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Blind Estimation of Sound Coloration in Rooms
Peter Mohlin

Department of Architecture and Civil Engineering
Chalmers University of Technology

Abstract

A common problem in sound reinforcement systems consisting of one or more
microphone-amplifier-loudspeaker channels is the sound coloration caused by
the repetitive amplification of strong frequency components in the loudspeaker-
microphone transfer function(s). For hidden systems, such as certain reverbera-
tion enhancement systems, acoustic feedback, along with other causes for sound
coloration, risk compromising the impression of a natural sounding acoustic
environment. Therefore, in this thesis, a methodology for blind estimation of
sound coloration is developed and evaluated. Depending on the room type and
various other assumptions, the damping distribution of a room will follow a
specific ”reference distribution,” i.e. any deviation from the distribution should
indicate sound coloration. Using one microphone placed in the audience area,
blind estimation of sound coloration is achieved by computing decay times of
non-harmonic components in the time-frequency domain. The results show
that the computed damping distributions agree well with the chi-square distri-
butions at low system gains. As the system gain increases, the distributions
are shifted toward lower damping constants, and their shapes deviate more and
more from the reference distribution, thus, giving a clear indication of sound
coloration. The suggested objective measures show that deviations from the
reference damping distribution can be detected at substantially lower system
gains compared to results of related listening tests where audible coloration
is evaluated. Thus, it is safe to conclude that the proposed methodology for
detecting and classifying sound coloration performs well for the studied cases.
Further research is needed to optimize its robustness when using different room
types, system configurations, and so on.
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sound coloration, damping constants, distributions, spectrogram, objective
measures, time-frequency analysis, reassignment, audibility of tonality, pure
tones, time resolution
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Chapter 1

Introduction

1.1 Background

In many situations, it is desirable to use sound reinforcement systems (SRSs)
to amplify the sound presented to audiences. The source material is often
music (e.g. a symphony orchestra, rock band, a singer supported by playback,
etc.) or human speech. With the technology at hand today, an SRS can be
configured in virtually any way imaginable. Digital signal processors (DSPs)
which operate in real-time enable advanced signal processing to add various
”effects” to the source material. Examples of such effects are delays, reverbs,
flangers, phasers, and so on. Also, DSPs make it possible to modify the room
acoustics. For example, a room impulse response (RIR) that has insufficient
energy in the very important envelopmental part (20− 150 ms after the direct
sound component [77]) can be improved by implementing a suitable FIR filter.
Using DSPs or other equipment that affect the signals sent to the system
loudspeakers could be considered to be an active method for manipulating
the RIRs. Common passive alternatives are the use of absorbers, diffusors
and reflecting panels, which are placed at strategic positions. Although these
passive means of altering the room acoustics result in some modifications of the
RIRs, there are some natural limitations. For example, if the goal is to obtain
a longer reverberation time, a large number of reflective panels or diffusors
must be added to minimize sound absorption. The reverberation time in a
room can be estimated according to

T60 =
0.16V

Sᾱ+ 4mV
, (1.1)

where T60 is the reverberation time, V the room volume, S the total surface area,
ᾱ the average absorption coefficient and m the air attenuation constant [4].
Despite minimizing the average absorption, ᾱ, the reverberation time can
only be prolonged to a certain limit, defined by the term representing the air
attenuation, 4mV . This means that if the reverberation time needs to be longer
than this limit, the only remaining passive alternative is, according to eq. 1.1,
to increase the room volume. However, this is not a realistic option due to the
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4 CHAPTER 1. INTRODUCTION

cost of such a project. Instead, a special type of SRSs, called reverberation
enhancement systems (RESs), can be used.

In essence, there are two types of electroacoustic enhancement systems,
which operate on the principles of either enhancing the early reflections or
the reverberation time [87]. The first type is called in-line or non-regenerative
systems, since they are intended to pick up the direct sound using directional
microphones positioned where the reverberant energy is low, apply signal
processing followed by amplification and finally feed the resulting sound into the
room using numerous loudspeakers. Acoustic feedback needs to be minimized
to avoid audible coloration artifacts. Thus, an in-line system should enable a
direct link (or ”line”) between the source and listener(s) without any acoustic
feedback, hence its name. The second type of system focusing on enhancing
the reverberation time is called non-in-line or regenerative. Here, the acoustic
feedback is an important part of the system design and the system microphones
are placed where the reverberant energy is high so that the system reacts to
any sound in the room. In contrast to the in-line systems, which are similar
to a standard SRSs and therefore lack the ”natural” control of the room
reverberation, the non-in-line systems are suitable as RESs. Ideally, a RES
could control both the early reflections and the reverberation, but optimizing
both aspects is not trivial. In practice, however, there is some overlap between
the two system types. For example, a non-in-line system might affect the early
reflections and an in-line system might alter the reverberation time.

Feedback control in RESs can be considered to be of special importance,
since many systems are ”hidden”, i.e. an audience is supposed to be unaware
of any electroacoustic enhancement. The feedback can cause audible coloration
or, in the extreme case, sustained howlback. The coloration is often identified
when the sound becomes hard and metallic. Systems closer to instability will
have additional ringing artifacts. Finally, when the system is unstable, the
ringing is constant and is only limited by system non-linearities.

To minimize the acoustic feedback, time-variance can be introduced, which
modulates the microphone signals in some way before they are fed to the system
loudspeakers. Common modulation types are delay and phase modulation
which are implemented using DSPs. A second type of time-varying systems
controls the gain of the system channels so that the gain increases only when the
sound level in the room decreases (i.e. a form of amplitude modulation). This
also reduces the risk of sound coloration due to acoustic feedback. The third
and final example operates in the frequency domain, where potential ”ringing
frequencies” are tracked. These frequencies vary over time and if a certain
frequency peak becomes too strong, a very narrow notch filter is placed over
it. A DSP designed for this purpose is often called ”feedback destroyer” and
such DSPs are commercially available from numerous manufacturers [64–69].
Although suitable for maintaining system stability, these methods do not
guarantee that the audible sound coloration is minimized. For this to be true,
they need to be more sensitive, since sound coloration caused by acoustic
feedback can be detected by listeners even at low system gain settings [19].

Sound coloration measures are often encountered in research related to
sound reinforcement and reverberation enhancement systems. In general, sound
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coloration is a subjective attribute, related to a ”reference”, which could be
defined as the listener’s idea of how the source sound should sound in a given
context, and any audible differences from the reference, usually classified as
having detrimental effects on the source sound (i.e. sound coloration is normally
not considered to improve the source sound in the given context).

For the majority of the more refined sound coloration measures mentioned in
this thesis, there is a need to either measure the impulse response or (perfectly)
capture the source signal(s). In practice, it is difficult to obtain the anechoic
source signals, especially for larger bands or orchestras. Also, measuring
the impulse responses without alerting the audience and interfering with the
performance (or speech) is cumbersome. Thus, these two facts severely limit
the use of the above measures during live performances. A third limitation
is related to the sensitivity of the measures. Arguably, all proposed methods
intended for feedback control which require feedback or howling detection
can be modified into objective measures of sound coloration. However, for
successful detection of acoustic feedback, the system will typically be close
to instability, i.e. sound coloration and ringing artifacts are clearly audible.
Hence, it is not possible to accurately estimate sound coloration at lower system
gain settings. More fundamental measures could be based on various pitch
detection methods [28] - [47], signal modeling (e.g. all-pole and ARMA models)
or the algorithms implemented in feedback destroyers mentioned above. A
more detailed discussion concerning these measures is found in chapter 2.

1.2 Objectives

The main goal of this thesis is to develop a method for estimation of sound
coloration caused by acoustic feedback in rooms. In view of the limitations
of the current sound coloration measures briefly mentioned above, a different
strategy is presented in this thesis. The most important criterion is to be able
to compute an accurate measure without a measured reference, i.e. ”blindly”.
Therefore, using distributions of damping constants is a promising way forward,
since theoretical ”reference distributions” exist. If it is possible to develop a
robust coloration measure, the system will be easier to optimize and/or operate.

The damping constants are computed from spectrograms, which require
various computational parameters. This motivates a study of the audibility of
the tonality in short decaying pure tones, which could be seen as unmasked
ringing artifacts due to acoustic feedback. In other words, what are the lowest
tone durations at which tonality is audible? The answer should be a suitable
”time constant” for the coloration detector, which translates to a time constant
for the spectrogram computations.

Finally, if listening tests can reveal how the sound coloration is perceived,
it might be possible to link the subjective and objective data.
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1.3 Limitations

All aspects concerning the robustness of the coloration measure, including
parameter selection, the use of different source signals, rooms, absorbers and/or
diffusers, sound reinforcement or reverberation enhancement system configura-
tions, etc, are suitable suggestions for future work and will not be discussed in
great detail in the following text.

Using the iterative method described by Svensson [1] for system simulations
usually implies that the system is time-variant. However, in this thesis, the
SRS is time-invariant and the entire audible frequency range is used. The
iterative method was selected because an initial goal was to introduce time
variance to study various feedback control methods. However, this idea was
eventually abandoned due to the complexity of the main objective, i.e. the
development of the coloration detector.

In order to quantitatively verify the implementation of the coloration
detection method, an attempt was made to mimic or emulate the behaviour of
a rehearsal room sound reinforcement system by computing impulse responses
based on the summation of a large number of damped sinusoids. To emulate the
effect of different system gains, a set of damping distributions with decreasing
median values and variances was applied to the summation. Thus, considering
that simulated and emulated systems are used in this thesis, measurements
in real rooms equipped with a multi-channel SRS would be a very interesting
extension to this work. An attempt was made to perform such measurements,
but the results were not as expected due to poor SNR and too few system
channels.

When testing the sound coloration measures, four source signals, two speech
and two music samples, are used. Similar to using only one room type for
developing the coloration measure, four source signals is arguably a low number.
However, this number was chosen considering the computational times and
more practical aspects related to the presentation of results.
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1.5 Thesis outline

The organization of this thesis is as follows. In chapter 2, a literature review
focusing on possible methods for detecting sound coloration due to acoustic
feedback is found. The basics of reverberation enhancement systems, which
typically are so called non-in-line systems, are discussed in chapter 3. The
fundamental expressions concerning system stability are derived. In chapter
4, the time constant of the coloration detector, based on the audibility of
tonality, is discussed in the context of spectrogram computations. In addition,
the ”gray area” related to the loudness of short pure tones exceeding one
critical bandwidth is mentioned. The proposed sound coloration detector is
using time-frequency data as input. The spectrogram and its reassignment are
presented in more detail in chapter 5, including the limitations of reassignment
when analysing signal decay times. Ending the chapter, a number of objec-
tive measures for time-frequency analysis are introduced. In chapter 6, it is
shown how the simulated sound reinforcement system used for developing the
coloration detector is created. Both the measurements of the room impulse
responses and the iterative computational method to simulate the system and
its acoustic feedback are discussed. Some early, and perhaps less successful,
attempts at coloration detection are brought up in chapter 7 followed by the
much more promising and final version of the detector in chapter 8. The last two
chapters are the general discussion and conclusions. In the general discussion,
the most important aspects of the results presented in the appended papers
are highlighted as well as how the papers relate to each other. Analogously, in
the final conclusions chapter, the most important contributions of all papers
are summarized. A psychoacoustic study is presented in Paper A where the
audibility of tonality in short-duration decaying pure tones is investigated. The
results are used to motivate the required time resolution of the ”coloration
detector” presented in paper D. In paper B, numerous methods for improving
reassigned spectrograms of noisy signals are explored and new expressions
are derived for the reassignment operators. A set of objective measures for
time-frequency analysis are suggested. The set of measures is refined and
expanded to a total of eight measures, which can be found in paper C. In
addition, a more systematic evaluation of the measures is presented, including
varying key computational parameters. Paper D sums up the main focus of
this thesis. A coloration detector for sound reinforcement and reverberation
enhancement systems in rooms is proposed.



Chapter 2

Literature review

This review will focus on different ways of detecting sound coloration caused
by acoustic feedback. Both potential and actual methods will be discussed,
starting with the former.

