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ABSTRACT: In this study, we investigate the aggregation dynamics of colloidal silica by generating simulated structures and
comparing them to experimental data gathered through scanning transmission electron microscopy (STEM). More specifically,
diffusion-limited cluster aggregation and reaction-limited cluster aggregation models with different functions for the probability of
particles sticking upon contact were used. Aside from using a constant sticking probability, the sticking probability was allowed to
depend on the masses of the colliding clusters and on the number of particles close to the collision between clusters. The different
models of the sticking probability were evaluated based on the goodness-of-fit of spatial summary statistics. Furthermore, the models
were compared to the experimental data by calculating the structures’ fractal dimension and mass transport properties from
simulations of flow and diffusion. The sticking probability, depending on the interaction with multiple particles close to the collision
site, led to structures most similar to the STEM data.

■ INTRODUCTION
Irreversible colloidal aggregation is relevant for various
industrial applications, for example, in food science, battery
science, and medicine.1−3 More specifically, it is important to
maintain the stability of the system in biological fluids such as
blood and milk. Targeted drug delivery systems or diagnostic
systems for protein aggregation-related neurodegenerative
diseases are examples of medical applications, where prediction
of colloidal aggregation is crucial.4 Even for water purification
or soil amelioration, aggregation together with sedimentation
can be of interest.5 Colloidal aggregation is also relevant in the
design of new materials. Often, specific mechanical or mass
transport properties are sought, and research has been carried
out to understand and predict the aggregation dynamics during
the formation of such materials.

A wide range of different structures can be obtained for silica
nanoparticle gels, and therefore, they are of great interest for
studying colloidal aggregation.6 A stable colloidal suspension
(hydrosol) is maintained if the electromagnetic repulsion
between particles is strong enough to hinder aggregation.
Colloidal silica nanoparticles have a negatively charged surface
layer, the so-called Stern layer,7 which can be shielded with a

diffuse electrostatic layer attributed to the solute.8 An added
excess of cations is attracted to the negative surfaces of the
silica particles, thereby reducing their surface charge.
Consequently, the repulsive electromagnetic forces are
diminished, and at a critical concentration of cations, the
formation of a silica hydrogel starts. The concentration of
cations, as well as the particle size, concentration, solute type
and temperature, impacts both how fast the gel is formed and
its final structure in a fairly complex way.8 The practical
dynamics of the aggregation process have earlier been
investigated with different light-scattering measurements.9,10

Since the physicochemical forces during the aggregation of
silica are complex, simplified mathematical models have been
proposed. One of the more prominent models is the
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Derjaguin−Landau−Verwey−Overbeek (DLVO) theory, in
which the interaction between particles is assumed to consist
of electrostatic repulsion and London-van der Waals
attraction.11 The DLVO theory is also used to describe the
interaction potential of the morphological aggregation model,
which uses Lagrangian simulations as the reference system.
The model has been suggested to simulate single aggregates
with a given fractal dimension and number of elementary
objects.12 Simulations of gel formation using DLVO theory
potentials are possible using dissipative particle dynamics13,14

or the discrete element method (DEM) using Langevin
dynamics to model diffusion.15,16 For example, it was shown
using DEM simulations in 2D that an increased Debye length
raised the potential barrier between particles, thus preventing
aggregation from occurring.15 It is also possible to include
other effects such as shear flows and rotation of particles with
heterogeneous surfaces.17,18 However, for silica, experiments
have shown that other short-range forces play an important
role in the interaction process.19 In addition, the DLVO theory
only considers the interaction between pairs of single particles
and not clusters, and it has therefore been difficult to
satisfactorily explain the behavior of colloidal silica using the
DLVO theory solely.11,20

An alternative model for aggregation, or more specifically for
the time evolution of the cluster size distribution, was
suggested by Smoluchowski.21 It is a mean field model
where a single cluster of particles is embedded in a soup of
other clusters. The time evolution in the Smoluchowski model
is simulated using the so-called coagulation kernel, which
describes the rate at which particles and clusters coagulate.
This kernel typically includes probabilities for the aggregation
between particles and clusters. This theory was further
modified by incorporating hydrodynamic resistances into the
interparticle interaction force in addition to electrostatic
repulsion and van der Waals attraction.22 However, even the
modified model fails to describe the aggregation kinetics for
small nanosilica particles with diameters less than 190 nm.23

On the atomic scale, molecular dynamics models have been
used to investigate the internal structure of silica nano-
particles,24 as well as to study the binding and subsequent
ripening of bound silica nanoparticles.25−27 In addition, they
have been used to study the structural properties of such
nanoparticles via the radial distribution function, mean squared
displacement, coordination numbers, and bond-angle distribu-
tions.28 The normal contact and noncontact forces between
two silica nanoparticles in a Lennard-Jones liquid can also be
calculated by using molecular dynamics.29 Furthermore, so-
called multiparticle collision dynamics or stochastic rotation
dynamics method, which alternates between streaming and
collision steps in an ensemble of point particles, has been
studied.30 While providing detailed knowledge on the
interaction between pairs of particles, these methods are too
costly to be used to simulate gel formation with a large number
of nanoparticles due to the large number of atoms involved. A
simple molecular dynamics simulation of a small system can
take anywhere from a few minutes to several hours, and a large,
more complex system can take days or even weeks to run on an
average personal computer. Therefore, molecular dynamics
simulations are typically performed on computer clusters or
supercomputers using several processors in parallel.31

