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ABSTRACT: Despite more than 100 years of commercialization
of wide-ranging fluidized bed reactors, scale-up tools and methods
have remained quite similar. To exploit the benefits of fluidized
beds for the time-critical sustainability challenges, scale-up has to
be implemented quicker and better. Correspondingly, a companion
Part 1 (Ind. Eng. Chem. Res. 2024, 63, 2519−2533) reviewed the
evolution of the tools used in scaling up fluidized beds. Leveraging
that, the current Part 2 aims to first overview the traditional
pathway for scale-up and then propose a new pathway. Notably,
instead of the traditional way of focusing on a linear sequence of
progressively larger units, the emphasis is on the Phases of
Discovery, Research, and Development, which apply the new tools
consistently, as well as address risk mitigation and economics throughout. Based on an acrylonitrile case study, a Monte Carlo
analysis indicates the new proposed pathway offers more promising economic feasibility, with net present value over 20 years
(NPV20) of $310MM higher, along with 35% and 42% reductions in start-up and break-even times, respectively. The increase in
costs for incorporating modeling efforts is insignificant compared to the overall benefits with respect to time and economics.

■ INTRODUCTION
The scaling up of fluidized bed reactors from concept to
commercial scale is more uncertain than with more traditional
chemical reactors, resulting in a time scale that is
unconscionable for the urgent sustainability challenges.1

Fortunately, commercialization of fluidization units can be
significantly expedited, as evident in catalyst cracking units
(FCCUs) commercially producing abundant high-octane
aviation fuel within a few years, which was driven by the
then time-critical challenge posed by World War II.2,3 This was
instrumental in helping the Allied Forces win the war and is a
testament to the scientific and engineering community that
scale-up can be performed expeditiously with the right tools.
There were other breakthrough technologies based on the
fluidized bed that had similar speedy successes, with SOHIO
taking four years for their acrylonitrile process1 and Union
Carbide taking eight years for their UNIPOL process.4

The problem is that such efforts would be unlikely in today’s
environment. It is clearly not from the lack of talent or
technology, but the fact that scale-up today is more
complicated than it was 80 years ago. Energy conservation,
environmental impacts, safety, risk mitigation, waste reduction,
and emissions reduction have understandably taken high
priorities. Commercial units are more complex and expensive.

Financial risks are higher, and markets are more transient and
diverse. Feedstocks and supply chains come from multiple
sources across the globe. All of these translate into novel
fluidized bed scale-up typically approximating 10 years to
commercialization in the private sector.

The extensive time frame for scale-up is an issue. With the
pressing need for climate-neutrality, accelerating the commer-
cial implementation of the advanced concepts and tools1 is
essential. Carbon-zero visions have been set for 2025,5 so the
engineering marvel that drove the expedited commercialization
of the FCCU during World War II has to be invoked. The
need for faster scale-up is real. A legally binding international
climate change treaty inked in 2015 dictates the global
warming limit of 1.5 °C above preindustry levels, which can
only be achieved by greenhouse gas emissions peaking by 2025
and reduced by 43% by 2030. Increasing the speed in the
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scaling up of the fluidized bed reactor, which plays a pivotal
role in the green transition, is critical.

Setting up and collecting data for lab-scale units are costly
time- and money-wise, and pilot and process development
units are even more so. To at least in part circumvent this,
CFD codes of today can provide predictions within weeks and
at much lower costs. Additionally, artificial intelligence (AI),
which encompasses machine learning (ML), promises to be
powerful tools that can play more important roles.6 In the
companion Part 1, a description and application methodology
were given on advanced scale-up tools.1 In the current Part 2,
the scale-up pathway for using those tools is defined and
mirrors that already implemented with product development
methodologies.

■ BACKGROUND
Part 1 of this two-part series summarized scale-up tools that
could expedite scale-up efforts,1 starting with a focus on
idealization tools to reconfirm the fluidized bed reactor
configuration and operation methodology. The motivation
was to move past the traditional waterfall approach,7 which
entails a defined linear sequence of execution with project
stages that do not advance until a preceding stage receives final
approval. As the project progresses stage by stage, it can be
difficult and costly to revisit a previous one. The problem with
the waterfall approach is that risk management tends not to be
applied until the development stage, because risk analysis tends
to be associated with the then decided process and equipment,
but this is far too late to be effective. Ideally, risk management
needs to be formalized and applied at conception to promote
risk awareness, and the new advanced tools need to be applied
to make that practice effective.

At the start, scale-up with an idealization exercise can
reconfirm the original proposed design, highlight that a better
design may exist, or capture gaps and constraints with a
proposed design. Concept tools (e.g., Design for Six Sigma,8

Theory of Inventive Problem-Solving (TRIZ)) are now readily
accessible for the design team to speedily get onto the
optimized track. This results in a documented analysis of the
design that promotes team dynamics and cooperation, while
providing effective communication to the stakeholders.

CFD tools have been seeing increasing use in fluidized bed
scale-up efforts since 2005.9 Common simulation tools used
for fluidized beds include TFMs (two-fluid models), CFD-
DEM (computational fluid dynamics−discrete element
method) models, or hybrid MP-PIC (multiphase particle-in-
cell) models. Today’s CFD models (which include CFD-DEM
and MP-PIC) are sophisticated, robust, and capable of
furnishing results for the commercial-scale process within
weeks using coarse graining and graphics processing units
(GPUs). Reasonable predictions have been demonstrated by
various industries using commercial codes.10−12

To account for whole particle size distributions, commercial
software, regardless of whether based on the Lagrangian
framework (CFD-DEM and MP-PIC) or TFM (through
method of moments9,13,14), already have this capability, which
represents a significant advantage compared to earlier ones that
factor only a “representative” particle size. Nonspherical
particles, particles with asperities, and particle roughness,
which are known to impact fluidized bed hydrodynamics, can
also be accounted for. Eppala et al.15 showed using CFD-DEM
that the fluidization regime changes from bubbling to turbulent
when the particle sphericity decreases. Goldschmidt et al.16

found that, by a hard-sphere CFD-DEM model with particle
rotation, bubble behavior was better captured than with a two-
fluid model.

For collisional stresses and surface roughness, which have
been found to impact particle clustering behavior,17 most CFD
models do not have the capability of capturing these effects
other than adjustments to the drag model.1 Well-defined,
small-scale experiments, high-resolution simulations, and AI
models may change that challenge.1,18 Experiments involving
powder rheometry,19 minimum fluidization behavior,20,21 and
the Hausner number22,23 may provide at least a correction to
the models when interparticle forces are at play. Yet,
experiments are still empirical in nature, which makes the
results dependent on the system and thus path-dependent.
Direct Numerical Simulations (DNS) have been used to
capture some particle stress behaviors in granular fluid flows.
Using DNS, Tenneti and Subramaniam24 extracted drag forces
(i.e., both fluid−particle and particle−particle) for CFD
models. Gu et al.25 used CFD-DEM to derive the necessary
inputs for the particle-phase stress model, but this applies only
for smooth, spherical particles. Therefore, obtaining these
constitutive parameters is often relegated to experience or used
for tuning the model during model validation, which may
stymie further use of the model at a larger scale.

Grid resolution and coarse graining are other challenges.
The asymmetry of fluidization hydrodynamics can only be
captured in 3D simulations. To adequately account for particle
drag, the grid size has to be an order-of-magnitude larger than
the particle size.26,27 This translates to 1 mm even for Geldart
Group A particles, which is intractable for simulating the
commercial scale. To this end, subgrid models (i.e., filtered
drag models) have been devised to accelerate solution times.

Regarding Lagrangian-type models, tracking all of the
particles in a commercial-scale unit may appear inhibitory,
but it is manageable. While CFD-DEM or MP-PIC models can
model O(107) particles, a commercial fluidized bed has
approximately O(1014) particles.28 To address this, coarse-
graining (i.e., categorizing similar particles into clouds or
parcels) is employed to reduce the number of equations that
needs to be solved. Analogous to grid resolution, the cloud or
parcel numbers need to be judiciously determined.

Fortunately, these gaps in obtaining parameters needed in
the constitutive equations, gridding, and coarse-graining may
be bridged with some of today’s AI tools.6 AI models have
been used to ease the challenges with the microscale physics in
the constitutive equations used in CFD models. AI can be used
to develop the constitutive equations or the corresponding
parameters based on well-tailored experiments. Sundaresan et
al.29 suggested momentum, species, and energy transfer
constitutive models can be improved via deep learning
methods. Jiang et al.30 used ML to improve a drag model for
fTFM (filtered two-fluid model), and Yang et al.31 hybridized
the EMMS drag model with a neural network to extract
heterogeneity indices, while Lu et al.32 harnessed ANN to
improve a filtered drag model. In addition, Lorsung and Barati
Farimani33 used AI for adaptive meshing to allow for larger
meshes while maintaining the accuracy of the predictions. A
similar framework can also be used for relaxing the time step
constraints. As an alternative, AI models have been used to
circumvent the CFD limitations altogether, specifically with
respect to development of an initial process model without the
complications of grid and time step restrictions. For instance,
AI was used to predict syngas composition for downdraft
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biomass gasification34 and also hydrogen production in a
bubbling fluidized bed (BFB) and a circulating fluidized bed
(CFB).35 Furthermore, AI models or augmentations are now
available for many of the traditional tools used in scale-ups,1

including Design of Experiments (DOEs),36,37 Generative
Equipment Design,38 Flowsheet Synthesis,39,40 and Risk
Assessments Processes (RAPs).41

Quantum computing can also remove such restrictions with
gridding and time steps, as well as the need for coarse-graining
and filtering. Instead of the classical bits of today’s computer
architectures, quantum computing uses qubits, which is
nonbinary. For some formulations, it can result in exponen-
tially faster solution times than classical counterparts.
Quantum computing has been applied to the Burgers’ equation
(convection−diffusion)42 and the Navier−Stokes equations,43

providing accuracy when compared to analytical solutions yet
at significantly reduced solution times. Chen et al.44 applied
quantum computing to a finite volume method, showing that a
CFD-type model is possible, augmented with a finer mesh at
faster calculation speeds. Yet, quantum computing is still in its
infancy and requires new and different computer architectures.
CFD commercial codes are not available, and it is likely years
out before they will be available given the current limits of
operating systems and compilers for quantum computing
platforms. Although quantum computing holds great promise
for higher-order models, its application as a scale-up tool is
beyond the scope of this study at this time.

While AI reactor models are in rapid development, the
“black-box” nature of such approaches is somewhat incon-
gruent with the governing physics underlying fluidization
processes. AI models are only as good as the quantity and
quality of the data used for training and testing. Physics-
informed AI (PI-AI) may change that perception of AI. For
instance, physics-informed neural networks (PINNs) hybridize
a black-box neural network to white-box physical governing
equations by converging the two parts to a single loss
function,45 thereby enforcing adherence to physics. Indeed, a

PINN approach has already been taken for modeling flow in
complex geometries such as blood vessels,46 turbulent flow
hydrodynamics sans a turbulence model,47 two-phase flow,48

and non-Brownian suspensions from Couette flow.49

Many of these AI-based tools offer a significant opportunity
to reduce the scale-up time without a significant increase in
investments. Still, the methodology of scale-up needs to change
as well. The traditional waterfall process will not be effective
for scaling up with these next-generation tools. The scale-up
process needs to change to fully exploit the benefits of these
tools in terms of reduced time and cost to delivery, and lower
risk.

