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Abstract

Many edge applications rely on expensive Deep-Neural-
Network (DNN) inference-based video analytics. Typically, a
single instance of an inference service analyzes multiple real-
time camera streams concurrently. In many cases, only a frac-
tion of these streams contain objects-of-interest at a given
time. Hence, it is a waste of computational resources to pro-
cess all frames from all cameras using the DNNs. On-camera
filtration of frames has been suggested as a possible solu-
tion to improve the system efficiency and reduce resource
wastage. However, many cameras do not have on-camera
processing or filtering capabilities. In addition, filtration can
be enhanced if frames across the different feeds are selected
and prioritized for processing based on the system load and
the available resource capacity. This paper introduces CVF,
a Cross-video Filtration framework designed around video
content and resource constraints. The CVF pipeline lever-
ages compressed-domain data from encoded video formats,
lightweight binary classification models, and an efficient pri-
oritization algorithm. This enables the effective filtering of
cross-camera frames from multiple sources, processing only
a fraction of frames using resource-intensive DNN models.
Our experiments show that CVF is capable of reducing the
overall response time of video analytics pipelines by up to
50% compared to state-of-the-art solutions while increasing
the throughput by up to 120%.
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1 Introduction

Video cameras are ubiquitous with applications ranging from
autonomous driving, to surveillance heavily relying on video
processing [1, 2]. To handle the enormous size of the gener-
ated video workloads, processing video feeds on a remote
cloud is not feasible due to network latency for many ap-
plications. This has led to an increased interest in using
edge clouds deployed closer to the users for the analytics
instead [3]. However, one problem with using edge clouds
is the fact that most modern video analytics is based on
computationally heavy DNN models for tasks such as ac-
tion recognition, motion tracking, and object detection [4].
Accurate DNNs are costly to use, particularly on edge clus-
ters with fewer GPU resources compared to data centers.
To reduce the load on the edge, many techniques to filter
frames that do not contain “interesting” information for the
application have been suggested [5-7].

Frame filtration requires the filter to be context-aware of
what is relevant for an application, e.g., for traffic cameras,
non-moving objects such as trees on the side of the road
are not interesting. Some solutions rely on binary classifiers
to decide if a frame should be filtered or not [7]. However,
binary classification-based filtration is not adaptive to the
resources and workload variability on the edge, e.g., due
to increased traffic, on-car cameras produce dynamic loads
on edge GPUs. Prioritizing frames, especially when certain
streams contain safety-critical information, becomes crucial
given workload variability.

This paper introduces CVF, a Cross-Video Filtration frame-
work for filtering video streams from multiple cameras on
the edge. CVF employs frame differencing, lightweight ob-
ject classification, and prioritization techniques designed
to effectively handle frame filtering from multiple cameras.
CVF manages stream oversubscription on a processing node,
forwarding only relevant or prioritized frames for further
processing to downstream, heavier DNN models. Our con-
tributions can be summarized as follows;

1. We introduce an enhanced single-stream filtration tech-
nique based on the used video codecs, implementing
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our filtration using H.264 codecs, one of the most com-
monly used codecs for streaming cameras.

2. We design CVF, a Cross-Video Filtration framework for
edge systems capable of adapting the level of filtration
based on the available resources and the current load
from a video streaming system.

3. We introduce a novel method to rank video streams
and frames for prioritization, processing based on this
ranking and resource availability, offering differenti-
ated response times according to frame priority.

2 Background
2.1 Edge Computing

Edge computing deploys a set of small-scale resources at
the network edge, closer to the applications. Applications
can then offload part of their computations to these edge
resources [3]. Video analytics on the edge provide better com-
munication latency while reducing the need to transfer large
amounts of data over the network to remote data centers.
Hence, edge clouds have been suggested as the infrastruc-
ture to use for, e.g., AR and VR applications [8, 9], DNN serv-
ing [2, 4], and transcoding of volumetric videos [10]. On the
downside, edge servers are typically small-scale with fewer
resources compared to large-scale cloud environments [11].
This calls for efficient edge resource usage.

Edge resources can range from small “wimpy” nodes such
as Jetson Nanos [12] and TPUs to FPGAs [13, 14], to clusters
with powerful GPUs such as the A100s [15]. In this paper,
we target the later infrastructures, where full-fledged GPUs
are deployed at the edge.