A common approach to model the gel formation is to use
diffusion-limited cluster aggregation (DLCA) and reaction-
limited cluster aggregation (RLCA), where nanoparticles are

treated as spheres undergoing Brownian motion and the
complex interaction between pairs of particles is reduced to a
probability of aggregation upon collision.32−34 Despite their
simplicity, these models are able to produce gel structures that
are similar to experimental ones, as shown e.g. by earlier work
in our group35 and studies where DLCA models are used to
study the structural and mechanical properties of silica
aerogels.36 The probability of aggregation in the DLCA
model equals one, while it is less than one but fixed in the
RLCA model. Typically, in dynamic cluster aggregation
simulations, the probability of bonds forming between
colliding clusters, often termed the sticking probability,
remains constant for all collisions. However, efforts have
been made to introduce dependencies into these probabilities.
One approach is to make the sticking probability dependent on
the sizes of the colliding clusters. This adjustment can be
interpreted as a first approximation of long-range particle−
particle interaction between the clusters.37 Nevertheless, the
cluster sizes may also be correlated to other factors that
influence the aggregation dynamics.

In this work, we apply and extend the RLCA model. Our
aim is to provide an efficient method that reproduces the
structure of the final silica gel accurately rather than to
understand the detailed physics of the aggregation process,
which makes the RLCA model an appropriate choice.
Structures generated by dynamic three-dimensional models
of the aggregation are compared to experimental data from a
silica nanoparticle gel acquired by using scanning transmission
electron microscopy (STEM). In the earlier study by our
group,35 the same data set as the one used in this paper was
studied and compared to structures formed through DLCA
and RLCA simulations. The generated structures agreed rather
well, but not perfectly, with the microscopy data. This study
(which is mainly based on the Master’s thesis by the first
author) is an extension of our earlier work.35 In addition to
using only a constant probability of binding under collision,
two other models were investigated in this paper. In the first
one, the probability was made to depend on the masses of the
colliding clusters, and in the other, it was made to depend on
the number of particles close to the collision. Furthermore, in
the simulations in study by Hab̈el et al.,35 all primary particles
had a constant diameter, but they noticed variations in the
diameter in the experimental gel structure. Here, DLCA and
RLCA simulations were instead performed with particles with
diameters sampled from a distribution fitted to the
experimental data.

The goal of this study is to develop a method for generating
structures as similar as possible to real silica structures. By
comparison of the computer generated structures with the
experimental STEM data, insights into the aggregation
dynamics can also be gained. Part of the comparison is
based on using spatial summary statistics from point process
theory, in which the particle centroids are considered as
realizations of point processes. These summary statistics give
important information about the spatial structure of the gel,
such as the amount of empty space and the shape of local
clusters. However, to the best of our knowledge, they have
earlier been used in colloidal aggregation studies only by
us.35,38 In addition, the fractal dimensions and mass transport
properties of the simulated and experimental structures are
compared.

The results show an improved fit of the generated structures
to the microscopy data with the chosen methods of evaluation
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when the number of particles close to the colliding pair
influences the probability of aggregation. The main conclusion
is, therefore, that the proposed method generates more realistic
structures than standard RLCA. Furthermore, the results
indicate that the forces acting between silica particles may be
influenced by the neighboring particles.

■ MATERIALS AND METHODS
Experimental Data Acquisition. Aggregated Silica

Particle Gel Production. An aggregated silica particle hydrogel
was formed from a filtered 9 wt % (4.1 vol %) colloidal
suspension of amorphous silica nanoparticles (Bindzil 40/130;
AkzoNobel, PPC AB, Bohus, Sweden).39,40 In short, the
gelation process was triggered by adjusting the pH from 9.1 to
7.8 and by adding NaCl (s) to a final concentration of 0.5 M
NaCl (aq). The gel was left to set for 2 weeks before electron
microscopy preparation.
Sample Preparation and Electron Microscopy Data

Acquisition. Cubes with the side of 1 mm were cut from the
gel, dehydrated in a graded ethanol and propylene oxide series,
infiltrated with TLV resin (TAAB Laboratories, Berks,
England), embedded in a TLV resin stub, and polymerized
at 60 °C overnight. The sample was sectioned to a thickness of
200 nm and transferred to a 200 mesh Cu grid.

