
Reliable and efficient RAR-based distributed model training in computing
power network

Downloaded from: https://research.chalmers.se, 2025-07-01 17:27 UTC

Citation for the original published paper (version of record):
Chen, L., Li, Y., Natalino Da Silva, C. et al (2024). Reliable and efficient RAR-based distributed
model training in computing power network. Journal of Optical Communications and Networking,
16(5): 527-540. http://dx.doi.org/10.1364/JOCN.511165

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



Research Article 1

Reliable and Efficient RAR-based Distributed Model
Training in Computing Power Network
LING CHEN1, YAJIE LI1,*, CARLOS NATALINO2, YONGCHENG LI3, BOXIN ZHANG1, YINGBO FAN1, WEI
WANG1, YONGLI ZHAO1, AND JIE ZHANG1

1Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communications, Beijing, 100876, China
2Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
3Soochow University, the School of Electronic and Information Engineering, Soochow, 215021, China
*Corresponding author: yajieli@bupt.edu.cn

Compiled July 15, 2024

Computing power network (CPN) is a novel network technology that integrates computing power from
cloud, edge, and terminals using IP/optical cross-layer networks for distributed computing. CPNs can
provide an effective solution for distributed model training (DMT). As a bandwidth optimization archi-
tecture based on data parallelism, ring all-reduce (RAR) is widely used in DMT. However, any node or
link failure on the ring can interrupt or block the requests deployed on the ring. Meanwhile, due to the
resource competition of batch RAR-based DMT requests, inappropriate scheduling strategies will also
lead to low training efficiency or congestion. As far as we know, there is currently no research that con-
siders the survivability of rings in scheduling strategies for RAR-based DMT. To fill this gap, we propose
a new scheduling scheme for RAR-based DMT requests in CPNs to optimize computing, wavelength
resource with time dimension while ensuring reliability. In practical scenarios, service providers may
focus on different performance metrics. We formulate an integer linear programming (ILP) model and a
RAR-based DMT deployment algorithm (RDDA) to solve this problem considering four optimization ob-
jectives under the premise of minimum blocking rate: minimum computing resource consumption, min-
imum wavelength resource consumption, minimum training time, and maximum reliability. Simulation
results demonstrate that our model satisfies the reliability requirements while achieving corresponding
optimal performance for DMT requests under four optimization objectives.
© 2024 Optica Publishing Group
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1. INTRODUCTION

In the era of 5G and artificial intelligence (AI), computing
power has been a critical resource, since more and more appli-
cations and services require vast amounts of resources to sup-
port complex data processing and analysis tasks. As a new type
of network technology, computing power networks (CPNs) can
effectively manage and allocate computing, storage, network,
and other resources among service nodes through a network
control plane [1]. CPNs are distributed computing networks
that can integrate computing power of cloud, edge, and termi-
nals through an IP/optical cross-layer network [2]. Therefore,
CPNs can achieve more efficient resource utilization and faster

application deployment. Pre-trained models are one of the
most promising AI technologies in recent years. For instance,
ChatGPT (an AI chatbot developed by OpenAI) is an AI applica-
tion of this technology. AI approaches to address problems can
be abstracted in terms of two-stage processes, i.e., model build-
ing and inference in [3]. Model training is a critical process, as
the performance of the model during training can determine
how well it works when put into application for end-users. In
addition, model training builds predictive models by process-
ing large volumes of raw data. The complexity and size of the
data sets used for training can result in time-consuming and
resource-intensive processes. CPNs provide an effective solu-
tion for model training. As one of the largest and most complex
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pre-trained language models to date, GPT-3 model consumes
thousands of GPUs in the training lasting for several weeks to
a few months. The training optimizes 175 billion parameters
using over 45 TB of text data for training [4]. To reduce training
time, GPT-3 employed distributed training to accelerate train-
ing speed.

When data are inherently distributed or too large to store
and/or process on a single machine, distributed model train-
ing (DMT) is one of the solutions to make it possible to train
a model, which mainly includes model parallelism and data
parallelism. The principle of model parallelism is to partition
the model across several machines, such that the computing
responsibility is assigned to different machines [5]. This way
needs to transfer feature map between different machines and
has limited parallelism. Thus, model parallelism is usually
used for large models that cannot be stored on a single ma-
chine. Instead, data parallelism partitions the training data and
copies the entire model to multiple machines to execute in par-
allel. Data parallelism is easier to implement than model par-
allelism, so it has been a popular solution in AI frameworks.
The process of DMT based on data parallelism can be briefly
described as follows: firstly, each node gets the gradient val-
ues by computing forward- and backward-propagation on its
assigned training data. After that, each node collects the gra-
dients generated by other nodes and merges these gradients.
Finally, the nodes update their model weights with the merged
gradients. The paper in [6] compared two typical architectures
based on data parallelism, i.e., parameter server (PS) and ring
all-reduce (RAR). The PS architecture consists of a set of param-
eter servers and workers, in which parameter servers are re-
sponsible for storing model parameters and aggregating global
gradients, while the workers are for calculating the local gra-
dient of parameters. However, as the number of workers in-
creases, the PS architecture may suffer from communication bot-
tlenecks and single-point-of-failure. Compared with PS archi-
tecture, RAR architecture averages gradients and sends them to
all nodes by forming a logical ring among worker nodes, where
each worker sends data only to its successor and receives data
only from its predecessor. As shown in Fig. 1, RAR algorithm
proceeds in two phases: scatter-reduce and allgather. Suppose
there are N workers in a ring and the amount of updated gradi-
ents of every worker is d. Each worker splits its local gradients
into N subsets, each of which is d/N. During the scatter-reduce
phase, these workers add up received subsets to their own sub-
sets and average them, until each worker owns a sub-final block
of global gradient data. Next, in the allgather phase, workers
exchange these blocks such that every worker gets an overall
result. The training is completed through multiple epochs until
the required model accuracy is reached. In one epoch, scatter-
reduce is usually carried out (N − 1) times, and then allgather
(N − 1) times. To sum up, every worker sends d/N amount of
data for 2(N − 1) times, and the total amount of data transmit-
ted is 2d(N − 1)/N. The total communication amount of the
RAR architecture does not increase linearly with the number
of workers, which can efficiently reduce communication over-
head and has better scalability. Hence, the RAR architecture is
suitable for distributed scenarios with large-scale datasets and
a large number of computing nodes, such as large-scale model
training.

Nevertheless, RAR-based DMT faces an important chal-
lenge: if a node or a link within the ring suffers from failure, the
RAR-based DMT will be interrupted because of the ring charac-
teristic. Therefore, the ring reliability becomes a critical factor
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Fig. 1. Illustration of RAR process

for RAR-based DMT. To the best of our knowledge, there is no
research on reliable RAR-based DMT in CPNs at present. There-
fore, we focus on how to provide reliable and efficient RAR-
based DMT services in CPNs.