2.2 Video Analytics and Filtration on the Edge

The problem of analyzing video feeds on the edge has re-
cently received increased attention from the research com-
munity [16-18]. Previous works have focused on, for ex-
ample, optimizing DNNs to run on smaller GPUs [12, 19];
designing offloading techniques between small devices and
more powerful edge resources [20, 21]; and on scheduling
different DNNs based on the workload [7]. Many of these
techniques focus mostly on optimizing the machine learning
pipeline or algorithms to enable the offloading to the edge.
However, one aspect that remains very important, especially
for edge applications with massive video data generated per
second, is filtration [5-7]. Filtration aims to reduce the over-
all computations of the edge application by removing some
of the frames from video feeds that do not contain “objects-
of-interest”. Filtration is crucial when computationally heavy
processing tasks such as pose estimation, semantic segmen-
tation, and action recognition are involved.

While for some cameras, some filtration work can be done
on cameras [5, 6] making use of the local computational
power of cameras or small attached edge accelerators, many
cameras lack these capabilities. In addition, local filtration
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does not consider what other camera feeds contain. In ad-
dition, on-camera filtering algorithms are much harder to
update in real wide-area deployments. Other state-of-the-art
techniques focus on training specialized per-stream neural
network-based filters [7]. In this paper, we argue that for
many applications, it is important to do the filtration across
all the video streams from all cameras considering the global
load on the edge devices, along with the video content.

2.3 Understanding Video Frame Compression

One key observation that CVF makes use of is that not all
frames are created equal in a video stream. Video streams
employ video codecs for compression to optimize the size
of video content for efficient transmission over networks,
significantly reducing bandwidth requirements. In addition,
compression enhances storage capabilities and facilitates
smoother playback across various devices. In CVF, we make
use of this fact, focusing our work on the H.264 codecs [22],
the most popular codec by far today.

Figure 1 displays the various frame types in an H.264 coded
video: the I-frame, often referred to as a keyframe, presents
a complete, independent image unaffected by neighboring
frames temporally, employing solely intra-frame coding for
compression [22]. Conversely, a P-frame represents a pre-
dicted image based on preceding (historical) frames, captur-
ing only the alterations from those frames. Meanwhile, a bi-
directional predicted frame (B-frame), utilizes content from
both preceding and subsequent (future) frames. I-frames lack
temporal dependence and B-frames usually achieve the high-
est compression rates among frame types. However, certain
scenarios may lead to P-frames outperforming B-frames in
compression efficiency[23].

]
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Figure 1. A sequence of frames with different types in a
video encoded using H.264 format.

A sequence of video frames starts with an I-frame, fol-
lowed by P- and B-frames forming a Group of Pictures (GOP).
I-frames act as immediate decoder refresh points to ensure
subsequent frames remain independent of preceding ones [22,
23]. A Video frame contains many pixels based on their reso-
lution. Instead of compressing individual pixels, video codecs
utilize square blocks of pixels within a frame known as mac-
roblocks (MBs) for compression purposes. Video codecs em-
ploy macroblocks as the main unit for compression.

Within an encoded frame, motion vectors (MVs) depict
the direction and distance of motion within the frame con-
cerning preceding or subsequent frames. They signify the
movement of macroblocks between frames, crucial for effi-
cient inter-frame compression by tracking motion dynamics.
These details belong to the compressed domain of a video
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frame. Upon decoding, the frame’s bitmap demonstrates the
pixel domain, representing an independent video frame.

24 Why CVF?

Our work is driven by two industrial real-time use-cases. Our
first use-case is an industrial automation use-case where we
aim to automate a large factory using hundreds of ceiling
and on-robot cameras to “sense” the factory floor environ-
ment, then based on edge-analytics using DNNs, schedule
the path of ground transportation robots in real-time. In this
use-case, one simple, but rather costly, solution could be to
assign one GPU per stream. However, by deploying CVF, we
aim to reduce the total number of GPUs required to auto-
mate the factory by allowing multiple (up to 15) streams to
concurrently run on an edge GPU.

Our second use-case is a 5G-enabled traffic management
application where the aim is to use cameras mounted on vehi-
cles, and from fixed road cameras to help collision-avoidance
in assisted-driving vehicles. In this use-case, the cameras
offload the computations to the edge, which communicates
directly with the vehicles using a 5G network to send warn-
ings based on the video analytics. Notably, in both use-cases,
the number of video streams is not fixed as the number of
cameras in the range of an edge can increase or decrease
based on the total number of vehicles or on-robot cameras in
the area. For both use-cases, the the end-to-end tail latency
of the computations needs to be less than 100ms.

