
thesis for the degree of doctor of philosophy

Facing Complex Soft Matter:
Tools, Validation, and Case Studies

CARL MIKAEL FROSTENSON

Department of Microtechnology and Nanoscience (MC2)
Electronics Materials and Systems Laboratory

Chalmers University of Technology
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Abstract

We face a complex soft matter challenge where ab-initio theory can offer unique insight.
The behavior of soft matter reflects the competition between intricate intermolecular
interactions and subtle energy balances. Most of those problems are complex, that is,
we lack complete experimental characterizations. In fact, empirical characterization of
these systems are difficult because the systems can easily change under external stimuli.
This status is a challenge for traditional material theory that normally relies on at least
some measurement input: with complex soft matter we must start by making plausible
predictions for the structure that may have multiple relevant phases.

This thesis develops computational tools and methods capable of predicting and an-
alyzing the behavior of complex soft matter. We advance the application of Density
Functional Theory through the development of new computational tools, notably a range-
separated hybrid van der Waals Density Functional (vdW-DF) called AHCX. AHCX inte-
grates non-local correlation and exchange mechanisms, demonstrating enhanced accuracy
and transferability across various problems, from thermophysical properties in bulk ma-
terials to molecular and adsorbate systems. Additionally, this thesis work documents the
implementation of the vdW-DF spin-stress tensor in Quantum ESPRESSO, enabling
efficient predictions of spin-polarized systems and magnetic properties.

We apply AHCX, and the latest range-separated hybrid vdW-DF termed AHBR, to
characterize the activation of oxygen in complex catalytic systems such as Cu-Chabazite
zeolites and enzymatic crystals. We prove the utility of these functionals in accurately
modeling both chemical and physical binding without empirical adjustments.

Finally, I introduce our methods and tools to study the properties of orthorhombic
phases of polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF). We contrast
these with those of polyethylene (PE) using the related vdW-DF-cx functional. Unlike
PVDF and PE, PVF lacks a definitive experimental consensus on its structure, and is
an example of a complex soft-matter problem. We validate vdW-DF-cx’s accuracy with
PE and PVDF and extend our analysis to the PVF system, allowing for the impact of
thermal excitations. This investigation furthermore predicts PVF’s mechanical behavior,
polarization response, and plastic deformation.

In summary, the thesis seeks to enhance the understanding of complex soft matter
and improve theoretical tools for predicting their behavior.

Keywords: Density Functional Theory, Soft Matter, Complex Matter, Catalysis, Flouri-
nated Polymer Crystals, Spin-Polarized Systems, van der Waals Density Functionals
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Chapter 1
Introduction

1.1 What is Soft Matter?

Soft matter systems is a broad category encompassing materials distinguished by their
inherent flexibility, weak restoring forces, and their large response to external stimuli. Soft
matter includes a diverse array of substances such as polymers, phospholipids, and DNA,
each demonstrating distinctive behaviors that challenge the conventional understanding
of solid and liquid states.

The effects of feeble restoring forces is particularly noticeable in substances like poly-
mers and DNA. In these systems, thermal fluctuations often overshadow elastic forces,
playing a significant role in determining their behavior. As a result, the dynamics of these
materials is an interplay between thermal fluctuations and internal energy. An illustrative
example given by Feynman [1] is that of a rubber band returning to its original shape
after being stretched - a process driven by the thermal motion of the polymer chains.

Bilayer sheet

Micelle
Liposome

Spherulite

Lamellae

A-DNA B-DNA Z-DNA

Figure 1.1: Representative structures of soft matter systems showcasing polymers
(spherulite and lamellae), phospholipids (liposome, nicelle, and bilayer sheet), and DNA
conformations (A-DNA, B-DNA, Z-DNA). These illustrations demonstrate the diverse
and flexible nature of soft matter, highlighting their complex behavior under thermal
fluctuations and van der Waals interactions. Many of the figures are taken from wikime-
dia commons.

The diversity in material states due to small energy variations is another cornerstone of

1



1. Introduction

soft matter. Soft matter systems can adopt numerous low-energy configurations, leading
to a multitude of stable or metastable states. This is evident in polymers and in DNA,
which exhibits multiple conformations such as A, B, and Z, see Figure 1.1. Each of these
states arises from and contributes to the material’s unique properties.

In the realm of soft matter, the role of van der Waals (vdW) interactions cannot be
overstated. These interactions arise from the phenomena of fluctuating polarization due
to zero point fluctuations of the electron cloud. For substances ranging from polymers to
DNA, vdW forces act as an essential intermolecular force that dictates long range structure
and stability without the need for strong covalent bonds. This balance plays a critical
role in the formation of the complex structures observed in soft matter. For instance,
the self-assembly of phospholipids into bilayers, a fundamental process for the formation
of cell membranes, is largely driven by vdW forces alongside hydrophobic interactions.
Similarly, the conformational flexibility of polymers and the double helix structure of DNA
is governed by the interplay of vdW, electrostatic and steric interactions. vdW interactions
stabilize specific structures and configurations while allowing for the dynamic responses
characteristic of soft matter. Thus, an accurate understanding and modelling of vdW
forces is central to comprehending the details of soft matter behavior and its sensitivity
to external stimuli.

1.2 What is Complex Soft Matter?

The central theme of this thesis is the development of tools for investigating complex
materials, where complex means atomic systems and structures with limited or incomplete
experimental characterizations. In the realm of complex soft matter, characterization and
analysis is often challenging due to the interplay of interaction scales and delicate energy
balances.

Perovskites is one class of materials that can act as testing ground. Before we can
trust our tools to accurately predict properties of complex soft matter systems, we of
course have to test and verify their capabilities. This leads us to also study systems that
exhibit near-order characteristics. Such systems serve as a preliminary testing ground
for our computational tools and methodologies, allowing us to refine our approaches in a
controlled environment.

Their well-defined yet flexible structural properties offer a balance between order and
soft complexity, in the form of vibrations leading to incipient or actual phase transitions [2–
5]. This makes perovskites one type of suitable objects for honing our analytical techniques
and, at Chalmers, we test our methods on this important class of materials [6–9].

The discussion presented below exemplify the need for rigorous theoretical computa-
tional tools in the study of the ubiquitous class of complex soft matter.
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1.2. WHAT IS COMPLEX SOFT MATTER?

1.2.1 Semi-Crystalline Polymers: Complexity and Func-
tion

In polymer science, interaction between different crystalline and amorphous regions show-
cases the complexity in dispersion interactions and size effects. In Figure 1.2 we illustrate
some different applications of polymers, such as food coatings and hearing aids, whose
macroscopic properties relevant to these applications emerge from a detailed web of mi-
croscopic interactions. Experimentally characterizing these interactions is challenging due
to the multitude of variables and the nature of the forces involved.

PVF

PE y

x
F F F F F F

C C C
C C C

H H H H H H

PVDF

Figure 1.2: Illustration of multifunctional applications of polymers. Left: Use of polyethy-
lene (PE) in recyclable packaging. Middle: Layered polyvinyl fluoride (PVF) in solar panel
construction. Right: Cross-sectional diagram of a polyvinylidene fluoride (PVDF) film in
a piezoelectric device setup, illustrating its molecular structure and electrical connections.

Semi-crystalline polymers exhibit a large variety of properties, largely dictated by
their inherent structural polymorphism and the interplay between their crystalline and
amorphous regions [10–12]. These materials are characterized by their ability to exist
in different crystalline forms, also known as polymorphs, each with distinct molecular
packing and orientation. The polymorphic nature significantly influences the physical
characteristics of the polymers, including mechanical strength, thermal resistance, and
polarization response.

The complexity in semi-crystalline polymers emerges not only from their molecular
composition and the presence of multiple phases but also from the dynamic nature of
these phases under varying thermal and mechanical conditions. Each crystal phase ex-
hibits unique properties that are hard to isolate in experiments, being highly sensitive to
processing conditions, such as cooling rates and mechanical stretching.

The crystalline regions of these polymers provide structural rigidity and contribute
significantly to the tensile strength and thermal stability. Conversely, the amorphous
regions impart flexibility and impact resistance, which are critical for applications where
materials must absorb energy without fracturing. The amorphous phase facilitates the
mobility of polymer chains, allowing the material to deform under stress. This phase is
also crucial in governing the glass transition temperature of the polymer, a fundamental
thermal characteristic that defines the operational temperature range of the material [13–
15]. The degree of crystallinity — a ratio depicting the amount of crystalline material
relative to the amorphous matrix — thus directly influence many of the properties of
semi-crystalline polymers.

The interaction between the amorphous and crystalline phases is particularly evident
in the stress-strain behavior of semi-crystalline polymers. During deformation, the amor-
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1. Introduction

phous regions deform first, providing initial ductility. As the strain increases, the load is
transferred to the crystalline regions, which then contribute to the material’s strength and
stiffness. The behaviour is not merely of academic interest: the phase interplay is critical
in applications requiring a balance between strength and flexibility, such as in automotive
parts and packaging materials [16–18].

Advanced computational modeling techniques, including density functional theory
(DFT), molecular dynamics and finite element analysis, are important to investigate and
predict the behavior of these polymers under controlled conditions. DFT helps predict
the structural and electronic properties of the crystal phases, while molecular dynamics
simulations provide insights into the mechanical response of the larger polymer system
at for, e.g., interphase boundaries. Finite element analysis complements these techniques
by modeling the macroscopic behavior of the material under different loading conditions.
Understanding the contributions of different phases and their interactions, enables design
of polymers with optimized properties for specific applications.

In summary, the polymorphic nature and the interplay between crystalline and amor-
phous phases endow semi-crystalline polymers with a varied set of properties that, once
understood, can be finely tuned through material processing. Their complexity presents
a challenge to empirical material characterization techniques. We need better computa-
tional tools to predict and optimize the performance of polymer-based materials.

1.2.2 Engineering Molecular Function

Molecular crystals, especially those used in pharmaceuticals, is a challenging area soft mat-
ter research due to their intermolecular interactions defining both macroscopic properties
and biological activity. The characterization of molecular crystals involves a detailed un-
derstanding of their structure, often complicated by the existence of different polymorphs.
Here each polymorph (crystal phase) can exhibit vastly different solubility, stability, and
bioavailability [19–21].

From a theoretical perspective, accurately predicting the stability of different poly-
morphic forms requires advanced computational techniques. DFT, particularly with the
incorporation of van der Waals interactions through exchange-correlation (XC) function-
als such as those from the van der Waals density functional (vdW-DF) method, provide
a critical tool for this. The ability of vdW-DFs (i.e. the XC functionals of the method)
to account for dispersion forces is crucial in modeling the weak intermolecular forces that
dominate the structure and stability of soft matter molecular crystals [22].

Dispersion interactions, although weak compared to covalent bonds, determine the
packing of molecules within the crystal lattice. Understanding these forces allows for
the prediction of lattice structures and, consequently, the physico-chemical properties
of the crystals. Such predictions are essential for the design and development of new
pharmaceutical compounds with optimized properties [23–25].

The computational modeling of molecular crystals poses several challenges. First, the
accurate representation of the crystal’s electronic structure requires a functional capable of
handling non-local interactions. The non-empirical nature of the vdW-DF formulations
is advantageous in this context, making prediction of novel crystal structures possible
without the need for synthesis. Furthermore, the inherent anisotropy in molecular crystals,
due to directional bonding and molecular shape, often complicates the computational
study, necessitating a careful set-up of the calculation parameters.

In Figure 1.3, we compare a set of vdW-inclusive XC functionals using the GMTKN55

4



1.2. WHAT IS COMPLEX SOFT MATTER?

Small

Large

Barrier

Inter-NCI

Intra-NCI

Total NCI

0

2

4

B3LYP+D3
revPBE+D3
HSE+D3
vdW-DF-cx
vdW-DF-ahcx
vdW-DF2-ahbr

Figure 1.3: Comparison of performance for vdW-inclusive functionals asserted against
coupled-cluster quantum chemistry reference values across the GMTKN55 benchmark
suite [26] for broad molecular properties. The radar plot report weighted mean absolute
deviations (so-called WTMAD1) values in kcal per mol, sorting a total of 55 bench-
marks (2500 individual calculations) into groups of small chemical-system reaction ener-
gies (‘Small’), large-system reaction enegiers and isomerizations (‘Large’), barrier heights
across small and cyclic molecules (‘Barrier’), as well as non-covalent interactions (‘NCI’)
energies. The latter group is subdivided into benchmarks covering both intra- and inter-
molecular NCI binding problems. The reference calculations are defined in Ref. [26].

molecular benchmark set, focusing on these discussed in this thesis. The benchmark was
constructed to evaluate functional performance on non-covalent interactions (NCIs), reac-
tion energies (small and large), and barrier heights (transition states) by comparison with
high-precision quantum chemistry calculations. This radar plot contrasts the weighted
mean average total deviation (WTMAD1) in kcal/mol of vdW-corrected range-separated
hybrid (RSH) functionals from orbital-based (B3LYP+D3) and plane-wave based studies
(HSE+D3), against non-hybrid vdW-DF-cx (CX), and the RSH vdW-DF-ahcx (AHCX)
launched in this work. It also reports the performance of the most recent RSH vdW-
DF2-ahbr (AHBR). Generally, orbital-based codes (B3LYP+D3) are more effective for
molecular systems, with HSE+D3 (and the new AHCX,AHBR) excelling in extended sys-
tems. CX performs remarkably well for a non-hybrid functional — better than HSE+D3
for NCI systems — the only outlier being the ‘Barrier’ group of benchmarks. A primary
motivation for developing RSH vdW-DFs was to enhance the accuracy of the vdW-DF
method on such transition state energy predictions. Both AHCX and AHBR demon-
strate robust performance across various systems. AHCX rivals B3LYP+D3 except in
Inter-NCI and barrier categories and surpasses HSE+D3 except on barriers. AHBR leads
in all categories, tying with B3LYP+D3 on barriers.

The implications of performance progress extend to the realm of drug development
and other fine chemicals. By accurately predicting the behavior of various crystal phases,
pharmaceutical scientists can enhance control over production processes, optimize drug
formulations, and ensure consistent and effective drug delivery systems. This underscores
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1. Introduction

the potential utility of DFT studies in pharmaceutical research and crystal engineering,
potentially enhancing the ability to tailor drug properties to specific therapeutic needs [27–
29].

1.2.3 Enzymatic Crystals and Single-Atom Catalysis: Struc-
tural Flexibility and Catalytic Efficiency

One of the main challenges for complex soft matter, is the need for a good description of
weak interactions and charge transfer processes.

On the one hand, enzymatic crystals are highly ordered structures that maintain a bal-
ance between rigidity and flexibility, essential for efficient catalysis [30, 31]. These crystals
stabilize transient states in catalytic cycles, enhancing enzyme activity [32]. The adapt-
ability of these structures allows for necessary conformational changes during substrate
interaction [33], while integrated water molecules often play a critical role in catalysis by
mediating interactions within the crystal lattice [34].

On the other hand, few-atom catalysis, exemplified by zeolites and Cu-Chabazite,
showcases a different paradigm where pairs of metal atoms exist in complexes that are
mobile within a robust inorganic matrix [35–39]. This means that they may relocate to
places where the doping of the framework can facilitate charge transfer that enhances
the function. The isolation as a charged Cu-complex is crucial for maintaining high
catalytic activity and selectivity, as it prevents the metal atoms from clustering into less
reactive forms. Here the complexity is twofold: it involves the details of the catalytic sites
and the subtleties of charge transfer processes [40]. The interaction between d-orbitals
and reactants presents a significant challenge for experimental characterization. At the
same time, the effectiveness of such few/single-atom catalysts is heavily dependent on
the electronic environment which needs to be well understood to be precisely tailored to
enhance reactivity and stability.

Bridging experimental techniques with theoretical and computational methods en-
riches our understanding of these systems. Tools like X-ray crystallography, NMR spec-
troscopy, and advanced microscopy, needs to be integrated with accurate theoretical pre-
dictions to provide a comprehensive picture of the catalytic mechanisms at play. While
the dynamic nature of active catalysis challenges traditional static models, computational
methods like DFT and molecular dynamics offer insights into the reaction pathways that
govern catalytic activity — that is, as long as the XC functional delivers sufficient accuracy
on transition state problems.

1.3 Importance of Computational Tools

With the advancement of highly efficient computational tools, the study of complex soft
matter has entered a new era of discovery and understanding. For soft matter, where direct
observation and measurement can alter the material properties themselves, computational
models provide non-intrusive means to predict and analyze their behavior under various
conditions. This opens up new possibilities not only for hypothesizing new materials and
their properties but also for understanding fundamental interactions and properties at the
atomic level.

Ab-initio, and thus parameter-free DFT has consequently emerged as the cornerstone

6



1.3. IMPORTANCE OF COMPUTATIONAL TOOLS

of computational materials science. Providing the scientific community with the abil-
ity to probe complex soft systems with the precision and depth they require. Yet, even
the advanced capabilities of robust DFT methods like the conventional PBE [41] or the
consistent-exchange vdW-DF-cx (CX) [42], a product of the Chalmers vdW-DF develop-
ment program, are not always enough in themselves to deal with the features of complex
soft matter. For example, many DFT codes lack the features or implementation necessary
to extract predictions that are optimal for experimental validation in specific systems.

We take a magnetic perovskite as a simple example. Perovskite structures also warrant
a good understanding of weak interactions acting in concert with charge transfer. These
materials are distinguished by their strong correlations, soft modes and multiferroic prop-
erties. Each of these properties is crucial for their use in applications such as solar cells
and computer memory. The soft phonon modes in these materials introduce variability
and flexibility, suggesting that a single structural snapshot might not fully represent their
functional state [5, 7, 43–46].

Figure 1.4: The unit cell of BiMnO3 with the MnO6 octahedra and Bi atoms. The MnO6

octahedra are corner-sharing, and the Bi atoms are located in between these octahedra.

In this thesis we introduce tools to enhance the capabilities of DFT based on the
Chalmers-Rutgers vdW-DF method. As an example, consider the unit cell of ferromag-
netic BiMnO3 with 4 lattice parameters, as depicted in figure 1.4. To comprehensively
map out the entire 4D space of lattice parameters for this material, one would need to per-
form approximately 104 = 10000 fixed-cell DFT relaxations. Using our spin-stress tensor
implementation, we can reduce this to a single variable-cell calculation. This approach
forms one part of this thesis, wherein we enhance the capabilities of DFT by incorpo-
rating both spin and mechanical stress analysis into a cohesive spin-stress tensor within
the vdW-DF method framework. With this tool, we are, for example, set up to predict
the interplay between magnetic properties and structural stability in spin-polarized soft
matter systems.

Accuracy and transferability in the choice of non-empirical functional is essential ex-
actly because we need to trust it to make predictions. We have found that while CX is
very often highly accurate, it is challenged when we need it to compute energies of systems
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1. Introduction

that have very electron densities. This may happen in transition states [47], but can also
happen on when a weak binding causes a large amount of electron relocation [48].

For those harder cases, we have at Chalmers and with international collaborators re-
cently developed range-separated hybrids (RSH) vdW-DFs: vdW-DF-ahcx (AHCX) [49]
and vdW-DF-ahbr (AHBR) [47]. In this thesis we include the work towards the formu-
lation and launch of AHCX. It is a systematic extension of the consistent-exchange CX
version, which integrates both truly non-local correlation and truly non-local exchange
within the electron-gas framework. AHBR is the corresponding extension of another reg-
ular vdW-DF functional called vdW-DF2-B86r. Both of these new RSH mix in a partly
screened Fock exchange. As we shall also see in this thesis, AHCX and AHBR are truly
general-purpose functionals, excellent for many applications.

Figure 1.5 shows an example from catalysis where CX is not aligned with the little data
that exists for the case of O2 dissociation over pairs of Cu(NH3)

+
2 in copper chabazite (Cu-

CHA). Cu-CHA is a zeolite — a microporous, aluminosilicate mineral — characterized
by the incorporation of copper ions within its framework. The copper ions act as a
catalytic site in applications of selective catalytic reduction of NOx gases, often in diesel
engines [50]. The figure shows the relative energy as predicted by a set of different
functionals for each of the reaction steps C1-C5, with a spin-flip transition state TS
(between C2 and C3), as the O2 molecule is split at the active site of the copper ions. All
of the functionals qualitatively agree on the relative trends up to the actual dissociation
step from C4 to C5. Both CX (cyan) and PBE using the D3 dispersion correction (blue)
favour complete dissociation. The same is true for the standard PBE (black). Experiments
indicate that the proper reaction stops at the C4 step, just short of complete dissociation,
and so C4 should be the lower energy state.

To accurately describe the C4 structure (and the C4-C5 energy difference), the func-
tional has to be able to reproduce the 3d-localization of the Cu-O bond, while simultane-
ously treat the dispersion interactions with the zeolite framework. With the well-known
potential for delocalization errors in non-hybrid functionals, it comes as no surprise that
one needs the RSH extension of PBE, HSE, together with D3 corrections (green) to ac-
curately predict the stability of C4. One can also deal with the exchange-interaction
between the 3d-states of Cu by including the ad-hoc Hubbard U term to PBE. In that
case the value of U was determined from fitting to experimental data relevant to this
exact reaction. With such an empirical approach, PBE+U recovers the correct preference
for C4, see Figure 1.5. The fact that PBE+U prefer the correct state both with (dark
brown) and without D3 (pink) is also not that surprising: the vdW-interaction energy is
small in comparison to the localization effect.

We furthermore observe that the semiempirical vdW-inclusive BEEF functional also
manages to make correct predictions without any Fock exchange or U term. This is
notable, albeit not unexpected, given that it has been designed through optimization over
experimental data — including catalysis experiments. In Paper C we return to this
problem, armed with the latest RSH vdW-DFs to tackle this problem without the need
for any empirical input or corrections.