In a practical scenario, computing power and wavelength
resources are known, while DMT requests can be collected and
scheduled in advance, hence we can treat the work as a static
planning problem. Moreover, we introduce time domain to ex-
tend the dimension of resource allocation and enable schedul-
ing. Integer linear programming (ILP) is a powerful optimiza-
tion method primarily employed for linear programming prob-
lems. ILP is commonly employed to address practical appli-
cations, such as allocation problems and resource scheduling
problems. ILP aims to find values for a set of integer variables
that satisfy specified linear constraints, while maximizing or
minimizing a linear objective function. This method iteratively
performs integer solution searches to gradually approach the
optimal solution that satisfies the constraints. We use a mathe-
matical programming optimizer Gurobi [7] to establish an ILP
model. Gurobi employs optimization algorithms such as cut-
ting plane algorithms to efficiently search the solution space
and find the optimal solution.

In this paper, we investigate the scheduling of DMT requests
in CPNs, jointly considering the allocation of computational re-
sources and wavelength resources in the temporal dimension
to maximize the provision of reliable DMT services. To address
this problem, we propose an ILP model based on a small-scale
topology. Meanwhile, we design a RAR-based DMT deploy-
ment heuristic algorithm to deal with a large-scale topology.
We conduct simulations in the scenario of metropolitan micro
data center networks to examine the performances of our ILP
model and heuristic algorithm. The simulation results show
that our model and algorithm can meet the reliability require-
ments and obtain the corresponding optimal performance for
the DMT requests deployed with different optimization objec-
tives. Note that, although our simulation focuses on the sce-
nario of metropolitan micro data center networks, the applica-
bility of our model is not limited to this context. By adjusting
the topology parameters, our model can be flexibly applied to
various other CPN scenarios.

The rest of this paper is organized as follows. In Section 2,
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we review the work related to DMT and job scheduling. Section
3 introduces the network model and the problem formulation to
describe the differences in DMT requests deployment under dif-
ferent optimization schemes. Section 4 proposes the ILP model
and Section 5 designs a heuristic algorithm to solve the problem
in a large-scale topology. In Section 6, simulations are carried
out to evaluate the performance of our ILP model and heuristic
algorithm. In the end, Section 7 concludes this paper.

2. RELATED WORK

To meet the demands of emerging computational requirements
and different network scenarios, some researchers have at-
tempted to design CPN frameworks. The authors of [8] pro-
posed a computing and networking interconnection architec-
ture based on IP routing extension, which realized consistency
in user experience and flexible and dynamic deployment of
services. In [9], the work proposed key techniques for realiz-
ing a mobile CPN, which included quantifying computing re-
sources, jointly optimizing communication and computing re-
sources, enabling interactions between different computing ca-
pability providers, and so on. Besides, the work [10] proposed a
computing power resource modeling approach and used com-
pletion time to represent the computing power for users. The
authors of [11] presented a CPN composed of a computing
layer, an IP layer, and an optical layer. The computing layer
provided computing resources, the IP layer aggregated traffic
through E-Switch, and the optical layer provided wavelength
bypass through ROADM.

At present, DMT has been the topic of many works. The au-
thors in [12] proposed a scheme called Liquid, an efficient GPU
resource management platform for distributed deep learning
(DDL) jobs. Liquid works by pre-scheduling data transmission,
fine-grained GPU sharing, and event-driven communication to
avoid over-allocating resources. In addition to optimizing net-
work resources, some works studied scheduling strategies from
the perspective of time. The work in [13] designed an online
algorithm to maximize the overall utility of all jobs, which de-
pended on their completion time, by adjusting the number of
concurrent workers and parameter servers for each job over its
course.

Owing to the communication bottleneck of the PS architec-
ture as described in Section 1, RAR architecture has become
popular and has been supported by mainstream DDL frame-
works, such as PyTorch in [14]. The authors of [15] studied vari-
ous factors that affect cluster utilization. They noted the impor-
tance of locality for DMT jobs and the interference from another
job with GPU utilization. The paper in [16] proposed a dynamic
DNN training clusters expansion scheme that can add nodes
to up-and-running training cluster with minimal performance
impact. This showed the favorable extensibility of RAR archi-
tectures. Besides, there are some studies about the scheduling
strategy and application scenarios of RAR architecture. In or-
der not to destroy the cluster structure, the work in [17] realized
multi-task elastic scheduling by setting up a scheduler outside
the cluster to control the cluster from the outside. The authors
designed a contention-aware resource scheduling algorithm for
RAR-based DDL training jobs to minimize the makespan of all
RAR-based training jobs in [18]. PACE [19] aimed to maximize
the overlap between communication and computation by uti-
lizing a directed acyclic graph, the core of which was a theoreti-
cally optimal algorithm of preemptive communication schedul-
ing in modern ML frameworks. In [20], the paper formulated a

general online performance optimization framework for RAR-
based DMT by decomposing RAR-based training scheduling
problem over the the temporal domain and utilizing a general-
ized virtual graph embedding technique to improve scheduling
efficiency. Besides, the paper used field-programmable gate ar-
rays (FPGAs) to accelerate all-reduce operations and data com-
pression to optimize bandwidth utilization for AI training [21].
Additionally, the authors explored the security problem of RAR
architecture and found that the malicious workers indeed affect
the models performance [22].

Optical networks can provide an ideal infrastructure for dis-
tributed computing, which can effectively support large-scale
data transmission and high-speed calculations. There have
been many studies on deploying distributed computing over
optical networks. Traditional DMT is based on PS architecture,
which has been used in the form of cloud-edge coordination
[23, 24]. In this case, servers are generally deployed on cloud
nodes, while workers are deployed on edge nodes. The au-
thors of [25] studied the influence of different partition schemes
of Deep Neural Network (DNN) models between cloud and
edge on the usage of network resources in dynamic network
scenarios. Based on this, the paper proposed an ILP model
to provide efficient DMT services in elastic optical networks
(EON) by optimizing the partition and distribution of training
data, jointly considering computing resources and bandwidth
resources [26]. The authors investigated how to deliver dis-
tributed ML services in WSS-based all-optical datacenter net-
work with torus topology in [27, 28]. In [27], the paper pro-
posed a two-dimensional matrix-based top-of-rack (ToR), TS
and wavelength assignment algorithm which firstly assigned
ToRS and TSs for all Ring services one by one and then tuned
the wavelength of ToR for different services. Besides, the paper
in [28] formulated an ILP model and an efficient heuristic algo-
rithm to minimize the total service execution time and the av-
erage lightpath signal loss of distributed ML. Moreover, the pa-
per [29] introduced a method called Super-Cloudlet, which en-
ables dynamic resource management in a federated edge com-
puting system. This approach utilizes commercial optical trans-
port network (OTN) equipment to interconnect neighboring
cloudlets through optical circuits, forming a collaborative unit
that facilitates shared computing resources during load peaks.
This method presents a robust solution for distributed training
scheduling supported by OTN.