There are numerous ways to obtain an objective measure of sound coloration
and howlback. Essentially all methods currently used for pitch detection [28]
- [47] can be modified in one way or another to work for this purpose. However,
the robustness of some of these methods for potential coloration detection is
questionable since most of them are developed for speech signals.

In essence, there are three main groups of pitch detection algorithms: the
ones that mainly operate in the time domain (see e.g. [30], [36], [38], [43], [40],
[29], [39]), frequency domain (e.g. [37], [46], [41]) and both time and frequency
domain (e.g. [44], [33], [34], [47], [45], [31], [32], [42]). A good overview of
several algorithms and how they perform is given in [28]. Among these methods,
various correlation methods (especially autocorrelation) are common, as well
as the short-time Fourier transform, cepstrum analysis and the computation of
useful time-frequency distributions and/or instantaneous phase. More exotic
approaches are, for example, the use of MUSIC (multiple signal classification)
and neural networks.

Another approach is to compute various models of the signal and use the
models for pitch analysis (see e.g. [48] - [63]). Autoregressive models, also called
all-pole models, and ARMA (AutoRegressive Moving Average) models are often
used and the corresponding time varying modeling techniques (TVAR and time
varying ARMA) are studied by several authors. The benefits of modeling the
signal is that the model can give direct information about e.g. signal frequencies.
TVAR assumes time varying all-pole coefficients and enables extremely high
time-frequency resolution. However, the model order determination is critical
and a low signal to noise ratio (SNR) might be problematic.

More potential coloration detectors are found in several patents related
to feedback destroyers (e.g. [64–69]). In [64], the signal is analyzed in the
frequency domain. The strongest peak located at frequency f0 is monitored
along with two of its subharmonics ( 1n · f0, n > 0, n ∈ Z) and/or harmonics
(n · f0, n > 0, n ∈ Z). If the (sub)harmonics are strong enough compared to the

9
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maximum peak value, a decision is made that no ”resonating frequencies” are
present. However, if the (sub)harmonics are lower in level, more specifically 33
dB lower, than the strongest peak, there are problems due to acoustic feedback
and a notch filter is placed over the frequency in question. Also the time domain
is utilized, since spectra are stored and compared over time. However, this
approach is not that common. Instead, the signal is often studied in the time
domain using phase locked loops [70] - [72], [66], [67], [69]. A similar method is
used in [75] to efficiently filter audio signals which have an additional interfering
periodic signal, for example typical 60 Hz hum (which have strong harmonics).
In [71], an LMS adaptive notch filter is used in conjunction with a phase locked
loop. The FFTs of the signal elements directly following spoken syllables are
analyzed in [72] and peak indices are calculated for feedback detection. Other
examples are the use of up down counters (to check for periodicity) [65] and
synchronous signal analysis [68]. The unwanted frequency components are
removed using notch filters or frequency dependent gain control.

For actual coloration measures proposed in the literature, an impulse
response and/or a perfect source signal are usually needed. Some examples
are mentioned in the following text. Meynial and Vuichard [20] use Rayleigh
distributions and histograms of frequency response magnitudes of measured
room impulse responses to detect sound coloration caused by one or more
electroacoustic channels and/or by poor room acoustics. A method to apply
suitable time domain windowing in order to target and amplify the late part
of the impulse response is described. The resulting frequency responses are
”equalized” by the low-Q variations (imagine a smoothed response) of the
responses and windowed (only frequencies above the Schroeder frequency are
considered) before their magnitude histograms are compared to the Rayleigh
distribution using various statistical measures. The measure which gives
high correlation to listening test results and also shows promising numerical
properties such as low uncertainty, turned out to be the standard deviation
of the high-Q, or more irregular, variations of the room transfer function
(RTF). By dividing the original RTF by a smoothed version of it, the high-Q
variations of the of the RTF is obtained. Since human hearing performs a
type of ”autogain” operation when listening to long decaying sounds, the
decay of the RIRs is compensated for. Additionally, a number of time and
frequency windows are used to treat the data in a statistically correct way
(mixing time [5], Schroeder frequency [4], etc). These windows are also used to
avoid corrupted results due to background noise, which occur for a RIR signal
to noise ratio lower than about 10 dB. An obvious limitation of the measures is
that they are based on measured impulse responses, i.e. using program material
for coloration analyses would require custom deconvolution algorithms (which
rely on perfectly captured source signals).

A similar objective measure is proposed by Watanabe and Ikeda [21], i.e.
the standard deviation of the equalized and rapidly varying frequency response
is computed and compared to the Rayleigh distribution. Again, this requires
measured impulse responses.

Poletti [22] also presents a method based on the Rayleigh distribution,
but only distributions obtained from stochastic simulations of reverberation
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enhancement systems are analysed. No recorded systems or measured impulse
responses are used for sound coloration analyses.

Several measures of sound coloration are computed by Korany [23]: the
temporal diffusion index, based on the autocorrelation function, the power
cepstrum and the spectral coloration index. For all measures, simulated impulse
responses are used.

Room impulse responses are also required for the measures discussed in a
paper by Rubak [24]. To estimate the (timbre related) spectral coloration, a
measure is proposed based on the modulation depth of the spectrum obtained
after applying auditory filters to the impulse response. The temporal coloration
is estimated using the autocorrelation functions of an octave band filtered
(from 125 to 4000 Hz) impulse response. Finally, a time-frequency distribution
is computed for which it is proposed to use an auditory filter bank instead of
the short-time Fourier transform, with a time window length of 30 ms. The
modulation depth of each resulting spectrum is then computed, leading to a
time dependent spectral coloration measure.

Another method to estimate sound coloration is to use spectrograms of
the source signal with and without added reverberation, denoted as input
and output signals respectively [25]. The proposed measure is defined as
the difference in spectrogram magnitudes of the input and output signals at
detected input signal onsets. As for the method proposed by Nielsen [19], the
source signal is required for estimating the coloration.

One of the more advanced methods, called adaptive feedback cancellation
(AFC), models the impulse response of the acoustic feedback path using an
adaptive filter [26]. Considering that the modeled impulse response is intended
to cancel out the acoustic feedback path, ideally resulting in a completely
uncolored sound, the impulse response of the full system is not used to estimate
sound coloration. Since the coloration due to acoustic feedback is minimized,
the audible sound coloration in AFC systems is often a result of the signal
processing needed to decorrelate the input signal of the adaptive filter and the
disturbance signal in order to avoid slow convergence speed or convergence
towards a biased solution. A better approach is to apply the decorrelation in
the adaptive filtering circuit instead of the closed signal loop. An objective
measure, first proposed by A. Spriet et al. [27], is used to assess the sound
quality of the resulting feedback compensated signal. Again, the source signal
is required to compute the coloration measure.

A method using program material for the detection of sound coloration
in reverberation enhancement systems is proposed by Nielsen [19], [73]. The
coloration detection is based on modulation transfer functions (MTFs), which
are defined as the absolute value of the normalized Fourier transforms of the
squared room impulse responses. An estimation of the MTF is obtained from
the cross power and power spectra of the source and receiver envelope functions.
It is shown how MTFs corresponding to increasing system gains are clearly
separated, especially if frequency domain windowing is applied. This, according
to the author, shows the potential of using MTFs for coloration detection.
However, the problem of (perfectly) capturing the source signal is not solved.
It is suggested to use highly directional microphones close to the source(s), but
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the difficulty using this approach for larger orchestras is apparent. Additionally,
the author does not propose a robust coloration measure based on the MTFs
as the coloration is estimated based merely on visual inspection of the MTF
plots.

The complex modulation transfer function (CMTF) was suggested by
Schroeder [18] as

M(ωm) =
∣∣M(ωm)

∣∣ejϕ(ωm) (2.1)

by showing that if the envelope of a white noise signal is amplitude modulated
by a sinusoidal modulation function, s(t) = s0(1 + cos(ωmt)) and sent through
a noise-free linear system, the output envelope will be

r(t) = s0

[
1 +

∣∣M(ωm)
∣∣ cos(ωmt+ ϕ(ωm))

]
. (2.2)

Here, ωm is the modulation frequency, ϕ the phase of the complex number
when expressed in polar form and s0 serves as an amplitude scaling factor for
the modulated envelope.

If it is assumed that the squared and smoothed envelope of an impulse
response can be modeled as

h2(t) = e−2δt, (2.3)

where δ is the (average) damping constant of the room and is linked to the
reverberation time, T60, according to

δ =
6.91

T60
, (2.4)

one can show that the −3 dB low-pass cutoff frequency, fc, of 20 log
∣∣M(ω)

∣∣ is
fc =

2.2

T
. (2.5)

Thus, an increase in the reverberation time of a room can directly be seen in
the CMTF.

For a regenerative system consisting of one channel with amplifier gain
G(ω) and loudspeaker (L) - to - microphone (M) transfer function HLM(ω), it
can be shown that

Ton = Toff
1

1− |G(ω)HLM(ω)|
, (2.6)

where Ton and Toff are the reverberation times with the system turned on and
off [73]. Inserting eq. 2.6 into eq. 2.5 leads to

fc =
2.2(1− |G(ω)HLM(ω)|)

Toff
, (2.7)

i.e. fc decreases with increasing gain for this simple case.
Many of the different feedback detection algorithms discussed above will

work only when the (potential) howlback frequency components are quite
strong. Therefore, most of these algorithms will work fine if the desired
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objective measure would describe the existence of sustained howlback (true
or false). However, for coloration detection, just a couple of measures are
interesting: the CMTF and the analysis of the statistics of the RTF according
to [20].

Several coloration measures mentioned above including [20] are based on
RIRs, which means that the RIRs must be measured or modeled in order to
calculate the proposed objective measures. This is very hard to do during
e.g. a concert and since the involved RIRs are constantly changing, the RIRs
should be analyzed over time. Thus, a robust model of the RIR(s) needs to be
computed in real-time, which is a complex task requiring perfectly captured
source signals.

The CMTF is limited in similar ways. However, the CMTF can be estimated
using program signals, but this requires calculations of the cross and auto power
spectra of the source and receiver envelopes. This method is limited by the
fact that picking up only the source signal with a microphone is impossible.
There are always additional signals from the room and SRS.
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Chapter 3

Basic RES layouts

For a non-in-line system, there will typically be numerous feedback paths
between the microphones and loudspeakers used in the system. Each of
these paths can be said to generate coloration of the sound in the room. In
general, by increasing the number of paths, the coloration will be less audible.
If the assumptions in [4] are fulfilled, e.g. averaging the magnitudes of all
transfer functions over frequency (and channels) and using a large number, nL,
independent microphone-amplifier-loudspeaker channels placed inside a room,
the reverberation time will increase according to [1]

Ton = Toff
1

1− nL ·MLG
, (3.1)

where Ton and Toff are the reverberation time of the room with and without
the added RES respectively and the MLG is defined according to

MLG = |G(ω)HLM(ω)|2. (3.2)

For multichannel systems, the MLG is computed by averaging over both
frequency and all channels (”spatial averaging”). Additionally, this assumes
that the loudspeakers and the natural source are uncorrelated. As mentioned
above, this very basic RES solely relies on acoustic feedback in order to
prolong the reverberation time. An example of a commercial system which uses
this approach is the somewhat dated Assisted Resonance System [78] - [86].
Unfortunately, for some systems, sound coloration due to acoustic feedback
turned out to be problematic and, as a result, system tuning was difficult and
time consuming.

If each loudspeaker receives the signal from all nM microphones, eq. 3.1 is
modified according to [1]

Ton = Toff
1

1− nLnM ·MLG
. (3.3)

Here, the same assumptions are made as for the previous expression. It is
important to note that if the microphones receive a significant direct sound

15
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component, the source and microphones are correlated and the assumption is
invalid.

The most basic SRS is shown in figure 3.1. HSM(ω), HLM(ω), HLR(ω)

Figure 3.1: A single electroacoustic channel inside a room.

and HSR(ω) denote different room transfer functions (RTFs), which are the
frequency domain equivalent of a RIR. SM denotes source-microphone (from-to),
LM loudspeaker-microphone, LR loudspeaker-receiver and SR source-receiver.
GML(ω) represents the frequency response of the gain, i.e. an amplifier (and
possibly an equalizer). As shown in the figure, HLM(ω) characterizes sound
transmission between the system loudspeaker and microphone. This means
that sounds radiated by the loudspeaker will be picked up by the microphone,
amplified again, radiated, picked up, amplified and so on. This is a so called
feedback loop.