■ TRADITIONAL PATHWAY FOR SCALE-UP
Fluidized bed reactor scale-ups tend to follow a waterfall
approach, whereby subsequent steps revolve around the stage
gates associated with a bench-scale reactor, a lab-scale reactor,
a pilot unit, an optional market development unit (MDU), and
the commercial plant, as shown in Figure 1. MDU may be a
necessary expense for a process involving a new technology or
a new product. If the technology is not new and the product
already has an established market, it is usually eliminated or
circumvented with a slightly larger pilot unit.

Stage 1: Bench Scale. The bench-scale unit is generally a
fixed bed with an inner diameter of 0.025−0.05 m, operated as
a pulse or differential reactor to mimic the short gas residence
times of a fluidized bed. The typical approach is trial-and-error
to collect preliminary data on reaction kinetics, product
mixture, yield, selectivity, and catalyst behavior. In some cases,
catalyst lifetime experiments may be performed. The cost
(capital, human resources, etc.) for this stage is approximately
$0.5MM. At this point, a high-level economic model for a
commercial plant may be attempted.

Stage 2: Lab Scale. The second stage starts in about 1−2
years with a lab-scale fluidized bed (diameter ∼ 0.15−0.2 m).
The bed diameter is a critical parameter for the lab-scale unit
and needs to be large enough that the walls do not influence

Figure 1. Typical fluidized bed scale-up methodology. Reproduced with permission from ref 1. Copyright 2024 American Chemical Society.
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the bed density and bubble hydrodynamics. A general rule of
thumb is the inner diameter of the fluidized bed should be at
least 0.15 m, preferably 0.2 m, for Geldart Group A particles
and larger for Geldart Group B particles whereby slugging
could be an issue.

A realistic bed height at this scale would be unlikely to
mirror that of a commercial operation. Thus, gas residence
times would be shorter than desired for the targeted product
mix. Otherwise, the unit will have to be made tall, and slugging
could be an issue with Geldart Group B particles. In addition,
the pressure drop and shear stress to the wall in these units
with tall beds can be high, resulting in the bed behaving as a
piston when starting up that can persist for a surprisingly long
time. Thus, tall units need to accommodate intermediate gas
feeds at various axial locations along the bed. These additional
feeds are only needed during start-up.

The primary objective of the lab-scale fluidized bed unit is to
validate the chemical reaction, and the behavior and properties
of the catalyst or bed material. Key scale-up parameters such as
the entrainment rate, transport disengagement height (TDH),
clustering, agglomeration, and particle attrition are unlikely to
be relevant to the commercial plant operations. In some cases,
a design of experiment () may be used to reduce the number of
experiments with parametric studies (i.e., full factorial, half-
factorial, center composite, etc.). The costs for this stage start
at $1MM (including capital and human resources).

With the initial success of the lab-scale unit, additional tasks
need to be completed. A reactor model may be attempted
consisting of a reduced order model (ROM) such as that
proposed by Levenspiel et al.,50 Werther,51 and Thompson et
al.52 The model should be validated with the lab-scale data in
terms of reactor productivity (i.e., yields, weight hourly space
velocity (WHSV), etc.) and bed density.

With a ROM in place, the commercial unit design is
conceptualized. The diameter and bed height of the
commercial fluidized bed reactor will still need to be estimated.
CFD models may be attempted for the commercial design, but
there are little data for validation. Data from the lab-scale unit
tend to be limited, and wall effects could influence the bed
hydrodynamics and the extrinsic kinetics. Still, having a model
in place will allow other concepts to be explored and, when
evaluated with the lab-unit data, may help explain some of the
hydrodynamics.

Finally, the pilot unit needs to be designed, and a flow sheet
with a piping and instrument diagram (P&ID) needs to be
developed, assuming site logistics are a given. The validated
reactor model will play an important role in the design and the
flow sheet.

Stage 3: Pilot Scale. Lab-scale studies usually take 2−3
years, after which a pilot-scale unit (diameter ∼ 0.3−0.45 m) is
typically employed to validate the technology, economics, and
reactor productivity, and also to develop models for catalyst
attrition and lifetime. This unit needs to be equipped to
measure selectivities and conversions, bed densities, entrain-
ment rates, transport disengagement heights (TDHs), and
particle attrition. Helium residence time distribution (RTD)
data can also be valuable, especially when comparing
productivity numbers to the previous lab-scale reactor data.
Distributor and cyclone designs are more involved with pilot
units than the lab-scale units but will unlikely resemble that of
the commercial unit. The cost of this stage is typically greater
than $20MM because of the larger scale. This stage involves
the commercial design along with the optional MDU design.

CFD models (i.e., two fluid CFD, MP-PIC, CFD-DEM) of the
pilot unit, MDU, and proposed commercial unit design are
developed. A similar-scale model may be used to confirm the
pilot unit’s hydrodynamic behavior and validate the CFD
model, especially if a -driven parametric study is performed.
However, the best validation for the CFD model is the reactor
productivity numbers from the pilot unit.

In some cases, large cold-flow experiments are performed to
better understand the hydrodynamics. It should be noted that
large cold-flow experiments take 6−12 months and are costly
(>$500,000), and thus the benefit of this exercise should be
carefully weighed. Notably, important physics, such as wall
stresses, shear stresses, interparticle forces, wetting, attrition,
etc., are convoluted, which may limit the viability of the data
obtained from the cold-flow hydrodynamics tests. Nonetheless,
this is a step in the traditional pathway, and some engineering
design companies request such data as further risk-mitigation.
However, such experiments rarely capture the hydrodynamics
at operation conditions, certainly less so than a validated
higher-order model.1

Coupling the pilot unit data with validated CFD (and at
times with a population balance model (PBM) to track
attrition, but more often not), the MDU and commercial
design can be explored. The results of these models can be fed
into updating the equipment, flow sheet, and P&ID designs of
the MDU and commercial units. As with the previous step, the
economic model, which is based on the revised equipment
design and flow sheet, is further developed and used to confirm
the economic viability of the proposed process.

Stage 4: The Market Development Unit. MDUs tend to
be optional depending on if new technology or a new product
is being considered. Unfortunately, the fluidized bed is still
considered a new technology despite being in commercial
operations for over 100 years.3 Thus, most scale-up efforts with
fluidized beds tend to involve an MDU. Whether it is needed
or not hinges on the level of risk a company and/or investors is
willing to absorb. MDUs are designed and flowsheeted in Stage
3, and construction may start during Stage 3 operations. Once
in operation, the MDU will be used for about 2−3 years. Much
of the designs and flow sheeting for the commercial unit will
commence early in Stage 4.

An MDU, which typically has bed diameters of 0.5−1 m and
bed heights similar to that proposed for the commercial unit,
runs at the operating conditions planned for the commercial
scale and is integrated with other targeted unit operations (i.e.,
feeders, separation columns, etc.). Cyclone trains and heat
exchange coils in the MDU design need to mirror that of the
proposed commercial design. Catalyst attrition and scaling
models are further assessed. Bed density profile, entrainment
rate, TDH, cyclone collection efficiency, cyclone pressure drop,
dipleg performance, pressure drop profiles, and particle
attrition are valuable scale-up data that can be collected from
an MDU. However, due to the size and cost, parametric studies
are rarely performed, which may not be needed if good
parametric studies were performed on the pilot unit in Stage 3.

Model validation, for both the CFD and PBM, needs to be
considered with the MDU data. Results from these models will
help revise the equipment designs, flowsheets, and P&IDs. A
process risk analysis or a risk assessment process (RAP) is
often considered in Stage 4. A RAP uses the team, expertise,
and a cold-eye reviewer to evaluate the probability of failure
and the corresponding ramifications for each piece of
equipment in the proposed design.1 This assessment includes
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evaluation of circularity with regard to energy usage, COx
emissions, particle emissions, recyclability, and reliability. This
process needs to have a systems integration approach to fully
account for consequences of the failure on both up- and
downstream performance. RAP, which is rooted in quantitative
risk assessments (QRA) of environmental and safety risks, has
been applied toward process risks involving reliability and asset
management.53

The RAP results provide additional data for the economic
model. Weak links can now be quantified, and a more realistic
estimate that includes reliability can be obtained. For example,
suppose the RAP highlighted that attrition could be a key
challenge, and thus attrition issues were documented with a
high likelihood of failure and a high consequence that goes
with that failure. Consequently, catalyst replacement costs and
lower reliability are added to the economic model as
equipment repairs and downtime. It may suggest that the
cost of failure is too high to absorb and thereby that something
needs to change. The PBM can help indicate where attrition is
the most problematic. Chances are it is at the gas distributor or
the primary cyclone, and hence redesign is needed. In this way,
RAP circumvents the possibility of having a longer start-up
and/or not achieving the process objectives.

■ PROPOSED NEW PATHWAY FOR SCALE-UP
With additional challenges associated with today’s scale-up,
including safety, environmental, risk mitigation, and additional
logistics, the conventional method is poorly suited for
accelerating process development. Yet, it has the merit of
being “tried and true”, which gives a false security of risk
mitigation. The commercial design and operation are often not
even considered until Stage 3 with the pilot unit. However, if a
different reactor configuration or operation becomes obvious,
it may be too late in the process to move forward. Such is
counterproductive to risk mitigation.

Based on new, available scale-up tools and leveraging
product development methodology,7,54,55 a new scale-up path
is proposed with a focus on risk mitigation and economics.
Figure 2 illustrates this scale-up path, which is divided into four
Phases but utilizes the same Stages (i.e., bench, lab, pilot,
demonstration, and commercialization) as the traditional scale-
up path (Figure 1). The architecture of the new path is to
circumvent the waterfall constraints that prevent the traditional
scale-up path from being efficient and cost-effective.

Agile project management stems from software development
efforts in the 1990s and has quickly moved into other
industries such as telecommunications, banking, mining, and
petrochemical.55 Its predecessor, lean project management,
was the project management methodology of choice before
then, with its roots in the Toyota Production System in the
1940s.54 The proposed phases of scale-up and the work
process within each phase is based on the Scrum and Sprints
methodology within the Agile project management framework.

The Scrum methodology is divided into five distinct Phases,
namely, (i) Initiation, (ii) Planning and Estimates, (iii)
Implementation, (iv) Review and Retrospective, and (v)
Release.7,5657 To leverage the Scrum methodology for fluidized
bed scale-up, the four proposed scale-up Phases are laid out as
(1) Discovery (mirrors Initiation, and Planning and
Estimates), (2) Research (mirrors Implementation), (3)
Development (mirrors Implementation), and (4) Commerci-
alization (mirrors Release). However, process development
takes longer and is more costly than product development. For
that reason, Scrum’s Review and Retrospective phase translates
into Risk Assessment and Economic Evaluation at each stage
of the fluidized bed scale-up pathway. Here, risk assessment is
now proposed at the early beginnings of the scale-up and
reassessed after each Stage. It should not be considered as a
stage gate, as with the economic assessment, but as a
recalculated path. It reveals what needs to be readdressed
with the current Stage and what needs a higher-priority focus

Figure 2. Proposed scale-up path for a fluidized bed process.
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at the next Stage. It also addresses issues with circularity
objectives early on in the development.