A high-angle annular dark field STEM (HAADF STEM)
tomogram of a silica gel section was acquired using an FEI
Titan 80−300 equipped with a field electron gun (FEI
Company, Eindhoven, Netherlands), operated at 300 kV.41

The sample was imaged at 1° inclination intervals between 70°
and −74°. Alignment and reconstruction of the tomogram
using the simultaneous iterative reconstruction technique42

with 30 iterations and four times binning were performed in
Inspect3D (FEI Company). Further details on sample
production, preparation, and tomography are found in earlier
work.39,43,44

From the reconstructed tomogram (with a voxel size of 1.44
nm3), a final stack of two-dimensional grayscale images was
extracted. This extracted subset for statistical analysis has a
volume of 740 × 1075 × 100 nm3. As previously described,35,43

the data were filtered, equalized, and segmented into a silica or
void phase creating a binary data set. The reconstructed
tomogram was then masked by this binary data set to identify
the center points of the silica particles in the 3D volume, which
are illustrated in Figure 1.
Estimation of Particle Size Distribution. The distribution

of particle sizes was estimated from the nearest neighbor
distances in the STEM data, d1, ..., dn for the n particles by
using kernel density estimation (KDE)
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Here, K(·) is the kernel smoothing function and h is the
bandwidth. The standard normal density function was chosen
as smoothing function K(·), and the bandwidth was selected
using Silverman’s rule of thumb
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where σ̂ is the sample standard deviation and IQR is the
interquartile range of the data.45 A histogram of the
experimental data can be seen along with the estimated
density in Figure 2. The expected value of the nearest neighbor
distance was found to be 21 nm, which we interpret as the
mean particle diameter.

Aggregation Simulation Models. DLCA and RLCA.
DLCA and RLCA are two different regimes of irreversible
cluster aggregation.32 In DLCA, repulsion between particles is
negligible, whereas, in RLCA, strong repulsive forces between
particles make it more difficult for bonds to be formed. Cluster
aggregation in these regimes was simulated by letting particles
move according to Brownian motion. When clusters collide, a
probability p was calculated for the colliding particles to bind
to each other. This probability p will be called the sticking
probability, and the DLCA and RLCA regimes correspond to p
= 1 and p ≪ 1, respectively.
Models for Sticking Probability. The cluster aggregation

simulations were carried out with three different functions for
the sticking probability. In the first model, the sticking
probability was constant throughout the simulations, providing
us with a good baseline to evaluate the other models.

The second model that was investigated was made
dependent on the masses of the colliding clusters. Similar
probability models have been used in several previous
aggregation studies, such as those conducted by Family et
al.46 and Li and Xiong.47 Here, we considered a sticking
probability function of the form

Figure 1. Geometrical representation of the STEM data where all
particles have been assumed to have a diameter of 21 nm.

Figure 2. Histogram of nearest neighbor distances from the
experimental data and the estimated probability density function of
particle diameters.
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where p0 ∈ [0, 1] and are model parameters to be
estimated, m̅ is the average particle mass, and m1 and m2 are
the masses of the colliding clusters. Hence, collisions between
single particles with average mass have a sticking probability of
p0. As clusters grow larger, this probability will increase with
the masses of the clusters if σ > 0 and decrease if σ < 0. Here, a
lower limit of 10−4 for p(m1, m2) was introduced to limit the
computational time. This particular lower limit seems
reasonable since the aggregation probabilities 10−3 and 10−4

tend to result in very similar structures.35

Finally, in the third model, the sticking probability was made
dependent on the number of particles close to the collision.
More specifically, let C1 and C2 denote two colliding clusters
and let Dij be the distance between the surfaces of two particles
i and j with radii ri and rj. The sticking probability for a
collision between particles i ∈ C1 and j ∈ C2 can then be
written as

p i j p D s r r

D s r r

( , ) min(1, ( 1( )

1( )))

Neighbor model

k k C k i
kj k j

k k C k j
ik i k

0
: ,

: ,

1

2

= + · < + +

+ < + +

(4)

where p0 ∈ [0, 1] and δ, s ≥ 0 are model parameters. The
minimum is taken since the probability can be at most 1. All
collisions therefore have a probability of at least p0. The
probability then increases with δ for every other particle in an
opposite cluster within surface-to-surface distance s + ri + rk of
the colliding ones. Here, ri and rk are the radii of one of the
colliding particles and the neighbor to which the distance is
measured (see Figure 3). The sticking probability can be
interpreted to take into account multiple particle interactions
at the collision site, where larger particles interact over a
greater distance.
Implementation. The aggregation simulations were carried

out by using an in-house Fortran code. The simulation box was
set to be 700 × 700 × 700 nm,3 containing 7326 nanoparticles
with diameters sampled from the distribution fitted to the
experimental data. Assuming a fixed particle diameter of 21
nm, this results in a solid volume fraction of ϕ = 0.104.
However, because of the size distribution, the solid volume
fraction varied between the generated structures. Diffusion of
the particles was simulated using periodic boundary conditions
until all particles were connected, resulting in one big cluster.
The diffusivity of clusters was made dependent on cluster mass
m through D m m( ) d1/ f , where the assumed fractal
dimension df was set to 2.41. It has been shown that the
exact value of df, in particular matching it to the actual fractal
dimension of the final structure, has a very minor effect on the
resulting structure.48 No rearrangement of particles due to
bond breakage or rotational rearrangement was included. Such
effects are, however, often regarded as secondary compared to
the diffusivity and the sticking probability.46 Gravitational
effects and rotational diffusion were also disregarded in this
study.

Methods for Comparing the Structures. Spatial
Summary Statistics. This section introduces four summary
statistics that were used to compare the experimental data and
the simulated structures by considering the collections of
centroids of the particles as spatial point patterns, which are
realizations of a point process. A thorough description of point
processes can be found in the literature.49−51 The summary
statistics used in this study are the empty space function, L-
function, clustering function, and mean cluster size function.
All these summary statistics can be estimated from the
observations of a point process Φ observed in the box W in 3.
The underlying point process Φ is assumed to be stationary
and isotropic, i.e., translation and rotation invariant.

