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BUCHSBAUM-RIM MULTIPLICITIES
AND RESIDUE CURRENTS

Rahim Nkunzimana

Department of Mathematical Sciences
Division of Algebra and Geometry

Chalmers University of Technology and the University of Gothenburg

Abstract

Let f be a holomorphic (r ×m)-matrix defined near the origin in Cn

and with full rank outside the origin. To the submodule N of Or
0

defined by the image of f there is a notion of multiplicity called the
Buchsbaum-Rim multiplicity of N . This is the leading coefficient of a
Hilbert polynomial of a certain graded algebra defined from N . In the
special case when f is a row matrix, the image is given by the ideal in
O0 defined by f and the Buchsbaum-Rim multiplicity coincides with
the classical Hilbert-Samuel multiplicity.

In this thesis we represent the Buchsbaum-Rim multiplicity eBR(N)

of N in terms of (residue) currents in the special case when the ma-
trix f is block diagonal. More precisely, we prove that the point mass
eBR(N)[0] factors into a product of a smooth form and a residue cur-
rent associated to the so-called Buchsbaum-Rim complex of f . This
generalises a result in [And05], where a similar factorisation is proven
for row matrices and Hilbert-Samuel multiplicities. When f is block
diagonal, the Buchsbaum-Rim multiplicity is given as a sum of so-
called mixed multiplicities. By King’s formula, these multiplicities
can be expressed with mixed Monge-Ampère products. We show that
the mixed Monge-Ampère products can be represented as the product
of the smooth form and residue current defined from the Buchsbaum-
Rim complex of f .

Keywords: Buchsbaum-Rim multiplicity, mixed multiplicity, Buchsbaum-
Rim complex, residue current, holomorphic morphism, Mongè-Ampere
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Chapter 1

Introduction

Let X be a neighbourhood of the origin 0 ∈ Cn and consider a tuple
f = (f1, . . . , fm) of holomorphic functions defined on X such that
Z(f) := {z ∈ X|f(z) = 0} = {0}. Let F be a trivial holomorphic
bundle over X with rank m and fix a frame e = (e1, . . . , em) with dual
frame e∗ = (e∗1, . . . , e

∗
m). We can then view f as a section of the dual

bundle F ∗ by writing

f =
m∑
k=1

fke
∗
k.

The morphism f : F → O, where O is the sheaf of holomorphic
functions on X, then coincides with contraction δf with the section f ,
which is a map defined by

δfek = fk.

The contraction δf : F → O can be extended to a differential δf on
the exterior algebra H := ΛF , cf. (2.30). This gives rise to the Koszul
complex (H,φ) of f , which is the complex

0 Hm := ΛmF · · · · · · H1 := F H0 := O
φm:=δf φ2:=δf φ1:=δf

1
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From this data, Andersson constructs in [And04] a residue current R̃f

associated to f , which is a (0, n)-current with values in ΛnF and sup-
port on Z(f) = {0}. The coefficients of the residue current R̃f are the
so-called Bochner-Martinelli type currents, as constructed in [PTY00].
In particular, when m = n and f defines a complete intersection, the
current Rf is

R̃f = ∂̄
1

fn
∧ · · · ∧ ∂̄ 1

f1
⊗ e1 ∧ · · · ∧ en

where ∂̄(1/fn) ∧ · · · ∧ ∂̄(1/f1) is the classical Coleff-Herrera product,
constructed in [CH78].

The ideal I = (f1, . . . , fm), defined by f , is Artinian with support
at the origin. There is a notion of multiplicity of the ideal, called
the Hilbert-Samuel multiplicity e(I). A consequence of the classical
King’s formula is that the mass at the origin of the Monge-Ampère
product (ddc log |f |2)n (see Section 2.2) coincides with e(I), i.e.∫

{0}
(ddc log |f |2)n = e(I). (1.1)

Therefore, this mass is sometimes taken as an analytic definition of
the Hilbert-Samuel multiplicity.

The starting point of this thesis is [And05, Theorem 1.1] where An-
dersson proves the formula

1

(2πi)nn!
dφR̃f = e(I)[0], (1.2)

where dφ := dφ1 · · · dφn = (dδf )
n. Consider the special case when

the dimension n = 1 and F is a trivial line bundle with frame e,
and fe∗ ∈ O(F ∗). Then f = zag for some positive integer a and
a nonvanishing holomorphic function g. The ideal I defined by f

has multiplicity e(I) = a. The residue current is the (0, 1)-current
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R̃f = ∂̄(1/f)⊗ e, cf. (2.17). In this case, (1.2) becomes1

1

2πi
∂̄
1

f
∧ df = a[0] (1.3)

which can be viewed as a smooth version of the argument principle
(see Remark 2.11).

We now consider the case when f is a holomorphic (r × m)-matrix
on X such that Z(f) = {0}, where Z(f) is the set where f does not
have full rank. We let E,Q be trivial holomorphic vector bundles over
X of rank m and r, respectively. Let e = (e1, . . . , em) be a frame for
E and ε = (ε1, . . . , εr) be a frame for Q, with dual frame e∗ and ε∗,
respectively. We can then identify f with a morphism f : E → Q by
letting

f =
r∑

k=1

m∑
ℓ=1

fkℓεk ⊗ e∗ℓ .

where fkℓ are the functions appearing in the matrix f . In a similar way
as before, there is an associated complex (H,φ), called the Buchsbaum-
Rim complex of f (see Section 3.1), such that f is the first map in the
complex. When r = 1, so that f is just a row matrix, this complex
coincides with the Koszul complex. We equip H with a trivial metric
and connection. In [And06], Andersson constructs a residue current
Rf (see Section 3.2) associated to the matrix f from this complex.
In fact, Rf is a current with support in Z(f) = {0} and values in
Hom(H0, Hn), i.e. we obtain a matrix of currents. We note also that
dφRf is a current with values in H0 ⊗ H∗

0 . When r = 1, we have
Rf = R̃f . We are interested in studying the current tr(dφRf ) that
generalises the left hand side of (1.2).

Since f has full rank outside the origin, the module M = O(Q)/ im f

is Artinian with support at the origin. For such a module there is
a multiplicity called the Buchsbaum-Rim multiplicity eBR(M) (some-
times written eBR(im f), see Section 2.1). When r = 1, then im f = I,
M = O/ I, and it holds that eBR(I) = e(I).

1The order of df and ∂̄(1/f) is explained by a superstructure, see Section 2.4.



4 Chapter 1. Introduction

We now consider the special case when f is block diagonal with each
block being a row matrix fk, i.e. we can decompose E as a direct sum
E = ⊕r

k=1Ek of trivial holomorphic subbundles Ek, and write

f =
r∑

k=1

fk ⊗ εk

where fk ∈ O(E∗
k) (or rather, the trivial extension of this section to

a section of E∗). We also assume that fk satisfies Z(fk) = {0}. Let
Ik be the ideal defined by fk and note first that the ideals Ik are
Artinian. Further, it holds that M := O(Q)/ im f ∼= ⊕r

k=1O/ Ik. Our
main result is the following extension of (1.2).

Theorem 1.1. Assume f is a block diagonal (r × m)-matrix where
each block is a tuple fk such that Z(fk) = {0}. Let Rf be the residue
current associated to the Buchsbaum-Rim complex (H,φ) defined from
f . Then it holds that

1

(2πi)nn!
tr(dφRf ) = eBR(M)[0], (1.4)

where dφ = dφ1 · · · dφn and M = O(Q)/ im f .