While for many applications the spatial density of cameras
can be low, with only a few cameras at a given area, other ap-
plications such as the factory floor automation use-case have
a high camera density, with ceiling cameras mounted every
5 to 10 meters, and cameras installed on tens-to-hundreds
of robots with a factory typically having a few hundred
robots [24]. In these applications, video feeds from all cam-
eras need to be considered before deciding which frames
need to be filtered. Many of the camera feeds will overlap,
and many others will have no activity for some time (no
human or robot in the scope of the camera), and can thus
be filtered altogether. However, since this is a safety-critical
system, and filtration can have false negatives, it is important
to make sure that the system allows some frames from the
filtered feeds to be processed using the more accurate and
heavy DNN models. This is what we aim to achieve by de-
signing CVF. To the best of our knowledge, none of today’s
state-of-the-art approaches are capable of solving the prob-
lems of varying numbers of cameras, frame-prioritization,
and resource-aware filtering.

3 CVF: Cross-Video Filtration Pipeline

Figure 2 shows the CVF pipeline. This pipeline selectively
filters frames in compressed and pixel domains using five
primary modules: Partial Decoding, MV Filtering, Frame
Ranking, Full Decoding, and Binary Classifier.

233

MMSys *24, April 15-18, 2024, Bari, Italy

Partial Decoding

P-, B-Frames?

Y Mv Filtering

no

‘ Full Decoding H Y Frame Ranking ‘
l g fe?{uest more frames
‘ Y Binary Classification

1
Video Pipeline

Figure 2. CVF pipeline for cross-video filtration on the edge
(CVF modules are represented with the Y icon).

3.1 Partial decoding and MV Filtering

CVF performs partial decoding with a primary focus on ex-
tracting Motion Vectors in the initial step. This approach sig-
nificantly reduces computational complexity during decod-
ing [25], considering that numerous frames may be filtered
out and do not require full decoding. The partial Decoding
module receives frames from multiple video feeds and per-
forms lightweight extraction of their compressed-domain
attributes, specifically MVs.

In the next step, MV Filtering analyzes and identifies rele-
vant MVs within the frames, assessing their activity levels to
filter out frames with minimal or no activity. P- and B-frames
capture temporal differences between the frame being pro-
cessed and its historical or future frames. MVs represent the
movement of MBs in the scene and can offer insights into
the activity within the frame. CVF seeks to detect the frame
activity by analyzing MVs within the frame before decoding
the entire frame. This approach optimizes processing by se-
lectively decoding frames according to their activity level,
thereby enhancing the performance of the constrained edge
servers and improving throughput as a result.

CVF computes the relative fraction of MVs within a frame
to assess its activity level. Frames with low relative activity
are filtered out do not undergo a complete decoding and are
entirely skipped, optimizing system resources. Despite the
numerous MVs within a frame, many might not pertain to ob-
jects of interest. Hence, it is crucial to consider only relevant
MVs when determining the relative activity of frames. CVF
proposes filtering out irrelevant MVs unrelated to objects
of interest using two main mechanisms: 1) Repetitive MV
Exclusion Filtering (RMVEF) and 2) Median Filtering (MF).
Figure 3 depicts the role of MV Filtering within the complete
hierarchy of the CVF filtration pipeline. Figure 4 provides
an illustrative example to demonstrate how MV Filtering
module performs in CVF to filter out frames and accurately
calculate relative activity within a frame.

RMVEF. Certain spatial areas in video frames, often contain
MVs irrelevant to the primary contents of the frames, e.g.,
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Figure 3. CVF in Action. Decoded images are not available during execution, shown here for representation of CVF performance.