Moreover, the scale-up path needs to embrace new
technology. Often, the state-of-the-art in process scale-up is
very different from the state-of-practice. Many of the new tools
proposed in the companion Part 11 for scale-up have been
around for decades, but some are just starting to be considered.
Other tools have gone through decades of development due to
intrinsic complexity but may be now primed for process
development in fluidization scale-up. These tools are key to the
economic analysis required at the end of each gate and are
discussed below in the context of the specific scale-up Stage.
Some tools are needed to be used in every Stage. In fact, the
frequency of utilizing the proposed tools is at the heart of a
more efficient and cost-effective scale-up process, with the
tools becoming more sophisticated with each additional Stage.

Phase 1: Discovery. The initiation of scale-up is now not
so much a focus on bench-scale study but rather risk
assessment, and the tools needed for that assessment are
moved front and center. The Discovery Phase starts similarly
to that of the traditional Stage 1 (i.e., bench scale) with kinetic
data from a pulse or differential reactor to mimic the short gas
residence times of a fluidized bed unit (Figure 2). As before,
preliminary data need to be collected on the reaction kinetics,
product mixture, yield, selectivity, catalyst type, and perhaps
catalyst lifetime. Sometimes, a small fluidized bed reactor will
be used in this phase as a “proof of concept” in conjunction
with the other reactors with more defined hydrodynamics (i.e.,
fixed bed, pulse reactor, etc.) to demonstrate the fluidization
nature of the process. These reactors tend to be too small (less
than 0.15 m inner diameter for Geldart Group A particles) to
provide hydrodynamics scale-up information but can provide
insights into the fluidization concept. As long as the team is
cognizant the hydrodynamics will be different, such experi-
ments could be beneficial in reducing perceived risks with the
chemistry and fluidization. Nevertheless, the phase involves
some soft tools, with framing at the very start.

Framing. Framing, or the use of framing technique, is a
team-building and stakeholder communication exercise. The
project objective, vision, financial risk, business alignment,
safety concerns, environmental concerns, stakeholders, and
budget are laid out here. This is to ensure everyone on the
team, including the stakeholders, is aligned concerning the
purpose, concerns, and constraints. Scale-up projects can last
for many years, and the team needs to understand all of this is
subject to change and that such changes will be clearly
communicated. At the same time, the team culture needs to be
developed into one that is “in love with the problems, and not
the solutions”.7 Scale-up projects should not be managed in
solution space, especially at the early stages.

Early Stage Commercial Design. The next step being
proposed is at the heart of this strategy. With only intrinsic
kinetics in hand, the team needs to design the process. It will
likely be wrong, but it will be enough for the subsequent risk
assessment and early stage economics. Fred Brooks58 once
said, “Plan to throw one away; you will, anyhow.” The design
process will consist of reactor designs and flowsheets. At this
point of the scale-up, the reactor design will probably be
limited to the greater of the kinetics versus mass transfer time
scales. The fluidized bed height is based on the required gas
residence times (given the resulting time scale) with respect to
the bed voidage of the predefined fluidization regime.59 With
the defined superficial gas velocity that is consistent at both

scales, the diameter is based on the predefined volumetric flow
rate of the commercial unit.

With a preliminary reactor design, flowsheeting is needed to
define all the additional supporting equipment (i.e., feeders,
cyclones, quench, heat exchangers, distillation columns, etc.).
Traditionally, a flowsheet is based on institutional knowledge
using Aspen Plus or Hysys. However, new tools are available
that make this task faster. As noted in the companion Part 1,1

the flowsheeting exercise can be significantly streamlined using
flowsheet synthesis tools such as the Aspen Hybrid Modeler6

or Aspen Plus piloted by HEEDs.38 Using Simplified
Flowsheet Input-Line Entry-System (SFILES), flowsheet
generation, including complex topologies with splits and
recycles, can be autocompleted with an AI engine based on
the desired product mix, fluidized bed yields, and feedstock
specifications.40

Idealization Testing. Once the process design is in place,
that design needs to be tested. This is where the idealization
tools come into play.1 The incorporation of these idealization
or concept tools must be done in the early months or even
weeks of development. For example, some questions need to
be answered in the early stages of development. Should it be a
fluidized bed process? Why not a more traditional reactor?
Should a circulating fluidized bed or moving bed process be
considered? In actuality, a fluidized bed process may be the
optimum choice but one needs to prove it. Also, what is the
fluidization regime in which to operate the fluidized bed? Was
it chosen based on the chemistry or other concerns?

For example, many fluidized bed projects start with the
proposed operation being in the bubbling fluidized bed region
to minimize solids loss rates. However, in terms of chemistry
(specifically, extrinsic kinetics), most processes benefit from
operations in the turbulent fluidized bed regime with its
inherently higher heat and mass transfer rates that enhance
extrinsic kinetics. For turbulent fluidized beds, the more
chaotic nature of the bubbles or voids results in a higher
bubble surface area to bed volume ratio, which impacts the
extrinsic mass transfer.60 To a lesser extent, baffles can have the
same effect by breaking up large bubbles and thereby slowing
the bubble rise velocity.61,62

Solids loss can be managed with a good distributor and
cyclone design; perhaps an expanded freeboard section may be
necessary. The idealization tools need to focus on these types
of questions, and that focus must be done early in the scale-up
process. It is much harder to convince stakeholders that the
pilot plant design needs to change, than to spend upfront
resources to ensure it s not have to change. Fortunately, there
are a wide range of concept and idealization tools, including
Design for Six Sigma,8 TRIZ,63 NICE or NIS,64,65

SCAMPER,66 CPS,67 and SWOT,68 that can propel the design
team onto the optimized track in short order. The result will be
further confirmation of the original design concept or a re-
evaluation of the reactor configuration and/or operation,
followed by a re-design and flowsheeting of the new concept.

Risk Assessment. Risk Assessment comes at the end of the
Discovery Phase, followed by early stage economics. As
discussed above, the Risk Assessment Process (RAP) can be
used to quantify process risks entailing asset management,
circularity objectives, and process reliability.53 The probability
failure mode for each component and the attendant
consequences is comprehensively evaluated by the team
members and possibly with external experts. RAP tools are
now available based on a matrix of probabilities using an AI
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Bayesian network model to assess the reliability of the
process.41 By simulating anomalies and testing potential risks
via AI, weak links in the process flow and equipment design
can be identified. With RAP performed earlier, weaknesses and
gaps are tackled sooner in the scale-up pathway. More
importantly, communicating those weaknesses and gaps
along with the strategy to address them to the stakeholders
will mitigate concerns of risk with the process. Risk needs to be
clear, and the path to mitigate that risk needs to be addressed,
because stakeholders have much less resistance to terminating
a project in the Discovery Phase.

With the risks documented and early stage economics
determined comes the first stage gate. The upfront work will
benefit those early stage economics analyses, and, with risks
explicitly stated, give the stakeholders a higher confidence level
on the path forward. It is estimated that the cost incurred at
this Phase typically starts at $1.25MM, which is higher than the
traditional scale-up path as additional resources are needed for
the upfront work with the commercial design and idealization
testing. With each subsequent stage, this commercial design
will be re-evaluated. Notably, having a vetted design in the
Discovery Phase will reduce the resource load with subsequent
Phases.

Phase 2: Research. The second Phase mirrors the second
Stage (i.e., lab scale) of the traditional scale-up path (Figure 2).
For Geldart Group A particles, the unit should be at least 15
cm in diameter, preferably at least 20 cm in diameter. For a
bed of Geldart Group B particles, the diameter needs to be
large enough to prevent slugging (unless slugging is
preferable). It is unlikely but not impossible that slugging
will be an issue in a commercial-size unit, so analysis based on
a slugging lab-scale unit would be irrelevant. Furthermore, gas
residence times may be shorter than that proposed for the
commercial design. Often, the lab-scale unit is limited to the
facility’s height. It is unlikely that a realistic bed height,
mirroring that of a commercial unit, would be achievable.
However, the primary objective of the lab-scale unit is to
validate the chemical reaction. Even with the shorter bed
heights, the extrinsic kinetics can be validated. Once validated,
the kinetics can be used in a ROM to extrapolate the projected
productivity of the commercial design.

Key scale-up parameters, such as the entrainment rate,
transport disengagement height (TDH), bubble hydrodynam-
ics, clustering, agglomeration, and particle attrition, are unlikely
to be relevant to commercial plant operations. Validating such
parameters using correlations or models may also be limited as
wall effects are rarely considered or correctly considered in
such correlations or models. Nonetheless, it may be worth
calculating to improve confidence in relating the findings of the
lab-scale unit with the larger test units.

AI-Driven DOEs. Test variables for the lab-scale unit should
include all the important parameters (e.g., temperature,
pressure, feed concentration, and superficial gas velocity),
culminating in hundreds of experiments in a full-factorial
matrix. Proper design of experiments (DOEs) can decrease the
number of required experiments without compromising the
confidence level. The traditional way is that most of the
experimental matrix needs to be completed before the
significance can be tested. That is changing. AI-assisted
DOEs are available today. For instance, an AI-driven DOE
software, called xT SAAM,37,69 evaluates the data in real time
rather than only at the end, resulting in quicker feedback.

Subsequently, AI can play a role in the data analysis of the
results. As the number of experimental factors increases, so s
the difficulty in recognizing the patterns and relationships with
the responses. This is especially true when more than three
experimental factors are being considered. Machine learning
(ML) tools have certainly been used to reduce this difficulty.70

Our earlier studies71,72 used Self Organizing Map and Random
Forest (RF) to identify the primary driver for differentiation of
bubbles in the bubbling bed and clusters in risers, which was
identified as the width of the particle size distribution. Fu et
al.73 used an artificial neural network model (ANN) to
optimize the pressure drop and expansion ratio for fluidized
bed reactors. Kim et al.74 used RF and ANN to maximize
syngas produced by a fluidized bed biomass gasifier, while Lian
et al.75 employed similar methods to maximize hydrogen.
Machine learning tools thus are useful to augment the scale-up
process with new insights not obtainable by more traditional
methods.