The development and adherence to best practices in computational materials science
ensure that the results are robust, reproducible, and verifiable. A systematic workflow
from the initial design of the computation to the interpretation of results - that has been
extensively validated and then publicized - is the way to achieve reproducible results
and contribute to computational materials science. This challenge is compounded by the
fact that computational studies of complex systems often generate large data sets that
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Figure 1.5: The potential energy landscape of direct O2 dissociation on Cu(NH3)
+
2 -pairs in

CHA by different functionals. Data for trend taken from Ref. [40]; we focus on reporting
(previous) results for the C4-C5 energy difference. The structure for each step is shown
on top, atom color codes: copper (yellow), nitrogen (blue), oxygen (red) and hydrogen
(white). The triplet to singlet transition for O2 occurs between steps C2 and C3. ‘TS’
stands for the transition state from C2 to C3.

are difficult to manage effectively. There is a risk of data mismanagement (e.g. false or
redundant entries) or analysis errors.

In this thesis we strive to avoid these problems by utilizing Python scripting for au-
tomation of generation, and analysis, of data. We deliberately attempt to stay clear of
empirical methods, avoiding the use of standard EOS fitting procedures by using a for-
mal lattice parameter expansion when computing thermophysical properties. To confirm
the validity of our approach, we rigorously validate our scheme by ensuring consistency
between two complementary methods under conditions where they are expected to agree.
Additionally, to reduce computational cost when studying crystalline polymers, we de-
sign a computational scheme to avoid any unphysical stretching of the individual polymer
chains. This approach provides an initial input to the subsequent DFT calculation that
is closer to the distorted configuration we need. Consequently, it reduces the number of
fixed-cell relaxation steps required to map out the polymers’ energy landscapes along the
lattice parameters. There is an added benefit in that the approach does not get trapped
in what could be a local minima of some distorted (unrelated) system. Similarly, this
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method enables the prediction of elastic coefficients without the spurious contributions
from covalent interactions, which should not be included in low-order elastic constants.
By aligning polymer chains along the c-axis and utilizing the ASE library within our
Python scripts, we can precisely manipulate the positions of individual chains within the
unit cell without distorting covalent bonds. We also thus streamline the workflow for
the prediction of the spontaneous polarization. It enables straightforward rotation of
monomers and efficient parallel execution of DFT computations for multiple phases and
angles. Most of this code is already available on request and will be released after our
preprints are accepted. The idea is to provide other researchers with the opportunity to
access, adapt, utilize, and modify it according to their specific needs

Overall, the integration of computational tools in the study of complex soft matter is
far from merely a supplement to experimental approaches; they are a foundational compo-
nent in the modern scientific investigation of these materials. By enabling precise control
over variables, providing insights where experimental challenges limit direct observation,
DFT and computational tools hold the key to understand many of the details that are
still obscure within the field of soft matter. Towards this end, we address some of the
limitations in current DFT implementations and methodologies in the upcoming sections.
Our aim is contribute to both theoretical foundations and tools together as well as to give
practical simulation schemes in the study of complex soft matter systems.

1.4 Outline of Thesis

In this thesis we introduce new vdW-DF functionals, hybrid functionals, and compu-
tational workflows that we argue are tailored to help meet the specific needs of facing
complex soft matter systems by a computational approach. This chapter provides the
context and setting for the work presented in this thesis. Chapter 2 provides a summary
of the theory needed to develop the RSH vdW-DF within the Chalmers-Rutgers frame-
work. We go from the Hamiltonian to the functional approximations LDA, GGAs and
vdW-DFs. We also cover the formulation of global and range-separated hybrids. We
briefly touch on similar methods to give some context of our vdW-DF method work.

In chapter 3 we provide some theoretical background and details of the tools and
methods we develop in the studies included in this work. In the first section we outline
the details of the theory behind the vdW-DF spin-stress tensor we implemented within
the Quantum ESPRESSO (QE) suite [51–53] in Paper A. he workflow for structure
search in nearly ordered soft matter is introduced in the second section; this is the method
used to determine the plausible ground state of PVF in Paper D. In the third section
we outline the method and workflow implemented in Python, needed in the benchmark
work of Paper B and structure optimization of polymers in Paper A and Paper D.
The supercell method for studying the plastic slip-deformation of polymers in Paper Dis
introduced in the fourth section. We end the chapter by outlining the method of ’modern
theory of polarization’ used to compute the polarization of polymers, also used in Paper
D.

In chapter 4 we summarize and contextualize the results from the work in the included
papers. The first section summarize the benchmarking of thermophysical properties for
both AHCX and AHBR, while comparing to CX, PBE, and HSE. The second section
contains the work towards characterizing catalysis and enzymatic systems using AHCX
and AHBR. We close the chapter with a characterization of orthorhombic polymers, as a
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simple demonstrator case. We report our works to provide multiple property predictions
by ab-initio theory for the PVF complex matter problem. The logic is that by delivering a
set of predictions, one may use any one of possible future experimental characterizations
as a validation test. Once we have such validation we can furthermore use the rest of the
set of theoretical characterizations as a substitute for actual measurement.

In the fifth and final chapter we summarize the findings from the four papers included
herein. We also argue for our choice of focusing the implementation work on open source
software and our dedication towards a collaborative environment in computational ma-
terials science. The thesis is concluded with future perspectives on the vdW-DF method
and generally improving computational tools and methods for the study of complex soft
matter.
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Chapter 2
Theory for Complex Soft Matter

In this chapter we introduce what we call the theoretical framework for complex soft
matter. It is the DFT-based framework that does, in fact, strives to cover all types of
material problems: DFT is in principle exact for simple ground state properties, such as
structure. A balanced inclusion of vdW-forces in the defining DFT approximation, namely
the exchange-correlation (XC) functional the renders DFT practical, has long presented
a challenge. The Chalmers-Rutgers vdW-DF program for developing vdW-inclusive XC
functionals systematically emphasize a general-purpose capability so that we can also
reliably cover weak interactions in efficient computations. However using such truly non-
local DFT for complex soft matter requires extra and sharper computational tools and
techniques.

The main focus remains accuracy and efficiency in a new vdW-inclusive approximation
that is based on understanding the electron gas behavior. The foundations of DFT were
developed in the later half of the 20th century [54–60]. We start by introducing the
full electronic Hamiltonian, and then proceed to the density formulation of DFT. The
theory’s effectiveness is well documented [61, 62], for hard materials with a dense electron
distribution [41, 63] and for molecules [64]. We then introduce the Kohn-Sham scheme
for highly efficient studies that exploits introduction of a universal XC functional. From
there we furthermore introduce the vdW-DF and its RSH form.

2.1 Density Functional Theory (DFT)

2.1.1 Full Electronic Hamiltonian

To model complex matter from first principles, we need to accurately describe the inter-
actions among atomic nuclei and electrons. We also need to compute the implications
for properties defined by the response of the ground state by solving the many electron
Schrödinger equation. The interplay of interactions form the cornerstone of understanding
materials at scales where quantum mechanical effects manifest. The full non-relativistic,
stationary description of matter is encapsulated in the Hamiltonian for a system of Ne

electrons and NN nuclei, which can be written as [65]:

ĤN+e = ĤN + Ĥe, (2.1)

where HN is the Hamiltonian for the nuclei and He is the Hamiltonian for the electrons,
including the electron-nuclei interaction.
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2. Theory for Complex Soft Matter

The two Hamiltonians have a similar structure. The nuclear Hamiltonian is given by

ĤN = −ℏ2

2

NN∑

j

∇2
Rj

Mj

+

NN∑

j<k

ZjZk

|Rj −Rk|
, (2.2)

with the first term being the sum of the kinetic energy for each nucleus j of mass Mj at
position Rj, while the second term is the sum of Coulombic interactions between nucleus
j and k of charge Zj and Zk.

The electron Hamiltonian is given by

Ĥe = −ℏ2

2

Ne∑

i

∇2
ri

+
Ne∑

i,j; i<j

1∣∣ri − rj
∣∣ +

Ne,NN∑

i,j

Zj∣∣ri −Rj

∣∣ , (2.3)

where the first term is the sum of the kinetic energy for each electron i at position ri, the
second term is the sum of the Coulomb repulsion between electrons i and j and the third
term is the sum of the Coulomb attraction between electron i and nucleus j.

To render this complex problem more tractable, most computational methods rely on
the Born-Oppenheimer (BO) approximation [66]. This assumption posits that, due to
their significantly greater inertial mass, nuclei respond much slower than electrons. Thus
we shall in the proceeding discussion decouple the electronic and nuclear components, and
solve for the electronic structure for a given ‘frozen’ nuclear configuration. That means
the nuclear Hamiltonian ĤN is treated as a constant ENN = ⟨ĤN⟩ when studying fixed
atom configurations. Forces from that term are computed and handled separately in a
DFT-based structural relaxation stages. In effect, we work with an external potential
acting on the electrons [65, 67]:

V̂ext(r) ≡
Ne∑

i

v̂ext(ri) =

Ne,NN∑

i,j

Zj∣∣ri −Rj

∣∣ − V0 (2.4)

and adjust V0 to avoid a divergence in the expectation values for V̂ext(r) + V̂ee for periodic
systems [65]. This is important also for molecules when treated in plane-wave codes.

To summarize the BO approximation, we treat the effective electron Hamiltonian:

Ĥ = T̂ + V̂ext + V̂ee, (2.5)

where kinetic energy is described by,

T̂ = −ℏ2

2

Ne∑

i

∇2
ri
, (2.6)

and the electron-electron interaction is given by

V̂ee ≡
Ne∑

i,j; i<j

v̂ee(ri, rj),=
Ne∑

i,j; i<j

1∣∣ri − rj
∣∣ . (2.7)

Despite these simplifications, the electronic Hamiltonian remains a daunting many-
body problem. The ground-state wavefunction Ψ({ri}) will depend on 3Ne spatial and
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2.1. DENSITY FUNCTIONAL THEORY (DFT)

Ne spin variables. It must also adhere to the Pauli exclusion principle, exhibiting anti-
symmetry under the exchange of any two electrons. This requirement results in a wave-
function with Ne(Ne−1) nodal planes in a 3N2

e -dimensional space, forming a complicated
topological object.

The total energy of the system can be expressed in terms of density matrices. We
introduce r = (x, σ) as shorthand for the spatial and spin variables, and the summation
over the spin variables is implicit. We can then express the electron density matrix in
coordinate representation as [67]

γ({ri}; {r′i}) = Ψ∗({ri})Ψ({r′i}), (2.8)

and define one and two-particle density matrices γ1(r, r
′) and γ2(r, r

′):

γ1(r1, r
′
1) = Ne

∫
dr2 . . . drNe Ψ∗(r1, r2, . . . , rNe)Ψ(r′1, r2, . . . , rNe), (2.9)

γ2(r1, r2; r
′
1, r

′
2) =

Ne(Ne − 1)

2

∫
dr3 . . . drNe Ψ∗(r1, r2, . . . , rNe)Ψ(r′1, r

′
2, . . . , rNe). (2.10)

The introduction of these restricted density matrices allows us to rewrite the ground-state
energy E = ⟨H⟩ as

E = −1

2

∫

r

[
∇2γ1

(
r, r′

)]
r=r′

+

∫

r

γ1(r, r)v̂ext(r) +
1

2

∫

r

∫

r′

γ2 (r, r′; r, r′)

|r− r′| . (2.11)

where

T [γ1] = −1

2

∫

r

[
∇2γ1

(
r, r′

)]
r=r′

, (2.12)

Eext[γ1, v] =

∫

r

γ1(r, r)vext (r), (2.13)

Eee[γ2] =
1

2

∫

r

∫

r′
γ2
(
r, r′; r, r′

)
v̂ee(r, r

′). (2.14)

(2.15)

denotes the kinetic energy functional, the external potential energy functional, and the
Coulomb energy functional, respectively [54]. In Eq. (2.11), and through the rest of the
thesis, a subscript ’r’ implies a complete spatial integration.

The exact wavefunction solution can in principle always be obtained by diagonalization
of the Hamiltonian via a variational principle, a technique known as Full Configuration
Interaction (FCI) [68–71]. In chemistry, FCI is revered for providing, in principle, exact
solutions for reference calculations where feasible. However, its applicability is generally
limited to systems with a small number of electrons, where the practical limit is around
the size of a Benzene molecule [72]. This limit stems partly from the memory complexity
of FCI which is extreme due to the dimensionality and incurs the need for a large orbital
basis sets. Additionally there is highly demanding computational complexity, that for
FCI scales by the factorial of the number of electrons (O(Ne!)). It is not a viable option
for complex soft matter systems where the number of electrons is at least in the order of
102 [67, 73, 74].
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2. Theory for Complex Soft Matter

2.1.2 Density Formulation

All we have done so far is to rewrite the Hamiltonian in terms of the electron density
matrices. An idea pioneered by Thomas [75], Fermi [76], Dirac [77], and others in the in
1930s, is that we can compute the total energy from just the diagonal of the one-particle
density matrix

n(r) = γ1(r, r). (2.16)

The central theorems of DFT, published by Hohenberg and Kohn validate the idea,
proving that the ground-state energy of a system is a unique functional of the electron
density n(r). These deceptively simple theorems [54] provide a means to determine the
ground state energy of a system through its electron density alone, integrating out the
need for the many-body wavefunction. This is an enormous simplification, as the electron
density is a function of just three spatial variables, regardless of the number of electrons, in
contrast to the wavefunction which, as mentioned above, depends on 3Ne spatial variables
for Ne electrons. The simplification is possible because the ground-state energy of the
system can be expressed as a functional of the electron density:

E[n] = F [n] + Eext[n, vext]. (2.17)

Here F [n] and E[n] are strictly independent of vext, because vext is itself a functional of
n [54]. The functional F [n] contains all the internal energies of the interacting electron
system. It is a functional of the electron density that keeps T [γ1] and Ee-e[γ2] together [54,
55].

At the same time, the theorems guarantee the existence of the energy functional F [n],
but they do not specify its exact form. Still the ingenuity of the theorems lies in the fact
that approximating the density (and the energy density functional E[n]) is a much simpler
task than approximating the complicated many-body wavefunction Ψ({ri}). Furthermore,
the F [n] functional is universal, that is independent of the system. F [n] is a perfect tool
in the sense that if we fabricate a good approximation once, we can use it forever. We
strive to also make such designs useful. The proof is then in the pudding: we try to use it
for many different types of materials problems, and ideally we may then see it validated
as a general purpose approach.

2.1.3 The Kohn-Sham System: Independent Particles

With the follow-up work of Kohn and Sham in 1965 [55], density functional theory was
taken from a theoretical concept to a practical computational tool. The Kohn-Sham
(KS) scheme is a way to reformulate the search for the ground-state density n(r) into
a search for KS single-particle orbitals ψk(r) of a system of neutral particles (fictitious
non-interacting electrons) that move in an effective potential, producing the same ground-
state particle density as the real system of interacting electrons. In this orbital basis the
one-particle density matrix is

γKS(r, r′) ≡
Ne∑

k=1

ψk(r)ψ∗
k(r′). (2.18)

With a correct effective potential, the KS description will result in a determination of the
true density

n(r) = γKS(r, r′), (2.19)
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and a simple evaluations of the non-interacting kinetic energy functional,

TKS[n] = lim
r′→r

−1

2

∫
d3r
[
∇2γKS

(
r, r′

)]
. (2.20)

More broadly, Eq. (2.20) permits us to complete a full DFT calculation as if it concerns
independent particles moving in an effective potential Veff(r) that produce all energy
contributions, and that is also given by Eq. (2.19).

The full electron-electron energy should be close to the the Hartree energy EH[n], that
is the mean-field Coulomb energy of the non-interacting system,

EH[n] =
1

2

∫

r

∫

r′

n(r)n(r′)

|r− r′| , (2.21)

This is always a dominant part of ⟨V̂ee⟩. The total KS energy functional is given by:

EKS[n] = TKS[n] + EH[n] + Eext[n, v] + Exc[n], (2.22)

where the XC energy functional Exc[n] contains all the remaining terms in the true energy
functional E[n] of the fully interacting system [65, 78]. This XC functional is the difference
in kinetic energy due to the correlated motion of the fully interacting electrons and the
non-interacting electrons in the KS system, together with the difference in the Coulomb
energy of the same two systems:

Exc[n] = T [γ1] − TKS[n] + Eee[γ2] − EH[n] = ⟨T̂ ⟩ − T̂KS[n] + ⟨V̂ee⟩ − EH[n]. (2.23)

2.2 Adiabatic Connection Formula and Holes

An important step in the development of transferable and accurate XC-functionals for
practical (efficient) DFT came with the use of the adiabatic connection formula. It was
proposed independently by Gunnarsson and Lundqvist in 1976 [56] and by Langreth and
Perdew in 1975 [79] and 1977 [57]. They realized that the exchange-correlation energy Exc

can be expressed using an idea from formal many particle perturbation theory (MBPT).
In essence, the electronic charge is varied from zero (the noninteracting case) to the
actual value with the added constraint that the density must be kept constant during this
variation. Mathematically, the procedure is a coupling constant integration, where the
coupling constant, 0 ≤ λ ≤ 1, is introduced in the Hamiltonian as a scaling factor for the
electron-electron interaction.

The XC functional can be related to the system’s response to external perturbations
through the fluctuation-dissipation theorem (FDT). This relation involves the many-body
linear response function χλ(r, r′;ω), which describes how the electron density at point r
responds to a small, frequency-dependent external potential δΦω

ext (r′) applied at point
r′, again characterized as a function of the assumed coupling constant λ. The density
response of the system to this external potential, in the linear regime, is given by

δnω
λ(r) =

∫

r′
χ
(
r, r′;ω

)
δΦω

ext

(
r′
)
, (2.24)

where χλ (r, r′;ω) = δnω
λ(r)/δΦω

ext (r′) can be expressed via MBPT [80]. As the electronic
system responds to the external field, it uncovers the underlying interactions within the
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system. Through the FDT this response is related to XC functional by [56, 57, 79–81]:

Exc = −
∫ 1

0

dλ

∫ ∞

0

du

2π

∫

r

∫

r′

χλ(iu, r, r′)

|r − r′| − Eself, (2.25)

= −
∫ 1

0

dλ

∫ ∞

0

du

2π
Tr{χλ(iu)V } − Eself, (2.26)

where we have suppressed the spatial dependence in the last line for clarity. In this for-
mulation, V = |r−r′|−1 represents the matrix element of the electron-electron interaction
operator V̂ee. The term Eself accounts for the self-interaction energy, which is the energy
an electron would have interacting with itself [80]:

Eself = Tr{n(r)V (r − r′)δ(r − r′)}. (2.27)

The integration in Eq. (2.26) is performed over the imaginary frequencies, picking
up poles in the response function. These poles reflects both the single particle and the
collective excitations that sets the dynamic response of the system. The trace of the
product χλV essentially measures the interaction energy between an electron and the
induced changes in the electron density around it. This interaction energy, which in-
cludes both exchange and correlation effects, is commonly cast in terms of the XC hole
nxc(r, r

′) [57, 79],

nxc

(
r; r′ − r

)
= −δ

(
r− r′

)
− 2

n(r)

∫ ∞

0

du

2π

∫ 1

0

dλχλ

(
r, r′; iu

)
. (2.28)

Specifically this hole captures the tendency of like-spin electrons to avoid each other
(i.e. Pauli exclusion principle) and the tendency of opposite-spin (charged) electrons to
also avoid each other (part of the correlation effects). The exchange-correlation energy
can then be expressed as Hartee-like term [56]:

Exc =
1

2

∫

r

∫

r′

n(r)nxc(r, r
′)

|r− r′| . (2.29)

I note in passing that the exchange-correlation hole is an inherently non-local quantity,
as it depends on the density at all points in space, and that it can be decomposed into
an exchange hole and a correlation hole:

nxc(r, r
′) = nx(r, r

′) + nc(r, r
′). (2.30)

The charge-conservation sum rule ensures that the integral of the exchange-correlation
hole equals -1, effectively accounting for the “removal” of one electron,

∫

r′
nxc(r, r

′) = −1. (2.31)

In practice, we constrain our response description by two criteria:
∫

r′
nx(r, r

′) = −1 and

∫

r′
nc(r, r

′) = 0. (2.32)

Analysis and physics-based modeling of the xc-hole, is one of the primary approaches
for design of the approximations for Exc[n]. The hole must satisfy a sum rule Eq. (2.32),
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because the hole is there to screen out the charge of the electron — how else can we
pretend to work with independent particles in the KS scheme? This charge-conservation
rule as well as other constraints are used to design robust approximations for the exchange-
correlation functional. For example, in CX (and inside the non-local correlation energy
part, Enl

c , of all vdW-DFs) we enforce current conservation, a criterion that automatically
ensures also the hole-charge conservation implied in Eq. (2.32) [42].

The exchange hole can be expressed in closed form using the KS density matrix

ñx(r, r
′) = −|γKS(r, r′)|2

n(r)
|σ=σ′ (2.33)

giving the unscreened Fock-exchange energy [82]:

EFock
x =

1

2

∫

r

∫

r′

n(r)ñx(r, r
′)

|r− r′| . (2.34)

However, this formulation cannot be used directly in a density functional. This is because
it does not incorporate proper screening of the Coulomb interaction when approximating
the shape of nxc and hence when setting the details of Exc via Eq. (2.29).