When f is a tuple of functions, Andersson’s proof of (1.2) relies on
the following factorisation

1{0}(dd
c log |f |2)n =

1

(2πi)nn!
dφR̃f , (1.5)

and our proof rests on the following generalisation.

Theorem 1.2. Suppose we are in the situation of Theorem 1.1. Then
it holds that

1

(2πi)nn!
tr(dφRf ) =

∑
α∈Nr

|α|=n

1{0}
(
ddc log |f |2

)α
, (1.6)
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where

(ddc log |f |2)α = (ddc log |f1|2)α1 ∧ · · · ∧ (ddc log |fr|2)αr .

For r Artinian ideals I1, . . . , Ir supported at the origin there is a
notion of multiplicity eα(I1, . . . , Ir) called the mixed multiplicity of
type α ∈ Nr (see Section 2.1). When M ∼= ⊕r

k=1O/ Ik, as in our
situation, the Buchsbaum-Rim multiplicity eBR(M) is calculated from
the mixed multiplicities as

eBR(M) =
∑
|α|=n

eα(I1, . . . , Ir). (1.7)

If f is a matrix as in our situation, then by polarising King’s formula
we obtain ∫

{0}
(ddc log |f |2)α = eα(I1, . . . , Ir), (1.8)

see Proposition 2.3. Thus, from (1.7)-(1.8) together with Theorem 1.2
we immediately obtain Theorem 1.1.
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Chapter 2

Preliminaries

2.1 The Buchsbaum-Rim multiplicity

In this section we recall some basic facts and the definitions of the
multiplicities that we consider. For a general reference, see e.g. [Rob98,
Chapter 2].

Let (A,m) be a Noetherian local ring of dimension n. Let I ⊆ m be
an m-primary ideal. Then A/I has finite length. Moreover, for ℓ ∈ N
large enough

length(A/Iℓ)

is a polynomial in ℓ of degree n. The Hilbert-Samuel multiplicity e(I)

is defined as the following normalisation of the leading term coefficient

e(I) := n! coeff(ℓn, length(A/Iℓ))

where ℓ ≫ 1. In fact, the multiplicity depends only on the integral
closure Ī of the ideal I. An element x ∈ A is integral over I precisely
if there is a monic equation

xm + a1x
m−1 + · · ·+ am = 0

with ak ∈ Ik and the ideal Ī consists precisely of all x ∈ A that are

7



8 Chapter 2. Preliminaries

integral over I. Note that I ⊆ Ī. An ideal J ⊆ I such that I ⊆ J̄ , i.e.
such that all elements of I are integral over J , is said to be a reduction
of the ideal I. If I, J are m-primary ideals such that J is a reduction
of I, then e(J) = e(I).

Suppose that N ⊆ mF is a submodule of a free A-module F of rank r
such that M = F/N is of finite length. The symmetric algebra S(F )
can be identified with the polynomial ring A[X1, . . . , Xr] as follows.
Fix a basis f1, . . . , fr of A. Let φ : S(F ) → A[X1, . . . , Xr] be the
homomorphism φ(fk) := Xk. The Rees ring R(N) of N is the subring
generated by φ(N) ⊆ A[X1, . . . , Xr]. Let Sℓ(F ) and Rℓ(N) denote the
submodules of S(F ) and R(N), respectively, containing homogenoeus
polynomials of degree ℓ. For large enough ℓ ∈ N

length(Sℓ(F )/Rℓ(N))

is a polynomial in ℓ of degree n+ r − 1. The Buchsbaum-Rim multi-
plicity eBR(M) is then defined as

eBR(M) := (n+ r − 1)! coeff(ℓn+r−1, length(Sℓ(F )/Rℓ(N)) (2.1)

where ℓ≫ 1.

Let I1, . . . , Ir ⊆ m be m-primary ideals. For any ℓ = (ℓ1, . . . , ℓr) ∈ Nr,
it holds that

e(Iℓ11 · · · Iℓrr )

is a homogeneous polynomial of degree n in ℓ1, . . . , ℓr. Let α =

(α1, . . . , αr) ∈ Nr be a multi-index with |α| = n. The mixed mul-
tiplicity eα(I1, . . . , Ir) of type α of the ideals I1, . . . , Ir is defined as(

n

α

)
eα(I1, . . . , Ir) := coeff

(
ℓα1
1 · · · ℓαr

r , e(I
ℓ1
1 · · · Iℓrr )

)
. (2.2)

In fact, we can calculate the mixed multiplicity as the Hilbert-Samuel
multiplicity of an ideal by the following proposition (see e.g. [Swa07,
Lemma 2.5]).
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Proposition 2.1. Let I1, . . . , Ir ⊆ A be m-primary and α ∈ Nr a
multi-index with |α| = n. Let J be the ideal generated by α1 generic
elements of I1, α2 generic elements of I2, . . . , αr generic elements of
Ir. Then

eα(I1, . . . , Ir) = e(J). (2.3)

Note that, as a consequence, for any m-primary ideal I it holds that

eα(I, . . . , I) = e(I), (2.4)

for any α ∈ Nr. This is because the ideal J constructed in Proposi-
tion 2.1 is a reduction of I.

Lemma 2.2 (Kirby-Rees, [KR96]). Let (A,m) be a local Noethe-
rian ring of dimension n. Let I1, . . . , Ir be m-primary ideals and let
M =

⊕r
k=1A/Ik, so that M is an A-module of finite length. Then the

Buchsbaum-Rim multiplicity is given by

eBR(M) =
∑
|α|=n

eα(I1, . . . , Ir), (2.5)

where eα is the mixed multiplicity of type α ∈ Nr.

Let X be a neighbourhood of the origin 0 ∈ Cn and consider a
morphism f : E → Q of trivial holomorphic bundles over X. If
Z(f) = {0}, where Z(f) is the set where f is not surjective, then
M := O(Q)/ im f is an Artinian OX-module with support at the
origin, i.e. Mz = 0 if z ̸= 0. It can thus be identified with the
module M := M0 which is a module of finite length over the local
Noetherian ring (O0,m0). We can therefore define the Buchsbaum-
Rim multiplicity eBR(M) of M as eBR(M) = eBR(M). Similarily,
when Q is the trivial line bundle, so that f = (f1, . . . , fm), we can
define the Hilbert-Samuel multiplicity of the Artinian ideal I that f
defines, as e(I) = e(I), where I = I0. The main result we need from
this section is that if f is block diagonal as in Theorem 1.1, so that
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M ∼= ⊕r
k=1OX/ Ik, then

eBR(M) =
∑
|α|=n

eα(I1, . . . , Ir). (2.6)

2.2 Monge-Ampère products

Throughout, let X be a neighbourhood of the origin 0 ∈ Cn. Let
ψ1, . . . , ψr be smooth plurisubharmonic (psh) functions onX which are
locally bounded outside the origin. Then their mixed Monge-Ampère
products (cf. [Dem12, Theorem III.4.5]) are the currents defined re-
cursively as

ddcψk ∧ · · · ∧ ddcψ1 = ddc (ψkdd
cψk−1 ∧ · · · ∧ ddcψ1) (2.7)

for 1 ⩽ k ⩽ r, and where d and

dc :=
1

4πi
(∂ − ∂̄)

are taken in the sense of currents. These are closed and positive cur-
rents, and in particular, this means that they are order 0 currents,
i.e. they are currents with measure coefficients. If uNk is a sequence of
psh functions decreasing to ψk, for each k = 1, . . . ,r, then the mixed
Monge-Ampère product can be obtained as the limit (cf. [Dem12, The-
orem III.4.5 & Proposition III.4.9])

ddcψr ∧ · · · ∧ ddcψ1 = lim
N→∞

ddcuNr ∧ · · · ∧ ddcuN1 . (2.8)