Figure 3.2: Block representation of a feedback loop.

The ”total” transfer function, from the source to the listener, is

HTOT(ω) = HSR(ω) +HSYS(ω), (3.4)
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i.e. ”direct” + ”system” sound. HSYS(ω) can be derived with the help of figure
3.2, which only shows the feedback loop. From the figure, it is clear that

Y = G(X + Y ·H) (3.5)

and

G =
Y

X + Y ·H
. (3.6)

Now, let GEQ denote an equivalent block which represents the entire feedback
loop, i.e.

GEQ =
Y

X
. (3.7)

Some basic rearrangements follow:

Y = G(X + Y ·H) = G ·X +G · Y ·H
G ·X = Y −G · Y ·H = Y (1−G ·H)

Y

X
=

G

1−G ·H
= GEQ. (3.8)

According to figure 3.1, it is clear that HSYS(ω) and HTOT(ω) should have the
following forms:

HSYS(ω) = HSM(ω) ·GEQ(ω) ·HLR(ω)

= HSM(ω)
GML(ω)

1−GML(ω)HLM(ω)
HLR(ω)

(3.9)

and

HTOT(ω) = HSR(ω) +HSYS(ω)

= HSR(ω) +HSM(ω)
GML(ω)

1−GML(ω)HLM(ω)
HLR(ω).

(3.10)

Eq. 3.9 tells us that there is a problem with system stability if the denominator
becomes zero. Nyquist showed that for a feedback loop, the stability criterion
is [76]

ℜ
{
GML(ω)HLM(ω)

}
< 1. (3.11)

Seen in the complex plane, one can write

GML(ω)HLM(ω) = reiθ, (3.12)

where
r =

∣∣GML(ω)HLM(ω)
∣∣. (3.13)

Thus, it is clear that the magnitude of GML(ω)HLM(ω) or r is allowed to exceed
one as long as the phase rotates the complex vector away from the real axis
according to

cos θ <
1

r
, r > 1. (3.14)
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Figure 3.3: Spectrogram of a male speech signal. The SRS is close to instability.

Figure 3.4: Spectrogram of a male speech signal. The SRS is far from instability.

An unconditional, and thus, much ”safer” stability criterion is simply to limit
r according to ∣∣GML(ω)HLM(ω)

∣∣ < 1. (3.15)

Now the phase is allowed to vary in any way possible, without causing system
instability.

It is interesting to study the effect of an SRS close to instability by looking
at the spectrogram of the signal presented to a listener. The signal is calculated
using measured transfer functions and the procedure described in chapter 6.
The source is a male speech signal and the simulated SRS has 6 channels.
Figure 3.3 and 3.4 show the result for two different gain settings, −18.2 and
−60 dB respectively. At a high gain setting, when the system is approaching



19

instability, one can see that the decay times increase substantially for numerous
frequency components. Comparing both figures, the changes in decay times in
figure 3.3 at about 0 < t < 1 s and 3.5 < t < 4 s are especially clear, as well as
the clear ringing at around 3 kHz (t = 3 s).
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Chapter 4

The audibility of ringing

In paper A, listening tests are performed to investigate the audibility of tonality
in short decaying pure tones. The idea is that the results would give an
indication of the required time constant for the time-frequency computations
performed in the coloration detector. If unmasked and loudness compensated
pure tone bursts, as implemented in paper A, correspond to single feedback
components in an SRS close to instability, the ”best case scenario” for detecting
sound coloration in real SRSs is arguably reached. Thus, the resulting time
limits for the audibility of tonality should correspond to a ”minimum” or ”best
case” spectrogram time constant. It was found that tonality could be perceived
in pure tones with a total duration (i.e the sum of the -60 dB attack and
decay times of the signal envelope, where the attack and decay functions are
Gaussian) of around 3 ms and frequencies above 3.4 kHz. For lower frequencies,
the required tone durations rapidly increased, from around 5 ms at 3.4 kHz to
20 ms at 150 Hz.

Since harmonics analysis is a vital part of the coloration detector, the lower
frequency limit needs to be around 20 Hz to incorporate both synthesized and
natural sounds. This corresponds to a window length of at least 1/20 = 50
ms. Thus, the 3 ms time constant suggested above, is not applicable to the
time window length. Instead, h(t) in eq. 5.3 (which is a 65 ms Blackman
window), is shifted 3 ms for each new STFT computation. If the window
length is fixed, a large window overlap greatly reduces the lower limit of the
estimated decay times. This is illustrated by the examples in figure 4.1 - 4.3.
The Blackman window was chosen due to its low spectral leakage, which should
be an advantage when analyzing speech and music signals with their complex
harmonics. Any additional coloration component could be located close in
frequency to a signal component, which makes it important to minimize side
lobes.

As can be observed, the higher window overlap with the 3 ms time step
produces decay curves which are nearly parallel to the reference envelope for
levels below approximately -20 dB. This is true for all three -60 dB decay times.
For the lower overlap, corresponding to 50 % overlap since the time step is half
of the window length, i.e. 32.5 ms, correct decay time estimation will clearly

21
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Figure 4.1: Comparison between a reference envelope with a -60 dB decay time
of 50 ms applied on a 1 kHz pure tone and spectrogram output at 1 kHz using
two different window overlap settings.

be problematic for the two shorter -60 dB decay times.

4.1 Pitch selectivity or pitch discrimination

It is important to note that the research presented in Paper A differs from pitch
discrimination studies. The main reason for this is that the listeners are free to
define tonality themselves (based on instructions and examples), i.e. no reference
related to tonality or pitch is presented. Here, it is useful to introduce the term
frequency selectivity [9], i.e. the ability to resolve frequency components in
complex sounds. In contrast, frequency discrimination research focuses on the
audibility of frequency changes over time. Typically, experiments are designed
using either two successive steady tones of slightly different frequencies or two
tones where one is frequency modulated (using low modulation frequencies).
In the former case, the listeners reports if they can detect any pitch changes
between the two tones and the resulting measure is called the Difference
Limen for Frequency (DLF). In the latter case, the listeners try to identify
the frequency modulated tone, which results in the Frequency Modulation
Detection Limen (FMDL).

If one assumes that the pitch perception mechanism on the basilar membrane
is defined by a ”place theory”, i.e. signals with different frequencies excite
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Figure 4.2: Comparison between a reference envelope with a -60 dB decay time
of 30 ms applied on a 1 kHz pure tone and spectrogram output at 1 kHz using
two different window overlap settings.

different parts of the membrane (leading to different neurons being activated),
frequency selectivity and discrimination are closely linked [2]. For example,
the variation of DLFs over frequency is closely connected to the (frequency
variation of) critical bandwidths. Analogously, physiological studies of the
basilar membrane have shown that equal shift in distance along the membrane
results in increasing frequency steps when starting near the helicotrema and
moving towards the oval window. In general, pitch discrimination rapidly
deteriorates when the effective bandwidths of the stimuli are approaching the
critical bandwidth. However, it has been shown that using the same effective
bandwidths for signals with different envelopes do not produce similar pitch
discrimination results [10]. Instead the ”effective duration” of the signal is a
better indicator, which means that signals with different envelopes produce
similar pitch discrimination results as long as their effective durations are
approximately the same.

For pure tones, the position of the maximum excitation on the basilar
membrane corresponds to the perceived pitch. This is not the case for more
complex sounds, perhaps most clearly illustrated by the ”missing fundamental”
experiment. For example, if 200 impulses are presented per second, the per-
ceived sound will have a dominating fundamental frequency, f0, at 200 Hz and
harmonics at n ·f0. However, high-pass filtering the sound so that f0 is removed
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Figure 4.3: Comparison between a reference envelope with a -60 dB decay time
of 10 ms applied on a 1 kHz pure tone and spectrogram output at 1 kHz using
two different window overlap settings.

does not lead to a change in perceived pitch. Thus, for more complex sounds,
the harmonics are crucial for determining the pitch, even if f0 is present.

4.2 Loudness of short tone bursts - some con-
siderations

In paper A, loudness compensation was implemented for the short duration
pure tones with exponential and Gaussian envelopes used during listening
tests. The literature is clear on how the compensation should be conducted,
assuming that a specific condition is met [2]. In short, the condition concerns
the bandwidth of the stimuli, which should be less than the critical bandwidth.
If not, ”additional bandwidth effects” [2] or ”confounding effects of spectral
splatter” [11] will influence the resulting loudness, because more than one
critical band will be excited. To the author’s knowledge, very few, if any,
published papers focus specifically on this topic. The reason is probably related
to the fact the stimuli lose most of their tonality and turn into ”tonal clicks”
or clicks having a certain timbre, as the bandwidth is larger than the critical
bandwidth. In psychoacoustic research, this represents a gray area, since the
tones are somewhere in between a pure click (Dirac delta function) and tone.
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It is of interest to investigate the ”one critical band limit” discussed above
for the stimuli used in paper A. For the more broadband stimuli, it is likely, but
still unconfirmed, that the loudness compensation was overestimated. Starting
with figure 4.4 and the Gaussian shaped stimuli, the results indicate that
tonality was detected for stimuli having almost equal (95 phon at 350, 450, 570
Hz) or smaller than critical bandwidths. This agrees well with the discussion in
chapter 4.1. The area below the solid line is the ”gray area” mentioned above,
i.e. where correct loudness compensation becomes harder to implement.
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Figure 4.4: Required tone duration for Gaussian envelope stimuli to produce
signal bandwidths corresponding to the critical bandwidth (solid line). The
dotted line represents the 0.5 ms loudness compensation limit used for all
stimuli in paper A. The circles and squares are the JAT (Just Audible Tonality)
times from paper A (i.e. without headphone compensations).

For the exponential stimuli displayed in figure 4.5, the results are somewhat
similar. However, below 2 kHz, there are more stimuli matching or falling
below the critical band threshold (in time). For the 95 phon stimuli, the two
largest deviations are around 5-7 ms (at 350 and 570 Hz). As shown in paper A,
the exponential stimuli excite headphone resonances more than the Gaussian
stimuli. Interestingly, the longest headphone ringing times are observed below
2500 Hz. For the largest deviations, the increase in ringing times is somewhere
around 4− 7 ms (depending on loudness level) for 350 Hz and 0− 2.5 ms for
570 Hz, certainly bringing the data points closer to the critical band limit.
However, if the headphone compensations are disregarded, the results indicate
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that for around six 95 phon stimuli and equally many 70 phon stimuli from 250
to 840 Hz, the loudness compensation applied to the stimuli is likely somewhat
overestimated.
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Figure 4.5: Required tone duration for exponential envelope stimuli to produce
signal bandwidths corresponding to the critical bandwidth (solid line). The
dotted line represents the 0.5 ms loudness compensation limit used for all
stimuli in paper A. The circles and squares are the JAT (Just Audible Tonality)
times from paper A (i.e. without headphone compensations).



Chapter 5

Time-frequency
distributions and the
spectrogram

To obtain a useful objective measure, one suggestion is to combine the time
and frequency domains [73]. This is exactly what has been done in this thesis.
Since many of the pitch detection algorithms operate in the time-frequency
(TF) domain, the basis for the coloration detection algorithms proposed here is
somewhat similar. In the following text, however, the computations differ since
the focus lies on blind detection of sound coloration using the spectrogram.
Therefore, a short introduction will follow, where some fundamental properties
of the spectrogram are discussed.

A great number of authors have investigated various time-frequency distri-
butions, or TFDs (for example, see [88] and the excellent review by Cohen [89]
and their listed references). Here, ”distribution” refers to a function of time
t and angular frequency ω, P (t, ω), which is proportional to the intensity (or
energy) per unit time per unit frequency.

One can show that an infinite number of distributions can be derived by
using the following expression [89]:

P (t, ω) =
1

4π2

∫∫∫ +∞

−∞
e−jθt−jτω+jθuϕ(θ, τ) . . .