The exchange hole is also constrained by the behavior that emerges in the uniform or
homogeneous electron gas (HEG) limit. In essence, the exchange hole should approach
that of the HEG in the limit of a slowly varying density,

nHEG
x (r, r′) = nHEG

x (r − r′) (2.35)

For the HEG of density n0, Slater [65] computed the exchange energy per particle;

εHEG
x [n0] = − 3

4π

(
3

π

)1/3

n
1/3
0 . (2.36)

That result connects to the HEG exchange hole via:

εHEG
x [n0] =

1

2

∫

r′

nx(r, r
′)

|r− r′| , (2.37)

When Eq. (2.37) is used for a study of an actual system (that has a spatial density
variation n(r)) using the so-called local density approximation (LDA), we replace εHEG

x [n0]
by − 3

4π
kF where kF denotes the local value of Fermi vector kF (r) ≡ (3π2n(r))1/3.

One constraint is the Lieb-Oxford bound that establishes a lower bound on the XC
energy,

Ex[n] ≥ Exc[n] ≥ −1.68e2
∫
d3r n(r)4/3. (2.38)

Of relevance for a discussion of the vdW-DF designs we observe that the Lieb-Oxford
bound is sometimes enforced at the local level but that is not an actual constraint. Instead
Eq. (2.38) must hold on a molecular or unit cell level as discussed in Paper B (and we
have provided code to check whether it does so in practice [49]).

The coming sections detail the vdW-DF method and specific XC-functional imple-
mentations. To that end we will discuss approximations for χλ(r, r′;ω) that are used to
construct the correlation holes for a truly non-local functional design like a vdW-DF. I
also summarize how to construct RSHs based on the shape of the exchange hole. The
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method treats the problem of designing an XC-functional approximation as an electro-
dynamics problem. Specifically we use the screened Lindhard dielectric function, κλ(ω),
averaged over the interaction strength λ. In practice, in the framework of the vdW-DF
method we work with the definition [83]

ln
(
κACF(ω)

)
≡ −

∫ 1

0

dλV χλ(ω). (2.39)

The function κACF(r, r′;ω) represents an effective non-local dielectric function, as defined
by the formally exact adiabatic connection fluctuation-dissipation (ACF) theorem and the
XC-hole definition. It allows us to provide an exact rewrite of the exchange-correlation
energy

Exc =

∫ ∞

0

du

2π
Tr
{

ln
(
κACF(iu)

)}
− Eself. (2.40)

Since κACF(ω) must obey the f -sum rule [83, 84], representing the longitudinal com-
ponent of the electrodynamic response, we write

κACF(ω) = ∇ · ϵ(iu) · ∇G. (2.41)

Here G is the Coloumb Green’s functions and ε(ω) is a dielectric function that corresponds
to some simpler ’input’, or approximation to the the electrodynamical screening in the
electron gas. In summary, we can express the XC energy succinctly as

Exc =

∫ ∞

0

du

2π
Tr{ln

(
∇ϵ(iu)∇G

)
} − Eself . (2.42)

The trick of the vdW-DF method, detailed below, is to set ε(ω) as corresponding to a
simpler, trusted (semilocal) approximation for Exc i.e. the so-called internal (GGA type)
functional [6, 83]

Ein
xc =

∫ ∞

0

du

2π
Tr{ln

(
ϵ(iu)

)
} − Eself . (2.43)

We note that both Eq. (2.42) and (2.43) have poles when the dielectric function (ε(ω) or
κACF(ω)) equals zero. Such excitations of the electron systems are called plasmons.

2.3 Functional approximations

The first conceived and simplest approximation for the exchange-correlation functional is
the LDA, which today serves as the foundation for more complex functional forms [56,
85, 86]. The LDA assumes that the exchange-correlation energy per electron can be
approximated by the value it would have in a uniform electron gas [55]:

ELDA
xc =

∫

r

n(r) εHEG
xc (n(r)), (2.44)

LDA is successful in describing systems where the electron density varies slowly, providing
an acceptable approximation for some materials [87]. However, its accuracy and consis-
tency diminishes for systems with important variations in electron density, for example in
molecules [88, 89]. This problem motivated the development of the generalized gradient
approximations (GGAs) and eventually also the vdW-DFs.
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2.3. FUNCTIONAL APPROXIMATIONS

Semi-local functionals in the GGA form, are an extension of LDA. In practice it implies
that the LDA exchange energy per particle εHEG

x (n(r)) is enhanced by a factor;

fxc
(
n(r), s(r)

)
= fGGA

c

(
n(r), s(r)

)
+ fGGA

x

(
s(r)

)
, (2.45)

EGGA
xc ≡

∫

r

n(r) εHEG
x (n(r)) fxc

(
n(r), s(r)

)
. (2.46)

The enhancement depends on the density and on the reduced density gradient s(r) [41]:

s(r) ≡
∣∣∇n(r)

∣∣
2kFn(r)

. (2.47)

In Fig. 2.1 we show the dependency of the enhancement factor fGGA
x (s) on the reduced

density gradients for the set of GGA-exchange components for vdW-DF versions that are
relevant to this thesis. We also show the enhancement factors that characterize the
exchange in the popular GGA functionals PBE [41] and PBEsol [90].
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Figure 2.1: Comparative plot of the exchange enhancement factor fx(s) as a function of
the reduced density gradient s, where 0 corresponds to the homogeneous electron gas, for
various GGA exchange functionals. The enhancement factors for LV-PW86r (or cx13),
B86R, revPBE, and PW86r [91] functionals are shown; these are used inside the vdW-DF-
cx [42], vdW-DF2-B86r [92], vdW-DF1 [84], and vdW-DF2 [93] functionals, respectively.
For comparison we also show the enhancement factor that characterize exchange in the
popular GGAs PBE [41] and PBEsol [94].

The dependence on the density gradient allows GGAs to better reflect the impact
of inhomogeneities in the electron gas, leading to improved results, when compared to
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2. Theory for Complex Soft Matter

LDA [26, 87, 88], for bulk structure [95, 96], and for surface properties that are sensitive
to the details of the electron distribution, e.g. Refs. [89, 97–101]

With our discussion of the GGAs, we have simultaneously [47, 59, 100] set the stage
to introduce the vdW-DFs, as decomposed into two components:

EvdW−DF
xc = E0

xc + Enl
c . (2.48)

Here E0
xc = Ein

xc + δE0
x contains the actual exchange description. E0

xc is also nearly the
above mentioned internal GGA type functional Ein

xc [100, 102] that is taken as input for
defining the truly nonlocal-correlation term Enl

c . Specifically, by working with Ein
xc we

obtain a paramterization of the plasmon dispersion that sets the form of ε(ω) and an in
turn set the net functional behaviour via Eq. (2.43). The actual exchange of a given
vdW-DF (E0

xc), also contains a cross over exchange-only term δE0
x that permits us to

recoup some (exchange) energy that is lost when we pick a simple approximation for the
input dielectric function ε(ω) [83, 103, 104].
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Figure 2.2: Contour plot of the vdW-DF internal functional xc hole n̄in
xc, spatially weighted

and scaled. The hole is mapped as a function of scaled separation z = 2kF |r′ − r| and the
characteristic internal functional enhancement factor f(r) = f in

xc(r) = q0[n](r)/kF [n](r),
which is fixed for a given density n(r) and a given scaled density gradient s = |∇n|/ (2kFn).
Contour spacing is 0.025.

In the vdW-DF design, the internal functional is given by the LDA-correlation term -
given by fLDA

c (n) and an exchange-gradient enhancement f in
x (s) [84, 105]:

f in
xc(n, s) = fLDA

c (n) + f in
x (s). (2.49)

The form is similar to Eq. (2.45) but we deliberately restrict correlation to the LDA level
to avoid double counting: we include all beyond-LDA correlation in the non-local term
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2.3. FUNCTIONAL APPROXIMATIONS

Enl
c that is characteristic of the vdW-DF method. With Eq. (2.49), the internal semi-local

exchange-correlation energy is defined as [105]:

Ein
xc =

∫

r

n(r)εinxc(r) =

∫

r

n(r)εHEG
x (r)f in

xc(n, s)

=
1

2

∫

r

n(r)nin
xc(r, r

′)

|r− r′|

(2.50)

The internal energy-per-particle εintxc (r) is used to formulate the respective internal exchange-
correlation hole nin

xc(r),

n̄in
xc(r, q) = − exp

[
−γ
(
q/q0(r)

)2]
. (2.51)

Here q0(r) is the inverse screening length for the hole.The parameter γ is arbitrary —
that is, changing it’s value has no effect on Enl

c . Picking γ = 4π/9 gives a simple relation
for q0(r),

q0[n](r) = kF[n](r)f in
xc[n](r). (2.52)

A plot of the scaled internal xc-hole nin
xc, as used to represent Enl

c in vdW-DFs, can be
seen in Figure 2.2, giving the dependence of nin

xc of both |r− r′| and the magnitude of the
local f in

xc value.
The choice of internal functional description gives us the input ε(r, r′;ω) via Eq. (2.43)

and we can express the non-local correlation energy [89]:

Enl
c = EvdW−DF

xc − E0
xc =

∫ ∞

0

du

2π
Tr{ln

(
∇ϵ(iu)∇G

)
− ln

(
ϵ(iu)

)
}. (2.53)

In practice, we rely on an exponential resummation of the dielectric function, we use a
form that can be expressed in terms of the plasmon propagator Sxc(iu) as [100]:

ϵ(iu) = eSxc(iu). (2.54)

That is, the plasmon poles of Sxc(iu) are parameterised by connecting the dielectric func-
tion to the internal functional [84, 105],

Eint
xc =

∫ ∞

0

du

2π
Tr {Sxc } − Eself =

∫

r

n(r) εintxc (r), (2.55)

The plasmon propagator is modeled as [106]

Sxc(ω) ≡ 1

2

[
Sxc(ω,q,q

′) + Sxc(−ω,q,q′)
]
, (2.56)

which in Fourier space is given by [84]

Sxc

(
ω,q′,q

)
=

∫

r

ei(q−q′)·r ω2
p(r)[

ω + ωq(r)
] [
−ω + ωq′(r)

] . (2.57)

Here
ω2
p(r) = 4π n(r), (2.58)

is the classical plasma frequency and we describe the plasmon dispersion via

ωq(r) =
q2

2

1

h
(
q/q0

) ; h(x) = 1 − exp
(
−4π/9 · x2

)
. (2.59)
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To arrive at a computationally tractable non-local correlation functional [84, 102, 105],
we also expand to second order in the plasmon propagator

Enl
c =

∫ ∞

0

du

4π
Tr
[
Sxc(iu)2 −

(
∇Sxc(iu) · ∇G

)2]
(2.60)

=

∫ ∞

0

du

4π

∑

q,q′

(
1 −

(
q̂ · q̂′)2)Sxc

(
iu,q,q′)Sxc

(
iu,q′,q

)
; (2.61)

Refs. [83, 100, 104] details the nature of all higher order terms. The non-local internals can
now be handled once and for all in a universal vdW-DF correlation kernel ϕ. This, in turn,
mean that we write the non-local correlation energy in the now popular form [28, 102, 107]:

Enl
c =

1

2

∫

r

∫

r′
n(r)ϕ

(
|r− r′|;n(r), n

(
r′
)
, s(r), s

(
r′
))

n
(
r′
)
, (2.62)

The distinction among the major van der Waals density functional version releases,
vdW-DF1/vdw-DF-cx and vdW-DF2/vdW-DF2-B86r, hinges on the choice of the internal
GGA exchange enhancement factor, f in

x (s) and on the corresponding enhancement factor
f 0
x (s) for the actual exchange (expressed in E0

xc = Ein
xc+δE0

x). The nature of fc(n)+f in
x (s)

is the defining factor in the non-local correlation energy Enl
c .

In this thesis, we have primarily used the consistent-exchange vdW-DF-cx version
and it’s extension to a RSH, vdW-DF-ahcx. In these functionals, the internal exchange
enhancement is defined by merging aspects of the Langreth-Vosko approach with the
revised Perdew-Wang 86 formulation. The exchange enhancement factor, f 0

x (s) = fCX
x (s),

for CX is given by [42]:

fLV
x (s) =

[
1 + µLVs

2
]
, (2.63)

fPW86r
x (s) =

(
1 + as2 + bs4 + cs6

)1/15
, (2.64)

fCX
x (s) =

(
1

1 + αs6

)
fLV
x (s) +

(
αs6

β + αs6

)
fPW86r
x (s), (2.65)

where µLV = −Zab/9 and Zab = −0.8491, together with α = 0.02178 and β = 1.15.
Specifically, within the regime where the reduced gradient is less than approximately 2.5 —
a domain that is sufficient to represent binding in bulk, and in most molecular systems [42,
47, 49] — the enhancement factor closely mirrors the Langreth-Vosko screened exchange
profile in Eq. (2.63). The fCX

x (s) transitions smoothly to adopt the characteristics of the
revised Perdew-Wang-86 form, Eq. (2.64), for s-values beyond this threshold in the CX
design.

The rationale for taking the high-s limit from the PW86r form is to enforce charge
conservation in the original and simplest possible interpretation of many-body perturba-
tion theory (MBPT) input for nx(r, r

′) [100]. That framework was later adjusted to make
the hole less deep, forming modern GGAs such as PBE. In any case, the coefficients α
and β of Eq. (2.65) are determined by a least-squares fit for a smooth transition between
the two regimes [42]. The complete implicit functional form is

ECX
x =

∫

r

n(r)εHEG
x (r)fCX

x (s), (2.66)

EvdW−DF−cx
xc = ECX

x + ELDA
c + Enl

c . (2.67)
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2.4. SPIN FORMULATION OF VDW-DF METHOD

The reason CX is called a consistent-exchange vdW-DF [6, 42, 100] is that there is align-
ment between the inner and actual exchange whenever the binding is saturated by s-value
contributions up to the s ∼ 2.5 threshold [42]. This often holds, but transition-state prob-
lems do challenge this implicit criterion for the CX design logic [42, 49].

In our work we have also used the vdW-DF2-B86r and the recently developed the RSH
form thereof, called vdW-DF2-ahbr. The B86r internal exchange enhancement factor
is constructed from the revised Becke 86 (B86b) form that is also based on a MBPT
expansion, using a slightly different sorting of the diagrams, setting a scaled small-s
expansion coefficient µGEA = 10/81. Moreover, there is an additional condition on the
high-s behaviour resulting in the form [108]:

fB86R
x (s) = 1 +

µGEAs
2

(
1 + µGEAs2/κ

)4/5 . (2.68)

The resulting functional form is

EvdW−DF2−B86r
xc = EB86r

x + ELDA
c + Enl

c . (2.69)

Since we’ve also utilized the vdW-DF1 and vdW-DF2 in our benchmark, we state
also their forms here for completeness. The vdW-DF1 is built with the exchange of the
revPBE [109] GGA:

EvdW−DF1
xc = ErevPBE

x + ELDA
c + Enl

c , (2.70)

while vdW-DF2 is built with PW86r [86, 91] exchange:

EvdW−DF2
xc = EPW86r

x + ELDA
c + Enl

c . (2.71)

2.4 Spin formulation of vdW-DF method

Incorporating spin effects into the vdW-DF framework, termed svdW-DF framework ne-
cessitates modifications to both the semilocal and non-local components of the exchange-
correlation energy. This adaptation enables the accurate description of spin-polarized
systems, where the spin interactions significantly affect the electronic structure and prop-
erties, broadening the scope of materials that can be accurately studied to include for
example magnetic and metallic systems.

The semilocal exchange part E0
xc of the vdW-DF is extended to account for spin

polarization through the exact spin scaling of exchange, formulated as

Ex[n↑, n↓] =
Ex[2n↑]

2
+
Ex[2n↓]

2
. (2.72)

This spin-scaling relation sets the impact of working with general spin densities n↑ and
n↓ for spin-up and spin-down electrons, respectively, on the exchange energy description.
Additionally, the established spin dependence of the local correlation, the local spin den-
sity approximation (LSDA), is integrated, ensuring that the svdW-DF framework can
accurately capture the effects of spin polarization on all parts of the exchange-correlation
energy.

The nonlocal correlation energy Enl
c component of svdW-DF is constructed by intro-

ducing a spin-dependent semilocal response function Sxc, with modifications to how spin
influences the plasmon dispersion ωq(r) in Eq. (2.57). The effective response parameter
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2. Theory for Complex Soft Matter

q0[n] is adapted to q̃0[n↑, n↓] to reflect the explicit dependence on spin polarization. This
adaptation is rooted in the formulation of the nonlocal correlation energy as a summa-
tion of zero-point energy shifts. The spin modifications impact the semilocal exchange-
correlation holes and, by extension, the plasmon-pole shifts that defines the Enl

c through
Eq. (2.62). Specifically, the correlation and exchange components of q0, denoted as q0c[n]
and q0x[n], are modified to incorporate spin density components, leading to q̃0c[n↑, n↓] and
q̃0x[n↑, n↓]. The correlation q̃0c[n↑, n↓] is given by

q̃0c[n↑, n↓] = − 4π

3e2
εLSDA
c [n↑, n↓], (2.73)

using the spin-dependent PW92 LDA correlation energy per particle εLSDA
c . The exchange

part is formed based on spin-scaling relation giving

q̃0x
[
n↑, n↓

]
=

n↑
n↑ + n↓

q0x
[
2n↑
]

+
n↓

n↑ + n↓
q0x
[
2n↓
]
, (2.74)

where q0x[n] is the exchange part of q0[n], scaling the exchange component for each spin
state.

2.5 Global Hybrids

The concept of hybrid functionals was first introduced by Becke in 1993 as a way to
improve the accuracy of DFT for the electronic structure of molecular systems. They
are for example employed to improve the description of charge-transfer systems which is
especially useful in many soft matter and biological systems. However, hybrid functionals
are today also employed to improve the descriptions of band gaps and electronic structure
of strongly correlated systems (transition-metal complexes, transition-metal oxides, and
rare-earth compounds).

The reason for their success is that they help cancel some of the self-interaction errors
that arise in the Hartree term. In effect they compensate for forcing the exchange-hole
description to comply with a simple approximation for an ’input’ or GGA-level dielectric
function ϵ(ω). The idea is to mix orbital dependent Fock-exchange from Hartree-Fock
theory with the density dependent functionals of DFT.

To include Fock exchange in the exchange functional, the underlying GGA exchange
functional needs to be described in terms of an exchange hole that is free from Friedel
oscillations and inherently include XC cancellation mechanisms. The exchange-hole is
represented using a form function JGGA

x as

nx(r; r
′) = n(r) · JGGA

x

(
s(r); y = kF(r)|r− r′|

)
, (2.75)

where |r − r′| is the separation between the electron at r and the exchange ‘hole’ at r′,
scaled by the local Fermi wavevector kF(r). A proper formulation ensures that the LDA
exchange-hole form, n(r)JLDA

x (s), emerges as the baseline s→ 0 limit.
The exchange enhancement factor derived from this model is given by

fx(s) = −8

9

∫ ∞

0

y · JGGA
x (s; y) dy. (2.76)

This holds for PBE as well as for the exchange used in the nonempirical vdW-DFs. The
shape of the analytic-hole formulation (see next section) [110] for the exchange-hole for
PBE, PBEsol, CX and B86r is shown in Fig. 2.3.
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Figure 2.3: The AH exchange-hole shape J(s, y) = nx(r, r
′)/n(r) as a function of the

locally scaled separation y = kF(r)|r − r′|, which represents the distance between an
electron at r and its corresponding ’hole’ at r′. The curves spans a range of local scaled
density gradient values s(r), from 0 (homogeneous electron gas) up to 3. Each of the four
panels correspond to the exchange-hole for different functionals: PBE (PBEx) in the
upper left, PBEsol (PBEsolx) in the upper right, and vdW-DF-cx (cx13 or LV-rPW86
exchange) in the lower left and B86r in the lower right.

A global hybrid is constructed by direct mixing of Fock exchange, exemplified by the
functionals

EPBE0
xc =αEFock

x + (1 − α)EPBE
x + EPBE

c , (2.77)

ECX0
xc =αEFock

x + (1 − α)ECX
x + Enl

c + ELDA
c . (2.78)

The PBE0 global hybrid functional [94, 111], defined as Eq. (2.77), commonly employs
a mixing parameter of α = 0.25. This choice was motivated in part by the analysis
work of Perdew, Burke, and Ernzerhof [111], who introduced a coupling constant scaling
approach to extend the PBE functional. The same α = 0.25 choice is used as default in
the vdW-DF-cx0 (CX0) global hybrid, Eq. (2.78) [102] and in the vdW-DF2-br0 (released
together with cx0 to QE in 2017 [47, 112]). Yang, Schröder and Hyldgaard [112] repeated
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the coupling constant analysis for CX for atomization energies to arrive at a particular
implementation defined with α = 0.20, called vdW-DF-cx0p (CX0P). This α = 0.2 value
is also used in B3LYP [64] for most molecular systems. Alternative non-empirical ways to
determine the mixing involves tuning α to the reflect the inverse of the dielectric constant
κ0 [113].

Use of global hybrids is problematic when dealing with extended metallic systems. The
exchange energy in a global hybrid is dominated by the Fock exchange at large separations
|r − r′| [100]. However, in a metallic system, the screening must impact all Coulombic
interactions, for example these entering the exchange energy description Eq. (2.34).

2.6 Range-Separated Hybrid vdW-DFs

To create a general-purpose hybrid functional that avoids the previously mentioned issues,
one needs to take into account the impact of screening on all EKS[n] components. A range-
separated hybrid (RSH) functional is based on the idea that the effectiveness of screening
is dependent on the distance. There is little screening of the Fock-exchange part at short
distances, but the screening reaches a complete compensation of the Coulomb interaction
at large distances, at least in a metallic system. The design separates the exchange energy
into long-range and short-range components using an error function separation

1

r12
=

erfc (γr12)

r12
+

erf (γr12)

r12
, (2.79)

of the Coulomb matrix elements for electrons separated by r12 = |r− r′| and a range-
separation parameter γ.