In addition, there are some scheduling studies on other jobs.
From the point of view of customers, this paper [30] focused on
the optimal allocation of network-aware resources among data
centers in the cloud to solve the budget-optimal joint resource
allocation problem, in order to minimize the rental cost of each
customer. In [31], the paper considered both static and dynamic
scenarios of task scheduling in EON, established an ILP model
in static scenarios to minimize the completion time of all jobs,
and designed a heuristic algorithm in dynamic scenarios to min-
imize job blocking when jobs arrive dynamically. Moreover,
jobs also can be divided into two types, latency-sensitive and
delay-tolerant. The authors of [32] designed and implemented
an optimized job scheduling algorithm to minimize the delays
for latency-critical applications. The paper [33] proposed a joint
frequency and time domain optimization of static scheduling
for reservation requests in EON by formulating an ILP model.
These authors of [34–36] studied a joint optimization algorithm
of multi-job scheduling and light path provisioning for mini-
mizing average completion time and bandwidth occupied in
fog or edge computing micro datacenter networks. Differently,



Research Article 4

[34, 35] optimized the completion time of a single job, while [36]
scheduled jobs according to their urgency degree.

We can see that the existing work of scheduling DMT re-
quests seldom consider both computing and network resources
with time dimension in CPNs. Furthermore, it is necessary to
consider reliability in the scheduling work of RAR-based DMT.
Yet, to the best of our knowledge, there is no work on the reli-
able RAR-based DMT in CPNs.

3. PROBLEM DESCRIPTION

CPNs can be denoted as a directed graph G(V, E), where V
and E are the the sets of CPN nodes and fiber links, respec-
tively. CPN nodes consist of computing, electrical, and opti-
cal layers, enabling functionalities such as data aggregation and
wavelength multiplexing. Besides, time domain can be decom-
posed into discrete time slots (TSs). The computing resources
used in model training are usually GPUs, which are a kind of
single-allocation resource, i.e., it cannot be shared at fine gran-
ularity among users from the perspective of cluster utilization
[15]. Hence, we can regard the computing resources on nodes
as computing units (CUs), which can be available to only one
DMT request at each TS. Each fiber can carry multiple wave-
lengths. Given the relatively small size of model gradient data
exchanged during the training process, each wavelength can ac-
commodate multiple requests at each TS.

The properties of DMT requests can be collected in ad-
vance. A RAR-based DMT request can be denoted as the tu-
ple Rj(Dj, sj, ta

j , td
j , θj, rj), where j is the request index. Dj is the

amount of training data, sj is the source node where Rj arrives,
ta
j is the arrival time when Rj reaches the node sj, and td

j is the
deadline of completing the training, so Rj can only be deployed
between [ta

j , td
j ]. Besides, the gradient change rate of the loss

function can be used to measure the convergence of the model.
θj is the threshold for the gradient change rate, which means
the model training will stop when the gradient change rate of
the loss function reaches or falls below this value. A smaller θj
means that the model needs to achieve a higher level of conver-
gence (potentially representing a higher accuracy) before stop-
ping the training, which may require more iterations. rj is the
reliability requirement.

Fig. 2 illustrates the problem of the RAR-based DMT deploy-
ment in a CPN with four computing nodes and five fiber links.
The target of our work is to efficiently deploy DMT requests
while satisfying reliability requirements. In the illustration, we
assume that there are 4 CUs per node, 2 wavelengths (labeled
with W) per link, and the same length for all links. A DMT
request Rj arrives at its source node B at TS=1 with a certain
size of training data Dj. Rj needs to be completed by TS=4.
Besides, the training process encompasses computation, trans-
mission, optical-electrical-optical (O-E-O) conversion, and elec-
trical layer multiplexing at various stages. Since the O-E-O con-
version time and electrical layer multiplexing time are relatively
small compared to the computation time and transmission time,
they can be neglected, and this part of the time is not calculated
and discussed in detail.

T j
com =

Dj × λ

ν × Nj
, ∀j ∈ R. (1)

T j
tran =

2(Nj − 1)× ∆
Nj × ω

, ∀j ∈ R. (2)

We can quantify how many CUs are required to train Rj
within one iteration by Eq. (1), where λ is the amount of com-
putation required per unit of training data, ν is the computing
power contained in each CU, and Nj is the number of comput-

ing nodes involved in the request. Thus, T j
com represents the

time that the subset of training data to be computed using a sin-
gle CU. Eq. (2) is the transmission time in one iteration, where ∆
is the updated gradient parameter size and ω is the data trans-
mission rate.

For the sake of clarity, we consider two different deploy-
ment schemes for Rj as examples. Resource-saving deploy-
ment schemes would consume fewer resources at the expense
of more time, while time-saving schemes consume less time at
the expense of resources. The grids in the Fig. 2 represent the
allocation of resources. The horizontal axis of the grid repre-
sents the number of TSs, while the vertical axis represents the
quantity of CUs or wavelengths. If the resource utilization is
oriented horizontally, it indicates that the deployment scheme
consumes more time. Conversely, if the resource utilization is
oriented vertically, it means that the scheme consumes more re-
sources. Specifically, the resource-saving deployment scheme is
highlighted in red on the left, which allocates R to a ring with
three nodes A, B and D. The training data are equally divided
into the three parts, and the partitioned data and a complete
copy of the model is assigned to the three nodes involved in the
computation, which must include its source node. The other is
time-saving scheme, marked in green on the right, which de-
ploys Rj on a ring containing four nodes A, B, C and D and the
training data are evenly split among these four nodes. During
the model training, participating nodes train the model copy
with the partitioned data to get the local updated gradient, and
then through scatter-reduce and allgather to obtain global gra-
dient. The model will be trained through a series of iterations
until it meets the required θj. In the whole training process, the
allocation of CU and wavelength on the ring is synchronous
and continuous in time. Besides, the allocation of CU needs to
satisfy the constraint of non-overlap. During multi-hop trans-
mission, wavelength allocation needs to meet the wavelength
consistency constraint.

In detail, both schemes occupy a total of 12 CU-TS blocks,
but the resource-saving scheme occupies 12 W-TS blocks, while
the time-saving scheme occupies only 4 W-TS blocks. The
resource-saving scheme activates 3 CUs and one wavelength of
ring ABD between TS=1 and TS=4. The time-saving scheme
activates 12 CUs and one wavelength of ring ABCD at TS=1.
To conclude, the resource-saving scheme activates fewer com-
puting resources but takes more time to complete the train-
ing, while the time-saving scheme spends more computing re-
sources and less time on the training. The resource-saving
scheme may require more activation of wavelengths when deal-
ing with a larger number of requests. In addition to the differ-
ences in computing resource activation and training time, the
two schemes can also be distinguished in terms of reliability.
We can calculate the reliability of both solutions through Eq. (3),
where N and L are the set of participating computing nodes
and links on the selected ring, en is the the failure probability
of node n, el is the failure probability of the link per kilometer
(km), ξl is the length of link l. Note that in our work, we only
consider independent faults, where a fault in one node or link
does not result in the failure of other nodes and links. Since the
ring of the time-saving scheme passes through 4 nodes and 4
links, while the resource-saving scheme passes through only 3
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nodes and 3 links, the latter ring size is smaller than the former,
so its reliability is better than the former.