In view of this, it is clear that the Monge-Ampère product is multi-
linear and symmetric in the factors ψk. Sometimes we will use the
following multi-index notation. Suppose ψ1, . . . , ψr are functions as
above and that α = (α1, . . . , αr) ∈ Nr is a multi-index. Then we
define

(ddcψ)α := (ddcψ1)
α1 ∧ · · · ∧ (ddcψr)

αr . (2.9)
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We will consider the typical case ψk = log |fk|2 where fk are tuples
of holomorphic functions defined on a neighbourhood X of the origin
0 ∈ Cn, such that Z(fk) = {0}. Then the ideal Ik defined by fk is
Artinian with support at the origin, for k = 1, . . . ,r. The main result
we need from this section is the following well-known consequence of
polarising King’s formula (1.1). We provide a proof for the convenience
of the reader.

Proposition 2.3. Let X be a neighbourhood of the origin 0 ∈ Cn.
Suppose fk are tuples of holomorphic functions on X such that Z(fk) =
{0} and let Ik be the ideal defined by fk, for k = 1, . . . , r. Then for a
multi-index α ∈ Nr such that |α| = n, it holds that∫

{0}
(ddc log |f |2)α = eα(I1, . . . , Ir). (2.10)

Note that the left hand side makes sense since the Monge-Ampère
product has measure coefficients. As an immediate consequence of
this proposition together with (2.6) we get the following.

Lemma 2.4. Let fk be tuples of holomorphic functions on a neighbour-
hood X of the origin 0 ∈ Cn such that Z(fk) = {0} for k = 1, . . . , r.
Then it holds that

1{0}
∑
|α|=n

(ddc log |f |2)α = eBR(M)[0] (2.11)

where M = ⊕r
k=1O/ Ik and Ik are the ideals defined by fk.

Proof of Proposition 2.3

Throughout this section, we let

A = {Artinian ideals J ⊆ OX supported at the origin} ∪ {OX}.

Then A is a commutative monoid with the product defined by mul-
tiplying ideals. For J1, . . . , Jn ∈ A we define m(J1, . . . , Jn) as the
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number

m(J1, . . . , Jn) =

∫
{0}

ddc log |g1|2 ∧ · · · ∧ ddc log |gn|2 (2.12)

where gk = (gk1, . . . , gkmk
) are tuples generating Jk.

Proposition 2.5. The function m : A n → R is well-defined, sym-
metric, and multilinear.

Proof. To prove that m is well-defined, we need to show that it is
independent of the generators of the ideals. Let J1 = (u1, . . . , up) =

(v1, . . . , vq) ∈ A , and Jk := (gk1, . . . , gkmk
) ∈ A , for k = 2, . . . , n.

Since the Monge-Ampère product is symmetric (see Section 2.2) it
suffices to show that∫

{0}
ddc log |u|2 ∧ ddc log |g2|2 ∧ · · · ∧ ddc log |gn|2 =∫

{0}
ddc log |v|2 ∧ ddc log |g2|2 ∧ · · · ∧ ddc log |gn|2. (2.13)

Now, note that u = vA for some holomorphic matrix A with positive
rank on X. Hence, we have

log |u|2 ⩽ log |v|2 + φ

where φ = log ∥A∥2op is a locally bounded function. Similarily, since
v = uB for some B of positive rank, we get

log |v|2 ⩽ log |u|2 + ψ

for some locally bounded ψ. Thus,

lim
z→0

log |u|2

log |v|2
= 1

and thus, (2.13) follows from the first comparison theorem (see [Dem12,
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Theorem III.7.1]). Hence, m is well-defined.

That m is symmetric follows immediately from the fact that the mixed
Monge-Ampère product is symmetric.

It remains to show that m is multilinear. Since m is symmetric, it is
enough to show

m(IJ, J2, . . . , Jn) = m(I, J2, . . . , Jn) +m(J, J2, . . . , Jn). (2.14)

Suppose I = (u1, . . . , up), J = (v1, . . . , vq) ∈ A . Then IJ is gen-
erated by hkℓ := ukvℓ, for k = 1, . . . , p and ℓ = 1, . . . , q. Let h =

(h11, . . . , h1q, . . . , hp1, . . . , hpq). Then clearly |h|2 = |u|2|v|2, and hence,
log |h|2 = log |u|2 + log |v|2. Thus, (2.14), follows from the multilin-
earity of the mixed Monge-Ampère product (see Section 2.2). This
finishes the proof. ■

Now, let γ ∈ Nn be the multi-index with γk = 1 for k = 1, . . . , n. For
J1, . . . , Jn ∈ A we define e(J1, . . . , Jn) as the number

e(J1, . . . , Jn) = eγ(J1, . . . , Jn). (2.15)

Proposition 2.6. The function e : A n → R is symmetric and multi-
linear.

Proof. That e is symmetric is clear in view of (2.2).

Let J1, . . . , Jn−1, I, J ∈ A . Then by [Ree84, Lemma 2.5] we have
linearity in the last factor

e(J1, . . . , Jn−1, IJ) = e(J1, . . . , Jn−1, I) + e(J1, . . . , Jn−1, J).

Since e is symmetric, it follows that it is multilinear. ■

We want to show that e = m, and to do this we invoke the following.

Proposition 2.7. Suppose ψ1, ψ2 : A n → R are symmetric and mul-
tilinear such that for all a ∈ A we have ψ1(a, . . . , a) = ψ2(a, . . . , a).
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Then ψ1 = ψ2.

This is immediate from the following elementary polarisation formula
(written in multiplicative notation rather than the usual additive,
since we are multiplying ideals).

Proposition 2.8. Suppose A is a commutative monoid and let ψ :

A n → R be symmetric and multilinear. Define Ψ : A → R by
Ψ(a) = ψ(a, . . . , a). Then it holds that

ψ(a1, . . . , an) =
1

n!

n∑
k=1

(−1)k
∑

1⩽i1<···<ik⩽n

Ψ(ai1 · · · aik).

Proof of Proposition 2.3. The functions e,m : A n → R are multi-
linear and symmetric. From (2.4) we have for any I ∈ A that
e(I, . . . , I) = e(I). From King’s formula, (1.1), we get m(I, . . . , I) =

e(I), whence m(I, . . . , I) = e(I, . . . , I) follows. Thus, from Proposi-
tion 2.7 we conclude that e = m.

Now, given ideals I1, . . . , Ir ∈ A and a multi-index α ∈ Nr as in the
formulation of Proposition 2.3, we define J1, . . . , Jn ∈ A as follows.
Let

Jk = I1, for k = 1, . . . , α1

Jk = I2, for k = α1 + 1, . . . , α2

...

Jk = Ir, for k = α1 + · · ·+ αr−1 + 1, . . . , α1 + · · ·+ αr.