areas with no objects of interest such as skies or trees in an
outdoor scene. CVF employs a Binary Bitmap of Excluded
MVs (BBEM) to identify and exclude these MVs. The BBEM
represents areas where MVs exist but does not correspond
to objects of interest, depicted as black pixels in the bitmap
(See Figure 4b). CVF maintains and updates a BBEM for
individual video feeds, marking areas where irrelevant MVs
persist. RMVEF utilizes the BBEM to filter out non-relevant
MVs, ensuring that the remaining MVs likely correspond
to objects of interest (See Figure 4c-f). Figure 4d illustrates
yellow arrows are MVs within the frame that each represent
the past and the current location of an MB within the frame
compared to the historic or future frames. The creation of
MVs from the perspective of video codecs does not precisely
capture the real motion of objects of interest within a frame.
Also, a single MV might not denote significant activity within
an object, but a collection of MVs can represent object-related
actions. Sparse, dispersed MVs in a frame generally signify
noise and necessitate filtering.
MF. CVF creates a binary bitmap from frame MVs, wherein
each pixel denotes an MB within the frame. Relative pixels
in the MV map to MV starting and destination points are
marked as 1 (black areas), and the rest of cells in the MV map
without MVs as 0 (white areas) in Figure 4e and Figure 4h.
To filter out noise and sparse MVs, CVF applies MF using
a 3 X 3 sliding window over the MV map. Median values
within the window replace pixel values in the MV map. MF
filters an MV if both its relative starting and destination
pixels in the MV map are smoothed to zero (white). Figure 4i
illustrates the final relevant MVs remaining after applying
the MV Filtering module to the raw bitmap of the frame.
It demonstrates that RMVEF excludes MVs independent of
objects of interest, while MF filters out sparse MV noises
(highlighted MBs by red circles in Figure 4f are filtered out
in Figure 4h when performing MF mechanism).
Frame Filtering. CVF filters frames based on the non-zero
pixel percentage in the MV map after filtering. The threshold
adapts for each camera to ensure relevance across scenes.
The threshold-based approach aligns with frame filtering
and background subtraction techniques in related literature,
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aiding in excluding frames lacking significant activity [5, 26].
Figure 5a illustrates the MV Filtering module eliminating all
MVs despite the presence of numerous initial MVs within
the frame. As a result, no MVs remain in the frame after
MV Filtering, leading to the exclusion of the frame from the
execution of subsequent modules in the CVF pipeline and the
video pipeline after partial decoding. In contrast, Figure 5b
portrays a distinct frame sourced from the same video feed.
In this case, relevant MVs related to an object of interest
(e.g., a person) remain after MV Filtering. Consequently, the
frame proceeds through the next corresponding module of
the filtration pipeline under the conditions.

3.2 Frame Ranking and full decoding

After MV Filtering, the Frame Ranking module aims to prior-
itize which frames and video feeds get processed on the edge
GPU. A frame with a higher priority has a higher ranking
for processing. A batch of received frames from multiple
stream video feeds compete based on their ranking for GPU
resources. The number of compute instances, denoted by N,
equals the maximum concurrency level for the video pipeline
on a given GPU, i.e., how many frames can be processed by
the GPU with heavier models on average without violating
latency constraints. This value is learned during operation.

The video pipeline waits to receive a batch of N frames
for batch processing with concurrent compute instances of
the video analytics pipeline on the GPU. We demonstrate
how a proper concurrency level can be determined for a
video pipeline on a GPU in the experimental section. If the
load is much larger than N, then a large number of frames
must be filtered or delayed. The top N frames in the ranking
list are prioritized on the GPU. CVF prioritizes frames from
multiplex stream video feeds based on activities within the
frames. Frame Ranking enables the processing of relevant
frames, i.e., they have a high level of activity and contain
relevant objects. The Frame Ranking module bases priorities
on two factors: the relative activity within a frame (move-
ment) and the time elapsed since the video pipeline processed
a frame from the stream video feed by a compute instance.
The first factor prioritizes video feeds with more activity for
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Figure 4. An illustrative example of MV Filtering in CVF.
Decoded images are not available during CVF execution.

frame processing, while the second ensures the allocation
of compute resources to frames from less active feeds. The
priority, Rs, for each frame is calculated using Equation 1:

Ri=ax AL+ px AL (1)

where,
a+f=1]0<a<1&0<pf<1 (2)
0< Al <1, (3)

and A! is the relative activity of the current receiving frame
from video feed s at time ; A is the time elapsed between
the last time a frame was processed and the time the rank is
calculated, i.e. t; alpha and f respectively denote a coefficient
to give weight to relative activity within a frame and total
elapsed time that a frame from the same stream video feed
has not been processed.

The Frame Ranking module calculates the priority of indi-
vidual frames using Equation 1 and arranges them accord-
ingly to filter out excessive frames with lower rankings. Once
the frames are ranked, the Full Decoding module constructs
a frame bitmap using the video codecs, utilizing all frame
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elements, including MVs and residual maps. Within the filtra-
tion pipeline, CVF decodes all I-frames and any P-/B-frames
not filtered by preceding modules. The resulting bitmap from
full frame decoding is used for pixel-domain assessments by
the Binary Classifier and potentially by the video analytics
pipeline. Figure 3 illustrates the role of the Frame Ranking
module within the hierarchy of the CVF filtration pipeline.

3.3 The Binary classifier

Upon receiving an I-frame from a video feed or if a P- or
B-frame passes the MV filtering stage, the frame undergoes
analysis using a binary classifier after complete decoding.
This step aims to discern the presence of specific objects
of interest within the frame. For example, in traffic analyt-
ics, identifying cars constitutes a key object of interest. The
binary classifier, a lightweight model, specializes in recogniz-
ing the existence of predefined object classes within frames.