γ = ∏
n∈N

(1 − en)× ∏
l∈L

(1 − el × ξl) (3)

The above is the process of providing service for one DMT
request. In fact, CPNs need to provide services for a batch of
requests with limited resources. Different scheduling schemes
will affect the efficiency of DMT deployment, resource uti-
lization, training time, and reliability. Hence, an appropriate
scheduling plan is imperative for service providers to provide
reliable and efficient RAR-based DMT services.

4. ILP MODEL

In this section, the solution to the RAR-based DMT is formu-
lated as a static scheduling problem since all requests and the
network state are known in advance. Moreover, we use an ILP
model to find the optimal solution for the deployment of the
RAR-based DMT requests.

A. Input
The model takes as input a topology with limited resources, a
predefined time horizon, and the properties of the DMT request
batch. Formally:

• N: set of computing nodes.

• L: set of fiber links.

• Cn: set of CUs on computing node n.

• Wl: set of wavelengths on fiber link l.

• T: set of TSs.

• R: set of DMT requests.

• P: set of candidate rings.

• ν: computing power contained in each CU.

• λ: required computing power per unit of training data.

• ξl : the length of link l.

• ω: data rate per wavelength.

• ρ: maximum number of requests each wavelength can ac-
commodate.

• ∆: updated gradient parameter size of each iteration.

• τ: the duration of a TS, in minutes.

• Nj: the number of nodes occupied by the request j.

• I(θj): the number of training iterations of the request j.

• µk: the number of nodes on the ring k.

• γk: the reliability of the ring k.

• T j
com: the computing time of the request j in one iteration.

• T j
tran: the transmission time of the request j in one iteration.

• χ: a large number.
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B. Variables

The model uses the following variables.

• η j ∈ {0, 1}: Boolean variable that assumes value 1 if DMT
request j is successfully deployed, 0 otherwise.

• Cj
t,n,c ∈ {0, 1}: Boolean variable that assumes value 1 if CU

c on node n is used by request j at TS t, 0 otherwise.

• f j
t,l,b ∈ {0, 1}: Boolean variable that assumes value 1 if

wavelength b on link l is used by request j at TS t, 0 oth-
erwise.

• Sj
k ∈ {0, 1}: Boolean variable that assumes value 1 if ring k

is used by request j, 0 otherwise.

• Oj
n ∈ {0, 1}: Boolean variable that assumes value 1 if re-

quest j is deployed on node n, 0 otherwise.

• On,c ∈ {0, 1}: Boolean variable that assumes value 1 if CU
c of node n is deployed, 0 otherwise.

• Ol,b ∈ {0, 1}: Boolean variable that assumes value 1 if
wavelength b of link l is deployed, 0 otherwise.

• Oj
n,c ∈ {0, 1}: Boolean variable that assumes value 1 if CU

c of node n is occupied by request j, 0 otherwise.

• Oj
l,b ∈ {0, 1}: Boolean variable that assumes value 1 if

wavelength b of link l is occupied by request j, 0 otherwise.

• Oj
n,t ∈ {0, 1}: Boolean variable that assumes value 1 if node

n is occupied by request j at TS t, 0 otherwise.

• Oj
l,t ∈ {0, 1}: Boolean variable that assumes value 1 if link

l is occupied by request j at TS t, 0 otherwise.

• yj
k,n ∈ {0, 1}: Boolean variable that assumes value 1 if node

n on the ring k is occupied by request j, 0 otherwise.

• Γj ∈ R+: Continuous variable that indicates the reliability
of request j deployed in a certain ring.

• ON j
n ∈ Z+: Integer variable that indicates the number of

CUs on node n is used by request j.

• Tsj
n ∈ Z+: Integer variable that indicates the start deploy-

ment time of request j at node n.

• Tej
n ∈ Z+: Integer variable that indicates the deployment

departure time of request j at node n.

• Tsj
l ∈ Z+: Integer variable that indicates the start deploy-

ment time of request j on link l.

• Tej
l ∈ Z+: Integer variable that indicates the deployment

departure time of request j on link l.

C. Objective
The goal of the ILP model is to accommodate as many DMT
requests as possible while respecting resource and reliability
constraints. Hence, the primary objective is to minimize the
blocking rate of batch requests, i.e., 1− 1

|R| ∑ η j. In practical net-
work scenarios, service providers may focus on different perfor-
mance metrics, such as hardware cost, and computation time.
Thus, we formulate a comprehensive objective function. Let ζ
represent other performance metrics. The first addend is in the
canonical range of [0, 1]. α is used to adjust the value of the sec-
ond addend, aiming to contain the value also in the range [0, 1].
The general objective function is as follows:

Minimize (1 − 1
|R| ∑

∀j
η j) + α × ζ (4)

To compare and verify the effectiveness of our model, four
optimization schemes are devised by varying the performance
metric that ζ represents: (1) The MinCU scheme could ac-
tivate the least computing resources, where ζ1=∑ On,c and
α1=1/ ∑ |Cn|; (2) The MinW scheme could use the least number
of wavelength resource, where ζ2=∑ Ol,b and α2=1/ ∑ |Bl |; (3)
The MinT scheme could minimize the training time across all
requests, where ζ3=∑ Tej

sj /td
j and α3=1/|R|; and (4) The MaxR

scheme could maximize the reliability across all requests, where
ζ4=∑(1 − Γj) and α4=100/|R|.

D. Constraints
D.1. Task Compliment Constraints

∑
∀t,∀c

Cj
t,n,c ≥ I(θj)×

T j
com × Oj

n + T j
tran × ON j

n
τ

,

∀j ∈ R, n ∈ N. (5)

∑
∀l,∀b

Oj
l,b ≥ Sj

k × µk, ∀j ∈ R, k ∈ P. (6)

∑
∀k

Sj
k = η j, ∀j ∈ R. (7)

Eq. (5) and Eq. (6) allocate to each request the computing
resources and wavelength resources it needs. Eq. (7) ensures
that only one ring will be selected for each request.

D.2. Resource Constraints

∑
∀j

Cj
t,n,c ≤ 1, ∀n ∈ N, t ∈ T, c ∈ Cn. (8)

∑
∀j

f j
t,l,b ≤ ρ, ∀l ∈ L, t ∈ T, b ∈ Bl . (9)

∑
∀b

f j
t,l,b ≤ 1, ∀j ∈ R, l ∈ L, t ∈ T. (10)

Eq. (8) limits that each CU can only be assigned to one re-
quest within a TS. Besides, each wavelength can accommodate
ρ requests within a TS limited by Eq. (9) and Eq. (10).

∑
∀k

Sj
k × µk ≥ Nj × η j, ∀j ∈ R. (11)

Γj = ∑
∀k

Sj
k × γk. (12)

Γj ≥ η j × rj, ∀j ∈ R. (13)
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Equations (11–13) ensure that the amount of computing
nodes and the reliability of the selected ring meet the request
requirement, where γk can be calculated by Eq. (3).