Let γ ∈ Nn be the multi-index with γk = 1 for k = 1, . . . , n. It follows
from Proposition 2.1 that

eγ(J1, . . . , Jn) = eα(I1, . . . , Ir).
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As a consequence, e(J1, . . . , Jn) = eα(I1, . . . , Ir), whence∫
{0}

(ddc log |f |2)α = m(J1, . . . , Jn) =

e(J1, . . . , Jn) = eα(I1, . . . , Ir), (2.16)

which is precisely what we wanted to prove. ■

2.3 Residue currents

A function χ : R⩾0 → R⩾0 is called a smooth approximand of the
characteristic function χ[1,∞) of the interval [1,∞), denoted

χ ∼ χ[1,∞),

if χ(t) ≡ 0 for t≪ 1 and χ(t) ≡ 1 for t≫ 1.

Let f be a holomorphic function on a manifold X such that Z(f) :=
{f = 0} has positive codimension. Herrera and Lieberman proved in
[HL71] that the limit

lim
ε→0

∫
|f |2>ε

ξ

f

exists for test forms ξ and defines the principal value current 1/f of f .
From the above limit, it follows that the current ∂̄(1/f) is supported
at Z(f), and such a current is called a residue current. Let s be a
generically non-vanishing holomorphic section of a Hermitian vector
bundle over X such that Z(f) ⊆ Z(s). If χ ∼ χ[1,∞) then we can
regularise these currents (see e.g. [AW18]) as

1

f
=
χ(|s|2/ε)

f
and ∂̄

1

f
=
∂̄χ(|s|2/ε)

f
. (2.17)

There are several generalisations of this type of currents. For instance,
we can define the principal value and residue of a generically non-
vanishing holomorphic section f of a line bundle L → X. Moreover,
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Coleff and Herrera introduced in [CH78] products of the form

1

fr
· · · 1

fs+1

∂̄
1

fs
∧ · · · ∧ ∂̄ 1

f1
. (2.18)

When m = codimZ(f), where f is the tuple f = (f1, . . . , fm), then
the Coleff-Herrera product ∂̄(1/fm)∧· · ·∧ ∂̄(1/f1) is anti-commutative
and is supported on Z(f).

Pseudomeromorphic currents

For details and a general reference of the material presented in this
section and the next, see e.g. [AW18]. To get a coherent framework
for a calculus of residue and principal value currents the sheaf PM
of pseudomeromorphic currents on X was introduced in [AW10] and
further developed in [AS12]. It consists of direct images under holo-
morphic mappings of products of test forms and currents on the form
(2.18). Moreover, PM is closed under ∂, ∂̄ and multiplication with
smooth forms. Further, pseudomeromorphic currents satisfy the fol-
lowing dimension principle.

Proposition 2.9. Suppose µ ∈ PM has bidegree (p, q). If µ is sup-
ported on a subvariety Z ⊆ X such that codimZ > q, then µ = 0.

Furthermore, pseudomeromorphic currents admit natural restrictions
to constructible subsets of X. In particular, if V ⊆ X is a subvariety
and s is a holomorphic section of a Hermitian bundle over X such that
V = {s = 0}, then the restriction µ|X\V of µ to the open set X \ V
has an extension 1X\V µ to a pseudomeromorphic current on X. This
current can be obtained as a limit of pseudomeromorphic currents

1X\V µ = lim
ε→0

χ(|s|2/ε)µ (2.19)

where χ ∼ χ[1,∞). In fact, the limit is independent of the choice of
χ and s. It follows that 1V µ := µ − 1X\V µ is a pseudomeromorphic
current on X supported on V .
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Almost semi-meromorphic currents

A semi-meromorphic current is a current of the form ω/f where f is a
generically non-vanishing holomorphic section of a line bundle L→ X

and ω is a smooth form with values in L. An almost semi-meromorphic
current a in X is a current of the form

a = π∗

(
ω

f

)
(2.20)

where π : X ′ → X is a modification and ω/f is semi-meromorphic.
More generally, if E is a holomorphic bundle over X, we say that a
current valued section a is almost semi-meromorphic if there is a mod-
ification π, a smooth form-valued section ω of L ⊗ π∗E, and a holo-
morphic section f of a line bundle L → X, such that a = π∗(ω/f).
By definition, an almost semi-meromorphic current is a pseudomero-
morphic on X. Hence, ∂a and ∂̄a ∈ PM for any a ∈ ASM(X). In
fact, we have the following (see e.g. [AW18, Proposition 4.16]).

Proposition 2.10. Suppose a ∈ ASM(X) is smooth outside a subva-
riety V ⊆ X. Then ∂a ∈ ASM(X) and 1X\V ∂̄a ∈ ASM(X).

Let ZSS(a) denote the Zariski singular support of a, i.e. the smallest
Zariski-closed set V ⊆ X such that a is smooth outside V . Then the
pseudomeromorphic current

r(a) := 1ZSS(a)∂̄a (2.21)

is the residue of a. Note that the residue current ∂̄(1/f) considered
above is precisely the residue of the almost semi-meromorphic current
1/f . Almost semi-meromorphic currents have the standard extension
property (SEP), which means that for a ∈ ASM(X) and any subvariety
V ⊆ X of positive codimension we have 1V a = 0. Thus, if s is a
section of a Hermitian bundle with ZSS(a) ⊆ {s = 0} and χ ∼ χ[1,∞),
then we have the following regularisations of the residue of an almost
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semi-meromorphic a

r(a) = lim
ε→0

∂̄χ(|s|2/ε) ∧ a = lim
ε→0

dχ(|s|2/ε) ∧ a. (2.22)

The set ASM(X) of almost semi-meromorphic currents in X in fact
forms an algebra over the smooth forms E • on X. If a, b ∈ ASM(X)

are smooth outside a subvariety V ⊆ X, then there is a current A ∈
ASM(X) that coincides with a ∧ b outside ZSS(a) ∪ ZSS(b). By the
SEP it then follows that a∧ b extends as an almost semi-meromorphic
current in X. Note that in the special case when ω ∈ E • and a ∈
ASM(X) then

r(ω ∧ a) = ω ∧ r(a) (2.23)

follows immediately from the SEP.

2.11 Remark. Suppose X is a neighbourhood of the origin 0 ∈ C.
Suppose f ∈ OX satisfies Z(f) = {0} so that f = zah, for some non-
vanishing h ∈ OX . Since the current ∂̄(1/f) ∧ df is a (1, 1)-current
supported on Z(f) = {0} it acts on any smooth function g on X. Let
g ∈ OX and suppose χ ∼ χ[1,∞) such that χ(t) ≡ 1 for t ⩾ 1. Then
from (2.17) the action

〈
∂̄ 1

f
∧ df, g

〉
of the current ∂̄(1/f) ∧ df on g is

obtained as the limit as ε→ 0 of∫
X

g
∂̄χ(|f |2/ε) ∧ df

f
=

∫
|f |2⩽ε

g
∂̄χ(|f |2/ε) ∧ df

f
=∫

|f |2=ε

g
χ(|f |2/ε)df

f
=

∫
|f |2=ε

gdf

f
= 2πiag(0)

where we have applied Stokes’ theorem in the second equality, and in
the last equality we invoke the argument principle. Hence, we can view
(1.3) as a smooth version of the argument principle, since it in fact
holds for any smooth g. With this perspective, (1.2) is a generalisation
of the argument principle to a tuple f with an isolated zero at the
origin in arbitrary dimension n.
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2.4 Superstructure

In the sequel, we work with currents and forms with values in graded
holomorphic bundles. Endowing these bundles with a so called su-
perstructure gives a coherent framework for how to manipulate these
objects.