· s∗
(
u− 1

2
τ
)
s
(
u+

1

2
τ
)
dudτ dθ,

(5.1)

where s is a time signal, s∗ its complex conjugate and ϕ(θ, τ) the ”kernel”. The
kernel is an arbitrary function, which will generate different time-frequency
distributions depending on how it is defined. The reason for not using time
and frequency as variables in the kernel is that it can be a function of other
variables, such as the signal itself.

The spectrogram is an energy distribution, because it assigns the energy
of a signal to certain time and frequency points [88, 90]. Since the energy of

27
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a signal is a quadratic function of the signal, the spectrogram is a so called
quadratic or bilinear distribution.

The kernel of the spectrogram is

ϕS(θ, τ) =

∫ +∞

−∞
h∗
(
t− 1

2
τ
)
e−jθt · h

(
t+

1

2
τ
)
dt, (5.2)

where h denotes a window function. By inserting expression 5.2 into 5.1, one
can derive the distribution for the spectrogram as [91]

PS(t, ω) = |S(t, ω)|2

=

∣∣∣∣ 1√
2π

∫ +∞

−∞
e−jωt′s(t′)h(t′ − t) dt′

∣∣∣∣2 . (5.3)

Eq. 5.3 means that the spectrogram is the short-time Fourier transform (STFT),
with its absolute value squared, of s(t′)h(t′ − t), which can be described as a
locally windowed signal. The window function, h(t), is centered at time instant
t, and by altering t, a new part of the signal is ”windowed” and transformed.
Thus, by moving the window, Fourier transform the windowed signal and
calculate the absolute value squared of the transform, a spectrogram will be
the result.

For all bilinear distributions, i.e. including the spectrogram, the distribu-
tion of the sum of two signals does not equal the sum of the distributions
corresponding to each signal [88]. Instead

PS,x+y(t, ω) =PS,x(t, ω) + PS,y(t, ω)

+ 2Re
(
PS,xy(t, ω)

)
.

(5.4)

Thus, there is an additional interference term, 2Re
(
PS,xy(t, ω)

)
(for more

signals than two, eq. 5.4 can be generalized, but for simplicity the case with
just two signals is studied). For the spectrogram, the interference is fairly
limited if the spectrograms of the two signals do not extensively overlap [90].

For other bilinear distributions, such as the Wigner-Ville distribution,

W (t, ω) =
1

2π

∫ +∞

−∞
s∗
(
t− 1

2
τ
)
e−jτωs

(
t+

1

2
τ
)
dτ, (5.5)

the interference is more prominent and can seriously limit the readability of
the data [92]. However, because of the interference term, the Wigner-Ville
distribution has many desirable properties, such as the ability to recover the
instantaneous frequency of a signal. Additionally, the Wigner-Ville distribution
perfectly localizes linear chirp signals [88–91].

One way to suppress the artifacts produced by the interference terms of the
Wigner-Ville distribution is to use smoothing. The smoothing is implemented
using double convolution according to

Wsmoothed(t, ω) =∫∫ +∞

−∞
L(t− t′, ω − ω′)W (t′, ω′) dt′dω′,

(5.6)
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where L is a smoothing function and W is the distribution of the signal [89].
It is interesting to note that if L is the Wigner-Ville distribution of a time
window function h, L = Wh(t, ω), expression 5.6 results in the spectrogram:

PS(t, ω) =

∫∫ +∞

−∞
Wh(t− t′, ω − ω′)W (t′, ω′) dt′dω′. (5.7)

This expression can be generalized for other distributions, where the kernels
satisfy ϕ(−θ, τ)ϕ(θ, τ) = 1, according to

PS(t, ω) =

∫∫ +∞

−∞
Ph(t− t′, ω − ω′)P (t′, ω′) dt′dω′. (5.8)

Thus, according to eq. 5.7 the spectrogram can be constructed by smoothing
the Wigner-Ville distribution. This confirms the fact that the interference terms
of the spectrogram are suppressed (due to smoothing), which often results in
better readability compared to the Wigner-Ville distribution.

However, the spectrogram suffers from the same limitations as the short-
time Fourier transform, which can be described as a trade-off between the time
and frequency resolution [88,90]. For adequate time resolution, a short duration
time window must be used, but this will result in poor frequency resolution. For
a better frequency resolution the time window must be longer, thus making it
impossible to achieve adequate time resolution. This time-frequency resolution
trade-off is a result of the well-known Heisenberg-Gabor inequality, T ·B ≥ 1,
where T ·B is the time-bandwidth product [88].

Finally, one can note that for discrete time signals, distortion of the resulting
distribution might occur due to aliasing. The aliasing of the discrete-time
Wigner-Ville distribution has been extensively studied (see [94] and its listed
references). Several ”alias-free” distributions have been proposed, but it has
been shown that many of them cause aliasing [94]. However, one method
proposed by Nutall [95] gives truly alias-free discrete-time Wigner distributions.
The discrete-time spectrogram can be considered alias-free if the sampling of
the input signal and the time window is carried out using a sufficiently high
sampling frequency [93].

5.1 Reassignment of the spectrogram

As discussed previously, the spectrogram suffers from some undesirable proper-
ties, especially when compared to the Wigner-Wille distribution. By recalling
eq. 5.7, one can conclude that for a given t and for all frequencies, the spec-
trogram is a sum, or rather an integration with respect to the running time
variable t′, of

B(t, t′, ω) =

∫ +∞

−∞
Wh(t− t′, ω − ω′)W (t′, ω′) dω′. (5.9)
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This can be interpreted as a mean value of all ”frequency smoothed” B-terms
due to the fact that all distributions P (t, ω) are defined so that∫∫ +∞

−∞
P (t, ω) dω dt =

∫ +∞

−∞
|s(t)|2 dt = 1. (5.10)

Thus, the construction of a spectrogram can be interpreted as a process
where a number of time averages of ”frequency smoothed” B-terms are calcu-
lated and assigned to specified values of t. However, the resulting time averages
might not be a good indicator of the time localization of the energy contained
inside B(t, t′, ω). Instead, one possibility to improve the spectrogram is to
calculate the center of gravity of B(t, t′, ω) and use the result to reassign the
specified values of t to new values, tR, according to:

tR(t, ω) = t− 1

PS(t, ω)

∫ +∞

−∞
t′B(t, t′, ω) dt′ = t−

1

PS(t, ω)

∫∫ +∞

−∞
t′ Wh(t− t′, ω − ω′)W (t′, ω′) dω′ dt′.

(5.11)

By using expression 5.7 one obtains

tR(t, ω) =

t−
∫∫ +∞

−∞ t′ Wh(t− t′, ω − ω′)W (t′, ω′) dω′ dt′∫∫ +∞
−∞ Wh(t− t′, ω − ω′)W (t′, ω′) dt′dω′

.
(5.12)

Instead of interpreting eq. 5.7 as the time averages of B(t, t′, ω), one can
claim that it represents the frequency averages of ”time smoothed” D-terms,
according to

PS(t, ω) =

∫ +∞

−∞
D(t, ω, ω′) dω′, (5.13)

where

D(t, ω, ω′) =

∫ +∞

−∞
Wh(t− t′, ω − ω′)W (t′, ω′) dt′. (5.14)

In similar manner as shown above, the center of gravity of D(t, ω, ω′) can be
calculated. This leads to the reassignment of ω to ωR according to

ωR(t, ω) = ω − 1

PS(t, ω)

∫ +∞

−∞
ω′D(t, ω, ω′) dω′ = ω−

1

PS(t, ω)

∫∫ +∞

−∞
ω′ Wh(t− t′, ω − ω′)W (t′, ω′) dt′ dω′

= ω −
∫∫ +∞

−∞ ω′ Wh(t− t′, ω − ω′)W (t′, ω′) dt′ dω′∫∫ +∞
−∞ Wh(t− t′, ω − ω′)W (t′, ω′) dt′dω′

.

(5.15)

The reassigned spectrogram, PS,R(t
′′, ω′′) is constructed by summing (by

integration) all spectrogram values that have been reassigned to points (t′′, ω′′).
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This can be expressed as

PS,R(t
′′, ω′′) =

∫∫ +∞

−∞
PS(t, ω) δ

(
t′′ − tR(t, ω)

)
· δ
(
ω′′ − ωR(t, ω)

)
dtdω.

(5.16)

where δ denotes the Dirac impulse.
The resulting expression for tR(t, ω) and ωR(t, ω), which are called reas-

signment operators, may seem a bit complicated to implement for practical
computations. However, a first step towards a successful implementation was
taken by Kodera et al. [96], where it was shown that the phase information,
which is normally not considered when calculating spectrograms, can be used
to derive the reassignment operators. By recalling expression 5.3,

PS(t, ω) = |S(t, ω)|2

=

∣∣∣∣ 1√
2π

∫ +∞

−∞
e−jωt′s(t′)h(t′ − t) dt′

∣∣∣∣2 , (5.17)

one can see that S(t, ω) contains phase information. Kodera et al. showed that
if S(t, ω) is expressed in polar coordinates according to

S(t, ω) = |S(t, ω)| ej·arg(S(t,ω)) = |S(t, ω)| ejΦ(t,ω), (5.18)

the reassignment operators can be written as

tR(t, ω) = − 1

2π

∂ Φ(t, ω)

∂ ω
(5.19)

ωR(t, ω) = ω +
1

2π

∂ Φ(t, ω)

∂ t
. (5.20)

Even though eq. 5.19 and 5.20 are theoretically important, they are not
computationally efficient. However, Auger and Flandrin [97] derived exact
expressions that were easily implemented for discrete time signals:

tR(t, ω) = t−ℜ

{
STFTT h(t, ω) · STFT∗

h(t, ω)

|STFTh(t, ω)|2

}

= t−ℜ

{
STFTT h(t, ω)

STFTh(t, ω)

} (5.21)

ωR(t, ω) = ω −ℑ

{
STFTDh(t, ω) · STFT∗

h(t, ω)

|STFTh(t, ω)|2

}

= ω −ℑ

{
STFTDh(t, ω)

STFTh(t, ω)

}
,

(5.22)

where STFTh(t, ω) equals S(t, ω) in eq. 5.3 and ℜ and ℑ are the real and
imaginary parts respectively. Dh simply means that the window function h(t)
in eq. 5.3 is replaced by its time derivative

Dh(t) =
∂ h(t)

∂ t
. (5.23)
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Similarly, T h implies that h(t) is modified according to

T h(t) = t · h(t). (5.24)

5.2 Reassignment and sound decay

Recalling figure 3.3, where a spectrogram of a speech signal is shown, com-
puting the reassigned spectrogram of the same speech signal will produce the
distribution shown in figure 5.1. As can be seen, the reassignment results in
more concentrated signal energies, both in time and frequency, which generally
means that the readability of the spectrogram is improved. However, the

Figure 5.1: Reassigned spectrogram of a male speech signal. The SRS is close
to instability.

reassignment process is sensitive to noise, i.e. if there is some noise in a certain
time-frequency domain, the reassignment could move the original spectrogram
points randomly or erroneously. Thus, for decaying signal components in the
presence of noise or ”noise-like” components (e.g. ”broadband” sound decay in
a room), the reassignment could alter the decay times of individual signal com-
ponents. To study this in more detail, a 1 s synthesized signal with sampling
frequency fs = 48 kHz is generated according to

y(t) =
ywn(t)

10(SNR/20)
+

5∑
k=1

e−δkt sin(2πfkt), (5.25)

where ywn(t) is white noise with the same signal power as the sum of sine
signals with δk = 0, SNR is the desired signal to noise ratio and δk and fk are
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defined according to 

δ1 = 6.91/0.1 s, f1 = 2000 Hz

δ2 = 6.91/0.3 s, f2 = 6000 Hz

δ3 = 6.91/0.5 s, f3 = 10000 Hz

δ4 = 6.91/0.7 s, f4 = 14000 Hz

δ5 = 6.91/0.9 s, f5 = 18000 Hz,

(5.26)

i.e. the -60 dB decay times vary from 0.1 s (for k = 1) up to 0.9 s (for k = 5)
in 0.2 s steps. An example of a spectrogram with SNR = 30 dB is shown in
figure 5.2. The reassigned version is shown in figure 5.3. Isolating the relevant

Figure 5.2: Spectrogram of the synthesized signal with SNR = 30 dB.