Reduced Order, CFD, and AI Models. With the initial
success of the lab-scale unit, additional tasks need to be
completed. Reduced order models used for fluidized bed
simulations are typically used to simulate axial and/or radial
profiles using ordinary differential equations (ODEs). Unlike
ODE models for plug flow reactors, fluidized bed ROMs need
to capture the reactions in the bubbles and in the emulsion
(i.e., the bubble-less part of the bed). This is achieved using
compartment models. An example is the two-phase model,
with the phases being the bubble phase and the emulsion
phase. Levenspiel et al.50 employed three phases, namely,
bubble phase, cloud phase, and emulsion phase. The cloud
phase is designated as the boundary layer surrounding the
bubbles, while the bubble phase is tied to the cloud phase, and
the cloud phase is tied to the emulsion phase by mass transfer
coefficients. Werther51 and Thompson et al.52 used two phases
consisting of bubble phase and emulsion phase. Most
compartmental models (i.e., a type of ROM) used for
modeling fluidized beds are sensitive to mass transfer or
dispersion coefficients. It is recommended to do helium
residence time distribution (RTD) studies to fit the ROMs’
RTD curves.50,76 As with other parameters determined from
the lab-scale unit, wall effects on the bubble hydrodynamics
make the mass transfer or diffusion parameters from RTD
studies in the lab-scale unit only valid for the lab-scale unit. It
will need to be remeasured for the subsequent larger units.

CFD models are limited in capturing wall effects and
incorrectly capture radial profiles.77 On this scale, wall effects
have an influence on the bed hydrodynamics and the extrinsic
kinetics. Regardless of the model, it will have to be validated
with the lab-scale data in terms of productivity and bed
density.

Another option is using an AI-based model to capture the
lab-scale reactor’s performance. Direct measurements of mass
transfers can be convoluted, and empirical correlation based on
bubble hydrodynamics (i.e., bubble size, bubble rise velocity,
and bubble frequency) may be specific to the particle
properties or properties not specified in the AI training (i.e.,
surface roughness, adsorbates, surface charge disparities, etc.).
Fortunately, AI reactor models can relax this restriction by a
more direct link to the performance indicator. Mohd et al.78

applied such AI models for a broad range of chemical reactor
systems. Garciá-Ochoa and Castro79 used ANN to determine
the oxygen mass transfer coefficient in stirred tank reactors.
Similarly, Sablani80 used an ANN approach for determining
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the fluid−particle heat transfer coefficient. Guo et al.81 used a
hybrid ANN reactor model to simulate a fluidized bed biomass
gasifier, which circumvented the ROM development process
entirely.

AI tools are relatively new to the scale-up methodology, and
some discomfort may stem from the “black-box” approach of
determining key parameters or an entire reactor model with an
AI tool. To this end, physics-informed AI (PI-AI) not only
provides for some physical governance but also requires less
data (since the abundant data needed for AI is not so feasible).
Muther et al.82 showed how PINN can filter the results from
an ANN model to comply with the known physics of the
process. Ji et al.83 and Weng and Zhou84 used PINN to solve a
set of stiff ODEs related to solution kinetics. Schiassi et al.85

used the Physics-Informed Neural Network Theory of
Functional Connections (PINN-TFC) based framework or
Extreme Theory of Functional Connections (X-TFC) to
model a compartment model consisting of ODEs.

Once sufficiently validated, the ROM, ANN, or PINN model
can be used to obtain a broad spectrum of scale-up parameters
and the sensitivity of those parameters to the reactor’s
performance. A validated ROM, ANN, or PINN can provide
a quick method of examining varying scenarios while
highlighting which input factor is dominant with respect to
the predefined objective function(s). As with the experimental
data, machine learning can significantly improve this data
analysis and is recommended. The results can have an impact
on the pilot plant design and the DOE associated with the pilot
plant stage.

Commercial Unit Design Concept. The commercial-scale
fluidized bed reactor design can be estimated with an early
stage model in place. Data from the lab-scale unit include the
bed density, which, assuming the diameter of the lab-unit is big
enough to minimize wall effects, can be extrapolated to the
commercial design. With design specifications on feedstock
rate, temperature, and pressure, an estimate of the bed
diameter and height can be obtained. It is accurate enough for
the economic analysis but not for the final design of the
commercial unit.

Pilot Unit Design. Finally, the pilot unit needs to be
designed, and a flowsheet with a piping and instrument
diagram (P&ID) needs to be developed, along with site
logistics. The validated reactor model plays an important role
in the design and the flowsheet. The pilot reactor needs to be
designed to determine key scale-up parameters, such as gas
residence time versus yield, productivity, entrainment rates,
TDH, bed densities, bubble hydrodynamics, and particle
attrition rates. It may also need to accommodate catalyst
lifetime studies, so extended operations may need to be
considered.

Flowsheets follow, and, depending on the complexity of the
pilot unit, an AI-assisted flowsheeting tool may be beneficial
for more complex pilot unit processes. After that, P&IDs are
needed along with safety procedures, environmental impacts,
air permits, etc.

Risk Assessment. At the end of this phase, another risk
assessment is warranted, which should focus on the pilot unit
and the commercial design. What has changed in the
understanding from Phases 1 and 2 that may affect the
original design and operation of the commercial unit? The risk
assessment may identify key design parameters that need
further clarification or re-evaluation. It is likely that the
commercial design concept and/or the pilot unit design will

need to be re-designed based on the findings of the risk
assessment.

It is estimated that the cost incurred at this phase typically
starts at $2MM. As with the Discovery Phase, the Research
Phase cost is higher than that of the traditional scale-up path,
as additional resources are needed for modeling, pilot plant
design, and risk assessment. The updated risk assessment and
economics documentation should be essential for the Phase 2
stage gate. Should the scale-up continue to Phase 3? Or should
Phase 1 or 2 be re-done, or should the project be terminated,
delayed, etc.? If the data collected in Phase 2 do not make that
decision process easier, then something is amiss.

Phase 3.1: Development with Pilot Units. The third
phase involves pilot plant experimentation and mathematical
exploration of the commercial design. The key objective of the
pilot plant includes obtaining (i) key scale-up data such as
productivity, entrainment rates, TDH, bed density profile, and
attrition rates; (ii) data for model validation such as
productivity, bubble hydrodynamics,86,87 and RTDs from gas
and solid tracers;88,89 and (iii) data for extended runtime
operations. At the same time, additional development efforts
need to be applied toward higher-order models (HOMs),
equipment design for the commercial plant, more flowsheet
synthesis, pilot experiments and analysis, population balance
modeling (i.e., an ROM). Following again would be another
round of risk assessment and economics evaluations.

Pilot studies in the traditional path usually take 2−3 years.
However, front-loaded efforts in Phases 1 and 2 are expected
to reduce this to 1−2 years. Pilot units (diameter ∼ 0.3−0.45
m) are used to validate the technology, economics, and reactor
productivity, as well as develop models for catalyst attrition
and lifetime. This unit needs to be equipped to measure
selectivity, conversion, bed density, entrainment rates, TDH,
and particle attrition. Helium RTD data can also be valuable,
especially when comparing productivity numbers to the earlier
lab-scale reactor data. Gas distributors (i.e., spargers, grid
plates) and cyclone designs are more involved for the pilot
units than the lab-scale unit but will unlikely resemble that of
the commercial unit.

AI-Driven DOE. Measured responses from the pilot-unit
experiments are going to be more difficult, more multidimen-
sional, and more convoluted. A well-thought-out AI-driven
DOE with machine learning for multivariate analysis is
recommended. Machine learning tools can certainly be used
to reduce this difficulty,70 especially if this methodology was
already applied in Phase 2.

Attrition Model. Most pilot units are large enough that the
attrition data collected are relevant to the commercial design,
provided such data account for differences in particle velocities
(e.g., in the presence of internals). In general, attrition in
fluidized beds are mostly due to gas jets from the distributor
and the primary cyclones (which process the bulk of the
solids). If possible, the jet velocity penetrating the bed from a
distributor and the inlet velocity for the primary cyclone need
to be relevant to that proposed for the commercial unit. If so,
attrition data can be developed into a population balance
model (PBM).

PBMs are systems of simultaneous ODEs that describe
changes in the particle size distribution. All too often, the
attrition in the commercial unit is ignored during the design,
resulting in a commercial plant operating at a much higher
solids loss rate than initially proposed. In some cases, solids
loss rates could compromise the economic viability of the
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commercial plant. A PBM is a predictive tool that can provide
a more realistic attrition rate estimate well before the
commercial design has been finalized. Werther and Hartge90

incorporated attrition rate mechanisms (for jets and cyclones)
and breakage patterns of attrited particles via PBM to a
fluidized bed design, while Werther and Reppenhagen91,92

provided stochastic models for the jet and cyclone as power
law expressions. The breakage pattern is more complicated and
usually just an estimate. These models have to be tailored to
the bed material used. A more accurate breakage model could
be obtained with laboratory attrition test unit (e.g., jet
cup93,94) and particle size distribution analysis of bed samples.

With validated higher-order models (HOMs), such as a
CFD and/or PBM, in place, the MDU and commercial design
can be explored. The results of these models can be fed into
updating the equipment design specifications, flowsheets and
P&ID designs of the MDU and commercial units. As with the
previous Phase, the economic model, which is based on the
revised equipment design and flowsheet, is further developed
and used to confirm the economic viability of the proposed
process.

Constitutive Parameter Experiments. CFD models, and to
a lesser extent, CFD-DEM models, have become an integral
part of today’s scale-up processes. Future efforts should
emphasize and prioritize CFD efforts. Reasonable accuracy
has been demonstrated and endorsed by various indus-
tries.10−12 It should be noted though that many phenomena
are still incompletely accounted for, such as interparticle force,
agglomeration, clustering, attrition, and particle growth or
shrinkage.1

Traditionally, CFD models are validated against large, cold-
flow experimental data. However, such large-scale cold-flow
experiments are time-consuming (∼6−12 months), expensive
(>$500,000), and deficient on useful physical insights (e.g.,
wall stress, shear stress, interparticle force, wetting, attrition,
etc.). Today’s CFD model would provide better predictive
accuracy if the parameters used in the constitutive equations
were determined from small-scale experiments specific to the
physics at hand.18 Data are needed to determine which drag
model is appropriate and what the parameters for that drag
model are. Also, particle collisional stress parameters such as
coefficient of restitution and specularity coefficient need to be
determined. Typically, collisional stress parameters are often
estimated, which may be appropriate for a lower velocity
fluidized bed but not for a fast fluidized bed or CFB riser
where a core−annulus profile is known to develop.95

Correcting Drag. There are several ways to measure the
drag or, more appropriately, correct the drag model, usually in
the form of a particle cluster size. Powder rheometry tests,19

minimum fluidization curve overshoot21 and hysteresis
tests,20,21 and dynamic Hausner ratio tests22,96 have all been
applied to correct for drag particularly when shape effects and/
or interparticle forces are involved. That correction can come
as a multiplier to the drag coefficient or as a cluster size.
Regarding cluster size, particles smaller than the cluster size
can be assumed to be equal to the particle size for the particle
size distribution.97 The particle size distribution used in the
CFD model is re-defined such that the smallest particle is the
particle cluster size with a weight fraction of the sum of all the
smaller particles.