Suppose H = ⊕N
k=0Hk is a graded holomorphic bundle over a complex

manifold X. We get an induced grading on the endomorphism bundle

EndH =
N⊕

ν=−N

(⊕
ν=k−ℓ

Hom(Hℓ, Hk)

)
=:
⊕
ν

Endν H. (2.24)

We get a superstructure by taking these gradings modulo 2 giving us
a Z/2Z-grading

H = H+ ⊕H−, EndH = End+H ⊕ End−H

where H+, End+H denote the direct sum of the subbundles of even
degrees and H−,End−H denote the direct sum of the subbundles of
odd degrees of H and EndH, respectively.

Suppose the bundle H is equipped with a product ⊗ that respects the
grading, so that the smooth sections E (H) of H is a graded algebra
over the smooth functions E on X. Then, with the superstructure, we
can extend this product to the smooth form-valued sections E •(H) of
H, turning E •(H) into a graded algebra over smooth forms E • on X

as follows. First, we give E •(H) a grading. If α = ω ⊗ ξ, where ω is
a homogeneous form and ξ is a homogeneous section of H, then we
denote by degα the total degree of α

degα := degω + deg ξ.

Given a homogeneous form ω and a homogeneous form-valued section
ω′ ⊗ ξ, we turn E •(H) into a right-module over E • by

(ω′ ⊗ ξ)⊗ ω := (−1)deg ξ degω(ω ∧ ω′)⊗ ξ.
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Then, for homogeneous α = ω ⊗ ξ and β = ω′ ⊗ ξ′, we define

α⊗ β = (−1)deg ξ degω
′
ω ∧ ω′ ⊗ ξ ⊗ ξ′

extending the product to a product on E •(H) that respects the grad-
ing.

Similarly, given homogeneous α = ω ⊗ φ, with φ ∈ E •(Endν H), and
β = ω′ ⊗ ξ, we define

α(β) = (−1)degφ degω′
ω ∧ ω′ ⊗ φ(ξ). (2.25)

Moreover, the form-valued sections E •(EndH) of the endomorphism
bundle naturally has structure of a graded algebra over E under com-
position of maps, and we can extend this to a graded algebra over E •

as above.

Let DH be a connection on H. Then for form-valued sections α, β ∈
E •(H) we have a Leibniz rule

DH(α⊗ β) = DHα⊗ β + (−1)degαα⊗DHβ. (2.26)

We also get an induced connection DEnd on EndH which on form-
valued endomorphisms α ∈ E •(EndH) is defined by

DEndα = DE ◦ α− (−1)degαα ◦DE. (2.27)

This connection also satisfies Leibniz’ rule, i.e. for α, β ∈ E •(EndH),
we have

DEnd(αβ) = DEndαβ + (−1)degααDEndβ. (2.28)

Finally, note that a form-valued section α ∈ E •(H) defines an endo-
morphism

α(β) := α⊗ β (2.29)

and in fact
DEndα(β) = DEα(β).
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2.5 The Koszul complex and residue cur-
rent

LetX be a neighbourhood of the origin 0 ∈ Cn and let f = (f1, . . . , fm)

be a tuple of holomorphic functions defined on X such that Z(f) :=
{f = 0} = {0}. Let F be a trivial holomorphic rank m bundle over
X and fix a frame e = (e1, . . . , em) with dual frame e∗ = (e∗1, . . . , e

∗
m).

We view f as a section of the dual bundle F ∗

f :=
m∑
k=1

fke
∗
k.

Let δf be the map given by contraction with f

δfek := fk.

Contraction with f extends to a map on the exterior algebra ΛF of F
by defining

δf (ei1 ∧ · · · ∧ eir) =
r∑

k=1

(−1)k−1fik êik (2.30)

where the circumflex means that eik has been omitted from the exte-
rior product ei1 ∧ · · · ∧ eir . Note that δf is anti-commutative, i.e. for
homogeneous ξ, η ∈ E (ΛF )

δf (ξ ∧ η) = δf (ξ) ∧ η + (−1)deg ξξ ∧ δf (η). (2.31)

As a result, δf defines a differential, δ2f = 0, on the exterior algebra.
The Koszul complex associated to f is the complex

0 ΛmF · · · · · · Λ2F F O.
δf δf δf δf

We now recall Andersson’s contruction in [And04] of the residue cur-
rent R̃f , see also e.g. [AW18, Example 4.18]. First, we view the Koszul
complex H = ⊕kHk := ⊕kΛ

kF as a graded holomorphic bundle with
the product ⊗ being the usual exterior product ∧, and we equip H

with a superstructure as in Section 2.4. We equip H1 with a trivial
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metric and connection d with respect to the frame e1, . . . , em and take
the induced metric and connection on H. Let τ be the section of H1

of minimal norm such that f(τ) = 1 outside the origin. In the given
frame, we can then write

τ =
1

|f |2
m∑
k=1

fkek. (2.32)

Note that τ ∈ E •
X\{0}(H) is odd and ∂̄τ is even. Moreover, one can

show that τ extends across the origin as an almost semi-meromorphic
current. Since ASM(X) is an algebra, we get from Proposition 2.10
that the section vn ∈ E •

X\{0}(H) defined by

vn = τ ∧ (∂̄τ)n−1 (2.33)

extends to an almost semi-meromorphic current Vn across the origin.
The residue current R̃f associated to f is then the residue of the almost
semi-meromorphic current Vn

R̃f := r(Vn).

Let φk = δf , k = 1, . . . ,m, be the morphisms appearing in the Koszul
complex and

dφ := dφ1 · · · dφn = (dδf )
n.

Then, as noted in the introduction, the residue current R̃f satisfies
the formula (1.2). Note that δf is an odd section of E •(EndH) and
that from (2.27) we get

dδ = δdf (2.34)

where δdf is contraction with the section
∑m

k=1 dfk ⊗ e∗k ∈ E •(H∗), so
that δdf is an even section of E •(EndH), cf. Section 2.4. For the sequel,
we need the following factorisation of the Monge-Ampère product.

Proposition 2.12. For any ℓ ⩾ 1, we have

(
ddc log |f |2

)ℓ
=

1

(2πi)ℓℓ!
δℓdf

((
∂̄τ
)ℓ)

. (2.35)
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outside the origin.

Proof. We give a proof by induction. Moreover, we get from (2.30)
together with (2.25) that

δdf
(
∂̄τ
)
= ∂̄

(
1

|f |2
m∑
k=1

fkdfk

)
= (2πi)ddc log |f |2,

which proves the base case ℓ = 1.

Suppose now that (2.35) holds for some ℓ ⩾ 1. For ℓ+ 1 we have

δℓ+1
df

(
(∂̄τ)ℓ+1

)
= δℓdf

(
δdf ((∂̄τ)

ℓ+1)
)
= (ℓ+ 1)δℓdf

(
δdf (∂̄τ) ∧ (∂̄τ)ℓ

)
=

(ℓ+ 1)δdf (∂̄τ) ∧ δℓdf (∂̄τ)ℓ = (2πi)ℓ+1(ℓ+ 1)!
(
ddc log |f |2

)ℓ+1
, (2.36)

where the third equality follows from the fact that δdf (∂̄τ) is a pure
diffferential form, whence δdf (δdf (∂̄τ)) = 0. By induction, this proves
the result. ■
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Chapter 3

The Buchsbaum-Rim residue
current

In the given setting, we briefly recall Andersson’s construction in
[And06] of the residue current Rf associated to a holomorphic mor-
phism f : E → Q of bundles E,Q over a manifold X. This residue
is constructed from a complex (H,φ), the so-called Buchsbaum-Rim
complex associated to f , consisting of holomorphic bundles over X.