We base the RSH vdW-DFs on the idea Henderson, Janesko and Scuseria (HJS)
presented in 2008, where the exchange hole is constructed using an analytic hole (AH)
method [110]. The AH exchange hole form JGGA

x (s; y) is based on an exchange hole
model that is free from Friedel oscillations and permits an easy correction to the exchange
enhancement factor fx(s). For the AH framework, HJS first considered the exchange-hole
corresponding to LDA:

JLDA
x (y) = − 9

4y4

(
1 − e−Ay2

)

+

(
9A
4y2

+ B + Cy2 + Ey4
)

e−Dy2 ,

(2.80)

where the parameters A,B, C,D and E are determined by physics constraints:

• The exchange hole is negative definite, meaning that the exchange hole density
around an electron is always less than or equal to zero, relative to the electron
density at that point.

• For spin independent systems, nx(r, r) = −1
2
n(r) corresponding to the exchange

hole at a point r halving the electron density at that point, effectively removing
like-spin electrons.

• The normalization condition of Eqn. (2.32) ensures that the exchange hole integrates
to -1, accounting for the “removal” of one electron.
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Figure 2.4: Illustration of the error and complimentary error function and their separation
of the Coulomb interaction into long-range and short-range components. The top panel
shows the plot of the error function, erf(x) (blue), and the complimentary error function,
erfc(x) (orange), as a function of the separation x. The dashed black line shows the sum
of the two functions, which is unity for all x. The bottom panel shows the separation of
the Coulomb interaction (red) into long-range (blue) and short-range (orange) and their
sum (black cross).

• The exchange hole integrates to the exchange energy as Ex = −1
2

∫
r

∫
r′

n(r)nx(r,r′)
r12

.

There are also some design constraints:

• The curvature of JLDA
x (s) is the same as that for the HEG at y = 0. This ensures

that the exchange hole, and the subsequent GGA exchange enhancement factor, are
consistent with the HEG at the local density.

• The exchange hole should approach the non-oscillating parts of the HEG at large
y. The long-range contributions of these oscillations to the total energy and elec-
tron density are minimal, allowing for their exclusion for practical computational
efficiency and accuracy

• It should maximize information entropy, to ensure that the resulting model is as
unbiased as possible while satisfying known constraints. This approach effectively
smooths out unnecessary details in the exchange hole, leading to a model that
adheres closely to physical reality without overfitting to specific features that aren’t
supported by the underlying physics or constraints.
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To fully determine the parameters of JLDA
x (y) requires numerical optimization to satisfy

the constraints and design criteria, but they are determined once and for all by HJS.
The next step is to construct the gradient corrected exchange hole, JGGA

x (s; y) based
on the gradient corrected enhancement factor fGGA

x (s) of choice. The gradient corrected
exchange hole is essentially a Gaussian smearing of the LDA exchange hole, with the
damping factor H(s),

JGGA
x (s, y) = I(s, y)e−s2H(s)y2 ,

I(s, y) =

(
9A
4y2

+ B + CF(s)y2 + EG(s)y4

)
e−Dy2

− 4

9y4

(
1 − e−Ay2

)
.

(2.81)

The F(s) function (affecting the y2 term of the LDA description) has the form

F(s) = 1 − 1

27C

s2

1 + (s/2)2
− 1

2C
s2H(s). (2.82)

This choice ensures that it is possible to solve for H(s) analyticall at all s [110]. The G(s)
function (affecting the y4 term of the LDA description) is essentially determined by the
normalization condition. In the end both F(s) and G(s) is set through H(s).

To determine H(s) the energy integral is solved analytically, giving the exchange
enhancement factor as

fx(s) = A− 4

9

B
λ
− 4

9

CF(s)

λ2
− 8

9

EG(s)

λ3

+ ζ ln

(
ζ

λ

)
− η ln

(
η

λ

)
,

(2.83)

where ζ = s2H(s), η = A + ζ, and λ = D + ζ all depend on H(s). Assuming H(s) to be
a rational function of the form

H(s) =

∑7
n=2 ans

n

1 +
∑9

m=1 bms
m
, (2.84)

the coefficients are determined by a fit to the numerical results found by solving Eq. (2.83)
for H(s) at a range of s-values. Once these coefficients are determined, Eq. (2.82) gives
F(s) and the exchange hole is fully determined.

In the AHCX functional the analytic hole is constructed using the CX exchange en-
hancement factor, Eq. (2.65), to create a RSH vdW-DF that is designed to be accurate
across periodic solids and extended systems. Specifically, it can retain accuracy also in
the presence of charge transfer and strong correlation effects. In the AHBR functional
the analytic hole is constructed using the vdW-DF2-B86r exchange enhancement factor
of Eq. (2.68), to create a range-separated hybrid functional that performs at an excellent
level for finite systems and for molecules [47].

With the exchange hole determined, the RSH can be constructed by mixing the long-
range (LR) and short-range (SR) exchange components

EFock
x = EFock

x,SR(γ) + EFock
x,LR(γ), (2.85)

EGGA
x = EGGA

x,SR (γ) + EGGA
x,LR (γ), (2.86)
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using the error function separation in Eq. (2.79). To obtain for example the long-range
components of the exchange energy we have

fGGA
x,LR (kF, s; γ) = −8

9

∫ ∞

0

dy y2JGGA
x (s, y) ·

[
erf
(
γy/kF

)
/y
]
. (2.87)

and similarly for the short-range components.
In the AHCX and AHBR design the short-range exchange energies are combined in

a PBE0 like manner, together with the long-range component of the GGA exchange to
give the final functional

EAHCX
xc = (1 − α)EGGA

x,SR (γ) + αEFock
x,SR(γ) + EGGA

x,LR (γ) + Enl
c + ELDA

c . (2.88)

This is reminiscent of the HSE functional but using the truly non-local correlation energy
of the vdW-DFs from the previous section. The RSH vdW-DF is based on the exchange
hole corresponding to the actual GGA type exchange used in AHCX (or in AHBR). In
the QE release, the Fock exchange mixing parameter defaults to α = 0.20 based on CX0p
analysis for atomization energy systems [114] and γ = 0.106 as in the HSE06 design. For
bulk and surface problems we recommend setting the AHCX mixing at α = 0.25.

31



2. Theory for Complex Soft Matter

32



Chapter 3
Computational Tools and Techniques

In this chapter we introduce the computational tools and techniques used in the attached
papers.

3.1 Stress Analysis in Spin-Dependent van der
Waals Systems

We first deal with the interplay between spin polarization and mechanical stress in vdW
within the vdW-DF framework. The presentation begins by recalling the foundations of
continuum followed by the ground laid by Nielsen & Martin [115], and by Sabatini et
al. [116] for non-spin-polarized vdW-DF calculations. The goal is to enable effective KS
structure optimizations: finding the equilibrium geometry of a material is in general a
formidable task unless we can pursue variable-cell relaxations.

3.1.1 Stress tensor in the vdW-DF Framework

The stress tensor, σij, plays a major role in variable cell calculations. This tensor quantity
contains the material’s response to applied or internal forces. Guiding both the atomic
positions and the lattice parameters towards an equilibrium geometrical state where the
system’s total energy is minimized. On the other hand, strain εij, quantifies the material’s
deformation, describing the relative displacement of atoms within the material. The strain
tensor is defined as:

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
, (3.1)

where subscripts, i or j, identify Cartesian coordinates of the position vector r, ui repre-
sents the displacement of particles in the direction i, and rj denotes the coordinate in the
direction j.

The relationship between stress and strain is can be connected through a fundamental
quantity in DFT: the internal energy E of the system. When a material undergoes
deformation there is mechanical work dW = PdV done on the system. Here V denotes a
volume of the material and P the pressure. This work, in turn, is related to the applied
stress and the resultant strain:

dW = σijdεijV. (3.2)
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In the framework of DFT, we are treating ground state systems at 0 K, meaning the
change in the system’s internal energy is simply

dE = TdS|T=0 − PdV = −PdV. (3.3)

The implication,
dE = −dW, (3.4)

means that we can compute stress in terms of a DFT energy change,

σij = − 1

V

∂E

∂εij
. (3.5)

To proceed consider homogeneous strain of the crystal cell using small deformations
or scalings given as

r̃i =
∑

j

(δi,j + εi,j) rj , (3.6)

where δi,j is the Kronecker delta. In a spin-balanced vdW-DF study, Sabatini et al. [116]
derived the non-local correlation stress tensor corresponding to Enl

c (Eq. (2.62)) by ex-
pressing the kernel in terms of the coordinate distance D = |r − r′| and the q0(r),q0(r

′)
variables. Using the rigid scaling of the wavefunctions and the density derived by Nielsen
and Martin [115], the resulting stress tensor is given by the equation

σnl
c,i,j = δi,j

[
2Enl

c −
∫
n(r)vnlc (r)

]
+

1

2

∫

r

∫

r′
n(r)n

(
r′) ∂ϕ

∂D
Ci,j

(
r, r′)

−
∫

r

∫

r′
n(r)n

(
r′) ∂ϕ

∂q0
Gi,j(r)

(3.7)

where the factors Ci,j(r, r
′) and Gi,j(r) are given by

Ci,j(r, r
′) = (ri − r′i)(rj − r′j)/D, (3.8)

Gi,j(r) =
∂q0(r)

∂|∇n(r)|
(∂n(r)/∂ri)(∂n(r)/∂rj)

|∇n(r)| . (3.9)

Our aim is to formulate the stress σnl,sp
c,i,j that emanates from the spin-dependent for-

mulation of the nonlocal-correlation energy, denoted as Enl,sp
c , through the derivative of

strain within the material’s volume

σnl,sp
c,i,j = − 1

V

δEnl,sp
c

δεi,j
. (3.10)

To accomplish this we track the impact of both spin and coordinate scaling on the
Enl,sp

c of Eq. (2.62). We have to take into account that the plasmon response is trans-
formed, in case of a nonzero spin polarization, as represented in the changes in the local
inverse length scale q0(r). This scale itself is determined by the spin-density gradients
∇ns=↑,↓(r), as specified in Eq. (2.52), thus we also need to track the stress induced by
these variations. The gradients change with coordinate scaling because scaling implies
both a density change and a change in taking the derivative with positions. The ap-
proach is simply to apply the chain rule for derivatives with strain. The transformation
Jacobian, J , to the lowest order, reflects volume changes due to strain:

J =

∣∣∣∣
dr̃

dr

∣∣∣∣ = 1 +
∑

i

εi,j , (3.11)
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with its strain derivative being ∂J/∂εi,j = δi,j.
The kernel ϕ, incorporates terms explicitly dependent on D, akin to the Hartree

component in Coulomb stress analysis. The spin-polarized case requires evaluating ∂ϕ/∂D
with the spin-density distributions in in question.

In reciprocal space, transformations due to scaling are described by the transpose of
−εi,j, affecting reciprocal lattice vectors as:

G̃i =
∑

j

(δi,j − εj,i)Gj . (3.12)

and in a plane-wave basis, the wavefunction Ψk,j =
∑

G c
(j)
k−G exp

(
−i(k −G) · r

)
expan-

sion leads to important cancellations of many strain effects [65]. The scaling of spin-
density components ns=↑,↓, however, is governed by derivatives influenced by the volume
factor

∂ns(r)

∂εi,j
= −δi,jns(r), (3.13)

and we can use the logic of Nielsen and Martin’s analysis to summarize the volume scaling
of densities in terms of the XC potential’s spin-resolved components vnlc,s(r) as

−δi,j
∑

s

∫
ns(r)vnlc,s(r)dr. (3.14)

The comprehensive analysis also permits us to capture the effects of strain scaling on
the spin-density gradient ∇ns(r), assuming a constant variation of ns(r):

∂ns(r)

∂ri
→ ∂ns(r)

∂r̃i
≈ ∂ns(r)

∂ri
−
∑

j

εi,j
∂ns(r)

∂rj
. (3.15)

For the magnitude of these derivatives, we find:

∂|∇ns(r)|
∂εi,j

= − 1

|∇ns(r)|
∂ns

∂ri

∂ns

∂rj
, (3.16)

whereby the volume scaling of the density is treated separately.
Transitioning to spin-polarized systems, we adapt these formulations to reflect the

contributions from spin-up and spin-down electron density components, n↑(r) and n↓(r),
affecting the plasmon dispersion and, consequently, the exchange-correlation energy in a
spin-dependent manner. This necessitates an update to the stress tensor equation to a
slightly modified form

σnl,sp
c,i,j = δi,j


2Enl

c −
∑

s=↑,↓

∫
ns(r)vnl,spc,s (r)


+

1

2

∫

r

∫

r′
n(r)n(r′)

∂ϕ

∂D
Ci,j(r, r

′)

−
∫

r

∫

r′
n(r)n(r′)

∂ϕ

∂q0

∑

s=↑,↓
Gs

i,j(r) ,

(3.17)

where

Gs=↑,↓
i,j (r) =

∂q0(r)

∂|∇ns(r)|
(∂ns/∂ri)(∂ns/∂rj)

|∇n| . (3.18)

This theoretical framework, inclusive of spin polarization effects was presented in
Paper Aand is now made available in the QE suite. It makes it possible for a vdW-
DF stress analysis of spin polarized systems and enables us to conduct effective structure
optimizations also for spin systems with important van der Waals binding.
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3.1.2 Verification of Accuracy: Structural Properties

To validate our implementation of our spin vdW-DF stress result, we perform a series of
test calculations on simple magnetic BCC iron and nickel. By comparing the results of a
structural optimization using our spin-dependent stress tensor in variable cell relaxations
to those obtained from polynomial fit on a set of fixed geometry calculations at different
lattice parameters we can judge the robustness of our implementation.

Ni PBE CX Experiment*

a0 (fit) [Å] 3.524 3.466 3.510

a0 (stress) [Å] 3.524 3.466

Ecoh [eV] 4.668 5.217 4.477

B0 [GPa] 197.0 226.3 192.5

B′ 4.93 4.92 4

Fe PBE CX Experiment*

a0 (fit) [Å] 2.843 2.794 2.855

a0 (stress) [Å] 2.840 2.796

Ecoh [eV] 4.905 5.572 4.322

B0 [GPa] 158.1 216.1 168.3

B′ 7.51 6.41 4.6

Table 3.1: Results of the structural optimization of magnetic elements Ni and Fe using
spin-vdW-DF stress calculations for CX compared to PBE. The subscript ‘fit’ implies that
we have determined the lattice constants from a polynomial fit, while ‘stress’ denotes the
results of a unit cell relaxations using the spin-stress tensor. All the bulk structure prop-
erties, the lattice constant a0, cohesive energy Ecoh and bulk modulus B0, are compared to
back-corrected experimental values given in the ‘Experiments’ column. This means they
are adjusted for zero-point and thermal vibrational lattice effects so that the predicted
values can be directly compared to corresponding empirical data.

As shown in Table 3.1, the results of the structural optimization of magnetic elements
using spin-vdW-DF stress calculations for CX agree well with the polynomial fit results.
They are also in good agreement with the experimental values. We take this as evidence
of the consistency and predictive power of the spin-vdW-DF stress tensor. These results,
together with those remaining of Paper A, indicate that we are set to model complex
magnetic systems with both efficiency and accuracy.

3.2 Structure Search for Nearly Ordered Soft
Matter

We use vdW-DFs, specifically CX, to characterize and predict mechanical- and ferroelec-
tric response of polyvinyl fluoride (PVF) in Paper D. This is a prototypical soft-complex-
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matter system due to the inconclusive experimental data and absence of single-crystal
samples, which complicates the determination of its lowest-energy unit cell structure.
Discrepancies in experimental data regarding PVF’s conformation and tacticity further
necessitate the use of vdW-inclusive, parameter-free DFT for an accurate structural as-
sessment. One challenge with PVF lies in that it combines both a hard and soft nature:
robust covalent-ionic bonds determine the molecular chains, while weaker van der Waals
forces and steric interactions hold these chains together.

Our methodology centers on constructing a (small) database of potential PVF motifs,
considering both ground state (GS) and excited state (ES) conformers, to predict the
properties of crystalline PVF. Our initial set of candidate structures draws inspiration
from the orthorhombic geometries of polyethylene (PE) and beta-phase PVDF crystals.
Recognizing that a real PVF sample may contain multiple motifs due to the small energy
differences between ES and GS states at room temperature, our approach is designed to
encompass and navigate this diversity. We also verify whether the emerging structures
are distinct polymer isomers or merely duplications of the same configuration.

We use CX to perform unit-cell relaxation and optimization, using it’s accurate predic-
tion of forces and stress to find the most stable structures. This is a technique previously
applied in computational searches for metastable phases of materials like alumina and in
investigations of adsorption phenomena in metal-organic frameworks [117–123]. Through
calculations of full relaxations, we refine our initial candidates. We also eliminate redun-
dancies to isolate distinct PVF motifs. These are then ranked according to their cohesive
energies.

Figure 3.1 illustrates the initial configuration of 24 candidate structures for PVF, la-
beled A through X. All of them are organized in orthorhombic unit cells prior to relaxation
and structures contain two CFH-CH2 units, one per chain. One main difference in the
initial structures is the positioning of fluorine (F) atoms: for half of the candidates, the
F atoms are staggered between the chains, while for the remaining half, the F atoms
are aligned along chain axis (same c-axis coordinate). The subsequent relaxation pro-
cess transitions these initial guesses into a refined collection of 16 distinct motifs. The
evolution of F-atom positions during relaxation is critical, with some motifs maintaining
or transitioning to a ‘shifted’ arrangement (indicated with a subscript ‘s’), while others
adopt or retain an alignment within the same c-plane (denoted with a subscript ‘p’). This
differentiation in F-atom positioning is important for defining the structural identity and
properties of the resulting PVF motifs.

We find the set of lowest energy motifs (like GS) have a cohesive energy that is similar
enough for them to simultaneously co-exist in a macroscopic PVF sample at room tem-
perature. Also all of these them remain in an orthorhomic unit-cell geometry, i.e., they
are consistent with trusted experimental observations [124–128].

Figure 3.2 presents the cohesive energy change as the structures transition from their
initial guesses to their final motif forms. This transformation often leads different starting
configurations to converge towards identical motifs, which is why we conduct a thorough
pruning process to eliminate duplicates from our motif collection. Each unique motif is
identified by the letter of its originating initial guess, for instance, ‘G’ signifies the mo-
tif that emerged as the ground state (GS). Following a systematic organization motifs
are classified according to their cohesive energies, starting from the GS and ascending
through various excited states (ES). A square symbol is used to mark those configura-
tions, whether initial guesses or final motifs, that conform to an orthorhombic structure.
This categorization includes not only the GS but also the first two ESs, denoted as ES1
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Figure 3.1: Initial structure guesses for two-PVF-chain unit cells that, upon relaxation,
yield viable PVF motifs, candidates for crystalline PVF conformers. We explore different
relative placements and rotations of the F-atoms between the chains, as shown in the
upper panels. Initial guesses 1-12 and 13-24 evaluate scenarios where the F-atom positions
on each chain are offset by one-half unit-cell vector c from, or aligned with, each other,
depicted in the lower left and right panels, respectively.

and ES2. By establishing criteria for motif similarity based on energy and volume differ-
ences, we ensure a comprehensive catalog of low-energy conformers. Once we have the
probable lowest-energy motifs, we utilize the two-stage unit-cell characterization scheme
to reanalyze and refine our results. This approach ensures the accuracy of our predictions
and allows us to determine the characteristics of macroscopic PVF at room temperature.
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Figure 3.2: Energetics of relaxation for the database of PVF motifs, predicting plausible
ground states (GS) and related meta-stable conformers. The y-axis displays the polymer
binding energy from CX calculations with complete variable-cell and atomic relaxations.

3.3 Accuracy and Consistency Testing: Ther-
mophysical Properties and Elastic Response

3.3.1 Thermophysical Properties

In this section we discuss accurate computation of thermophysical properties across soft
and hard bulk materials. For soft matter, specifically polymers, we employ a variable-cell
relaxation technique, utilizing a two-stage unit-cell characterization scheme to discern
the ground-state structure and bulk properties. This approach distinguishes between
the stronger covalent intra-polymer and weaker non-covalent inter-polymer interactions.
For hard matter, like cubic bulk materials and magnetic metals, our analysis is based
on energy versus lattice parameter curves and polynomial expansion, while ensuring the
calculations adhere to the correct energy manifold. This dual methodology gives us a
comprehensive strategy for validating the accuracy of thermophysical properties in diverse
material classes.

When dealing with crystalline bulk materials, the ground-state configuration and it’s
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properties are essential for understanding the physics and mechanical response. Here we
will focus specifically on lattice constants, atomic positions, and the bulk modulus. The
utility of variable-cell relaxation techniques is in general hard to overstate, as it allows
accurate determination of the ground-state structure of a material. These relaxation
algorithms traverse the energy landscape in search of the minima by iteratively adjusting
the lattice parameters and atomic positions. However, it will not give us elastic properties
including the Bulk moduli. Moreover, the variable-cell relaxation is not guaranteed to
always converge to the equilibrium structure, especially for soft matter. This is because
the energy landscape can be highly anisotropic and skewed due to suboptimal k-point
sampling (that is set according to the initial configuration). Finally, for range-separated
hybrid studies in QE (e.g. HSE or RSH vdW-DFs), constrained variable-cell optimization
does not seem to reflect a reliable account of the stress tensor, at present. In short, for
a full characterization of thermophyiscal properties we also need an alternative based on
fixed-cell calculations.