”frequency slices” and offsetting each decay curve by 0.2 s (to improve the
readability of the plot) result in figure 5.4. The differences in the amount of
ripple is especially obvious below -20 dB. The same can be seen in the full
spectrogram plots shown in figure 5.2 and 5.3.

For a curve fitting procedure, the ripple introduced by the reassignment
will in most cases cause an underestimation of the decay time. The result of
curve fitting using raw data and Schroeder Backward Integration (SBI), with
and without the added ”tail”, is shown in figures 5.5 - 5.7. Three SNRs are
evaluated, 15, 30 and 45 dB. The results confirm that the spectrogram more
accurately estimates the decay times for all SNRs, especially if no SBI is used.
Therefore, the ordinary spectrogram was chosen for the ”coloration detector”
computations outlined in paper D.

5.3 All-pole modeling and reassignment

In an attempt to improve the SNR of reassigned spectrograms and therefore
reduce the ripple introduced by the reassignment discussed above, all-pole
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Figure 5.3: Reassigned spectrogram of the synthesized signal with SNR = 30
dB.
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Figure 5.4: Comparisons between the ordinary (solid line) and reassigned
(dotted line) spectrogram. The input signal is the synthesized signal with
SNR = 30 dB and only the five relevant frequency slices have been plotted.
Each decay curve is offset by 0.2 s to improve the readability.
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Figure 5.5: Estimated -60 dB decay times for SNR = 15 dB. In each group,
from left to right, the bars represent curve fitting using: spectrogram - raw
data (solid), reassigned spectrogram - raw data (hollow); spectrogram - SBI
data (solid), reassigned spectrogram - SBI data (hollow); spectrogram - SBI
data including ”tail” (solid), reassigned spectrogram - SBI data including ”tail”
(hollow).

modeling is implemented in paper B. For SNRs ranging from -15 to 30, a
40 dB improvement in distribution based SNR (SNRTFD) could be achieved
by the all-pole modeling. However, computing all-pole models for arbitrary
speech and music signal segments could be challenging due to potentially strong
modulation effects in both amplitude and frequency. Also, the signal complexity
varies heavily over time. This means that estimating the correct model order
for each signal segment, which is of fundamental importance, is non-trivial.
Thus, for the coloration detector, the all-pole modeling presented in paper
B, was abandoned. However, to the knowledge of the author, reassignment
operators for all-pole modeled signals have not been published elsewhere. Also,
several computational tools for time-frequency analyses are developed, which
are discussed more in chapter 5.4.
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SNR = 30 dB
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Figure 5.6: Estimated -60 dB decay times for SNR = 30 dB. In each group,
from left to right, the bars represent curve fitting using: spectrogram - raw
data (solid), reassigned spectrogram - raw data (hollow); spectrogram - SBI
data (solid), reassigned spectrogram - SBI data (hollow); spectrogram - SBI
data including ”tail” (solid), reassigned spectrogram - SBI data including ”tail”
(hollow).

5.4 Objective measures for analysing time-frequency
distributions

In general, time-frequency distributions are plotted to illustrate e.g. specific
signal properties or differences between two signals. However, interpreting
time-frequency plots is potentially treacherous, since a correct interpretation
depends on using optimum ”plot floor” (or dynamics), color scale (or viewing
angle if 3D plotting), interpolation and time-frequency resolution. Even if all
parameters for plotting are optimum, the interpretation of the resulting figure
is still subjective and important features can be misinterpreted.

Therefore, using various objective measures to analyze distributions could
be helpful. Eight such measures are presented in paper C. The measures are
inspired by well-known signal quantifiers such as the SNR and Q-value. A
short summary is given here:

1. Valid Peak Point Percentage (VPPP): given a set of reference points, this
measure indicates the success of peak detection.
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SNR = 45 dB
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Figure 5.7: Estimated -60 dB decay times for SNR = 45 dB. In each group,
from left to right, the bars represent curve fitting using: spectrogram - raw
data (solid), reassigned spectrogram - raw data (hollow); spectrogram - SBI
data (solid), reassigned spectrogram - SBI data (hollow); spectrogram - SBI
data including ”tail” (solid), reassigned spectrogram - SBI data including ”tail”
(hollow).

2. Average Frequency Deviation of a TFD (AFDTFD): estimates the average
frequency deviation of points obtained from the peak detection, relative
a set of reference points.

3. Reference based Signal-to-Noise Ratio of a TFD (RSNRTFD): using valid
peak points (see 1. above), the SNR of the TFD is estimated.

4. Reference based Q-value of a TFD (RQTFD): an estimation of the average
Q-value of all TFD signal points using valid peak points.

5. The Signal On-time Difference of a TFD (SODTFD): the difference in
time (s) between the total number of reference points and valid peak
points.

6. (Absolute) Q-value of a TFD (QTFD): same as 4. above, but only using
points obtained from the peak detection (i.e. without reference).

7. (Absolute) Signal-to-Noise Ratio of a TFD (SNRTFD): same as 3. above,
but only using points obtained from the peak detection (i.e. without
reference).
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8. The Signal On-time of a TFD (SOTFD): since the reference points are
missing, only the time corresponding to all detected peak points can be
computed.

In addition to the measures, a method for peak detection in the time-
frequency domain is described. The method is crucial for the operation of the
coloration detector.



Chapter 6

Simulating RESs and SRSs

A six channel system has been simulated using the iterative method described
in [1]. As previously mentioned, one important difference is that the system
simulated in this chapter and paper D is time-invariant and that the entire
audible frequency range is used. A simulated system is chosen due to high
repeatability, high precision, and obvious practical advantages over a corre-
sponding real system placed inside a large room often used for rehearsals. Apart
from the most obvious risk of disturbing the system configuration, including
microphone and loudspeaker positions, the acoustical properties of the room
are dependent on temperature, the configuration of absorbers and diffusors and
the placement of furniture (typically chairs) and other equipment, all of which
are difficult and time consuming to set up identically for each new system
measurement.

6.1 The transfer function measurements

Before simulations can be performed, a number of transfer functions must be
measured in a real room. The room chosen for this task is a ”rectangular”
symphony orchestra rehearsal room with dimensions 12 × 20 × 6.3 m (see
figure 6.2 for details). As shown in figure 6.1, several musical instruments and
other objects are placed along the room walls. Special drapes are installed to
control the reverberation time. During all measurements, the drapes along wall
y = 0, drawn in figure 6.2, were lowered to minimize the reverberation time.
This made it possible to use a high sampling frequency during the measurments.

The x and y coordinates (width and depth) of the system microphones and
loudspeakers are randomized according to figure 6.2 (for detailed information,
see table 6.1). In order to excite as much reverberation energy as possible,
the system loudspeakers and microphones are mounted on high stands. The
method resembles the one described in [3]. The active loudspeakers, L1-L5,
(Genelec 1029A) are facing the ceiling and are approximately 2.5 m above the
ground. LP is facing the listener, i.e. its purpose is to reinforce the direct sound.
It is mounted slightly higher than L1-L5.

39
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Figure 6.1: The rehearsal room. The KEMAR dummy head and the drapes
covering parts of wall y = 0 are visible.
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Figure 6.2: The positions of the system loudspeakers (diamonds), microphones
(crosses), source (star) and listener (square).

The omni-directional microphones, MP & M1-M5, (AKG C451E) are facing
the ground and are positioned about 3 m from the floor surface. The signal
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Table 6.1: Coordinates of system components.

System x y z Amplified and
component (m) (m) (m) connected to

M1 5.4 10 3 L1
M2 5.7 4.3 3 L2
M3 14.5 4 3 L3
M4 8.4 3.6 3 L4
M5 11.3 6 3 L5
MP 2.3 3.6 3 LP
L1 15 8.7 2.5 -
L2 9 10.3 2.5 -
L3 4.5 3 2.5 -
L4 8.4 7.36 2.5 -
L5 2.2 8.24 2.5 -
LP 3.3 5.3 3 -

Source 2.3 5.3 1.7, 1.5 -
Listener 10.6 6 1.4 -

from M1 is amplified and sent to only one loudspeaker, L1 in this case. All
channels are constructed in the same way, with matching microphone and
loudspeaker indices.

As seen in the figure 6.2, there is one ”source” and one ”listener”. The
listener is a KEMAR dummy head equipped with Sennheiser microphones in
its ears, positioned at normal, seated listening height. The source is set up as
follows:

Speaker: in an attempt to create a directivity pattern that resembles a human
speaker, a Genelec (about 1.7 m above the ground), configured according
to figure 6.3, is used. The material covering the woofer is glass fibre wool
(1.5 cm thick), with a 3.5 × 2.5 cm opening.

Musical source: a custom built omni-directional loudspeaker (1.5 m above
ground) is used for simulating a musical instrument.

The transfer functions were measured using a portable computer and the
MLSSA software. An M-Audio DMP3 microphone pre-amplifier supplied
phantom power to the microphones. The following transfer functions were
measured using a sampling frequency of 60606 Hz, which corresponds to a 20
kHz cutoff frequency:

HLMij(ω) (from loudspeaker i to microphone j): all possible combinations, with
i and j having a range of 1-5 (integers),P (a total of 6 · 6 = 36 transfer
functions).

HSiRj(ω) (from source to receiver): the transfer function between both source
types (speaker and musical) and the dummy head (using one ear at a
time-thus a total of 4 measurements). i and j range from 1 to 2.
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Figure 6.3: Modification of Genelec loudspeaker.

HSiMj(ω) (from source to microphones): the transfer function between both
source types (speaker and musical) and the system microphones, with i
having a range of 1-2 and j 1-5,P (a total of 12 measurements).

HLiRj(ω) (from loudspeakers to receiver): the transfer function between sys-
tem loudspeakers and the dummy head using one ear at a time, i.e. a
total of 12 measurements. The ranges of i and j are the same as indicated
in the above text.

For each transfer function group listed above, the loudspeaker/source volume
and microphone pre-amp level were fixed.

6.2 Calculations

Please note that in the following text, MP and LP, will be denoted as M6 and
L6. For each channel, the user will specify a desired mean loop gain (MLG).
Recalling eq. 3.2, MLG is generally defined as

MLG = |G(ω)HLM(ω)|2. (6.1)

Let MLGi denote the desired MLG for channel i in decibels. Next, modify
HLMii(ω) according to

HLMii,MOD(ω) =

√
10MLGi/10

|HLMii(ω)|2
·HLMii(ω) (6.2)

With this modification,

10 · log
(
|HLMii,MOD|2

)
= MLGi (dB). (6.3)
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Thus, HLMii(ω) has been scaled so that its MLG is MLGi.
After specifying MLGi, the first step of the iteration process can be per-

formed. Let Gi(ω) represent the amplification of channel i:

Gi(ω) =

√
10MLGi/10

|HLMii(ω)|2
. (6.4)

The first iteration step, which gives Y0,i(ω), a part of the total signal fed to
loudspeaker Li, can be written as

Y0,i(ω) = Gi(ω)X0,i(ω), (6.5)

where X0,i(ω) is the Fourier Transform of the source signal convolved with
HSMi (assume source type S).

The second step represents the feedback path, the sound going from loud-
speaker Li to all microphones, M1 −M6. The signal reaching microphone Mi

is calculated as

X1,i(ω) =

6∑
n=1

Y0,i(ω)HLMni(ω). (6.6)

All 36 HLM transfer functions are used in order to obtain 6 new input signals.
This can also be represented by matrices as described in [1].