The empty space function F: [0, ∞) → [0, 1] gives the
probability that the distance from an arbitrary test point
o 3 to its nearest neighbor in Φ is less than or equal to r ≥
0. Let b(o, r) be the ball of radius r ≥ 0 centered at o 3 and
d(o, Φ) be the shortest distance between o and points of the
process. The empty space function is then given as

F r d o r b o r( ) ( ( , ) ) 1 ( ( ( , )) 0)= = = (5)

where Φ(b(o, r)) denotes the number of points of the process
in b(o, r). The longer it takes for the F-function to approach 1,
the more empty space there is in the point pattern. An
estimator for the empty space function is given in the
Supporting Information.

A commonly used second-order characteristic is Ripley’s K-
function K: [0, ∞) → [0, ∞), which measures the average
number of points of the process that can be found within a
distance r ≥ 0 from an arbitrary point o of the process Φ. If λ
denotes the intensity, i.e., the mean number of points per unit
volume, the K-function is defined as

K r b o r o( ) ( ( , ) )o
1= [ \ ] (6)

where o denotes the conditional expectation given that there
is a point of the process in o. Instead of using the K-function
directly, a variance stabilized transformation, the L-function L:
[0, ∞) → [0, ∞) was applied

Figure 3. Example of how the sticking probability in eq 4 is
calculated. If the distance Dkj between the surfaces of one of the
colliding particles j and a particle in the opposite cluster k (which is
not the particle i that j has collided with) is less than s + rk + rj,
particle k contributes with δ to the sticking probability. The
corresponding calculation is carried out for all particles in an opposite
cluster to the colliding particles.
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Positive values of the centered function L(r) − r indicate
clustering and negative values regularity. An estimator for the
K-function can be found in the Supporting Information.

The clustering function c: [0, ∞) → [0, 1] is a third-order
characteristic based on graph theory which has been extended
to point processes.52 In the clustering function, one considers
triplets of points where all of the points are within some
distance r and compares it to the maximal theoretical number
of such triplets. As such, the summary statistic can be
interpreted as a measure of the internal connectivity around an
arbitrary point at a distance r. For o ∈ Φ, the number of
triplets within a distance r from o is given by

d r1( )o r
i j x x b o r o

ij,
, : , ( , )i j

=
\{ } (8)

The theoretical number of possible triplets for o ∈ Φ within a
distance r is obtained as
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The observed and theoretical numbers of triplets are compared
through
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and then, the expected value c r C( ) o o r,= [ ] is taken as a
summary statistic. Values close to 1 are an indication of dense
clusters. An estimator for the clustering function is given in the
Supporting Information.

The mean cluster size function M: [0, ∞) → [0, ∞) is a
summary statistic that describes how dense and spread out the
clusters are.35 A geometric graph with the points x in Φ ∩ W as
nodes and with connections between points xi and xj for which
dij ≤ r is created. A cluster at the distance r can then be defined
as the set of all points that are connected by such edges.
Assume that there are K clusters for distance r and that cluster
k has nk points in it. The size of cluster k can then be measured
by using the diameter of gyration

D r
n

d( )
1

2k
k i

n

j

n

ij
1 1

2
k k

=
= = (12)

The mean cluster size function in three dimensions for
distance r was defined as

M r
K

D r( )
1

( )
k

K

k
1

=
= (13)

for r ≥ 0. In order to account for edge effects, the so-called
minus-sampling scheme was applied after the cluster
construction, meaning that M(r) was calculated from points
in the observation box at a distance further than r from the
borders of the box.

Fractal Dimension. Clusters formed through DLCA and
RLCA have been found to have fractal scaling properties, in the
sense that the mass of an aggregate mcl scales with the radius of
gyration Rg according to

m R D
cl g

f
(14)

where Df is the fractal dimension. The fractal dimension Df is
often used as a fundamental description of the morphology of
an aggregate. It provides a quantitative measure of the degree
to which a structure fills the physical space.53 A fractal
dimension of 1 corresponds to a line, 2 corresponds to a plane,
and 3 corresponds to the whole space. In this project, the
fractal dimensions of the simulated and experimental structures
were estimated using the so-called box-counting algorithm and
used as a further metric to compare the structural
resemblance.54

Mass Transport. The mass transport through the gel
structures was also used to compare the simulated structures to
the experimental data as these properties describe the
functionality of the gel in many applications. Here, we
concentrate on two properties, flow and diffusion.

The flow of a fluid through a porous material may be driven
by a pressure gradient or an external force, such as gravity.
Assuming a steady creeping flow, the average flow velocity u
in the direction γ (x, y, or z) through the material is described
by Darcy’s law

u
L

p=
(15)

where Δp is the pressure drop driving the flow in the direction
γ, Lγ is the material thickness, and η is the dynamic viscosity of
the fluid.55 The permeability κγ is a characteristic property of
the material, which describes how easily the fluid passes
through the material in that direction. Permeability is related to
the porosity of the material but is also affected by the shapes of
the pores and their connectivity. The higher the permeability,
the easier it is for the fluid to flow through the material
structure.

