However, in all generality, they do not give direct
access to 〈δq̂2〉 by simple integration over a range of val-
ues of ω, [0,�max], relevant for mechanical features, like in
Eq. (C4), because of the frequency-dependent prefactors. We
can nonetheless make Sq[ω] appear in the expression of all the
SQ[ω] and SQ1Q2 [ω], such that

SQout,μ [ω] = SQin,μ
[ω] + DQout,μ[ω]Sq[ω], (C8)

with Q = X, P, μ = L, R, and where we have defined

DXout,L [ω] =
∣∣∣∣∣
√

2cP +
∑

c

√
2κ̃c(Cc

q[ω] + Cc
q[−ω]∗)

∣∣∣∣∣
2

,

DPout,L [ω] =
∣∣∣∣∣
√

2cX +
∑

c

√
2κ̃ci(Cc

q[−ω]∗ − Cc
q[ω])

∣∣∣∣∣
2

,

DXout,R [ω] = 2γa

∣∣Ca
q [ω] + Ca

q [−ω]∗
∣∣2

,

DPout,R [ω] = 2γa

∣∣Ca
q [ω] − Ca

q [−ω]∗
∣∣2

. (C9)

We can then compute 〈δq̂2〉 as

〈δq̂2〉 = 2
∫ �max

0

dω

2π

SQout,μ [ω] − SQin,μ
[ω]

DQout,μ[ω]
. (C10)

Note that for the devices we consider, the frequency depen-
dence of DQout,μ[ω] for ω ∈ [0,�max] is weak, especially for

FIG. 13. Mechanical position and momentum fluctuations 〈δq̂2〉
and 〈δ p̂2〉 as a function of laser power for devices (ii), (iii), and (iv).
See Tables I and II for the parameters.
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device (i), such that DQout,μ[ω] � DQout,μ [�mec] can be taken
out of the integral but remains a strongly detuning-dependent
prefactor, as evidenced by Fig. 12 and the area plots in Fig. 6.

APPENDIX D: GROUND-STATE COOLING
AND ENERGY EQUIPARTITION

In the main text, we showed that devices (ii), (iii), and (iv)
can reach n̄fin < 1 (see Figs. 8 and 9). This is, however, not the
only requirement to achieve ground-state cooling. The other

condition is that energy equipartition 〈δq̂2〉 � 〈δ p̂2〉 � 1
2 has

to be satisfied. We check this second requirement in Fig. 13
around the laser powers giving n̄fin < 1. We see that energy
equipartition eventually breaks down when Plas increases, but
on a large range of powers before the one giving the minimum
phonon number, we have both n̄fin < 1 and 〈δq̂2〉 � 〈δ p̂2〉.
This is true both at room temperature (300 K) and at low
temperature (4 K), though in the latter case 〈δq̂2〉 and 〈δ p̂2〉
get closer to 1

2 since the minimum n̄fin is smaller in that
case.
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