Direct numerical simulation (DNS) has also been applied to
correct for particle−particle drag24 and interparticle forces.25

Smooth, round particles are typically assumed, so the

application may be limited for some systems. Nonetheless,
such a model can be used to determine the microscale
properties that can be extracted for a drag−filtering model.26

Such a model reduces the grid sensitivity issue with drag
models.27

AI models (e.g., ANN) have also been applied for drag
correction.30−32 Unlike DNS models, the underlying physics
are not needed or can be generalized as a PINN model. What
is needed are lots of data for the bed density and entrainment
rate. Ideally, an axial profile of the solids concentration would
be value-added as well, although that is a more complex
experiment. At the start of Phase 3, the only data available for
AI training and testing are from the lab-scale unit. It is a good
start, but the AI model will have to be retrained and tested
with the pilot scale data if the freeboard is significantly higher
or the operating conditions (temperature, pressure, and gas
velocity) are different.

Commercial CFD codes do not have AI capabilities for drag
or drag correction yet, but such a model can be easily
incorporated with a user-defined subroutine or a model fit to
the drag−AI modeling results as a constrained subset. For
lower-velocity fluidized bed simulations, the drag needs to be
relevant as it is the key controlling parameter for the
simulation.

Coefficient of Restitution. Collisional stresses, which can be
quantified for either particle−particle or particle−wall, are
challenging to account for in detail at the commercial scale.
For most CFD models, the elasticity of the normal collisional
stress is captured with the coefficient of restitution, which is an
indication of the fraction of elastic momentum transfer. CFD-
DEM typically uses the Hamaker constant associated with the
Johnson−Kendeal−Roberts (JKR) type model. Experiments
are typically performed using a particle drop experiment and a
high-speed camera, whereby a change of momentum indicates
the elasticity of the collision.98−101 Oesau et al.102 used a
magnetic particle tracking procedure to quantify that elasticity.

Miao et al.103 used particle-resolved direct numerical
simulations (PR-DNSs) to quantify drag coefficients for
spherical and nonspherical particles. The model was
complemented with a back-propagating neural network
model. Schwarz et al.104 used a deep neural network (DNN)
model for capturing erosion from the resulting particle
trajectories and speeds (i.e., rebound model) for particle-
laden flow through turbines. Similarly, Haghshenas et al.105

used DNN models for particle-laden flows in sediment
transport lines.

Specularity Coefficient. The specularity coefficient is the
amount of momentum conserved when a particle impacts
another particle or surface at a grazing angle.106 Similar to
measuring the restitution coefficient, the specularity coefficient
or specularity reflection coefficient is usually determined from
particle tracking imaging. For commercial-scale fluidized beds,
the specularity coefficient may be the least important model
parameter. Wall effects and shear stresses tend to have a
minimal effect in a fluidized bed.

Higher-Order Models (CFD, MP-PIC, CFD-DEM, and AI).
Perhaps the modeling component of Phase 3 is more critical
than that for the traditional Stage 3 pilot-plant studies. The
pilot-plant studies confirm what is expected, but it is the
models that will quantify the performance of the commercial
unit while serving as a data analysis tool for the pilot-plant
studies. For this reason, modeling is being proposed to play a
more primary role in fluidized bed scale-up, and data collected
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from the pilot unit need to go beyond productivity goals. Key
hydrodynamic scale-up parameters such as bed densities,
entrainment rates, transport disengagement heights, and
particle attrition need to be measured and used to validate
the models. Once validated, such models would be invaluable
in the design and design variations of the commercial unit.

Fortunately, today’s CFD codes can be accurate even for
commercial-scale computational domains,107 and industry is
increasingly embracing this.10−12 However, these codes can
only capture the physics for which they have been designed.
Interparticle forces,29 drag as related to solids loadings in
fluidized beds,108 rough particles, and highly nonspherical
particles are typically beyond the capabilities of commercial
CFD codes (though there are some CFD-DEM codes109−111

that can handle nonspherical particles).
CFD models need to be tuned to the data collected from the

pilot unit.112 Ideally, tuning needs to be minimized as much as
possible. A higher level of tuning is a direct result of the
amount of physics that the model is missing (i.e., drag, particle
shape, particle roughness, interparticle forces, etc.). It could be
an important piece of physics that stymie direct use at another
scale. Clearly, the ability to confidently extrapolate to larger
computation domains depends on a fundamental model. The
higher the level of tuning, the more the model becomes a
curve-fit and less a prediction tool. To address this, data from
small-scale experiments can be conducted to obtain key
constitutive parameters that are more in line with a
fundamental model than that from tuning.18

Nevertheless, tuning is often needed. For the tuning, it
should be based on a large amount of statistically significant
data that spans the operating range and physical properties that
will be relevant to the commercial system. For low-velocity
fluidized beds, tuning is generally done with a multiplier to the
drag coefficient.113 It has been done through adjustments to
the particle size or size distribution,114 but that change will also
change the collisional stress values. For circulating fluidized
beds (CFBs), the adjustments to the coefficient of restitution
can significantly impact the collisional stress model, perhaps
too much.115

Grid resolution and coarse graining also need to be resolved.
For grid resolution, a size of 1 mm may be needed for Geldart
Group A powder,24,25 which is too small for simulating
commercial-scale units. That requirement can be relaxed if a
filtered drag relationship is used.26 However, the grid still
needs to be resolved, which requires several simulations, each
one with a better grid resolution. If two simulations of different
grid resolutions have the same answer, then the more relaxed
gridding may be valid. The axial pressure profile and a mid-bed
radial pressure profile at a steady state could be good metrics
for the effectiveness of the grid resolution.

Coarse graining (i.e., clouds or parcels) has the same issue.
Coarse graining reduces the number of equations by
categorizing similar particles into groups. That number of
particles per cloud or parcel needs to be resolved much like the
gridding by comparing multiple simulations of different levels
of coarse graining. For fluidized bed simulations, the metric
should be the axial bed density profile instead of the averaged
bed density.

The restrictions with getting constitutive equation parame-
ters, grid resolution, and coarse graining can be reduced or
eliminated with an AI model (e.g., ANN). AI has been used for
quantifying the scale dependency,18 optimizing the filtered
drag model,30,32 measuring the heterogeneity index (i.e., level

of clustering) for an EMMS drag model,31 and optimizing
adaptive gridding to relax time step constraints.33 Others34,35

have removed the Navier−Stokes equations altogether by
replacing the CFD modeling with AI modeling.

Such distancing from fundamental physics could be
disconcerting, which is why PINN models are actively being
developed for fluid flow problems.45−47 As noted above, it still
uses the neural network, but an additional layer is added to
filter the physics. In the case of fluidized bed models, this
would be the Navier−Stokes equations and drag model.
However, such models are not commercially available yet.

MDU and Commercial Design. With higher-order models
and/or AI models (ANN or PINN) along with key scale-up
data from the pilot unit (i.e., bed density, gas RTDs,
entrainment rates, TDH, yields, etc.), detailed MDU and
commercial designs can be obtained. Using a generative
equipment design tool can better optimize this design.38 Such
a tool will not only optimize the reactor size and configuration,
but also be used to optimize the gas distributor design, number
of cyclones and geometry of cyclones, placement of the diplegs,
design of the heat exchange tubes, etc. The design of the
commercial unit should be done first, as it will predetermine
some of the design parameters for the MDU.

After the design of the units, flowsheeting is needed. As with
Phase 2, a flowsheet synthesis tool can reduce the resource
load and perhaps deliver an optimized configuration.40 Our
earlier study1 discussed the algorithm and commercial
application of such tools. With an optimized flowsheet design
in place, the P&IDs are needed to complete the design of the
commercial unit and the MDU.

Risk Assessment. The Phase 3.1 risk assessment needs to be
the most involved exercise of all the risk assessments, as it
needs to identify weak links in the detailed process flow and
equipment design. The risk assessment team should include
the scale-up team, any external consultants, and one new
consultant as a cold-eye reviewer. The first risk analysis should
start with the commercial unit as it will help discern what the
MDU needs to resolve. It should be noted that the risk
assessment is a stage gate process. In general, if the team is not
going back to redo some of the commercial and/or MDU
design, the exercise is not detailed enough. Afterward, another
economic analysis is needed based on the resulting designs.
This needs to be a detailed economic model that encompasses
all of the equipment, supporting equipment, utilities, resources,
market pricing, reliability estimates, etc.

The subsequent stage gate is for the stakeholders with
documentation on the design, risks, and economics in hand.
Their decisions will determine if the project progresses to or
skips the next stage (i.e., MDU). Reaffirming the skilling of the
next phase or going directly to commercial construction,
performing additional tasks in Phase 3.1 again, terminating,
delaying, or slowing down the project are all important
considerations.

Phase 3.2: Development with MDUs. The second part
of Phase 3 involves the construction and operation of the
MDU, additional data analysis, validation of the pilot unit data,
revised design for the commercial unit, revised models, a
detailed risk assessment, the final economic analysis, updated
supply chain availability and pricing, and updated market
penetration. MDUs are time-consuming and expensive. Thus,
this stage tends to be applied toward vetting new technology or
for market penetration. Tasks for this phase mirrors that of the
demonstration-unit stage. Data are collected from the MDU
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and compared to pilot-plant results. In addition, all reactor
models and PBMs need to be further validated. The
commercial unit will go through another design exercise
using AI-driven tools for equipment sizing and flow sheeting.

A risk analysis is needed and should mirror that performed
for Phase 3.1. If done right, there are always changes to the
design, almost to the very end. At this point, each of those
changes needs to go through a cost−benefit evaluation.
However, the work process needs to be set up to embrace
such changes and not be exposed to negative feedback. A
design change may not be used, which is fine, but it should
always be disclosed.

The MDU is a good indicator of the scale-up efforts. If data
from the MDU are consistent with what was learned from the
pilot and lab units, and the corresponding models, then the
scale-up methodology was correct. In other words, if the result
of this phase is that the phase was not needed, then consider
the scale-up successful. If all of this was performed in the time
proposed, then acknowledgment of the scale-up team is
warranted.

Benefits of Using Tools. What has been proposed here
means that more resources are needed for data analysis,
modeling, and technical management to accelerate the
commercialization of a proposed fluidized bed process such
as biomass gasification or pyrolysis, methane decarbonization,
plastic-to-chemicals, or carbon capture chemical looping. The
question then is, why should more resources be used? As
Figure 3 reflects, the profitability of any chemical process

depends on controlling costs during the Research and
Development (R&D). Naturally, the more the spending on
R&D is, the harder it is to recover when revenue does start
coming in. Specifically, the net present value over 20 years
(NPV20) needs to be positive on the order of $10MM. That is
achieved by starting up the process earlier or incurring lower
scale-up costs. For the traditional scale-up pathway for a

hypothetical fluidized bed acrylonitrile plant, Figure 3 shows
that break-even (i.e., net profit) does not occur until 19 years
after the start of the project. This results in a NPV20 of
$20MM. If this can be moved a few years earlier, perhaps by
using the proposed tools and methodology, the break-even
time is now 16 years, but the NPV20 is now significantly higher
at $141MM. In other words, break-even is three years earlier,
and the metric typically of even greater importance to
stakeholders�the NPV20�is $121MM higher.