Crystalline bulk materials might seem simple, with their symmetric and repetitive
structure. But their energy landscape can be highly complex, with multiple local minima.
Unlike isotropic materials, crystalline substances may require the definition of multiple
lattice parameters and atomic bases to accurately describe their ground state. We use an
algorithm, introduced by Ziambaras and Schröder [129], implemented as a Python tool, to
handle large datasets and automate the process. This approach integrates the calculation
of the bulk modulus and its pressure derivative into the analysis procedure. It offers a
more straightforward and precise alternative to fitting data to semi-empirical equations
of state (EOS), such as those proposed by Murnaghan or Birch. Because it’s derivation
is based on the truly elastic behavior, consistency between the set of elastic coefficients
and the computed bulk modulus is guaranteed — when used correctly (that is, with a
balanced sampling of the phase space). To determine the material’s equilibrium structure,
we minimize the free energy within the multidimensional lattice parameter space, while
accounting for the space group of the material.

To proceed we form a vector x of the necessary variables, where the elastic response
corresponds to small deviations δx = x − x0 of the structural parameters from the
equilibrium structure x0. Using both hybrid and non-hybrid functionals we calculate the
total energy per unit cell, E(x), for a set of various structure configurations {x} around
the equilibrium configuration. For each of the configurations we determine the ground-
state geometry by letting the atoms relax to their equilibrium positions using the BFGS
algorithm. This set of energy and lattice parameter values, {E,x}, is used to establish
a natural potential hypersurface in the parameter space. The curve or surface naturally
lends itself to a multidimensional fit of the total energy variation. The fitting is expressed
through a polynomial expansion

E(x) = k +
1

2
Mijδxiδxj +

1

3!
Cijlδxiδxjδxl + O(δx)4 (3.19)

where k, M , and C represent tensors of fitting constants (of zero-, second- and third-rank
respectively), allowing us to directly determine the equilibrium structure x0.

From this polynomial expansion, we can make an analogous expansion around the
equilibrium volume V0 = V (x0) using the gradient

g = ∇V (x)
∣∣
x=x0

, (3.20)
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and the Hessian

H = H(V (x))
∣∣
x=x0

=

[{
∂2V (x)/

(
∂xi∂xj

)}
ij

]

x=x0

, (3.21)

of the volume.
By a systematic treatment of the structural changes induced by the pressure p =

−∂E/∂V at the minimum of the zero-temperature enthalpy

H(x, p) = E(x) + pV (x), (3.22)

we can extract the bulk modulus B0 as

B0 =
V0

gTM−1g
, (3.23)

We also get the associated pressure derivative B′ by [129]

B′
0 = V0

3gTM−1HM−1g − Cijl

(
M−1g

)
i

(
M−1g

)
j

(
M−1g

)
l

(gTM−1g)2
− 1. (3.24)

The value of B0 and B′ characterize a material’s mechanical properties in a way that is
consistent with the elastic properties constants [129].

To make sure that our implementation of the procedure is correct and robust, we
have validated it versus the Murnaghan (often referred to as the Birch-Murnaghan (BM))
EOS [130, 131]:

EBM(V ) = −E0 +
B0V

B′
0



(
V0/V

)B′
0

B′
0 − 1

+ 1


− V0B0

B′
0 − 1

, (3.25)

where E0 is the energy at the equilibrium unit-cell volume V0.
We now shift our focus to a discussion of some practical considerations associated with

employing our method towards benchmarking functionals on the thermophysical proper-
ties of bulk materials. These aspects and issues are likely relevant to any benchmarking
method in this context. Two primary challenges were identified:

1. Ensuring computational consistency with the correct, lowest-energy configuration.
Maintaining adherence to the global minimum, as far as it is possible, is crucial for a
valid and fair comparison. Intersections with energy manifolds of low-energy phases
can produce discontinuities within the energy landscape, for example in magnetic
systems.

2. Accurately sampling the predicted energy-strain behavior near the equilibrium struc-
ture. This requires calibration of the lattice-parameter grid to ensure it effectively
captures each functional’s prediction of the material’s elastic properties.

A discontinuity in the energy curve is a tell tale sign the calculations are not consis-
tently sampling the same minima of the same configuration. We found that the reason
as to why the computations break consistency was often found in the k-point sampling or
in the plane-wave cutoff. Both of which needs to be determined for a choice of pseudopo-
tential, ideally picked to give the best accuracy for all materials (when they are subjected
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Figure 3.3: Overfitting challenge in modeling the energy variation with lattice parameter
for Ag in AHCX. The top panels shows an analysis when we over sample specific regions
of the lattice parameter space. The bottom panel shows that it is only when we keep a
balanced (AHCX) lattice parameter representation that we can maintain consistency in
the representation of the elastic properties around the minima, see insets.

to all relevant deformations). These convergence parameters has to be extracted from a
screening process; after converging them for each material, pseudopotential and functional
we pick the set of parameters that corresponds to the highest bound on the parameters.
In this way we can ensure that these parameters can be used for all materials without
convergence issues.

When dealing with cells that vary in size, the plane-wave cutoff EPW
cut and the cor-

responding real-space grid can influence the energy mapping even though the cutoff is
converged with respect to the total energy. For a given EPW

cut , the minimum spacing of
points (along each cell parameter) in real-space is ∆R = π(EPW

cut )−1/2. This is the Nyquist
criterion [132] for the real-space grid, and gives a lower bound for the real-space grid den-
sity to retain the information. The total number of points in the grid is thus determined
by the length of the cell parameter and the density of the grid, i.e., energy cutoff and
the cell volume. In practice, all extended-system (plane-wave) DFT codes utilize FFT to
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transform between real- and reciprocal space. The speed-up of FFT relies on decompos-
ing the number of grid points into small prime factors. Codes will obey this criteria by
selecting a grid size that is a product of small prime numbers above the specified lower
bound. Consequently, the final density of the FFT grid may vary slightly between calcu-
lations — with identical cutoffs — for different cell sizes. To mitigate potential artifacts
arising from grid size selection, we increase the plane-wave cutoff to a level where small
variations in the FFT grid density become negligible Although the choice of FFT grid
generally preserves the accuracy and continuity of the energy mapping, issues primarily
occurred when substantial strains (i.e. large changes from the equilibrium cell volume)
were applied to the cell.

Computing the electronic structure for both compressed and expanded lattice config-
urations also necessitates carefully choosing the k-point mesh. The k-point mesh must be
dense enough to represent the details of the smallest Brillouin zone among the structures.
Insufficient k-point density will lead to the non-converged energies for the high-strain
states, resulting in serious inaccuracies in the energy mapping. If we do not accurately
sample the electronic states near the Fermi surface of the ground state configuration, we
cannot possibly expect to accurately capture the details of the electronic or magnetic
properties of the materials.

In Figure 3.3 we highlight the importance of using a balanced sampling in benchmark-
ing functionals for thermophysical properties. In the upper panel we show the modeling
that arise when using a dense lattice parameter grid, but only around the experimental
lattice value. We then get problems by overfitting, where the polynomial fit does not
run through the calculated points close to the equilibrium structure, as shown in the in-
set. Using this modeling would significantly alter the calculated bulk modulus, failing to
represent the actually predicted elastic properties of the material.

The lower panel of Figure 3.3 illustrate the self-consistency criterion that we introduce
to safe guard against overfitting and other grid related issues. We use a balanced data
set obtained by DFT (dots) and we check (inset) that the the fitting extracted from the
full data set also capture the near equilibrium DFT data.

I finally note that study of magnetic elements require special considerations. Spin-
polarized calculations are inherently more sensitive to the k-point sampling due to the
increased complexity in the electronic structure of these materials. The presence of mag-
netic degrees of freedom can also complicate the energy landscape, typically resulting in
multiple shallow local minima that can significantly influence the stability and properties
of both the calculation and the system itself.

The above discussion underscores the rigorous computational practices needed in Pa-
per Bto ensure accurate benchmarking of the thermophysical properties of bulk materials.
Meticulous work went into making sure the sampling density was sufficient and that the
calculations remained on the correct energy hypersurface.
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3.3.2 Verification of Thermophysical Properties

Bulk Solids
In figure 3.4 we show an example of the energy vs lattice parameter curve that we

used to benchmark functionals for thermophysical properties in Paper A. Each row in the
figure corresponds to a different functional, while each column corresponds to a different
bulk metal. To make the comparison as un-biased as possible, we have back-corrected the
experimental values for zero-point and thermal vibrational effects. To ensure the accuracy
of our method, we also cross-checked our Bulk-moduli predictions with those obtained via
the BM EOS.

Figure 3.4: Variations of benchmarking work for thermophysical properties: energy vs
lattice parameter for a set of bulk metals (per column) and functionals (per row). The
top two rows concerns modeling for PBE followed by it’s RSH HSE. The bottom two rows
shows the modeling obtained for CX and for it’s RSH form AHCX. The lattice parameter
axis is shown against the back-corrected experimental value, and the cohesive energy is
computed against the atomic reference energy, in the corresponding functional.
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Soft Matter Systems
As previously mentioned the variable-cell relaxation technique also has its limitations

when dealing with soft matter. In the case of polymers, the covalent interactions within
the polymer chains are much stronger than the vdW interactions between the polymer
chains are weak. This means that the energy potential surface will be highly anisotropic in
the lattice parameter space. Furthermore, full unit-cell relaxation within the framework
of plane-wave DFT is based on a k-point sampling which is determined by the size of the
initial unit cell. To mitigate these issues, we undertake repeated variable-cell calculations,
initiating each iteration from the structure predicted in the preceding step. This itera-
tive refinement, which includes updates to the k-point sampling based on the evolving
geometry of the unit-cell, ensures that our model progressively aligns with the physical
reality of the system until convergence criteria for both structure and energy are met.
Such diligence is especially critical in the context of soft-complex-matter systems, where
a thorough exploration for conformers is paramount to validate the comprehensiveness of
the search.

Parallel to this approach we utilized a two-stage unit-cell characterization scheme to
discern the ground-state structure. It builds upon the previous lattice parameter extension
method, while separating the intra-chain covalent interactions along the polymer chain
from the inter-chain vdW interactions in the directions orthogonal to the chains.

Figure 3.5: Figure of the cohesive energy mapping per lattice parameter for PVDF. The
left panel shows the energy versus lattice parameter curve for the PVDF polymer chain
along the c-axis (chain direction) dominated by covalent bonding. The right panel shows
the energy versus lattice parameter curve for the a and b lattice parameters, which are
transverse to the chain direction and dominated by vdW interactions. The black star
denotes the result of the variable-cell relaxation, which is in good agreement with the
polynomial expansion. The other black makers denotes the result of the variable-cell
relaxation in: square for vdW-DF2, triangle for vdW-DF1 and cross for PBE0. The red
cross shows the results from x-ray diffraction on a sample drawn at 323 K Ref. [125],
while the red square is x-ray diffraction from Ref. [133].
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In the left panel of Figure 3.5 we show the energy versus lattice parameter curve
for the PVDF polymer chain along the c-axis (chain direction). For each length of the
chain (c-axis lattice parameter) we have relaxed the atomic positions of the structure and
calculated the energy. We then fit the energy to a polynomial expansion. After finding
the equilibrium c lattice parameter, we make a similar mapping of the energy surface for
the a and b lattice parameters, which are transverse to the chain direction. As can be
seen, around the minima the energy variation is shallow. Nevertheless, the result of the
variable-cell relaxation (black star) is in good agreement with the description extracted
by a polynomial expansion of the cohesive energy landscape.

3.3.3 Elastic constants

To understand the mechanical stability and elastic properties of a crystalline material,
like PVF, we need to again revisit some continuum mechanics.

Going from the first derivative with respect to strain for stress, Eq. 3.5, to the second
derivative we can define the matrix second-order elastic constants matrix of a crystal

Cij =
1

V0

(
∂2E

∂εi∂εj

)
, (3.26)

where the single indexed εi ≡ εii symbolizes diagonal strain, and where V0 still denotes
the equilibrium volume of the unit cell.

This matrix, also known as the stiffness or elastic matrix and as the name suggest,
determines the elastic response of a crystal. It’s has the structure of a symmetric 6 × 6
matrix, containing 21 independent components. The specific symmetry of the crystal’s
class imposes further constraints, reducing the independent elastic constants required to
describe it. For a homogeneously deformed crystal under infinitesimal strain, the energy
relationship is given by the quadratic form:

E = E0 +
1

2
V0

6∑

i,j=1

Cijεiεj +O
(
ε3
)
. (3.27)

Crystalline stability, absent external forces and within the harmonic approximation, is
ensured when we find all phonon modes have positive frequencies across all wave vectors.
This is sometimes called dynamical-stability criterion.

A simpler but less reliable approach is to look at the elastic response: Stability is
plausible if the theory characterization predicts that the elastic energy, encapsulated by
the quadratic form above, remains positive for any non-zero strain (E > 0,∀ε ̸= 0). In
that case we say that the material fulfills the so called elastic-stability criterion.

The elastic stability criterion is equivalent to, as was first realized by Born [134], the
necessary and sufficient mathematical conditions:

1. The C matrix must be definitively positive.
2. All eigenvalues of C are required to be positive.
3. Sylvester’s criterion necessitates all leading principal minors of C (the determinants

of its k × k upper-left submatrix for 1 ≤ k ≤ 6) to be positive.
4. A chosen set of minors from C should all be positive, which can include trailing

minors or any other selected set.
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These conditions are the generic Born criteria for elastic stability, apply universally, irre-
spective of the crystal’s symmetry, and are inherently nonlinear.

In summary, we can by theory check if a predicted material is stable. Specifically,
necessary but not sufficient conditions for stability requires that all diagonal elements
of C must be positive (Cii > 0,∀i). Additionally, a necessary condition concerning the
relationship between off-diagonal and diagonal elements is [135]:

(
Cij

)2
< CiiCjj,∀i, j. (3.28)

In the case of PVF, the orthorhombic symmetry impose a unique set of constraints on
the elastic constants. The orthorhombic crystal system has three mutually perpendicular
axes of different lengths, and falls into the symmetry group D17

2h. This symmetry group
has 9 independent elastic constants, which can be determined from the stiffness matrix,

Cortho =




C11 C12 C13

· C22 C23

· · C33

C44

C55

C66



. (3.29)

By the generic Born it follows that we can expect stability (in a throy-predicted material)
if the computed Cij values satisfy [136]:

C11 > 0, C11C22 > C2
12,

C11C22C33 + 2C12C13C23 − C11C
2
23 − C22C

2
13 − C33C

2
12 > 0,

C44 > 0, C55 > 0, C66 > 0,

(3.30)

with good margin. These criteria follows by formal search for eigenvalues of Eq. (3.30)
Calculations of the elastic coefficients gives a way to further test the consistency of our
stress-based motif search.

For a practical motif-structure stability test, we extract the elastic constants by ap-
plying strain to the unit cells while evaluating the volume-specific strain energy. We allow
for full atomic relaxations at each deformation increment, because the polymer crystals
are not centrosymmetric. This prevents artificially high stiffness emerging as a result of
covalent bond stretching.
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3.4 Predicting Plastic Deformation using vdW-
DFs

In our prediction of plastic deformations using vdW-DFs, we study the processes of slip
deformations in crystalline regions of PVF and PVDF. We focus on this deformation
mechanism based on empirical observations showing that slip is generally the dominant
deformation mechanism in crystalline regions of polymer samples. The slip process is
characterized by the movement of polymer chains along specific planes, designated using
Miller indices (ijk), where the slip occurs along vectors [ijk]. The dominant slip planes
in polymers are the ones which preserve the integrity of the polymer chains throughout
the deformation process.

To model the slip mechanism in polymers, we employ a supercell skew technique as
illustrated in Figure 3.6. This method enables the simulation of a localized slip interface
(as seen in the lower panel of Figure 3.6) by gradually skewing supercell vectors by small
increments δ[ijk]. As we skew the supercell, we track the so-called generalized stacking
fault energy (GSFE) which represents the change in binding energy due to the specific
deformation, or displacement of the atoms, relative to the optimal stacking configuration.
The set of GSFEs for each deformation increment forms an energy surface commonly
refereed to as a γ-surface in mechanics. We restrict relaxations to atomic adjustments
perpendicular to the shear plane to accurately capture the deformation’s nonuniform and
anisotropic characteristics across various strain levels. In so doing we capture localized
in-plane deformation mechanisms under plane strain conditions.

In Paper D we specifically focus on slip in the (100) and (11̄0) planes, as these are the
most common slip planes in the non-flourinated PE crystals. This means we incorporate
both along-chain and transverse slips modes as shown in Figure 3.7, denoted by δ[001] and
δ[ij0] respectively. A noteworthy contribution to GSFE in PVF and PVDF, apart from
the vdW interactions, is the steric hindrance arising from the interaction between the
fluorine and hydrogen atoms. Changes in the GSFE due to steric hindrance and vdW
interactions are critical in determining the slip resistance of the polymer chains.

To identify energy-density signatures of steric hindrance and vdW attraction, we utilize
a detailed analysis of cohesive energy contributions, dissecting the gradient-correction-to-
exchange egcx and nonlocal-correlation enlc components of the exchange-correlation energy.
This is facilitated by the post-DFT-processing ppACF code, produced in-house to enable
detailed study of the energy contributions of the functional used. The energy-densities
extracted are defined as:

egcx (r) ≡ eLDA
x (n)[fx(s(r)) − 1] , (3.31)

enlc (r) ≡ n(r)

2

∫
Φ[n](r, r′)n

(
r′
)
dr′ , (3.32)

where eLDA
x denotes the energy density of exchange in the local-density approximation,

s(r) is the reduced density gradient, fx(s) represents the exchange-enhancement factor of
Eq. (2.45), and Φ[n](r, r′) is the nonlocal-correlation kernel defined in Eq. (2.62).

To compute the corresponding contribution to the cohesive energy, we use ppACF
to extract the energy term for the DFT calculation of the structure of interest. This
essentially involves three different post-processing extractions: one for the full polymer
crystal, and two for the structures containing each of the monomer chains. By subtraction
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a

b

c

Figure 3.6: Illustration of the super cell skew method utilized to study the crystallographic
slip process. In our computational approach, we impose slip deformations through shear-
induced deformations within a supercell framework. By applying a incremental skew
configurations upon the super cell we track changes in generalized stacking fault energy
(GSFE) and thus slip resistance. This setup, illustrated for ground-state PVF, delineates
the transition from an un-deformed state (dashed) to a (1/2)[100] deformation (indicated
with arrows). In effect we are simulating an interface structure, as shown in the lower
panel, while allowing for atomic relaxations perpendicular to the interface.

we gain our markers, i.e., key polymer-cohesion-energy contributions

∆egcx (r) = −egc,crystalx (r) + 2egc,monomer
x (r) , (3.33)

∆enlc (r) = −enl,crystalc (r) + 2enl,monomer
c (r) . (3.34)

We can visualize these energy density differences as the change under strain, compared
to their ground state values. This approach centers on polymer cohesion and is our chosen
framework to analyse the effects of strain and steric hindrance induced under slippage.
In the ground state, polymer chains are ideally positioned at an optimal separation,
maintaining a force minimum conducive to material stability. Under strain, however, the
structure is shifted out of the minima, leading to varied rates of change in the cohesion-
energy contributions. These changes reflects the resistance to slip that we express as
an energy barrier to a transformation. The magnitude of both the gradient-correction-
to-exchange and nonlocal-correlation cohesion-energy contributions tends to increase as
the overlap between the electron-density tails of adjacent polymer chains grows. The
nonlocal-correlation cohesion-energy contribution can also facilitate binding across void
spaces within crystal.

49



3. Computational Tools and Techniques

Figure 3.7: The principal deformation modes of the crystallographic slip process in crys-
talline plymers.

To gain a quantitative understanding of the energy contributions in the context of
polymer cohesion, we can also integrate the contributions over the supercell volume to
obtain the total energy;

∆Egc
x =

∫
∆egcx (r)dr, (3.35)

∆Enl
c =

∫
∆enlc (r)dr. (3.36)
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3.5 Modern Theory of Polarization in Soft Mat-
ter

Defining the spontaneous polarization Ps of a periodic system is not a trivial task, solved
in the 1990s with the development of the Modern Theory of Polarization [137–139] The
net polarization results from a natural alignment of electric dipoles, characterized by
an asymmetric distribution of charge within the unit cell. A straightforward (but dys-
functional) adaptation of the classical electromagnetic definition involves replacing point
charges q with the charge density ρ(r), which includes both the ionic delta-functions and
the electronic charge density. Multiplying this density by the distance r (to calculate the
dipole moment) and dividing by the unit cell volume V0 yields

Pdip =
1

V0

∫

cell

rρ(r)d3r. (3.37)

Looking at Figure 3.8, the problem with this approach becomes apparent. There is in
principle an infinite number of ways to define the unit cell. When we consider the electron
contribution to the dipole moment, as computed using Bloch functions, we get

∫
rρ(r)d3r = −e

∑

j

〈
ψj|r|ψj

〉
= −e

∑

j

∫
r
∣∣ψnk(r)

∣∣2 d3r. (3.38)

This results depends on where we place the origin of our coordinate system. It is clearly
not applicable without further discussions. Another perspective on this issue is that the
information required to compute the polarization is not contained directly in the charge
density.

Figure 3.8: Nuclear charge (denoted by +) as delta-distributions and the electron charge
density (contours) in a periodic cell. The figure illustrates the problem with defining
the polarization using the charge density: In the left most panel the positive nucleis is
centered in the unit cell, giving a net zero polarization. In the middle panel an equally
large cell but now slightly shifted to the left gives a net polarization pointing to the right.
Finally the panel to the right shows the unit cell slightly shifted to the right, giving a net
polarization pointing to the left.