The permeability can be computed from the three-
dimensional pore structure of a material by solving the
Navier−Stokes equations in the pore space, with an applied
pressure drop or driving force to drive the flow, and computing
the average velocity u̅ from the numerical solution. Here, the
Navier−Stokes equations were solved using the lattice
Boltzmann method with the in-house software Gesualdo in a
periodic simulated geometry with applied body force F. The
permeability was then computed from (15) with F replacing
the pressure gradient Δp/L. Nonslip boundary conditions were
used at the solid boundaries.

Diffusion is the migration or movement of particles due to
random motion driven by the thermal energy measured by the
diffusion coefficient. The higher the diffusion coefficient, the
faster the movement. Diffusion through the gel structures was
simulated in Gesualdo software by solving the diffusion
equation

c t
t

D c t
x

x
( , )

( , )0
2=

(16)

where c(x, t) is the concentration which depends on location
x y zx ( , , ) 3= and time t ∈ [0, ∞), and D0 is the free

diffusion coefficient.56 A constant concentration difference c2 −
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c1 was applied over the structure in the direction γ (x, y, or z),
and Neumann (zero normal flux) boundary conditions were
used at the solid boundaries. At steady state, the effective
diffusion coefficient Deff,γ was then computed from Fick’s first
law

J D
c c

Leff,
2 1=

(17)

where Lγ is again the thickness of the material and J is the
average flux in the direction of the concentration gradient. The
effective diffusion coefficient Deff,γ is proportional to the free
diffusion coefficient D0, and in order to get a quantity that only
depends on the geometry of the aggregate, we calculate

G
D

D
eff,

0
=

(18)

which we call the geometry factor.57

Parameter Selection. Parameter Values. The parameters
in the sticking probability models were tuned by using a grid
search approach. Using more advanced optimization methods
was not feasible due to long simulation times. This limitation
arose from the necessity to investigate small sticking
probabilities and acquire structures large enough to reliably
estimate different characteristics of the material.

As in the earlier studies,35,58 simulations with a constant
sticking probability were performed with the values

p 1, 0.1, 0.01, 0.001, 0.0001{ }

For the mass-dependent sticking probability, simulations were
carried out with all combinations of

p 1, 0.1, 0.01, 0.001, 0.00010 { }

1, 0.75, 0.5, 0.25, 0.25, 0.5, 0.75, 1{ }
Here, p0 is the sticking probability for single particles with
average mass and σ decides how this probability changes with
the cluster size. Simulations with the neighbor-dependent
sticking probability were performed with all combinations of

p

s

0.01, 0.001, 0.0001

0.01, 0.001, 0.0001

6.5, 4.5, 2.5, 0.5

0 { }

{ }
{ }

with s given in nm. The parameter p0 is the probability of
aggregation when no other particles are present, while δ is the
increase in probability for every neighbor within surface-to-
surface distance s + ri + rj to the colliding particles. Here, ri and
rj denote the radii of the particles that the distance is calculated
between. Out of all of the simulations, the smallest value of the
evaluation metric S (see below) was obtained for the neighbor-
dependent sticking probability with parameters p0 = 0.0001, δ
= 0.001, and s = 4.5 nm. In order to improve the goodness-of-
fit further, a more local grid search was performed with the
parameters

p

s

0.0001, 0.0005

0.01, 0.005, 0.001, 0.0005, 0.0001

5.5, 5.0, 4.5, 4.0, 3.5

0 { }

{ }
{ }

Selection of the Best Parameters. The best set of
parameters for each of the models for the sticking probability

was selected based on the spatial summary statistics. The
summary statistics were calculated for r in the range 0−50 nm
in R using the spatstat and SGCS packages.59,60 To achieve
more robust results, the experimental and simulated data were
divided into subpatterns, for which the summary statistics were
calculated and then averaged over. The real data were divided
into four subpatterns of size 360 × 520 × 100 nm3, whereas
the simulated data were divided into six subpatterns of the
same size. These subpatterns have enough space between them
to be considered to be approximately independent replicates.
The average over subpatterns was calculated by pooling
according to

f r
n f r

n
( )

( )i
n

i i

i
n

i

1

1

pattterns

patterns
= =

= (19)

where npatterns is the number of subpatterns, f i(r) is the
summary statistic for subpattern i at distance r, and ni is the
number of points in subpattern i.

The pooled summary statistics from the simulated and
STEM data were compared using an evaluation metric S of the
form

S
f r f r

f r

( ) ( )

( )
j

t
T

j t j t
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j t

1

1

=
| |

| |
=

= (20)

where j refers to one of the summary statistics F, L, or c, and

f ( )j · and f ( )j · are the pooled summary statistics from the
experimental and simulated data, respectively. The mean
cluster size function M was not included in the evaluation
metric since it was found to have a high variance. The full
evaluation metric S was thus given by

S S S SF L c= + + (21)

■ RESULTS
Goodness-of-Fit Based on the Summary Statistics.

The parameters that resulted in the best goodness-of-fit for the
summary statistics can be found in Table 1, and the summary
statistics from these simulations and for the experimental data
are plotted in Figure 4.