3.1 The Buchsbaum-Rim complex

Let X be a neighbourhood of the origin 0 ∈ Cn and let f = (fkℓ)

be a (r ×m)-matrix of holomorphic functions fkℓ on X such Z(f) =

{0}, where Z(f) is the set where f has sub-optimal rank. Let E,Q
be trivial holomorphic bundles over X of rank m and r and with
frames e1, . . . , em and ε1, . . . , εr, respectively. We identify f with the
holomorphic bundle morphism f : E → Q defined by

f =
r∑

k=1

m∑
ℓ=1

fkℓεk ⊗ eℓ.

We now define the Buchsbaum-Rim complex (H,φ) associated to f .

25
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Let H0 := Q, H1 := E and for ν ⩾ 2

Hν := Λr+ν−1H1 ⊗ Sν−2(H∗
0 )⊗ detH∗

0 . (3.1)

For ν ⩾ 2, a section η ∈ E (Hν) can be written in the frame εk, with
dual frame ε∗k, as

η =
∑
α∈Nr

|α|=ν−2

ηα ⊗ ε∗α ⊗ ε∗

with ηα ∈ E (Λr+ν−1H1) and where

ε∗α =
1

α!
(ε∗1)

α1 · · · (ε∗r)αr .

Write f =
∑

k=1 fk ⊗ εk where fk ∈ O(H∗
1 ) correspond to the rows in

f . Let δfk be the contraction with fk, which extends to the exterior
algebra ΛH1 of H1, cf. (2.30). We can then view f as the morphism

f =
r∑

k=1

δfk ⊗ εk : H1 → H0. (3.2)

which acts on sections η ∈ E (H1) by

r∑
k=1

δfk(η)εk.

Let ε∗k be the dual frame of εk and define ε∗ = ε∗1 ∧ · · · ∧ ε∗r. Define a
morphism

δF = δfr · · · δf1ρ : H2 → H1, (3.3)

where ρ : detH∗
0 → OX is the morphism defined by ε∗ 7→ 1. Let

u ∈ O(H0) and write u =
∑r

k=1 ukεk. Contraction δu : H∗
0 → O with

u extends to a map on the symmetric algebra S(H∗
0 )

δu(ε
∗
i1
· · · ε∗is) :=

s∑
k=1

uik ε̂
∗
ik

(3.4)
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where the circumflex means that ε∗ik has been omitted from the sym-
metric product ε∗i1 · · · ε

∗
ir . Note that δu is commutative, i.e. for v, w ∈

O(S(H∗
0 )), we have

δu(vw) = δu(v)w + vδu(w). (3.5)

As a consequence,
δu(v

k) = kδu(v)v
k−1. (3.6)

Finally, for ν ⩾ 3, we define morphisms

δ =
r∑

k=1

δfkδεk : Hν → Hν−1 (3.7)

which act on sections of Hν as

δ(ξ ⊗ u⊗ ε∗) =
r∑

k=1

δfk(ξ)⊗ δεk(u)⊗ ε∗,

where ξ ∈ E (ΛH1) and u ∈ E (S(H∗
0 )). We note that δ2 = 0, δF δ = 0

and fδF , which follows from the fact that the δfk are anti-commutative
(2.31) while the δεk are commutative (3.5). Hence, we get a complex
(H,φ) with

φ1 := f, φ2 := δF , φν := δ : Hν → Hν−1, ν ⩾ 3 (3.8)

This complex is the Buchsbaum-Rim complex associated to f .

We define an auxiliary graded holomorphic bundle

A = (ΛH1)⊗ S(H0)⊗ (detH∗
0 ⊕O) (3.9)

with the grading induced from letting

deg(ΛkH1) = k, deg(Sk(H0)) = 0, degO = 0, deg(detH∗
0 ) = −r+1.

(Note that the last one is non-standard.) We can define a product on
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E (A). For ξ, ξ′ ∈ E (ΛH1), u, v ∈ E (S(H0)) and a, b ∈ E (detH∗
0 )⊕ E

(ξ ⊗ u⊗ a)⊗ (ξ′ ⊗ v ⊗ b) := (ξ ∧ ξ′)⊗ (uv)⊗ (a ∧ b)

where ∧ is the usual exterior product and the concatenation uv is the
symmetric product in S(H0). Note that the product ⊗ respects the
grading, so that E (A) is a graded algebra over E . We equip A with a
superstructure and extend the product to E •(A) as in Section 2.4.

As a subbundle of A
H :=

⊕
ν∈N

Hν

inherits a grading with degHν = ν, as expected, and H is further
equipped with the superstructure inherited from A. We also equip H0

and H1 with trivial metrics and connections with respect to the frames
e1, . . . , em and ε1, . . . , εr of H1 and H0, respectively. The Buchsbaum-
Rim complex inherits a trivial metric and connection d. The mor-
phisms f, δF and δ extend to maps on form-valued sections of H (cf.
(2.25)). Note that with the superstructure all of these maps are odd
endomorphisms. As before, we get an even endomorphism

dδfk = δdfk , (3.10)

cf. (2.34). Note also that δεk is even and that dδεk = 0. Moreover,
deg ρ = r−1 and dρ = 0. Finally, in E •(EndH) we have the following
commutation rules

δ ◦ ∂̄ = −∂̄ ◦ δ, δF ◦ ∂̄ = −∂̄ ◦ δF δfkδfℓ = −δfℓδfk
δfkδεℓ = δεℓδfk , ρδfk = (−1)r−1δfkρ, ρδεk = δεkρ. (3.11)
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3.2 The Buchsbaum-Rim residue current

Let σf be the minimal inverse of f : H1 → H0, i.e the section of
H1 ⊗H∗

0 such that if we write

σf =
r∑

k=1

σkδε∗k

then σk ∈ EX\{0}(H1) are the sections of minimal norms such that
outside the origin

fk(σℓ) = δkℓ. (3.12)

We also define the section σ̃ ∈ EX\{0}(∧rE) as

σ̃ = σ1 ∧ · · · ∧ σr.

Then the section τ := σ̃ ⊗ ε∗ ∈ EX\{0}(∧rE ⊗ detQ∗) induces a mor-
phism

τ(ξ) := τ ⊗ ξ : H1 → H2.

Note that δF (τ) = 1. Finally, for ν ⩾ 2, the section σ of H1 ⊗ H∗
0

defined by

σ =
r∑

k=1

σk ⊗ ε∗k

induces morphisms

σ(ξ ⊗ u⊗ ε∗) := σ ⊗ (ξ ⊗ u⊗ ε∗) : Hν → Hν+1.

Note that σf , τ and σ are odd sections of the auxiliary bundle A and
they define odd endomorphisms of H. Moreover, σf , τ and σ (which
a priori are defined only outside the origin) extend as almost semi-
meromorphic currents across the origin, see [And06, Lemma 4.1].

Outside the origin we define a form-valued section un of Hom(H0, Hn)

(cf. (3.1)) by
un = (∂̄σ)⊗(n−2) ⊗ τ ⊗ ∂̄σf .
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In the frame εk we can write

un =
r∑

k=1

∑
α∈Nr

|α|=ν−2

σ̃ ∧ ∂̄σk ∧ (∂̄σ)α ⊗ ε∗α ⊗ ε∗ ⊗ δε∗k , (3.13)

where

(∂̄σ)α = (∂̄σ1)
α1 ∧ · · · ∧ (∂̄σr)

αr . (3.14)

Note that we have used that ∂̄σℓ is even, so that we can place the σ-
terms in any order. The form-valued section un is of bi-degree (0, n−1)

and it is smooth outside the origin. In fact, since ASM(X) is an
algebra, we get from Proposition 2.10 that un extends to an almost
semi-meromorphic current Un across the origin. The (Buchsbaum-
Rim) residue current Rf associated to the matrix f is then the residue
of this almost semi-meromorphic current

Rf := r(Un)

and Rf is a (0, n)-current supported at the origin and with values in
Hom(H0, Hn).