The solution to this problem came from starting with the current definition J = dP
dt

and by instead computing changes in geometrical phases of the Bloch functions |ψnk⟩ =
eik·r |unk⟩. These changes are produced as we imagine driving the electrons across the
entire Brillouin zone (BZ) in some virtual Sommerfeld modelling of charge displace-
ment [140, 141].
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Independent of the definition of the polarization, it must reflect the symmetry and
periodicity of the system. This leads to the polarization being multi-valued, meaning the
polarization is well defined only modulo a polarization quantum ∆P = eR/V0, where R
is any multiple of the lattice vectors aj=1,2,3. The polarization forms a periodic set called
the polarization lattice, where each consecutive element is separated by ∆P. To extract a
prediction for the true spontaneous polarization Ps that can be compared to experiments,
we must be careful to make the branch choice consistent. We will (borrowing from [140])
indicate this ambiguity using the symbol ”:=” when the quantity is defined modulo a
polarization quantum.

In the modern theory of polarization, Ps is computed by treating the electron contri-
bution as the change in the geometric or Berry phases θ̄n,j defined by the Bloch function
description |ψnk⟩.There is a Berry phase θ̄n,j for every band n and direction ‘j’.As indi-
cated by the overbar, each Berry phase is averaged over the k-vectors in the other BZ
directions. We concentrate on θ̄n,j-differences introduced by a cyclic evolution of the sys-
tem across the BZ. We need to compute such Berry phases at a sequence of distortions
λ.

In practice, we generate a series of structural configurations, or distortions, that cap-
tures the transformation from λi, a non-polar reference state, to system of interest λf .
Ignoring the details of the λ-path, the polarization becomes a two-point difference

∆Pi→f := p (λf) − p (λi) , (3.39)

which, as indicated, is defined exclusively modulo a polarization quanta.
In an insulating crystal, while nuclei can be approximated as discrete point charges, the

electronic charge is distributed. However, we can still predict the spontaneous polarization
as given by the Berry phases:

p(λ) :=
e

V0


∑

µ

Zµτµ(λ) −
occ.∑

n

3∑

j=1

θ̄n,j(λ)

2π
aj


 , (3.40)

where Zµ and τµ symbolize the charge and position of ion µ, respectively. The result in
Eq. (3.40) is in fact, exclusively a point charge representation where the latter term is
given by positions of (maximally localized) Wannier functions [142] |wnR⟩. The evaluation
of these are avilable in QE, and they are essentially a Fourier transform of the Bloch
functions:

|wnR⟩ =
V0

(2π)3

∫

BZ

d3ke−ik·R |ψnk⟩ ,

=
V0

(2π)3

∫

BZ

d3keik·(r−R) |unk⟩ .
(3.41)

Again, the integration is over the BZ, and we note that |unk⟩ is periodic. The Wannier
(charge) center r̄n can be computed using r = −i ∂

∂k
:

rn =
〈
wn0|r|wn0

〉

=
V0

(2π)3

∫

BZ

〈
unk | i∇kunk

〉
d3k

=
∑

j

θ̄n,j
2π

aj.

(3.42)
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Figure 3.9: The modern theory of polarization mapping of the true electronic charge
distribution in an isolating crystal (left) to a model system (right) where the electron
charge clouds are replaced with point charges at the Wannier centers. We then compute
the polarization in terms of the shift in the centers relative to those of a high-symmetry,
non-polar, crystal configuration (illustrated by dotted line).

That is, each such Wanner center is explicitly given as a position in the unit cell determined
by the θ̄n,j set. This brings us directly to a geometrical representation of the multi-valued
spontaneous polarization at any given distortion:

p(λ) :=
e

V0


∑

µ

Zµτµ(λ) −
occ∑

n

rn(λ)


 . (3.43)

Figure 3.9 illustrates how the deformation (λi → λf ) causes a change in the offset
between of nuclei and Wannier centers and in effect causes an increasing charge displace-
ment. Eq. (3.43) provides a simple interpretation of spontaneous polarization in terms of
these charge relocations.

We finally extract the prediction Ps for the spontaneous polarization, permitting com-
parison to experiments, as the difference in ∆Pi→f as described along the same branch of
the polarization lattice:

Ps = ∆Pi→f |same branch. (3.44)

We note, however, that for an actual theory characterization we must model and track
the Berry phase change along a physical transformation to be sure that we do in fact
remain on the same branch in each and every evaluation of Eq. (3.43).
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Figure 3.10: The procedure used to compute the spontaneous polarization of β-PVDF.
In the top panel we show the deformation path used to map the relaxed structure to a
symmetric reference state by rotating the left monomer. The lower two panels show the
Berry phase values along the a-direction (left) and b-direction (right) as a function of the
distortion parameter ϕ.

We exemplify the method using our results from Paper B. There we compute the
spontaneous polarization of β-PVDF. The deformation path relevant in this analysis is
illustrated in the top middle panel of Figure 3.10. In essence, we track the Berry phase
along a distortion path, λ(ϕ), rotating the left monomer by some angle ϕ in the unit
cell. The distortion takes a symmetric reference state λi, to the actual (and potentially)
polar configuration λf . The Berry phase values along the a-direction and b-direction are
presented in the lower left and right panels, respectively, of Figure 3.10. These values are
plotted as a function of the distortion parameter ϕ. The black dots are the original Berry
phase values, which clearly show the multi-valued nature of the Berry phase. In contrast,
the grey dots are the Berry phase values after aligning them on the branch closes the
origin. The spontaneous polarization along the each lattice parameter is computed as

Ps,a = pϕ=180
a − pϕ=0

a , (3.45)

Ps,b = pϕ=0
b − pϕ=180

b . (3.46)

Here pa/b is the projection of the polarization, as computed in Eq. (3.40), onto a unit
vector parallel to either a or b. The absolute values of Eq. (3.45) and (3.46) are then the
theory predictions for β-PVDF.
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Chapter 4
Case Studies and Functional Validation

This chapter presents a summary of various case studies to validate the tools and methods
introduced in the previous chapter. The initial section is dedicated to benchmarking the
thermophysical properties of materials using the AHCX and AHBR, with various mixing
of Fock exchange, comparing with PBE and HSE.

Subsequent sections explore the application of AHCX and AHBR to more complex
systems found in catalysis and enzymatic reactions. Specifically, we demonstrate the capa-
bility of AHCX and AHBR to characterize important charge transfer aspects in activation
of molecular oxygen in biological and catalytic contexts.

The chapter ends with a detailed discussion on orthorhombic polymers and the com-
plex soft matter challenge of polyvinyl fluoride (PVF). We re-apply our careful energy
mapping with cross test, and we make predictions of the PVF response behaviour.

The structured validation approach helps in guiding the construction of methods and
schemes towards their application in materials science, especially towards complex soft
matter.

4.1 Thermophysical Properties and Validation
of RSH vdW-DFs

We first return to the example of BiMnO3 in Fig 1.4 from the introduction. In Table
4.1 we show the result of our all-in-one-structure-search calculation using our spin vdW
stress-tensor implementation for this system. Here CX+U denotes the inclusion of Hub-
bard U corrections to the Mn d-orbitals, which can sometimes be important for the correct
description of the electronic structure of this material. As can be seen from the table, the
spin-vdW-DF stress tensor is able to predict the lattice constants with a high precision,
giving a mean average error (MAE) of 0.05 Å compared to PBE’s 0.11 Å. The CX+U
actually has a slightly higher MAE of 0.08Å, and the CX functional’s robustness in han-
dling these spin-frustrated systems without the Hubbard U correction is noteworthy. It
highlights the functional’s inherent strength in predicting material properties.

In Figure 4.1 we show the energy and magnetization of BCC and FCC iron, in an effort
to validate the performance of RSH functionals in predicting the correct phase of spin-
polarized systems. Using circles for BCC and squares for FCC, we plot the energy with an
opaque color (left axis) and the magnetization of the corresponding structure in translu-
cent color (right axis). The results are compared to experimental values. All functionals
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PBE CX CX+U Exper.

a [Å] 9.67 9.51 9.59 9.54
b [Å] 5.50 5.60 5.63 5.61
c [Å] 9.77 9.75 9.70 9.86
β [◦] 108.9 108.3 109.2 110.7
V0 [Å3] 491.6 492.98 493.64 493.64

Table 4.1: Structural relaxation results for BiMnO3 using different functionals: PBE,
CX, and Hubbard corrected CX+U (U = 3.5), against experimental values. The lattice
constants (a, b, c), monoclinic angle (β), unit cell volume are presented (V0).

predict the BCC phase as the ground state, which is in agreement with experiments.
Looking at the quantitative results for iron in Table 4.2, we see that the HSE functional

gives the most accurate results for the cohesive energy and bulk modulus. However, AHBR
is only slightly worse, and the AHCX functional is the most accurate in predicting the
equilibrium volume.
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Figure 4.1: Energy (opaque) and absolute magnetization (translucent) for BCC (circles)
and FCC (squared) iron, together with the fourth order fit in HSE06, AHCX and AHBR
functionals.

In Table 4.3 we show numerical results that help us benchmark different functionals
(PBE, HSE, CX, AHCX) for a range of transition metals of relevance in catalysis. The
bulk modulus B0 denotes characterizations obtained by the the lattice-parameter expan-
sion approach, BBM

0 extracted by use of Birch-Murnaghan EOS that we use to cross-check
our approach. The agreement in the bulk modulus between the two methods is, in fact,
excellent. From the lattice constants we can also see that the AHCX functional gives the
most accurate results overall, although the non-hybrid CX is a close contender.

In Figure 4.2 we show the statistics of benchmarking functionals for thermophysical
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HSE AHCX AHBR Exp.

FCC
Ecoh 3.44 4.51 3.45 -
V0 12.98 12.28 12.44 12.26
B0 142.31 154.48 154.45 -

BCC
Ecoh 3.52 4.60 3.55 4.32
V0 12.13 11.80 11.99 11.64
B0 185.58 202.53 198.93 168.30

Table 4.2: Functional phase preference for iron in its FCC and BCC structures, with
the cohesive energy (Ecoh in ev/atom,, equilibrium volume (V0 in Å3), bulk modulus (B0

in GPa), and critical pressure (Pcrit in GPa) for each of the functionals, compared to
experimental values. Based on the calculations plotted in Figure 4.1.

properties of 13 non-magnetic bulk materials. The figure shows the relative deviations in
lattice parameters a, cohesive energies ∆E, and bulk moduli B0 for the different function-
als, as compared to experimental values back-corrected and adjusted fro thermal vibra-
tional effects. The solids includes the transition metals of Table 4.3, some semiconductors,
and some ionic insulators [49].

Figure 4.2 is a sum of all the functional benchmarking on bulk systems that I have
been involved with, including the work behind Paper A as well as that towards launch of
AHBR [47]. What immediately stands out is the performance of the non-hybrids CX and
B86r, as compared to PBE and HSE. Both CX and B86r has a lower mean deviation in all
properties compared to PBE, and both outperforms HSE in predicting cohesive energy.

Turning to the new vdW-DF hybrids, the performance of the original AHCX (at
α = 0.20) functional is outstanding. It has the lowest mean deviation in all properties of
all the hybrids. AHCX also gives the smallest spread in the distribution of deviations for
B0 and ∆E, indicating a high precision in the predictions. The AHCX0.25 functional also
performs well, with a slightly higher mean deviation, apart from the lattice parameter
where it is the best performing functional. AHBR functional has a slightly higher mean
deviation than AHCX, but still outperforms HSE in all properties. Decreasing the Fock
exchange fraction to 0.20 in AHBR0.20 gives a slightly higher mean deviation in B0 and
a, but it still outperforms HSE on all properties.
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PBE HSE CX AHCX Exp*
Cu
a0 [Å] 3.639 3.638 3.576 3.587 3.599
Ecoh [eV] 3.423 3.027 3.781 3.348 3.513
B0 [GPa] 138.0 127.7 163.3 148.3 144.3
BBM

0 [GPa] 136.4 124.2 159.8 144.8 144.3
B′ 5.34 5.56 5.19 5.43 4.88
Ag
a0 [Å] 4.156 4.145 4.065 4.078 4.070
Ecoh [eV] 2.488 2.368 2.955 2.774 2.964
B0 [GPa] 87.5 84.8 115.3 104.8 105.7
BBM

0 [GPa] 88.6 86.7 114.2 105.8 105.7
B′ 6.17 5.83 6.14 6.12 4.73
Au
a0 [Å] 4.165 4.129 4.101 4.098 4.067
Ecoh [eV] 2.997 2.917 3.634 3.440 3.835
B0 [GPa] 137.4 148.5 170.5 167.8 182.0
BBM

0 [GPa] 136.1 146.8 167.2 165.5 182.0
B′ 6.32 6.31 6.03 6.10 6.40
Pt
a0 [Å] 3.970 3.921 3.929 3.910 3.917
Ecoh [eV] 5.434 4.811 6.226 5.524 5.866
B0 [GPa] 248.5 281.1 284.0 297.7 285.5
BBM

0 [GPa] 246.6 277.1 282.0 293.0 285.5
B′ 5.67 5.73 5.49 5.62 5.18
Rh
a0 [Å] 3.832 3.779 3.786 3.760 3.786
Ecoh [eV] 5.565 4.384 6.367 5.244 5.783
B0 [GPa] 257.6 297.1 295.8 312.7 277.1
BBM

0 [GPa] 249.8 291.6 289.0 308.0 277.1
B′ 5.43 5.14 5.10 4.91 4.5

Table 4.3: Comparison of calculated lattice constants (a0), cohesive energies (Ecoh), zero-
pressure bulk moduli (for the polynomial expansion B0 and the BM EOS BBM

0 ), and their
pressure derivatives (B′) for various metals using different functional methods (PBE, HSE,
CX, AHCX) against experimental values (Exp*).

4.2 Cu-Chabazite and Enzymatic Crystals

In this section, we present the work of Paper C. It concerns my work to evaluate the
ability of AHCX, AHCX0.20 and AHBR=AHBR0.25, and HSE+D3 to describe the activa-
tion and dissociation of O2 in an enzymatic crystal and in a [Cu2(NH3)4O2]

2+ complex.
The latter is related to a key step during low-temperature selective catalytic reduction of
NOx over Cu-promoted CHA zeolites [35–40, 50]. The structural characteristics of the
[Cu2O2(NH3)4]

2+ complex exhibits a local Cu2O2 configuration akin to the copper centers
found in certain biological enzymes [143–145]. Notably, enzymes such as hemocyanins,
tyrosinase, and catechol oxidase utilize copper dimers to activate molecular oxygen. These
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Figure 4.2: Violin plot representing statistics of relative deviations in PBE, HSE, CX,
AHCX=AHCX0.25, AHCX0.25, B86r, AHBR0.20, AHBR=AHBR0.25 determinations of bulk
lattice parameters (top), cohesive energies (middle), and bulk moduli (bottom panel). We
compare with experimental values that are back-corrected for zero-point energy and ther-
mal vibrational effects. The benchmarking comprised of 13 non-magnetic elements and
compounds (1 simple and 5 transition metals, 4 semiconductors and 3 ionic insulators).
In the violin plots, the white diamonds mark the mean deviation, the box identifies the
range between the first and third quartile, and the black line indicates the median of the
distribution. Whiskers indicate the range of data falling within 1.5*box-lengths of the
box.

enzymatic structures have been replicated and analyzed using single crystal diffraction
techniques [146]. Within such enzymes, the Cu2O2 motif displays variability in its struc-
tural arrangements, exemplified by the Side-on peroxo [CuII2 (O2−

2 )]2+ and the Bis(µ-oxo)
[CuIII2 (O2−)2]

2+ configurations illustrated in Figure 1. The integrity of the O-O bond dif-
fers between these forms, remaining intact at approximately 1.4 Å in the side-on configu-
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4. Case Studies and Functional Validation

ration, while dissociating to about 2.3 Å in the bis-configuration. The complexes maintain
a net charge of +2, with the copper ions in oxidation states ’II’ and ’III’, respectively.
Moreover, the electronic configuration 3d9 in the side-on structure permits magnetic in-
teractions, typically favoring anti-ferromagnetic coupling over ferromagnetic [147, 148].

CuIIII L
O

LCu
O 2+

Cu II IIII L
O

LCu
O 2+

Figure 4.3: Comparison of the investigated [CuII
2 (O2−

2 )]2+ (side-on peroxo) and
[CuIII

2 (O2−)2]
2+ (bis(µ-oxo)) complexes, illustrating the intact and dissociated O-O bonds,

copper oxidation states and their net charge. Ligands are denoted by L.

We examine the functionals’ ability to depict the copper-oxygen interactions by com-
puting the gas-phase CuO molecule in Table 4.4. The binding energy was derived from
the energy disparity between the molecular state of CuO and its constituent copper and
oxygen atoms, which were considered in doublet and triplet states, respectively. Experi-
mentally, the CuO molecule is characterized by a dissociation energy of 2.79 eV, a bond
length of 1.724 Å, and a harmonic wavenumber of 640.2 cm−1 [149].

Vibrational analysis is also conducted for CuO and Cu+(NH3)x complexes, with ener-
gies subsequently adjusted for zero-point corrections. In the case of the CuO molecule we
illustrate the process in Figure 4.4. The vibrational frequency is determined by calculat-
ing the total energy as a function of the Cu-O bond length. We calculate the harmonic
vibrational frequency, denoted as ωe, using a harmonic approximation to the potential
energy curve. Anharmonic vibrational effects are evaluated by solving the Schrödinger
equation for the molecular potential energy surface. Corrections for anharmonicity, ωexe,
are then extracted from the second-order perturbative expansion of the potential energy
curve:

E(n) = ωe

(
n+

1

2

)
− ωexe

(
n+

1

2

)2

. (4.1)

For the (CuNH3)x complexes, we apply vibrational corrections using the CX-functional
as computed by the ph.x module of the QE suite. These corrections are consistently
employed across all other functionals. Bader charge analysis is completed using algorithm
developed by Henkelman et al [150].

To incorporate effects of ligand interactions on the Cu-O bond, we examine the
Cu+(NH3)x series (x = 1-4) as as seen in Figure 4.5. We compare to kinetic energy
measurements during collision-induced dissociation of Cu+(NH3)x with xenon of Wal-
ter and Armentrout [151]. The functionals’ bond dissociation energies for the series is
computed as

EBDE(x) = E(Cu+(NH3)x−1) + E(NH3) − E(Cu+(NH3)x). (4.2)

Functional BDE predictions, together with the experimental findings as dashed lines, are
presented in Figure 4.6. All functionals reproduce the experimental trend with a higher
bond dissociation energy for Cu+(NH3)2 as compared to Cu+(NH3) and a clearly lower
bond dissociation energies for the third and forth NH3-ligand. The computational results
are generally within 0.15 eV of the experimental values. However, CX underestimates
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4.2. CU-CHABAZITE AND ENZYMATIC CRYSTALS

Table 4.4: Comparison of calculated binding energy (Ebind) and average Cu-O bond length
(d̄Cu−O) for the CuO dimer using different exchange-correlation functionals. The compu-
tational results are obtained with QE besides the two cases explicitly noted VASP.

Functional Ebind (eV) d̄Cu−O (Å) ωe (cm−1) ωexe (cm−1) Cu (e) |P | (D)
CX -3.26 1.70 703 22 0.57 4.08
CX (VASP) -3.42 1.69 721 13 0.51 -
B86R -3.25 1.70 692 11 0.56 4.00
HSE+D3 -2.66 1.74 623 8 0.59 4.56
HSE+D3 (VASP) -2.73 1.74 626 9 0.56 -
AHCX0.20 -2.75 1.72 645 10 0.58 4.42
AHCX0.25 -2.64 1.73 633 14 0.59 4.51
AHBR -2.61 1.73 622 4 0.58 4.45
Exp.[149] -2.79 1.72 640.2 4.43 - 4.57

Figure 4.4: Solution to the one-dimensional time-independent Schrödinger Equation (1D
TI-SE) for the Cu-O system in the potential V (r) (blue curve) as generated by the AHBR
functional as a function of the separation (bond distance) r. The probability density of
the ground state |Ψ0|2 is shown in red. The dashed line indicates the energy level of
the ground state, E(Ψ0) = 0.039 eV. The calculated root-mean-square deviation of the
position,

√
⟨∆x2⟩, is 0.046 Å, and the frequency, ν, is 621.7 cm−1.

the bond dissociation energies for Cu+(NH3) and HSE+D3 does not reproduce the higher
bond dissociation energy for Cu+(NH3)2 as compared to Cu+(NH3)1. The issue with
HSE+D3 was recognized also in a previous computational study using VASP [40].

Metalloproteins with di-copper centers capable of binding oxygen have been synthe-

61



4. Case Studies and Functional Validation

Figure 4.5: Progression of copper-ammonia complexes in the Cu+(NH3)x series, showcas-
ing varying numbers of ammonia ligands (x = 1 to 4). Copper is represented by yellow
spheres, nitrogen by blue, and hydrogen by white.

Figure 4.6: Comparison of sequential bond dissociation energies for Cu(NH3)x
+for the

studied functionals against experimental values (dashed lines) [151].

sized in both bis and side-on configurations, influenced by the ligand type. Our study
focus on the complex 1,4,7-iPr-1,4,7-triazacyclodecane (iPr3TACD/peroxo), seen in the
bottom row of Figure 4.7. The investigated enzymatic sytem features two units of
[Cu2O2(N3C16H35)2]

2+, (B(C6H5)4
– )2 in a side-on configuration as determined by sin-

gle crystal diffraction [143–146].