To explore this further, a more detailed Monte Carlo
simulation was developed based on the scale-up of a
hypothetical acrylonitrile process based on a fluidized bed.
Capital costs, resource hours, and the timing of the phases are
not well predefined with any scale-up process. To address the
variability of the costs and timing, Monte Carlo simulations of
these variabilities were employed. The path to commercializa-
tion was segmented linearly as the construction and operation
of a miniplant, pilot plant, market development plant, and
commercial plant based on a traditional scale-up methodology
vis-a-̀vis the proposed scale-up methodology with a higher
priority for modeling tools.

Table 1 compares the traditional versus the proposed
pathways concerning capital cost (CapX), human resource
requirement, and cumulative gain in delivery time. The
estimates are based on a commercial plant delivering
2.06MM kg of acrylonitrile product per year.116 Between the
two pathways, the CapX remains constant, but the human
resource levels are different. For the Monte Carlo simulations,
the capital costs are allowed to vary by ±20%, corresponding
to the common practice for contingencies with scale-up.
Human resource costs (labor and overhead) are estimated to
be $250,000 ± 20% per engineer per year, corresponding to
2000 h. This only reflects the human resources involved in
scaling up, and not the researchers, chemists, and technicians
involved prior to the onset of scale-up. For Stage 1 of the
traditional scale-up pathway, the human resource load is set at
1 person-year. To account for the additional front-loaded
modeling and engineering efforts, an additional 0.5 person-year
of human resources is needed for Phase 1 of the proposed
pathway. Compared to Stage 2 of the traditional pathway,
Phase 2 of the proposed pathway requires an additional
person-year of human resources (i.e., increased from 2 to 3).
For Phase 3, human resources are increased from 10 to 12 and
from 18 to 21, respectively, for the pilot and MDU operations.
For commercialization, the human resource loads are similar in
both scale-up pathways. In summary, the model is based on
increasing the human resource loads to exploit the advanced
tools, which would result in an overall reduction in the
commercialization costs and time.

Of course, it would be unreasonable to expect that
augmenting the additional human resources to implement to

Figure 3. Cumulative cash flow for a hypothetical fluidized bed
acrylonitrile plant with 2MM kg of acrylonitrile product per year.

Table 1. CapX, Human Resource, and Cumulative Difference in Delivery Times between the Traditional and Proposed Scale-
up Paths; Basis = Commercial Plant Delivering 2.06MM kg of Acrylonitrile Product Per Year116

Step Name Human Resources, person-year

Traditional Pathway Proposed Pathway Primary Unit Operation Capital Cost, 106USD (2023) Traditional Load Proposed Load

Stage 1: Bench Phase 1: Discovery Bench Unit 0.175 ± 0.035 1 1.5
Stage 2: Lab Phase 2: Research Lab Unit 0.325 ± 0.065 2 3
Stage 3: Pilot Phase 3.1: Development Pilot Unit 15 ± 3 10 12
Stage 4: MDU Phase 3.2: Development MDU 35 ± 7 18 21
Stage 5: Commercial Phase 4: Commercialization Full-Scale Unit 200 ± 40 12 12
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advanced tools would automatically reduce the commercializa-
tion time. For that reason, the time savings between 0 and
100% modeling effectiveness (i.e., how efficaciously the
advanced tools are implemented) are examined. Most stages
do not start up or end at full capability (i.e., square wave);
instead, cost and productivity reach a maximum and decrease
subsequently. Therefore, as depicted in the inset in Figure 4, a

Gaussian distribution is presumed to represent the cost versus
duration of each stage. Figure 4 illustrates two concepts. First,
as the modeling effectiveness (which is an independent
variable for the Monte Carlo model) increases, the stage
duration (i.e., Gaussian distribution width) shrinks to represent
the decrease in time needed for that stage, which reflects the
benefits of more effective modeling. Second, the Monte Carlo
simulation varies this standard deviation by 20% (i.e., to
account for a 20% contingency factor) to represent such
variability common with most scale-up programs. The duration
of each stage and the resulting resource costs changes by
modifying the predefined standard deviation of the Gaussian
distribution. At 0% modeling effectiveness, the standard
deviation is set at 0.5, but at 100%, the standard deviation is
reduced to 0.4 (Figure 4). While the standard deviation values
may appear arbitrary, the resulting stage durations are
reasonable based on experience. For any given simulation
case, some stages will happen faster than that predicted by the
curve, while others will happen slower. Each stage, represented
by a Gaussian distribution, is allowed to overlap by 15%. In
other words, Stage 2 starts at 85% of the Stage 1 peak in terms
of duration. Similarly, Stage 4 starts at 85% of Stage 3 and
Stage 5 starts at 85% of Stage 4.

Table 2 shows the estimates of the modeling costs at each
step. The costs are a composite of minimal central processing
unit (CPU) architecture and software licensing. Network
infrastructure and IT support are outside the scope of this
model. The present value product price is assumed at $32/kg
(based on acrylonitrile116) and operating costs are set at $7/kg,
including taxes.

Figure 5 depicts representative Gaussian cost profiles for a
single stage, in this case the Pilot stage, to understand the
impact of modeling effectiveness on cost. Specifically, each
stage is assessed in terms of the capital, resources, and CPU/
licensing costs as a Gaussian distribution to represent the

typical delay in starting up and conclusion. Production and
operating costs are modeled to a sigmoidal distribution,
assuming that full capacity takes one year. This is to account
for the fact that projects rarely start and end at full
productivity. The tax rate is set at 25%. Note that 0%
effectiveness represents the traditional pathway. As modeling
effectiveness improves, the leftward shift in the peak is due to
the corresponding reduction in the time to commercialization.
Of course, the cost (and revenue) needs to be standardized
with respect to the time value. Figure 5 shows the cost in USD
of the present value in 2023. To account for the real cost of
earlier delivery, peaks are corrected for the average for the U.S.
inflation rate at 2.47% (averaged over the past five years), as
apparent in the decreasing peaks with increasing years (i.e.,
discounting). For this pilot stage analyzed, Figure 5 indicates a
time savings of two years between 0 and 100% modeling
effectiveness, which is quite significant for a single stage.

Figure 6 overviews one simulation scenario, showing the
cost at each stage, operational cost, and the revenue stream. As
noted above, scale-up costs are modeled as Gaussian
distributions. The commercial plant costs are modeled as a
sigmoidal distribution spanning 10 years with a 10 year loan
payout at an interest rate of 12%. Operating costs include the
feedstock costs, which also have a sigmoidal profile, allowing
for one year to reach the design capacity of the commercial
operation. The revenue stream is also sigmoidal, with the same
profile as the operating cost. The variability in the operating
cost and revenue stream reflects the historical (5 year) market
pricing variability for the feedstock and the product pricing.

Ideally, the pinnacle of modeling efforts would enable
confidently eliminating or reducing the need for an MDU unit

Figure 4. Simulated dependence of the standard deviation of a
Gaussian distribution of cost with respect to duration (inset) on
modeling effectiveness for each stage. Error bars indicate the ±20% in
the standard deviation used for the Monte Carlo simulations.

Table 2. CPU and Licensing Costs (Human Resource Costs
Not Included)

Step Name

Traditional
Pathway

Proposed
Pathway

Primary
Unit

Operation

CPU
Architecture

Costs,
103USD (2023)

Licensing
Costs,

103USD (2023)

Stage 1 Phase 1 Bench
Unit

25 ± 5 30 ± 6

Stage 2 Phase 2 Lab Unit 50 ± 10 60 ± 12
Stage 3 Phase 3.1 Pilot Unit 100 ± 20 120 ± 24
Stage 4 Phase 3.2 MDU 100 ± 20 120 ± 24

Figure 5. (a) Representative Gaussian cost profiles for various
modeling effectiveness for a stage (in this case the Pilot stage) during
scale-up. With increasing modeling effectiveness, the peak shifts
leftward (i.e., less time) and the width narrows (i.e., decreases in
duration) in accordance with Figure 4. Profiles are corrected to the
present value (2023).
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during scale-up. The cumulative cost and revenue for the
proposed scale-up pathway are shown in Figure 7 for cases
with and without an MDU in the Development Phase, as well
as for 0 and 100% modeling effectiveness. Expectedly, as scale-
up progresses, the cumulative cost curves become increasingly
negative with time, the cumulative revenue curves tick upward
only after successful operation of the commercial unit, while
the total cash flow curve (i.e., revenue minus cost) reflects the
break-even time (i.e., the number of years needed for the
revenue to offset the total costs). Clearly, the total revenue
curve is relatively less negative without the MDU and relatively
less negative with 100% modeling effectiveness.

Figure 8a presents the resulting net present value over 20
years (NPV20). It should be noted that any economic model
showing an NPV20 of less than zero would not proceed further.
In practice, the critical NPV20 value that warrants a green light
to proceed is typically much higher at $100MM or more. As
Figure 8a shows, NPV20 increases with modeling effectiveness,
reflecting the economic benefits of leveraging modeling tools.
Also, the NPV20 values are a few-fold higher for the case
without the MDU, reflecting the significant advantage. With
0% modeling effectiveness and the use of a MDU, the NPV20 is
approximately $25MM. For most, it is a value that would be
considered economically unattractive. As for 0% modeling

Figure 6. Representative costs and revenue for scale-up and operations for the case of 0% modeling effectiveness. Basis = commercial plant
delivering 2.06MM kg of acrylonitrile product per year.116

Figure 7. Cumulative costs, revenue, and total cash flow with and without an MDU in the Development Phase and with 0 and 100% modeling
effectiveness. Basis = commercial plant delivering 2.06MM kg of acrylonitrile product per year.116

Figure 8. Estimates for the hypothetical fluidized bed acrylonitrile plant: (a) NPV20, (b) start-up time, and (c) break-even time with respect to
modeling effectiveness. Basis = commercial plant delivering 2.06MM kg of acrylonitrile product per year.116
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without the MDU, the NPV20 increases to $135MM, which is
much more economically attractive. At 100% modeling
effectiveness, the NPV20 is an attractive $190MM with an
MDU and becomes a compelling $265MM if the MDU is
eliminated. If an MDU swings the economics into unfavorable
economics, perhaps a more model-based scale-up path may be
even more prudent. Clearly, the benefit of a scale-up program
with a strong emphasis on more modeling and repetitive risk
analysis (much of which is supported by modeling) is value-
added.

Panels b and c of Figure 8 show the start-up and break-even
times, in the presence and absence of the MDU, with respect
to modeling effectiveness. With 0% modeling investment (i.e.,
0% modeling effectiveness) and an MDU, the start-up time is
determined to be 10.7 years and break-even point is at 18.3
years. Arguably this economic driver is too unattractive for
most to consider it a worthwhile investment. On the other
hand, in the ideal case of 100% modeling effectiveness and no
MDU, the start-up time and break-even point are approx-
imately halved to 5.8 years and 8.5 years, respectively. This is
now a much more reasonable economic driver.