Oj
n,c ≤ ∑

∀t
Cj

t,n,c ≤ Oj
n,c × χ, ∀j ∈ R, n ∈ N, c ∈ Cn. (14)

ON j
n = ∑

∀c
Oj

n,c, ∀j ∈ R, n ∈ N. (15)

Oj
n ≤ ON j

n ≤ Oj
n × χ, ∀j ∈ R, n ∈ N. (16)

Oj
sj = η j, ∀j ∈ R. (17)

Eq. (14) is the definition of Oj
n,c. Eq. (15) calculates the num-

ber of CUs occupied by request Rj on each node. Eq. (16) de-

fines the variable Oj
n, which indicates whether node n provides

computing resources for Rj. Besides, Eq. (17) means that the
source node sj must participate in the training of Rj.

Oj
l,b ≤ ∑

∀t
f j
t,l,b ≤ Oj

l,b × χ, ∀j ∈ R, l ∈ L, b ∈ Bl . (18)

∑
∀b

Oj
l,b = 0, i f Sj

k = 1, ∀j ∈ R, k ∈ P, l /∈ k. (19)

Sj
k ≤ ∑

∀b
Oj

l,b, ∀j ∈ R, k ∈ P, l ∈ k. (20)

Equations (18-20) represent the relationship between rings
and links, ensuring that the wavelength resources for the re-
quest are provided by the links on the selected ring.

yj
k,n = 0, ∀j ∈ R, k ∈ P, n /∈ k. (21)

yj
k,n ≤ Sj

k, ∀j ∈ R, k ∈ P, n ∈ N. (22)

yj
k,n ≤ Oj

n, ∀j ∈ R, k ∈ P, n ∈ N. (23)

∑
∀n

yj
k,n = Sj

k × Nj, ∀j ∈ R, k ∈ P. (24)

yj
k,n ≥ |Oj

l1,b1
− Oj

l2,b2
|, i f Sj

k = 1, ∀j ∈ R,

k ∈ P, n ∈ k, l1, l2 ∈ k, b1 ∈ Bl1 , b2 ∈ Bl2 . (25)

Equations (21-23) represent the relationship between rings
and nodes. Eq. (24) ensures that the computing resources are
provided by Nj nodes on the selected ring. In addition, Eq. (25)
ensures that the wavelength meets the wavelength consistency
constraints for multi-hop transmission, where l1 and l2 are the
links associated with node n on the ring k.

On,c ≤ ∑
∀j

Oj
n,c ≤ On,c × χ, ∀n ∈ N, c ∈ Cn. (26)

Ol,b ≤ ∑
∀j

Oj
l,b ≤ Ol,b × χ, ∀l ∈ L, b ∈ Bl . (27)

Eq. (26) and Eq. (27) are used to calculate whether the CU c
of a node or the wavelength b of a link is occupied.

D.3. Time Constraints

Oj
n,t ≤ ∑

∀c
Cj

t,n,c ≤ Oj
n,t × χ, ∀j ∈ R, n ∈ N, c ∈ Cn. (28)

Oj
l,t ≤ ∑

∀b
f j
t,l,b ≤ Oj

l,t × χ, ∀j ∈ R, l ∈ L, b ∈ Bl . (29)

Tsj
n ≤ t ≤ Tej

n, i f Oj
n,t = 1, ∀j ∈ R, n ∈ N, t ∈ T. (30)

Tsj
l ≤ t ≤ Tej

l , i f Oj
l,t = 1, ∀j ∈ R, l ∈ L, t ∈ T. (31)

Equations (28-31) define the start time and end time for al-
locating computing and wavelength resources to training re-
quests.

∑
t+2≤t1≤|T|

Cj
t1,n,c ≤ 1(1 − Cj

t,n,c + Cj
t+1,n,c)× χ,

∀j ∈ R, n ∈ N, c ∈ Cn, t ≤ |T| − 2. (32)

∑
t+2≤t1≤|T|

f j
t1,l,b ≤ 1(1 − f j

t,l,b + f j
t+1,l,b)× χ,

∀j ∈ R, l ∈ L, b ∈ Bl , t ≤ |T| − 2. (33)

∑
∀t

0j
n,t = Tej

n − Tsj
n + 1, i f Oj

n = 1, ∀j ∈ R, n ∈ N. (34)

∑
∀t

0j
l,t = Tej

l − Tsj
l + 1, i f Sj

k = 1, ∀j ∈ R, k ∈ P, l ∈ k. (35)

Equations (32-35) ensure the request can continuously oc-
cupy computing and wavelength resources within the time win-
dow [Tsj

sj , Tej
sj ].

Oj
n,t = 0, ∀j ∈ R, n ∈ N, t /∈ [ta

j , td
j ]. (36)

Oj
l,t = 0, ∀j ∈ R, l ∈ L, t /∈ [ta

j , td
j ] (37)

tj
a ≤ Tsj

sj ≤ Tej
sj ≤ tj

d, i f η j = 1, ∀j ∈ R. (38)

Tsj
n = Tsj

sj , Tej
n = Tsj

sj , i f Oj
n = 1, ∀j ∈ R, n ∈ N. (39)

Tsj
l = Tsj

sj , Tej
sj = Tej

l , i f Sj
k = 1, ∀j ∈ R, k ∈ P, l ∈ k. (40)

Sj
k ≤ Oj

l,t, i f Oj
sj ,t = 1, ∀j ∈ R, k ∈ P, l ∈ k, t ∈ T. (41)

Equations (36-41) guarantee that nodes and links can pro-
vide computing and wavelength resources at the same time
within the request time window [tj

a, tj
d].

5. HEURISTIC ALGORITHM

The complexity of the ILP model is influenced by the number
of requests and the size of the topology. However, due to unac-
ceptable running times in scenarios involving large topologies,
we design a RAR-based DMT deployment algorithm referred to
as RDDA, to provide reliable RAR-based DMT services within
a large network topology. The difference in RDDA among the
four schemes is mainly in the candidate rings sorting method:
(1) The MinCU scheme first sorts all combinations of nodes in
candidate rings in ascending order based on the number of CUs
to be activated within the given time window [ta

j , td
j ]. When

the number is the same, it further sorts them in ascending or-
der based on the number of contained nodes. (2) In the MinW
scheme, candidate rings are firstly sorted in ascending order
based on the number of wavelengths required to be activated



Research Article 8

within the time window [ta
j , td

j ]. In case of a tie in the activated
wavelength number, a secondary sorting is performed in as-
cending order based on the number of links included in each
ring. (3) The MinT scheme prioritizes candidate rings based on
the time it takes to provide the required number of CUs. The
faster, the higher the priority. (4) The MaxR scheme sorts the
reliability of candidate rings in descending order, prioritizing
those with higher reliability for iterating.