For all of the models, relatively small probabilities in the
RLCA regime gave the best results in terms of the summary
statistics. Hence, there seems to be strong repulsion between
the particles. For the mass model, the best value of σ was
obtained to be positive, meaning that the sticking probability
increases as clusters grow larger. From the simulations of the
neighbor model, the best value of s was 4.0 nm. For average
sized particles, this means that neighbors within a surface-to-
surface distance up to approximately 25 nm contributed to the
sticking probability since the mean radius of the particles is
about 10.5 nm.

Table 1. Parameter Values That Minimized the Evaluation
Metric S in eq 21 for the Three Sticking Probability Models

model parameters S

constant p = 10−4 0.5315
mass p0 = 10−4, σ = 0.5 0.3874
neighbor p0 = 10−4, δ = 5 × 10−4, s = 4.0 0.1585
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The empty space function F of the neighbor model is very
close to the F-function estimated from the data. The

corresponding curves for the mass model and constant
probability model are above the data curve, and the curve

Figure 4. Summary statistics for the experimental data and the simulations with each of the sticking probability models that resulted in the best
goodness-of-fit (parameter values given in Table 1). Note that the centered L(r) − r is plotted for the L-function.

Figure 5. Global envelope tests from 99 simulations using the neighbor model with parameters p0 = 10−4, σ = 5 × 10−4, and s = 4.0 nm. Here, p
denotes the p-values of the tests, which were performed separately for the different summary statistics.
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for the neighbor model indicates that patterns based on these
two models have less empty space and less dense clusters.
Results based on the centered L-function are very similar. The
L-function of the neighbor model follows the data curve well
while the L-functions for the constant and mass models lie
further below the two other curves indicating less dense
clustering. However, the neighbor and mass models describe
the data equally well and are slightly better than the constant
model measured by the clustering function c. For the mean
cluster size function M, all models describe the data fairly well.

We evaluated the goodness-of-fit of the best-fitting neighbor
model (with parameter values on the last row in Table 1) by
using global envelope tests.61 In a global envelope test, one
tests if a certain null model is appropriate to describe an
observed point pattern based on performing Monte Carlo
simulations from the chosen null model and then comparing
summary statistics from the simulated and observed patterns.
Envelopes are calculated for the summary statistics from
simulations of the null model, and the null model is rejected if
the observed summary statistic is not entirely within the
envelope. The test also produces a p-value at the desired
significance level, α, and the null model is rejected if p ≤ α.
Details on the test that was used can be found in the
Supporting Information. As shown in Figure 5, the data curve
of the F-function is entirely inside the envelope, whereas for
the other summary statistics, the null model is rejected using
significance level α = 0.05.
Fractal Dimension. The fractal dimension was estimated

using the box-counting algorithm for the structures used for
Table 1. As shown in Table 2, the fractal dimensions are

similar considering the standard errors from the linear
regression in the box-counting algorithm. However, as in the
case of the summary statistics, a constant sticking probability
gives a fractal dimension that is the furthest from the
experimental data, while the neighbor model performs best.
Mass Transport. Flow and diffusion were simulated for 10

structures generated from each of the different sticking
probability models, using the same parameters that resulted
in the best goodness-of-fit of the spatial summary statistics; see
Table 1. Structures were generated with the same box
dimensions as the experimental data (740 × 1075 × 100
nm3) in order to enable a simple comparison. Since the
experimental sample is very thin in the z-direction, mass
transport simulations were only performed in the x- and y-
directions.

The relative difference δ between the values of the flow
permeability κγ and the diffusion geometry factor Gγ = Deff,γ/D0
obtained from the generated structures and the corresponding
experimental values were calculated in each direction of
simulation. For instance, the relative difference of the diffusion
coefficient when simulating mass transport in the x-direction
was calculated as G G( / 1)G

x
x x,sim ,exp= . Here, Gx , s im

represents the geometry factor in the x-direction of a simulated

structure, and Gx,exp represents the geometry factor in the x-
direction of the experimental structure. Therefore, the relative
difference should have a value of 0 if the simulations and
experimental results agree. Note, however, that the exper-
imental structure represents only a small sample from the
material, and a large variability in geometry factors and
permeabilities would likely be observed if more experimental
data were obtained. The obtained results for κ and G can be
seen in Figure 6.

Overall, the structures with constant sticking probability
deviate most from the experimental data. The mass and
neighbor models fit the experimental data equally well,
considering the range of permeabilities from the simulations.
In terms of the geometry factor, all three models fit the data
well, and there is not much difference between simulations in
the different directions.

■ DISCUSSION
The results based on the summary statistics, fractal dimension,
and mass transport properties clearly indicate that both the
mass model and the neighbor model fit the experimental data
better than the constant probability model. Furthermore, the
overall fit of the neighbor model to the STEM data seems
better than the fit of the mass model. The rather dense clusters
of the data and the amount of empty space are well captured
by the neighbor model, which makes the particles stick more
likely to positions with many nearby particles.

The goodness-of-fit of the models was first investigated
using the four summary statistics, namely, the empty space
function, centered L-function, and clustering function, which
were also used in the parameter estimation, and in addition,
the mean cluster size function. The mean cluster size function
was not included in the evaluation metric S minimized in the
parameter estimation since at large distances, it has to be
computed based on only a few points due to the minus-
sampling edge correction scheme, giving rise to increased
variation.