The next step is to repeat step 1, but with the new input signals, X1,i(ω):

Y1,i(ω) = Gi(ω)X1,i(ω). (6.7)

Now, step 2 can be written as

X2,i(ω) =

6∑
n=1

Y1,i(ω)HLMni(ω). (6.8)

The procedure is repeated until the following expression is true for all 6 channels:

10 log
|Yk,i(ω)|2

|Yi,TOT(ω)|2
< Lstop, (6.9)

where
Yi,TOT(ω) =

∑
k=0

Yk,i(ω). (6.10)

In the time domain, each new term in expression 6.10 represents a shift
corresponding to the distance between loudspeakers and microphones. Due to
the FFT convolutions in eqs. 6.5 - 6.8, and the fact that the FFT size is fixed
at 219 or 220 in all calculations, there is a risk of circular convolutions. In the
time domain, a convolution of two (non-zero) signals, M and N samples long
respectively, results in a signal of length P = M +N − 1. Thus, if P is longer
than 220 samples, the FFT operation must ”squeeze” all P samples into 220

points, which is impossible, and results in circular convolutions. To avoid this,
one can either zero pad or truncate the output after each FFT convolution.



44 CHAPTER 6. SIMULATING RESS AND SRSS

Zero padding is not a good option, since the length of the signals will increase
after each convolution, resulting in longer computational times and shortage of
system memory. Therefore, a truncation time of 1.5 s, which is far longer than
the reverberation times of all impulse responses hLMij , is used. The truncation
is carried out in the time domain as described in [1].

6.3 The sound arriving at the dummy head

In order to obtain the signal picked up by the dummy head, each Yi,TOT(ω)
is first multiplied by the corresponding HLiRj(ω) and then summed. j varies
from 1 to 2 and indicates the left and right ear, resulting in 6 transfer function
for each ear. Thus, the resulting sum for ears 1 and 2 are

YEAR1(ω) = HSR1(ω) + b ·
6∑

i=1

Yi,TOT(ω)HLiR1(ω) (6.11)

YEAR2(ω) = HSR2(ω) + b ·
6∑

i=1

Yi,TOT(ω)HLiR2(ω), (6.12)

where HSRj represents the direct sound and b a constant which is used to vary
the energy of the system sound in relation to the direct sound energy.

For a certain system gain setting, MLGi, and N active channels, the sound
energies

Edir =
∑
n

∣∣∣∣∣∣
2∑

j=1

HSRj(ωn)

∣∣∣∣∣∣
2

, (6.13)

Esys =
∑
n

∣∣∣∣∣∣
2∑

j=1

6∑
i=1

Yi,TOT(ωn)HLiRj(ωn)

∣∣∣∣∣∣
2

(6.14)

and
Esys,pr

Edir,pr
=

NS2
avg

1−NS2
avg

, (6.15)

where Savg =
√

1
N

∑N
i=1 10

MLGi/10, are determined, so that b can be written
as

b =

√
Esys

Edir · (Esys,pr/Edir,pr)
· 10(Gsys/20). (6.16)

Eq. 6.15 represents the predicted (highlighted by pr in the subscripts) energy
according to diffuse field theory of the system relative to the direct sound [1].
Thus, eq. 6.16 allows a scaling of the system sound energy so that Esys/Edir =
Esys,p/Edir,p. Additionally, this ratio can be modified by the ”system sound
gain”, Gsys, which is important for the PA channel (channel 6). Its loudspeaker
is facing the listener, i.e. eq. 6.15 is underestimating the system energy. This
means that a Gsys = 3 dB compensation is used when the PA channel is active
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and has the same mean loop gain as the other channels. In general, the scaling
that eq. 6.15 introduces is important when creating sounds for listening tests.
If a compensation is not done by using b, i.e. if b = 1 in eq. 6.11 and 6.12, the
level of the direct sound in relation to the system sound will be unrealistic.
This is because different microphone preamplifier gain settings had to be used
during the measurements of HLiRj and HSRj and the gain settings could not
be recorded with sufficient precision.



46 CHAPTER 6. SIMULATING RESS AND SRSS



Chapter 7

Some coloration detection
attempts

Before arriving at the level of refinement presented in paper D, extensive work
was required to develop and evaluate several different coloration detection algo-
rithms and coloration measures. The later attempts incorporate the concept of
damping distributions, where the damping constants of the room are estimated
using the source material and compared to a reference distribution (see paper
D, sections II and III for more details). For example, in one of the methods,
Hest(kh, tm) (see eq. 22 in paper D) is fitted to the chi-square distribution,

pχ(x | δ̄(ωkr , tm)) for each envelope maximum at a fixed system gain setting.

Here, δ̄(ωkr
, tm) is the mean value of all valid decay constants belonging to a

certain envelope maximum. Then the approximation error is computed as a
function of system gain setting. The hypothesis is that the approximation error
would increase with increasing system gain. The results, however, indicate no

such relationship. This is explained by the fact that using δ̄(ωkr
, tm) in the

chi-square distribution effectively minimizes the approximation error, regardless
of gain settings and envelope maxima.

As a second attempt, Hest(kh, tm) is computed for each envelope maximum
followed by averaging of all distributions within a certain time interval according
to eq. 23 in paper D. The chi-square distribution is then fitted to the resulting
average distribution, Hest(kh), by computing the median value, µ1/2, of both
distributions. Since the interval of the decay constants is limited, the resulting
distributions are ”truncated”. The median values are computed by numerical
integration of the distributions. The truncated chi-square distribution is shifted
so that its median value matches that of Hest(kh) at the lowest system gain. An
example is shown in figure 7.1. The dashed blue line represents a stable system
at MLG = −60 dB with a median value of µ1/2 = 12.97. The solid black line
is the chi-square distribution with a matching 12.97 median value. Now, the
aligned chi-square distribution is considered as the reference distribution and
the median value, denoted µref

1/2 is a key component for the next computational
step.

47
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Figure 7.1: An example of how the subareas A1 and A2 are defined using

Hest(δ̄(ωk)) and the median value corresponding to a stable system. The

dashed blue line represents Hest(δ̄(ωk)) for a stable system at MLG = −60 dB,
the red solid-square line a system close to instability and the black solid line
the chi-square distribution with the same median value as found for the stable
system (12.97 in this example).

For increasing system gain settings, each resulting Hest(kh) is integrated
numerically (by summation) below and above µref

1/2, resulting in two subareas
A1 and A2 as shown in figure 7.1:

A1 =
1

NΨ

∑
k∈Ψ

Hest(kh) (7.1)

and

A2 =
1

NΓ

∑
k∈Γ

Hest(kh), (7.2)

where the sets of indices Ψ and Γ are defined so that

δ̄(ωΨ) ≤ µref
1/2 (7.3)

and
δ̄(ωΓ) > µref

1/2 (7.4)

hold true. For the reference distribution and for Hest(kh) at minimum system
gain, µref

1/2 represents the point of equal areas, which implies that A1 = A2. The
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idea for the sound coloration measure proposed here is to use the same median
value, µref

1/2, to define the subareas of Hest(kh) as the system gain increases,
even though the actual median value of each new distribution is different from
µref
1/2. This means that A1 will differ more and more from A2 as the system

gain increases. The red solid-square line in figure 7.1 represents a system close
to instability and as can be observed, A1 is now substantially larger than A2.
By plotting 10 · log10(A1/A2) as a function of system gain, the ratios between
the subareas can be studied, starting from 0 dB at low system gains. As the
gain increases, the amount of damping (or attenuation) in the system will
decrease causing an increasing number of components with longer decay times.
Thus, in general, it is expected that A1 ≥ A2 and that the ratio will increase
with increasing system gain. For paper D, however, the concept of subareas
was omitted, since the distribution median turned out to be simpler and more
robust (for the median based coloration measure, refer to eq. 24 in paper D).

A third attempt incorporates exploring the distribution of the sound pressure
amplitude measured in an arbitrary room (sinusoidal excitation), which follows
the Rayleigh distribution and is independent of several key room properties:
acoustical qualities, volume, shape and type [4]. Thus if an SRS alters the
impulse response so that it becomes ”unnatural”, the response will deviate
from the Rayleigh distribution. Thus, it is of interest to try this approach for
coloration detection.

Based on the estimated decay constants, the goal is to estimate the distri-
bution of the sound pressure amplitude, i.e. the FFT of the impulse response.
Here Parseval’s theorem is useful:∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X(ω)|2 dω, (7.5)

because |x(t)|2 is estimated in eq. 9 in paper D. Thus, for one frequency slice,

|X(k)|2 =

∫ ∞

0

B2
ke

−2δkt dt =
B2

k

2δk
(7.6)

or

X(k) =
Bk√
2δ̄k

, (7.7)

where Bk and δk define the amplitude and decay constants of the decay curve
within bin k that gives the best match to the actual decay curve within bin k.
By expressing the frequency dependence of Bk and δk as B(ω) and δ(ω), eq.
7.7 leads to the following estimate of the sound pressure amplitude:

Pest(ω) =
B(ω)√
2δ(ω)

. (7.8)

The next step is to compare the distribution of Pest(ω) to the Rayleigh distri-
bution, which is defined as follows:

PRL(z) =
πz

2
e

−πz2

4 , (7.9)
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where z is the absolute value of Pest(ω) divided by its frequency average. The
distribution of Pest(ω) is computed using the histogram function in Matlab:

PHIST = hist
(Pest(ω)

P̄est(ω)

)
, (7.10)

where P̄est(ω) is the frequency average of Pest(ω). An example of the Rayleigh
distributions discussed here is shown in figure 7.2. As seen in the figure, the
distribution based on the estimated decay constants and amplitudes matches the
corresponding FFT distribution. The theory behind the Rayleigh distributed
sound pressure amplitudes will be discussed in more detail in the following
text.
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Figure 7.2: The theoretical Rayleigh distribution (solid line), the distribution
based on the FFT of a measured room impulse response (dotted line) and the
distribution based on the estimated amplitudes and mean decay times of the
same measured room impulse response as for the dotted line (dashed line).

7.1 The Central Limit Theorem and time do-
main windowing

The fact that the sound pressure amplitude measured in a room (sinusoidal exci-
tation) is Rayleigh distributed is a result of the Central Limit Theorem (CLT). In
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essence, the CLT states that the sum of a large number of mutually independent
random variables will be normally distributed [6]. If x1(k), x2(k), . . . , xN (k)
denote N such random variables, the sum random variable, s(k), in

s(k) =

N∑
i=1

cixi(k) (7.11)

will be normally distributed when N → ∞. The CLT holds even if the
individual distributions of the random variables are unspecified and different
and weighted by the fixed arbitrary constants ci.

In the frequency domain, the sound pressure amplitude is expressed as [4]

P (ω) =
∑
n

An

ω2 − ω2
n − 2jδnωn

, (7.12)

where An are functions of ω, the source position and the receiver position.
Viewing eq. 7.12 purely mathematically, it is clear that it can be expressed as

P (ω) = (a1(ω)+a2(ω)+ . . .+aN (ω))+ j(b1(ω)+ b2(ω)+ . . .+ bN (ω)), (7.13)

i.e. the sum of a large number of complex numbers, a+ jb. According to [4],
the magnitudes of ωn and δn are changing in such an irregular manner between
the current and next eigenfrequency that each term in eq. 7.12 or eq. 7.13 can
be considered as mutually independent. Thus, the CLT can be applied, i.e.

hist
[ N∑

i=1

ai(ω)
]
→ N(µa, σ

2
a) (7.14)

and

hist
[ N∑

i=1

bi(ω)
]
→ N(µb, σ

2
b ). (7.15)

If the real and imaginary parts of P (ω) are normally distributed, one can show
that |P (ω)| is Rayleigh distributed.