Algorithm 1. A RAR-based DMT deployment algorithm

Input: batch DMT requests and network state
Output: detail of all request deployments

1: for each DMT request Rj(Dj, sj, ta
j , td

j , θj, rj) do
2: get the set of rings SR containing source node sj
3: for each ring ∈ CC do
4: calculate the ring reliability γ according to Eq. (3)
5: if rj ≤ γ then
6: add the ring into the set of candidate rings CR
7: end if
8: end for
9: for each ring ∈ CR do

10: add all node combinations on this ring containing sj
to the candidate node combination set NC

11: end for
12: sort all combinations in NC according to the respective

scheme
13: for each combination ∈ NC do
14: calculate the number of CUs needed for this combi-

nation according to Eq. (1)
15: if this combination can provide the required CUs

and wavelength within [ta
j , td

j ] then
16: allocate CUs and wavelength for the request Rj
17: Break
18: else
19: Continue
20: end if
21: end for
22: if the request is not deployed then
23: record the request into the set of blocking requests
24: end if
25: record the details of Rj deployment

26: end for
27: recorded network state
28: return network state and deployment details for all re-

quests

The RDDA jointly considers computing and wavelength re-
sources in the temporal dimension. The RDDA is also designed
for static scenarios where all requests and network status can
be obtained in advance. DMT requests are scheduled based on
their arrival and deadline times. Requests that arrive earlier are
processed first. In cases of simultaneous arrivals, those with
closer deadlines are prioritized for processing. When process-
ing a request Rj, RDDA begins by searching for rings within
the network that include the source node sj. Calculate the relia-
bility of these rings, and if they are not less than the required rj,
they are added to the candidate ring set. A candidate ring may
have multiple node combinations, and RDDA scores and ranks
each combination. Different schemes employ distinct scoring
and ranking methods. Iterate through these combinations in

sequence. Calculate the computing resource required for each
node, and verify whether all nodes in the combination can con-
sistently provide these computing resources over a continuous
TSs within the time window [tj

a, tj
d]. If this condition is satisfied,

proceed to verify whether the links on the ring can offer the
required wavelength resources during the corresponding TSs.
If wavelength resources are also sufficient, deploy the request,
halt the iteration and move on to the next request. Otherwise,
the search continues with other combinations. If all candidate
combinations are iterated without successfully deploying Rj, Rj
is blocked, and the process proceeds to the next task. Resource
allocation details for all requests are recorded, and relevant met-
rics are computed. The complexity of the resource allocation
algorithm depends on factors such as network size, the quan-
tity of computing resources in each node, and the number of
wavelengths per link.

6. SIMULATION RESULTS
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Fig. 3. 6-node topology of ILP model considered in this paper
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Fig. 4. 38-node topology of heuristic algorithm considered in
this paper

In this section, we use a small topology in Fig. 3 and a large
topology in Fig. 4 to validate our model. In Fig. 3, the topol-
ogy comprises 6 nodes and 10 links, with link lengths ranging
from 20 km to 50 km. Each node has 8 to 12 CUs with each
CU having a computational power of 20 × 10 TFLOPS. Each
link is provisioned with 10 wavelengths with the capacity to
concurrently accommodate three requests. Besides, the large
topology described in Fig. 4 consists of 38 nodes and 59 links,
with each link having a length of 20 km. Each node has 160
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to 320 CUs, with each CU capable of 10 TFLOPS of comput-
ing power [37]. There are 20 wavelengths per link with a data
rate of 10 Gbit/s per wavelength. The time dimension for the
small topology consists of 12 TSs, while the large topology com-
prises 48 TSs, with each TS being 30 minutes. Note that, we can
change the time granularity of τ depending on different model
sizes and computing power, such as hours or days. Moreover,
the number of updated gradients per iteration is influenced by
the model structure and the training data size. Based on previ-
ous studies [26], we can simplify the updated gradient size to
about 1 GB according to the training data size in our simulation.
In addition, the upper bound on iterations can be simplified as
I(θj) = β × log(1/θj), where β depends on the data size and
condition number of the local problem in [38, 39]. This upper
bound indicates that beyond it, additional iterations might not
further improve the performance of the model, and may even
cause a decrease in performance. In our work, we adopt the up-
per bound as the number of training iterations, and β is set to
Dj. Parameters of DMT requests are randomly generated from
a uniform distribution within the range listed in Table 1. Addi-
tionally, our ILP model is implemented in Python and Gurobi
9.5.1 while RDDA is implemented in Python with 3.2 GHz CPU
and 16 GB of RAM.

In order to reduce the complexity of the ILP model, we sim-
plify the formulation by adopting the following constraints: (1)
Fix the number of computing nodes required at 3 or 4, that is
Nj ∈ {3, 4} ; (2) Preset several rings containing 3 to 6 nodes,
i.e., µk ∈ [3, 6], from which the requests must select the appro-
priate ring; (3) The arrival time and deadline of requests are
concentrated within the first 3 TSs and the last 3 TSs. Here, the
value 3 is merely illustrative and can be replaced with other
suitable numbers in practice. The approach is designed to pre-
vent situations where requests cannot be scheduled due to the
imposition of an impractical training time window; (4) The cur-
rent model only allows ring topologies due to Equations (21-24).
If linear topologies need to be considered, the mentioned con-
straints need to be modified.

Table 1. Simulation Parameters

Parameter Value Parameter Value

Cn [8, 12], [160, 320] ν(TFLOPS) 20 × 10, 10

λ 1015 ξl(km) [20, 50], {20}

Wl {10}, {20} ω(Gbit/s) 10

∆(GB) 1 χ 10000

|T|(TS) 12,48 τ(mins) 30

en 10−6 el/[km] 10−5

Dj(GB) [100, 200] rj [0.99, 0.999]

sj [1, 6], [1, 38] θj [0.1, 0.4]

ta
j [1, 3], [1, 10] td

j [10, 12], [39, 48]

The metrics we are concerned with include blocking rate,
activated CU ratio, activated wavelength ratio, average ahead-
of-time (AOT) ratio, and average reliability. Note that the ac-
tivated CU ratio refers to the number of activated CUs divided
by the total number of CUs. Similarly, the activated wavelength
ratio is the ratio of the number of activated wavelengths to the
total number of wavelengths. AOT ratio represents the ratio of

the time a DMT request is completed ahead of its deadline set
by the request, which is defined in Eq. (42).

AOT ratio =
1
|R| ∑

∀j

(tj
d − Tej

sj )× η j

tj
d

(42)

For the small topology, we simulate our ILP model within 12
TSs, with the total number of requests ranging from 2 to 12 (in
step of 2). For the large topology, we utilize the RDDA within
48 TSs, with the total number of requests ranging from 50 to
500 (in steps of 50). To reduce the impact of data randomness,
we perform simulations by randomly generating multiple sets
of random DMT request attributes for each batch size. Each set
is simulated under four schemes. Subsequently, the results are
averaged for comparison and analysis.
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Fig. 5. Activated CU ratio of ILP model in small topology.

In the simulation for the small topology, there is no instance
of request blocking. Fig. 5 shows the results of the activated
CU ratio of small topology. As the number of requests grows,
more CUs are needed. When the number of DMT requests is 10,
MinT and MaxR schemes activate nearly all CUs. We can also
observe that the MinCU scheme needs the least computing re-
sources. For example, when 8 requests need to be deployed, the
activated CU ratio of MinCU scheme is 36.4%, which is 55.3%,
62.5%, and 63.4% lower than that of MinW, MaxR, and MinT
scheme, respectively. The MinW scheme achieves the second
lowest. Since node and link resources are allocated simultane-
ously, MinW tends to reuse the wavelength resources, which
is beneficial to the reuse of node computing resources. On the
other hand, MinT scheme prefers to activate new CU to com-
plete training as early as possible, which directly leads to the
consumption of more CUs, so MinT consumes the most CUs.