Chapter 4

Proofs

Suppose now that we are in the setting of Theorem 1.1, i.e. f is a block
diagonal matrix of holomorphic functions on X where the blocks are
tuples fk satisfying Z(fk) = {0}. We get a decomposition E = ⊕r

k=1Ek

of trivial holomorphic subbundles Ek ⊆ E such that

f =
r∑

k=1

fk ⊗ εk

with fk ∈ O(E∗
k). In this case the sections σk defined in (3.12) are

precisely the minimal inverses of the tuples fk (cf. (2.32)), since the sec-
tions fk of E∗ take values in different subbundles E∗

k of E∗. Let (H,φ)
be the Buchsbaum-Rim complex of f and let dφ be the (smooth)
form-valued section

dφ = dφ1 · · · dφn (4.1)

of Hom(Hn, H0).

First, as noted in the introduction, Theorem 1.1 follows from Theo-
rem 1.2 together with Lemma 2.4.

To prove Theorem 1.2, we analyse the differential form tr(dφun), where
un is the form-valued section of Hom(Hn, H0) defined (outside the
origin) from the Buchsbaum-Rim complex, cf. (3.13). Since dφ is
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smooth, and un extends to an almost semi-meromorphic current Un

across the origin, it holds that tr(dφun) extends to the almost semi-
meromorphic current tr(dφUn) across the origin. Moreover, (cf. (2.23))

r(tr(dφUn)) = tr(dφRf ), (4.2)

where Rf = r(Un) is the residue associated to f , see Section 3.2.
We study the form tr(dφun) and calculate the residue of its almost
semi-meromorphic current extension.

Proposition 4.1. Outside the origin, it holds that

tr(dφun) = (n− 1)!
r∑

k=1

∑
α∈Nr

|α|=n−1

(αk + 1)δdfk(σk) ∧
(
δdf
(
∂̄σ
))α

, (4.3)

where
(
δdf
(
∂̄σ
))α

=
(
δdf1(∂̄σ1)

)α1 ∧ · · · ∧
(
δdfr(∂̄σr)

)αr
.

Proof. Recall, from (3.8) and (4.1), that

dφ = dfdδF (dδ)
n−2.

We begin by calculating the differentials of the morphisms separately
(see (3.2), (3.3), and (3.7) for definitions of the maps). Throughout
the proof, we use (3.10) and the commutation rules (3.11) freely.

First,

df =
r∑

k=1

δdfk ⊗ εk.

Next, note that dρ = 0. Hence, from Leibniz’ rule (2.28), we get

dδF =
r∑

ℓ=1

(−1)r−ℓδfr · · · δdfℓ · · · δf1ρ.

Lastly, dδ =
∑

k δdfkδεk , since dδεk = 0. Hence the multinomial theo-
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rem implies that

(dδ)n−2 =
∑

|β|=n−2

(
n− 2

β

)
δβdfδ

β
ε ,

where δβdf = δβ1

df1
· · · δβr

dfr
and δβε = δβ1

ε1
· · · δβr

εr . Taking all of this together,
we see that

dφ =
r∑

k,ℓ=1

∑
|β|=n−2

(−1)r−ℓ

(
n− 2

β

)
δdfℓδdfkδ

β
dfδfr · · · δ̂fℓ · · · δf1ρδ

β
ε ⊗ εk.

After expanding un as in (3.13), we find that

∑
|β|=n−2

(−1)r−ℓ

(
n− 2

β

)
δdfℓδdfkδ

β
dfδfr · · · δ̂fℓ · · · δf1(σ̃ ∧ ∂̄σk ∧ (∂̄σ)β),

is the coefficient of εk ⊗ δε∗k in dφ(un). Now, since δfm is holomorphic,
it follows from (2.27) together with (3.12), that δfm(∂̄σp) = 0, for any
m and p. Hence,

δfr · · · δ̂fℓ · · · δf1
(
σ̃ ∧ ∂̄σk ∧ (∂̄σ)β

)
= (−1)r−ℓσℓ ∧ ∂̄σk ∧ (∂̄σ)β.

As a consequence, we see that

tr(dφun) =
r∑

k,ℓ=1

∑
|β|=n−2

(
n− 2

β

)
δdfℓδdfkδ

β
df

(
σℓ ∧ ∂̄σk ∧

(
∂̄σ
)β)

=
r∑

ℓ=1

∑
|α|=n−1

(
n− 1

α

)
δdfℓδ

α
df

(
σℓ ∧

(
∂̄σ
)α)

.

Finally, it follows from (2.36) that δαk
dfk

((∂̄σk)
αk) = αk!(δdfk(∂̄σk))

αk .
Similarly, we get

δαk+1
dfk

(
σk ∧

(
∂̄σk
)αk
)
= (αk + 1)!δdfk(σk) ∧ (δdfk(∂̄σk))

αk . (4.4)
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Moreover, since the fk take values in different subbundles Ek, it holds
that δdfk(∂̄σℓ) = 0 whenever k ̸= ℓ. Thus,

δdfkδ
α
df

(
σk ∧

(
∂̄σ
)α)

= α!(αk + 1)δdfk(σk) ∧
(
δdf
(
∂̄σ
))α

and the result follows. ■

Note that the terms on the right hand side of (4.3) are almost semi-
meromorphic. Indeed, this follows from Proposition 2.10 since each
σk is almost semi-meromorphic (see (2.32)) and ASM(X) forms an
algebra. In fact, we have the following computation of the residue of
such a term.

Lemma 4.2. Suppose α ∈ Nr is a multi-index with |α| = n−1. Then

r(δdfk(σk)(δf (∂̄σ))
α) = (2πi)n1{0}dd

c log |fk|2 ∧ (ddc log |f |2)α (4.5)

where

(ddc log |f |2)α = (ddc log |f1|2)α1 ∧ · · · ∧ (ddc log |fr|2)αr . (4.6)

To prove this lemma we need the following result.

Proposition 4.3. Let g = (g1, . . . , gp) and h = (h1, . . . , hq) be tuples
of holomorphic functions in a neighbourhood X of the origin 0 ∈ Cn

such that the ideal (g1, . . . , gp) ⊆ m and the ideal (h1, . . . , hq) is m-
primary, where m = (z1, . . . , zn) ⊆ OX is the maximal ideal at the
origin 0 ∈ Cn. Then there is a positive integer N0 such that for any
integer N ⩾ N0, the inequality |g|2 ⩾ e−N/2 implies |h|2 ⩾ e−N2.

Proof. First note that since (h1, . . . , hq) is m-primary, there is a posi-
tive integer a such that ma ⊆ (h). Now, from the inclusions (g) ⊆ m

and ma ⊆ (h) we get the inequalities |g| ⩽ A|z| and |z|a ⩽ B|h| for
some positive constants A,B. Thus, there is a positive constant C
such that |h| ⩾ C|g|a.
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Suppose now that |g|2 ⩾ e−N/2. Then we have

|h|2 ⩾ C2|g|2a ⩾ C2 e
−aN

2a
.