While the empty space function and the centered L-function
clearly chose the neighbor model as the best-fitting model,
both models seem to fit equally well according to the clustering
function c and mean cluster size function M. In terms of the
clustering function, neither of the models fits the data very well
at particle center distances r in the range 20−27 nm. These
values of r are approximately the same as the diameter of most
of the particles in the simulation, meaning that only the nearest
neighbors will affect the values of the c�function at such short
distances. The systematic deviations may therefore be due to
the differences in the fitted particle size distribution and the
nearest neighbor distances in the experimental data.

The goodness-of-fit of the best-fitting model, i.e., the
neighbor model with parameter values given on the last row
in Table 1, was tested by global envelope tests, where empirical
summary functions were compared to the envelopes based on
simulations of the model. According to the empty space
function F, the model fits very well to the STEM data, but
some deviations of the experimental curve and the envelopes
occur for the other three summary statistics. However, all of
the empirical curves are outside the envelopes at particle center
distances r in the range 18−26 nm, at which the particle
diameters have a large impact on the values of these three
summary statistics. The point outside the envelope at 50 nm
for the clustering function is not relevant since the minus-
sampling scheme is applied and the experimental structure is

Table 2. Estimated Fractal Dimensions Df with Standard
Error (SE) from Linear Regression

Df ± SE

data 2.3807 ± 0.0109
constant 2.3426 ± 0.0160
mass 2.3540 ± 0.0136
neighbor 2.3933 ± 0.0102
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only 100 nm in one direction. Overall, the null neighbor model
seems to describe the observed structure rather well even
though the data curves are not completely inside the
envelopes.

The goodness-of-fit of the models was also investigated in
terms of the fractal dimensions and mass transport properties
for flow and diffusion. The fractal dimension computed from
the neighbor model simulations was closest to that for the
STEM data. For the constant probability and mass models, the
fractal dimension was slightly lower, indicating less complex
shapes of clusters compared to the data. The fractal dimension
computed here is higher than the one computed from the
radial distribution function in previous work32,34 (around 2.4
compared to 2.2 for RLCA structures with ϕ = 0.104). This
may be due to the different methods used, where the box
counting method used here also takes the extent of the
particles into account. Furthermore, the fractal dimension was
computed here in a rather thin slice. The fractal dimension
should therefore mostly be thought of as a way of comparing
the different generated structures and experimental data.

The average geometry factor related to the diffusion
coefficient lies between the first and third quartiles for each
model, and therefore, the geometry factors of the three models
are very similar. This is reasonable since the geometry factor
mainly depends on the volume fraction accessible to diffusion
and is not very sensitive to finer details of the geometry. Since
the concentration of primary particles used in the simulations

was estimated from the experimental data, the volume fractions
were similar for the experimental and simulated materials.

The permeability, on the other hand, depends on the width
and connectivity of the wider channels in the structure through
which the fluid can pass. The permeability results for constant
aggregation probability (average κ = 1.52 × 10−16 m2) are in
agreement with results in the literature for RLCA structures
with constant particle diameter,34 assuming a volume fraction
ϕ = 0.104 and diameter of 21 nm. The particle size distribution
thus has little effect on the permeability on average while
resulting in a greater variability between simulations. Given
that the neighbor model gives rise to denser clustering of
particles and smaller values of the empty space function than
the constant probability and mass models, as seen in the
summary statistics, it is reasonable that the structures
constructed using the neighbor model also have higher average
flow permeability, as seen in Figure 6. However, it is difficult to
determine whether the neighbor model or the mass model
would give the permeability closest to the data. Since only 10
structures were generated and only one experimental data set
of a rather small volume was available, it seems likely that
either model could result in structures with similar
permeability as in the data.

While DLVO theory implemented in discrete element
models or Langevin dynamics simulations may be used to
simulate gel structures similar to the ones studied here,
previous studies indicate that the gel structures are not well

Figure 6. Relative differences δ between the simulated structures and the experimental values of the geometry coefficient G (top) and permeability
κ (bottom). Simulations were carried out in two directions x and y. For the physical gel, κ was obtained to be approximately 2.160 × 10−16 m2 in
the x-direction and 1.569 × 10−16 m2 in the y-direction. The corresponding values for the geometry factor were 0.845 (unitless) and 0.846
(unitless). In the scatter plots, each point corresponds to one of the generated structures and shows the relative difference compared to the physical
gel in both simulation directions. The boxplots show the average over the two directions for each structure.
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reproduced.11,20 This failure may be due to the inaccurate
modeling of the interaction between larger clusters of particles
and the small-sized particles, or entropy effects caused by
hydrodynamic interaction with water molecules.62 Our results
also indicate that interactions involving several particles are of
importance for the final gel structure. This suggests that the
DLVO potentials would need to be modified to model silica
gel aggregation accurately. Furthermore, a more realistic
simulation of the dynamics of gel aggregation using these
methods may be more costly computationally than the RLCA
models used here. To simulate an RLCA model using a single
processor with the lowest aggregation probability 10−4 took
approximately 6 h in our setup, while the model with
nonconstant probability resulting in the best-fitting summary
statistics took only about 1 h.