The results of the structural relaxation of the iPr3TACD crystal using the CX func-
tional are presented in Table 4.5. We compute the energy difference between the bis and
side-on configurations in Table 4.6, using the CX relaxed iPr3TACD crystal. While the
CX functional favors the bis configuration by 0.34 eV, the hybrid functionals demonstrate
a clear preference for the side-on configuration. The affinity for side-on structures under
hybrid functionals correlates with antiferromagnetic coupling of 3d9 electronic configura-
tions in the copper atoms, critical for stabilizing the ground state singlet configuration
observed in both structural types. Notably, AHCX0.20’s prediction of a configuration
without magnetic moments highlights the challenge of accurately modeling the delocal-
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4.2. CU-CHABAZITE AND ENZYMATIC CRYSTALS

ized character of these states.

Figure 4.7: Unit cells and configurations of embedded Cu2O2 complexes in chabazite
(top row) and iPr3TACD (bottom row) environments. The left column shows Side-on
configurations, while the right column displays Bis configurations of Cu2O2. Chabazite
hosts a single unit, and iPr3TACD features two units.

Structure CX Experiment[146]

dCu−Cu
bis 2.86 -

side-on 3.57 3.52

dCu−O
bis 1.82 -

side-on 1.93 1.89

dO−O
bis 2.25 -

side-on 1.48 1.37

ϕ (◦)
bis 173 -

side-on 173 172

Table 4.5: Structural parameters of the iPr3TACD crystal relaxed using the CX func-
tional, compared with experimental data.

Finally, we turn to the computational study of [Cu2O2(NH3)4]
2+ complex, an interme-

diate in the NH3-SCR process at low temperatures within CHA zeolites. As illustrated in
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Structure CX HSE+D3 AHCX0.20 AHCX0.25 AHBR

∆E
bis 0 0 0 0 0

side-on 0.34 -0.43 0.06 -0.58 -0.58

µ
bis 0 0 0 0 0

side-on 0 0.85 0 0.83 0.83

Table 4.6: Functional predictions of energy differences (∆E) and absolute magnetic mo-
ments (µ) for bis and side-on configurations of the Cu2O2 unit embedded in the iPr3TACD
crystal. We report ∆E in eV and µ in µB per copper atom.

the bottom panel of Figure 4.7, we specifically analyzed the side-on peroxo [Cu2(O
2−
2 )]2+

and bis(µ-oxo) [Cu2(O
2−)2]

2+ configurations. Due to its weak, non-directional interactions
with the zeolite framework, the complex exhibits a potential energy surface with multiple
shallow minima. The experimentally observed side-on peroxo structure features Cu-Cu
and Cu-O bond lengths of 3.40 ± 0.05 Å and 1.911 ± 0.009 Å, respectively, supporting a
bent geometry with a Cu-O-O-Cu torsion angle close to 150◦.

Fixed-cell relaxations are shown in Table 4.7, employing VASP and QE calculations
in CX together with HSE+D3, and PBE+U+D3. The calculations indicate a functional-
dependent preference for the molecular configuration; CX favors the bis configuration,
while HSE+D3 and PBE+U+D3 show a lower energy preference for the side-on struc-
ture. Interestingly, all functionals predict a singlet state with zero magnetic moment for
the bis structures, whereas the side-on configuration is predicted to be a singlet state.
However, the side-on exhibits distinct electronic characteristics across the functionals:
no magnetic moment in CX, and approximately 0.5 µB in HSE+D3 and PBE+U+D3,
suggesting anti-ferromagnetic coupling and localized d9 configurations in the latter two.
This difference underscores the sensitivity of magnetic coupling between Cu atoms to d-
electron localization. Further, the structural parameters like O2 bond lengths and Cu-Cu
distances align closely with experimental findings [152]. We note that torsion angles in
the side-on configuration are significantly affected by the degree of electron localization,
with lower angles indicating more bent structures in line with localized electron models.

Functional Complex ∆E µ ∆ETS (eV) dCu−Cu (Å) dO−O (Å) ϕ (◦)

CX (QE)
bis 0 0 - 2.715 2.328 169

side-on 0.352 0 1.09 3.509 1.482 173

CX (VASP)
bis 0 0 - 2.731 2.329 173

side-on 0.32 0 0.46 3.517 1.487 176

HSE+D3 (VASP)
bis 0 0 - 2.705 2.292 174

side-on -0.46 0.53 0.13 3.512 1.462 157

PBE+U+D3 (VASP)
bis 0 0 - 2.731 2.296 175

side-on -0.30 0.48 0.07 3.481 1.481 146

Table 4.7: Analysis of the completely structurally optimized bis(µ-oxo) and side-on peroxo
structures in CHA. ∆E is the energy difference between the two structures (eV). µ is
the absolute magnetic moment on one Cu atom (µB), ∆ETS is the energy difference
between the singlet and triplet state of the side-on structure (eV). dCu−Cu and dO−O are
the distances between Cu-Cu and O-O, respectively (Å). ϕ (◦) is the Cu-O-O-Cu torsion
angle of the Cu2O2 complex.

Using the CX relaxed structure, we analyze the RSH vdW-DFs ability to describe the
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4.2. CU-CHABAZITE AND ENZYMATIC CRYSTALS

complex, as seen in Table 4.8. The side-on structure is preferred for all RSHs, except for
AHCX0.20 indicating that the amount of Fock-exchange in that case is too small. The bis-
structure is again a fully-spin-balanced delocalized singlet with zero magnetic moment.
The hybrid descriptions for the side-on structure gives an antiferromagnetic ground state
configuration with an absolute magnetic moment of about 0.7 µB. The magnetic moment
is higher than for the VASP calculation in Table 4.7 and previous calculations using
HSE+D3 (VASP) [40]. The magnetic moment is slightly lower for AHCX0.20, which is a
consequence of the lower degree of d9 localization. The difference between the triplet and
singlet states for the side-on configuration is for all hybrid calculations about 0.5 eV. The
value is higher for the CX functional. Note that the singlet ground state of the side-on
structure for CX is spin-balanced, without any magnetic moment on the Cu ion.

The interaction energy of the [Cu2O2(NH3)4]
2+ complex within the CHA framework,

due to non-local correlation effects, was computed as:

∆Enl
c = Enl

c (system) − Enl
c (CHA2−) − Enl

c (Cu2O2(NH3)4]
2+). (4.3)

We calculate the non-local correlation energy separately for the entire system, the isolated
CHA cage, and the gas phase Cu2O2(NH3)4]

2+ complex. Considering the presence of two
aluminum sites in CHA, it bears a double negative charge. In Table 4.8, we present the
computed non-local correlation embedding energies for the charged and neutral fragments.
We note that the vdW-dominated embedding energy is larger for the side-on structure
than the bis structure for the vdW-functionals, whereas it is smaller for HSE+D3. The
systematics of the difference suggests that the (hybrid) vdW-DFs has advantages because
they consistently use the same electron-gas foundation to predict all types of binding
contributions.

Functional Structure ∆E µ ∆ETS Ec,nl
embed Ec,nl

embed(neutral)

CX
bis 0 0 - -2.178 -2.429

side-on 0.352 0 1.094 -2.524 -2.445

HSE+D3
bis 0 0 - -1.889 -2.168

side-on -0.324 0.76 0.540 -1.818 -2.124

AHCX0.20
bis 0 0 - -2.408 -2.427

side-on 0.010 0.64 0.553 -2.482 -2.422

AHCX0.25
bis 0 0 - -2.400 -2.428

side-on -0.155 0.74 0.558 -2.468 -2.419

AHBR
bis 0 0 - -1.688 -1.562

side-on -0.201 0.73 0.560 -1.739 -1.682

Table 4.8: Functional preference and characterization of the Bis and Side-on structures
in CHA using the structure calculated in CX. ∆E denotes the energy difference between
structures, µ represents the magnetic moment per Cu atom, ∆ETS measures the singlet-
triplet state energy difference for the side-on structure, and Ec,nl

embed quantifies the non-local
correlation component of the embedding energy for charged or neutral fragments.

Figure 4.8 reports spatial mappings of the binding by non-local correlation. As such
the figure panels pinpoint the origins of the dispersion interactions and tracks the impact
of charge transfer between the [Cu2O2(NH3)4]

2+ complex and the CHA cage. The map-
pings of binding correspond to CX studies and are provided under the correct/incorrect
assumption that individual fragment is charged/neutral, in the left/right panel. The most
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a
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Figure 4.8: Non-local correlation binding energy density ∆enlc (r) = Ec,nl
embed (Eq. (3.32))

computed in CX for charged fragments (left) and neutral fragments (right).

substantial contributions to the ∆Enl
c binding arise in both cases from the NH3 ligands,

though contributions from one of the oxygen atoms is also important.
The role of complex charging is significant. The non-local correlation binding ∆enlc (r),

for the neutral complex (right panel) is larger at the oxygen because the charge transfer
goes from the complex to the zeolite, and under the actual conditions (left panel) the
O has lost some electrons. The integrated ∆Enl

c for the case with neutral fragments is
-2.44 eV, which shows that the changes in the charge distribution has a clear effect on
the magnitude of vdW-interaction.

This detailed analysis underscores the advantage of employing a (hybrid) vdW-DF
XC-functional because it captures the effects of electronic charge redistribution in it’s
description of vdW forces. This is essential for achieving a balanced description of the
competition between strong chemical bonds, weaker non-local correlation interactions and
steric hindrance. Also, the vdW-attraction could be exaggerated if over-delocalization of
Cu 3d is not prevented. For this problem we clearly need both the generic vdW-DFs
ability to reflect the charge transfer impact on vdW forces and the hybrid ability of to
counteract electron density errors [47, 49]. It is gratifying that the RSH vdW-DFs AHCX
and AHBR delivers a description of the catalytic copper-oxide system that is generally
consistent with the limited experimental data that exist.
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4.3 Polymers

Here we present the results of our study of distinctly soft matter from Paper A and Paper
D: orthorhombic polymers, specifically polyethylene (PE), polyvinyl fluoride (PVF), and
β-polyvinylidene fluoride (PVDF), as depicted in the unit cell illustrations in Figure
4.9. Building on the work of Olsson et al. [153], this study extends the capabilities of
the CX-functional to predict polymer structures accurately. PE and PVDF are widely
studied and exhibit a strong correlation between experimental and computational findings,
thus providing a reliable foundation for validating our computational approaches [9, 154,
155]. Conversely, the structure of PVF remains less understood due to discrepancies in
experimental data, positioning it as a complex soft matter problem [127, 156].

Fluorinated polymers like PVDF and PVF are derived from monomers of vinyl fluoride
(CH2 ––CHF) and vinylidene fluoride (CH2 ––CF2), respectively, and are notable for their
distinct structural, reactive, and dielectric properties [13, 157, 158]. The substitution
of hydrogen atoms with fluorine in the polymer backbone imparts significant changes in
properties compared to PE. These polymers exhibit enhanced thermal and mechanical
stability and can be utilized in diverse applications including fuel cells, capacitors, and
electromechanical sensors [159–165].

A critical aspect of these polymers is their polarizability, especially notable in PVDF,
which show considerable spontaneous polar responses due to the asymmetric inclusion
of fluorine atoms [9, 154, 155, 166–169]. The polarizability in these polymers not only
depends on their crystalline atomic structure but also on the contributions from meta-
stable variants that are close in cohesive energy and compatible with the ground state
structure. This characteristic makes the detailed study of their structure and properties
essential for technological applications and theoretical understanding.

a

b

c

Figure 4.9: Unit cells of orthorhombic polymers studied in Paper Aand Paper B:
From left to right, polyethylene (PE), polyvinyl fluoride (PVF), and β-polyvinylidene
fluoride (PVDF). The sequence illustrates increasing fluorination; starting with the non-
fluorinated PE, substitute one hydrogen atom by a fluorine atom on one of the carbon
atoms in the monomer to form PVF. In β-PVDF, all remaining hydrogen atoms on the
same carbon are substituted with fluorine atoms.

4.3.1 Structure

We optimize the unit-cells of the polymers using the CX-functional and the results are
presented in Table 4.9. The table contains the optimal lattice parameters as predicted
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using both a variable-cell relaxation and the energy mapping method from section 3.4, de-
noted in the table as stress and mapping respectively. CX predicts the lattice parameters
of PE with a mean relative deviation (MRD) of 1.9% using the stress- and 1.8% using the
mapping method. For β-PVDF the MRD is 1.4% using both methods. The close agree-
ment between the stress- and mapping-methods indicates that the CX-functional is robust
for predicting the lattice parameters of polymers. With this high accuracy, we conclude
that the CX-functional is well suited for predicting the lattice parameters of polymers.
This gives us confidence in the CX-functional’s ability to predict the possible structures
of PVF, as necessitated by the fact that there is no experimental consensus on the unit
cell parameters. In section 3.2, we discuss how we use CX to find the lowest-lying motifs
of PVF based on a set of initial guesses. The last part of Table 4.9 shows the unit-cell for
the ground state (GS) and the first and second excited states (ES1 and ES2) of PVF.

Table 4.9: Table of calculated lattice parameters for PE, all values in Å. We con-
trast presently calculated results with both experiments and previous calculations [153]
that used different pseudopotentials and a smaller k-points sampling. Here-provided
results are denoted ‘map’ (‘stress’) when obtained by the robust constrained-stress-
optimization+map (potentially unsafe, but carefully controlled, full-stress) strategy for
motif validation (motif search). Additional parameters for PVDF and PVF along with
experimental values are included [125, 133].

PE
Type a0 b0 c0

CX[153] 7.218 5.024 2.553
Exp.[170] 7.121 4.851 2.548
Exp.[171] 7.161 4.866 2.546
Exp.[172] 7.388 4.929 2.539
Exp.[173] 7.420 4.960 −
CX map 7.144 5.044 2.552
CX stress 7.155 5.032 2.552

β-PVDF

x-ray diffraction[125]8.47 4.90 2.56
x-ray diffraction[133]8.58 4.91 2.56
CX maph 8.581 4.763 2.575
CX stress[9] 8.579 4.758 2.575
CX stress 8.581 4.752 2.575

PVF
GS stress 7.260 5.178 2.556
GS map 7.267 5.181 2.556
ES1 stress 7.192 5.272 2.556
ES1 map 7.194 5.274 2.556
ES2 stress 7.341 5.169 2.556
ES2 map 7.346 5.170 2.556
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Figure 4.10: Energy mapping of the three low-lying structures of PVF, illustrating their
cohesive-energy values and validation through constrained-stress optimization. In the left
panels, the variation in binding energy for the motif is depicted through constrained-
stress unit cell optimization, facilitating identification of the optimal along-chain unit-
cell dimensional c0. The right panels exhibits contours of the binding-energy variation
∆Ebind(a, b; c0) as a function of assumed unit-cell dimensions a and b, interpolated between
atomic relaxation calculations (black dots), with the red star marking the validated a0
and b0 values predicted using variable cell relaxation method.
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In Figure 4.10, we present the energy mapping of the three lowest-lying structures of
PVF. As we can see from the figure, and Table 4.9 the GS, ES1 and ES2 are close in
structure (and energy). All of the energy surfaces seem to be relatively flat, with the GS
having a slightly more pronounced minimum.

Table 4.10: Functional estimations of lattice parameters for γ-PVDF, as computed by
variable-cell relaxation. The experimental characterization was made on a sample con-
taining a mixture of the up and down γ-phase at T = 300 K. The unit cell is essentially
orthorhombic, with a small tilt of the along-chain axis c and the a− b basis plane.

Functional a[Å] b[Å] c[Å] V0[Å
3
] ∠ac[◦]

γd Phase
vdW-DF1 9.41 5.08 9.50 454.97 90.0
vdW-DF2 9.17 4.99 9.43 431.90 90.2
CX 9.31 5.02 9.60 449.28 90.0
γu Phase
vdW-DF1 9.60 4.98 9.31 444.32 96.5
vdW-DF2 9.34 4.86 9.31 421.42 96.0
CX 9.36 4.84 9.32 421.81 94.6
Exper.a 9.67 4.96 9.20 440.65 93

a Ref. [174]

To further validate the CX functional, we compare the lattice parameters of the γ-
phases of PVDF with experimental values in Table 4.10. CX predicts the lattice parame-
ters of the γd and γu phases with a total deviation of 2.7% from the experimental values.
vdW-DF1 and vdW-DF2 predict the lattice parameters with a deviation of 1.8% and
2.4%, respectively.

4.3.2 Spontaneous Polarization

Figure 4.11 presents the polarization calculations of the three lowest-lying PVF structures.
As we discussed in the last paragraph of section 3.5, we compute the polarization along
the rotation angle ϕ as we rotate one of the monomers between the predicted structure to
a reference structure. The black dots represent the computed polarization values, many of
them pertaining to branches outside the scale of the figure. The spontaneous polarization,
analogous to a hysteresis measurement, is the difference in polarization between the two
structures, see Eq. (3.45) and (3.46). To make sure this difference is taken along the
same branch, we map the computed value by some number of the so called polarization
quanta, to the branch closest to the origin.The adjusted ‘same-branch’ variation is shown
by the grey dots. The results of the spontaneous polarization computation are presented
in Table 4.11.

The structures are symmetric along the a-axis, and we expect the polarization to be
zero along this axis. From Figure 4.11 we find that along the a-axis, the polarization is
close to zero for all three structures. Since the structures are symmetric for φ = 0◦ as
well as φ = 180◦ the polarization lattice is symmetric around 0. We ascribe this to the
errors introduced by the mapping, and set the polarization along the a-axis to zero.

Parallel to the b-axis, the spontaneous polarization should be non-zero only for ES2∗

due to it’s asymmetry along the b-axis. This is also what we get from the Berry-phase
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Figure 4.11: Polarization calculations for the three lowest-lying PVF structures along the
rotation of one of the monomer chains. The top row shows the polarization along the
a-axis, while the bottom row shows the polarization along the b-axis. The rotation takes
the predicted structure (ϕ = 0◦) to a neutral reference structure (ϕ = 180◦) — apart from
the b-axis case for GS and ES1 where the opposite is true. The black dots represent the
computed polarization values, while the grey dots are the values mapped to the branch
closest to the origin.

calculations, as shown in Table 4.11. For the GS and ES1 structures the relaxed configu-
ration is symmetrical we can directly conclude |Ps,b| = 0.

Spontaneous polarization parallel to the b-axis should be non-zero exclusively for ES2∗,
because of the asymmetry in atom position when viewed along this axis. This is consistent
with polarization calculations, as indicated in Table 4.11.

Table 4.11: Spontaneous polarization, Ps (in µC cm−2), along the a- and b-axes for the
three lowest-energy motifs of PVF as predicted using CX. The final row shows our pre-
diction of the spontaneous polarization for a macroscopic sample of PVF as computed by
a thermal average at room temperature.

|Ps,a| pϕ=0
a pϕ=180

a |Ps,b| pϕ=0
b pϕ=180

b

GS 0 0.4 1.0 0 0.1 −18.6
ES1 0 3.4 −0.5 0 0.0 −18.0
ES2∗ 0 0.1 −0.5 19.2 18.3 0.9

⟨P ⟩T=293K ∼ 0 5.7

In the last row of Table 4.11 we show the estimation of the spontaneous polarization of
a macroscopic sample of PVF by averaging the polarization of the low-energy conformers
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(GS, ES1, and ES2) at room temperature. The results show that the polarization for
PVF, along b-axis, is potentially non-zero and in the range of 5.7 µC cm−2.

Calculating the polarization of β-PVDF in CX without considering the effects of low-
energy conformers, as presented in Paper A, yields a polarization of 40 µC cm−2. When
compared to the experimental measurements ∼ 10 µC cm−2 [167], it is evident that
interphase interactions and the potential presence of oppositely aligned β-phase domains
results in a significantly lower polarization in a macroscopic sample.

At the same time it is clear that PVF cannot even under ideal room temperature
conditions match the promise of β-PVDF as a flexible piezoelectric material.

4.3.3 Plastic Deformation
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Figure 4.12: γ-surfaces or the generalized stacking fault energy (GSFE) for a set of defor-
mations δ along the (100) and (11̄0) planes for the GS structure of PVF, PE and β-PVDF.
The GSFE is computed as the energy difference between the GS and the deformed struc-
ture, normalized by the area of the slip plane. The slip displacement δ[hkl] represent a
fraction of the relative unit-cell displacement, see section 3.4, Figure 3.6, and Figure 3.7
for details. The data for PE γ-surface was taken from a coauthor, in Ref. [153].

In Figure 4.12 we compare the shear resistance of the three polymers by analyzing the
changes in binding energy per unit cell and general stacking fault energy (GSFE) across
different slip planes, see section 3.4 for details. The horizontal axis represents chain slip
and the vertical axis corresponds to transverse slip. We note that the γ-surfaces are
periodic, making all corners equivalent

We find that chain slips are typically associated with lower energy barriers. The study
of local chain orientations adjacent to the shearing planes shows that chains interact in a

72



4.3. POLYMERS

consistent manner during transverse slip, leading to analogous GSFE profiles as depicted
in Figure 4.12. A similar analysis of (11̄0)-PE, (11̄0)-PVF, and (100)-PVDF highlights
comparable structural traits that suggest equivalent slip mechanisms. However, only
PE exhibits local minima on its GSFE surface, which potentially facilitates dislocation
dissociation in this material [153].

The GSFE surfaces indicated a gradual increase in barrier heights when hydrogen in
PE is replaced with fluorine in PVF and PVDF. This suggest a structural stiffening effect
of fluorination. The energy barriers indicate that fluorination increases the resistance to
chain slip: in the (100)-slip plane the energy barriers associated with chain slip correspond
to 12, 18 and 17 mJ/m2 (corresponding to 9, 15 and 13 meV per modeling super cell) for
PE, PVF and PVDF, respectively.