The knowledge about the objects of interest is typically
provided to the binary classifier during an offline training
phase. The binary classifier is trained using a large labeled
dataset containing annotated examples of frames with and
without the objects of interest (i.e., "yes" when an object
of interest is present or "no" when there are no objects of
interest in the frame). The binary classifier learns to distin-
guish between frames containing the objects of interest and
those that do not by analyzing various features present in
the frame. These features may include shapes, textures, or
other visual characteristics indicating object presence.

The output of the binary classifier signifies the existence
of an object of interest with a ‘yes’ or ‘no’ response. However,
it does not provide granular details about detected objects
such as type or location; its sole purpose is to confirm object
presence within the frame. Frames yielding a ‘no’ response
from the binary classifier are filtered out by CVF.

(b) Unfiltered Frame
/_ Before Filtering
Skhih

(@) Filtered Frame
4 efore Filtering

3

Figure 5. Example of MV filtering in CVF. Decoded images
are not available during CVF execution.
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Application developers configure the object classes within
the binary classifier based on the requirements of the video
analytics application. For instance, classes might include dis-
tinctions like Humans or No Humans, or Robot or No Robot
categories. This binary classification step is crucial in the
video filtering pipeline, identifying frames with objects of in-
terest for subsequent in-depth analysis based on the specific
objectives of the video analytics application.

4 Evaluation

We evaluate CVF under various workloads and scenarios,
measuring its overhead costs, accuracy, and performance
while comparing it with two state-of-the-art solutions.

4.1 Experimental Setup.

Hardware Setup. All experiments were conducted in an em-
ulated edge environment with 4 servers, including 3 servers
with CPUs and one server equipped with a compute acceler-
ator. Kubernetes V1.22.13 with VM compute instances from
Google Cloud [27] were used to emulate the edge cluster. We
used three E2 instances with 2 vCPUs and 7.5 GB of memory
for edge servers without compute accelerators. We also used
an N1 compute instance from Google Compute Cloud with 2
vCPUs, 7.5 GB of memory, and one Tesla V100 GPU for the
accelerator-equipped edge server.

Configuration. On the CPU servers, we simulate stream-
ing video feeds using GStreamer [28] and the RTP protocol
over UDP [29]. Video feeds are emulated on a server with
a CPU. We use mv-extractor [30] to perform partial video
decoding and extracting MVs from encoded frames using
H.264 and MPEG-4 formats [31]. We deploy the filtration
and the video pipeline on GPU servers.

Video Pipelines. We evaluate the performance of CVF
using DEKR pose estimation DNN model [32] in the first two
experiments and using the Amber Alert [33] video analytics
pipeline in the third experiment.

Dataset. We evaluate the performance of the proposed
filtration method on six captured videos from fixed-angle
cameras in different locations. Table. 1 provides details of
the dataset with different temporal activities. According to
the table, captured videos in the dataset have variable frame
rates with activities. For example, in Targhee, only 15% of
frames with activities require processing due to high tempo-
ral changes. In contrast, Factory captures 82.5% of frames
with activities that must be processed from an indoor ceiling
camera in a factory setting.

Evaluation Criteria. We measure throughput according to
the end-to-end processing latency. The total response time
of a single frame includes the latency of decoding, queu-
ing, filtration overhead, and pipeline execution. Throughput
demonstrates the number of frames per second that can be
completed within a second. We also measure the ratio of de-
layed frames by counting the number of frames that have a
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response time longer than the latency constrained, i.e. 100 ms.
Response time and GPU utilization are two other evaluating
metrics, that explain how fast and how heavy is CVF com-
pared to other baseline filtration methods. Precision explains
what ratio of frames with activities are correctly processed
through the pipeline compared to the total number of pro-
cessed frames. Recall refers to the ratio of frames processed
with activities over the total received frames with activities.
F1-Score represents the harmonic mean of precision and re-
call in order to evaluate true positive, false positive, and false
negative altogether on accuracy.

Baselines. We evaluate CVF with two baseline methods:
(1) FilterForward [6] and (2) NoScope [7]. FilterForward is
a system designed for real-time and cloud-based video an-
alytics, efficiently identifying and offloading only the most
relevant video sequences for further analysis. It employs a
localized binary classifier with a lightweight architecture for
detecting objects within the original video frames. NoScope
utilizes highly efficient difference detectors to highlight tem-
poral changes across frames in video streams. NoScope en-
ables fast detection of frames with objects and activities
against static frames devoid of objects.