Notably, Figure 8 is based on fixed cost, revenue, and
duration with a predefined reduction in that duration due to
modeling efforts. In order to better rationalize the cost and
time benefits of advanced modeling tools,1 Monte Carlo

simulations are performed. Specifically, the capital costs are
allowed to vary by 20%, corresponding to the common practice
for contingencies with scale-up (Figure 4). Thus, for each step,
a random number generator via Mathematica 13.2 is used to
discern the resource cost, modeling CPU and licensing costs,
bench and lab units capital costs, pilot plant capital costs,
MDU capital costs, commercial construction costs, commercial
operating costs, and product revenue. Similarly, all other costs
and revenue are constrained to the ±20% variability limits. The
present value of the human resource costs (labor and
overhead) is estimated to be in the range of $250,000 ±
20% per engineer per year. The present value product price is
assumed at $32/kg ± $4/kg. Operating costs are set at $7/kg
± $1/kg and include taxes. Pricing variability of up to ±20% is
applied at 0.1 year intervals. The stage durations are also
allowed to vary up to ±20%, as indicated by the error bars in
Figure 4. Thus, even if the modeling effectiveness is at 100%, a
stage duration has a probability of either showing no decrease
in the project duration or exceeding that indicated by the curve
by 20%. For each simulation pass, it is possible for the start-up
time to be the same or be reduced by an assumed maximum of
five years. Thereby, the simulation results will give a start-up
time between the two limits. The Monte Carlo simulations
require 2000 steps to reach a 95% confidence level (i.e.,
Student t test) in significance, but 10000 steps are used.

Figure 9. Monte Carlo simulation of the hypothetical fluidized bed acrylonitrile plant: (a) NPV20, (b) start-up time, and (c) break-even time with
respect to modeling effectiveness. Basis = commercial plant delivering 2.06MM kg of acrylonitrile product per year.116

Figure 10. Histograms of NPV20 values from the Monte Carlo simulations at varying modeling effectiveness and with or without an MDU. Basis =
commercial plant delivering 2.06MM kg of acrylonitrile product per year.116
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Figure 9 shows the NPV20, start-up time, and break-even
time for the Monte Carlo simulations accounting for modeling
effectiveness from 0% (traditional pathway) to 100% (idealized
proposed pathway) with and without an MDU. The extremes
(i.e., 0 versus 100% modeling effectiveness) clearly show the
benefits of a more model-based scale-up pathway. The NPV20
results in Figure 9a show the benefit of the Monte Carlo
simulations that account for variability. While Figure 8a
indicates 0% modeling effectiveness and an MDU gives an
NPV20 value of $25MM for fixed cost and duration, the Monte
Carlo simulations with up to ±20% variability in costs,
revenue, and stage durations give an NPV20 of less than zero
(i.e., not financially feasible) in Figure 9a. In fact, as shown in
Figure 10a, the histogram plots of the NPV20 results from the
Monte Carlo simulations suggest that NPV20 values are less
than zero in most cases. Even at 20% modeling effectiveness,
with an MDU, 25% of the cases give NPV20 values of less than
zero (Figure 10b). At 40% modeling effectiveness and an
MDU, the best cases are still well below the critical $100MM
NPV20 (Figure 10c). At 0% modeling effectiveness, eliminating
the MDU augments the NPV20 to $138MM (Figure 9a), which
is slightly higher than that shown in Figure 8a. At 100%
modeling effectiveness, Figure 9a shows that the NPV20 values
are $150MM and $285MM respectively for cases with and
without the MDU, while panels d and h of Figure 10 present
the corresponding spread of expected values that are all above
the critical $100MM value. Clearly, NPV20 increases with
higher modeling effectiveness.

For the start-up times at 0% modeling effectiveness, Figure
9b shows that the Monte Carlo simulation results are similar to
that in Figure 9b. This suggests that it is the variability in the
costs and revenue, rather than the duration, that lower the
NPV20 values. At 100% modeling effectiveness, the start-up
times increase by 1−1.5 years compared to that in Figure 9b,
suggesting that variabilities in costs, revenues, and stage
durations need to be duly accounted for. As for the break-even
results in Figure 9c, the consideration of variability in cost,
revenue, and stage duration increases the break-even time for
all modeling effectiveness. Since no difference in the start-up
time is determined for the 0% modeling effectiveness case, the
break-even trend further suggests that cost variability needs to
be considered with any economic analysis on fluidized bed
scale-up.

Considering the beneficial impact of modeling on cost and
time, the effect of increased investment on modeling efforts is
assessed. Figure 11 shows the NPV20 results for similar Monte
Carlo simulations, except the resources needed for modeling
(i.e., human resources, CPU costs, and licensing) are doubled
at each modeling effectiveness above 0%. If an MDU is
included, the additional costs for the additional resources have

negligible impact (i.e., within the error bar) on the NPV20. If
the MDU is omitted, the NPV20 values drop only about 2 ±
1% with the additional modeling resources. This suggests that
doubling modeling resources has minimal effect on the bottom
line.

Collectively, the analysis highlights how advanced scale-up
tools can turn an economically unfeasible scale-up project into
a feasible and even attractive project. As Figure 10c shows,
even at only 40% modeling effectiveness and with MDU, all
cases have NPV20 values above zero, although none attain the
critical $100MM value. If $100MM is used as a cutoff for
determining the feasibility of the project to move forward, then
modeling effectiveness needs to be at least 80%. In addition,
with an MDU, panels b and c of Figure 9 demonstrate that the
incorporation of advanced scale-up tools can reduce the start-
up and break-even times by 20 and 23%, respectively. If the
MDU can be eliminated, then all cases of modeling
effectiveness give attractive economics of well above the
critical $100MM (Figure 10e−h). Without the MDU, relative
to the case of 0% modeling (i.e., traditional pathway), having
100% modeling effectiveness more than doubles the NPV20 to
almost $290MM, along with a 20% reduction in the start-up
time and 27% reduction in the break-even time (Figure 9).
Compared to the worst case (i.e., 0% modeling and an MDU),
the optimal case (i.e., 100% modeling effectiveness and
excluding the MDU) gives an NPV20 of $310MM higher and
results in 35 and 42% reductions in the start-up and break-even
times, respectively (Figure 9). Clearly, for fluidized beds to
contribute toward the pressing deadlines of today’s climate-
neutral challenges, the scale-up focus should not only be on
reducing the duration of each stage but also on the possibility
of not using a MDU, both of which are achievable by efficient
and judicious implementation of the advanced tools.

■ CONCLUDING REMARKS
Fluidized beds are important for addressing time-critical
sustainability challenges, so scale-up needs to be achieved
more resource-, time- and cost-efficiently. Scale-up has been
done in the literal sense of progressively larger units.
Specifically, traditional scale-up efforts follow a waterfall
approach (i.e., linear sequence of stages) and focus almost
solely on the economic analysis usually preceding each stage
gate. To expedite scale-up, it is proposed to circumvent the
linear constraints by focusing instead on Phases (namely,
Discovery, Research, Development, and Commercialization),
and incorporating risk analysis that precedes each stage gate
including the initial one, as well as AI and other models
(ROM, PBM, CFD, DEM, Flowsheet Synthesis, Generative
Design, etc.). A scale-up of a hypothetical fluidized bed here

Figure 11. NPV20 values from Figure 9a vis-a-̀vis NPV20 values from a similar simulation but whereby the number of additional resources needed
for modeling was doubled. Basis = commercial plant delivering 2.06MM kg of acrylonitrile product per year.116
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demonstrates that well-designed, verified, and validated
mathematical modeling can significantly improve the scale-up
process with respect to time (i.e., 35% reduction in start-up
time) and financial returns (i.e., 42% reduction in break-even
time and $310MM improvement in NPV20).

In essence, a paradigm shift is needed, whereby the design,
flowsheeting, risk assessment, and economics are evaluated at
every step, even in the initial Discovery Phase. Experiments
need to be integrated with models to capture specific physics
or patterns. Well-thought-out small-scale experiments should
be prioritized over the more convoluted large-scale cold-flow
experiments. Small-scale experiments can be done earlier in the
process and under more realistic conditions. Modeling,
whether in the form of ROM, CFD, CFD-DEM, CFD Hybrid,
ANN, or PINN, needs to be considered and efficiently
incorporated. Such models and their applications need to be
defined and targeted early in the scale-up process. It should be
considered as a Day 1 activity.

It is acknowledged that some of the CFD models need
further development with constitutive equations (i.e., drag,
interparticle forces, etc.), while AI-based models require lots of
upfront data for training and testing. Also, AI models such as
the neural network models have a black-box nature, which may
do little to mitigate perceived risks. PI-AI can reduce that
perceived risk but still requires quite significant development
efforts; yet, such efforts are only a few years off from becoming
a readily available tool. Starting early with such models could
add significant value, especially since costs associated with
these additional modeling efforts are small compared to other
costs (i.e., CapX). This is especially true if such models with
reactor performance, design, and flow sheeting are integral to
risk analysis and economic evaluation. This integration would
streamline the workflow while mitigating stakeholder concerns
with the economic risks.

In short, model development and application need to take a
higher priority in the scale-up process if time and costs are to
be markedly reduced. New models should be considered even
if more development is needed. The increase in costs for
augmenting and advancing modeling efforts is significantly less
relative to the gains in the NPV20 and time.
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biomass gasification with a hybrid neural network model. Bioresour.
Technol. 2001, 76, 77−83.
(82) Muther, T.; Dahaghi, A. K.; Syed, F. I.; Van Pham, V. Physical

laws meet machine intelligence: current developments and future
directions. Artif. Intell. Rev. 2023, 56 (7), 6947−7013.
(83) Ji, W.; Qiu, W.; Shi, Z.; Pan, S.; Deng, S. Stiff-PINN: Physics-

Informed Neural Network for Stiff Chemical Kinetics. J. Phys. Chem.
A 2021, 125, 8098−8106.
(84) Weng, Y.; Zhou, D. Multiscale physic-informed neural networks

for stiff chemical kinetics. J. Phys. Chem. A 2022, 126, 8534−8543.
(85) Schiassi, E.; de Florio, M.; D’Ambrosio, A.; Mortari, D.;

Furfaro, R. Physics-informed neural networks and functional
interpolation for data-driven parameters discovery of epidemiological
compartmental models. Mathematics 2021, 9 (17), 2069−2078.
(86) Ellis, N.; Bi, H. T.; Lim, C. J.; Grace, J. R. Hydrodynamics of

turbulent fluidized beds of different diameters. Powder Technol. 2004,
141 (1−2), 124−136.
(87) Cheremisinoff, N. P. Review of experimental methods for

studying the hydrodynamics of gas-solid fluidized beds. Ind. Eng.
Chem. Proc. Dev. 1986, 25, 329−351.
(88) Pant, H. J.; Sharma, V. K.; Goswami, S.; Samantray, J. S.;

Mohan, I. N.; Naidu, T. Residence time distribution study in a pilot-
scale gas-solid fluidized bed reactor using radiotracer technique.
Radioanal. Nuclear Chem. 2014, 302, 1283−1288.
(89) Huntley, A. R.; Glass, W.; Heigl, J. J. Gas residence times in

fluidized beds. Ind. Eng. Chem. 1961, 53, 381−383.
(90) Werther, J.; Hartge, E.-U. Modelling of fluidized bed reactors.
Int. J. Chem. React. Eng. 2003, 1 (1), 20121068.