The activated wavelength ratio of the four schemes are
shown in Fig. 6. The wavelength activation ratio increases
with the number of requests. MinW scheme activates the fewest
wavelengths, followed by MaxR, MinT, and MinCU schemes
in that order. When the number of requests is 8, the activated
wavelength ratio of MinW scheme is about 7%, MaxR is 22.6%,
MinT is 23.3% and MinCU is 24.3%. The deployment requests
of MinW scheme have two principles: one is to pass through as
few links as possible, and the other is to reuse activated wave-
length as much as possible. MaxR scheme prefers rings with
fewer links or shorter links. Hence, MaxR scheme is beneficial
to saving wavelength resources in terms of multiplexing and
reducing the number of links occupied.



Research Article 10

24.3

7.0

23.322.6

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

16.3%

A
ct

iv
at

ed
 W

av
el

en
gt

h 
Ra

tio
 (%

)

Number of requests

 MinCU    MinW
 MinT       MaxR

17.3%
15.6%

Fig. 6. Activated wavelength ratio of ILP model in small topol-
ogy.
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Fig. 7. Average AOT ratio of ILP model in small topology.

The results of the average AOT ratio of the four schemes
are shown in Fig. 7. The overall trend in AOT ratio for MinT
scheme is downward. Because when the number of requests
is few, MinT scheme deploys requests as soon as possible by
activating new CUs. However, computing resources are lim-
ited, and with the increase in the number of requests, not all
requests can be deployed immediately. This makes some re-
quests have to wait for other requests to complete before there
are available resources to use. When the number of requests is
8, the average AOT ratio of MinT scheme is about 51.5%, 30.1%,
and 29.3% higher than the other three schemes. Compared to
other schemes, MinT spends more resources to reduce training
time. The other three schemes prioritize the reuse of various
resources, resulting in longer training times and smaller AOT
ratio. These three schemes fluctuate within a certain range. To
simplify the complexity of ILP model, the DMT requests fix the
number of nodes participating in the computation, so for MaxR
scheme, it only considers the number and length of links passed
through in the ring. Neither MinW scheme nor MaxR scheme
takes into account the efficiency of computing resource utiliza-
tion. Moreover, since the computation time dominates during
the training process, while transmission is relatively small, the
time cost of training it takes to train a request is primarily in-
fluenced by the allocation of how many CUs are used for com-
putation. Therefore, the AOT ratio for MinCU scheme is the
smallest.

Fig. 8 shows the blocking performance of RDDA in the large-
scale topology. We can see that requests start to be blocked for
both MinW scheme and MaxR schemes when the request num-
ber is set to 200. In comparison, the threshold number of re-
quests blocking is 300 and 450 for MinCU and MinT scheme,
respectively. The main reason for the blocking is a shortage
of computing resources. Besides, with the constraint that the
source node must participate in computing if the source node
cannot provide sufficient computing resources within its time
window, the request will be blocked directly. In addition, block-
ing may also result from the high-reliability requirements of
the requests, which can only choose the small rings, and the
training data can only be split to a small number of computing
nodes, which can not provide sufficient resources. For MinCU
and MinT schemes, blocked requests are usually at low rank.
The primary reason for their blocking is the inherently limited
number of CUs at their source nodes, which are already occu-
pied by previous requests, thus preventing them from complet-
ing their training before their respective deadlines. For a DMT
request, the training data is evenly distributed to the comput-
ing nodes on the ring. To ensure that the computing nodes can
compute synchronously, the number of CUs provided to the re-
quest by nodes in each TS is the same. Hence, nodes with fewer
available CUs in a ring will be the primary limiting factor for re-
quest allocation. Compared to the MinT scheme, in the MinCU
scheme, the duration of each request is longer. MinCU scheme
increases the likelihood of depleting the resources of nodes in-
herently possessing few resources, exacerbating this bottleneck
effect. Hence, the blocking rate of the MinCU scheme is higher
than that of the MinT scheme. For MinW and MaxR schemes,
blocking is not concentrated on low-ranked requests, and re-
quests at intermediate ranks may also be blocked. This is pri-
marily because these requests prioritize selecting smaller-sized
rings for deployment, resulting in a concentrated deployment
of requests. This concentration of deployment can exhaust re-
sources in certain nodes. Consequently, requests originating
from these nodes are directly blocked.
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Fig. 8. Blocking rate of RDDA in large topology.

Fig. 9 shows the results of the activated CU ratio of large
topology. The lowest activation cost of CU is achieved by the
MinCU scheme, followed by the MinW scheme or the MaxR
scheme, with the highest cost resulting from the MinT scheme.
The trend of Fig. 9 is basically consistent with that of Fig. 5.
The activated CU ratio of MaxR scheme in RDDA is slightly
lower than that of MinW scheme when the number of requests
is more than 200, while the activated CU ratio of MaxR scheme
of the ILP model is larger than that of MinW scheme. The rea-
son for the difference is that in the ILP model, to reduce model
complexity, the number of computing nodes required by the re-
quest is fixed, while it is not fixed in RDDA. The MaxR scheme
tends to deploy requests with fewer nodes for higher reliabil-
ity. Compared to MinW and MaxR schemes, the MinT scheme
tends to utilize more computing nodes to complete the training.
This is one of the primary reasons for their lower CU activation
rates. Additionally, the higher blocking rates of the MinW and
MaxR schemes contribute to their lower CU activation rates. We
can also observe that when the number of requests is 100, the
CU activation ratio for the MinCU scheme are lower than other
three schemes about 57%, 59%, and 70%. When the number of
requests is 500, the MinCU scheme is approximately 8% lower
than MaxR, 10% lower than MinW, and 11% lower than MinT
scheme. This indicates that as the batch size of DMT requests
increases, the utilization of CUs in the network approaches sat-
uration.

The activated wavelength ratio of the four schemes are
shown in Fig. 10. The activated wavelength ratio increases
with the growth in the number of requests. The increasing or-
der of wavelength consumption is as follows: MinW, MaxR,
MinT, and MinCU scheme. When the number of requests is
100, we can see that the wavelength activation ratio of the MinW
scheme is around 5%, the MaxR scheme is 6%, the MinT scheme
is 6.6%, and the MinCU scheme is 9.6%. When the number is
500, the wavelength activation rate of the MinCU scheme is the
highest, only reaching 38%. This indicates that the wavelength
resources in the network are sufficient. The primary limiting
factor for deploying requests in the network is computational
resources, not wavelength resources. In addition, the MaxR
scheme is close to the MinW scheme, since smaller ring sizes are
given higher priority in the MaxR scheme, effectively reducing
wavelength consumption. From Fig. 10, it is evident that when
there are a large number of requests, the activated wavelength
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ratio of the MinCU scheme is significantly higher than the other
schemes. The reasons are as follows: RAR-based DMT charac-
teristics dictate a small amount of updated data to be transmit-
ted, requiring only one wavelength per request. In comparison,
the MinCU scheme, with its longer request duration, requires
more wavelength resources than other schemes.
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Fig. 11. Average AOT ratio of RDDA in large topology.