Video Resolution Activity in Frames | Camera
Frames (%)

Factory 720480 82.5% 1920 | Indoor

Targhee [34] 720x480 15% 3600 | Outdoor
Village [35]| 720x480 46.6% 3600 | Outdoor
Museum [34]720x480 37.5% 3600 | Outdoor
Bar [37] 720%x480 47.5% 3600 | Outdoor
Resort [38] | 720%x480 18.8% 3600 | Outdoor

Table 1. Details of the dataset used for stream video feeds.

4.2 Single-Stream Filtration

In this experiment, we aim to measure the accuracy and per-
formance cost of CVF compared to the two baseline methods
when processing frames from a single stream video feed.

Figure 6 shows the distribution of GPU time spent pro-
cessing different parts of the filtration pipeline as well as
the video pipeline. The percentages denote the average GPU
time spent on each part divided by the total GPU activity
time within a time window. Because there is only one stream
that requires GPU processing, the GPU does not get fully
saturated in all scenarios. The figure shows that CVF by
far imposes lower overhead compared to baseline methods
where 98% of the GPU time goes for processing video pipeline
compared to 94% of GPU time in baseline methods when a
single feed generates the workload. This is because baseline
filtration methods fully perform in the pixel domain while
CVF performs most of its evaluation in the compressed do-
main. CVF exhibits three-fold and two-fold higher accuracy
in filtering out inactive frames compared to FilterForward
and NoScope, respectively. Further investigation will be con-
ducted in subsequent experiments.



CVF: Cross-Video Filtration on the Edge

Figure 7a-7c demonstrates the accuracy of CVF compared
to the baseline methods in filtering out frames without any
interesting activities. The error bars in the figures represent
the standard error of the mean for accuracy. We annotated
frames demonstrating the movement of objects of interest as
relevant frames, while the remainder were deemed unattrac-
tive frames. Frames exhibiting minimal or no movement in
the objects of interest, or frames devoid of such objects, were
classified as unattractive frames. The accuracy of frame fil-
tration is calculated based on the fraction of unattractive
frames and frames with interesting activities.

[ Decoding
[ Filtration Overhead

I Frames with Activities
M Frames without Activities

FilterForward

NoScope

[¢] 20 40 60

GPU Time Usage

80 100

Figure 6. Average fraction of GPU usage for different parts
of filtration and video analytics pipeline in different video
filtration methods where there is a single stream video feed.

Figure 7c shows that CVF provides better precision com-
pared to both baseline methods in all videos in the dataset.
NoScope performed well when temporal differences mostly
caused a change in the activities within the frame. Otherwise,
it performs poorly if temporal differences within frames are
caused by changes in other parts of the scene that do not con-
tain any objects of interest (See an example in Figure 8). Envi-
ronmental conditions, time, and location state all contribute
to this phenomenon. Factors like wind or lighting changes
can lead to unattractive temporal alterations in frames. This
indicates that solely relying on frame differences to filter out
unattractive frames is not feasible.

Figure 8a shows an example scene from the Bar video,
where a surveillance camera is placed in a corner of a street
in front of a bar. There is a sidewalk along a street as well as
several palm trees, two fans, and many more objects. This
video was recorded on a stormy day that caused the shaking
of palm trees and other light objects. Also, cars temporarily
and often enter the camera’s view when crossing the street.
The fans were turned on and spinning when the video was
shot. All these lead to frequent and varying temporal changes
in the frames that are not because of a change in an object
of interest. Therefore, NoScope had the worst precision for
Targhee or Bar videos compared to other methods.

Figure 8a shows another example scene from the Resort
video in the dataset where there is a pool and people are
relaxing around it. As a result, people do not move in most
of the video frames. This becomes a bottleneck if filtration
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counts completely on binary object classifiers in such sit-
uations where objects of interest, i.e. person, are present
within the frame but do not have any activities. This bot-
tleneck leads FilterForward to have the worst precision for
Village and Resort videos compared to other methods.
Figure 7b depicts that NoScope does not have good perfor-
mance in recall metric because it missed a larger fraction of
frames with activities for processing by the pipeline, i.e. false
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negatives. In more dynamic videos, NoScope exhibits poorer
performance as it struggles with the challenge of using a
well-tuned threshold to filter out frames lacking activities
(as demonstrated in Figure 8a). FilterForward struggles to
effectively filter out frames containing static objects of in-
terest, as illustrated in Figure 8b. CVF provides the lowest
false negatives and the best values for recall since it uses
both temporal difference and a binary object classifier for
filtration. Also, Figure 7c demonstrates that CVF’s F1-score
outperforms baseline filtration methods in accuracy. In con-
trast to baseline filtration methods, CVF manages to filter out
frames that are not involved in objects of interest accurately
by performing a light-weight compress-domain mechanism
without the need for full frame decoding.