The standard DLCA and RLCA models (which model the
complete dynamics) were also studied in our earlier work35

and correspond to the constant probability models here. The
only differences between the models are that the constant
particle diameter35 was replaced by a distribution of diameters
in this work and that the solid volume fraction was adjusted.
The conclusion that the lower aggregation probabilities 10−3

and 10−4 work better than the larger ones remained. Some
Gibbs point process models with rather simple potential
functions were also suggested for the final silica gel structure.35

A similar approach has even been suggested for alumina-
supported iron nanoparticles extracted from environmental
transmission electron microscopy images.63 The goodness-of-
fit of these models measured by the same spatial summary
statistics as used here was better than the goodness-of-fit of the
DLCA and RLCA models and comparable to the goodness-of-
fit of the mass and neighbor models suggested in this paper.
However, the Gibbs models are static, not dynamic, and are
suitable only to model the final structure of the gel and not the
entire dynamics of the gel formation.

In our work, particles of radius around 10 nm in a gel with
pH 7.8 were studied. The DLCA models have been used to
study the structural and mechanical properties of silica aerogels
with smaller particles of radius 2−4 nm in an experimentally
synthesized wet gel with a pH of 7.036. In that study, the fractal
dimension increases slightly with increasing relative density of
the silica aerogel network but is not affected by the particle
size. Furthermore, the fractal dimension of the gel was
determined to be 2.44, agreeing well with the corresponding
DLCA-based computationally obtained value 2.51 ± 0.05. The
authors concluded that the DLCA model seems to be able to
produce structures with similar fractal dimension as in the data
in this particular case. The fractal dimensions in our
experiment were quite similar, 2.38 for the data, and 2.35
and 2.39 for the mass and neighbor models, respectively. This
further indicates that the fractal dimension is not much
affected by the particle size. However, the mass and neighbor
models with nonconstant aggregation probability introduced
here seem to result in structures with fractal dimensions that
are closer to the fractal dimension of the data than that in the
structures obtained by the DLCA model. Furthermore,
Abdusalamov et al.36 did not present any detailed study of
the spatial structure in terms of summary statistics, as was done
in our study.

■ CONCLUSIONS
The aim of this work was to develop a dynamic model for
aggregation that gives structures similar to the silica structures

in hand and to provide a better understanding of the
aggregation dynamics of colloidal silica. The DLVO theory
can provide physically reasonable models for the colloidal gels
but describes only the interaction between two spherical
particles and not between larger clusters. Therefore, the
structure of silica is not well predicted by these models.11,20

Furthermore, neither the standard DLCA model nor the
RLCA model seems to be fully satisfactory to model the
aggregation of silica particles35 which may be due to the
constant sticking probability. It was suggested35 that allowing
the particle size vary instead of it being constant could make a
difference. However, this change, which we made in this study,
does not improve the performance of the models much.
Therefore, we suggested cluster aggregation models where the
sticking probability depends on the masses of colliding clusters
or on the number of particles close to the collision site and
therefore varies as the aggregation process advances.

We compared the structures produced by three sticking
probability models, constant probability, mass, and neighbor
models, to the observed silica structure using several measures.
First, summary statistics from the spatial point process theory
were used to compare the spatial patterns. Second, the fractal
dimensions with higher values having the tendency to be
connected to more complicated cluster shapes were compared.
Finally, the mass transport properties were compared by
simulating the flow and diffusion through the structures. The
neighbor and mass models with varying sticking probabilities
performed clearly better than the constant probability model.
Based on all of the goodness-of-fit results above, we can
conclude that the neighbor model, where the sticking
probability depends on the number of particles near the
collision site, describes the STEM data fairly well. It works
better than the mass model, and both the neighbor and mass
models are clearly better than the constant probability model.
However, the exact parameter values may depend on the
sample and the conditions under which the sample has been
prepared. The results of this study suggest that the interaction
with multiple particles at the collision site is an important
feature in describing the aggregation dynamics under the
conditions under which the experimental gel was created. The
model can be tuned to different numbers of particles, their size,
and their shape in order to deal with a large variety of systems.
However, some other experimental conditions would lead to
slightly different structures, and therefore, the optimal
parameter values would most likely be different. Our main
lesson is that when modeling the aggregation process by cluster
aggregation models similar to DLCA and RLCA, it may be
useful to let the aggregation probability vary in time instead of
being constant. Here, we have suggested two such models and
demonstrated that these new models describe the observed
silica structures well, better than using a constant value for the
probability. Therefore, further testing of the parameters and
replicated experiments would be necessary to draw some
stronger conclusions.

An interesting topic for future research would be to
investigate whether the models based on the DLVO theory
could be generalized so that they would include interaction
between clusters of particles, which would make them more
suitable for silica gel formation. The spatial summary statistics
used here could again be applied to estimate the goodness of
fit. Also, the models suggested here could further benefit from
the knowledge gained from local particle−particle interaction
models included in DLVO theory or molecular dynamics
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models. Finally, it would be interesting to fit our models to gels
produced under different conditions, optimize the parameters,
and see how much the parameter values are influenced by the
gelation conditions.
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