Furthermore, the analysis revealed that the appearance and behavior of the (100)-
GSFE surfaces for PE, PVF, and (11̄0)-PVDF on the plane are significantly influenced
by the local chain orientations. Between PE/PVF and PVDF there is a shift of saddle
point and maximum by (1/2)[001]. This PE/PVF versus PVDF difference follows from
the fact that in PE and in PVF, the neighbouring chains are rotated by approximately
90◦, while they are aligned for β-PVDF.
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Chapter 5
Conclusions and Outlook

5.1 Summary of Findings

This thesis presented tools and methods aimed at developing and validating computational
methodologies within the framework of Density Functional Theory; focusing particularly
on the application to complex soft matter.

Applications in Hard and Soft Materials

The implementation of the vdW-DF spin-stress tensor within QE in Paper Ahas enabled
precise predictions in spin-polarized vdW systems. We demonstrate the effective and pre-
dictive power of the spin-stress tensor using CX to accurately predict physical properties
of magnetic metals and a multiferroic perovskites (BiMnO3). We also show that AHCX
enhances the accuracy in descriptions of magnetic elements such as iron compared to CX.

This study also includes the first of the thesis example applications of the vdW-DF
method on a truly soft matter system, using CX to predict structure and ferroelectric
response of polyvinylidene fluoride (PVDF).

Development and Validation of the vdW-DF-ahcx Func-
tional

The introduction of the range-separated hybrid vdW-DF called AHCX in Paper B
represents an advancement to vdW-inclusive DFT. The AHCX functional, integrating
truly non-local correlation and exchange within the electron-gas framework, extends the
consistent-exchange vdW-DF-cx (CX) and offers a systematic approach to the treatment
of electron interactions over varying distances. Using the computational scheme we de-
veloped for validation of thermophysical properties, we demonstrate that AHCX provides
superior accuracy compared to traditional HSE in predicting lattice constants, cohesive
energies, and bulk moduli of cubic bulk materials.

Further, Paper Breports a survey of AHCX’s accuracy in modeling molecular proper-
ties. We find that it surpasses the performance of the HSE+D3 combination for molecular
systems. We also show that AHCX reliably predicts work functions and surface energies
for metals such as copper, silver, and gold, as well as accurately predicting the CO site
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preference for adsorption energies on metals, proving its utility in understanding surface
phenomena.

Studies on Zeolite and Enzymatic Crystals

In Paper C, we applied AHCX and the RSH vdW-DF2-ahbr (AHBR) functionals to
a series of catalysis problems, specifically focusing on the characterization of activated
oxygen within a [Cu2O2] unit. We studied systems with the unit embedded within both
Cu-Chabazite zeolites and enzymatic crystal structures, as well as examined gas-phase
CuO dimers and Cu(NH3)x complexes to gain comparative insights.

The RSH vdW-DFs, demonstrates clear advantages in understanding the intricate
behaviors of the Cu2O2 structures. These functionals afford the unique capability to model
both chemical and physical bonds simultaneously, without the need for semi-empirical
adjustments. They therefore provide a more robust and theoretically consistent framework
for tackling complex catalytic systems. The approach also enhances our ability to predict
and manipulate the chemical activity, paving the way for advanced applications.

Investigation of Fluorinated Polymers

In the final Paper D, we utilized CX to explore the orthorhombic phases of PVDF and
polyvinyl fluoride (PVF), focusing particularly on determining the ground state struc-
ture of PVF. This investigation culminated in the successful identification of a probable
orthorhombic ground state for PVF that closely resembles the β-phase of PVDF.

We also characterized and predicted key properties of its ground state, including co-
hesive energy, lattice constants, elastic properties, and overall polarizability. These cal-
culations employed ensemble averages of the lowest energy motifs, yielding insight on
the potential macroscopic properties of PVF samples. The comprehensive studies led to
the conclusion that, even under ideal conditions, PVF is unlikely to match the superior
ferroelectric properties exhibited by the closely related β-phase of PVDF systems.

Additionally, Paper D explores the plastic slip deformation modes in both PVF and
PVDF by calculating the generalized stacking fault energy γ. Analysis of γ in terms
of DFT-energy components is crucial for understanding the mechanical behavior under
deformation. An qualitative analysis was conducted compare the barriers for slip in
the ground states of PVF and PVDF, including a comparisons with polyethylene (PE)
for a broader perspective on the effects of flourination on the mechanical properties of
these materials. Finally, we investigated the role of non-local correlation and gradient
corrections to exchange in the slip barriers of PVF. This sheds light on the nature of the
interactions that govern the mechanical properties of these materials.
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5.2 Tools and Methods

Open-Source Software

We chose to implement and release the new RSH vdW-DFs and the spin-stress tensor in
QE. We believe that by committing implementations of new computational tools within
open-source computational software like the QE suite [51–53], and the ASE [175]/pymatgen [176]
libraries, researchers can collectively help propel advancements in the field of computa-
tional materials science. Much like scientific progress is typically based on collaborations,
the development of computational tools benefits from the collaborative nature of open-
source ecosystems.

The modular architecture of open-source DFT code suites [177–183] allows researchers
to develop and integrate specialized modules, inheriting existing functionality for easy
extension. There are module integration for calculating vibrational properties, for simu-
lations of materials in solutions and under the influence of external electric fields, among
others. These tools extend DFT to more realistic environmental conditions. The tools
are already giving us, the researchers, an ability to model biochemistry systems [28],
electrochemical interfaces [184–186] and reactions in solutions [187, 188].

By incorporating new tools into a well-established framework like QE, we hope to
benefit from standardized approaches to solving material science problems. This stan-
dardization supports reproducibility and comparability among different studies, which
are critical for the validation of methods, tools and the field as a whole.

Finally, open-source software such as QE offers exceptional flexibility, empowering
users to tailor their computational environment to specific project requirements. Users can
select from a variety of pseudopotentials and directly modify the XC functional parameters
within the input files, when appropriate. This adaptability is invaluable for testing and
benchmarking new functionals, as it allows us to easily implement changes on the fly and
compare results for different PPs and functionals.

Tools, Schemes and Scripts

The RSH vdW-DF functionals launched in the work of this thesis are derived from first-
principles behaviour of the electron gas and a coupling constant analysis. AHCX and
AHBR provide a theoretically robust alternative to deal with vdW systems without relying
on ad-hoc methods and corrections, like an empirical setting of a Hubbard U parameter,
or on externally defined vdW-corrections like D3. Our hybrids may be computationally
expensive, just as all hybrids are, but their ab-initio design secure what seems (so far) to
be significant accuracy gains and thus practical value through their predictive power for
challenges in complex soft matter systems. They can help us screen materials for better
performance. We believe that our results have further underscored the potential of the
long-standing ab-initio Chalmers-Rutgers development program.

In this thesis work we also utilized extensive Python coding for automation and anal-
ysis of thermophysical properties, based on a formal lattice parameter expansion. Here
we again managed to stay clear of empirical methods, avoiding the use of standard EOS
fitting procedures. Additionally, the use of libraries such as ASE and Pymatgen was
integral in managing and interfacing with DFT calculators. Streamlining the workflow
and enhancing the efficiency of simulations performed using QE and VASP. With the use
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of Python, we created detailed schemes for the determination of the ground state struc-
ture of PVF, automating the process of mapping out the structural details and response
properties of soft matter polymers.

Most of the workflow and analysis code we created will be shared through the code-
sharing platform GitLab to encourage collaboration and reproducibility of the work. I
hope this will be a resource for the community, especially for newcomers to the field of
computational materials science.

Finally, we attempted to clarify the theoretical and practical details of the Modern
Theory of Polarization, using the Berry phase to predict the spontaneous polarization of
PVF and PVDF systems. In practice the Berry phase analysis requires careful considera-
tion of the reference state, choosing a non-polar reference configuration to assure that the
polarization calculation gives physically meaningful results. The complexities associated
with interpreting the results appropriately stems not only from the multi-valued nature of
the polarization but there is also a modelling need. Specifically we need to find a related
but completely symmetric configuration from which we can still transform (in our case
via rotation of one of the chains) back to the actual polymer isomer. Of course, one also
needs to make sure to converge the system, especially with respect to the k-point mesh,
to ensure the integration over the BZ is accurate.

5.3 Perspectives

I end this thesis by considering some future perspectives on potential directions for further
research, informed by the insights I have garnered through our work. My perspective on
possibilities reflects my interests in both deepening our understanding of fundamental
phenomena and advancing practical applications in materials science:

1. Refinement of Ground-State Analysis of PVF: The exploration of the config-
uration space in predicting the ground states of PVF could benefit from extension
with more advanced computational strategies. Techniques such as minima hop-
ping, genetic algorithms (GAs), and particle swarm optimization (PSO) represent
promising methods for navigating the complex landscape of meta-stable states. Fur-
thermore, apart from using our own intuition in guessing possible motifs, the inte-
gration of machine learning and diffusion models [189] could provide an extension to
our database of potential ground-state structures. Finally, I would be interested in
checking whether a switch to a RSH vdW-DF impacts the description of the plastic
deformation.

2. Development of Hybrid van der Waals Density Functionals: The potential
expansion of hybrid vdW-DFs that incorporate the long-range part of the Fock
exchange poses an opportunity for enhancing the RSH’s description of electronic
structures. However, we take a cautious approach to maintain a manageable number
of hybrid functionals. We believe that ensuring that each functional is robust across
a variety of material systems, maintaining a balance between accuracy and ab-
inition arguments, makes for a more reliable and user-friendly approach. Flooding
the already vast landscape of functionals with even more choices, based on detailed
optimization for specific problems, is not in line with the philosophy of the Chalmers-
Rutgers vdW-DF approach.
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3. Integration of Machine Learning with van der Waals Density Functional
(vdW-DF): The adoption of machine learning potentials could integrate the accu-
racy of vdW-DF DFT calculations within molecular dynamics simulations. Allowing
for large simulations of polymer-surface interactions and provide a pathway to more
accurately model large systems where dispersion forces are critical. This approach
could lead to large improvements in the predictive capabilities of computational
methods, particularly in complex soft-matter systems.

4. Improving Open Science Practices: I believe the future of materials science
research could be accelerated by fostering a tradition around the sharing of code
and data. While substantial discourse on this topic exists, continuous emphasis on
open science practices is important for improving reproducibility and especially for
facilitating a more collaborative research environment.
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[8] Erik Jedvik Granhed, Göran Wahnström, and Per Hyldgaard. BaZrO3 stability
under pressure: the role of non-local exchange and correlation. Phys. Rev. B, 101:
224105, (2020).

[9] Carl M Frostenson, Erik Jedvik Granhed, Vivekanand Shukla, et al. Hard and soft
materials: putting consistent van der waals density functionals to work. Electronic
Structure, 4:014001, (2022).

[10] Paul J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca,
New York, (1953). 688 pp. Illus.

[11] A. Ravve. Principles of Polymer Chemistry. Springer New York, (2012).

81



BIBLIOGRAPHY

[12] Michael Rubinstein and Ralph H. Colby. Polymer Physics. Oxford University Press,
Oxford, (2003). pp 440.

[13] E. Leivo, T. Wilenius, T. Kinos, et al. Properties of thermally sprayed fluoropolymer
pvdf, ectfe, pfa and fep coatings. Progress in Organic Coatings, 49:69–73, (2004).

[14] Robert J. Young and Peter A. Lovell. Introduction to Polymers. CRC Press, (2011).

[15] Yi-Yang Peng, Shruti Srinivas, and Ravin Narain. Chapter 2 - nature and molecular
structure of polymers. In Ravin Narain, editor, Polymer Science and Nanotechnol-
ogy, 1 page. Elsevier, (2020).

[16] S. Ebnesajjad and P.R. Khaladkar. Fluoropolymer Applications in the Chemical
Processing Industries: The Definitive User’s Guide and Databook. Elsevier Science,
(2004).

[17] Manas Chanda. Introduction to polymer science and chemistry. CRC Press, Boca
Raton, FL, (2006).

[18] W.D. Callister and D.G. Rethwisch. Materials Science and Engineering: An Intro-
duction, 8th Edition. Wiley, (2009).

[19] J. Bernstein. Polymorphism in Molecular Crystals. International Union of Crystal-
lography monographs on crystallography. Clarendon Press, (2002).

[20] G.R. Desiraju, J.J. Vittal, and A. Ramanan. Crystal Engineering: A Textbook.
Crystal Engineering: A Textbook. World Scientific, (2011).

[21] H.G. Brittain. Polymorphism in Pharmaceutical Solids. ISSN. CRC Press, (2018).

[22] Tonatiuh Rangel, Kristian Berland, Sahar Sharifzadeh, et al. Structural and excited-
state properties of oligoacene crystals from first principles. Phys. Rev. B, 93:115206,
(2016).

[23] Joel Bernstein. Polymorphism In Molecular Crystals 14. Oxford University
Press, (2002).

[24] Sarah L. Price. Predicting crystal structures of organic compounds. Chem. Soc.
Rev., 43:2098–2111, (2014).

[25] Anthony M. Reilly, Richard I. Cooper, and et al. Report on the sixth blind test
of organic crystal structure prediction methods. Acta Crystallographica Section B
Structural Science, Crystal Engineering and Materials, 72:439–459, (2016).

[26] Lars Goerigk, Andreas Hansen, Christph Bayer, et al. A look at the density func-
tional theory zoo with the advanced GMTKN55 database for general main group
thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys.,
19:32184, (2017).

[27] Clare Aubrey-Medendorp, Matthew J. Swadley, and Tonglei Li. The polymorphism
of indomethacin: An analysis by density functional theory calculations. Pharma-
ceutical Research, 25:953–959, (2007).

82



BIBLIOGRAPHY

[28] Samuel Andermatt, Jinwoong Cha, Florian Schiffmann, and Joost VandeVondele.
Combining linear-scaling dft with subsystem dft in born–oppenheimer and ehrenfest
molecular dynamics simulations: From molecules to a virus in solution. Journal of
Chemical Theory and Computation, 12:3214–3227, (2016). PMID: 27244103.

[29] Anna Helena Mazurek,  Lukasz Szeleszczuk, and Dariusz Maciej Pisklak. Periodic
DFT Calculations—Review of Applications in the Pharmaceutical Sciences. Phar-
maceutics, 12:415, (2020).

[30] Brian W Matthews. Protein crystallography and drug discovery: recollections of
knowledge exchange between academia and industry. Journal of International Union
of Crystallography, 5:428–438, (1988).

[31] Martin Karplus and John Kuriyan. Molecular dynamics and protein function. Pro-
ceedings of the National Academy of Sciences, 102:6679–6685, (2005).

[32] Joseph Kraut. How do enzymes work? Science, 242:533–540, (1988).

[33] Hans Frauenfelder, Stephen G Sligar, and Peter G Wolynes. The energy landscapes
and motions of proteins. Science, 254:1598–1603, (1991).

[34] Dagmar Ringe and Gregory A Petsko. Mapping enzyme catalysis through the pro-
tein structure database. Proceedings of the National Academy of Sciences, 82:5040–
5044, (1985).

[35] Lin Chen, Ton V. W. Janssens, Peter N. R. Vennestrøm, et al. A complete multisite
reaction mechanism for low-temperature nh3-scr over cu-cha. ACS Catalysis, 10:
5646–5656, (2020).

[36] Xueting Wang, Lin Chen, Peter N. R. Vennestrøm, et al. Direct measurement of
enthalpy and entropy changes in nh3 promoted o2 activation over cu-cha at low
temperature. ChemCatChem, 13:2577–2582, (2021).

[37] Yingxin Feng, Xueting Wang, Ton V. W. Janssens, et al. First-Principles Microki-
netic Model for Low-Temperature NH3-Assisted Selective Catalytic Reduction of
NO over Cu-CHA. ACS Catal., 1 page, (2021).

[38] Yingxin Feng, Ton V. W. Janssens, Peter N. R. Vennestrøm, et al. The role of
H+- and Cu+-sites for N2O formation during NH3-scr over cu-cha. The Journal of
Physical Chemistry C, 125:4595–4601, (2021).

[39] Yingxin Feng, Derek Creaser, and Henrik Grönbeck. Simplified kinetic model for
NH3-scr over cu-cha based on first-principles calculations. Topics in Catalysis, 66:
743–749, (2022).

[40] Lin Chen, T. V. W. Janssens, and Henrik Grönbeck. A Comparative Test of Dif-
ferent Density Functionals for Calculations of NH3-SCR over Cu-Chabazite. Phys.
Chem. Chem. Phys., 21:10923–10930, (2019).

[41] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation
made simple. Phys. Rev. Lett., 77:3865–3868, (1996).

83



BIBLIOGRAPHY

[42] K. Berland and P. Hyldgaard. Exchange Functional That Tests the Robustness of
the Plasmon Description of the van der Waals Density Functional. Phys. Rev. B,
89:035412, (2014).

[43] Julia Wiktor and Alfredo Pasquarello. Absolute deformation potentials of two-
dimensional materials. Phys. Rev. B, 94:245411, (2016).

[44] Julia Wiktor, Ursula Rothlisberger, and Alfredo Pasquarello. Predictive determina-
tion of band gaps of inorganic halide perovskites. The Journal of Physical Chemistry
Letters, 8:5507–5512, (2017). PMID: 29077408.

[45] Francesco Ambrosio, Julia Wiktor, Filippo De Angelis, and Alfredo Pasquarello.
Origin of low electron–hole recombination rate in metal halide perovskites. Energy
Environmental Science, 11:101–105, (2018).

[46] Erik Jedvik, Anders Lindman, Magnús
THór Benediktsson, and Göran Wahnström. Size and shape of oxygen vacancies and
protons in acceptor-doped barium zirconate. Solid State Ionics, 275:2–8, (2015).
17th International Conference on Solid State Protonic Conductors, Seoul, Korea,
14-19 September 2014.

[47] Vivekanand Shukla, Yang Jiao, Jung-Hoon Lee, et al. Accurate Nonempirical
Range-Separated Hybrid van der Waals Density Functional for Complex Molecular
Problems, Solids, and Surfaces. Phys. Rev. X, 12:041003, (2022).

[48] Jung-Hoon Lee, Per Hyldgaard, and Jeffrey B. Neaton. An Assessment of Den-
sity Functionals for Predicting CO2 Adsorption in Diamine-Functionalized Metal-
Organic Frameworks. J. Chem. Phys., 156:154113, (2022).

[49] Vivekanand Shukla, Yang Jiao, Carl M. Frostenson, and Per Hyldgaard. vdW-
DF-ahcx: a range-separated van der Waals density functional hybrid. J. Phys.:
Condens. Matter, 34:025902, (2022).

[50] A. M. Beale, F. Gao, I. Lezcano-Gonzalez, et al. Recent advances in automotive
catalysis for nox emission control by small-pore microporous materials. Chem. Soc.
Rev., 44:7371–7405, (2015).

[51] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, et al. QUANTUM ESPRESSO: a
modular and open-source software project for quantum simulations of materials. J.
Phys.: Condens. Matter, 21:395502, (2009).

[52] P. Giannozzi, O. Andreussi, T. Brumme, et al. Advanced capabilities for materials
modelling with quantum espresso. J.Phys.: Condens. Matter, 29:465901, (2017).

[53] I. Carnimeo, S. Baroni, and P. Giannozzi. Fast hybrid density-functional computa-
tions using plane-wave beasis sets. Electron. Struct., 1:015009, (2019).

[54] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864,
(1964).

[55] W. Kohn and L.J. Sham. Self-Consistent Equations Including Exchange and Cor-
relation Effects. Phys. Rev., 140:1133–1138, (1965).

84



BIBLIOGRAPHY

[56] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms, molecules,
and solids by the spin-density-functional formalism. Phys. Rev. B, 13:4274–4298,
(1976).

[57] David C. Langreth and John P. Perdew. Exchange-correlation energy of a metallic
surface: Wave-vector analysis. Phys. Rev. B, 15:2884–2901, (1977).

[58] K. Rapcewicz and N. W. Ashcroft. Fluctuation attraction in condensed matter: A
nonlocal functional approach. Phys. Rev. B, 44:4032–4035, (1991).

[59] David C. Langreth and S. H. Vosko. Exact electron-gas response functions at high
density. Phys. Rev. Lett., 59:497–500, (1987).

[60] K. Burke, J. P. Perdew, and M. Levy. Modern density functional theory: A tool for
chemistry. Elsevier, Amsterdam, (1995).

[61] R. O. Jones and O. Gunnarsson. The density functional formalism, its applications
and prospects. Rev. Mod. Phys., 61:689–746, (1989).

[62] Marie Dumaz, Reese Boucher, Miguel A. L. Marques, and Aldo H. Romero. Au-
thorship and citation cultural nature in density functional theory from solid state
computational packages. Scientometrics, 126:6681–6695, (2021).

[63] J. P. Perdew. Electronic structure of solids ’91. Akademie Verlag, Berlin, (1991).

[64] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange.
J. Chem. Phys., 98:5648, (1993).

[65] Richard M. Martin. Electronic Structure: Basic Theory and Practical Methods.
Cambridge University Press, (2004).

[66] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der
Physik, 389:457–484, (1927).

[67] Eberhard Engel and Reiner M. Dreizler. Density Functional Theory: An Advanced
Course. Springer Berlin Heidelberg, (2011).

[68] C. C. J. Roothaan. New developments in molecular orbital theory. Reviews of
Modern Physics, 23:69–89, (1951).
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