4.3 Cross-Stream Filtration

In this section, we perform a series of experiments where
a GPU-enabled edge server receives frames from multiple
streaming video feeds. We test with a varying number of
streams, for runs with more than six streams, we reuse some
of the videos, time-shifted. These experiments aim to study
the performance of CVF for filtering out unattractive frames
where there are incoming frames from cross-videos and the
compute capacity on the edge server is constrained. Thus, it
is important not only to filter the video based on the content
but also based on the limited computing capacity of the edge.

Figure 9a-9d illustrates different performance criteria with
multiple streams of videos processed on the same edge server
and no frame filtration. Figure 9a shows that throughput in-
creases with the number of streams of video crossed on the
same edge server. If the compute capacity exceeds available
resources, throughput drops significantly (i.e., with 16 or
more stream feeds). Additionally, Figure 9b shows that pro-
cessing an uncontrolled number of frames on an edge server
can result in longer response times and delayed frames. Fig-
ure 9c illustrates that longer response times cause latency
violations when there are eight or more videos on an edge
server with a V100 GPU and no frame filtration is performed.
For instance, Figure 9b shows that over 80% of frames are de-
layed when the edge servers receive frames from 16-stream
video feeds with no filtration.

Figure 10a-10d evaluates the use of concurrent container
instances of the video analytics pipeline executing in par-
allel utilizing the Nvidia MPS feature which enables GPU
sharing among different applications. The containers are
referred to as compute instances. This figure represents the
average performance of different compute instances on the
edge server over a different number of streams of video.
The first observation is that the average response time in-
creases with the increase in the number of compute instances
from 6 to 9. When there are 7 compute instances, the best
response time and throughput are achieved. Similar to Fig-
ure 9a, throughput increases when we increase the number
of compute instances from 6 to 7. However, throughput drops
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significantly when there are eight or, even worse, nine com-
pute instances on the edge server. This is because the edge
server is overutilized. In general, 7 compute instances ensure
the highest throughput, and CVF selects it for edge servers
with V100 GPUs, while this number of instances also largely
guarantees a response time within the latency constraint.

Figures 11a-11d depict the execution time of different
parts of the pipeline for CVF compared to the baseline meth-
ods over different numbers of streams of video crossed on
the same edge server. These figures reveal that the process-
ing overhead of the baseline filtration pipelines is higher in
contrast to CVF when multiple video streams traverse an
edge server. This disparity arises because baseline filtration
methods cannot filter frames based on available compute
resources. Consequently, it leads to unexpectedly prolonged
response times due to over-utilization. Furthermore, all mod-
ules in baseline filtration pipelines operate in the pixel do-
main, requiring complete decoding of incoming frames and
processing using heavier pixel-domain components. CVF
outperforms baseline methods in response time for process-
ing multiple video streams at the edge.

Figure 12a shows the throughput across different numbers
of video streams as the input workload for an edge server.
The diagram demonstrates that CVF achieves the highest
throughput compared to baseline methods as the number
of streaming video feeds increases. However, in baseline
filtration pipelines, throughput significantly decreases with
more than twelve video feeds multiplexed as input workloads
on an edge server. Similarly to the observations in Figure
7c, Figure 12b demonstrates the superior accuracy of CVF
compared to the other two baseline filtration methods.

Figure 12c illustrates the fraction of filtered-out frames
and the fraction of delayed frames over different numbers
of streams on an edge server. The first finding is that the
baseline methods filter out frames regardless of the num-
ber of receiving frames (i.e., the number of stream video
feeds) in the edge server, and as a result, NoScope and Fil-
terForward methods filter out almost the same percentage
of frames in different experiments on average. On the other
hand, CVF method filters out a larger fraction of incoming
frames when it receives more frames, depending on resource
availability. Therefore, the percentage of delayed frames
dramatically increased with the increase in the number of
stream video feeds, while the percentage of delayed frames
increased smoothly when the edge server received frames
from a larger number of stream video feeds.