Since the computation of the damping constants is based on spectrograms,
it is of interest to investigate if the CLT still holds for a windowed impulse or
frequency response. During the computation of the spectrogram, the signal is
windowed in the time domain by multiplying the signal, s(t′), with a window
function shifted by time t, h(t′ − t): s(t′) · h(t′ − t). In the frequency domain,
the time shift of the window function corresponds to multiplying the Fourier
transform of the window function, H(ω), by e−jωt, i.e. h(t′ − t) corresponds
to e−jωt ·H(ω) = Ht(ω). Also, multiplication in the time domain corresponds
to convolution in the frequency domain. In fact, circular convolution will
be used so that the length of the resulting vector will be the same as the
frequency response vector (the actual computations are done in the discrete
frequency domain). Now, let us assume that the Fourier transform of the signal,
S(ω), is described by eq. 7.12. Then, the frequency domain equivalent of the
spectrogram of an impulse response can be written as

PS(t, ω) = |S(t, ω)|2 = |Ht(ω)⊛ P (ω)|2. (7.16)
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The circular convolution in eq. 7.16, represented by the ”⊛”, will be computed
by frequency domain windowing and integration (summation), where the shifted
(by time t) window function, Ht(ω), is multiplied by the portion of the frequency
response covered by Ht(ω) (typically, the bandwidth of the window function,
Ht(ω), is much smaller than the bandwidth of P (ω)). The ”scaled” frequency
response values are then integrated (summed) followed by a frequency shift of
Ht(ω) after which the multiplication and integration are repeated. To illustrate
this in the discrete frequency domain, a window consisting of three frequency
points, [Ht(1), Ht(2), Ht(3)], and a frequency response consisting of five points,
[P (1), P (2), P (3), P (4), P (5)], are convolved in table 7.1. From table 7.1, it

Table 7.1: Example of circular convolution.

Freq. bin 1 2 3 4 5
Window Ht(1) Ht(2) Ht(3)

Freq. resp. P (1) P (2) P (3) P (4) P (5)
Freq. resp. Ht(1) ·P (1) Ht(1) · P (2) Ht(1) · P (3) Ht(1) · P (4) Ht(1) · P (5)

Shift: 0 bins + + + + +
Freq. resp. Ht(2) · P (5) Ht(2) ·P (1) Ht(2) · P (2) Ht(2) · P (3) Ht(2) · P (4)

Shift: 1 bin + + + + +
Freq. resp. Ht(3) · P (4) Ht(3) · P (5) Ht(3) ·P (1) Ht(3) · P (2) Ht(3) · P (3)

Shift: 2 bins
Column sums: = S(t, 1) = S(t, 2) = S(t, 3) = S(t, 4) = S(t, 5)

is clear that the spectrogram at time t, is computed by frequency domain
windowing and summation. The windowing is essentially carried out by scaling
certain frequency response points with the window. The number of terms in
the resulting sums is defined by the bandwidth of the window function (three
frequency points in the above example). In the above text, it was shown that
the real and imaginary parts of P (ω) are normally distributed. Is this still the
case for the real and imaginary parts of S(t, k)? Assuming M terms, each sum
leading to S(t, k) has the form

S(t, k) =

M∑
i=1

Ht(i) · P (Ik(i)), (7.17)

where the notation Ik represents the indices valid for frequency bin k (there
are three terms and indices in the above example). Since both Ht(k) and P (k)
are complex, eq. 7.17 can be written as

S(t, k) =

M∑
i=1

[
ℜ
[
Ht(i)

]
· ℜ
[
P (Ik(i))

]
−ℑ

[
Ht(i)

]
· ℑ
[
P (Ik(i))

]
+ j

(
ℜ
[
Ht(i)

]
· ℑ
[
P (Ik(i))

]
+ ℑ

[
Ht(i)

]
· ℜ
[
P (Ik(i))

])]
,

(7.18)

where the real and imaginary parts of the complex variables are denoted by ℜ
and ℑ respectively. Assuming that the ℜ

[
P (Ik(i))

]
and ℑ

[
P (Ik(i))

]
terms in

eq. 7.18 form 2M independent and normally distributed random variables (the
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distributions may differ) and that ℜ
[
Ht(i)

]
and ℑ

[
Ht(i)

]
are ”constants” in

eq. 7.11 , applying the CLT to ℜ
[
S(t, k)

]
and ℑ

[
S(t, k)

]
leads to the answer

that both quantities are normally distributed. In other words, when computing
the spectrogram of an impulse response, the frequency data in each ”time
slice” should be Rayleigh distributed - similar to the FFT of an entire impulse
response. It is also assumed that the width of Ht(k) is around 15 frequency
bins or more so that the CLT is applicable. This means that N in eq. 7.11 is
at least 30 (M = 15, 2M independent random variables).
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Chapter 8

Implementing the final
coloration detector

The final coloration detector is described in more detail in paper D, section
III. Thus, only a short summary will be given here. Starting with the general
structure of the detector, which is shown in figure 8.1, one can note that there
are eight main blocks:

1. The input signal is defined. In practice, a microphone is placed where
the sound field is highly diffuse.

2. A TFD, or Time-Frequency Distribution, of choice is computed. Here,
both the ordinary and reassigned spectrogram have been considered.

3. For each spectrogram frequency bin, RMS filtering (sliding window
method) is applied to smooth the decay curve ripples, which simpli-
fies the subsequent decay detection.

4. For each spectrogram frequency bin, decays are detected and validated.
For example, decays with insufficient dynamics are discarded.

5. For all valid decays, curve fitting is applied to the Schroeder backward
integrated decays. The slopes of the fitted lines result in a set of damping
constants, generally one set per bin.

6. Histogram analysis of decay onset times is applied to find ”broadband
decays”, which are analyzed for harmonic contents. When detected, all
harmonically related components are removed. The underlying idea is
that sound decays from musical instruments or other sources should be
removed from the following damping distribution analyses, because the
goal is to analyze the acoustics of the room, not its sources.

7. The mean damping distribution is computed using the distributions
corresponding to each ”broadband decay”.
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8. The sound coloration is estimated based on the mean damping distribution
and a reference distribution (chi-square in this case). Both the median
value and shape of the distribution are considered.

Figure 8.1: The general layout of the coloration detector.

Currently, the code for each block is not optimized when it comes to computa-
tional efficiency or future DSP implementations. The detector will probably
not operate in real-time within a foreseeable future (due to numerous complex
computations), but true real-time operation is not needed if the detector works
as intended. A well-functioning coloration detector can sample the program
material quite sporadically, say every 10-20 s, and inform the sound engineer
about the current status. Therefore, a first prototype of the detector could
apply post-processing to a recently recorded signal and repeat the process
continuously. Also, true real-time operation is questionable, since all damping
constant estimations belonging to a certain envelope maximum must be com-
puted before any coloration data can be produced. This, of course, depends
on the reverberation time of the auditorium, which means that ”real-time”
would translate to ”the time instant after a set of damping constants have been
computed”.

Most computations presented in this thesis are based on a simulated RES,
using measured RIRs. The microphones picking up the signal for the coloration
detector are the KEMAR dummy head microphones. It is assumed, however,
that an ordinary measurement microphone would work equally well in a practical
application. In most cases, the positioning of the microphone will be more
critical than the microphone type. As previously mentioned, one of the key
assumptions used when deriving the damping distribution is a highly diffuse
sound field. Therefore, the microphone must be placed away from room surfaces,
main PA loudspeaker arrays, direct sound sources, etc.

For the simulated system, the coloration detector works for both speech and
music. However, this will not always be the case. The more ”impulse like” the
source is, the better. Also, the time interval between these impulses must allow
for some room reverberation and sound decay so that the damping constants
can be computed. If either condition is not fully met, the performance of the
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Figure 8.2: Decay detection of a TFD frequency slice at f = 1464.2 for a speech
signal.

detector will degrade. Some examples are:

� Musical passages with virtually no dynamics.

� Musical passages containing few notes.

� Quiet (or muffled) and very fast speech.

It is important that the source is positioned correctly and powerful enough to
excite the reverberant sound field of the room and produce a tolerable SNR.
On the other hand, if the source is too dominating, problems will also occur.

For the decay detection in block 4, which is based on a purely numerical
procedure, it is interesting to note the resulting redundancy. An example of the
decay detection is shown in figure 8.2. The circles illustrate the stored decay
indices and the radii of the circles show the occurrences of each index. Hence,
it is obvious that there will be some redundancy for the decay detection and
its stored indices. Only unique indices are kept and sequences of consecutive
integers are identified. Each sequence is assumed to represent a decay with
arbitrary dynamics. The beginning and end of each sequence are stored and
decays with less than 10 dB dynamics are omitted.

Consecutive decays which are close in time and level are omitted to avoid
erroneous multiple slope decays (due to e.g. ripples). In this case, only the
first decay, having the strongest start and stop levels, is saved. Finally, only
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broadband decays are saved, i.e. for a certain decay in one frequency bin, there
must be several ”parallel” decays in other bins with roughly similar start times.
The criterion for this is computed using the histogram of all remaining start
indices.

8.1 Real rooms

Worth mentioning is that a real SRS was set up in a lecture hall in order to
record sound samples for coloration analyses. The same four sound samples
as in paper D (section III D) were used and fed to a small active loudspeaker,
which acted as the sound source. However, instead of the six independent
and randomly positioned loudspeaker-amplifier-loudspeaker channels of the
simulated system, just one such channel was used for the measured SRS. In
other words, the sound from the ”source loudspeaker” was picked up by just one
microphone, amplified, and sent to two PA loudspeakers mounted on medium
height stands. The ”listener microphone” (i.e. the microphone responsible for
recording the sound samples used for coloration analyses) was positioned in
the audience area at sufficient distance from the nearest surfaces.

As for the simulated system, equalization is applied so that the system
sounds uncolored at low gain settings. This is verified by performing mea-
surements and frequency response analyses using white noise. All signals are
routed through a Tascam FW-1804 audio interface and controlled by a DAW
software (Magix Samplitude). For each source sound, the GBI is determined
by listening to the system and carefully adjusting the system gain until the
ringing artifacts slowly fade out. Finding the actual GBI, where the ringing
should be sustained at a constant level, proved to be very sensitive in practice.
For example, restoring the GBI setting after a few recordings at lower gain
often lead to an unstable system. A similar gain range as for the simulated
system, i.e. 42 dB, is used. For each source sound, a total of 17 measurements
are performed with decreasing gain steps as the system approaches instability.

With this quite basic one channel setup, the reverberant sound field was
poorly excited, resulting in less successful estimations of Hest(kh). Also, the
signal to noise ratio of the recorded sound files turned out to be a major issue
and the use of noise reduction algorithms was discarded due to the unknown
effects they would introduce to the coloration detection.



Chapter 9

General discussion

The focus of this thesis is to develop sound coloration measures which are
independent of measured references such as impulse responses or source sounds.
Instead, it relies on known reference distributions of damping constants. One
can argue that the reference distribution must be measured in some cases,
because the theoretical distributions (e.g. the chi-square or gamma distribution)
can not cover all different room types. In practice, however, the process of
estimating the reference distribution will be the result of merely running the
coloration detector at low system gains with normal program material (e.g.
speech or music) as input.

Since all aspects of the coloration detector have been developed from square
one, several key questions had to be answered during the development process.
This led to detailed explorations in fields such as psychoacoustics, signal
processing and time-frequency analysis accompanied by many years of trial and
error and testing new computational strategies. Therefore, the work presented
in this thesis may appear somewhat shifting. However, as the following text
will show, the main goal has always been clear.

The required time resolution of a coloration detector is one key question
which is addressed in paper A, since published research discussing this particular
topic remains unknown to the author. The time resolution can, however, be
linked to the audibility of tonality in pure tones, which has been studied by
numerous authors (see e.g. [12] - [15]). More specifically, unmasked decaying
pure tones should correspond to single feedback components in an SRS close
to instability, which, arguably, is the best case scenario for detecting sound
coloration in real SRSs. The hypothesis is that the resulting signal durations,
which correspond to the just audible tonality (JAT), will lead to the required
time resolution.

In paper A, the trends observed in Fig. 7, i.e. increasing JAT times for
decreasing frequencies, are also reported in Doughty and Garner [14]. The
reason for the observed behaviour at lower frequencies is the fact that at least
two periods of the signal must be presented to the listener (”click-pitch”) [14].
At low frequencies, the JAT times are around 20–23 ms, which corresponds to
signal decay times of about 13–16 ms. At higher frequencies, the JAT times
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decrease, while the number of required signal periods increases substantially
(refer to figure 9 in paper A). The lowest times of around 3 ms are observed
for the Gaussian signals.