(91) Reppenhagen, J.; Werther, J. Catalyst attrition in cyclones.
Powder Technol. 2000, 113, 55−69.
(92) Werther, J.; Reppenhagen, J. Catalyst attrition in fluidized-bed

systems. AIChE J. 1999, 45 (9), 2001−2010.
(93) Bailey, K.; Puraite, A.; Kales, R.; Karri, S. B. R.; Cocco, R.;

Freireich, B.; LaMarche, C.; Aglave, R.; Agegnehu, G.; Chew, J. W.
Hydrodynamics of Geldart Groups A, B, and D Materials during Jet
Cup Attrition. Ind. Eng. Chem. Res. 2022, 61 (27), 9879−9888.
(94) Cocco, R.; Arrington, Y.; Hays, R.; Findlay, J.; Karri, S. B. R.;

Knowlton, T. M. Jet cup attrition testing. Powder Technol. 2010, 200
(3), 224−233.
(95) Berruti, F.; Pugsley, T. S.; Godfroy, L.; Chaouki, J.; Patience, G.

S. Hydrodynamics of Circulating Fluidized Bed Risers: A Reivew.
Can. J. of Chem. Eng. 1995, 73, 579−602.
(96) Soleimani, I.; Elahipanah, N.; Shabanian, J.; Chaouki, J. In-situ

quantification of the magnitude of interparticle forces and its
temperature variation in a gas-solid fluidized bed. Chem. Eng. Sci.
2021, 232, No. 116349.
(97) Soleimani, I.; Shabanian, J.; Chaouki, J. Extension of Geldart

classification based on the magnitude of interparticle forces. Chem.
Eng. J. 2023, 475, 146438.
(98) Marinack, M. C.; Jasti, V. K.; Choi, Y. E.; Higgs, C. F. Couette

grain flow experiments: The effects of the coefficient of restitution,
global solid fraction, and materials. Powder Technol. 2011, 211 (1),
144−155.
(99) Tang, H.; Song, R.; Dong, Y.; Song, X. Measurement of

Restitution and Friction Coefficients for Granular Particles and
Discrete Element Simulation for the Tests of Glass Beads. Materials
2019, 12 (19), 3170.
(100) Jiang, Z.; Du, J.; Rieck, C.; Bück, A.; Tsotsas, E. PTV

experiments and DEM simulations of the coefficient of restitution for
irregular particles impacting on horizontal substrates. Powder Technol.
2020, 360, 352−365.
(101) Yan, S.-N.; Wang, T.-Y.; Tang, T.-Q.; Ren, A.-X.; He, Y.-R.

Simulation on hydrodynamics of non-spherical particulate system
using a drag coefficient correlation based on artificial neural network.
Petrol. Sci. 2020, 17, 537−555.
(102) Oesau, T.; Grohn, P.; Pietsch-Braune, S.; Antonyuk, S.;

Heinrich, S. Novel approach for measurement of restitution
coefficient by magnetic particle tracking. Adv. Powder Technol. 2022,
33 (1), 103362.
(103) Miao, H.; Zhang, H.; Wu, Y.; Wang, Y.; An, X. PR-DNS

investigation on momentum and heat transfer of two interactive non-
spherical particles in a fluid. Powder Technol. 2023, 427, 118791.
(104) Schwarz, A.; Kopper, P.; Keim, J.; Sommerfeld, H.; Koch, C.;

Beck, A. A neural network based framework to model particle
rebound and fracture. Wear 2022, 508, 404476.
(105) Haghshenas, A.; Hedayatpour, S.; Groll, R. Prediction of

particle-laden pipe flows using deep neural network models. Phys.
Fluids 2023, 35 (8), No. 083320.
(106) Shaffer, F.; Massah, H.; Sinclair, J.; Shahnam, M. Measure-

ment of time-averaged particle−wall collision properties using particle
tracking velocimetry. In First International Particle Technology Forum,
DOE/FETC-99/1088, Denver, CO, 1994.
(107) Deshotels, R.; Zimmerman, R. Cost-effective risk assessment for
process design; McGraw-Hill, 1995.
(108) Yin, X.; Sundaresan, S. Drag Law for Bidisperse Gas− Solid

Suspensions Containing Equally Sized Spheres. Ind. Eng. Chem. Res.
2009, 48, 227−241.
(109) Eppinger, T.; Jurtz, N.; Aglave, R. Automated workflow for

spatially resolved packed bed reactors with spherical and non-
spherical particles. In 10th International Conference on CFD in Oil and
Gas, Metallurgical and Process Industries, Tondheim, Norway;
SINTEF, 2014.
(110) Fonte, C. B.; Oliveria, J. A. A., Jr.; de Almeida, L. C. DEM-

CFD coupling: Mathematical modelling and case studies using rocky-
DEM and ANSYS Fluent. In Eleventh International Conference on CFD
in the Minerals and Process Industries, Melbourne, Australia; CSIRO,
2015.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Review

https://doi.org/10.1021/acs.iecr.4c00421
Ind. Eng. Chem. Res. 2024, 63, 8025−8043

8042

https://doi.org/10.1021/acs.oprd.2c00244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.oprd.2c00244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/IRI.2015.12
https://doi.org/10.1109/IRI.2015.12
https://doi.org/10.1109/IRI.2015.12
https://doi.org/10.1109/IRI.2015.12?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cej.2021.129880
https://doi.org/10.1016/j.cej.2021.129880
https://doi.org/10.1016/j.cej.2020.127386
https://doi.org/10.1016/j.cej.2020.127386
https://doi.org/10.1016/j.fuel.2021.123039
https://doi.org/10.1016/j.fuel.2021.123039
https://doi.org/10.1016/j.fuel.2021.123039
https://doi.org/10.1016/j.energy.2022.125900
https://doi.org/10.1016/j.energy.2022.125900
https://doi.org/10.3390/j4030022
https://doi.org/10.3390/j4030022
https://doi.org/10.3390/j4030022
https://doi.org/10.1016/j.apt.2021.03.019
https://doi.org/10.1016/j.apt.2021.03.019
https://doi.org/10.1016/S0032-5910(00)00397-1
https://doi.org/10.1016/S0032-5910(00)00397-1
https://doi.org/10.1016/j.eswa.2015.03.023
https://doi.org/10.1016/j.eswa.2015.03.023
https://doi.org/10.1016/j.eswa.2015.03.023
https://doi.org/10.1016/S0141-0229(01)00297-6
https://doi.org/10.1016/S0141-0229(01)00297-6
https://doi.org/10.1016/S0141-0229(01)00297-6
https://doi.org/10.1016/S0255-2701(01)00111-8
https://doi.org/10.1016/S0255-2701(01)00111-8
https://doi.org/10.1016/S0960-8524(00)00106-1
https://doi.org/10.1016/S0960-8524(00)00106-1
https://doi.org/10.1007/s10462-022-10329-8
https://doi.org/10.1007/s10462-022-10329-8
https://doi.org/10.1007/s10462-022-10329-8
https://doi.org/10.1021/acs.jpca.1c05102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.1c05102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.2c06513?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.2c06513?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/math9172069
https://doi.org/10.3390/math9172069
https://doi.org/10.3390/math9172069
https://doi.org/10.1016/j.powtec.2004.03.001
https://doi.org/10.1016/j.powtec.2004.03.001
https://doi.org/10.1021/i200033a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/i200033a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10967-014-3528-9
https://doi.org/10.1007/s10967-014-3528-9
https://doi.org/10.1021/ie50617a026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie50617a026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.2202/1542-6580.1118
https://doi.org/10.1016/S0032-5910(99)00290-9
https://doi.org/10.1002/aic.690450916
https://doi.org/10.1002/aic.690450916
https://doi.org/10.1021/acs.iecr.2c00901?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c00901?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.powtec.2010.02.029
https://doi.org/10.1002/cjce.5450730502
https://doi.org/10.1016/j.ces.2020.116349
https://doi.org/10.1016/j.ces.2020.116349
https://doi.org/10.1016/j.ces.2020.116349
https://doi.org/10.1016/j.cej.2023.146438
https://doi.org/10.1016/j.cej.2023.146438
https://doi.org/10.1016/j.powtec.2011.04.012
https://doi.org/10.1016/j.powtec.2011.04.012
https://doi.org/10.1016/j.powtec.2011.04.012
https://doi.org/10.3390/ma12193170
https://doi.org/10.3390/ma12193170
https://doi.org/10.3390/ma12193170
https://doi.org/10.1016/j.powtec.2019.10.072
https://doi.org/10.1016/j.powtec.2019.10.072
https://doi.org/10.1016/j.powtec.2019.10.072
https://doi.org/10.1007/s12182-019-00411-2
https://doi.org/10.1007/s12182-019-00411-2
https://doi.org/10.1016/j.apt.2021.11.014
https://doi.org/10.1016/j.apt.2021.11.014
https://doi.org/10.1016/j.powtec.2023.118791
https://doi.org/10.1016/j.powtec.2023.118791
https://doi.org/10.1016/j.powtec.2023.118791
https://doi.org/10.2139/ssrn.4019827
https://doi.org/10.2139/ssrn.4019827
https://doi.org/10.1063/5.0160128
https://doi.org/10.1063/5.0160128
https://doi.org/10.1021/ie800171p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie800171p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c00421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(111) Baran, O.; Eppinger, T.; Han, K. DEM Simulation of
Cylinders and Capsules in a Fluidized Bed. In 8th World Congress on
Particle Technology, Orlando, FL, USA, 2018.
(112) LaMarche, C. Q.; Freireich, B.; Cocco, R.; Chew, J. W.

Understanding drag part 1: Well-established drag limits and
homogeneous drag laws. Chem. Eng. J. 2023, 471, No. 144541.
(113) Esmaili, E.; Mahinpey, N. Adjustment of drag coefficient

correlations in three dimensional CFD simulation of gas−solid
bubbling fluidized bed. Adv. Eng. Software 2011, 42, 375−386.
(114) McKeen, T.; Pugsley, T. Simulation of cold flow FCC stripper

hydrodynamics at small scale using computational fluid dynamics. Int.
J. Chem. React. Eng. 2003, 1 (1), 1034.
(115) Hrenya, C. M.; Sinclair, J. Effects of particle-phase turbulence

in gas-solid flows. AIChE J. 1997, 43, 853−869.
(116) Acrylonitrile Production and Markets. Sincere Chemicals, 2023.

https://www.sincerechemical.com/acrylonitrile.html (accessed 2024-
04-09).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Review

https://doi.org/10.1021/acs.iecr.4c00421
Ind. Eng. Chem. Res. 2024, 63, 8025−8043

8043

https://doi.org/10.1016/j.cej.2023.144541
https://doi.org/10.1016/j.cej.2023.144541
https://doi.org/10.1016/j.advengsoft.2011.03.005
https://doi.org/10.1016/j.advengsoft.2011.03.005
https://doi.org/10.1016/j.advengsoft.2011.03.005
https://doi.org/10.2202/1542-6580.1034
https://doi.org/10.2202/1542-6580.1034
https://doi.org/10.1002/aic.690430402
https://doi.org/10.1002/aic.690430402
https://www.sincerechemical.com/acrylonitrile.html
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c00421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