The results of average AOT ratio in the large topology of
the four schemes are shown in Fig. 11. The AOT ratio for four
schemes generally decrease as the number of requests increases.
This is attributed to the fact that when the batch size of DMT re-
quests is large, the utilization of computing resources becomes
saturated, leaving fewer available CUs to expedite training. Be-
sides, the AOT ratio curves for MaxR and MinW schemes are
close to each other, showing that these two schemes share a sim-
ilar approach to selecting rings. The AOT ratio of the MinCU
scheme is the lowest, indicating the higher time cost of train-
ing compared to the other schemes. Consequently, as the num-
ber of requests increases, the reduction in the AOT ratio for the
MinCU scheme is not very significant. Therefore, its curve ex-
hibits the flattest slope among all schemes.

In Fig. 12 and Fig. 13, the bar charts represent the reliabil-
ity gain results, and the dotted lines represent the reliability
results. Reliability gain can be obtained by calculating the dif-
ference between the required and the achieved reliability, i.e.,
(Rring − Rj)/Rj. We can observe that the reliability gain of all
schemes is positive, indicating that all four schemes meet the re-
liability requirements. The performance differs between the ILP
model and RDDA. In the small topology, the reliability curves
of MinCU and MinT schemes are interleaved, while in the large
topology, the reliability of the MinCU scheme is higher than that
of the MinT scheme. The reasons are as follows. The calcula-
tion of reliability comprehensively takes into account both the
nodes engaged in computations and the links traversed. How-
ever, to simplify complexity, the ILP model fixes the number of
nodes participating in computation, thereby making the relia-
bility of four schemes distinguishable solely through the links
traversed. MinCU and MinT schemes exhibit no particular pref-
erence concerning links when selecting rings, resulting in minor
differences in reliability between the two. In the large topology,
the MaxR scheme has the highest reliability, followed by the
MinW scheme, while the MinT scheme has the lowest reliabil-
ity. Since in RDDA, the number of nodes involved in request
computations remains flexible, MinT scheme tends to utilize
more computing nodes to expedite training completion, while

MinCU leans towards using fewer nodes. Consequently, these
four schemes exhibit variations in reliability.
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Fig. 12. Average reliability and gain of ILP model in small
topology.
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Fig. 13. Average reliability and gain of RDDA in large topol-
ogy.

We compared the ILP model and the RDDA at the 6-node
network for a number of requests ranging from 2 to 12. Re-
sults for the ILP are shown as solid lines and results for the
RDDA are shown as dashed lines. The blocking rate is zero
for both algorithms. The four schemes for the ILP model and
RDDA almost show the same trend. We can see from Fig. 14
to Fig. 16 that the ILP model can obtain optimal performance
in the corresponding metrics. For the CU activation ratio, the
MinCU scheme of the ILP is 1.85% to 16.07% lower than that
of the RDDA. For the wavelength activation ratio, the MinW
scheme of the ILP is 0.85% to 2.6% lower than that of RDDA.
For reliability, the MaxR scheme of the RDDA performs as well
as the ILP while the other performances are not guaranteed. For
example, the MinW scheme of the ILP does require fewer wave-
length resources than the RDDA but may require more com-
puting resources than the RDDA. Besides, we can find there
are some differences between the ILP model and RDDA in the
result of activated wavelength ratio in Fig. 15. Because each
wavelength can be used by several requests, except for MinW
scheme, the other three schemes of RDDA occupy wavelengths
on the principle of first-fit, which will fill up one wavelength
before using a new wavelength, while the other three of ILP
occupy the wavelengths randomly subject to satisfying the con-
straints. Therefore, except for the MinW scheme, the activated
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wavelength ratio of RDDA performs better than that of ILP. This
could be mitigated in the ILP by including an additional term
to the objective, minimizing active wavelengths.
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Fig. 14. Activated CU ratio of ILP model and RDDA in small
topology.
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Fig. 15. Activated wavelength ratio of ILP model and RDDA
in small topology.

As indicated in Table 2, the ILP model’s running time experi-
ences exponential growth with the expansion of request quanti-
ties. In comparison, RDDA demonstrates superior performance
when dealing with large-scale topologies. Consequently, for
scenarios where the number of requests surpasses a certain
threshold, the ILP model may face challenges in providing solu-
tions within a reasonable time, primarily owing to its high time
complexity. In such contexts, RDDA becomes a more feasible
choice.

7. CONCLUSION

In this paper, we investigate how to provide reliable and ef-
ficient DMT services in CPNs. We introduce the concept of
ring reliability to take into account both node and link relia-
bility in the RAR architecture, which is one of the criteria for
selecting a candidate ring in the DMT requests scheduling pro-
cess. To provide an efficient and reliable DMT service, we for-
mulate an ILP model and a heuristic algorithm to schedule
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Fig. 16. Average reliability of ILP model and RDDA in small
topology.

Table 2. Average Running Time (Second)

ILP RDDA

requests 2 6 10 100 300 500

MinCU 21 14937 81382 21 61 102

MinW 8 105 1771 16 51 84

MaxR 3 20 62 24 74 140

MinT 4 126 77675 16 49 91

DMT requests in CPNs. In practical network scenarios, dif-
ferent service providers may consider different performance
metrics. Hence, we design four optimization schemes, namely
MinCU, MinW, MinT, and MaxR, to seek the optimal solutions
for achieving minimum CU activation, minimum wavelength
activation, minimum training time, and maximum reliability,
respectively.

The results of both MinW and MaxR schemes are similar in
terms of AOT ratio, reliability, and blocking performance since
they share a common component in ring selection decisions,
that is, the ring with a smaller number of links is prior. No mat-
ter whether it is small topology or large topology, with the in-
crease in the number of requests, the gap of CU activation ratio
of the four schemes is getting smaller, while the gap of wave-
length activation ratio is getting larger. It shows that in our
network scenarios, the main limiting resources for request de-
ployment are computing resources, and CU utilization is close
to saturation when the number of requests is 500, which can
also be verified by the results of AOT ratio of the large topol-
ogy. MinCU, MinW, and MaxR schemes all favor centralized de-
ployment to reduce resource activation ratio or achieve higher
reliability. Conversely, the MinT scheme prefers decentralized
deployment to utilize more resources for accelerated training
completion. Based on the simulation results of a large topology,
when the number of requests is 500, the blocking rate of the
MinT scheme is about 6% and 10% lower than the other three
schemes. Hence, centralized deployment easily leads to intense
resource competition and diminishes request deployment suc-
cess rates, whereas decentralized deployment enables more re-
quests to be deployed. In conclusion, all four schemes meet
the reliability requirements and have achieved optimal perfor-
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mance under their respective optimization objectives. There-
fore, our work can provide reliable and efficient DMT service.
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