4.4 Filtration in Different Pipelines

This section aims to evaluate the effectiveness of the CVF
pipeline in filtering frames lacking significant activity and
eliminating excessive frames for more complex video pipelines
with multiple components. We utilize the Amber Alert video
pipeline, consisting of decoding, preprocessing, DNN object
detection, face detection, and car detection components.
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Figure 11. Stacked plot comparing response time and la- methods on Tesla V100 GPU with varying stream numbers.

tency of different components of the proposed and baseline

filtration methods over different numbers of streams. ) ) ) )
increase in throughput when employing CVF as the filtration

Figure 13a illustrates the overall throughput on an edge pipeline, particularly under heavier workloads from concur-
server equipped with a V100 GPU for the proposed and base- rent video feeds. Conversely, NoScope and FilterForward
line filtration methods. The graph demonstrates a consistent experience a notable decline in overall throughput with 20
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Figure 13. Evaluating the Amber Alert pipeline across vary-
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stream video feeds, showing only marginal improvement
when handling 16 stream video feeds.

Figure 13b evaluates the computational load on the GPU
imposed by different filtration pipelines when handling vary-
ing numbers of stream video feeds. It demonstrates that the
baseline methods, NoScope and FilterForward, impose sig-
nificantly higher GPU loads compared to CVF. The load
increases linearly with more concurrent streams, revealing
scalability limitations in the baseline methods.

The inefficiency of the baseline approaches stems from
their need to decode all incoming frames and employ compute-
intensive methods, such as binary classification or heavy
object detection, across every frame in the pixel domain.
Conversely, CVF utilizes a lightweight mechanism in the
compression domain, bypassing the necessity to decode all
frames and conducting pixel-domain evaluation solely on
frames relevant to the GPU compute capacity. As a result,
the computation imposed by the CVF filtration pipeline is
minimally affected by the incoming frame rate, focusing
on additional computation in the compression domain and
evaluating motion vectors of frames.

The increased GPU overhead for frame filtration in the
baselines renders them impractical for scalability, resulting in
lower throughput and more delayed frames (See Figure 13c).

5 Related work

To reduce the computational load on GPUs, many approaches
have been proposed in the literature. One such method is to
use compressed DNN models for video analytics and image
processing with different depths and input sizes compared
to the original model. The compact versions require less
computation at the expense of accuracy [39, 40].

In addition, there are a few proposed techniques for video
filtration. Hu et al. presented a filtering system for video
analysis applications based on user-defined queries [41]. For
instance, the user defines "a person approaches a car" as a
filtering query. The main applications of user-defined query
filtering methods are video data storage and querying. Li
et al. [5] presented a real-time on-camera frame filtering
method for video analytics called Reducto. Reducto enables

Ali Rahmanian, Siddharth Amin, Harald Gustafsson, and Ahmed Ali-Eldin

adaptive filtering decisions according to video content and
query accuracy. It queries by utilizing previously unused
resources to perform on-camera frame filtering. However,
most cameras today cannot run these filtering algorithms
limiting the usability of these approaches. In addition, it re-
quires that each camera is configured with any new changes
to the context of the application. Finally, on-camera filtering
does not keep the filtered frames for offline analysis.

Another technique used for filtering is the usage of bi-
nary classifiers. Canel et al. presented FilterForward [6] as
an edge-based filtration method that extracts features and
finds relevant frames for processing using a special type of
binary classifier. Tchaye-Kondi et al. presented, SmartFilter,
an edge-to-cloud filtering method for video analysis [26].
SmartFilter uses a fast and light-weight binary classifier to
filter out frames without enough activities. Kang et al. intro-
duced NoScope [7], an inference-optimized querying system
to reduce the computation cost of video analysis, Given an
input video, a target object, and a reference network, No-
scope searches for a cascade of specialized models for object
detection and difference detectors for filtering out irrele-
vant frames. NoScope achieves better speed-ups compared
to binary classifications for frame filtering.

6 Conclusion

In this paper, we introduce CVF, a cross-video filtration
pipeline for saftey critical systems such as factory automa-
tion. CVF filters frames across video feeds from hundreds of
cameras efficiently, reducing the overall computational load
of edge video analytics with heavy DNNs. CVF facilitates
lightweight filtration solutions by analyzing frames within
the compressed domain through partial frame decoding. CVF
prioritizes frames and feeds based on activity in the frames
detected via MVs from the compressed domain, based on
the presence of objects of interest, and based on the time
since the video stream has been last considered. Our results
show that compared to state-of-the-art filtration techniques,
CVF can reduce the overall response time of the stream pro-
cessing by almost 50% and increase the throughput by up
to 120% compared to the state-of-the-art while maintaining
the accuracy and precision of the analytics framework. To
the best of our knowledge, there are no attempts to filter out
irrelevant frames based on resource availability when the
video analysis pipeline receives frames from several cameras.
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