Hence, we can get an inequality |h|2 ⩾ e−N2 by ensuring that C2 e−aN

2a
⩾

e−N2
. This inequality can then be rewritten as

N2 ⩾ aN + a log 2− 2 logC

and we can take N0 to be the smallest positive integer such that this
inequality holds. This proves the proposition. ■

Proof of Lemma 4.2. We compare the regularisation (2.8) of the Monge-
Ampère product with the regularisation (2.22) of the residue. With-
out loss of generality, we can assume k = r, since the Monge-Ampère
product is commutative (cf. (2.8)).

Write ψℓ := log |fℓ|2. We regularise the current

1{0}∂̄∂ψr ∧
(
∂̄∂ψ

)α
as follows. Let ρ : R → R be a smooth, convex, increasing function
such that ρ(t) is constant for t ⩽ − log 2 and ρ(t) = t for t ⩾ 0.
Given a positive integer M , define ρM(t) = ρ(t +M) −M . For ℓ =
1, . . . , r, we define uMℓ = ρM ◦ ψℓ and note that uMℓ is a sequence of
plurisubharmonic functions decreasing to ψℓ. Then, by (2.8), we get

T := ∂̄∂ψr ∧
(
∂̄∂ψ

)α
= lim

N→∞
∂̄∂uNr ∧ (∂̄∂uN

2

)α. (4.7)

Let χ = ρ ◦ log, and observe that χ ∼ χ[1,∞). Define

χℓ,M(z) = χ(|fℓ(z)|2/e−M) (4.8)

and note that ∂uMℓ = χℓ,M∂ψℓ, whence

(∂̄∂uMℓ )αℓ = αℓχ
αℓ−1
ℓ,M ∂̄χℓ,M ∧ ∂ψℓ ∧ (∂̄∂ψℓ)

αℓ−1 + χαm
ℓ,M ∧ (∂̄∂ψℓ)

αℓ .
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It follows that in the right-hand side of (4.7), there appear products
with factors χr,N , ∂̄χr,N and χℓ,N2 , ∂̄χℓ,N2 for ℓ = 1, . . . , r. By con-
struction χ(t) = 0 when t ⩽ 1/2 and χ(t) = 1 when t ⩾ 1. We
therefore see that χℓ,M(z) = 0 when |fℓ|2 ⩽ e−M/2 and χℓ,M = 1

when |fℓ|2 ⩾ e−M , for ℓ = 1, . . . , r. From Proposition 4.3 we get that
there is a positive integer N0 such that if N ⩾ N0, then the inequality
|fr|2 ⩾ e−N/2 implies the inequality |fℓ|2 ⩾ e−N2 , for all ℓ = 1, . . . , r.
Thus, for ℓ = 1, . . . , r, we see that χℓ,N2 = 1 on the support of χr,N ,
for any N ⩾ N0. As a consequence, for N ⩾ N0 and ℓ = 1, . . . , r it
holds that

χr,Nχℓ,N2 = χr,N , ∂̄χr,Nχℓ,N2 = ∂̄χr,N ,

χr,N ∂̄χℓ,N2 = 0, ∂̄χr,N ∧ ∂̄χℓ,N2 = 0.

Thus,

T = lim
N→∞

∂̄∂uNr ∧ (∂̄∂uN
2

)α = lim
N→∞

∂̄χr,N ∧ ∂ψr ∧
(
∂̄∂ψ

)α
+ lim

N→∞
χr,N ∂̄∂ψr ∧

(
∂̄∂ψ

)α
=: A+B.

A calculation shows that ∂ψℓ = δdfℓ(σℓ) and ∂̄∂ψℓ = δdfℓ(∂̄σℓ) and
hence, by (2.22) (cf. (4.8)), we recognise the current

A = lim
N→∞

∂̄χr,N ∧ ∂ψr ∧
(
∂̄∂ψ

)α
= lim

N→∞
∂̄χr,N ∧ δdfr(σr) ∧

(
δdf (∂̄σ)

)α
as the residue of the almost semi-meromorphic current δdfr(σr)∧

(
δdf (∂̄σ)

)α,
which is supported precisely at the origin. The current B is the re-
striction 1X\{0}B

′ of the order 0 current (cf. Section 2.2)

B′ = ∂̄∂ψr ∧
(
∂̄∂ψ

)α
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whence 1{0}B = 0. Finally, this means that

(2πi)n1{0}dd
c log |fr|2 ∧ (ddc log |f |2)α = 1{0}T =

A = r(δdfr(σr)(δf (∂̄σ))
α)

which proves the results. ■

Proof of Theorem 1.2. From Proposition 4.1 together with Lemma 4.2
we get that

r(tr(dφun)) =

(2πi)n1{0}

 r∑
k=1

∑
|α|=n−1

(n− 1)!(αk + 1)ddc log |fk|2 ∧ (ddc log |f |2)α
 .

(4.9)

Let vk ∈ Nr be the unit vector with a 1 in the k:th position. We
rewrite the sum in (4.9)

r∑
k=1

∑
|α|=n−1

(
n− 1

α

)
(α + vk)!(dd

c log |f |2)α+vk =

∑
|β|=n

r∑
k=1

(
n− 1

β − vk

)
β!(ddc log |f |2)β. (4.10)

The sum over k is then calculated to
r∑

k=1

(
n− 1

β − vk

)
β! =

(
n

β

)
β! = n! (4.11)

as the coefficient of (ddc log |f |2)β. Finally, we see that the right hand
side of (4.9) can be written

(2πi)nn!
∑
|β|=n

1{0}(dd
c log |f |2)β (4.12)



38 Chapter 4. Proofs

which is precisely what we wanted to prove. ■

4.4 Example. Suppose now that the tuples fk coincide, i.e. (with slight
abuse of notation) there is a tuple g = (g1, . . . , gs) of holomorphic
functions such that fk = g for each k = 1, . . . , r. This means that
σk = τ , where τ is the minimal inverse of g, see (2.32). In this special
case, we get Theorem 1.1 as a consequence of Andersson’s result (1.2)
and we do not need to invoke Theorem 1.2.

Indeed, from Proposition 4.1 and a similar calculation as in (4.10)-
(4.11), we get

tr(dφun) = (n− 1)!
r∑

k=1

∑
|α|=n−1

(αk + 1)δdg(τ) ∧
(
δdg(∂̄τ)

)n−1
=∑

|α|=n

1

n!δdg(τ) ∧
(
δdg(∂̄τ)

)n−1
=

(
n+ r − 1

r − 1

)
n!δdg(τ) ∧

(
δdg(∂̄τ)

)n−1
.

Now, since

n!δdg(τ) ∧
(
δdg(∂̄τ)

)n−1
= δndg

(
τ ∧ (∂̄τ)n−1

)
(cf. (4.4)) we get from (2.23) together with (1.2) that

r(tr(dφun)) =

(
n+ r − 1

r − 1

)
δndgr

(
τ ∧ (∂̄τ)n−1

)
=(

n+ r − 1

r − 1

)
δndgR̃

g =

(
n+ r − 1

r − 1

)
e(I)[0].

Finally, by (2.4) and (2.6), the module M = ⊕r
k=1O/ I defined from

f has multiplicity

eBR(M) =

(
n+ r − 1

r − 1

)
e(I).
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Hence, we see that in this special case, Theorem 1.1

1

(2πi)nn!
tr(dφRf ) = eBR(M)[0]

follows directly from (1.2).
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