The shorter JAT times for the Gaussian signals can be explained by their
comparatively narrower bandwidths. For all JAT times displayed in paper
A, Fig. 7, the fast Fourier transforms (FFT) of the corresponding stimuli
have been derived. By estimating the −3 dB bandwidths from the spectra,
the Q-values have been computed and the result is shown in paper A, Fig.
8. For the exponential signals, the Q-values are generally lower for the 95
phon signals. Similar results are reported in Doughty and Garner [14] for pure
tone bursts (rectangular window). For essentially all frequencies, the Gaussian
signals produce higher Q-values compared to the exponential signals. At 4800
and 7000 Hz, however, the Q-values of only the 95 phon Gaussian signals are
higher.

In general, tonality is related to signal Q-values [16], which are based on
FFTs of the entire time signals. For short duration signals, high Q-values,
which means small bandwidths, imply more tonality when the slope of the
spectrum becomes comparable to the slope of the excitation pattern [17]. This
slope varies depending on level and excitation type. However, the steepness of
the slope generally decreases with increased signal level. This might empirically
explain why the Q-values are lower for test 1 (exponential signals, 95 phon
max loudness) compared to test 2 (exponential signals, 70 phon max loudness).
At higher signal levels, the Q-values are allowed to be somewhat wider due to
the broadening of the excitation pattern and decreased slope steepness.

As pointed out in chapter 4.2, it would be interesting to dive deeper into
the ”gray area” related to loudness, i.e. the loudness of short duration pure
tones having bandwidths larger than one critical band. Following such research,
the loudness compensation implemented in paper A could be modified and
the listening tests repeated. Also, it would be interesting to re-estimate the
headphone compensation once more due to the constantly improving quality
of headphones, digital-to-analogue converters, amplifiers and measurement
systems including dummy heads. Naturally, this also implies using more
modern equipment for all listening tests.

Following the estimation of the coloration detector time constant, the
attention turned to time-frequency analyses. At an early stage during the
development of the coloration detector, it became clear that it was necessary
to track signals both in time and frequency. Since time-frequency reassignment
had been reintroduced and made computationally effective by Auger and
Flandrin [97], reassignment seemed to be an interesting option. However, the
reassignment is sensitive to low SNRs. Therefore, in paper B, the first natural
step is to investigate the noise sensitivity and possible improvements, especially
by all-pole modeling. Additionally, in order to conduct such an investigation,
several objective measures for time-frequency analysis are suggested.

In general, all-pole modeling can improve the SNRTFD (signal to noise
ratio of a TFD) of the reassigned spectrogram by up to 40 dB. Although a
promising result, the signal model order is hard to estimate, rendering all-pole
modeling unusable for the signals studied in paper B. Additionally, as shown in
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chapter 5.2, time-frequency reassignment is not suitable for signal decay time
estimation. In spite of this, the objective measures proposed in paper B turned
out to be robust and correlated well with the visual impressions of the TFDs.
Thus, in paper C, the number of measures are expanded to a total of eight
(from three in paper B) in two groups (absolute and relative measures) and each
measure is systematically tested. The computational examples display how the
suggested objective measures perform and also demonstrate how the measures
can be used to analyze TFDs and different signal components within the TFDs.
Overall, the proposed measures perform as expected and appear robust when
using a (noise contaminated) synthesized signal. The analyses show that certain
features of the TFDs, not easily distinguished by visual inspection, are revealed
by the measures. Naturally, the more general characteristics, easily detected
by visual inspection, are also quantified using the measures.

Based on the above explorations into time-frequency analysis, the foundation
of the coloration detector presented in paper D is defined, i.e. the required time
resolution and choice of TFD. Despite the promising properties of reassignment
and (all-pole) signal modeling, neither of them are used in the detector. Instead,
the ”ordinary” spectrogram is chosen. For the coloration detector, robustness
is challenging due to the vast array of computational parameters. Since the
chi-square distribution was found to be a suitable reference for low system gains,
it is natural to begin tuning computational parameters of the implementation to
obtain the best fit to the distribution. For the computations presented in paper
D, the TFD window length and overlap are important parameters as both will
introduce shifts in distribution median values. Another key parameter, which
will cause similar shifts, is the rms averaging filter length of the time signal
contained within each frequency bin as mentioned in Sec. III.A, step 3. Setting
a value somewhat lower or higher than 30 TFD time steps, corresponding
to 90 ms, results in minor shifts in the distribution median values and slight
deviations from the chi-square shape. The estimation of the slopes of the
decaying signals also introduces some uncertainty depending on the complexity
of the signal envelopes. Some estimations simply fail if the signal envelopes are
far from linear, if plotted as level (dB) vs time (s).

For the assumptions mentioned in paper D, Sec. II and lightly damped
systems with real-valued mode shapes, Burkhardt and Weaver [7] found the-
oretically that the damping distribution should be a chi-square distribution.
Their numerical simulations of a vibrating membrane with viscous dampers in
distinct nodes resulted in deviations from the chi-square shape for cases with
high modal overlap. However, as long as the assumptions, and especially the
approximation of real-valued mode shapes, are valid, there are no apparent the-
oretical limitations of their model. In fact, the studied rehearsal room produces
a chi-square damping distribution when the modal overlap is significant.

For the case of higher damping, resulting in the necessity to assume complex
mode shapes, the gamma distribution model by Schroeder [8] could be a
potential candidate. However, the studied rehearsal room showed a poorer fit
to the gamma distribution than the chi-square distribution - even when tuning
computational parameters to favor the gamma distribution (e.g. shorter rms
averaging filter length). For rooms not satisfying the necessary assumptions for
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a chi-square or gamma distribution, other distributions might be applicable.
For the general case, a reference distribution could be found by using the result
of the method at low system gain. However, for the rehearsal room in this
paper, it is clear that the chi-square distribution works well. Interestingly, a
method to estimate distributions of damping constants in rooms and displaying
excellent fit to a theoretical distribtion, has not been published elsewhere (to
the author’s knowledge).

As shown in paper D, the suggested coloration detector works well using
a simulated SRS. However, it is clear that additional real systems and rooms
should be tested. Given the underlying theory and method, described in section
II and III of paper D, the detector is expected to perform well for other rooms
and systems. In fact, it is difficult to argue for a complete failure of the detector.
Altering the natural distribution of the sound decay, i.e. the distribution of
damping constants, in a room by introducing acoustic feedback should always
register in the detector if its hardware and software are set up and implemented
correctly. Thus, the more relevant research questions should focus on detection
sensitivity and robustness, which relate to ”tuning” the detector by altering
various computational parameters and/or steps. When optimally tuned (as
in paper D), the coloration detector is very sensitive and robust. For real
systems and rooms, however, the performance will depend on the retuning of
the detector.

Unique to the suggested detector, and one of its major advantages, is that
no measured reference is required. Eliminating (continuous) measurements of
source sounds or impulse responses will improve the robustness of the suggested
coloration detector, because measured quantities always introduce some level
of uncertainty while being more or less intrusive during live performances. It is
clear that the possibility to use theoretical reference distributions is superior
and will improve the robustness of the coloration classification. Even if a
theoretical distribution is less suitable for the room in question, the suggested
detector can always compute the reference distribution at low system gains.

Naturally, the ultimate extension of the work presented in this thesis would
be to implement the ”real-time” system mentioned earlier. Then, it would
be possible to test the coloration detection in real systems and rooms using
just a single microphone, computer, sound card and software. Also, it would
be possible to optimize or ”tune” the computational steps and parameters to
improve the robustness of the detector for various real systems and rooms.
Included in the ”tuning” is to investigate the reference distributions of various
real rooms and how they relate to the theoretical distributions. As a final
step, the detector could be used by sound engineers as a complementary
(and highly experimental) tool for sound quality and coloration monitoring
during live performances. Although a complex task, building a ”real-time”
detector would be feasible. Matlab Simulink, Max MSP and Python are some
examples of suitable software. Hardware wise, the requirements would be a
fairly powerful laptop, a microphone with high SNR and a soundcard with
low noise preamplifiers. In other words, nothing out of the ordinary would be
required.

Another interesting extension of the work would be to link the audible
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sound coloration to the coloration measures. Different SRSs, rooms and source
signals should be considered, thus making this a complex task. The results,
however, would be valuable for sound engineers using the detector, since the
risk of audible sound coloration could be estimated.
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Chapter 10

Conclusions

Starting with the time constant of the coloration detector, it is shown in Paper
A that tonality is just audible for total signal durations as low as 2.6 ms.
However, JAT times around 3 ms only exist for high frequencies (above 3400
Hz). For lower frequencies, the JAT times increase, from around 5 ms at 3400
Hz to 20–23 ms at 150 Hz. The Gaussian stimuli produce the lowest JAT
times. This is explained by the time-varying Q-values, which are higher for the
Gaussian stimuli, over all time instants, than for the exponential stimuli. Thus,
for a Gaussian signal, the auditory system is excited by a high-Q signal during
a longer effective duration. The use of an attack function, which generally
reduces the levels of clicks, also contribute to higher time-varying Q-values.
This partly explains why the JAT times presented in paper A are lower than
the corresponding results in related papers.

In paper B, where the main goal is to improve the readability of noise con-
taminated reassigned spectrograms, it is shown that improvements are feasible
using all-pole modeling. Using two test signals, one speech and one synthesized
(i.e. the sum of four sinusoids with different properties), the apparent visual
improvements are verified objectively using the proposed SNRTFD, which
indicates improvements up to 40 dB for the synthesized signal and at least 40
dB for the speech signal. However, as shown in chapter 5.2, the reassigned
spectrogram is found to be less accurate for estimating decay times, which is a
fundamental part of the coloration detector. As a consequence, the ordinary
spectrogram is selected for the coloration detector.

The measures developed in paper B are refined further in paper C, where
a set of ”intuitive” objective measures for basic analyses of time-frequency
distributions is proposed. Two additional measures are introduced in paper C,
the Q-value of a TFD and the signal on-time difference. The measures reveal
and confirm a number of interesting differences between the two distributions,
some of which are virtually impossible to detect and/or quantify by visual
inspection alone. For example, the signal-to-noise ratios of the spectrogram (S)
and reassigned spectrogram (RS) are very similar, the RS has problems with
the AM signal components, the RS exhibits superior frequency accuracy for
SNRs between -5 and 20 dB and the Q-values of the TFD signal components
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are approximately doubled for the RS.
The contributions from papers A-C are vital for the core operation of the

coloration detector, which is the main contribution of this thesis. In paper
D, the possibility to blindly compute coloration measures based on estimated
damping distributions is explored. Two measures are proposed, one shaped
based, which has the chi-square distribution as a reference, and one median
based, which has the distribution median of a system with MLG = −60 dB
as reference. Both measures clearly indicate sound coloration as the system
gain increases, typically 12–22 dB from system instability depending on source
sound. In general, speech results in the highest absolute coloration measure
values. Comparably, initial listening tests reported in paper D suggest that
coloration is audible at around 5.7 dB (average over all sounds) from system
instability.

Being able to extract the distributions just by analyzing speech or music
signals (i.e. live program material) picked up by a microphone placed in the
audience area offers several advantages. Perhaps the most obvious one is
the existence of theoretical distributions, which enables the classification of
”coloration strength” and, as mentioned several times in the above text, should
eliminate the need for other references (at least for certain room types). For
the simulated SRS and the four source signals studied in paper D, the method
achieves an almost perfect fit to the chi-square distribution for the lowest MLG.
For increasing MLGs, the damping distributions of all sounds tend to deviate
further and further from the reference distribution, which clearly indicates
sound coloration. Additionally, the deviations occur for a relatively large range
of MLGs, for which sound coloration is inaudible, suggesting great potential
for professional audio applications such as hidden RESs. Thus, it is concluded
that the suggested approach and its implementation successfully detect sound
coloration for the studied cases.

It is emphasized that all computational steps used for the coloration esti-
mation in this paper have parameters that are carefully selected. Thus, future
work could focus on optimizing the computations and the parameter selection
to make the coloration estimation less sensitive. Also, several different system
and room types should be evaluated, both simulated and measured. Reference
distributions should be studied in more detail, i.e. how and why they change
depending on typical room types. A database of reference distributions of
typical real rooms would improve the accuracy of the coloration estimation.
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